1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/ErrorHandling.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Support/SaveAndRestore.h" 93 #include <algorithm> 94 using namespace llvm; 95 96 #define DEBUG_TYPE "scalar-evolution" 97 98 STATISTIC(NumArrayLenItCounts, 99 "Number of trip counts computed with array length"); 100 STATISTIC(NumTripCountsComputed, 101 "Number of loops with predictable loop counts"); 102 STATISTIC(NumTripCountsNotComputed, 103 "Number of loops without predictable loop counts"); 104 STATISTIC(NumBruteForceTripCountsComputed, 105 "Number of loops with trip counts computed by force"); 106 107 static cl::opt<unsigned> 108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 109 cl::desc("Maximum number of iterations SCEV will " 110 "symbolically execute a constant " 111 "derived loop"), 112 cl::init(100)); 113 114 // FIXME: Enable this with XDEBUG when the test suite is clean. 115 static cl::opt<bool> 116 VerifySCEV("verify-scev", 117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 118 static cl::opt<bool> 119 VerifySCEVMap("verify-scev-maps", 120 cl::desc("Verify no dangling value in ScalarEvolution's" 121 "ExprValueMap (slow)")); 122 123 //===----------------------------------------------------------------------===// 124 // SCEV class definitions 125 //===----------------------------------------------------------------------===// 126 127 //===----------------------------------------------------------------------===// 128 // Implementation of the SCEV class. 129 // 130 131 LLVM_DUMP_METHOD 132 void SCEV::dump() const { 133 print(dbgs()); 134 dbgs() << '\n'; 135 } 136 137 void SCEV::print(raw_ostream &OS) const { 138 switch (static_cast<SCEVTypes>(getSCEVType())) { 139 case scConstant: 140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 141 return; 142 case scTruncate: { 143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 144 const SCEV *Op = Trunc->getOperand(); 145 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 146 << *Trunc->getType() << ")"; 147 return; 148 } 149 case scZeroExtend: { 150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 151 const SCEV *Op = ZExt->getOperand(); 152 OS << "(zext " << *Op->getType() << " " << *Op << " to " 153 << *ZExt->getType() << ")"; 154 return; 155 } 156 case scSignExtend: { 157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 158 const SCEV *Op = SExt->getOperand(); 159 OS << "(sext " << *Op->getType() << " " << *Op << " to " 160 << *SExt->getType() << ")"; 161 return; 162 } 163 case scAddRecExpr: { 164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 165 OS << "{" << *AR->getOperand(0); 166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 167 OS << ",+," << *AR->getOperand(i); 168 OS << "}<"; 169 if (AR->hasNoUnsignedWrap()) 170 OS << "nuw><"; 171 if (AR->hasNoSignedWrap()) 172 OS << "nsw><"; 173 if (AR->hasNoSelfWrap() && 174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 175 OS << "nw><"; 176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 177 OS << ">"; 178 return; 179 } 180 case scAddExpr: 181 case scMulExpr: 182 case scUMaxExpr: 183 case scSMaxExpr: { 184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 185 const char *OpStr = nullptr; 186 switch (NAry->getSCEVType()) { 187 case scAddExpr: OpStr = " + "; break; 188 case scMulExpr: OpStr = " * "; break; 189 case scUMaxExpr: OpStr = " umax "; break; 190 case scSMaxExpr: OpStr = " smax "; break; 191 } 192 OS << "("; 193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 194 I != E; ++I) { 195 OS << **I; 196 if (std::next(I) != E) 197 OS << OpStr; 198 } 199 OS << ")"; 200 switch (NAry->getSCEVType()) { 201 case scAddExpr: 202 case scMulExpr: 203 if (NAry->hasNoUnsignedWrap()) 204 OS << "<nuw>"; 205 if (NAry->hasNoSignedWrap()) 206 OS << "<nsw>"; 207 } 208 return; 209 } 210 case scUDivExpr: { 211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 213 return; 214 } 215 case scUnknown: { 216 const SCEVUnknown *U = cast<SCEVUnknown>(this); 217 Type *AllocTy; 218 if (U->isSizeOf(AllocTy)) { 219 OS << "sizeof(" << *AllocTy << ")"; 220 return; 221 } 222 if (U->isAlignOf(AllocTy)) { 223 OS << "alignof(" << *AllocTy << ")"; 224 return; 225 } 226 227 Type *CTy; 228 Constant *FieldNo; 229 if (U->isOffsetOf(CTy, FieldNo)) { 230 OS << "offsetof(" << *CTy << ", "; 231 FieldNo->printAsOperand(OS, false); 232 OS << ")"; 233 return; 234 } 235 236 // Otherwise just print it normally. 237 U->getValue()->printAsOperand(OS, false); 238 return; 239 } 240 case scCouldNotCompute: 241 OS << "***COULDNOTCOMPUTE***"; 242 return; 243 } 244 llvm_unreachable("Unknown SCEV kind!"); 245 } 246 247 Type *SCEV::getType() const { 248 switch (static_cast<SCEVTypes>(getSCEVType())) { 249 case scConstant: 250 return cast<SCEVConstant>(this)->getType(); 251 case scTruncate: 252 case scZeroExtend: 253 case scSignExtend: 254 return cast<SCEVCastExpr>(this)->getType(); 255 case scAddRecExpr: 256 case scMulExpr: 257 case scUMaxExpr: 258 case scSMaxExpr: 259 return cast<SCEVNAryExpr>(this)->getType(); 260 case scAddExpr: 261 return cast<SCEVAddExpr>(this)->getType(); 262 case scUDivExpr: 263 return cast<SCEVUDivExpr>(this)->getType(); 264 case scUnknown: 265 return cast<SCEVUnknown>(this)->getType(); 266 case scCouldNotCompute: 267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 268 } 269 llvm_unreachable("Unknown SCEV kind!"); 270 } 271 272 bool SCEV::isZero() const { 273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 274 return SC->getValue()->isZero(); 275 return false; 276 } 277 278 bool SCEV::isOne() const { 279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 280 return SC->getValue()->isOne(); 281 return false; 282 } 283 284 bool SCEV::isAllOnesValue() const { 285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 286 return SC->getValue()->isAllOnesValue(); 287 return false; 288 } 289 290 /// isNonConstantNegative - Return true if the specified scev is negated, but 291 /// not a constant. 292 bool SCEV::isNonConstantNegative() const { 293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 294 if (!Mul) return false; 295 296 // If there is a constant factor, it will be first. 297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 298 if (!SC) return false; 299 300 // Return true if the value is negative, this matches things like (-42 * V). 301 return SC->getAPInt().isNegative(); 302 } 303 304 SCEVCouldNotCompute::SCEVCouldNotCompute() : 305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 306 307 bool SCEVCouldNotCompute::classof(const SCEV *S) { 308 return S->getSCEVType() == scCouldNotCompute; 309 } 310 311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 312 FoldingSetNodeID ID; 313 ID.AddInteger(scConstant); 314 ID.AddPointer(V); 315 void *IP = nullptr; 316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 318 UniqueSCEVs.InsertNode(S, IP); 319 return S; 320 } 321 322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 323 return getConstant(ConstantInt::get(getContext(), Val)); 324 } 325 326 const SCEV * 327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 329 return getConstant(ConstantInt::get(ITy, V, isSigned)); 330 } 331 332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 333 unsigned SCEVTy, const SCEV *op, Type *ty) 334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 335 336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 337 const SCEV *op, Type *ty) 338 : SCEVCastExpr(ID, scTruncate, op, ty) { 339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 340 (Ty->isIntegerTy() || Ty->isPointerTy()) && 341 "Cannot truncate non-integer value!"); 342 } 343 344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 345 const SCEV *op, Type *ty) 346 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 348 (Ty->isIntegerTy() || Ty->isPointerTy()) && 349 "Cannot zero extend non-integer value!"); 350 } 351 352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 353 const SCEV *op, Type *ty) 354 : SCEVCastExpr(ID, scSignExtend, op, ty) { 355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 356 (Ty->isIntegerTy() || Ty->isPointerTy()) && 357 "Cannot sign extend non-integer value!"); 358 } 359 360 void SCEVUnknown::deleted() { 361 // Clear this SCEVUnknown from various maps. 362 SE->forgetMemoizedResults(this); 363 364 // Remove this SCEVUnknown from the uniquing map. 365 SE->UniqueSCEVs.RemoveNode(this); 366 367 // Release the value. 368 setValPtr(nullptr); 369 } 370 371 void SCEVUnknown::allUsesReplacedWith(Value *New) { 372 // Clear this SCEVUnknown from various maps. 373 SE->forgetMemoizedResults(this); 374 375 // Remove this SCEVUnknown from the uniquing map. 376 SE->UniqueSCEVs.RemoveNode(this); 377 378 // Update this SCEVUnknown to point to the new value. This is needed 379 // because there may still be outstanding SCEVs which still point to 380 // this SCEVUnknown. 381 setValPtr(New); 382 } 383 384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 386 if (VCE->getOpcode() == Instruction::PtrToInt) 387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 388 if (CE->getOpcode() == Instruction::GetElementPtr && 389 CE->getOperand(0)->isNullValue() && 390 CE->getNumOperands() == 2) 391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 392 if (CI->isOne()) { 393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 394 ->getElementType(); 395 return true; 396 } 397 398 return false; 399 } 400 401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 403 if (VCE->getOpcode() == Instruction::PtrToInt) 404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 405 if (CE->getOpcode() == Instruction::GetElementPtr && 406 CE->getOperand(0)->isNullValue()) { 407 Type *Ty = 408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 409 if (StructType *STy = dyn_cast<StructType>(Ty)) 410 if (!STy->isPacked() && 411 CE->getNumOperands() == 3 && 412 CE->getOperand(1)->isNullValue()) { 413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 414 if (CI->isOne() && 415 STy->getNumElements() == 2 && 416 STy->getElementType(0)->isIntegerTy(1)) { 417 AllocTy = STy->getElementType(1); 418 return true; 419 } 420 } 421 } 422 423 return false; 424 } 425 426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 428 if (VCE->getOpcode() == Instruction::PtrToInt) 429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 430 if (CE->getOpcode() == Instruction::GetElementPtr && 431 CE->getNumOperands() == 3 && 432 CE->getOperand(0)->isNullValue() && 433 CE->getOperand(1)->isNullValue()) { 434 Type *Ty = 435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 436 // Ignore vector types here so that ScalarEvolutionExpander doesn't 437 // emit getelementptrs that index into vectors. 438 if (Ty->isStructTy() || Ty->isArrayTy()) { 439 CTy = Ty; 440 FieldNo = CE->getOperand(2); 441 return true; 442 } 443 } 444 445 return false; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 class SCEVComplexityCompare { 457 const LoopInfo *const LI; 458 public: 459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 460 461 // Return true or false if LHS is less than, or at least RHS, respectively. 462 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 463 return compare(LHS, RHS) < 0; 464 } 465 466 // Return negative, zero, or positive, if LHS is less than, equal to, or 467 // greater than RHS, respectively. A three-way result allows recursive 468 // comparisons to be more efficient. 469 int compare(const SCEV *LHS, const SCEV *RHS) const { 470 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 471 if (LHS == RHS) 472 return 0; 473 474 // Primarily, sort the SCEVs by their getSCEVType(). 475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 476 if (LType != RType) 477 return (int)LType - (int)RType; 478 479 // Aside from the getSCEVType() ordering, the particular ordering 480 // isn't very important except that it's beneficial to be consistent, 481 // so that (a + b) and (b + a) don't end up as different expressions. 482 switch (static_cast<SCEVTypes>(LType)) { 483 case scUnknown: { 484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 486 487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 488 // not as complete as it could be. 489 const Value *LV = LU->getValue(), *RV = RU->getValue(); 490 491 // Order pointer values after integer values. This helps SCEVExpander 492 // form GEPs. 493 bool LIsPointer = LV->getType()->isPointerTy(), 494 RIsPointer = RV->getType()->isPointerTy(); 495 if (LIsPointer != RIsPointer) 496 return (int)LIsPointer - (int)RIsPointer; 497 498 // Compare getValueID values. 499 unsigned LID = LV->getValueID(), 500 RID = RV->getValueID(); 501 if (LID != RID) 502 return (int)LID - (int)RID; 503 504 // Sort arguments by their position. 505 if (const Argument *LA = dyn_cast<Argument>(LV)) { 506 const Argument *RA = cast<Argument>(RV); 507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 508 return (int)LArgNo - (int)RArgNo; 509 } 510 511 // For instructions, compare their loop depth, and their operand 512 // count. This is pretty loose. 513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 514 const Instruction *RInst = cast<Instruction>(RV); 515 516 // Compare loop depths. 517 const BasicBlock *LParent = LInst->getParent(), 518 *RParent = RInst->getParent(); 519 if (LParent != RParent) { 520 unsigned LDepth = LI->getLoopDepth(LParent), 521 RDepth = LI->getLoopDepth(RParent); 522 if (LDepth != RDepth) 523 return (int)LDepth - (int)RDepth; 524 } 525 526 // Compare the number of operands. 527 unsigned LNumOps = LInst->getNumOperands(), 528 RNumOps = RInst->getNumOperands(); 529 return (int)LNumOps - (int)RNumOps; 530 } 531 532 return 0; 533 } 534 535 case scConstant: { 536 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 537 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 538 539 // Compare constant values. 540 const APInt &LA = LC->getAPInt(); 541 const APInt &RA = RC->getAPInt(); 542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 543 if (LBitWidth != RBitWidth) 544 return (int)LBitWidth - (int)RBitWidth; 545 return LA.ult(RA) ? -1 : 1; 546 } 547 548 case scAddRecExpr: { 549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 551 552 // Compare addrec loop depths. 553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 554 if (LLoop != RLoop) { 555 unsigned LDepth = LLoop->getLoopDepth(), 556 RDepth = RLoop->getLoopDepth(); 557 if (LDepth != RDepth) 558 return (int)LDepth - (int)RDepth; 559 } 560 561 // Addrec complexity grows with operand count. 562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 563 if (LNumOps != RNumOps) 564 return (int)LNumOps - (int)RNumOps; 565 566 // Lexicographically compare. 567 for (unsigned i = 0; i != LNumOps; ++i) { 568 long X = compare(LA->getOperand(i), RA->getOperand(i)); 569 if (X != 0) 570 return X; 571 } 572 573 return 0; 574 } 575 576 case scAddExpr: 577 case scMulExpr: 578 case scSMaxExpr: 579 case scUMaxExpr: { 580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 582 583 // Lexicographically compare n-ary expressions. 584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 585 if (LNumOps != RNumOps) 586 return (int)LNumOps - (int)RNumOps; 587 588 for (unsigned i = 0; i != LNumOps; ++i) { 589 if (i >= RNumOps) 590 return 1; 591 long X = compare(LC->getOperand(i), RC->getOperand(i)); 592 if (X != 0) 593 return X; 594 } 595 return (int)LNumOps - (int)RNumOps; 596 } 597 598 case scUDivExpr: { 599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 601 602 // Lexicographically compare udiv expressions. 603 long X = compare(LC->getLHS(), RC->getLHS()); 604 if (X != 0) 605 return X; 606 return compare(LC->getRHS(), RC->getRHS()); 607 } 608 609 case scTruncate: 610 case scZeroExtend: 611 case scSignExtend: { 612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 614 615 // Compare cast expressions by operand. 616 return compare(LC->getOperand(), RC->getOperand()); 617 } 618 619 case scCouldNotCompute: 620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 621 } 622 llvm_unreachable("Unknown SCEV kind!"); 623 } 624 }; 625 } // end anonymous namespace 626 627 /// GroupByComplexity - Given a list of SCEV objects, order them by their 628 /// complexity, and group objects of the same complexity together by value. 629 /// When this routine is finished, we know that any duplicates in the vector are 630 /// consecutive and that complexity is monotonically increasing. 631 /// 632 /// Note that we go take special precautions to ensure that we get deterministic 633 /// results from this routine. In other words, we don't want the results of 634 /// this to depend on where the addresses of various SCEV objects happened to 635 /// land in memory. 636 /// 637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 638 LoopInfo *LI) { 639 if (Ops.size() < 2) return; // Noop 640 if (Ops.size() == 2) { 641 // This is the common case, which also happens to be trivially simple. 642 // Special case it. 643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 644 if (SCEVComplexityCompare(LI)(RHS, LHS)) 645 std::swap(LHS, RHS); 646 return; 647 } 648 649 // Do the rough sort by complexity. 650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 651 652 // Now that we are sorted by complexity, group elements of the same 653 // complexity. Note that this is, at worst, N^2, but the vector is likely to 654 // be extremely short in practice. Note that we take this approach because we 655 // do not want to depend on the addresses of the objects we are grouping. 656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 657 const SCEV *S = Ops[i]; 658 unsigned Complexity = S->getSCEVType(); 659 660 // If there are any objects of the same complexity and same value as this 661 // one, group them. 662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 663 if (Ops[j] == S) { // Found a duplicate. 664 // Move it to immediately after i'th element. 665 std::swap(Ops[i+1], Ops[j]); 666 ++i; // no need to rescan it. 667 if (i == e-2) return; // Done! 668 } 669 } 670 } 671 } 672 673 // Returns the size of the SCEV S. 674 static inline int sizeOfSCEV(const SCEV *S) { 675 struct FindSCEVSize { 676 int Size; 677 FindSCEVSize() : Size(0) {} 678 679 bool follow(const SCEV *S) { 680 ++Size; 681 // Keep looking at all operands of S. 682 return true; 683 } 684 bool isDone() const { 685 return false; 686 } 687 }; 688 689 FindSCEVSize F; 690 SCEVTraversal<FindSCEVSize> ST(F); 691 ST.visitAll(S); 692 return F.Size; 693 } 694 695 namespace { 696 697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 698 public: 699 // Computes the Quotient and Remainder of the division of Numerator by 700 // Denominator. 701 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 702 const SCEV *Denominator, const SCEV **Quotient, 703 const SCEV **Remainder) { 704 assert(Numerator && Denominator && "Uninitialized SCEV"); 705 706 SCEVDivision D(SE, Numerator, Denominator); 707 708 // Check for the trivial case here to avoid having to check for it in the 709 // rest of the code. 710 if (Numerator == Denominator) { 711 *Quotient = D.One; 712 *Remainder = D.Zero; 713 return; 714 } 715 716 if (Numerator->isZero()) { 717 *Quotient = D.Zero; 718 *Remainder = D.Zero; 719 return; 720 } 721 722 // A simple case when N/1. The quotient is N. 723 if (Denominator->isOne()) { 724 *Quotient = Numerator; 725 *Remainder = D.Zero; 726 return; 727 } 728 729 // Split the Denominator when it is a product. 730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 731 const SCEV *Q, *R; 732 *Quotient = Numerator; 733 for (const SCEV *Op : T->operands()) { 734 divide(SE, *Quotient, Op, &Q, &R); 735 *Quotient = Q; 736 737 // Bail out when the Numerator is not divisible by one of the terms of 738 // the Denominator. 739 if (!R->isZero()) { 740 *Quotient = D.Zero; 741 *Remainder = Numerator; 742 return; 743 } 744 } 745 *Remainder = D.Zero; 746 return; 747 } 748 749 D.visit(Numerator); 750 *Quotient = D.Quotient; 751 *Remainder = D.Remainder; 752 } 753 754 // Except in the trivial case described above, we do not know how to divide 755 // Expr by Denominator for the following functions with empty implementation. 756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 762 void visitUnknown(const SCEVUnknown *Numerator) {} 763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 764 765 void visitConstant(const SCEVConstant *Numerator) { 766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 767 APInt NumeratorVal = Numerator->getAPInt(); 768 APInt DenominatorVal = D->getAPInt(); 769 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 770 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 771 772 if (NumeratorBW > DenominatorBW) 773 DenominatorVal = DenominatorVal.sext(NumeratorBW); 774 else if (NumeratorBW < DenominatorBW) 775 NumeratorVal = NumeratorVal.sext(DenominatorBW); 776 777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 780 Quotient = SE.getConstant(QuotientVal); 781 Remainder = SE.getConstant(RemainderVal); 782 return; 783 } 784 } 785 786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 787 const SCEV *StartQ, *StartR, *StepQ, *StepR; 788 if (!Numerator->isAffine()) 789 return cannotDivide(Numerator); 790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 792 // Bail out if the types do not match. 793 Type *Ty = Denominator->getType(); 794 if (Ty != StartQ->getType() || Ty != StartR->getType() || 795 Ty != StepQ->getType() || Ty != StepR->getType()) 796 return cannotDivide(Numerator); 797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 800 Numerator->getNoWrapFlags()); 801 } 802 803 void visitAddExpr(const SCEVAddExpr *Numerator) { 804 SmallVector<const SCEV *, 2> Qs, Rs; 805 Type *Ty = Denominator->getType(); 806 807 for (const SCEV *Op : Numerator->operands()) { 808 const SCEV *Q, *R; 809 divide(SE, Op, Denominator, &Q, &R); 810 811 // Bail out if types do not match. 812 if (Ty != Q->getType() || Ty != R->getType()) 813 return cannotDivide(Numerator); 814 815 Qs.push_back(Q); 816 Rs.push_back(R); 817 } 818 819 if (Qs.size() == 1) { 820 Quotient = Qs[0]; 821 Remainder = Rs[0]; 822 return; 823 } 824 825 Quotient = SE.getAddExpr(Qs); 826 Remainder = SE.getAddExpr(Rs); 827 } 828 829 void visitMulExpr(const SCEVMulExpr *Numerator) { 830 SmallVector<const SCEV *, 2> Qs; 831 Type *Ty = Denominator->getType(); 832 833 bool FoundDenominatorTerm = false; 834 for (const SCEV *Op : Numerator->operands()) { 835 // Bail out if types do not match. 836 if (Ty != Op->getType()) 837 return cannotDivide(Numerator); 838 839 if (FoundDenominatorTerm) { 840 Qs.push_back(Op); 841 continue; 842 } 843 844 // Check whether Denominator divides one of the product operands. 845 const SCEV *Q, *R; 846 divide(SE, Op, Denominator, &Q, &R); 847 if (!R->isZero()) { 848 Qs.push_back(Op); 849 continue; 850 } 851 852 // Bail out if types do not match. 853 if (Ty != Q->getType()) 854 return cannotDivide(Numerator); 855 856 FoundDenominatorTerm = true; 857 Qs.push_back(Q); 858 } 859 860 if (FoundDenominatorTerm) { 861 Remainder = Zero; 862 if (Qs.size() == 1) 863 Quotient = Qs[0]; 864 else 865 Quotient = SE.getMulExpr(Qs); 866 return; 867 } 868 869 if (!isa<SCEVUnknown>(Denominator)) 870 return cannotDivide(Numerator); 871 872 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 873 ValueToValueMap RewriteMap; 874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 875 cast<SCEVConstant>(Zero)->getValue(); 876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 877 878 if (Remainder->isZero()) { 879 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 881 cast<SCEVConstant>(One)->getValue(); 882 Quotient = 883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 884 return; 885 } 886 887 // Quotient is (Numerator - Remainder) divided by Denominator. 888 const SCEV *Q, *R; 889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 890 // This SCEV does not seem to simplify: fail the division here. 891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 892 return cannotDivide(Numerator); 893 divide(SE, Diff, Denominator, &Q, &R); 894 if (R != Zero) 895 return cannotDivide(Numerator); 896 Quotient = Q; 897 } 898 899 private: 900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 901 const SCEV *Denominator) 902 : SE(S), Denominator(Denominator) { 903 Zero = SE.getZero(Denominator->getType()); 904 One = SE.getOne(Denominator->getType()); 905 906 // We generally do not know how to divide Expr by Denominator. We 907 // initialize the division to a "cannot divide" state to simplify the rest 908 // of the code. 909 cannotDivide(Numerator); 910 } 911 912 // Convenience function for giving up on the division. We set the quotient to 913 // be equal to zero and the remainder to be equal to the numerator. 914 void cannotDivide(const SCEV *Numerator) { 915 Quotient = Zero; 916 Remainder = Numerator; 917 } 918 919 ScalarEvolution &SE; 920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 921 }; 922 923 } 924 925 //===----------------------------------------------------------------------===// 926 // Simple SCEV method implementations 927 //===----------------------------------------------------------------------===// 928 929 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 930 /// Assume, K > 0. 931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 932 ScalarEvolution &SE, 933 Type *ResultTy) { 934 // Handle the simplest case efficiently. 935 if (K == 1) 936 return SE.getTruncateOrZeroExtend(It, ResultTy); 937 938 // We are using the following formula for BC(It, K): 939 // 940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 941 // 942 // Suppose, W is the bitwidth of the return value. We must be prepared for 943 // overflow. Hence, we must assure that the result of our computation is 944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 945 // safe in modular arithmetic. 946 // 947 // However, this code doesn't use exactly that formula; the formula it uses 948 // is something like the following, where T is the number of factors of 2 in 949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 950 // exponentiation: 951 // 952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 953 // 954 // This formula is trivially equivalent to the previous formula. However, 955 // this formula can be implemented much more efficiently. The trick is that 956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 957 // arithmetic. To do exact division in modular arithmetic, all we have 958 // to do is multiply by the inverse. Therefore, this step can be done at 959 // width W. 960 // 961 // The next issue is how to safely do the division by 2^T. The way this 962 // is done is by doing the multiplication step at a width of at least W + T 963 // bits. This way, the bottom W+T bits of the product are accurate. Then, 964 // when we perform the division by 2^T (which is equivalent to a right shift 965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 966 // truncated out after the division by 2^T. 967 // 968 // In comparison to just directly using the first formula, this technique 969 // is much more efficient; using the first formula requires W * K bits, 970 // but this formula less than W + K bits. Also, the first formula requires 971 // a division step, whereas this formula only requires multiplies and shifts. 972 // 973 // It doesn't matter whether the subtraction step is done in the calculation 974 // width or the input iteration count's width; if the subtraction overflows, 975 // the result must be zero anyway. We prefer here to do it in the width of 976 // the induction variable because it helps a lot for certain cases; CodeGen 977 // isn't smart enough to ignore the overflow, which leads to much less 978 // efficient code if the width of the subtraction is wider than the native 979 // register width. 980 // 981 // (It's possible to not widen at all by pulling out factors of 2 before 982 // the multiplication; for example, K=2 can be calculated as 983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 984 // extra arithmetic, so it's not an obvious win, and it gets 985 // much more complicated for K > 3.) 986 987 // Protection from insane SCEVs; this bound is conservative, 988 // but it probably doesn't matter. 989 if (K > 1000) 990 return SE.getCouldNotCompute(); 991 992 unsigned W = SE.getTypeSizeInBits(ResultTy); 993 994 // Calculate K! / 2^T and T; we divide out the factors of two before 995 // multiplying for calculating K! / 2^T to avoid overflow. 996 // Other overflow doesn't matter because we only care about the bottom 997 // W bits of the result. 998 APInt OddFactorial(W, 1); 999 unsigned T = 1; 1000 for (unsigned i = 3; i <= K; ++i) { 1001 APInt Mult(W, i); 1002 unsigned TwoFactors = Mult.countTrailingZeros(); 1003 T += TwoFactors; 1004 Mult = Mult.lshr(TwoFactors); 1005 OddFactorial *= Mult; 1006 } 1007 1008 // We need at least W + T bits for the multiplication step 1009 unsigned CalculationBits = W + T; 1010 1011 // Calculate 2^T, at width T+W. 1012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1013 1014 // Calculate the multiplicative inverse of K! / 2^T; 1015 // this multiplication factor will perform the exact division by 1016 // K! / 2^T. 1017 APInt Mod = APInt::getSignedMinValue(W+1); 1018 APInt MultiplyFactor = OddFactorial.zext(W+1); 1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1020 MultiplyFactor = MultiplyFactor.trunc(W); 1021 1022 // Calculate the product, at width T+W 1023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1024 CalculationBits); 1025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1026 for (unsigned i = 1; i != K; ++i) { 1027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1028 Dividend = SE.getMulExpr(Dividend, 1029 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1030 } 1031 1032 // Divide by 2^T 1033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1034 1035 // Truncate the result, and divide by K! / 2^T. 1036 1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1039 } 1040 1041 /// evaluateAtIteration - Return the value of this chain of recurrences at 1042 /// the specified iteration number. We can evaluate this recurrence by 1043 /// multiplying each element in the chain by the binomial coefficient 1044 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1045 /// 1046 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1047 /// 1048 /// where BC(It, k) stands for binomial coefficient. 1049 /// 1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1051 ScalarEvolution &SE) const { 1052 const SCEV *Result = getStart(); 1053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1071 Type *Ty) { 1072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1073 "This is not a truncating conversion!"); 1074 assert(isSCEVable(Ty) && 1075 "This is not a conversion to a SCEVable type!"); 1076 Ty = getEffectiveSCEVType(Ty); 1077 1078 FoldingSetNodeID ID; 1079 ID.AddInteger(scTruncate); 1080 ID.AddPointer(Op); 1081 ID.AddPointer(Ty); 1082 void *IP = nullptr; 1083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1084 1085 // Fold if the operand is constant. 1086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1087 return getConstant( 1088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1089 1090 // trunc(trunc(x)) --> trunc(x) 1091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1092 return getTruncateExpr(ST->getOperand(), Ty); 1093 1094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1096 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1097 1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1101 1102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1103 // eliminate all the truncates, or we replace other casts with truncates. 1104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1105 SmallVector<const SCEV *, 4> Operands; 1106 bool hasTrunc = false; 1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1109 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1110 hasTrunc = isa<SCEVTruncateExpr>(S); 1111 Operands.push_back(S); 1112 } 1113 if (!hasTrunc) 1114 return getAddExpr(Operands); 1115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1116 } 1117 1118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1119 // eliminate all the truncates, or we replace other casts with truncates. 1120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1121 SmallVector<const SCEV *, 4> Operands; 1122 bool hasTrunc = false; 1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1125 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1126 hasTrunc = isa<SCEVTruncateExpr>(S); 1127 Operands.push_back(S); 1128 } 1129 if (!hasTrunc) 1130 return getMulExpr(Operands); 1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1132 } 1133 1134 // If the input value is a chrec scev, truncate the chrec's operands. 1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1136 SmallVector<const SCEV *, 4> Operands; 1137 for (const SCEV *Op : AddRec->operands()) 1138 Operands.push_back(getTruncateExpr(Op, Ty)); 1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1140 } 1141 1142 // The cast wasn't folded; create an explicit cast node. We can reuse 1143 // the existing insert position since if we get here, we won't have 1144 // made any changes which would invalidate it. 1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1146 Op, Ty); 1147 UniqueSCEVs.InsertNode(S, IP); 1148 return S; 1149 } 1150 1151 // Get the limit of a recurrence such that incrementing by Step cannot cause 1152 // signed overflow as long as the value of the recurrence within the 1153 // loop does not exceed this limit before incrementing. 1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1155 ICmpInst::Predicate *Pred, 1156 ScalarEvolution *SE) { 1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1158 if (SE->isKnownPositive(Step)) { 1159 *Pred = ICmpInst::ICMP_SLT; 1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1161 SE->getSignedRange(Step).getSignedMax()); 1162 } 1163 if (SE->isKnownNegative(Step)) { 1164 *Pred = ICmpInst::ICMP_SGT; 1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1166 SE->getSignedRange(Step).getSignedMin()); 1167 } 1168 return nullptr; 1169 } 1170 1171 // Get the limit of a recurrence such that incrementing by Step cannot cause 1172 // unsigned overflow as long as the value of the recurrence within the loop does 1173 // not exceed this limit before incrementing. 1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1175 ICmpInst::Predicate *Pred, 1176 ScalarEvolution *SE) { 1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1178 *Pred = ICmpInst::ICMP_ULT; 1179 1180 return SE->getConstant(APInt::getMinValue(BitWidth) - 1181 SE->getUnsignedRange(Step).getUnsignedMax()); 1182 } 1183 1184 namespace { 1185 1186 struct ExtendOpTraitsBase { 1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1188 }; 1189 1190 // Used to make code generic over signed and unsigned overflow. 1191 template <typename ExtendOp> struct ExtendOpTraits { 1192 // Members present: 1193 // 1194 // static const SCEV::NoWrapFlags WrapType; 1195 // 1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1197 // 1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1199 // ICmpInst::Predicate *Pred, 1200 // ScalarEvolution *SE); 1201 }; 1202 1203 template <> 1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1206 1207 static const GetExtendExprTy GetExtendExpr; 1208 1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1210 ICmpInst::Predicate *Pred, 1211 ScalarEvolution *SE) { 1212 return getSignedOverflowLimitForStep(Step, Pred, SE); 1213 } 1214 }; 1215 1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1218 1219 template <> 1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1222 1223 static const GetExtendExprTy GetExtendExpr; 1224 1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1226 ICmpInst::Predicate *Pred, 1227 ScalarEvolution *SE) { 1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1229 } 1230 }; 1231 1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1234 } 1235 1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1241 // expression "Step + sext/zext(PreIncAR)" is congruent with 1242 // "sext/zext(PostIncAR)" 1243 template <typename ExtendOpTy> 1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1245 ScalarEvolution *SE) { 1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1248 1249 const Loop *L = AR->getLoop(); 1250 const SCEV *Start = AR->getStart(); 1251 const SCEV *Step = AR->getStepRecurrence(*SE); 1252 1253 // Check for a simple looking step prior to loop entry. 1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1255 if (!SA) 1256 return nullptr; 1257 1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1259 // subtraction is expensive. For this purpose, perform a quick and dirty 1260 // difference, by checking for Step in the operand list. 1261 SmallVector<const SCEV *, 4> DiffOps; 1262 for (const SCEV *Op : SA->operands()) 1263 if (Op != Step) 1264 DiffOps.push_back(Op); 1265 1266 if (DiffOps.size() == SA->getNumOperands()) 1267 return nullptr; 1268 1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1270 // `Step`: 1271 1272 // 1. NSW/NUW flags on the step increment. 1273 auto PreStartFlags = 1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1278 1279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1280 // "S+X does not sign/unsign-overflow". 1281 // 1282 1283 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1286 return PreStart; 1287 1288 // 2. Direct overflow check on the step operation's expression. 1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1291 const SCEV *OperandExtendedStart = 1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1293 (SE->*GetExtendExpr)(Step, WideTy)); 1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1295 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1300 } 1301 return PreStart; 1302 } 1303 1304 // 3. Loop precondition. 1305 ICmpInst::Predicate Pred; 1306 const SCEV *OverflowLimit = 1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1308 1309 if (OverflowLimit && 1310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1311 return PreStart; 1312 1313 return nullptr; 1314 } 1315 1316 // Get the normalized zero or sign extended expression for this AddRec's Start. 1317 template <typename ExtendOpTy> 1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1319 ScalarEvolution *SE) { 1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1321 1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1323 if (!PreStart) 1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1325 1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1327 (SE->*GetExtendExpr)(PreStart, Ty)); 1328 } 1329 1330 // Try to prove away overflow by looking at "nearby" add recurrences. A 1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1333 // 1334 // Formally: 1335 // 1336 // {S,+,X} == {S-T,+,X} + T 1337 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1338 // 1339 // If ({S-T,+,X} + T) does not overflow ... (1) 1340 // 1341 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1342 // 1343 // If {S-T,+,X} does not overflow ... (2) 1344 // 1345 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1346 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1347 // 1348 // If (S-T)+T does not overflow ... (3) 1349 // 1350 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1351 // == {Ext(S),+,Ext(X)} == LHS 1352 // 1353 // Thus, if (1), (2) and (3) are true for some T, then 1354 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1355 // 1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1357 // does not overflow" restricted to the 0th iteration. Therefore we only need 1358 // to check for (1) and (2). 1359 // 1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1361 // is `Delta` (defined below). 1362 // 1363 template <typename ExtendOpTy> 1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1365 const SCEV *Step, 1366 const Loop *L) { 1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1368 1369 // We restrict `Start` to a constant to prevent SCEV from spending too much 1370 // time here. It is correct (but more expensive) to continue with a 1371 // non-constant `Start` and do a general SCEV subtraction to compute 1372 // `PreStart` below. 1373 // 1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1375 if (!StartC) 1376 return false; 1377 1378 APInt StartAI = StartC->getAPInt(); 1379 1380 for (unsigned Delta : {-2, -1, 1, 2}) { 1381 const SCEV *PreStart = getConstant(StartAI - Delta); 1382 1383 FoldingSetNodeID ID; 1384 ID.AddInteger(scAddRecExpr); 1385 ID.AddPointer(PreStart); 1386 ID.AddPointer(Step); 1387 ID.AddPointer(L); 1388 void *IP = nullptr; 1389 const auto *PreAR = 1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1391 1392 // Give up if we don't already have the add recurrence we need because 1393 // actually constructing an add recurrence is relatively expensive. 1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1398 DeltaS, &Pred, this); 1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1400 return true; 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1408 Type *Ty) { 1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1410 "This is not an extending conversion!"); 1411 assert(isSCEVable(Ty) && 1412 "This is not a conversion to a SCEVable type!"); 1413 Ty = getEffectiveSCEVType(Ty); 1414 1415 // Fold if the operand is constant. 1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1417 return getConstant( 1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1419 1420 // zext(zext(x)) --> zext(x) 1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1422 return getZeroExtendExpr(SZ->getOperand(), Ty); 1423 1424 // Before doing any expensive analysis, check to see if we've already 1425 // computed a SCEV for this Op and Ty. 1426 FoldingSetNodeID ID; 1427 ID.AddInteger(scZeroExtend); 1428 ID.AddPointer(Op); 1429 ID.AddPointer(Ty); 1430 void *IP = nullptr; 1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1432 1433 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1435 // It's possible the bits taken off by the truncate were all zero bits. If 1436 // so, we should be able to simplify this further. 1437 const SCEV *X = ST->getOperand(); 1438 ConstantRange CR = getUnsignedRange(X); 1439 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1440 unsigned NewBits = getTypeSizeInBits(Ty); 1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1442 CR.zextOrTrunc(NewBits))) 1443 return getTruncateOrZeroExtend(X, Ty); 1444 } 1445 1446 // If the input value is a chrec scev, and we can prove that the value 1447 // did not overflow the old, smaller, value, we can zero extend all of the 1448 // operands (often constants). This allows analysis of something like 1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1451 if (AR->isAffine()) { 1452 const SCEV *Start = AR->getStart(); 1453 const SCEV *Step = AR->getStepRecurrence(*this); 1454 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1455 const Loop *L = AR->getLoop(); 1456 1457 if (!AR->hasNoUnsignedWrap()) { 1458 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1459 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1460 } 1461 1462 // If we have special knowledge that this addrec won't overflow, 1463 // we don't need to do any further analysis. 1464 if (AR->hasNoUnsignedWrap()) 1465 return getAddRecExpr( 1466 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1467 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1468 1469 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1470 // Note that this serves two purposes: It filters out loops that are 1471 // simply not analyzable, and it covers the case where this code is 1472 // being called from within backedge-taken count analysis, such that 1473 // attempting to ask for the backedge-taken count would likely result 1474 // in infinite recursion. In the later case, the analysis code will 1475 // cope with a conservative value, and it will take care to purge 1476 // that value once it has finished. 1477 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1478 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1479 // Manually compute the final value for AR, checking for 1480 // overflow. 1481 1482 // Check whether the backedge-taken count can be losslessly casted to 1483 // the addrec's type. The count is always unsigned. 1484 const SCEV *CastedMaxBECount = 1485 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1486 const SCEV *RecastedMaxBECount = 1487 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1488 if (MaxBECount == RecastedMaxBECount) { 1489 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1490 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1491 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1492 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1493 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1494 const SCEV *WideMaxBECount = 1495 getZeroExtendExpr(CastedMaxBECount, WideTy); 1496 const SCEV *OperandExtendedAdd = 1497 getAddExpr(WideStart, 1498 getMulExpr(WideMaxBECount, 1499 getZeroExtendExpr(Step, WideTy))); 1500 if (ZAdd == OperandExtendedAdd) { 1501 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1502 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1503 // Return the expression with the addrec on the outside. 1504 return getAddRecExpr( 1505 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1506 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1507 } 1508 // Similar to above, only this time treat the step value as signed. 1509 // This covers loops that count down. 1510 OperandExtendedAdd = 1511 getAddExpr(WideStart, 1512 getMulExpr(WideMaxBECount, 1513 getSignExtendExpr(Step, WideTy))); 1514 if (ZAdd == OperandExtendedAdd) { 1515 // Cache knowledge of AR NW, which is propagated to this AddRec. 1516 // Negative step causes unsigned wrap, but it still can't self-wrap. 1517 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1518 // Return the expression with the addrec on the outside. 1519 return getAddRecExpr( 1520 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1521 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1522 } 1523 } 1524 1525 // If the backedge is guarded by a comparison with the pre-inc value 1526 // the addrec is safe. Also, if the entry is guarded by a comparison 1527 // with the start value and the backedge is guarded by a comparison 1528 // with the post-inc value, the addrec is safe. 1529 if (isKnownPositive(Step)) { 1530 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1531 getUnsignedRange(Step).getUnsignedMax()); 1532 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1533 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1534 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1535 AR->getPostIncExpr(*this), N))) { 1536 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1537 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1538 // Return the expression with the addrec on the outside. 1539 return getAddRecExpr( 1540 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1541 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1542 } 1543 } else if (isKnownNegative(Step)) { 1544 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1545 getSignedRange(Step).getSignedMin()); 1546 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1547 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1548 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1549 AR->getPostIncExpr(*this), N))) { 1550 // Cache knowledge of AR NW, which is propagated to this AddRec. 1551 // Negative step causes unsigned wrap, but it still can't self-wrap. 1552 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1553 // Return the expression with the addrec on the outside. 1554 return getAddRecExpr( 1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1556 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1557 } 1558 } 1559 } 1560 1561 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1563 return getAddRecExpr( 1564 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1565 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1566 } 1567 } 1568 1569 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1570 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1571 if (SA->hasNoUnsignedWrap()) { 1572 // If the addition does not unsign overflow then we can, by definition, 1573 // commute the zero extension with the addition operation. 1574 SmallVector<const SCEV *, 4> Ops; 1575 for (const auto *Op : SA->operands()) 1576 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1577 return getAddExpr(Ops, SCEV::FlagNUW); 1578 } 1579 } 1580 1581 // The cast wasn't folded; create an explicit cast node. 1582 // Recompute the insert position, as it may have been invalidated. 1583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1584 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1585 Op, Ty); 1586 UniqueSCEVs.InsertNode(S, IP); 1587 return S; 1588 } 1589 1590 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1591 Type *Ty) { 1592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1593 "This is not an extending conversion!"); 1594 assert(isSCEVable(Ty) && 1595 "This is not a conversion to a SCEVable type!"); 1596 Ty = getEffectiveSCEVType(Ty); 1597 1598 // Fold if the operand is constant. 1599 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1600 return getConstant( 1601 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1602 1603 // sext(sext(x)) --> sext(x) 1604 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1605 return getSignExtendExpr(SS->getOperand(), Ty); 1606 1607 // sext(zext(x)) --> zext(x) 1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1609 return getZeroExtendExpr(SZ->getOperand(), Ty); 1610 1611 // Before doing any expensive analysis, check to see if we've already 1612 // computed a SCEV for this Op and Ty. 1613 FoldingSetNodeID ID; 1614 ID.AddInteger(scSignExtend); 1615 ID.AddPointer(Op); 1616 ID.AddPointer(Ty); 1617 void *IP = nullptr; 1618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1619 1620 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1621 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1622 // It's possible the bits taken off by the truncate were all sign bits. If 1623 // so, we should be able to simplify this further. 1624 const SCEV *X = ST->getOperand(); 1625 ConstantRange CR = getSignedRange(X); 1626 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1627 unsigned NewBits = getTypeSizeInBits(Ty); 1628 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1629 CR.sextOrTrunc(NewBits))) 1630 return getTruncateOrSignExtend(X, Ty); 1631 } 1632 1633 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1634 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1635 if (SA->getNumOperands() == 2) { 1636 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1637 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1638 if (SMul && SC1) { 1639 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1640 const APInt &C1 = SC1->getAPInt(); 1641 const APInt &C2 = SC2->getAPInt(); 1642 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1643 C2.ugt(C1) && C2.isPowerOf2()) 1644 return getAddExpr(getSignExtendExpr(SC1, Ty), 1645 getSignExtendExpr(SMul, Ty)); 1646 } 1647 } 1648 } 1649 1650 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1651 if (SA->hasNoSignedWrap()) { 1652 // If the addition does not sign overflow then we can, by definition, 1653 // commute the sign extension with the addition operation. 1654 SmallVector<const SCEV *, 4> Ops; 1655 for (const auto *Op : SA->operands()) 1656 Ops.push_back(getSignExtendExpr(Op, Ty)); 1657 return getAddExpr(Ops, SCEV::FlagNSW); 1658 } 1659 } 1660 // If the input value is a chrec scev, and we can prove that the value 1661 // did not overflow the old, smaller, value, we can sign extend all of the 1662 // operands (often constants). This allows analysis of something like 1663 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1665 if (AR->isAffine()) { 1666 const SCEV *Start = AR->getStart(); 1667 const SCEV *Step = AR->getStepRecurrence(*this); 1668 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1669 const Loop *L = AR->getLoop(); 1670 1671 if (!AR->hasNoSignedWrap()) { 1672 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1673 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1674 } 1675 1676 // If we have special knowledge that this addrec won't overflow, 1677 // we don't need to do any further analysis. 1678 if (AR->hasNoSignedWrap()) 1679 return getAddRecExpr( 1680 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1681 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1682 1683 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1684 // Note that this serves two purposes: It filters out loops that are 1685 // simply not analyzable, and it covers the case where this code is 1686 // being called from within backedge-taken count analysis, such that 1687 // attempting to ask for the backedge-taken count would likely result 1688 // in infinite recursion. In the later case, the analysis code will 1689 // cope with a conservative value, and it will take care to purge 1690 // that value once it has finished. 1691 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1692 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1693 // Manually compute the final value for AR, checking for 1694 // overflow. 1695 1696 // Check whether the backedge-taken count can be losslessly casted to 1697 // the addrec's type. The count is always unsigned. 1698 const SCEV *CastedMaxBECount = 1699 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1700 const SCEV *RecastedMaxBECount = 1701 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1702 if (MaxBECount == RecastedMaxBECount) { 1703 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1704 // Check whether Start+Step*MaxBECount has no signed overflow. 1705 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1706 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1707 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1708 const SCEV *WideMaxBECount = 1709 getZeroExtendExpr(CastedMaxBECount, WideTy); 1710 const SCEV *OperandExtendedAdd = 1711 getAddExpr(WideStart, 1712 getMulExpr(WideMaxBECount, 1713 getSignExtendExpr(Step, WideTy))); 1714 if (SAdd == OperandExtendedAdd) { 1715 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1716 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1717 // Return the expression with the addrec on the outside. 1718 return getAddRecExpr( 1719 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1720 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1721 } 1722 // Similar to above, only this time treat the step value as unsigned. 1723 // This covers loops that count up with an unsigned step. 1724 OperandExtendedAdd = 1725 getAddExpr(WideStart, 1726 getMulExpr(WideMaxBECount, 1727 getZeroExtendExpr(Step, WideTy))); 1728 if (SAdd == OperandExtendedAdd) { 1729 // If AR wraps around then 1730 // 1731 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1732 // => SAdd != OperandExtendedAdd 1733 // 1734 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1735 // (SAdd == OperandExtendedAdd => AR is NW) 1736 1737 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1738 1739 // Return the expression with the addrec on the outside. 1740 return getAddRecExpr( 1741 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1742 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1743 } 1744 } 1745 1746 // If the backedge is guarded by a comparison with the pre-inc value 1747 // the addrec is safe. Also, if the entry is guarded by a comparison 1748 // with the start value and the backedge is guarded by a comparison 1749 // with the post-inc value, the addrec is safe. 1750 ICmpInst::Predicate Pred; 1751 const SCEV *OverflowLimit = 1752 getSignedOverflowLimitForStep(Step, &Pred, this); 1753 if (OverflowLimit && 1754 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1755 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1756 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1757 OverflowLimit)))) { 1758 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1759 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1760 return getAddRecExpr( 1761 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1762 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1763 } 1764 } 1765 // If Start and Step are constants, check if we can apply this 1766 // transformation: 1767 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1768 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1769 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1770 if (SC1 && SC2) { 1771 const APInt &C1 = SC1->getAPInt(); 1772 const APInt &C2 = SC2->getAPInt(); 1773 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1774 C2.isPowerOf2()) { 1775 Start = getSignExtendExpr(Start, Ty); 1776 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1777 AR->getNoWrapFlags()); 1778 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1779 } 1780 } 1781 1782 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1783 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1784 return getAddRecExpr( 1785 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1786 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1787 } 1788 } 1789 1790 // If the input value is provably positive and we could not simplify 1791 // away the sext build a zext instead. 1792 if (isKnownNonNegative(Op)) 1793 return getZeroExtendExpr(Op, Ty); 1794 1795 // The cast wasn't folded; create an explicit cast node. 1796 // Recompute the insert position, as it may have been invalidated. 1797 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1798 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1799 Op, Ty); 1800 UniqueSCEVs.InsertNode(S, IP); 1801 return S; 1802 } 1803 1804 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1805 /// unspecified bits out to the given type. 1806 /// 1807 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1808 Type *Ty) { 1809 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1810 "This is not an extending conversion!"); 1811 assert(isSCEVable(Ty) && 1812 "This is not a conversion to a SCEVable type!"); 1813 Ty = getEffectiveSCEVType(Ty); 1814 1815 // Sign-extend negative constants. 1816 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1817 if (SC->getAPInt().isNegative()) 1818 return getSignExtendExpr(Op, Ty); 1819 1820 // Peel off a truncate cast. 1821 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1822 const SCEV *NewOp = T->getOperand(); 1823 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1824 return getAnyExtendExpr(NewOp, Ty); 1825 return getTruncateOrNoop(NewOp, Ty); 1826 } 1827 1828 // Next try a zext cast. If the cast is folded, use it. 1829 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1830 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1831 return ZExt; 1832 1833 // Next try a sext cast. If the cast is folded, use it. 1834 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1835 if (!isa<SCEVSignExtendExpr>(SExt)) 1836 return SExt; 1837 1838 // Force the cast to be folded into the operands of an addrec. 1839 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1840 SmallVector<const SCEV *, 4> Ops; 1841 for (const SCEV *Op : AR->operands()) 1842 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1843 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1844 } 1845 1846 // If the expression is obviously signed, use the sext cast value. 1847 if (isa<SCEVSMaxExpr>(Op)) 1848 return SExt; 1849 1850 // Absent any other information, use the zext cast value. 1851 return ZExt; 1852 } 1853 1854 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1855 /// a list of operands to be added under the given scale, update the given 1856 /// map. This is a helper function for getAddRecExpr. As an example of 1857 /// what it does, given a sequence of operands that would form an add 1858 /// expression like this: 1859 /// 1860 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1861 /// 1862 /// where A and B are constants, update the map with these values: 1863 /// 1864 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1865 /// 1866 /// and add 13 + A*B*29 to AccumulatedConstant. 1867 /// This will allow getAddRecExpr to produce this: 1868 /// 1869 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1870 /// 1871 /// This form often exposes folding opportunities that are hidden in 1872 /// the original operand list. 1873 /// 1874 /// Return true iff it appears that any interesting folding opportunities 1875 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1876 /// the common case where no interesting opportunities are present, and 1877 /// is also used as a check to avoid infinite recursion. 1878 /// 1879 static bool 1880 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1881 SmallVectorImpl<const SCEV *> &NewOps, 1882 APInt &AccumulatedConstant, 1883 const SCEV *const *Ops, size_t NumOperands, 1884 const APInt &Scale, 1885 ScalarEvolution &SE) { 1886 bool Interesting = false; 1887 1888 // Iterate over the add operands. They are sorted, with constants first. 1889 unsigned i = 0; 1890 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1891 ++i; 1892 // Pull a buried constant out to the outside. 1893 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1894 Interesting = true; 1895 AccumulatedConstant += Scale * C->getAPInt(); 1896 } 1897 1898 // Next comes everything else. We're especially interested in multiplies 1899 // here, but they're in the middle, so just visit the rest with one loop. 1900 for (; i != NumOperands; ++i) { 1901 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1902 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1903 APInt NewScale = 1904 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 1905 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1906 // A multiplication of a constant with another add; recurse. 1907 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1908 Interesting |= 1909 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1910 Add->op_begin(), Add->getNumOperands(), 1911 NewScale, SE); 1912 } else { 1913 // A multiplication of a constant with some other value. Update 1914 // the map. 1915 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1916 const SCEV *Key = SE.getMulExpr(MulOps); 1917 auto Pair = M.insert({Key, NewScale}); 1918 if (Pair.second) { 1919 NewOps.push_back(Pair.first->first); 1920 } else { 1921 Pair.first->second += NewScale; 1922 // The map already had an entry for this value, which may indicate 1923 // a folding opportunity. 1924 Interesting = true; 1925 } 1926 } 1927 } else { 1928 // An ordinary operand. Update the map. 1929 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1930 M.insert({Ops[i], Scale}); 1931 if (Pair.second) { 1932 NewOps.push_back(Pair.first->first); 1933 } else { 1934 Pair.first->second += Scale; 1935 // The map already had an entry for this value, which may indicate 1936 // a folding opportunity. 1937 Interesting = true; 1938 } 1939 } 1940 } 1941 1942 return Interesting; 1943 } 1944 1945 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1946 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1947 // can't-overflow flags for the operation if possible. 1948 static SCEV::NoWrapFlags 1949 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1950 const SmallVectorImpl<const SCEV *> &Ops, 1951 SCEV::NoWrapFlags Flags) { 1952 using namespace std::placeholders; 1953 typedef OverflowingBinaryOperator OBO; 1954 1955 bool CanAnalyze = 1956 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1957 (void)CanAnalyze; 1958 assert(CanAnalyze && "don't call from other places!"); 1959 1960 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1961 SCEV::NoWrapFlags SignOrUnsignWrap = 1962 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1963 1964 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1965 auto IsKnownNonNegative = [&](const SCEV *S) { 1966 return SE->isKnownNonNegative(S); 1967 }; 1968 1969 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 1970 Flags = 1971 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1972 1973 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1974 1975 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1976 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1977 1978 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1979 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1980 1981 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 1982 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1983 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1984 Instruction::Add, C, OBO::NoSignedWrap); 1985 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1986 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1987 } 1988 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1989 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 1990 Instruction::Add, C, OBO::NoUnsignedWrap); 1991 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1992 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1993 } 1994 } 1995 1996 return Flags; 1997 } 1998 1999 /// getAddExpr - Get a canonical add expression, or something simpler if 2000 /// possible. 2001 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2002 SCEV::NoWrapFlags Flags) { 2003 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2004 "only nuw or nsw allowed"); 2005 assert(!Ops.empty() && "Cannot get empty add!"); 2006 if (Ops.size() == 1) return Ops[0]; 2007 #ifndef NDEBUG 2008 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2009 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2010 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2011 "SCEVAddExpr operand types don't match!"); 2012 #endif 2013 2014 // Sort by complexity, this groups all similar expression types together. 2015 GroupByComplexity(Ops, &LI); 2016 2017 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2018 2019 // If there are any constants, fold them together. 2020 unsigned Idx = 0; 2021 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2022 ++Idx; 2023 assert(Idx < Ops.size()); 2024 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2025 // We found two constants, fold them together! 2026 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2027 if (Ops.size() == 2) return Ops[0]; 2028 Ops.erase(Ops.begin()+1); // Erase the folded element 2029 LHSC = cast<SCEVConstant>(Ops[0]); 2030 } 2031 2032 // If we are left with a constant zero being added, strip it off. 2033 if (LHSC->getValue()->isZero()) { 2034 Ops.erase(Ops.begin()); 2035 --Idx; 2036 } 2037 2038 if (Ops.size() == 1) return Ops[0]; 2039 } 2040 2041 // Okay, check to see if the same value occurs in the operand list more than 2042 // once. If so, merge them together into an multiply expression. Since we 2043 // sorted the list, these values are required to be adjacent. 2044 Type *Ty = Ops[0]->getType(); 2045 bool FoundMatch = false; 2046 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2047 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2048 // Scan ahead to count how many equal operands there are. 2049 unsigned Count = 2; 2050 while (i+Count != e && Ops[i+Count] == Ops[i]) 2051 ++Count; 2052 // Merge the values into a multiply. 2053 const SCEV *Scale = getConstant(Ty, Count); 2054 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2055 if (Ops.size() == Count) 2056 return Mul; 2057 Ops[i] = Mul; 2058 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2059 --i; e -= Count - 1; 2060 FoundMatch = true; 2061 } 2062 if (FoundMatch) 2063 return getAddExpr(Ops, Flags); 2064 2065 // Check for truncates. If all the operands are truncated from the same 2066 // type, see if factoring out the truncate would permit the result to be 2067 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2068 // if the contents of the resulting outer trunc fold to something simple. 2069 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2070 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2071 Type *DstType = Trunc->getType(); 2072 Type *SrcType = Trunc->getOperand()->getType(); 2073 SmallVector<const SCEV *, 8> LargeOps; 2074 bool Ok = true; 2075 // Check all the operands to see if they can be represented in the 2076 // source type of the truncate. 2077 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2078 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2079 if (T->getOperand()->getType() != SrcType) { 2080 Ok = false; 2081 break; 2082 } 2083 LargeOps.push_back(T->getOperand()); 2084 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2085 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2086 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2087 SmallVector<const SCEV *, 8> LargeMulOps; 2088 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2089 if (const SCEVTruncateExpr *T = 2090 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2091 if (T->getOperand()->getType() != SrcType) { 2092 Ok = false; 2093 break; 2094 } 2095 LargeMulOps.push_back(T->getOperand()); 2096 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2097 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2098 } else { 2099 Ok = false; 2100 break; 2101 } 2102 } 2103 if (Ok) 2104 LargeOps.push_back(getMulExpr(LargeMulOps)); 2105 } else { 2106 Ok = false; 2107 break; 2108 } 2109 } 2110 if (Ok) { 2111 // Evaluate the expression in the larger type. 2112 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2113 // If it folds to something simple, use it. Otherwise, don't. 2114 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2115 return getTruncateExpr(Fold, DstType); 2116 } 2117 } 2118 2119 // Skip past any other cast SCEVs. 2120 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2121 ++Idx; 2122 2123 // If there are add operands they would be next. 2124 if (Idx < Ops.size()) { 2125 bool DeletedAdd = false; 2126 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2127 // If we have an add, expand the add operands onto the end of the operands 2128 // list. 2129 Ops.erase(Ops.begin()+Idx); 2130 Ops.append(Add->op_begin(), Add->op_end()); 2131 DeletedAdd = true; 2132 } 2133 2134 // If we deleted at least one add, we added operands to the end of the list, 2135 // and they are not necessarily sorted. Recurse to resort and resimplify 2136 // any operands we just acquired. 2137 if (DeletedAdd) 2138 return getAddExpr(Ops); 2139 } 2140 2141 // Skip over the add expression until we get to a multiply. 2142 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2143 ++Idx; 2144 2145 // Check to see if there are any folding opportunities present with 2146 // operands multiplied by constant values. 2147 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2148 uint64_t BitWidth = getTypeSizeInBits(Ty); 2149 DenseMap<const SCEV *, APInt> M; 2150 SmallVector<const SCEV *, 8> NewOps; 2151 APInt AccumulatedConstant(BitWidth, 0); 2152 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2153 Ops.data(), Ops.size(), 2154 APInt(BitWidth, 1), *this)) { 2155 struct APIntCompare { 2156 bool operator()(const APInt &LHS, const APInt &RHS) const { 2157 return LHS.ult(RHS); 2158 } 2159 }; 2160 2161 // Some interesting folding opportunity is present, so its worthwhile to 2162 // re-generate the operands list. Group the operands by constant scale, 2163 // to avoid multiplying by the same constant scale multiple times. 2164 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2165 for (const SCEV *NewOp : NewOps) 2166 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2167 // Re-generate the operands list. 2168 Ops.clear(); 2169 if (AccumulatedConstant != 0) 2170 Ops.push_back(getConstant(AccumulatedConstant)); 2171 for (auto &MulOp : MulOpLists) 2172 if (MulOp.first != 0) 2173 Ops.push_back(getMulExpr(getConstant(MulOp.first), 2174 getAddExpr(MulOp.second))); 2175 if (Ops.empty()) 2176 return getZero(Ty); 2177 if (Ops.size() == 1) 2178 return Ops[0]; 2179 return getAddExpr(Ops); 2180 } 2181 } 2182 2183 // If we are adding something to a multiply expression, make sure the 2184 // something is not already an operand of the multiply. If so, merge it into 2185 // the multiply. 2186 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2187 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2188 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2189 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2190 if (isa<SCEVConstant>(MulOpSCEV)) 2191 continue; 2192 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2193 if (MulOpSCEV == Ops[AddOp]) { 2194 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2195 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2196 if (Mul->getNumOperands() != 2) { 2197 // If the multiply has more than two operands, we must get the 2198 // Y*Z term. 2199 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2200 Mul->op_begin()+MulOp); 2201 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2202 InnerMul = getMulExpr(MulOps); 2203 } 2204 const SCEV *One = getOne(Ty); 2205 const SCEV *AddOne = getAddExpr(One, InnerMul); 2206 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2207 if (Ops.size() == 2) return OuterMul; 2208 if (AddOp < Idx) { 2209 Ops.erase(Ops.begin()+AddOp); 2210 Ops.erase(Ops.begin()+Idx-1); 2211 } else { 2212 Ops.erase(Ops.begin()+Idx); 2213 Ops.erase(Ops.begin()+AddOp-1); 2214 } 2215 Ops.push_back(OuterMul); 2216 return getAddExpr(Ops); 2217 } 2218 2219 // Check this multiply against other multiplies being added together. 2220 for (unsigned OtherMulIdx = Idx+1; 2221 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2222 ++OtherMulIdx) { 2223 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2224 // If MulOp occurs in OtherMul, we can fold the two multiplies 2225 // together. 2226 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2227 OMulOp != e; ++OMulOp) 2228 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2229 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2230 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2231 if (Mul->getNumOperands() != 2) { 2232 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2233 Mul->op_begin()+MulOp); 2234 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2235 InnerMul1 = getMulExpr(MulOps); 2236 } 2237 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2238 if (OtherMul->getNumOperands() != 2) { 2239 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2240 OtherMul->op_begin()+OMulOp); 2241 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2242 InnerMul2 = getMulExpr(MulOps); 2243 } 2244 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2245 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2246 if (Ops.size() == 2) return OuterMul; 2247 Ops.erase(Ops.begin()+Idx); 2248 Ops.erase(Ops.begin()+OtherMulIdx-1); 2249 Ops.push_back(OuterMul); 2250 return getAddExpr(Ops); 2251 } 2252 } 2253 } 2254 } 2255 2256 // If there are any add recurrences in the operands list, see if any other 2257 // added values are loop invariant. If so, we can fold them into the 2258 // recurrence. 2259 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2260 ++Idx; 2261 2262 // Scan over all recurrences, trying to fold loop invariants into them. 2263 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2264 // Scan all of the other operands to this add and add them to the vector if 2265 // they are loop invariant w.r.t. the recurrence. 2266 SmallVector<const SCEV *, 8> LIOps; 2267 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2268 const Loop *AddRecLoop = AddRec->getLoop(); 2269 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2270 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2271 LIOps.push_back(Ops[i]); 2272 Ops.erase(Ops.begin()+i); 2273 --i; --e; 2274 } 2275 2276 // If we found some loop invariants, fold them into the recurrence. 2277 if (!LIOps.empty()) { 2278 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2279 LIOps.push_back(AddRec->getStart()); 2280 2281 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2282 AddRec->op_end()); 2283 AddRecOps[0] = getAddExpr(LIOps); 2284 2285 // Build the new addrec. Propagate the NUW and NSW flags if both the 2286 // outer add and the inner addrec are guaranteed to have no overflow. 2287 // Always propagate NW. 2288 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2289 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2290 2291 // If all of the other operands were loop invariant, we are done. 2292 if (Ops.size() == 1) return NewRec; 2293 2294 // Otherwise, add the folded AddRec by the non-invariant parts. 2295 for (unsigned i = 0;; ++i) 2296 if (Ops[i] == AddRec) { 2297 Ops[i] = NewRec; 2298 break; 2299 } 2300 return getAddExpr(Ops); 2301 } 2302 2303 // Okay, if there weren't any loop invariants to be folded, check to see if 2304 // there are multiple AddRec's with the same loop induction variable being 2305 // added together. If so, we can fold them. 2306 for (unsigned OtherIdx = Idx+1; 2307 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2308 ++OtherIdx) 2309 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2310 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2311 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2312 AddRec->op_end()); 2313 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2314 ++OtherIdx) 2315 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2316 if (OtherAddRec->getLoop() == AddRecLoop) { 2317 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2318 i != e; ++i) { 2319 if (i >= AddRecOps.size()) { 2320 AddRecOps.append(OtherAddRec->op_begin()+i, 2321 OtherAddRec->op_end()); 2322 break; 2323 } 2324 AddRecOps[i] = getAddExpr(AddRecOps[i], 2325 OtherAddRec->getOperand(i)); 2326 } 2327 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2328 } 2329 // Step size has changed, so we cannot guarantee no self-wraparound. 2330 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2331 return getAddExpr(Ops); 2332 } 2333 2334 // Otherwise couldn't fold anything into this recurrence. Move onto the 2335 // next one. 2336 } 2337 2338 // Okay, it looks like we really DO need an add expr. Check to see if we 2339 // already have one, otherwise create a new one. 2340 FoldingSetNodeID ID; 2341 ID.AddInteger(scAddExpr); 2342 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2343 ID.AddPointer(Ops[i]); 2344 void *IP = nullptr; 2345 SCEVAddExpr *S = 2346 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2347 if (!S) { 2348 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2349 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2350 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2351 O, Ops.size()); 2352 UniqueSCEVs.InsertNode(S, IP); 2353 } 2354 S->setNoWrapFlags(Flags); 2355 return S; 2356 } 2357 2358 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2359 uint64_t k = i*j; 2360 if (j > 1 && k / j != i) Overflow = true; 2361 return k; 2362 } 2363 2364 /// Compute the result of "n choose k", the binomial coefficient. If an 2365 /// intermediate computation overflows, Overflow will be set and the return will 2366 /// be garbage. Overflow is not cleared on absence of overflow. 2367 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2368 // We use the multiplicative formula: 2369 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2370 // At each iteration, we take the n-th term of the numeral and divide by the 2371 // (k-n)th term of the denominator. This division will always produce an 2372 // integral result, and helps reduce the chance of overflow in the 2373 // intermediate computations. However, we can still overflow even when the 2374 // final result would fit. 2375 2376 if (n == 0 || n == k) return 1; 2377 if (k > n) return 0; 2378 2379 if (k > n/2) 2380 k = n-k; 2381 2382 uint64_t r = 1; 2383 for (uint64_t i = 1; i <= k; ++i) { 2384 r = umul_ov(r, n-(i-1), Overflow); 2385 r /= i; 2386 } 2387 return r; 2388 } 2389 2390 /// Determine if any of the operands in this SCEV are a constant or if 2391 /// any of the add or multiply expressions in this SCEV contain a constant. 2392 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2393 SmallVector<const SCEV *, 4> Ops; 2394 Ops.push_back(StartExpr); 2395 while (!Ops.empty()) { 2396 const SCEV *CurrentExpr = Ops.pop_back_val(); 2397 if (isa<SCEVConstant>(*CurrentExpr)) 2398 return true; 2399 2400 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2401 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2402 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2403 } 2404 } 2405 return false; 2406 } 2407 2408 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2409 /// possible. 2410 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2411 SCEV::NoWrapFlags Flags) { 2412 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2413 "only nuw or nsw allowed"); 2414 assert(!Ops.empty() && "Cannot get empty mul!"); 2415 if (Ops.size() == 1) return Ops[0]; 2416 #ifndef NDEBUG 2417 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2418 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2419 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2420 "SCEVMulExpr operand types don't match!"); 2421 #endif 2422 2423 // Sort by complexity, this groups all similar expression types together. 2424 GroupByComplexity(Ops, &LI); 2425 2426 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2427 2428 // If there are any constants, fold them together. 2429 unsigned Idx = 0; 2430 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2431 2432 // C1*(C2+V) -> C1*C2 + C1*V 2433 if (Ops.size() == 2) 2434 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2435 // If any of Add's ops are Adds or Muls with a constant, 2436 // apply this transformation as well. 2437 if (Add->getNumOperands() == 2) 2438 if (containsConstantSomewhere(Add)) 2439 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2440 getMulExpr(LHSC, Add->getOperand(1))); 2441 2442 ++Idx; 2443 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2444 // We found two constants, fold them together! 2445 ConstantInt *Fold = 2446 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2447 Ops[0] = getConstant(Fold); 2448 Ops.erase(Ops.begin()+1); // Erase the folded element 2449 if (Ops.size() == 1) return Ops[0]; 2450 LHSC = cast<SCEVConstant>(Ops[0]); 2451 } 2452 2453 // If we are left with a constant one being multiplied, strip it off. 2454 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2455 Ops.erase(Ops.begin()); 2456 --Idx; 2457 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2458 // If we have a multiply of zero, it will always be zero. 2459 return Ops[0]; 2460 } else if (Ops[0]->isAllOnesValue()) { 2461 // If we have a mul by -1 of an add, try distributing the -1 among the 2462 // add operands. 2463 if (Ops.size() == 2) { 2464 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2465 SmallVector<const SCEV *, 4> NewOps; 2466 bool AnyFolded = false; 2467 for (const SCEV *AddOp : Add->operands()) { 2468 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2469 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2470 NewOps.push_back(Mul); 2471 } 2472 if (AnyFolded) 2473 return getAddExpr(NewOps); 2474 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2475 // Negation preserves a recurrence's no self-wrap property. 2476 SmallVector<const SCEV *, 4> Operands; 2477 for (const SCEV *AddRecOp : AddRec->operands()) 2478 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2479 2480 return getAddRecExpr(Operands, AddRec->getLoop(), 2481 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2482 } 2483 } 2484 } 2485 2486 if (Ops.size() == 1) 2487 return Ops[0]; 2488 } 2489 2490 // Skip over the add expression until we get to a multiply. 2491 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2492 ++Idx; 2493 2494 // If there are mul operands inline them all into this expression. 2495 if (Idx < Ops.size()) { 2496 bool DeletedMul = false; 2497 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2498 // If we have an mul, expand the mul operands onto the end of the operands 2499 // list. 2500 Ops.erase(Ops.begin()+Idx); 2501 Ops.append(Mul->op_begin(), Mul->op_end()); 2502 DeletedMul = true; 2503 } 2504 2505 // If we deleted at least one mul, we added operands to the end of the list, 2506 // and they are not necessarily sorted. Recurse to resort and resimplify 2507 // any operands we just acquired. 2508 if (DeletedMul) 2509 return getMulExpr(Ops); 2510 } 2511 2512 // If there are any add recurrences in the operands list, see if any other 2513 // added values are loop invariant. If so, we can fold them into the 2514 // recurrence. 2515 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2516 ++Idx; 2517 2518 // Scan over all recurrences, trying to fold loop invariants into them. 2519 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2520 // Scan all of the other operands to this mul and add them to the vector if 2521 // they are loop invariant w.r.t. the recurrence. 2522 SmallVector<const SCEV *, 8> LIOps; 2523 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2524 const Loop *AddRecLoop = AddRec->getLoop(); 2525 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2526 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2527 LIOps.push_back(Ops[i]); 2528 Ops.erase(Ops.begin()+i); 2529 --i; --e; 2530 } 2531 2532 // If we found some loop invariants, fold them into the recurrence. 2533 if (!LIOps.empty()) { 2534 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2535 SmallVector<const SCEV *, 4> NewOps; 2536 NewOps.reserve(AddRec->getNumOperands()); 2537 const SCEV *Scale = getMulExpr(LIOps); 2538 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2539 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2540 2541 // Build the new addrec. Propagate the NUW and NSW flags if both the 2542 // outer mul and the inner addrec are guaranteed to have no overflow. 2543 // 2544 // No self-wrap cannot be guaranteed after changing the step size, but 2545 // will be inferred if either NUW or NSW is true. 2546 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2547 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2548 2549 // If all of the other operands were loop invariant, we are done. 2550 if (Ops.size() == 1) return NewRec; 2551 2552 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2553 for (unsigned i = 0;; ++i) 2554 if (Ops[i] == AddRec) { 2555 Ops[i] = NewRec; 2556 break; 2557 } 2558 return getMulExpr(Ops); 2559 } 2560 2561 // Okay, if there weren't any loop invariants to be folded, check to see if 2562 // there are multiple AddRec's with the same loop induction variable being 2563 // multiplied together. If so, we can fold them. 2564 2565 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2566 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2567 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2568 // ]]],+,...up to x=2n}. 2569 // Note that the arguments to choose() are always integers with values 2570 // known at compile time, never SCEV objects. 2571 // 2572 // The implementation avoids pointless extra computations when the two 2573 // addrec's are of different length (mathematically, it's equivalent to 2574 // an infinite stream of zeros on the right). 2575 bool OpsModified = false; 2576 for (unsigned OtherIdx = Idx+1; 2577 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2578 ++OtherIdx) { 2579 const SCEVAddRecExpr *OtherAddRec = 2580 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2581 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2582 continue; 2583 2584 bool Overflow = false; 2585 Type *Ty = AddRec->getType(); 2586 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2587 SmallVector<const SCEV*, 7> AddRecOps; 2588 for (int x = 0, xe = AddRec->getNumOperands() + 2589 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2590 const SCEV *Term = getZero(Ty); 2591 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2592 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2593 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2594 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2595 z < ze && !Overflow; ++z) { 2596 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2597 uint64_t Coeff; 2598 if (LargerThan64Bits) 2599 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2600 else 2601 Coeff = Coeff1*Coeff2; 2602 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2603 const SCEV *Term1 = AddRec->getOperand(y-z); 2604 const SCEV *Term2 = OtherAddRec->getOperand(z); 2605 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2606 } 2607 } 2608 AddRecOps.push_back(Term); 2609 } 2610 if (!Overflow) { 2611 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2612 SCEV::FlagAnyWrap); 2613 if (Ops.size() == 2) return NewAddRec; 2614 Ops[Idx] = NewAddRec; 2615 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2616 OpsModified = true; 2617 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2618 if (!AddRec) 2619 break; 2620 } 2621 } 2622 if (OpsModified) 2623 return getMulExpr(Ops); 2624 2625 // Otherwise couldn't fold anything into this recurrence. Move onto the 2626 // next one. 2627 } 2628 2629 // Okay, it looks like we really DO need an mul expr. Check to see if we 2630 // already have one, otherwise create a new one. 2631 FoldingSetNodeID ID; 2632 ID.AddInteger(scMulExpr); 2633 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2634 ID.AddPointer(Ops[i]); 2635 void *IP = nullptr; 2636 SCEVMulExpr *S = 2637 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2638 if (!S) { 2639 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2640 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2641 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2642 O, Ops.size()); 2643 UniqueSCEVs.InsertNode(S, IP); 2644 } 2645 S->setNoWrapFlags(Flags); 2646 return S; 2647 } 2648 2649 /// getUDivExpr - Get a canonical unsigned division expression, or something 2650 /// simpler if possible. 2651 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2652 const SCEV *RHS) { 2653 assert(getEffectiveSCEVType(LHS->getType()) == 2654 getEffectiveSCEVType(RHS->getType()) && 2655 "SCEVUDivExpr operand types don't match!"); 2656 2657 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2658 if (RHSC->getValue()->equalsInt(1)) 2659 return LHS; // X udiv 1 --> x 2660 // If the denominator is zero, the result of the udiv is undefined. Don't 2661 // try to analyze it, because the resolution chosen here may differ from 2662 // the resolution chosen in other parts of the compiler. 2663 if (!RHSC->getValue()->isZero()) { 2664 // Determine if the division can be folded into the operands of 2665 // its operands. 2666 // TODO: Generalize this to non-constants by using known-bits information. 2667 Type *Ty = LHS->getType(); 2668 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2669 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2670 // For non-power-of-two values, effectively round the value up to the 2671 // nearest power of two. 2672 if (!RHSC->getAPInt().isPowerOf2()) 2673 ++MaxShiftAmt; 2674 IntegerType *ExtTy = 2675 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2676 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2677 if (const SCEVConstant *Step = 2678 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2679 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2680 const APInt &StepInt = Step->getAPInt(); 2681 const APInt &DivInt = RHSC->getAPInt(); 2682 if (!StepInt.urem(DivInt) && 2683 getZeroExtendExpr(AR, ExtTy) == 2684 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2685 getZeroExtendExpr(Step, ExtTy), 2686 AR->getLoop(), SCEV::FlagAnyWrap)) { 2687 SmallVector<const SCEV *, 4> Operands; 2688 for (const SCEV *Op : AR->operands()) 2689 Operands.push_back(getUDivExpr(Op, RHS)); 2690 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2691 } 2692 /// Get a canonical UDivExpr for a recurrence. 2693 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2694 // We can currently only fold X%N if X is constant. 2695 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2696 if (StartC && !DivInt.urem(StepInt) && 2697 getZeroExtendExpr(AR, ExtTy) == 2698 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2699 getZeroExtendExpr(Step, ExtTy), 2700 AR->getLoop(), SCEV::FlagAnyWrap)) { 2701 const APInt &StartInt = StartC->getAPInt(); 2702 const APInt &StartRem = StartInt.urem(StepInt); 2703 if (StartRem != 0) 2704 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2705 AR->getLoop(), SCEV::FlagNW); 2706 } 2707 } 2708 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2709 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2710 SmallVector<const SCEV *, 4> Operands; 2711 for (const SCEV *Op : M->operands()) 2712 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2713 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2714 // Find an operand that's safely divisible. 2715 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2716 const SCEV *Op = M->getOperand(i); 2717 const SCEV *Div = getUDivExpr(Op, RHSC); 2718 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2719 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2720 M->op_end()); 2721 Operands[i] = Div; 2722 return getMulExpr(Operands); 2723 } 2724 } 2725 } 2726 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2727 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2728 SmallVector<const SCEV *, 4> Operands; 2729 for (const SCEV *Op : A->operands()) 2730 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2731 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2732 Operands.clear(); 2733 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2734 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2735 if (isa<SCEVUDivExpr>(Op) || 2736 getMulExpr(Op, RHS) != A->getOperand(i)) 2737 break; 2738 Operands.push_back(Op); 2739 } 2740 if (Operands.size() == A->getNumOperands()) 2741 return getAddExpr(Operands); 2742 } 2743 } 2744 2745 // Fold if both operands are constant. 2746 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2747 Constant *LHSCV = LHSC->getValue(); 2748 Constant *RHSCV = RHSC->getValue(); 2749 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2750 RHSCV))); 2751 } 2752 } 2753 } 2754 2755 FoldingSetNodeID ID; 2756 ID.AddInteger(scUDivExpr); 2757 ID.AddPointer(LHS); 2758 ID.AddPointer(RHS); 2759 void *IP = nullptr; 2760 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2761 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2762 LHS, RHS); 2763 UniqueSCEVs.InsertNode(S, IP); 2764 return S; 2765 } 2766 2767 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2768 APInt A = C1->getAPInt().abs(); 2769 APInt B = C2->getAPInt().abs(); 2770 uint32_t ABW = A.getBitWidth(); 2771 uint32_t BBW = B.getBitWidth(); 2772 2773 if (ABW > BBW) 2774 B = B.zext(ABW); 2775 else if (ABW < BBW) 2776 A = A.zext(BBW); 2777 2778 return APIntOps::GreatestCommonDivisor(A, B); 2779 } 2780 2781 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2782 /// something simpler if possible. There is no representation for an exact udiv 2783 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2784 /// We can't do this when it's not exact because the udiv may be clearing bits. 2785 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2786 const SCEV *RHS) { 2787 // TODO: we could try to find factors in all sorts of things, but for now we 2788 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2789 // end of this file for inspiration. 2790 2791 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2792 if (!Mul) 2793 return getUDivExpr(LHS, RHS); 2794 2795 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2796 // If the mulexpr multiplies by a constant, then that constant must be the 2797 // first element of the mulexpr. 2798 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2799 if (LHSCst == RHSCst) { 2800 SmallVector<const SCEV *, 2> Operands; 2801 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2802 return getMulExpr(Operands); 2803 } 2804 2805 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2806 // that there's a factor provided by one of the other terms. We need to 2807 // check. 2808 APInt Factor = gcd(LHSCst, RHSCst); 2809 if (!Factor.isIntN(1)) { 2810 LHSCst = 2811 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 2812 RHSCst = 2813 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 2814 SmallVector<const SCEV *, 2> Operands; 2815 Operands.push_back(LHSCst); 2816 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2817 LHS = getMulExpr(Operands); 2818 RHS = RHSCst; 2819 Mul = dyn_cast<SCEVMulExpr>(LHS); 2820 if (!Mul) 2821 return getUDivExactExpr(LHS, RHS); 2822 } 2823 } 2824 } 2825 2826 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2827 if (Mul->getOperand(i) == RHS) { 2828 SmallVector<const SCEV *, 2> Operands; 2829 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2830 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2831 return getMulExpr(Operands); 2832 } 2833 } 2834 2835 return getUDivExpr(LHS, RHS); 2836 } 2837 2838 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2839 /// Simplify the expression as much as possible. 2840 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2841 const Loop *L, 2842 SCEV::NoWrapFlags Flags) { 2843 SmallVector<const SCEV *, 4> Operands; 2844 Operands.push_back(Start); 2845 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2846 if (StepChrec->getLoop() == L) { 2847 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2848 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2849 } 2850 2851 Operands.push_back(Step); 2852 return getAddRecExpr(Operands, L, Flags); 2853 } 2854 2855 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2856 /// Simplify the expression as much as possible. 2857 const SCEV * 2858 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2859 const Loop *L, SCEV::NoWrapFlags Flags) { 2860 if (Operands.size() == 1) return Operands[0]; 2861 #ifndef NDEBUG 2862 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2863 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2864 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2865 "SCEVAddRecExpr operand types don't match!"); 2866 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2867 assert(isLoopInvariant(Operands[i], L) && 2868 "SCEVAddRecExpr operand is not loop-invariant!"); 2869 #endif 2870 2871 if (Operands.back()->isZero()) { 2872 Operands.pop_back(); 2873 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2874 } 2875 2876 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2877 // use that information to infer NUW and NSW flags. However, computing a 2878 // BE count requires calling getAddRecExpr, so we may not yet have a 2879 // meaningful BE count at this point (and if we don't, we'd be stuck 2880 // with a SCEVCouldNotCompute as the cached BE count). 2881 2882 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2883 2884 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2885 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2886 const Loop *NestedLoop = NestedAR->getLoop(); 2887 if (L->contains(NestedLoop) 2888 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2889 : (!NestedLoop->contains(L) && 2890 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2891 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2892 NestedAR->op_end()); 2893 Operands[0] = NestedAR->getStart(); 2894 // AddRecs require their operands be loop-invariant with respect to their 2895 // loops. Don't perform this transformation if it would break this 2896 // requirement. 2897 bool AllInvariant = all_of( 2898 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2899 2900 if (AllInvariant) { 2901 // Create a recurrence for the outer loop with the same step size. 2902 // 2903 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2904 // inner recurrence has the same property. 2905 SCEV::NoWrapFlags OuterFlags = 2906 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2907 2908 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2909 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 2910 return isLoopInvariant(Op, NestedLoop); 2911 }); 2912 2913 if (AllInvariant) { 2914 // Ok, both add recurrences are valid after the transformation. 2915 // 2916 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2917 // the outer recurrence has the same property. 2918 SCEV::NoWrapFlags InnerFlags = 2919 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2920 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2921 } 2922 } 2923 // Reset Operands to its original state. 2924 Operands[0] = NestedAR; 2925 } 2926 } 2927 2928 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2929 // already have one, otherwise create a new one. 2930 FoldingSetNodeID ID; 2931 ID.AddInteger(scAddRecExpr); 2932 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2933 ID.AddPointer(Operands[i]); 2934 ID.AddPointer(L); 2935 void *IP = nullptr; 2936 SCEVAddRecExpr *S = 2937 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2938 if (!S) { 2939 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2940 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2941 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2942 O, Operands.size(), L); 2943 UniqueSCEVs.InsertNode(S, IP); 2944 } 2945 S->setNoWrapFlags(Flags); 2946 return S; 2947 } 2948 2949 const SCEV * 2950 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2951 const SmallVectorImpl<const SCEV *> &IndexExprs, 2952 bool InBounds) { 2953 // getSCEV(Base)->getType() has the same address space as Base->getType() 2954 // because SCEV::getType() preserves the address space. 2955 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2956 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2957 // instruction to its SCEV, because the Instruction may be guarded by control 2958 // flow and the no-overflow bits may not be valid for the expression in any 2959 // context. This can be fixed similarly to how these flags are handled for 2960 // adds. 2961 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2962 2963 const SCEV *TotalOffset = getZero(IntPtrTy); 2964 // The address space is unimportant. The first thing we do on CurTy is getting 2965 // its element type. 2966 Type *CurTy = PointerType::getUnqual(PointeeType); 2967 for (const SCEV *IndexExpr : IndexExprs) { 2968 // Compute the (potentially symbolic) offset in bytes for this index. 2969 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2970 // For a struct, add the member offset. 2971 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2972 unsigned FieldNo = Index->getZExtValue(); 2973 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2974 2975 // Add the field offset to the running total offset. 2976 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2977 2978 // Update CurTy to the type of the field at Index. 2979 CurTy = STy->getTypeAtIndex(Index); 2980 } else { 2981 // Update CurTy to its element type. 2982 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2983 // For an array, add the element offset, explicitly scaled. 2984 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2985 // Getelementptr indices are signed. 2986 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2987 2988 // Multiply the index by the element size to compute the element offset. 2989 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2990 2991 // Add the element offset to the running total offset. 2992 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2993 } 2994 } 2995 2996 // Add the total offset from all the GEP indices to the base. 2997 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2998 } 2999 3000 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3001 const SCEV *RHS) { 3002 SmallVector<const SCEV *, 2> Ops; 3003 Ops.push_back(LHS); 3004 Ops.push_back(RHS); 3005 return getSMaxExpr(Ops); 3006 } 3007 3008 const SCEV * 3009 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3010 assert(!Ops.empty() && "Cannot get empty smax!"); 3011 if (Ops.size() == 1) return Ops[0]; 3012 #ifndef NDEBUG 3013 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3014 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3015 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3016 "SCEVSMaxExpr operand types don't match!"); 3017 #endif 3018 3019 // Sort by complexity, this groups all similar expression types together. 3020 GroupByComplexity(Ops, &LI); 3021 3022 // If there are any constants, fold them together. 3023 unsigned Idx = 0; 3024 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3025 ++Idx; 3026 assert(Idx < Ops.size()); 3027 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3028 // We found two constants, fold them together! 3029 ConstantInt *Fold = ConstantInt::get( 3030 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3031 Ops[0] = getConstant(Fold); 3032 Ops.erase(Ops.begin()+1); // Erase the folded element 3033 if (Ops.size() == 1) return Ops[0]; 3034 LHSC = cast<SCEVConstant>(Ops[0]); 3035 } 3036 3037 // If we are left with a constant minimum-int, strip it off. 3038 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3039 Ops.erase(Ops.begin()); 3040 --Idx; 3041 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3042 // If we have an smax with a constant maximum-int, it will always be 3043 // maximum-int. 3044 return Ops[0]; 3045 } 3046 3047 if (Ops.size() == 1) return Ops[0]; 3048 } 3049 3050 // Find the first SMax 3051 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3052 ++Idx; 3053 3054 // Check to see if one of the operands is an SMax. If so, expand its operands 3055 // onto our operand list, and recurse to simplify. 3056 if (Idx < Ops.size()) { 3057 bool DeletedSMax = false; 3058 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3059 Ops.erase(Ops.begin()+Idx); 3060 Ops.append(SMax->op_begin(), SMax->op_end()); 3061 DeletedSMax = true; 3062 } 3063 3064 if (DeletedSMax) 3065 return getSMaxExpr(Ops); 3066 } 3067 3068 // Okay, check to see if the same value occurs in the operand list twice. If 3069 // so, delete one. Since we sorted the list, these values are required to 3070 // be adjacent. 3071 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3072 // X smax Y smax Y --> X smax Y 3073 // X smax Y --> X, if X is always greater than Y 3074 if (Ops[i] == Ops[i+1] || 3075 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3076 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3077 --i; --e; 3078 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3079 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3080 --i; --e; 3081 } 3082 3083 if (Ops.size() == 1) return Ops[0]; 3084 3085 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3086 3087 // Okay, it looks like we really DO need an smax expr. Check to see if we 3088 // already have one, otherwise create a new one. 3089 FoldingSetNodeID ID; 3090 ID.AddInteger(scSMaxExpr); 3091 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3092 ID.AddPointer(Ops[i]); 3093 void *IP = nullptr; 3094 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3095 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3096 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3097 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3098 O, Ops.size()); 3099 UniqueSCEVs.InsertNode(S, IP); 3100 return S; 3101 } 3102 3103 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3104 const SCEV *RHS) { 3105 SmallVector<const SCEV *, 2> Ops; 3106 Ops.push_back(LHS); 3107 Ops.push_back(RHS); 3108 return getUMaxExpr(Ops); 3109 } 3110 3111 const SCEV * 3112 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3113 assert(!Ops.empty() && "Cannot get empty umax!"); 3114 if (Ops.size() == 1) return Ops[0]; 3115 #ifndef NDEBUG 3116 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3117 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3118 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3119 "SCEVUMaxExpr operand types don't match!"); 3120 #endif 3121 3122 // Sort by complexity, this groups all similar expression types together. 3123 GroupByComplexity(Ops, &LI); 3124 3125 // If there are any constants, fold them together. 3126 unsigned Idx = 0; 3127 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3128 ++Idx; 3129 assert(Idx < Ops.size()); 3130 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3131 // We found two constants, fold them together! 3132 ConstantInt *Fold = ConstantInt::get( 3133 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3134 Ops[0] = getConstant(Fold); 3135 Ops.erase(Ops.begin()+1); // Erase the folded element 3136 if (Ops.size() == 1) return Ops[0]; 3137 LHSC = cast<SCEVConstant>(Ops[0]); 3138 } 3139 3140 // If we are left with a constant minimum-int, strip it off. 3141 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3142 Ops.erase(Ops.begin()); 3143 --Idx; 3144 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3145 // If we have an umax with a constant maximum-int, it will always be 3146 // maximum-int. 3147 return Ops[0]; 3148 } 3149 3150 if (Ops.size() == 1) return Ops[0]; 3151 } 3152 3153 // Find the first UMax 3154 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3155 ++Idx; 3156 3157 // Check to see if one of the operands is a UMax. If so, expand its operands 3158 // onto our operand list, and recurse to simplify. 3159 if (Idx < Ops.size()) { 3160 bool DeletedUMax = false; 3161 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3162 Ops.erase(Ops.begin()+Idx); 3163 Ops.append(UMax->op_begin(), UMax->op_end()); 3164 DeletedUMax = true; 3165 } 3166 3167 if (DeletedUMax) 3168 return getUMaxExpr(Ops); 3169 } 3170 3171 // Okay, check to see if the same value occurs in the operand list twice. If 3172 // so, delete one. Since we sorted the list, these values are required to 3173 // be adjacent. 3174 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3175 // X umax Y umax Y --> X umax Y 3176 // X umax Y --> X, if X is always greater than Y 3177 if (Ops[i] == Ops[i+1] || 3178 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3179 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3180 --i; --e; 3181 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3182 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3183 --i; --e; 3184 } 3185 3186 if (Ops.size() == 1) return Ops[0]; 3187 3188 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3189 3190 // Okay, it looks like we really DO need a umax expr. Check to see if we 3191 // already have one, otherwise create a new one. 3192 FoldingSetNodeID ID; 3193 ID.AddInteger(scUMaxExpr); 3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3195 ID.AddPointer(Ops[i]); 3196 void *IP = nullptr; 3197 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3198 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3199 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3200 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3201 O, Ops.size()); 3202 UniqueSCEVs.InsertNode(S, IP); 3203 return S; 3204 } 3205 3206 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3207 const SCEV *RHS) { 3208 // ~smax(~x, ~y) == smin(x, y). 3209 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3210 } 3211 3212 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3213 const SCEV *RHS) { 3214 // ~umax(~x, ~y) == umin(x, y) 3215 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3216 } 3217 3218 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3219 // We can bypass creating a target-independent 3220 // constant expression and then folding it back into a ConstantInt. 3221 // This is just a compile-time optimization. 3222 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3223 } 3224 3225 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3226 StructType *STy, 3227 unsigned FieldNo) { 3228 // We can bypass creating a target-independent 3229 // constant expression and then folding it back into a ConstantInt. 3230 // This is just a compile-time optimization. 3231 return getConstant( 3232 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3233 } 3234 3235 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3236 // Don't attempt to do anything other than create a SCEVUnknown object 3237 // here. createSCEV only calls getUnknown after checking for all other 3238 // interesting possibilities, and any other code that calls getUnknown 3239 // is doing so in order to hide a value from SCEV canonicalization. 3240 3241 FoldingSetNodeID ID; 3242 ID.AddInteger(scUnknown); 3243 ID.AddPointer(V); 3244 void *IP = nullptr; 3245 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3246 assert(cast<SCEVUnknown>(S)->getValue() == V && 3247 "Stale SCEVUnknown in uniquing map!"); 3248 return S; 3249 } 3250 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3251 FirstUnknown); 3252 FirstUnknown = cast<SCEVUnknown>(S); 3253 UniqueSCEVs.InsertNode(S, IP); 3254 return S; 3255 } 3256 3257 //===----------------------------------------------------------------------===// 3258 // Basic SCEV Analysis and PHI Idiom Recognition Code 3259 // 3260 3261 /// isSCEVable - Test if values of the given type are analyzable within 3262 /// the SCEV framework. This primarily includes integer types, and it 3263 /// can optionally include pointer types if the ScalarEvolution class 3264 /// has access to target-specific information. 3265 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3266 // Integers and pointers are always SCEVable. 3267 return Ty->isIntegerTy() || Ty->isPointerTy(); 3268 } 3269 3270 /// getTypeSizeInBits - Return the size in bits of the specified type, 3271 /// for which isSCEVable must return true. 3272 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3273 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3274 return getDataLayout().getTypeSizeInBits(Ty); 3275 } 3276 3277 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3278 /// the given type and which represents how SCEV will treat the given 3279 /// type, for which isSCEVable must return true. For pointer types, 3280 /// this is the pointer-sized integer type. 3281 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3282 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3283 3284 if (Ty->isIntegerTy()) 3285 return Ty; 3286 3287 // The only other support type is pointer. 3288 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3289 return getDataLayout().getIntPtrType(Ty); 3290 } 3291 3292 const SCEV *ScalarEvolution::getCouldNotCompute() { 3293 return CouldNotCompute.get(); 3294 } 3295 3296 3297 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3298 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3299 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3300 // is set iff if find such SCEVUnknown. 3301 // 3302 struct FindInvalidSCEVUnknown { 3303 bool FindOne; 3304 FindInvalidSCEVUnknown() { FindOne = false; } 3305 bool follow(const SCEV *S) { 3306 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3307 case scConstant: 3308 return false; 3309 case scUnknown: 3310 if (!cast<SCEVUnknown>(S)->getValue()) 3311 FindOne = true; 3312 return false; 3313 default: 3314 return true; 3315 } 3316 } 3317 bool isDone() const { return FindOne; } 3318 }; 3319 3320 FindInvalidSCEVUnknown F; 3321 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3322 ST.visitAll(S); 3323 3324 return !F.FindOne; 3325 } 3326 3327 namespace { 3328 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3329 // a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set 3330 // iff if such sub scAddRecExpr type SCEV is found. 3331 struct FindAddRecurrence { 3332 bool FoundOne; 3333 FindAddRecurrence() : FoundOne(false) {} 3334 3335 bool follow(const SCEV *S) { 3336 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3337 case scAddRecExpr: 3338 FoundOne = true; 3339 case scConstant: 3340 case scUnknown: 3341 case scCouldNotCompute: 3342 return false; 3343 default: 3344 return true; 3345 } 3346 } 3347 bool isDone() const { return FoundOne; } 3348 }; 3349 } 3350 3351 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3352 HasRecMapType::iterator I = HasRecMap.find_as(S); 3353 if (I != HasRecMap.end()) 3354 return I->second; 3355 3356 FindAddRecurrence F; 3357 SCEVTraversal<FindAddRecurrence> ST(F); 3358 ST.visitAll(S); 3359 HasRecMap.insert({S, F.FoundOne}); 3360 return F.FoundOne; 3361 } 3362 3363 /// getSCEVValues - Return the Value set from S. 3364 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) { 3365 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3366 if (SI == ExprValueMap.end()) 3367 return nullptr; 3368 #ifndef NDEBUG 3369 if (VerifySCEVMap) { 3370 // Check there is no dangling Value in the set returned. 3371 for (const auto &VE : SI->second) 3372 assert(ValueExprMap.count(VE)); 3373 } 3374 #endif 3375 return &SI->second; 3376 } 3377 3378 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap. 3379 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S), 3380 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed 3381 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S]. 3382 void ScalarEvolution::eraseValueFromMap(Value *V) { 3383 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3384 if (I != ValueExprMap.end()) { 3385 const SCEV *S = I->second; 3386 SetVector<Value *> *SV = getSCEVValues(S); 3387 // Remove V from the set of ExprValueMap[S] 3388 if (SV) 3389 SV->remove(V); 3390 ValueExprMap.erase(V); 3391 } 3392 } 3393 3394 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3395 /// expression and create a new one. 3396 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3397 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3398 3399 const SCEV *S = getExistingSCEV(V); 3400 if (S == nullptr) { 3401 S = createSCEV(V); 3402 // During PHI resolution, it is possible to create two SCEVs for the same 3403 // V, so it is needed to double check whether V->S is inserted into 3404 // ValueExprMap before insert S->V into ExprValueMap. 3405 std::pair<ValueExprMapType::iterator, bool> Pair = 3406 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3407 if (Pair.second) 3408 ExprValueMap[S].insert(V); 3409 } 3410 return S; 3411 } 3412 3413 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3414 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3415 3416 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3417 if (I != ValueExprMap.end()) { 3418 const SCEV *S = I->second; 3419 if (checkValidity(S)) 3420 return S; 3421 forgetMemoizedResults(S); 3422 ValueExprMap.erase(I); 3423 } 3424 return nullptr; 3425 } 3426 3427 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3428 /// 3429 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3430 SCEV::NoWrapFlags Flags) { 3431 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3432 return getConstant( 3433 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3434 3435 Type *Ty = V->getType(); 3436 Ty = getEffectiveSCEVType(Ty); 3437 return getMulExpr( 3438 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3439 } 3440 3441 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3442 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3443 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3444 return getConstant( 3445 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3446 3447 Type *Ty = V->getType(); 3448 Ty = getEffectiveSCEVType(Ty); 3449 const SCEV *AllOnes = 3450 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3451 return getMinusSCEV(AllOnes, V); 3452 } 3453 3454 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3455 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3456 SCEV::NoWrapFlags Flags) { 3457 // Fast path: X - X --> 0. 3458 if (LHS == RHS) 3459 return getZero(LHS->getType()); 3460 3461 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3462 // makes it so that we cannot make much use of NUW. 3463 auto AddFlags = SCEV::FlagAnyWrap; 3464 const bool RHSIsNotMinSigned = 3465 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3466 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3467 // Let M be the minimum representable signed value. Then (-1)*RHS 3468 // signed-wraps if and only if RHS is M. That can happen even for 3469 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3470 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3471 // (-1)*RHS, we need to prove that RHS != M. 3472 // 3473 // If LHS is non-negative and we know that LHS - RHS does not 3474 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3475 // either by proving that RHS > M or that LHS >= 0. 3476 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3477 AddFlags = SCEV::FlagNSW; 3478 } 3479 } 3480 3481 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3482 // RHS is NSW and LHS >= 0. 3483 // 3484 // The difficulty here is that the NSW flag may have been proven 3485 // relative to a loop that is to be found in a recurrence in LHS and 3486 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3487 // larger scope than intended. 3488 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3489 3490 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3491 } 3492 3493 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3494 /// input value to the specified type. If the type must be extended, it is zero 3495 /// extended. 3496 const SCEV * 3497 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3498 Type *SrcTy = V->getType(); 3499 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3500 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3501 "Cannot truncate or zero extend with non-integer arguments!"); 3502 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3503 return V; // No conversion 3504 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3505 return getTruncateExpr(V, Ty); 3506 return getZeroExtendExpr(V, Ty); 3507 } 3508 3509 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3510 /// input value to the specified type. If the type must be extended, it is sign 3511 /// extended. 3512 const SCEV * 3513 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3514 Type *Ty) { 3515 Type *SrcTy = V->getType(); 3516 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3517 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3518 "Cannot truncate or zero extend with non-integer arguments!"); 3519 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3520 return V; // No conversion 3521 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3522 return getTruncateExpr(V, Ty); 3523 return getSignExtendExpr(V, Ty); 3524 } 3525 3526 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3527 /// input value to the specified type. If the type must be extended, it is zero 3528 /// extended. The conversion must not be narrowing. 3529 const SCEV * 3530 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3531 Type *SrcTy = V->getType(); 3532 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3533 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3534 "Cannot noop or zero extend with non-integer arguments!"); 3535 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3536 "getNoopOrZeroExtend cannot truncate!"); 3537 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3538 return V; // No conversion 3539 return getZeroExtendExpr(V, Ty); 3540 } 3541 3542 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3543 /// input value to the specified type. If the type must be extended, it is sign 3544 /// extended. The conversion must not be narrowing. 3545 const SCEV * 3546 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3547 Type *SrcTy = V->getType(); 3548 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3549 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3550 "Cannot noop or sign extend with non-integer arguments!"); 3551 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3552 "getNoopOrSignExtend cannot truncate!"); 3553 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3554 return V; // No conversion 3555 return getSignExtendExpr(V, Ty); 3556 } 3557 3558 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3559 /// the input value to the specified type. If the type must be extended, 3560 /// it is extended with unspecified bits. The conversion must not be 3561 /// narrowing. 3562 const SCEV * 3563 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3564 Type *SrcTy = V->getType(); 3565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3566 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3567 "Cannot noop or any extend with non-integer arguments!"); 3568 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3569 "getNoopOrAnyExtend cannot truncate!"); 3570 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3571 return V; // No conversion 3572 return getAnyExtendExpr(V, Ty); 3573 } 3574 3575 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3576 /// input value to the specified type. The conversion must not be widening. 3577 const SCEV * 3578 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3579 Type *SrcTy = V->getType(); 3580 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3581 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3582 "Cannot truncate or noop with non-integer arguments!"); 3583 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3584 "getTruncateOrNoop cannot extend!"); 3585 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3586 return V; // No conversion 3587 return getTruncateExpr(V, Ty); 3588 } 3589 3590 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3591 /// the types using zero-extension, and then perform a umax operation 3592 /// with them. 3593 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3594 const SCEV *RHS) { 3595 const SCEV *PromotedLHS = LHS; 3596 const SCEV *PromotedRHS = RHS; 3597 3598 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3599 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3600 else 3601 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3602 3603 return getUMaxExpr(PromotedLHS, PromotedRHS); 3604 } 3605 3606 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3607 /// the types using zero-extension, and then perform a umin operation 3608 /// with them. 3609 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3610 const SCEV *RHS) { 3611 const SCEV *PromotedLHS = LHS; 3612 const SCEV *PromotedRHS = RHS; 3613 3614 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3615 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3616 else 3617 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3618 3619 return getUMinExpr(PromotedLHS, PromotedRHS); 3620 } 3621 3622 /// getPointerBase - Transitively follow the chain of pointer-type operands 3623 /// until reaching a SCEV that does not have a single pointer operand. This 3624 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3625 /// but corner cases do exist. 3626 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3627 // A pointer operand may evaluate to a nonpointer expression, such as null. 3628 if (!V->getType()->isPointerTy()) 3629 return V; 3630 3631 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3632 return getPointerBase(Cast->getOperand()); 3633 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3634 const SCEV *PtrOp = nullptr; 3635 for (const SCEV *NAryOp : NAry->operands()) { 3636 if (NAryOp->getType()->isPointerTy()) { 3637 // Cannot find the base of an expression with multiple pointer operands. 3638 if (PtrOp) 3639 return V; 3640 PtrOp = NAryOp; 3641 } 3642 } 3643 if (!PtrOp) 3644 return V; 3645 return getPointerBase(PtrOp); 3646 } 3647 return V; 3648 } 3649 3650 /// PushDefUseChildren - Push users of the given Instruction 3651 /// onto the given Worklist. 3652 static void 3653 PushDefUseChildren(Instruction *I, 3654 SmallVectorImpl<Instruction *> &Worklist) { 3655 // Push the def-use children onto the Worklist stack. 3656 for (User *U : I->users()) 3657 Worklist.push_back(cast<Instruction>(U)); 3658 } 3659 3660 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3661 /// instructions that depend on the given instruction and removes them from 3662 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3663 /// resolution. 3664 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3665 SmallVector<Instruction *, 16> Worklist; 3666 PushDefUseChildren(PN, Worklist); 3667 3668 SmallPtrSet<Instruction *, 8> Visited; 3669 Visited.insert(PN); 3670 while (!Worklist.empty()) { 3671 Instruction *I = Worklist.pop_back_val(); 3672 if (!Visited.insert(I).second) 3673 continue; 3674 3675 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3676 if (It != ValueExprMap.end()) { 3677 const SCEV *Old = It->second; 3678 3679 // Short-circuit the def-use traversal if the symbolic name 3680 // ceases to appear in expressions. 3681 if (Old != SymName && !hasOperand(Old, SymName)) 3682 continue; 3683 3684 // SCEVUnknown for a PHI either means that it has an unrecognized 3685 // structure, it's a PHI that's in the progress of being computed 3686 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3687 // additional loop trip count information isn't going to change anything. 3688 // In the second case, createNodeForPHI will perform the necessary 3689 // updates on its own when it gets to that point. In the third, we do 3690 // want to forget the SCEVUnknown. 3691 if (!isa<PHINode>(I) || 3692 !isa<SCEVUnknown>(Old) || 3693 (I != PN && Old == SymName)) { 3694 forgetMemoizedResults(Old); 3695 ValueExprMap.erase(It); 3696 } 3697 } 3698 3699 PushDefUseChildren(I, Worklist); 3700 } 3701 } 3702 3703 namespace { 3704 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3705 public: 3706 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3707 ScalarEvolution &SE) { 3708 SCEVInitRewriter Rewriter(L, SE); 3709 const SCEV *Result = Rewriter.visit(S); 3710 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3711 } 3712 3713 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3714 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3715 3716 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3717 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3718 Valid = false; 3719 return Expr; 3720 } 3721 3722 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3723 // Only allow AddRecExprs for this loop. 3724 if (Expr->getLoop() == L) 3725 return Expr->getStart(); 3726 Valid = false; 3727 return Expr; 3728 } 3729 3730 bool isValid() { return Valid; } 3731 3732 private: 3733 const Loop *L; 3734 bool Valid; 3735 }; 3736 3737 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3738 public: 3739 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3740 ScalarEvolution &SE) { 3741 SCEVShiftRewriter Rewriter(L, SE); 3742 const SCEV *Result = Rewriter.visit(S); 3743 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3744 } 3745 3746 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3747 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3748 3749 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3750 // Only allow AddRecExprs for this loop. 3751 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant)) 3752 Valid = false; 3753 return Expr; 3754 } 3755 3756 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3757 if (Expr->getLoop() == L && Expr->isAffine()) 3758 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3759 Valid = false; 3760 return Expr; 3761 } 3762 bool isValid() { return Valid; } 3763 3764 private: 3765 const Loop *L; 3766 bool Valid; 3767 }; 3768 } // end anonymous namespace 3769 3770 SCEV::NoWrapFlags 3771 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3772 if (!AR->isAffine()) 3773 return SCEV::FlagAnyWrap; 3774 3775 typedef OverflowingBinaryOperator OBO; 3776 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3777 3778 if (!AR->hasNoSignedWrap()) { 3779 ConstantRange AddRecRange = getSignedRange(AR); 3780 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3781 3782 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3783 Instruction::Add, IncRange, OBO::NoSignedWrap); 3784 if (NSWRegion.contains(AddRecRange)) 3785 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3786 } 3787 3788 if (!AR->hasNoUnsignedWrap()) { 3789 ConstantRange AddRecRange = getUnsignedRange(AR); 3790 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3791 3792 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3793 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3794 if (NUWRegion.contains(AddRecRange)) 3795 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3796 } 3797 3798 return Result; 3799 } 3800 3801 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3802 const Loop *L = LI.getLoopFor(PN->getParent()); 3803 if (!L || L->getHeader() != PN->getParent()) 3804 return nullptr; 3805 3806 // The loop may have multiple entrances or multiple exits; we can analyze 3807 // this phi as an addrec if it has a unique entry value and a unique 3808 // backedge value. 3809 Value *BEValueV = nullptr, *StartValueV = nullptr; 3810 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3811 Value *V = PN->getIncomingValue(i); 3812 if (L->contains(PN->getIncomingBlock(i))) { 3813 if (!BEValueV) { 3814 BEValueV = V; 3815 } else if (BEValueV != V) { 3816 BEValueV = nullptr; 3817 break; 3818 } 3819 } else if (!StartValueV) { 3820 StartValueV = V; 3821 } else if (StartValueV != V) { 3822 StartValueV = nullptr; 3823 break; 3824 } 3825 } 3826 if (BEValueV && StartValueV) { 3827 // While we are analyzing this PHI node, handle its value symbolically. 3828 const SCEV *SymbolicName = getUnknown(PN); 3829 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3830 "PHI node already processed?"); 3831 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 3832 3833 // Using this symbolic name for the PHI, analyze the value coming around 3834 // the back-edge. 3835 const SCEV *BEValue = getSCEV(BEValueV); 3836 3837 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3838 // has a special value for the first iteration of the loop. 3839 3840 // If the value coming around the backedge is an add with the symbolic 3841 // value we just inserted, then we found a simple induction variable! 3842 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3843 // If there is a single occurrence of the symbolic value, replace it 3844 // with a recurrence. 3845 unsigned FoundIndex = Add->getNumOperands(); 3846 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3847 if (Add->getOperand(i) == SymbolicName) 3848 if (FoundIndex == e) { 3849 FoundIndex = i; 3850 break; 3851 } 3852 3853 if (FoundIndex != Add->getNumOperands()) { 3854 // Create an add with everything but the specified operand. 3855 SmallVector<const SCEV *, 8> Ops; 3856 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3857 if (i != FoundIndex) 3858 Ops.push_back(Add->getOperand(i)); 3859 const SCEV *Accum = getAddExpr(Ops); 3860 3861 // This is not a valid addrec if the step amount is varying each 3862 // loop iteration, but is not itself an addrec in this loop. 3863 if (isLoopInvariant(Accum, L) || 3864 (isa<SCEVAddRecExpr>(Accum) && 3865 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3866 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3867 3868 // If the increment doesn't overflow, then neither the addrec nor 3869 // the post-increment will overflow. 3870 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3871 if (OBO->getOperand(0) == PN) { 3872 if (OBO->hasNoUnsignedWrap()) 3873 Flags = setFlags(Flags, SCEV::FlagNUW); 3874 if (OBO->hasNoSignedWrap()) 3875 Flags = setFlags(Flags, SCEV::FlagNSW); 3876 } 3877 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3878 // If the increment is an inbounds GEP, then we know the address 3879 // space cannot be wrapped around. We cannot make any guarantee 3880 // about signed or unsigned overflow because pointers are 3881 // unsigned but we may have a negative index from the base 3882 // pointer. We can guarantee that no unsigned wrap occurs if the 3883 // indices form a positive value. 3884 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3885 Flags = setFlags(Flags, SCEV::FlagNW); 3886 3887 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3888 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3889 Flags = setFlags(Flags, SCEV::FlagNUW); 3890 } 3891 3892 // We cannot transfer nuw and nsw flags from subtraction 3893 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3894 // for instance. 3895 } 3896 3897 const SCEV *StartVal = getSCEV(StartValueV); 3898 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3899 3900 // Since the no-wrap flags are on the increment, they apply to the 3901 // post-incremented value as well. 3902 if (isLoopInvariant(Accum, L)) 3903 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3904 3905 // Okay, for the entire analysis of this edge we assumed the PHI 3906 // to be symbolic. We now need to go back and purge all of the 3907 // entries for the scalars that use the symbolic expression. 3908 forgetSymbolicName(PN, SymbolicName); 3909 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3910 return PHISCEV; 3911 } 3912 } 3913 } else { 3914 // Otherwise, this could be a loop like this: 3915 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3916 // In this case, j = {1,+,1} and BEValue is j. 3917 // Because the other in-value of i (0) fits the evolution of BEValue 3918 // i really is an addrec evolution. 3919 // 3920 // We can generalize this saying that i is the shifted value of BEValue 3921 // by one iteration: 3922 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 3923 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 3924 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 3925 if (Shifted != getCouldNotCompute() && 3926 Start != getCouldNotCompute()) { 3927 const SCEV *StartVal = getSCEV(StartValueV); 3928 if (Start == StartVal) { 3929 // Okay, for the entire analysis of this edge we assumed the PHI 3930 // to be symbolic. We now need to go back and purge all of the 3931 // entries for the scalars that use the symbolic expression. 3932 forgetSymbolicName(PN, SymbolicName); 3933 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 3934 return Shifted; 3935 } 3936 } 3937 } 3938 3939 // Remove the temporary PHI node SCEV that has been inserted while intending 3940 // to create an AddRecExpr for this PHI node. We can not keep this temporary 3941 // as it will prevent later (possibly simpler) SCEV expressions to be added 3942 // to the ValueExprMap. 3943 ValueExprMap.erase(PN); 3944 } 3945 3946 return nullptr; 3947 } 3948 3949 // Checks if the SCEV S is available at BB. S is considered available at BB 3950 // if S can be materialized at BB without introducing a fault. 3951 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3952 BasicBlock *BB) { 3953 struct CheckAvailable { 3954 bool TraversalDone = false; 3955 bool Available = true; 3956 3957 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3958 BasicBlock *BB = nullptr; 3959 DominatorTree &DT; 3960 3961 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3962 : L(L), BB(BB), DT(DT) {} 3963 3964 bool setUnavailable() { 3965 TraversalDone = true; 3966 Available = false; 3967 return false; 3968 } 3969 3970 bool follow(const SCEV *S) { 3971 switch (S->getSCEVType()) { 3972 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3973 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3974 // These expressions are available if their operand(s) is/are. 3975 return true; 3976 3977 case scAddRecExpr: { 3978 // We allow add recurrences that are on the loop BB is in, or some 3979 // outer loop. This guarantees availability because the value of the 3980 // add recurrence at BB is simply the "current" value of the induction 3981 // variable. We can relax this in the future; for instance an add 3982 // recurrence on a sibling dominating loop is also available at BB. 3983 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3984 if (L && (ARLoop == L || ARLoop->contains(L))) 3985 return true; 3986 3987 return setUnavailable(); 3988 } 3989 3990 case scUnknown: { 3991 // For SCEVUnknown, we check for simple dominance. 3992 const auto *SU = cast<SCEVUnknown>(S); 3993 Value *V = SU->getValue(); 3994 3995 if (isa<Argument>(V)) 3996 return false; 3997 3998 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3999 return false; 4000 4001 return setUnavailable(); 4002 } 4003 4004 case scUDivExpr: 4005 case scCouldNotCompute: 4006 // We do not try to smart about these at all. 4007 return setUnavailable(); 4008 } 4009 llvm_unreachable("switch should be fully covered!"); 4010 } 4011 4012 bool isDone() { return TraversalDone; } 4013 }; 4014 4015 CheckAvailable CA(L, BB, DT); 4016 SCEVTraversal<CheckAvailable> ST(CA); 4017 4018 ST.visitAll(S); 4019 return CA.Available; 4020 } 4021 4022 // Try to match a control flow sequence that branches out at BI and merges back 4023 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4024 // match. 4025 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4026 Value *&C, Value *&LHS, Value *&RHS) { 4027 C = BI->getCondition(); 4028 4029 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4030 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4031 4032 if (!LeftEdge.isSingleEdge()) 4033 return false; 4034 4035 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4036 4037 Use &LeftUse = Merge->getOperandUse(0); 4038 Use &RightUse = Merge->getOperandUse(1); 4039 4040 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4041 LHS = LeftUse; 4042 RHS = RightUse; 4043 return true; 4044 } 4045 4046 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4047 LHS = RightUse; 4048 RHS = LeftUse; 4049 return true; 4050 } 4051 4052 return false; 4053 } 4054 4055 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4056 if (PN->getNumIncomingValues() == 2) { 4057 const Loop *L = LI.getLoopFor(PN->getParent()); 4058 4059 // We don't want to break LCSSA, even in a SCEV expression tree. 4060 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4061 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4062 return nullptr; 4063 4064 // Try to match 4065 // 4066 // br %cond, label %left, label %right 4067 // left: 4068 // br label %merge 4069 // right: 4070 // br label %merge 4071 // merge: 4072 // V = phi [ %x, %left ], [ %y, %right ] 4073 // 4074 // as "select %cond, %x, %y" 4075 4076 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4077 assert(IDom && "At least the entry block should dominate PN"); 4078 4079 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4080 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4081 4082 if (BI && BI->isConditional() && 4083 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4084 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4085 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4086 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4087 } 4088 4089 return nullptr; 4090 } 4091 4092 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4093 if (const SCEV *S = createAddRecFromPHI(PN)) 4094 return S; 4095 4096 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4097 return S; 4098 4099 // If the PHI has a single incoming value, follow that value, unless the 4100 // PHI's incoming blocks are in a different loop, in which case doing so 4101 // risks breaking LCSSA form. Instcombine would normally zap these, but 4102 // it doesn't have DominatorTree information, so it may miss cases. 4103 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC)) 4104 if (LI.replacementPreservesLCSSAForm(PN, V)) 4105 return getSCEV(V); 4106 4107 // If it's not a loop phi, we can't handle it yet. 4108 return getUnknown(PN); 4109 } 4110 4111 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4112 Value *Cond, 4113 Value *TrueVal, 4114 Value *FalseVal) { 4115 // Handle "constant" branch or select. This can occur for instance when a 4116 // loop pass transforms an inner loop and moves on to process the outer loop. 4117 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4118 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4119 4120 // Try to match some simple smax or umax patterns. 4121 auto *ICI = dyn_cast<ICmpInst>(Cond); 4122 if (!ICI) 4123 return getUnknown(I); 4124 4125 Value *LHS = ICI->getOperand(0); 4126 Value *RHS = ICI->getOperand(1); 4127 4128 switch (ICI->getPredicate()) { 4129 case ICmpInst::ICMP_SLT: 4130 case ICmpInst::ICMP_SLE: 4131 std::swap(LHS, RHS); 4132 // fall through 4133 case ICmpInst::ICMP_SGT: 4134 case ICmpInst::ICMP_SGE: 4135 // a >s b ? a+x : b+x -> smax(a, b)+x 4136 // a >s b ? b+x : a+x -> smin(a, b)+x 4137 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4138 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4139 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4140 const SCEV *LA = getSCEV(TrueVal); 4141 const SCEV *RA = getSCEV(FalseVal); 4142 const SCEV *LDiff = getMinusSCEV(LA, LS); 4143 const SCEV *RDiff = getMinusSCEV(RA, RS); 4144 if (LDiff == RDiff) 4145 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4146 LDiff = getMinusSCEV(LA, RS); 4147 RDiff = getMinusSCEV(RA, LS); 4148 if (LDiff == RDiff) 4149 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4150 } 4151 break; 4152 case ICmpInst::ICMP_ULT: 4153 case ICmpInst::ICMP_ULE: 4154 std::swap(LHS, RHS); 4155 // fall through 4156 case ICmpInst::ICMP_UGT: 4157 case ICmpInst::ICMP_UGE: 4158 // a >u b ? a+x : b+x -> umax(a, b)+x 4159 // a >u b ? b+x : a+x -> umin(a, b)+x 4160 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4161 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4162 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4163 const SCEV *LA = getSCEV(TrueVal); 4164 const SCEV *RA = getSCEV(FalseVal); 4165 const SCEV *LDiff = getMinusSCEV(LA, LS); 4166 const SCEV *RDiff = getMinusSCEV(RA, RS); 4167 if (LDiff == RDiff) 4168 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4169 LDiff = getMinusSCEV(LA, RS); 4170 RDiff = getMinusSCEV(RA, LS); 4171 if (LDiff == RDiff) 4172 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4173 } 4174 break; 4175 case ICmpInst::ICMP_NE: 4176 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4177 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4178 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4179 const SCEV *One = getOne(I->getType()); 4180 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4181 const SCEV *LA = getSCEV(TrueVal); 4182 const SCEV *RA = getSCEV(FalseVal); 4183 const SCEV *LDiff = getMinusSCEV(LA, LS); 4184 const SCEV *RDiff = getMinusSCEV(RA, One); 4185 if (LDiff == RDiff) 4186 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4187 } 4188 break; 4189 case ICmpInst::ICMP_EQ: 4190 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4191 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4192 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4193 const SCEV *One = getOne(I->getType()); 4194 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4195 const SCEV *LA = getSCEV(TrueVal); 4196 const SCEV *RA = getSCEV(FalseVal); 4197 const SCEV *LDiff = getMinusSCEV(LA, One); 4198 const SCEV *RDiff = getMinusSCEV(RA, LS); 4199 if (LDiff == RDiff) 4200 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4201 } 4202 break; 4203 default: 4204 break; 4205 } 4206 4207 return getUnknown(I); 4208 } 4209 4210 /// createNodeForGEP - Expand GEP instructions into add and multiply 4211 /// operations. This allows them to be analyzed by regular SCEV code. 4212 /// 4213 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4214 // Don't attempt to analyze GEPs over unsized objects. 4215 if (!GEP->getSourceElementType()->isSized()) 4216 return getUnknown(GEP); 4217 4218 SmallVector<const SCEV *, 4> IndexExprs; 4219 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4220 IndexExprs.push_back(getSCEV(*Index)); 4221 return getGEPExpr(GEP->getSourceElementType(), 4222 getSCEV(GEP->getPointerOperand()), 4223 IndexExprs, GEP->isInBounds()); 4224 } 4225 4226 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4227 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4228 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4229 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4230 uint32_t 4231 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4232 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4233 return C->getAPInt().countTrailingZeros(); 4234 4235 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4236 return std::min(GetMinTrailingZeros(T->getOperand()), 4237 (uint32_t)getTypeSizeInBits(T->getType())); 4238 4239 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4240 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4241 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4242 getTypeSizeInBits(E->getType()) : OpRes; 4243 } 4244 4245 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4246 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4247 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4248 getTypeSizeInBits(E->getType()) : OpRes; 4249 } 4250 4251 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4252 // The result is the min of all operands results. 4253 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4254 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4255 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4256 return MinOpRes; 4257 } 4258 4259 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4260 // The result is the sum of all operands results. 4261 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4262 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4263 for (unsigned i = 1, e = M->getNumOperands(); 4264 SumOpRes != BitWidth && i != e; ++i) 4265 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4266 BitWidth); 4267 return SumOpRes; 4268 } 4269 4270 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4271 // The result is the min of all operands results. 4272 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4273 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4274 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4275 return MinOpRes; 4276 } 4277 4278 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4279 // The result is the min of all operands results. 4280 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4281 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4282 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4283 return MinOpRes; 4284 } 4285 4286 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4287 // The result is the min of all operands results. 4288 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4289 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4290 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4291 return MinOpRes; 4292 } 4293 4294 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4295 // For a SCEVUnknown, ask ValueTracking. 4296 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4297 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4298 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC, 4299 nullptr, &DT); 4300 return Zeros.countTrailingOnes(); 4301 } 4302 4303 // SCEVUDivExpr 4304 return 0; 4305 } 4306 4307 /// GetRangeFromMetadata - Helper method to assign a range to V from 4308 /// metadata present in the IR. 4309 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4310 if (Instruction *I = dyn_cast<Instruction>(V)) 4311 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4312 return getConstantRangeFromMetadata(*MD); 4313 4314 return None; 4315 } 4316 4317 /// getRange - Determine the range for a particular SCEV. If SignHint is 4318 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4319 /// with a "cleaner" unsigned (resp. signed) representation. 4320 /// 4321 ConstantRange 4322 ScalarEvolution::getRange(const SCEV *S, 4323 ScalarEvolution::RangeSignHint SignHint) { 4324 DenseMap<const SCEV *, ConstantRange> &Cache = 4325 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4326 : SignedRanges; 4327 4328 // See if we've computed this range already. 4329 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4330 if (I != Cache.end()) 4331 return I->second; 4332 4333 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4334 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4335 4336 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4337 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4338 4339 // If the value has known zeros, the maximum value will have those known zeros 4340 // as well. 4341 uint32_t TZ = GetMinTrailingZeros(S); 4342 if (TZ != 0) { 4343 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4344 ConservativeResult = 4345 ConstantRange(APInt::getMinValue(BitWidth), 4346 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4347 else 4348 ConservativeResult = ConstantRange( 4349 APInt::getSignedMinValue(BitWidth), 4350 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4351 } 4352 4353 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4354 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4355 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4356 X = X.add(getRange(Add->getOperand(i), SignHint)); 4357 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4358 } 4359 4360 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4361 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4362 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4363 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4364 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4365 } 4366 4367 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4368 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4369 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4370 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4371 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4372 } 4373 4374 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4375 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4376 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4377 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4378 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4379 } 4380 4381 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4382 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4383 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4384 return setRange(UDiv, SignHint, 4385 ConservativeResult.intersectWith(X.udiv(Y))); 4386 } 4387 4388 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4389 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4390 return setRange(ZExt, SignHint, 4391 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4392 } 4393 4394 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4395 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4396 return setRange(SExt, SignHint, 4397 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4398 } 4399 4400 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4401 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4402 return setRange(Trunc, SignHint, 4403 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4404 } 4405 4406 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4407 // If there's no unsigned wrap, the value will never be less than its 4408 // initial value. 4409 if (AddRec->hasNoUnsignedWrap()) 4410 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4411 if (!C->getValue()->isZero()) 4412 ConservativeResult = ConservativeResult.intersectWith( 4413 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4414 4415 // If there's no signed wrap, and all the operands have the same sign or 4416 // zero, the value won't ever change sign. 4417 if (AddRec->hasNoSignedWrap()) { 4418 bool AllNonNeg = true; 4419 bool AllNonPos = true; 4420 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4421 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4422 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4423 } 4424 if (AllNonNeg) 4425 ConservativeResult = ConservativeResult.intersectWith( 4426 ConstantRange(APInt(BitWidth, 0), 4427 APInt::getSignedMinValue(BitWidth))); 4428 else if (AllNonPos) 4429 ConservativeResult = ConservativeResult.intersectWith( 4430 ConstantRange(APInt::getSignedMinValue(BitWidth), 4431 APInt(BitWidth, 1))); 4432 } 4433 4434 // TODO: non-affine addrec 4435 if (AddRec->isAffine()) { 4436 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4437 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4438 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4439 auto RangeFromAffine = getRangeForAffineAR( 4440 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4441 BitWidth); 4442 if (!RangeFromAffine.isFullSet()) 4443 ConservativeResult = 4444 ConservativeResult.intersectWith(RangeFromAffine); 4445 4446 auto RangeFromFactoring = getRangeViaFactoring( 4447 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4448 BitWidth); 4449 if (!RangeFromFactoring.isFullSet()) 4450 ConservativeResult = 4451 ConservativeResult.intersectWith(RangeFromFactoring); 4452 } 4453 } 4454 4455 return setRange(AddRec, SignHint, ConservativeResult); 4456 } 4457 4458 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4459 // Check if the IR explicitly contains !range metadata. 4460 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4461 if (MDRange.hasValue()) 4462 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4463 4464 // Split here to avoid paying the compile-time cost of calling both 4465 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4466 // if needed. 4467 const DataLayout &DL = getDataLayout(); 4468 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4469 // For a SCEVUnknown, ask ValueTracking. 4470 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4471 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4472 if (Ones != ~Zeros + 1) 4473 ConservativeResult = 4474 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4475 } else { 4476 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4477 "generalize as needed!"); 4478 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4479 if (NS > 1) 4480 ConservativeResult = ConservativeResult.intersectWith( 4481 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4482 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4483 } 4484 4485 return setRange(U, SignHint, ConservativeResult); 4486 } 4487 4488 return setRange(S, SignHint, ConservativeResult); 4489 } 4490 4491 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4492 const SCEV *Step, 4493 const SCEV *MaxBECount, 4494 unsigned BitWidth) { 4495 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4496 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4497 "Precondition!"); 4498 4499 ConstantRange Result(BitWidth, /* isFullSet = */ true); 4500 4501 // Check for overflow. This must be done with ConstantRange arithmetic 4502 // because we could be called from within the ScalarEvolution overflow 4503 // checking code. 4504 4505 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4506 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4507 ConstantRange ZExtMaxBECountRange = 4508 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4509 4510 ConstantRange StepSRange = getSignedRange(Step); 4511 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4512 4513 ConstantRange StartURange = getUnsignedRange(Start); 4514 ConstantRange EndURange = 4515 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4516 4517 // Check for unsigned overflow. 4518 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1); 4519 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4520 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4521 ZExtEndURange) { 4522 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4523 EndURange.getUnsignedMin()); 4524 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4525 EndURange.getUnsignedMax()); 4526 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4527 if (!IsFullRange) 4528 Result = 4529 Result.intersectWith(ConstantRange(Min, Max + 1)); 4530 } 4531 4532 ConstantRange StartSRange = getSignedRange(Start); 4533 ConstantRange EndSRange = 4534 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4535 4536 // Check for signed overflow. This must be done with ConstantRange 4537 // arithmetic because we could be called from within the ScalarEvolution 4538 // overflow checking code. 4539 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4540 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4541 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4542 SExtEndSRange) { 4543 APInt Min = 4544 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin()); 4545 APInt Max = 4546 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax()); 4547 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4548 if (!IsFullRange) 4549 Result = 4550 Result.intersectWith(ConstantRange(Min, Max + 1)); 4551 } 4552 4553 return Result; 4554 } 4555 4556 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4557 const SCEV *Step, 4558 const SCEV *MaxBECount, 4559 unsigned BitWidth) { 4560 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4561 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4562 4563 struct SelectPattern { 4564 Value *Condition = nullptr; 4565 APInt TrueValue; 4566 APInt FalseValue; 4567 4568 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4569 const SCEV *S) { 4570 Optional<unsigned> CastOp; 4571 APInt Offset(BitWidth, 0); 4572 4573 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4574 "Should be!"); 4575 4576 // Peel off a constant offset: 4577 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4578 // In the future we could consider being smarter here and handle 4579 // {Start+Step,+,Step} too. 4580 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4581 return; 4582 4583 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4584 S = SA->getOperand(1); 4585 } 4586 4587 // Peel off a cast operation 4588 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4589 CastOp = SCast->getSCEVType(); 4590 S = SCast->getOperand(); 4591 } 4592 4593 using namespace llvm::PatternMatch; 4594 4595 auto *SU = dyn_cast<SCEVUnknown>(S); 4596 const APInt *TrueVal, *FalseVal; 4597 if (!SU || 4598 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 4599 m_APInt(FalseVal)))) { 4600 Condition = nullptr; 4601 return; 4602 } 4603 4604 TrueValue = *TrueVal; 4605 FalseValue = *FalseVal; 4606 4607 // Re-apply the cast we peeled off earlier 4608 if (CastOp.hasValue()) 4609 switch (*CastOp) { 4610 default: 4611 llvm_unreachable("Unknown SCEV cast type!"); 4612 4613 case scTruncate: 4614 TrueValue = TrueValue.trunc(BitWidth); 4615 FalseValue = FalseValue.trunc(BitWidth); 4616 break; 4617 case scZeroExtend: 4618 TrueValue = TrueValue.zext(BitWidth); 4619 FalseValue = FalseValue.zext(BitWidth); 4620 break; 4621 case scSignExtend: 4622 TrueValue = TrueValue.sext(BitWidth); 4623 FalseValue = FalseValue.sext(BitWidth); 4624 break; 4625 } 4626 4627 // Re-apply the constant offset we peeled off earlier 4628 TrueValue += Offset; 4629 FalseValue += Offset; 4630 } 4631 4632 bool isRecognized() { return Condition != nullptr; } 4633 }; 4634 4635 SelectPattern StartPattern(*this, BitWidth, Start); 4636 if (!StartPattern.isRecognized()) 4637 return ConstantRange(BitWidth, /* isFullSet = */ true); 4638 4639 SelectPattern StepPattern(*this, BitWidth, Step); 4640 if (!StepPattern.isRecognized()) 4641 return ConstantRange(BitWidth, /* isFullSet = */ true); 4642 4643 if (StartPattern.Condition != StepPattern.Condition) { 4644 // We don't handle this case today; but we could, by considering four 4645 // possibilities below instead of two. I'm not sure if there are cases where 4646 // that will help over what getRange already does, though. 4647 return ConstantRange(BitWidth, /* isFullSet = */ true); 4648 } 4649 4650 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 4651 // construct arbitrary general SCEV expressions here. This function is called 4652 // from deep in the call stack, and calling getSCEV (on a sext instruction, 4653 // say) can end up caching a suboptimal value. 4654 4655 // FIXME: without the explicit `this` receiver below, MSVC errors out with 4656 // C2352 and C2512 (otherwise it isn't needed). 4657 4658 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 4659 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 4660 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 4661 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 4662 4663 ConstantRange TrueRange = 4664 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 4665 ConstantRange FalseRange = 4666 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 4667 4668 return TrueRange.unionWith(FalseRange); 4669 } 4670 4671 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4672 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4673 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4674 4675 // Return early if there are no flags to propagate to the SCEV. 4676 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4677 if (BinOp->hasNoUnsignedWrap()) 4678 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4679 if (BinOp->hasNoSignedWrap()) 4680 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4681 if (Flags == SCEV::FlagAnyWrap) 4682 return SCEV::FlagAnyWrap; 4683 4684 // Here we check that BinOp is in the header of the innermost loop 4685 // containing BinOp, since we only deal with instructions in the loop 4686 // header. The actual loop we need to check later will come from an add 4687 // recurrence, but getting that requires computing the SCEV of the operands, 4688 // which can be expensive. This check we can do cheaply to rule out some 4689 // cases early. 4690 Loop *InnermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4691 if (InnermostContainingLoop == nullptr || 4692 InnermostContainingLoop->getHeader() != BinOp->getParent()) 4693 return SCEV::FlagAnyWrap; 4694 4695 // Only proceed if we can prove that BinOp does not yield poison. 4696 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4697 4698 // At this point we know that if V is executed, then it does not wrap 4699 // according to at least one of NSW or NUW. If V is not executed, then we do 4700 // not know if the calculation that V represents would wrap. Multiple 4701 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4702 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4703 // derived from other instructions that map to the same SCEV. We cannot make 4704 // that guarantee for cases where V is not executed. So we need to find the 4705 // loop that V is considered in relation to and prove that V is executed for 4706 // every iteration of that loop. That implies that the value that V 4707 // calculates does not wrap anywhere in the loop, so then we can apply the 4708 // flags to the SCEV. 4709 // 4710 // We check isLoopInvariant to disambiguate in case we are adding two 4711 // recurrences from different loops, so that we know which loop to prove 4712 // that V is executed in. 4713 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4714 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4715 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4716 const int OtherOpIndex = 1 - OpIndex; 4717 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4718 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4719 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4720 return Flags; 4721 } 4722 } 4723 return SCEV::FlagAnyWrap; 4724 } 4725 4726 namespace { 4727 /// Represents an abstract binary operation. This may exist as a 4728 /// normal instruction or constant expression, or may have been 4729 /// derived from an expression tree. 4730 struct BinaryOp { 4731 unsigned Opcode; 4732 Value *LHS; 4733 Value *RHS; 4734 4735 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4736 /// constant expression. 4737 Operator *Op; 4738 4739 explicit BinaryOp(Operator *Op) 4740 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4741 Op(Op) {} 4742 4743 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS) 4744 : Opcode(Opcode), LHS(LHS), RHS(RHS), Op(nullptr) {} 4745 }; 4746 } 4747 4748 4749 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4750 static Optional<BinaryOp> MatchBinaryOp(Value *V) { 4751 auto *Op = dyn_cast<Operator>(V); 4752 if (!Op) 4753 return None; 4754 4755 // Implementation detail: all the cleverness here should happen without 4756 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4757 // SCEV expressions when possible, and we should not break that. 4758 4759 switch (Op->getOpcode()) { 4760 case Instruction::Add: 4761 case Instruction::Sub: 4762 case Instruction::Mul: 4763 case Instruction::UDiv: 4764 case Instruction::And: 4765 case Instruction::Or: 4766 case Instruction::AShr: 4767 case Instruction::Shl: 4768 return BinaryOp(Op); 4769 4770 case Instruction::Xor: 4771 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4772 // If the RHS of the xor is a signbit, then this is just an add. 4773 // Instcombine turns add of signbit into xor as a strength reduction step. 4774 if (RHSC->getValue().isSignBit()) 4775 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4776 return BinaryOp(Op); 4777 4778 case Instruction::LShr: 4779 // Turn logical shift right of a constant into a unsigned divide. 4780 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4781 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4782 4783 // If the shift count is not less than the bitwidth, the result of 4784 // the shift is undefined. Don't try to analyze it, because the 4785 // resolution chosen here may differ from the resolution chosen in 4786 // other parts of the compiler. 4787 if (SA->getValue().ult(BitWidth)) { 4788 Constant *X = 4789 ConstantInt::get(SA->getContext(), 4790 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4791 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4792 } 4793 } 4794 return BinaryOp(Op); 4795 4796 default: 4797 break; 4798 } 4799 4800 return None; 4801 } 4802 4803 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4804 /// the expression. 4805 /// 4806 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4807 if (!isSCEVable(V->getType())) 4808 return getUnknown(V); 4809 4810 if (Instruction *I = dyn_cast<Instruction>(V)) { 4811 // Don't attempt to analyze instructions in blocks that aren't 4812 // reachable. Such instructions don't matter, and they aren't required 4813 // to obey basic rules for definitions dominating uses which this 4814 // analysis depends on. 4815 if (!DT.isReachableFromEntry(I->getParent())) 4816 return getUnknown(V); 4817 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4818 return getConstant(CI); 4819 else if (isa<ConstantPointerNull>(V)) 4820 return getZero(V->getType()); 4821 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4822 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4823 else if (!isa<ConstantExpr>(V)) 4824 return getUnknown(V); 4825 4826 Operator *U = cast<Operator>(V); 4827 if (auto BO = MatchBinaryOp(U)) { 4828 switch (BO->Opcode) { 4829 case Instruction::Add: { 4830 // The simple thing to do would be to just call getSCEV on both operands 4831 // and call getAddExpr with the result. However if we're looking at a 4832 // bunch of things all added together, this can be quite inefficient, 4833 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4834 // Instead, gather up all the operands and make a single getAddExpr call. 4835 // LLVM IR canonical form means we need only traverse the left operands. 4836 SmallVector<const SCEV *, 4> AddOps; 4837 do { 4838 if (BO->Op) { 4839 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 4840 AddOps.push_back(OpSCEV); 4841 break; 4842 } 4843 4844 // If a NUW or NSW flag can be applied to the SCEV for this 4845 // addition, then compute the SCEV for this addition by itself 4846 // with a separate call to getAddExpr. We need to do that 4847 // instead of pushing the operands of the addition onto AddOps, 4848 // since the flags are only known to apply to this particular 4849 // addition - they may not apply to other additions that can be 4850 // formed with operands from AddOps. 4851 const SCEV *RHS = getSCEV(BO->RHS); 4852 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 4853 if (Flags != SCEV::FlagAnyWrap) { 4854 const SCEV *LHS = getSCEV(BO->LHS); 4855 if (BO->Opcode == Instruction::Sub) 4856 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4857 else 4858 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4859 break; 4860 } 4861 } 4862 4863 if (BO->Opcode == Instruction::Sub) 4864 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 4865 else 4866 AddOps.push_back(getSCEV(BO->RHS)); 4867 4868 auto NewBO = MatchBinaryOp(BO->LHS); 4869 if (!NewBO || (NewBO->Opcode != Instruction::Add && 4870 NewBO->Opcode != Instruction::Sub)) { 4871 AddOps.push_back(getSCEV(BO->LHS)); 4872 break; 4873 } 4874 BO = NewBO; 4875 } while (true); 4876 4877 return getAddExpr(AddOps); 4878 } 4879 4880 case Instruction::Mul: { 4881 SmallVector<const SCEV *, 4> MulOps; 4882 do { 4883 if (BO->Op) { 4884 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 4885 MulOps.push_back(OpSCEV); 4886 break; 4887 } 4888 4889 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 4890 if (Flags != SCEV::FlagAnyWrap) { 4891 MulOps.push_back( 4892 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 4893 break; 4894 } 4895 } 4896 4897 MulOps.push_back(getSCEV(BO->RHS)); 4898 auto NewBO = MatchBinaryOp(BO->LHS); 4899 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 4900 MulOps.push_back(getSCEV(BO->LHS)); 4901 break; 4902 } 4903 BO = NewBO; 4904 } while (true); 4905 4906 return getMulExpr(MulOps); 4907 } 4908 case Instruction::UDiv: 4909 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 4910 case Instruction::Sub: { 4911 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4912 if (BO->Op) 4913 Flags = getNoWrapFlagsFromUB(BO->Op); 4914 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 4915 } 4916 case Instruction::And: 4917 // For an expression like x&255 that merely masks off the high bits, 4918 // use zext(trunc(x)) as the SCEV expression. 4919 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 4920 if (CI->isNullValue()) 4921 return getSCEV(BO->RHS); 4922 if (CI->isAllOnesValue()) 4923 return getSCEV(BO->LHS); 4924 const APInt &A = CI->getValue(); 4925 4926 // Instcombine's ShrinkDemandedConstant may strip bits out of 4927 // constants, obscuring what would otherwise be a low-bits mask. 4928 // Use computeKnownBits to compute what ShrinkDemandedConstant 4929 // knew about to reconstruct a low-bits mask value. 4930 unsigned LZ = A.countLeadingZeros(); 4931 unsigned TZ = A.countTrailingZeros(); 4932 unsigned BitWidth = A.getBitWidth(); 4933 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4934 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(), 4935 0, &AC, nullptr, &DT); 4936 4937 APInt EffectiveMask = 4938 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4939 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4940 const SCEV *MulCount = getConstant(ConstantInt::get( 4941 getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4942 return getMulExpr( 4943 getZeroExtendExpr( 4944 getTruncateExpr( 4945 getUDivExactExpr(getSCEV(BO->LHS), MulCount), 4946 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4947 BO->LHS->getType()), 4948 MulCount); 4949 } 4950 } 4951 break; 4952 4953 case Instruction::Or: 4954 // If the RHS of the Or is a constant, we may have something like: 4955 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4956 // optimizations will transparently handle this case. 4957 // 4958 // In order for this transformation to be safe, the LHS must be of the 4959 // form X*(2^n) and the Or constant must be less than 2^n. 4960 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 4961 const SCEV *LHS = getSCEV(BO->LHS); 4962 const APInt &CIVal = CI->getValue(); 4963 if (GetMinTrailingZeros(LHS) >= 4964 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4965 // Build a plain add SCEV. 4966 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4967 // If the LHS of the add was an addrec and it has no-wrap flags, 4968 // transfer the no-wrap flags, since an or won't introduce a wrap. 4969 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4970 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4971 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4972 OldAR->getNoWrapFlags()); 4973 } 4974 return S; 4975 } 4976 } 4977 break; 4978 4979 case Instruction::Xor: 4980 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 4981 // If the RHS of xor is -1, then this is a not operation. 4982 if (CI->isAllOnesValue()) 4983 return getNotSCEV(getSCEV(BO->LHS)); 4984 4985 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4986 // This is a variant of the check for xor with -1, and it handles 4987 // the case where instcombine has trimmed non-demanded bits out 4988 // of an xor with -1. 4989 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 4990 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 4991 if (LBO->getOpcode() == Instruction::And && 4992 LCI->getValue() == CI->getValue()) 4993 if (const SCEVZeroExtendExpr *Z = 4994 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 4995 Type *UTy = BO->LHS->getType(); 4996 const SCEV *Z0 = Z->getOperand(); 4997 Type *Z0Ty = Z0->getType(); 4998 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4999 5000 // If C is a low-bits mask, the zero extend is serving to 5001 // mask off the high bits. Complement the operand and 5002 // re-apply the zext. 5003 if (APIntOps::isMask(Z0TySize, CI->getValue())) 5004 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5005 5006 // If C is a single bit, it may be in the sign-bit position 5007 // before the zero-extend. In this case, represent the xor 5008 // using an add, which is equivalent, and re-apply the zext. 5009 APInt Trunc = CI->getValue().trunc(Z0TySize); 5010 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5011 Trunc.isSignBit()) 5012 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5013 UTy); 5014 } 5015 } 5016 break; 5017 5018 case Instruction::Shl: 5019 // Turn shift left of a constant amount into a multiply. 5020 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5021 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5022 5023 // If the shift count is not less than the bitwidth, the result of 5024 // the shift is undefined. Don't try to analyze it, because the 5025 // resolution chosen here may differ from the resolution chosen in 5026 // other parts of the compiler. 5027 if (SA->getValue().uge(BitWidth)) 5028 break; 5029 5030 // It is currently not resolved how to interpret NSW for left 5031 // shift by BitWidth - 1, so we avoid applying flags in that 5032 // case. Remove this check (or this comment) once the situation 5033 // is resolved. See 5034 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5035 // and http://reviews.llvm.org/D8890 . 5036 auto Flags = SCEV::FlagAnyWrap; 5037 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5038 Flags = getNoWrapFlagsFromUB(BO->Op); 5039 5040 Constant *X = ConstantInt::get(getContext(), 5041 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5042 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5043 } 5044 break; 5045 5046 case Instruction::AShr: 5047 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 5048 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) 5049 if (Operator *L = dyn_cast<Operator>(BO->LHS)) 5050 if (L->getOpcode() == Instruction::Shl && 5051 L->getOperand(1) == BO->RHS) { 5052 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType()); 5053 5054 // If the shift count is not less than the bitwidth, the result of 5055 // the shift is undefined. Don't try to analyze it, because the 5056 // resolution chosen here may differ from the resolution chosen in 5057 // other parts of the compiler. 5058 if (CI->getValue().uge(BitWidth)) 5059 break; 5060 5061 uint64_t Amt = BitWidth - CI->getZExtValue(); 5062 if (Amt == BitWidth) 5063 return getSCEV(L->getOperand(0)); // shift by zero --> noop 5064 return getSignExtendExpr( 5065 getTruncateExpr(getSCEV(L->getOperand(0)), 5066 IntegerType::get(getContext(), Amt)), 5067 BO->LHS->getType()); 5068 } 5069 break; 5070 } 5071 } 5072 5073 switch (U->getOpcode()) { 5074 case Instruction::Trunc: 5075 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5076 5077 case Instruction::ZExt: 5078 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5079 5080 case Instruction::SExt: 5081 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5082 5083 case Instruction::BitCast: 5084 // BitCasts are no-op casts so we just eliminate the cast. 5085 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5086 return getSCEV(U->getOperand(0)); 5087 break; 5088 5089 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5090 // lead to pointer expressions which cannot safely be expanded to GEPs, 5091 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5092 // simplifying integer expressions. 5093 5094 case Instruction::GetElementPtr: 5095 return createNodeForGEP(cast<GEPOperator>(U)); 5096 5097 case Instruction::PHI: 5098 return createNodeForPHI(cast<PHINode>(U)); 5099 5100 case Instruction::Select: 5101 // U can also be a select constant expr, which let fall through. Since 5102 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5103 // constant expressions cannot have instructions as operands, we'd have 5104 // returned getUnknown for a select constant expressions anyway. 5105 if (isa<Instruction>(U)) 5106 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5107 U->getOperand(1), U->getOperand(2)); 5108 } 5109 5110 return getUnknown(V); 5111 } 5112 5113 5114 5115 //===----------------------------------------------------------------------===// 5116 // Iteration Count Computation Code 5117 // 5118 5119 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 5120 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5121 return getSmallConstantTripCount(L, ExitingBB); 5122 5123 // No trip count information for multiple exits. 5124 return 0; 5125 } 5126 5127 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 5128 /// normal unsigned value. Returns 0 if the trip count is unknown or not 5129 /// constant. Will also return 0 if the maximum trip count is very large (>= 5130 /// 2^32). 5131 /// 5132 /// This "trip count" assumes that control exits via ExitingBlock. More 5133 /// precisely, it is the number of times that control may reach ExitingBlock 5134 /// before taking the branch. For loops with multiple exits, it may not be the 5135 /// number times that the loop header executes because the loop may exit 5136 /// prematurely via another branch. 5137 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 5138 BasicBlock *ExitingBlock) { 5139 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5140 assert(L->isLoopExiting(ExitingBlock) && 5141 "Exiting block must actually branch out of the loop!"); 5142 const SCEVConstant *ExitCount = 5143 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5144 if (!ExitCount) 5145 return 0; 5146 5147 ConstantInt *ExitConst = ExitCount->getValue(); 5148 5149 // Guard against huge trip counts. 5150 if (ExitConst->getValue().getActiveBits() > 32) 5151 return 0; 5152 5153 // In case of integer overflow, this returns 0, which is correct. 5154 return ((unsigned)ExitConst->getZExtValue()) + 1; 5155 } 5156 5157 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 5158 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5159 return getSmallConstantTripMultiple(L, ExitingBB); 5160 5161 // No trip multiple information for multiple exits. 5162 return 0; 5163 } 5164 5165 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 5166 /// trip count of this loop as a normal unsigned value, if possible. This 5167 /// means that the actual trip count is always a multiple of the returned 5168 /// value (don't forget the trip count could very well be zero as well!). 5169 /// 5170 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5171 /// multiple of a constant (which is also the case if the trip count is simply 5172 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5173 /// if the trip count is very large (>= 2^32). 5174 /// 5175 /// As explained in the comments for getSmallConstantTripCount, this assumes 5176 /// that control exits the loop via ExitingBlock. 5177 unsigned 5178 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 5179 BasicBlock *ExitingBlock) { 5180 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5181 assert(L->isLoopExiting(ExitingBlock) && 5182 "Exiting block must actually branch out of the loop!"); 5183 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5184 if (ExitCount == getCouldNotCompute()) 5185 return 1; 5186 5187 // Get the trip count from the BE count by adding 1. 5188 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5189 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 5190 // to factor simple cases. 5191 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 5192 TCMul = Mul->getOperand(0); 5193 5194 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 5195 if (!MulC) 5196 return 1; 5197 5198 ConstantInt *Result = MulC->getValue(); 5199 5200 // Guard against huge trip counts (this requires checking 5201 // for zero to handle the case where the trip count == -1 and the 5202 // addition wraps). 5203 if (!Result || Result->getValue().getActiveBits() > 32 || 5204 Result->getValue().getActiveBits() == 0) 5205 return 1; 5206 5207 return (unsigned)Result->getZExtValue(); 5208 } 5209 5210 // getExitCount - Get the expression for the number of loop iterations for which 5211 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 5212 // SCEVCouldNotCompute. 5213 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 5214 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5215 } 5216 5217 /// getBackedgeTakenCount - If the specified loop has a predictable 5218 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 5219 /// object. The backedge-taken count is the number of times the loop header 5220 /// will be branched to from within the loop. This is one less than the 5221 /// trip count of the loop, since it doesn't count the first iteration, 5222 /// when the header is branched to from outside the loop. 5223 /// 5224 /// Note that it is not valid to call this method on a loop without a 5225 /// loop-invariant backedge-taken count (see 5226 /// hasLoopInvariantBackedgeTakenCount). 5227 /// 5228 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5229 return getBackedgeTakenInfo(L).getExact(this); 5230 } 5231 5232 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 5233 /// return the least SCEV value that is known never to be less than the 5234 /// actual backedge taken count. 5235 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5236 return getBackedgeTakenInfo(L).getMax(this); 5237 } 5238 5239 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 5240 /// onto the given Worklist. 5241 static void 5242 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5243 BasicBlock *Header = L->getHeader(); 5244 5245 // Push all Loop-header PHIs onto the Worklist stack. 5246 for (BasicBlock::iterator I = Header->begin(); 5247 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5248 Worklist.push_back(PN); 5249 } 5250 5251 const ScalarEvolution::BackedgeTakenInfo & 5252 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5253 // Initially insert an invalid entry for this loop. If the insertion 5254 // succeeds, proceed to actually compute a backedge-taken count and 5255 // update the value. The temporary CouldNotCompute value tells SCEV 5256 // code elsewhere that it shouldn't attempt to request a new 5257 // backedge-taken count, which could result in infinite recursion. 5258 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5259 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5260 if (!Pair.second) 5261 return Pair.first->second; 5262 5263 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5264 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5265 // must be cleared in this scope. 5266 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5267 5268 if (Result.getExact(this) != getCouldNotCompute()) { 5269 assert(isLoopInvariant(Result.getExact(this), L) && 5270 isLoopInvariant(Result.getMax(this), L) && 5271 "Computed backedge-taken count isn't loop invariant for loop!"); 5272 ++NumTripCountsComputed; 5273 } 5274 else if (Result.getMax(this) == getCouldNotCompute() && 5275 isa<PHINode>(L->getHeader()->begin())) { 5276 // Only count loops that have phi nodes as not being computable. 5277 ++NumTripCountsNotComputed; 5278 } 5279 5280 // Now that we know more about the trip count for this loop, forget any 5281 // existing SCEV values for PHI nodes in this loop since they are only 5282 // conservative estimates made without the benefit of trip count 5283 // information. This is similar to the code in forgetLoop, except that 5284 // it handles SCEVUnknown PHI nodes specially. 5285 if (Result.hasAnyInfo()) { 5286 SmallVector<Instruction *, 16> Worklist; 5287 PushLoopPHIs(L, Worklist); 5288 5289 SmallPtrSet<Instruction *, 8> Visited; 5290 while (!Worklist.empty()) { 5291 Instruction *I = Worklist.pop_back_val(); 5292 if (!Visited.insert(I).second) 5293 continue; 5294 5295 ValueExprMapType::iterator It = 5296 ValueExprMap.find_as(static_cast<Value *>(I)); 5297 if (It != ValueExprMap.end()) { 5298 const SCEV *Old = It->second; 5299 5300 // SCEVUnknown for a PHI either means that it has an unrecognized 5301 // structure, or it's a PHI that's in the progress of being computed 5302 // by createNodeForPHI. In the former case, additional loop trip 5303 // count information isn't going to change anything. In the later 5304 // case, createNodeForPHI will perform the necessary updates on its 5305 // own when it gets to that point. 5306 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5307 forgetMemoizedResults(Old); 5308 ValueExprMap.erase(It); 5309 } 5310 if (PHINode *PN = dyn_cast<PHINode>(I)) 5311 ConstantEvolutionLoopExitValue.erase(PN); 5312 } 5313 5314 PushDefUseChildren(I, Worklist); 5315 } 5316 } 5317 5318 // Re-lookup the insert position, since the call to 5319 // computeBackedgeTakenCount above could result in a 5320 // recusive call to getBackedgeTakenInfo (on a different 5321 // loop), which would invalidate the iterator computed 5322 // earlier. 5323 return BackedgeTakenCounts.find(L)->second = Result; 5324 } 5325 5326 /// forgetLoop - This method should be called by the client when it has 5327 /// changed a loop in a way that may effect ScalarEvolution's ability to 5328 /// compute a trip count, or if the loop is deleted. 5329 void ScalarEvolution::forgetLoop(const Loop *L) { 5330 // Drop any stored trip count value. 5331 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 5332 BackedgeTakenCounts.find(L); 5333 if (BTCPos != BackedgeTakenCounts.end()) { 5334 BTCPos->second.clear(); 5335 BackedgeTakenCounts.erase(BTCPos); 5336 } 5337 5338 // Drop information about expressions based on loop-header PHIs. 5339 SmallVector<Instruction *, 16> Worklist; 5340 PushLoopPHIs(L, Worklist); 5341 5342 SmallPtrSet<Instruction *, 8> Visited; 5343 while (!Worklist.empty()) { 5344 Instruction *I = Worklist.pop_back_val(); 5345 if (!Visited.insert(I).second) 5346 continue; 5347 5348 ValueExprMapType::iterator It = 5349 ValueExprMap.find_as(static_cast<Value *>(I)); 5350 if (It != ValueExprMap.end()) { 5351 forgetMemoizedResults(It->second); 5352 ValueExprMap.erase(It); 5353 if (PHINode *PN = dyn_cast<PHINode>(I)) 5354 ConstantEvolutionLoopExitValue.erase(PN); 5355 } 5356 5357 PushDefUseChildren(I, Worklist); 5358 } 5359 5360 // Forget all contained loops too, to avoid dangling entries in the 5361 // ValuesAtScopes map. 5362 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5363 forgetLoop(*I); 5364 } 5365 5366 /// forgetValue - This method should be called by the client when it has 5367 /// changed a value in a way that may effect its value, or which may 5368 /// disconnect it from a def-use chain linking it to a loop. 5369 void ScalarEvolution::forgetValue(Value *V) { 5370 Instruction *I = dyn_cast<Instruction>(V); 5371 if (!I) return; 5372 5373 // Drop information about expressions based on loop-header PHIs. 5374 SmallVector<Instruction *, 16> Worklist; 5375 Worklist.push_back(I); 5376 5377 SmallPtrSet<Instruction *, 8> Visited; 5378 while (!Worklist.empty()) { 5379 I = Worklist.pop_back_val(); 5380 if (!Visited.insert(I).second) 5381 continue; 5382 5383 ValueExprMapType::iterator It = 5384 ValueExprMap.find_as(static_cast<Value *>(I)); 5385 if (It != ValueExprMap.end()) { 5386 forgetMemoizedResults(It->second); 5387 ValueExprMap.erase(It); 5388 if (PHINode *PN = dyn_cast<PHINode>(I)) 5389 ConstantEvolutionLoopExitValue.erase(PN); 5390 } 5391 5392 PushDefUseChildren(I, Worklist); 5393 } 5394 } 5395 5396 /// getExact - Get the exact loop backedge taken count considering all loop 5397 /// exits. A computable result can only be returned for loops with a single 5398 /// exit. Returning the minimum taken count among all exits is incorrect 5399 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5400 /// assumes that the limit of each loop test is never skipped. This is a valid 5401 /// assumption as long as the loop exits via that test. For precise results, it 5402 /// is the caller's responsibility to specify the relevant loop exit using 5403 /// getExact(ExitingBlock, SE). 5404 const SCEV * 5405 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5406 // If any exits were not computable, the loop is not computable. 5407 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5408 5409 // We need exactly one computable exit. 5410 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5411 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5412 5413 const SCEV *BECount = nullptr; 5414 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5415 ENT != nullptr; ENT = ENT->getNextExit()) { 5416 5417 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5418 5419 if (!BECount) 5420 BECount = ENT->ExactNotTaken; 5421 else if (BECount != ENT->ExactNotTaken) 5422 return SE->getCouldNotCompute(); 5423 } 5424 assert(BECount && "Invalid not taken count for loop exit"); 5425 return BECount; 5426 } 5427 5428 /// getExact - Get the exact not taken count for this loop exit. 5429 const SCEV * 5430 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5431 ScalarEvolution *SE) const { 5432 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5433 ENT != nullptr; ENT = ENT->getNextExit()) { 5434 5435 if (ENT->ExitingBlock == ExitingBlock) 5436 return ENT->ExactNotTaken; 5437 } 5438 return SE->getCouldNotCompute(); 5439 } 5440 5441 /// getMax - Get the max backedge taken count for the loop. 5442 const SCEV * 5443 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5444 return Max ? Max : SE->getCouldNotCompute(); 5445 } 5446 5447 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5448 ScalarEvolution *SE) const { 5449 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5450 return true; 5451 5452 if (!ExitNotTaken.ExitingBlock) 5453 return false; 5454 5455 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5456 ENT != nullptr; ENT = ENT->getNextExit()) { 5457 5458 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5459 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5460 return true; 5461 } 5462 } 5463 return false; 5464 } 5465 5466 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5467 /// computable exit into a persistent ExitNotTakenInfo array. 5468 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5469 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5470 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5471 5472 if (!Complete) 5473 ExitNotTaken.setIncomplete(); 5474 5475 unsigned NumExits = ExitCounts.size(); 5476 if (NumExits == 0) return; 5477 5478 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5479 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5480 if (NumExits == 1) return; 5481 5482 // Handle the rare case of multiple computable exits. 5483 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5484 5485 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5486 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5487 PrevENT->setNextExit(ENT); 5488 ENT->ExitingBlock = ExitCounts[i].first; 5489 ENT->ExactNotTaken = ExitCounts[i].second; 5490 } 5491 } 5492 5493 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5494 void ScalarEvolution::BackedgeTakenInfo::clear() { 5495 ExitNotTaken.ExitingBlock = nullptr; 5496 ExitNotTaken.ExactNotTaken = nullptr; 5497 delete[] ExitNotTaken.getNextExit(); 5498 } 5499 5500 /// computeBackedgeTakenCount - Compute the number of times the backedge 5501 /// of the specified loop will execute. 5502 ScalarEvolution::BackedgeTakenInfo 5503 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5504 SmallVector<BasicBlock *, 8> ExitingBlocks; 5505 L->getExitingBlocks(ExitingBlocks); 5506 5507 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5508 bool CouldComputeBECount = true; 5509 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5510 const SCEV *MustExitMaxBECount = nullptr; 5511 const SCEV *MayExitMaxBECount = nullptr; 5512 5513 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5514 // and compute maxBECount. 5515 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5516 BasicBlock *ExitBB = ExitingBlocks[i]; 5517 ExitLimit EL = computeExitLimit(L, ExitBB); 5518 5519 // 1. For each exit that can be computed, add an entry to ExitCounts. 5520 // CouldComputeBECount is true only if all exits can be computed. 5521 if (EL.Exact == getCouldNotCompute()) 5522 // We couldn't compute an exact value for this exit, so 5523 // we won't be able to compute an exact value for the loop. 5524 CouldComputeBECount = false; 5525 else 5526 ExitCounts.push_back({ExitBB, EL.Exact}); 5527 5528 // 2. Derive the loop's MaxBECount from each exit's max number of 5529 // non-exiting iterations. Partition the loop exits into two kinds: 5530 // LoopMustExits and LoopMayExits. 5531 // 5532 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5533 // is a LoopMayExit. If any computable LoopMustExit is found, then 5534 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5535 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5536 // considered greater than any computable EL.Max. 5537 if (EL.Max != getCouldNotCompute() && Latch && 5538 DT.dominates(ExitBB, Latch)) { 5539 if (!MustExitMaxBECount) 5540 MustExitMaxBECount = EL.Max; 5541 else { 5542 MustExitMaxBECount = 5543 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5544 } 5545 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5546 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5547 MayExitMaxBECount = EL.Max; 5548 else { 5549 MayExitMaxBECount = 5550 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5551 } 5552 } 5553 } 5554 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5555 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5556 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5557 } 5558 5559 ScalarEvolution::ExitLimit 5560 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5561 5562 // Okay, we've chosen an exiting block. See what condition causes us to exit 5563 // at this block and remember the exit block and whether all other targets 5564 // lead to the loop header. 5565 bool MustExecuteLoopHeader = true; 5566 BasicBlock *Exit = nullptr; 5567 for (auto *SBB : successors(ExitingBlock)) 5568 if (!L->contains(SBB)) { 5569 if (Exit) // Multiple exit successors. 5570 return getCouldNotCompute(); 5571 Exit = SBB; 5572 } else if (SBB != L->getHeader()) { 5573 MustExecuteLoopHeader = false; 5574 } 5575 5576 // At this point, we know we have a conditional branch that determines whether 5577 // the loop is exited. However, we don't know if the branch is executed each 5578 // time through the loop. If not, then the execution count of the branch will 5579 // not be equal to the trip count of the loop. 5580 // 5581 // Currently we check for this by checking to see if the Exit branch goes to 5582 // the loop header. If so, we know it will always execute the same number of 5583 // times as the loop. We also handle the case where the exit block *is* the 5584 // loop header. This is common for un-rotated loops. 5585 // 5586 // If both of those tests fail, walk up the unique predecessor chain to the 5587 // header, stopping if there is an edge that doesn't exit the loop. If the 5588 // header is reached, the execution count of the branch will be equal to the 5589 // trip count of the loop. 5590 // 5591 // More extensive analysis could be done to handle more cases here. 5592 // 5593 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5594 // The simple checks failed, try climbing the unique predecessor chain 5595 // up to the header. 5596 bool Ok = false; 5597 for (BasicBlock *BB = ExitingBlock; BB; ) { 5598 BasicBlock *Pred = BB->getUniquePredecessor(); 5599 if (!Pred) 5600 return getCouldNotCompute(); 5601 TerminatorInst *PredTerm = Pred->getTerminator(); 5602 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5603 if (PredSucc == BB) 5604 continue; 5605 // If the predecessor has a successor that isn't BB and isn't 5606 // outside the loop, assume the worst. 5607 if (L->contains(PredSucc)) 5608 return getCouldNotCompute(); 5609 } 5610 if (Pred == L->getHeader()) { 5611 Ok = true; 5612 break; 5613 } 5614 BB = Pred; 5615 } 5616 if (!Ok) 5617 return getCouldNotCompute(); 5618 } 5619 5620 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5621 TerminatorInst *Term = ExitingBlock->getTerminator(); 5622 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5623 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5624 // Proceed to the next level to examine the exit condition expression. 5625 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5626 BI->getSuccessor(1), 5627 /*ControlsExit=*/IsOnlyExit); 5628 } 5629 5630 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5631 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5632 /*ControlsExit=*/IsOnlyExit); 5633 5634 return getCouldNotCompute(); 5635 } 5636 5637 /// computeExitLimitFromCond - Compute the number of times the 5638 /// backedge of the specified loop will execute if its exit condition 5639 /// were a conditional branch of ExitCond, TBB, and FBB. 5640 /// 5641 /// @param ControlsExit is true if ExitCond directly controls the exit 5642 /// branch. In this case, we can assume that the loop exits only if the 5643 /// condition is true and can infer that failing to meet the condition prior to 5644 /// integer wraparound results in undefined behavior. 5645 ScalarEvolution::ExitLimit 5646 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5647 Value *ExitCond, 5648 BasicBlock *TBB, 5649 BasicBlock *FBB, 5650 bool ControlsExit) { 5651 // Check if the controlling expression for this loop is an And or Or. 5652 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5653 if (BO->getOpcode() == Instruction::And) { 5654 // Recurse on the operands of the and. 5655 bool EitherMayExit = L->contains(TBB); 5656 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5657 ControlsExit && !EitherMayExit); 5658 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5659 ControlsExit && !EitherMayExit); 5660 const SCEV *BECount = getCouldNotCompute(); 5661 const SCEV *MaxBECount = getCouldNotCompute(); 5662 if (EitherMayExit) { 5663 // Both conditions must be true for the loop to continue executing. 5664 // Choose the less conservative count. 5665 if (EL0.Exact == getCouldNotCompute() || 5666 EL1.Exact == getCouldNotCompute()) 5667 BECount = getCouldNotCompute(); 5668 else 5669 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5670 if (EL0.Max == getCouldNotCompute()) 5671 MaxBECount = EL1.Max; 5672 else if (EL1.Max == getCouldNotCompute()) 5673 MaxBECount = EL0.Max; 5674 else 5675 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5676 } else { 5677 // Both conditions must be true at the same time for the loop to exit. 5678 // For now, be conservative. 5679 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5680 if (EL0.Max == EL1.Max) 5681 MaxBECount = EL0.Max; 5682 if (EL0.Exact == EL1.Exact) 5683 BECount = EL0.Exact; 5684 } 5685 5686 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 5687 // to be more aggressive when computing BECount than when computing 5688 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact 5689 // to match, but for EL0.Max and EL1.Max to not. 5690 if (isa<SCEVCouldNotCompute>(MaxBECount) && 5691 !isa<SCEVCouldNotCompute>(BECount)) 5692 MaxBECount = BECount; 5693 5694 return ExitLimit(BECount, MaxBECount); 5695 } 5696 if (BO->getOpcode() == Instruction::Or) { 5697 // Recurse on the operands of the or. 5698 bool EitherMayExit = L->contains(FBB); 5699 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5700 ControlsExit && !EitherMayExit); 5701 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5702 ControlsExit && !EitherMayExit); 5703 const SCEV *BECount = getCouldNotCompute(); 5704 const SCEV *MaxBECount = getCouldNotCompute(); 5705 if (EitherMayExit) { 5706 // Both conditions must be false for the loop to continue executing. 5707 // Choose the less conservative count. 5708 if (EL0.Exact == getCouldNotCompute() || 5709 EL1.Exact == getCouldNotCompute()) 5710 BECount = getCouldNotCompute(); 5711 else 5712 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5713 if (EL0.Max == getCouldNotCompute()) 5714 MaxBECount = EL1.Max; 5715 else if (EL1.Max == getCouldNotCompute()) 5716 MaxBECount = EL0.Max; 5717 else 5718 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5719 } else { 5720 // Both conditions must be false at the same time for the loop to exit. 5721 // For now, be conservative. 5722 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5723 if (EL0.Max == EL1.Max) 5724 MaxBECount = EL0.Max; 5725 if (EL0.Exact == EL1.Exact) 5726 BECount = EL0.Exact; 5727 } 5728 5729 return ExitLimit(BECount, MaxBECount); 5730 } 5731 } 5732 5733 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5734 // Proceed to the next level to examine the icmp. 5735 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5736 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5737 5738 // Check for a constant condition. These are normally stripped out by 5739 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5740 // preserve the CFG and is temporarily leaving constant conditions 5741 // in place. 5742 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5743 if (L->contains(FBB) == !CI->getZExtValue()) 5744 // The backedge is always taken. 5745 return getCouldNotCompute(); 5746 else 5747 // The backedge is never taken. 5748 return getZero(CI->getType()); 5749 } 5750 5751 // If it's not an integer or pointer comparison then compute it the hard way. 5752 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5753 } 5754 5755 ScalarEvolution::ExitLimit 5756 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5757 ICmpInst *ExitCond, 5758 BasicBlock *TBB, 5759 BasicBlock *FBB, 5760 bool ControlsExit) { 5761 5762 // If the condition was exit on true, convert the condition to exit on false 5763 ICmpInst::Predicate Cond; 5764 if (!L->contains(FBB)) 5765 Cond = ExitCond->getPredicate(); 5766 else 5767 Cond = ExitCond->getInversePredicate(); 5768 5769 // Handle common loops like: for (X = "string"; *X; ++X) 5770 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5771 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5772 ExitLimit ItCnt = 5773 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5774 if (ItCnt.hasAnyInfo()) 5775 return ItCnt; 5776 } 5777 5778 ExitLimit ShiftEL = computeShiftCompareExitLimit( 5779 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond); 5780 if (ShiftEL.hasAnyInfo()) 5781 return ShiftEL; 5782 5783 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5784 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5785 5786 // Try to evaluate any dependencies out of the loop. 5787 LHS = getSCEVAtScope(LHS, L); 5788 RHS = getSCEVAtScope(RHS, L); 5789 5790 // At this point, we would like to compute how many iterations of the 5791 // loop the predicate will return true for these inputs. 5792 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5793 // If there is a loop-invariant, force it into the RHS. 5794 std::swap(LHS, RHS); 5795 Cond = ICmpInst::getSwappedPredicate(Cond); 5796 } 5797 5798 // Simplify the operands before analyzing them. 5799 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5800 5801 // If we have a comparison of a chrec against a constant, try to use value 5802 // ranges to answer this query. 5803 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5804 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5805 if (AddRec->getLoop() == L) { 5806 // Form the constant range. 5807 ConstantRange CompRange( 5808 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt())); 5809 5810 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5811 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5812 } 5813 5814 switch (Cond) { 5815 case ICmpInst::ICMP_NE: { // while (X != Y) 5816 // Convert to: while (X-Y != 0) 5817 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5818 if (EL.hasAnyInfo()) return EL; 5819 break; 5820 } 5821 case ICmpInst::ICMP_EQ: { // while (X == Y) 5822 // Convert to: while (X-Y == 0) 5823 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5824 if (EL.hasAnyInfo()) return EL; 5825 break; 5826 } 5827 case ICmpInst::ICMP_SLT: 5828 case ICmpInst::ICMP_ULT: { // while (X < Y) 5829 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5830 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5831 if (EL.hasAnyInfo()) return EL; 5832 break; 5833 } 5834 case ICmpInst::ICMP_SGT: 5835 case ICmpInst::ICMP_UGT: { // while (X > Y) 5836 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5837 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5838 if (EL.hasAnyInfo()) return EL; 5839 break; 5840 } 5841 default: 5842 break; 5843 } 5844 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5845 } 5846 5847 ScalarEvolution::ExitLimit 5848 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5849 SwitchInst *Switch, 5850 BasicBlock *ExitingBlock, 5851 bool ControlsExit) { 5852 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5853 5854 // Give up if the exit is the default dest of a switch. 5855 if (Switch->getDefaultDest() == ExitingBlock) 5856 return getCouldNotCompute(); 5857 5858 assert(L->contains(Switch->getDefaultDest()) && 5859 "Default case must not exit the loop!"); 5860 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5861 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5862 5863 // while (X != Y) --> while (X-Y != 0) 5864 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5865 if (EL.hasAnyInfo()) 5866 return EL; 5867 5868 return getCouldNotCompute(); 5869 } 5870 5871 static ConstantInt * 5872 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5873 ScalarEvolution &SE) { 5874 const SCEV *InVal = SE.getConstant(C); 5875 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5876 assert(isa<SCEVConstant>(Val) && 5877 "Evaluation of SCEV at constant didn't fold correctly?"); 5878 return cast<SCEVConstant>(Val)->getValue(); 5879 } 5880 5881 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5882 /// 'icmp op load X, cst', try to see if we can compute the backedge 5883 /// execution count. 5884 ScalarEvolution::ExitLimit 5885 ScalarEvolution::computeLoadConstantCompareExitLimit( 5886 LoadInst *LI, 5887 Constant *RHS, 5888 const Loop *L, 5889 ICmpInst::Predicate predicate) { 5890 5891 if (LI->isVolatile()) return getCouldNotCompute(); 5892 5893 // Check to see if the loaded pointer is a getelementptr of a global. 5894 // TODO: Use SCEV instead of manually grubbing with GEPs. 5895 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5896 if (!GEP) return getCouldNotCompute(); 5897 5898 // Make sure that it is really a constant global we are gepping, with an 5899 // initializer, and make sure the first IDX is really 0. 5900 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5901 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5902 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5903 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5904 return getCouldNotCompute(); 5905 5906 // Okay, we allow one non-constant index into the GEP instruction. 5907 Value *VarIdx = nullptr; 5908 std::vector<Constant*> Indexes; 5909 unsigned VarIdxNum = 0; 5910 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5911 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5912 Indexes.push_back(CI); 5913 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5914 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5915 VarIdx = GEP->getOperand(i); 5916 VarIdxNum = i-2; 5917 Indexes.push_back(nullptr); 5918 } 5919 5920 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5921 if (!VarIdx) 5922 return getCouldNotCompute(); 5923 5924 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5925 // Check to see if X is a loop variant variable value now. 5926 const SCEV *Idx = getSCEV(VarIdx); 5927 Idx = getSCEVAtScope(Idx, L); 5928 5929 // We can only recognize very limited forms of loop index expressions, in 5930 // particular, only affine AddRec's like {C1,+,C2}. 5931 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5932 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5933 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5934 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5935 return getCouldNotCompute(); 5936 5937 unsigned MaxSteps = MaxBruteForceIterations; 5938 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5939 ConstantInt *ItCst = ConstantInt::get( 5940 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5941 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5942 5943 // Form the GEP offset. 5944 Indexes[VarIdxNum] = Val; 5945 5946 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5947 Indexes); 5948 if (!Result) break; // Cannot compute! 5949 5950 // Evaluate the condition for this iteration. 5951 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5952 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5953 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5954 ++NumArrayLenItCounts; 5955 return getConstant(ItCst); // Found terminating iteration! 5956 } 5957 } 5958 return getCouldNotCompute(); 5959 } 5960 5961 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 5962 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 5963 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 5964 if (!RHS) 5965 return getCouldNotCompute(); 5966 5967 const BasicBlock *Latch = L->getLoopLatch(); 5968 if (!Latch) 5969 return getCouldNotCompute(); 5970 5971 const BasicBlock *Predecessor = L->getLoopPredecessor(); 5972 if (!Predecessor) 5973 return getCouldNotCompute(); 5974 5975 // Return true if V is of the form "LHS `shift_op` <positive constant>". 5976 // Return LHS in OutLHS and shift_opt in OutOpCode. 5977 auto MatchPositiveShift = 5978 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 5979 5980 using namespace PatternMatch; 5981 5982 ConstantInt *ShiftAmt; 5983 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5984 OutOpCode = Instruction::LShr; 5985 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5986 OutOpCode = Instruction::AShr; 5987 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 5988 OutOpCode = Instruction::Shl; 5989 else 5990 return false; 5991 5992 return ShiftAmt->getValue().isStrictlyPositive(); 5993 }; 5994 5995 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 5996 // 5997 // loop: 5998 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 5999 // %iv.shifted = lshr i32 %iv, <positive constant> 6000 // 6001 // Return true on a succesful match. Return the corresponding PHI node (%iv 6002 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6003 auto MatchShiftRecurrence = 6004 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6005 Optional<Instruction::BinaryOps> PostShiftOpCode; 6006 6007 { 6008 Instruction::BinaryOps OpC; 6009 Value *V; 6010 6011 // If we encounter a shift instruction, "peel off" the shift operation, 6012 // and remember that we did so. Later when we inspect %iv's backedge 6013 // value, we will make sure that the backedge value uses the same 6014 // operation. 6015 // 6016 // Note: the peeled shift operation does not have to be the same 6017 // instruction as the one feeding into the PHI's backedge value. We only 6018 // really care about it being the same *kind* of shift instruction -- 6019 // that's all that is required for our later inferences to hold. 6020 if (MatchPositiveShift(LHS, V, OpC)) { 6021 PostShiftOpCode = OpC; 6022 LHS = V; 6023 } 6024 } 6025 6026 PNOut = dyn_cast<PHINode>(LHS); 6027 if (!PNOut || PNOut->getParent() != L->getHeader()) 6028 return false; 6029 6030 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6031 Value *OpLHS; 6032 6033 return 6034 // The backedge value for the PHI node must be a shift by a positive 6035 // amount 6036 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6037 6038 // of the PHI node itself 6039 OpLHS == PNOut && 6040 6041 // and the kind of shift should be match the kind of shift we peeled 6042 // off, if any. 6043 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6044 }; 6045 6046 PHINode *PN; 6047 Instruction::BinaryOps OpCode; 6048 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6049 return getCouldNotCompute(); 6050 6051 const DataLayout &DL = getDataLayout(); 6052 6053 // The key rationale for this optimization is that for some kinds of shift 6054 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6055 // within a finite number of iterations. If the condition guarding the 6056 // backedge (in the sense that the backedge is taken if the condition is true) 6057 // is false for the value the shift recurrence stabilizes to, then we know 6058 // that the backedge is taken only a finite number of times. 6059 6060 ConstantInt *StableValue = nullptr; 6061 switch (OpCode) { 6062 default: 6063 llvm_unreachable("Impossible case!"); 6064 6065 case Instruction::AShr: { 6066 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6067 // bitwidth(K) iterations. 6068 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6069 bool KnownZero, KnownOne; 6070 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr, 6071 Predecessor->getTerminator(), &DT); 6072 auto *Ty = cast<IntegerType>(RHS->getType()); 6073 if (KnownZero) 6074 StableValue = ConstantInt::get(Ty, 0); 6075 else if (KnownOne) 6076 StableValue = ConstantInt::get(Ty, -1, true); 6077 else 6078 return getCouldNotCompute(); 6079 6080 break; 6081 } 6082 case Instruction::LShr: 6083 case Instruction::Shl: 6084 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6085 // stabilize to 0 in at most bitwidth(K) iterations. 6086 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6087 break; 6088 } 6089 6090 auto *Result = 6091 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6092 assert(Result->getType()->isIntegerTy(1) && 6093 "Otherwise cannot be an operand to a branch instruction"); 6094 6095 if (Result->isZeroValue()) { 6096 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6097 const SCEV *UpperBound = 6098 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6099 return ExitLimit(getCouldNotCompute(), UpperBound); 6100 } 6101 6102 return getCouldNotCompute(); 6103 } 6104 6105 /// CanConstantFold - Return true if we can constant fold an instruction of the 6106 /// specified type, assuming that all operands were constants. 6107 static bool CanConstantFold(const Instruction *I) { 6108 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6109 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6110 isa<LoadInst>(I)) 6111 return true; 6112 6113 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6114 if (const Function *F = CI->getCalledFunction()) 6115 return canConstantFoldCallTo(F); 6116 return false; 6117 } 6118 6119 /// Determine whether this instruction can constant evolve within this loop 6120 /// assuming its operands can all constant evolve. 6121 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6122 // An instruction outside of the loop can't be derived from a loop PHI. 6123 if (!L->contains(I)) return false; 6124 6125 if (isa<PHINode>(I)) { 6126 // We don't currently keep track of the control flow needed to evaluate 6127 // PHIs, so we cannot handle PHIs inside of loops. 6128 return L->getHeader() == I->getParent(); 6129 } 6130 6131 // If we won't be able to constant fold this expression even if the operands 6132 // are constants, bail early. 6133 return CanConstantFold(I); 6134 } 6135 6136 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6137 /// recursing through each instruction operand until reaching a loop header phi. 6138 static PHINode * 6139 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6140 DenseMap<Instruction *, PHINode *> &PHIMap) { 6141 6142 // Otherwise, we can evaluate this instruction if all of its operands are 6143 // constant or derived from a PHI node themselves. 6144 PHINode *PHI = nullptr; 6145 for (Value *Op : UseInst->operands()) { 6146 if (isa<Constant>(Op)) continue; 6147 6148 Instruction *OpInst = dyn_cast<Instruction>(Op); 6149 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6150 6151 PHINode *P = dyn_cast<PHINode>(OpInst); 6152 if (!P) 6153 // If this operand is already visited, reuse the prior result. 6154 // We may have P != PHI if this is the deepest point at which the 6155 // inconsistent paths meet. 6156 P = PHIMap.lookup(OpInst); 6157 if (!P) { 6158 // Recurse and memoize the results, whether a phi is found or not. 6159 // This recursive call invalidates pointers into PHIMap. 6160 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 6161 PHIMap[OpInst] = P; 6162 } 6163 if (!P) 6164 return nullptr; // Not evolving from PHI 6165 if (PHI && PHI != P) 6166 return nullptr; // Evolving from multiple different PHIs. 6167 PHI = P; 6168 } 6169 // This is a expression evolving from a constant PHI! 6170 return PHI; 6171 } 6172 6173 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6174 /// in the loop that V is derived from. We allow arbitrary operations along the 6175 /// way, but the operands of an operation must either be constants or a value 6176 /// derived from a constant PHI. If this expression does not fit with these 6177 /// constraints, return null. 6178 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6179 Instruction *I = dyn_cast<Instruction>(V); 6180 if (!I || !canConstantEvolve(I, L)) return nullptr; 6181 6182 if (PHINode *PN = dyn_cast<PHINode>(I)) 6183 return PN; 6184 6185 // Record non-constant instructions contained by the loop. 6186 DenseMap<Instruction *, PHINode *> PHIMap; 6187 return getConstantEvolvingPHIOperands(I, L, PHIMap); 6188 } 6189 6190 /// EvaluateExpression - Given an expression that passes the 6191 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6192 /// in the loop has the value PHIVal. If we can't fold this expression for some 6193 /// reason, return null. 6194 static Constant *EvaluateExpression(Value *V, const Loop *L, 6195 DenseMap<Instruction *, Constant *> &Vals, 6196 const DataLayout &DL, 6197 const TargetLibraryInfo *TLI) { 6198 // Convenient constant check, but redundant for recursive calls. 6199 if (Constant *C = dyn_cast<Constant>(V)) return C; 6200 Instruction *I = dyn_cast<Instruction>(V); 6201 if (!I) return nullptr; 6202 6203 if (Constant *C = Vals.lookup(I)) return C; 6204 6205 // An instruction inside the loop depends on a value outside the loop that we 6206 // weren't given a mapping for, or a value such as a call inside the loop. 6207 if (!canConstantEvolve(I, L)) return nullptr; 6208 6209 // An unmapped PHI can be due to a branch or another loop inside this loop, 6210 // or due to this not being the initial iteration through a loop where we 6211 // couldn't compute the evolution of this particular PHI last time. 6212 if (isa<PHINode>(I)) return nullptr; 6213 6214 std::vector<Constant*> Operands(I->getNumOperands()); 6215 6216 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6217 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6218 if (!Operand) { 6219 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6220 if (!Operands[i]) return nullptr; 6221 continue; 6222 } 6223 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6224 Vals[Operand] = C; 6225 if (!C) return nullptr; 6226 Operands[i] = C; 6227 } 6228 6229 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6230 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6231 Operands[1], DL, TLI); 6232 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6233 if (!LI->isVolatile()) 6234 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6235 } 6236 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6237 } 6238 6239 6240 // If every incoming value to PN except the one for BB is a specific Constant, 6241 // return that, else return nullptr. 6242 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6243 Constant *IncomingVal = nullptr; 6244 6245 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6246 if (PN->getIncomingBlock(i) == BB) 6247 continue; 6248 6249 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6250 if (!CurrentVal) 6251 return nullptr; 6252 6253 if (IncomingVal != CurrentVal) { 6254 if (IncomingVal) 6255 return nullptr; 6256 IncomingVal = CurrentVal; 6257 } 6258 } 6259 6260 return IncomingVal; 6261 } 6262 6263 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6264 /// in the header of its containing loop, we know the loop executes a 6265 /// constant number of times, and the PHI node is just a recurrence 6266 /// involving constants, fold it. 6267 Constant * 6268 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6269 const APInt &BEs, 6270 const Loop *L) { 6271 auto I = ConstantEvolutionLoopExitValue.find(PN); 6272 if (I != ConstantEvolutionLoopExitValue.end()) 6273 return I->second; 6274 6275 if (BEs.ugt(MaxBruteForceIterations)) 6276 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6277 6278 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6279 6280 DenseMap<Instruction *, Constant *> CurrentIterVals; 6281 BasicBlock *Header = L->getHeader(); 6282 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6283 6284 BasicBlock *Latch = L->getLoopLatch(); 6285 if (!Latch) 6286 return nullptr; 6287 6288 for (auto &I : *Header) { 6289 PHINode *PHI = dyn_cast<PHINode>(&I); 6290 if (!PHI) break; 6291 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6292 if (!StartCST) continue; 6293 CurrentIterVals[PHI] = StartCST; 6294 } 6295 if (!CurrentIterVals.count(PN)) 6296 return RetVal = nullptr; 6297 6298 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6299 6300 // Execute the loop symbolically to determine the exit value. 6301 if (BEs.getActiveBits() >= 32) 6302 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6303 6304 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6305 unsigned IterationNum = 0; 6306 const DataLayout &DL = getDataLayout(); 6307 for (; ; ++IterationNum) { 6308 if (IterationNum == NumIterations) 6309 return RetVal = CurrentIterVals[PN]; // Got exit value! 6310 6311 // Compute the value of the PHIs for the next iteration. 6312 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6313 DenseMap<Instruction *, Constant *> NextIterVals; 6314 Constant *NextPHI = 6315 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6316 if (!NextPHI) 6317 return nullptr; // Couldn't evaluate! 6318 NextIterVals[PN] = NextPHI; 6319 6320 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6321 6322 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6323 // cease to be able to evaluate one of them or if they stop evolving, 6324 // because that doesn't necessarily prevent us from computing PN. 6325 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6326 for (const auto &I : CurrentIterVals) { 6327 PHINode *PHI = dyn_cast<PHINode>(I.first); 6328 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6329 PHIsToCompute.emplace_back(PHI, I.second); 6330 } 6331 // We use two distinct loops because EvaluateExpression may invalidate any 6332 // iterators into CurrentIterVals. 6333 for (const auto &I : PHIsToCompute) { 6334 PHINode *PHI = I.first; 6335 Constant *&NextPHI = NextIterVals[PHI]; 6336 if (!NextPHI) { // Not already computed. 6337 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6338 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6339 } 6340 if (NextPHI != I.second) 6341 StoppedEvolving = false; 6342 } 6343 6344 // If all entries in CurrentIterVals == NextIterVals then we can stop 6345 // iterating, the loop can't continue to change. 6346 if (StoppedEvolving) 6347 return RetVal = CurrentIterVals[PN]; 6348 6349 CurrentIterVals.swap(NextIterVals); 6350 } 6351 } 6352 6353 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6354 Value *Cond, 6355 bool ExitWhen) { 6356 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6357 if (!PN) return getCouldNotCompute(); 6358 6359 // If the loop is canonicalized, the PHI will have exactly two entries. 6360 // That's the only form we support here. 6361 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6362 6363 DenseMap<Instruction *, Constant *> CurrentIterVals; 6364 BasicBlock *Header = L->getHeader(); 6365 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6366 6367 BasicBlock *Latch = L->getLoopLatch(); 6368 assert(Latch && "Should follow from NumIncomingValues == 2!"); 6369 6370 for (auto &I : *Header) { 6371 PHINode *PHI = dyn_cast<PHINode>(&I); 6372 if (!PHI) 6373 break; 6374 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6375 if (!StartCST) continue; 6376 CurrentIterVals[PHI] = StartCST; 6377 } 6378 if (!CurrentIterVals.count(PN)) 6379 return getCouldNotCompute(); 6380 6381 // Okay, we find a PHI node that defines the trip count of this loop. Execute 6382 // the loop symbolically to determine when the condition gets a value of 6383 // "ExitWhen". 6384 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 6385 const DataLayout &DL = getDataLayout(); 6386 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 6387 auto *CondVal = dyn_cast_or_null<ConstantInt>( 6388 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 6389 6390 // Couldn't symbolically evaluate. 6391 if (!CondVal) return getCouldNotCompute(); 6392 6393 if (CondVal->getValue() == uint64_t(ExitWhen)) { 6394 ++NumBruteForceTripCountsComputed; 6395 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 6396 } 6397 6398 // Update all the PHI nodes for the next iteration. 6399 DenseMap<Instruction *, Constant *> NextIterVals; 6400 6401 // Create a list of which PHIs we need to compute. We want to do this before 6402 // calling EvaluateExpression on them because that may invalidate iterators 6403 // into CurrentIterVals. 6404 SmallVector<PHINode *, 8> PHIsToCompute; 6405 for (const auto &I : CurrentIterVals) { 6406 PHINode *PHI = dyn_cast<PHINode>(I.first); 6407 if (!PHI || PHI->getParent() != Header) continue; 6408 PHIsToCompute.push_back(PHI); 6409 } 6410 for (PHINode *PHI : PHIsToCompute) { 6411 Constant *&NextPHI = NextIterVals[PHI]; 6412 if (NextPHI) continue; // Already computed! 6413 6414 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6415 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6416 } 6417 CurrentIterVals.swap(NextIterVals); 6418 } 6419 6420 // Too many iterations were needed to evaluate. 6421 return getCouldNotCompute(); 6422 } 6423 6424 /// getSCEVAtScope - Return a SCEV expression for the specified value 6425 /// at the specified scope in the program. The L value specifies a loop 6426 /// nest to evaluate the expression at, where null is the top-level or a 6427 /// specified loop is immediately inside of the loop. 6428 /// 6429 /// This method can be used to compute the exit value for a variable defined 6430 /// in a loop by querying what the value will hold in the parent loop. 6431 /// 6432 /// In the case that a relevant loop exit value cannot be computed, the 6433 /// original value V is returned. 6434 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 6435 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 6436 ValuesAtScopes[V]; 6437 // Check to see if we've folded this expression at this loop before. 6438 for (auto &LS : Values) 6439 if (LS.first == L) 6440 return LS.second ? LS.second : V; 6441 6442 Values.emplace_back(L, nullptr); 6443 6444 // Otherwise compute it. 6445 const SCEV *C = computeSCEVAtScope(V, L); 6446 for (auto &LS : reverse(ValuesAtScopes[V])) 6447 if (LS.first == L) { 6448 LS.second = C; 6449 break; 6450 } 6451 return C; 6452 } 6453 6454 /// This builds up a Constant using the ConstantExpr interface. That way, we 6455 /// will return Constants for objects which aren't represented by a 6456 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 6457 /// Returns NULL if the SCEV isn't representable as a Constant. 6458 static Constant *BuildConstantFromSCEV(const SCEV *V) { 6459 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 6460 case scCouldNotCompute: 6461 case scAddRecExpr: 6462 break; 6463 case scConstant: 6464 return cast<SCEVConstant>(V)->getValue(); 6465 case scUnknown: 6466 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 6467 case scSignExtend: { 6468 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 6469 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 6470 return ConstantExpr::getSExt(CastOp, SS->getType()); 6471 break; 6472 } 6473 case scZeroExtend: { 6474 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 6475 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 6476 return ConstantExpr::getZExt(CastOp, SZ->getType()); 6477 break; 6478 } 6479 case scTruncate: { 6480 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 6481 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 6482 return ConstantExpr::getTrunc(CastOp, ST->getType()); 6483 break; 6484 } 6485 case scAddExpr: { 6486 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 6487 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 6488 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6489 unsigned AS = PTy->getAddressSpace(); 6490 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6491 C = ConstantExpr::getBitCast(C, DestPtrTy); 6492 } 6493 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 6494 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 6495 if (!C2) return nullptr; 6496 6497 // First pointer! 6498 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 6499 unsigned AS = C2->getType()->getPointerAddressSpace(); 6500 std::swap(C, C2); 6501 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 6502 // The offsets have been converted to bytes. We can add bytes to an 6503 // i8* by GEP with the byte count in the first index. 6504 C = ConstantExpr::getBitCast(C, DestPtrTy); 6505 } 6506 6507 // Don't bother trying to sum two pointers. We probably can't 6508 // statically compute a load that results from it anyway. 6509 if (C2->getType()->isPointerTy()) 6510 return nullptr; 6511 6512 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6513 if (PTy->getElementType()->isStructTy()) 6514 C2 = ConstantExpr::getIntegerCast( 6515 C2, Type::getInt32Ty(C->getContext()), true); 6516 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6517 } else 6518 C = ConstantExpr::getAdd(C, C2); 6519 } 6520 return C; 6521 } 6522 break; 6523 } 6524 case scMulExpr: { 6525 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6526 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6527 // Don't bother with pointers at all. 6528 if (C->getType()->isPointerTy()) return nullptr; 6529 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6530 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6531 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6532 C = ConstantExpr::getMul(C, C2); 6533 } 6534 return C; 6535 } 6536 break; 6537 } 6538 case scUDivExpr: { 6539 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6540 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6541 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6542 if (LHS->getType() == RHS->getType()) 6543 return ConstantExpr::getUDiv(LHS, RHS); 6544 break; 6545 } 6546 case scSMaxExpr: 6547 case scUMaxExpr: 6548 break; // TODO: smax, umax. 6549 } 6550 return nullptr; 6551 } 6552 6553 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6554 if (isa<SCEVConstant>(V)) return V; 6555 6556 // If this instruction is evolved from a constant-evolving PHI, compute the 6557 // exit value from the loop without using SCEVs. 6558 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6559 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6560 const Loop *LI = this->LI[I->getParent()]; 6561 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6562 if (PHINode *PN = dyn_cast<PHINode>(I)) 6563 if (PN->getParent() == LI->getHeader()) { 6564 // Okay, there is no closed form solution for the PHI node. Check 6565 // to see if the loop that contains it has a known backedge-taken 6566 // count. If so, we may be able to force computation of the exit 6567 // value. 6568 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6569 if (const SCEVConstant *BTCC = 6570 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6571 // Okay, we know how many times the containing loop executes. If 6572 // this is a constant evolving PHI node, get the final value at 6573 // the specified iteration number. 6574 Constant *RV = 6575 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 6576 if (RV) return getSCEV(RV); 6577 } 6578 } 6579 6580 // Okay, this is an expression that we cannot symbolically evaluate 6581 // into a SCEV. Check to see if it's possible to symbolically evaluate 6582 // the arguments into constants, and if so, try to constant propagate the 6583 // result. This is particularly useful for computing loop exit values. 6584 if (CanConstantFold(I)) { 6585 SmallVector<Constant *, 4> Operands; 6586 bool MadeImprovement = false; 6587 for (Value *Op : I->operands()) { 6588 if (Constant *C = dyn_cast<Constant>(Op)) { 6589 Operands.push_back(C); 6590 continue; 6591 } 6592 6593 // If any of the operands is non-constant and if they are 6594 // non-integer and non-pointer, don't even try to analyze them 6595 // with scev techniques. 6596 if (!isSCEVable(Op->getType())) 6597 return V; 6598 6599 const SCEV *OrigV = getSCEV(Op); 6600 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6601 MadeImprovement |= OrigV != OpV; 6602 6603 Constant *C = BuildConstantFromSCEV(OpV); 6604 if (!C) return V; 6605 if (C->getType() != Op->getType()) 6606 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6607 Op->getType(), 6608 false), 6609 C, Op->getType()); 6610 Operands.push_back(C); 6611 } 6612 6613 // Check to see if getSCEVAtScope actually made an improvement. 6614 if (MadeImprovement) { 6615 Constant *C = nullptr; 6616 const DataLayout &DL = getDataLayout(); 6617 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6618 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6619 Operands[1], DL, &TLI); 6620 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6621 if (!LI->isVolatile()) 6622 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6623 } else 6624 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 6625 if (!C) return V; 6626 return getSCEV(C); 6627 } 6628 } 6629 } 6630 6631 // This is some other type of SCEVUnknown, just return it. 6632 return V; 6633 } 6634 6635 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6636 // Avoid performing the look-up in the common case where the specified 6637 // expression has no loop-variant portions. 6638 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6639 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6640 if (OpAtScope != Comm->getOperand(i)) { 6641 // Okay, at least one of these operands is loop variant but might be 6642 // foldable. Build a new instance of the folded commutative expression. 6643 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6644 Comm->op_begin()+i); 6645 NewOps.push_back(OpAtScope); 6646 6647 for (++i; i != e; ++i) { 6648 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6649 NewOps.push_back(OpAtScope); 6650 } 6651 if (isa<SCEVAddExpr>(Comm)) 6652 return getAddExpr(NewOps); 6653 if (isa<SCEVMulExpr>(Comm)) 6654 return getMulExpr(NewOps); 6655 if (isa<SCEVSMaxExpr>(Comm)) 6656 return getSMaxExpr(NewOps); 6657 if (isa<SCEVUMaxExpr>(Comm)) 6658 return getUMaxExpr(NewOps); 6659 llvm_unreachable("Unknown commutative SCEV type!"); 6660 } 6661 } 6662 // If we got here, all operands are loop invariant. 6663 return Comm; 6664 } 6665 6666 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6667 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6668 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6669 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6670 return Div; // must be loop invariant 6671 return getUDivExpr(LHS, RHS); 6672 } 6673 6674 // If this is a loop recurrence for a loop that does not contain L, then we 6675 // are dealing with the final value computed by the loop. 6676 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6677 // First, attempt to evaluate each operand. 6678 // Avoid performing the look-up in the common case where the specified 6679 // expression has no loop-variant portions. 6680 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6681 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6682 if (OpAtScope == AddRec->getOperand(i)) 6683 continue; 6684 6685 // Okay, at least one of these operands is loop variant but might be 6686 // foldable. Build a new instance of the folded commutative expression. 6687 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6688 AddRec->op_begin()+i); 6689 NewOps.push_back(OpAtScope); 6690 for (++i; i != e; ++i) 6691 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6692 6693 const SCEV *FoldedRec = 6694 getAddRecExpr(NewOps, AddRec->getLoop(), 6695 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6696 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6697 // The addrec may be folded to a nonrecurrence, for example, if the 6698 // induction variable is multiplied by zero after constant folding. Go 6699 // ahead and return the folded value. 6700 if (!AddRec) 6701 return FoldedRec; 6702 break; 6703 } 6704 6705 // If the scope is outside the addrec's loop, evaluate it by using the 6706 // loop exit value of the addrec. 6707 if (!AddRec->getLoop()->contains(L)) { 6708 // To evaluate this recurrence, we need to know how many times the AddRec 6709 // loop iterates. Compute this now. 6710 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6711 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6712 6713 // Then, evaluate the AddRec. 6714 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6715 } 6716 6717 return AddRec; 6718 } 6719 6720 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6721 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6722 if (Op == Cast->getOperand()) 6723 return Cast; // must be loop invariant 6724 return getZeroExtendExpr(Op, Cast->getType()); 6725 } 6726 6727 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6728 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6729 if (Op == Cast->getOperand()) 6730 return Cast; // must be loop invariant 6731 return getSignExtendExpr(Op, Cast->getType()); 6732 } 6733 6734 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6735 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6736 if (Op == Cast->getOperand()) 6737 return Cast; // must be loop invariant 6738 return getTruncateExpr(Op, Cast->getType()); 6739 } 6740 6741 llvm_unreachable("Unknown SCEV type!"); 6742 } 6743 6744 /// getSCEVAtScope - This is a convenience function which does 6745 /// getSCEVAtScope(getSCEV(V), L). 6746 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6747 return getSCEVAtScope(getSCEV(V), L); 6748 } 6749 6750 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6751 /// following equation: 6752 /// 6753 /// A * X = B (mod N) 6754 /// 6755 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6756 /// A and B isn't important. 6757 /// 6758 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6759 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6760 ScalarEvolution &SE) { 6761 uint32_t BW = A.getBitWidth(); 6762 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6763 assert(A != 0 && "A must be non-zero."); 6764 6765 // 1. D = gcd(A, N) 6766 // 6767 // The gcd of A and N may have only one prime factor: 2. The number of 6768 // trailing zeros in A is its multiplicity 6769 uint32_t Mult2 = A.countTrailingZeros(); 6770 // D = 2^Mult2 6771 6772 // 2. Check if B is divisible by D. 6773 // 6774 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6775 // is not less than multiplicity of this prime factor for D. 6776 if (B.countTrailingZeros() < Mult2) 6777 return SE.getCouldNotCompute(); 6778 6779 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6780 // modulo (N / D). 6781 // 6782 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6783 // bit width during computations. 6784 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6785 APInt Mod(BW + 1, 0); 6786 Mod.setBit(BW - Mult2); // Mod = N / D 6787 APInt I = AD.multiplicativeInverse(Mod); 6788 6789 // 4. Compute the minimum unsigned root of the equation: 6790 // I * (B / D) mod (N / D) 6791 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6792 6793 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6794 // bits. 6795 return SE.getConstant(Result.trunc(BW)); 6796 } 6797 6798 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6799 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6800 /// might be the same) or two SCEVCouldNotCompute objects. 6801 /// 6802 static std::pair<const SCEV *,const SCEV *> 6803 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6804 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6805 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6806 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6807 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6808 6809 // We currently can only solve this if the coefficients are constants. 6810 if (!LC || !MC || !NC) { 6811 const SCEV *CNC = SE.getCouldNotCompute(); 6812 return {CNC, CNC}; 6813 } 6814 6815 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 6816 const APInt &L = LC->getAPInt(); 6817 const APInt &M = MC->getAPInt(); 6818 const APInt &N = NC->getAPInt(); 6819 APInt Two(BitWidth, 2); 6820 APInt Four(BitWidth, 4); 6821 6822 { 6823 using namespace APIntOps; 6824 const APInt& C = L; 6825 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6826 // The B coefficient is M-N/2 6827 APInt B(M); 6828 B -= sdiv(N,Two); 6829 6830 // The A coefficient is N/2 6831 APInt A(N.sdiv(Two)); 6832 6833 // Compute the B^2-4ac term. 6834 APInt SqrtTerm(B); 6835 SqrtTerm *= B; 6836 SqrtTerm -= Four * (A * C); 6837 6838 if (SqrtTerm.isNegative()) { 6839 // The loop is provably infinite. 6840 const SCEV *CNC = SE.getCouldNotCompute(); 6841 return {CNC, CNC}; 6842 } 6843 6844 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6845 // integer value or else APInt::sqrt() will assert. 6846 APInt SqrtVal(SqrtTerm.sqrt()); 6847 6848 // Compute the two solutions for the quadratic formula. 6849 // The divisions must be performed as signed divisions. 6850 APInt NegB(-B); 6851 APInt TwoA(A << 1); 6852 if (TwoA.isMinValue()) { 6853 const SCEV *CNC = SE.getCouldNotCompute(); 6854 return {CNC, CNC}; 6855 } 6856 6857 LLVMContext &Context = SE.getContext(); 6858 6859 ConstantInt *Solution1 = 6860 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6861 ConstantInt *Solution2 = 6862 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6863 6864 return {SE.getConstant(Solution1), SE.getConstant(Solution2)}; 6865 } // end APIntOps namespace 6866 } 6867 6868 /// HowFarToZero - Return the number of times a backedge comparing the specified 6869 /// value to zero will execute. If not computable, return CouldNotCompute. 6870 /// 6871 /// This is only used for loops with a "x != y" exit test. The exit condition is 6872 /// now expressed as a single expression, V = x-y. So the exit test is 6873 /// effectively V != 0. We know and take advantage of the fact that this 6874 /// expression only being used in a comparison by zero context. 6875 ScalarEvolution::ExitLimit 6876 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6877 // If the value is a constant 6878 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6879 // If the value is already zero, the branch will execute zero times. 6880 if (C->getValue()->isZero()) return C; 6881 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6882 } 6883 6884 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6885 if (!AddRec || AddRec->getLoop() != L) 6886 return getCouldNotCompute(); 6887 6888 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6889 // the quadratic equation to solve it. 6890 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6891 std::pair<const SCEV *,const SCEV *> Roots = 6892 SolveQuadraticEquation(AddRec, *this); 6893 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6894 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6895 if (R1 && R2) { 6896 // Pick the smallest positive root value. 6897 if (ConstantInt *CB = 6898 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6899 R1->getValue(), 6900 R2->getValue()))) { 6901 if (!CB->getZExtValue()) 6902 std::swap(R1, R2); // R1 is the minimum root now. 6903 6904 // We can only use this value if the chrec ends up with an exact zero 6905 // value at this index. When solving for "X*X != 5", for example, we 6906 // should not accept a root of 2. 6907 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6908 if (Val->isZero()) 6909 return R1; // We found a quadratic root! 6910 } 6911 } 6912 return getCouldNotCompute(); 6913 } 6914 6915 // Otherwise we can only handle this if it is affine. 6916 if (!AddRec->isAffine()) 6917 return getCouldNotCompute(); 6918 6919 // If this is an affine expression, the execution count of this branch is 6920 // the minimum unsigned root of the following equation: 6921 // 6922 // Start + Step*N = 0 (mod 2^BW) 6923 // 6924 // equivalent to: 6925 // 6926 // Step*N = -Start (mod 2^BW) 6927 // 6928 // where BW is the common bit width of Start and Step. 6929 6930 // Get the initial value for the loop. 6931 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6932 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6933 6934 // For now we handle only constant steps. 6935 // 6936 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6937 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6938 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6939 // We have not yet seen any such cases. 6940 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6941 if (!StepC || StepC->getValue()->equalsInt(0)) 6942 return getCouldNotCompute(); 6943 6944 // For positive steps (counting up until unsigned overflow): 6945 // N = -Start/Step (as unsigned) 6946 // For negative steps (counting down to zero): 6947 // N = Start/-Step 6948 // First compute the unsigned distance from zero in the direction of Step. 6949 bool CountDown = StepC->getAPInt().isNegative(); 6950 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6951 6952 // Handle unitary steps, which cannot wraparound. 6953 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6954 // N = Distance (as unsigned) 6955 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6956 ConstantRange CR = getUnsignedRange(Start); 6957 const SCEV *MaxBECount; 6958 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6959 // When counting up, the worst starting value is 1, not 0. 6960 MaxBECount = CR.getUnsignedMax().isMinValue() 6961 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6962 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6963 else 6964 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6965 : -CR.getUnsignedMin()); 6966 return ExitLimit(Distance, MaxBECount); 6967 } 6968 6969 // As a special case, handle the instance where Step is a positive power of 6970 // two. In this case, determining whether Step divides Distance evenly can be 6971 // done by counting and comparing the number of trailing zeros of Step and 6972 // Distance. 6973 if (!CountDown) { 6974 const APInt &StepV = StepC->getAPInt(); 6975 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6976 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6977 // case is not handled as this code is guarded by !CountDown. 6978 if (StepV.isPowerOf2() && 6979 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6980 // Here we've constrained the equation to be of the form 6981 // 6982 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6983 // 6984 // where we're operating on a W bit wide integer domain and k is 6985 // non-negative. The smallest unsigned solution for X is the trip count. 6986 // 6987 // (0) is equivalent to: 6988 // 6989 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6990 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6991 // <=> 2^k * Distance' - X = L * 2^(W - N) 6992 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6993 // 6994 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6995 // by 2^(W - N). 6996 // 6997 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6998 // 6999 // E.g. say we're solving 7000 // 7001 // 2 * Val = 2 * X (in i8) ... (3) 7002 // 7003 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 7004 // 7005 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 7006 // necessarily the smallest unsigned value of X that satisfies (3). 7007 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 7008 // is i8 1, not i8 -127 7009 7010 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 7011 7012 // Since SCEV does not have a URem node, we construct one using a truncate 7013 // and a zero extend. 7014 7015 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 7016 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 7017 auto *WideTy = Distance->getType(); 7018 7019 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 7020 } 7021 } 7022 7023 // If the condition controls loop exit (the loop exits only if the expression 7024 // is true) and the addition is no-wrap we can use unsigned divide to 7025 // compute the backedge count. In this case, the step may not divide the 7026 // distance, but we don't care because if the condition is "missed" the loop 7027 // will have undefined behavior due to wrapping. 7028 if (ControlsExit && AddRec->hasNoSelfWrap()) { 7029 const SCEV *Exact = 7030 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7031 return ExitLimit(Exact, Exact); 7032 } 7033 7034 // Then, try to solve the above equation provided that Start is constant. 7035 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 7036 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(), 7037 *this); 7038 return getCouldNotCompute(); 7039 } 7040 7041 /// HowFarToNonZero - Return the number of times a backedge checking the 7042 /// specified value for nonzero will execute. If not computable, return 7043 /// CouldNotCompute 7044 ScalarEvolution::ExitLimit 7045 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 7046 // Loops that look like: while (X == 0) are very strange indeed. We don't 7047 // handle them yet except for the trivial case. This could be expanded in the 7048 // future as needed. 7049 7050 // If the value is a constant, check to see if it is known to be non-zero 7051 // already. If so, the backedge will execute zero times. 7052 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7053 if (!C->getValue()->isNullValue()) 7054 return getZero(C->getType()); 7055 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7056 } 7057 7058 // We could implement others, but I really doubt anyone writes loops like 7059 // this, and if they did, they would already be constant folded. 7060 return getCouldNotCompute(); 7061 } 7062 7063 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 7064 /// (which may not be an immediate predecessor) which has exactly one 7065 /// successor from which BB is reachable, or null if no such block is 7066 /// found. 7067 /// 7068 std::pair<BasicBlock *, BasicBlock *> 7069 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7070 // If the block has a unique predecessor, then there is no path from the 7071 // predecessor to the block that does not go through the direct edge 7072 // from the predecessor to the block. 7073 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7074 return {Pred, BB}; 7075 7076 // A loop's header is defined to be a block that dominates the loop. 7077 // If the header has a unique predecessor outside the loop, it must be 7078 // a block that has exactly one successor that can reach the loop. 7079 if (Loop *L = LI.getLoopFor(BB)) 7080 return {L->getLoopPredecessor(), L->getHeader()}; 7081 7082 return {nullptr, nullptr}; 7083 } 7084 7085 /// HasSameValue - SCEV structural equivalence is usually sufficient for 7086 /// testing whether two expressions are equal, however for the purposes of 7087 /// looking for a condition guarding a loop, it can be useful to be a little 7088 /// more general, since a front-end may have replicated the controlling 7089 /// expression. 7090 /// 7091 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7092 // Quick check to see if they are the same SCEV. 7093 if (A == B) return true; 7094 7095 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7096 // Not all instructions that are "identical" compute the same value. For 7097 // instance, two distinct alloca instructions allocating the same type are 7098 // identical and do not read memory; but compute distinct values. 7099 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7100 }; 7101 7102 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7103 // two different instructions with the same value. Check for this case. 7104 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7105 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7106 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7107 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7108 if (ComputesEqualValues(AI, BI)) 7109 return true; 7110 7111 // Otherwise assume they may have a different value. 7112 return false; 7113 } 7114 7115 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 7116 /// predicate Pred. Return true iff any changes were made. 7117 /// 7118 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7119 const SCEV *&LHS, const SCEV *&RHS, 7120 unsigned Depth) { 7121 bool Changed = false; 7122 7123 // If we hit the max recursion limit bail out. 7124 if (Depth >= 3) 7125 return false; 7126 7127 // Canonicalize a constant to the right side. 7128 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7129 // Check for both operands constant. 7130 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7131 if (ConstantExpr::getICmp(Pred, 7132 LHSC->getValue(), 7133 RHSC->getValue())->isNullValue()) 7134 goto trivially_false; 7135 else 7136 goto trivially_true; 7137 } 7138 // Otherwise swap the operands to put the constant on the right. 7139 std::swap(LHS, RHS); 7140 Pred = ICmpInst::getSwappedPredicate(Pred); 7141 Changed = true; 7142 } 7143 7144 // If we're comparing an addrec with a value which is loop-invariant in the 7145 // addrec's loop, put the addrec on the left. Also make a dominance check, 7146 // as both operands could be addrecs loop-invariant in each other's loop. 7147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7148 const Loop *L = AR->getLoop(); 7149 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7150 std::swap(LHS, RHS); 7151 Pred = ICmpInst::getSwappedPredicate(Pred); 7152 Changed = true; 7153 } 7154 } 7155 7156 // If there's a constant operand, canonicalize comparisons with boundary 7157 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7158 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7159 const APInt &RA = RC->getAPInt(); 7160 switch (Pred) { 7161 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7162 case ICmpInst::ICMP_EQ: 7163 case ICmpInst::ICMP_NE: 7164 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7165 if (!RA) 7166 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7167 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7168 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7169 ME->getOperand(0)->isAllOnesValue()) { 7170 RHS = AE->getOperand(1); 7171 LHS = ME->getOperand(1); 7172 Changed = true; 7173 } 7174 break; 7175 case ICmpInst::ICMP_UGE: 7176 if ((RA - 1).isMinValue()) { 7177 Pred = ICmpInst::ICMP_NE; 7178 RHS = getConstant(RA - 1); 7179 Changed = true; 7180 break; 7181 } 7182 if (RA.isMaxValue()) { 7183 Pred = ICmpInst::ICMP_EQ; 7184 Changed = true; 7185 break; 7186 } 7187 if (RA.isMinValue()) goto trivially_true; 7188 7189 Pred = ICmpInst::ICMP_UGT; 7190 RHS = getConstant(RA - 1); 7191 Changed = true; 7192 break; 7193 case ICmpInst::ICMP_ULE: 7194 if ((RA + 1).isMaxValue()) { 7195 Pred = ICmpInst::ICMP_NE; 7196 RHS = getConstant(RA + 1); 7197 Changed = true; 7198 break; 7199 } 7200 if (RA.isMinValue()) { 7201 Pred = ICmpInst::ICMP_EQ; 7202 Changed = true; 7203 break; 7204 } 7205 if (RA.isMaxValue()) goto trivially_true; 7206 7207 Pred = ICmpInst::ICMP_ULT; 7208 RHS = getConstant(RA + 1); 7209 Changed = true; 7210 break; 7211 case ICmpInst::ICMP_SGE: 7212 if ((RA - 1).isMinSignedValue()) { 7213 Pred = ICmpInst::ICMP_NE; 7214 RHS = getConstant(RA - 1); 7215 Changed = true; 7216 break; 7217 } 7218 if (RA.isMaxSignedValue()) { 7219 Pred = ICmpInst::ICMP_EQ; 7220 Changed = true; 7221 break; 7222 } 7223 if (RA.isMinSignedValue()) goto trivially_true; 7224 7225 Pred = ICmpInst::ICMP_SGT; 7226 RHS = getConstant(RA - 1); 7227 Changed = true; 7228 break; 7229 case ICmpInst::ICMP_SLE: 7230 if ((RA + 1).isMaxSignedValue()) { 7231 Pred = ICmpInst::ICMP_NE; 7232 RHS = getConstant(RA + 1); 7233 Changed = true; 7234 break; 7235 } 7236 if (RA.isMinSignedValue()) { 7237 Pred = ICmpInst::ICMP_EQ; 7238 Changed = true; 7239 break; 7240 } 7241 if (RA.isMaxSignedValue()) goto trivially_true; 7242 7243 Pred = ICmpInst::ICMP_SLT; 7244 RHS = getConstant(RA + 1); 7245 Changed = true; 7246 break; 7247 case ICmpInst::ICMP_UGT: 7248 if (RA.isMinValue()) { 7249 Pred = ICmpInst::ICMP_NE; 7250 Changed = true; 7251 break; 7252 } 7253 if ((RA + 1).isMaxValue()) { 7254 Pred = ICmpInst::ICMP_EQ; 7255 RHS = getConstant(RA + 1); 7256 Changed = true; 7257 break; 7258 } 7259 if (RA.isMaxValue()) goto trivially_false; 7260 break; 7261 case ICmpInst::ICMP_ULT: 7262 if (RA.isMaxValue()) { 7263 Pred = ICmpInst::ICMP_NE; 7264 Changed = true; 7265 break; 7266 } 7267 if ((RA - 1).isMinValue()) { 7268 Pred = ICmpInst::ICMP_EQ; 7269 RHS = getConstant(RA - 1); 7270 Changed = true; 7271 break; 7272 } 7273 if (RA.isMinValue()) goto trivially_false; 7274 break; 7275 case ICmpInst::ICMP_SGT: 7276 if (RA.isMinSignedValue()) { 7277 Pred = ICmpInst::ICMP_NE; 7278 Changed = true; 7279 break; 7280 } 7281 if ((RA + 1).isMaxSignedValue()) { 7282 Pred = ICmpInst::ICMP_EQ; 7283 RHS = getConstant(RA + 1); 7284 Changed = true; 7285 break; 7286 } 7287 if (RA.isMaxSignedValue()) goto trivially_false; 7288 break; 7289 case ICmpInst::ICMP_SLT: 7290 if (RA.isMaxSignedValue()) { 7291 Pred = ICmpInst::ICMP_NE; 7292 Changed = true; 7293 break; 7294 } 7295 if ((RA - 1).isMinSignedValue()) { 7296 Pred = ICmpInst::ICMP_EQ; 7297 RHS = getConstant(RA - 1); 7298 Changed = true; 7299 break; 7300 } 7301 if (RA.isMinSignedValue()) goto trivially_false; 7302 break; 7303 } 7304 } 7305 7306 // Check for obvious equality. 7307 if (HasSameValue(LHS, RHS)) { 7308 if (ICmpInst::isTrueWhenEqual(Pred)) 7309 goto trivially_true; 7310 if (ICmpInst::isFalseWhenEqual(Pred)) 7311 goto trivially_false; 7312 } 7313 7314 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7315 // adding or subtracting 1 from one of the operands. 7316 switch (Pred) { 7317 case ICmpInst::ICMP_SLE: 7318 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7319 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7320 SCEV::FlagNSW); 7321 Pred = ICmpInst::ICMP_SLT; 7322 Changed = true; 7323 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7324 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7325 SCEV::FlagNSW); 7326 Pred = ICmpInst::ICMP_SLT; 7327 Changed = true; 7328 } 7329 break; 7330 case ICmpInst::ICMP_SGE: 7331 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7332 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7333 SCEV::FlagNSW); 7334 Pred = ICmpInst::ICMP_SGT; 7335 Changed = true; 7336 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7337 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7338 SCEV::FlagNSW); 7339 Pred = ICmpInst::ICMP_SGT; 7340 Changed = true; 7341 } 7342 break; 7343 case ICmpInst::ICMP_ULE: 7344 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7345 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7346 SCEV::FlagNUW); 7347 Pred = ICmpInst::ICMP_ULT; 7348 Changed = true; 7349 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7350 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7351 Pred = ICmpInst::ICMP_ULT; 7352 Changed = true; 7353 } 7354 break; 7355 case ICmpInst::ICMP_UGE: 7356 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7357 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7358 Pred = ICmpInst::ICMP_UGT; 7359 Changed = true; 7360 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7361 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7362 SCEV::FlagNUW); 7363 Pred = ICmpInst::ICMP_UGT; 7364 Changed = true; 7365 } 7366 break; 7367 default: 7368 break; 7369 } 7370 7371 // TODO: More simplifications are possible here. 7372 7373 // Recursively simplify until we either hit a recursion limit or nothing 7374 // changes. 7375 if (Changed) 7376 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7377 7378 return Changed; 7379 7380 trivially_true: 7381 // Return 0 == 0. 7382 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7383 Pred = ICmpInst::ICMP_EQ; 7384 return true; 7385 7386 trivially_false: 7387 // Return 0 != 0. 7388 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7389 Pred = ICmpInst::ICMP_NE; 7390 return true; 7391 } 7392 7393 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7394 return getSignedRange(S).getSignedMax().isNegative(); 7395 } 7396 7397 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7398 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7399 } 7400 7401 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7402 return !getSignedRange(S).getSignedMin().isNegative(); 7403 } 7404 7405 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7406 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7407 } 7408 7409 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7410 return isKnownNegative(S) || isKnownPositive(S); 7411 } 7412 7413 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7414 const SCEV *LHS, const SCEV *RHS) { 7415 // Canonicalize the inputs first. 7416 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7417 7418 // If LHS or RHS is an addrec, check to see if the condition is true in 7419 // every iteration of the loop. 7420 // If LHS and RHS are both addrec, both conditions must be true in 7421 // every iteration of the loop. 7422 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7423 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7424 bool LeftGuarded = false; 7425 bool RightGuarded = false; 7426 if (LAR) { 7427 const Loop *L = LAR->getLoop(); 7428 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7429 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7430 if (!RAR) return true; 7431 LeftGuarded = true; 7432 } 7433 } 7434 if (RAR) { 7435 const Loop *L = RAR->getLoop(); 7436 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7437 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7438 if (!LAR) return true; 7439 RightGuarded = true; 7440 } 7441 } 7442 if (LeftGuarded && RightGuarded) 7443 return true; 7444 7445 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7446 return true; 7447 7448 // Otherwise see what can be done with known constant ranges. 7449 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7450 } 7451 7452 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7453 ICmpInst::Predicate Pred, 7454 bool &Increasing) { 7455 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7456 7457 #ifndef NDEBUG 7458 // Verify an invariant: inverting the predicate should turn a monotonically 7459 // increasing change to a monotonically decreasing one, and vice versa. 7460 bool IncreasingSwapped; 7461 bool ResultSwapped = isMonotonicPredicateImpl( 7462 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7463 7464 assert(Result == ResultSwapped && "should be able to analyze both!"); 7465 if (ResultSwapped) 7466 assert(Increasing == !IncreasingSwapped && 7467 "monotonicity should flip as we flip the predicate"); 7468 #endif 7469 7470 return Result; 7471 } 7472 7473 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7474 ICmpInst::Predicate Pred, 7475 bool &Increasing) { 7476 7477 // A zero step value for LHS means the induction variable is essentially a 7478 // loop invariant value. We don't really depend on the predicate actually 7479 // flipping from false to true (for increasing predicates, and the other way 7480 // around for decreasing predicates), all we care about is that *if* the 7481 // predicate changes then it only changes from false to true. 7482 // 7483 // A zero step value in itself is not very useful, but there may be places 7484 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7485 // as general as possible. 7486 7487 switch (Pred) { 7488 default: 7489 return false; // Conservative answer 7490 7491 case ICmpInst::ICMP_UGT: 7492 case ICmpInst::ICMP_UGE: 7493 case ICmpInst::ICMP_ULT: 7494 case ICmpInst::ICMP_ULE: 7495 if (!LHS->hasNoUnsignedWrap()) 7496 return false; 7497 7498 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7499 return true; 7500 7501 case ICmpInst::ICMP_SGT: 7502 case ICmpInst::ICMP_SGE: 7503 case ICmpInst::ICMP_SLT: 7504 case ICmpInst::ICMP_SLE: { 7505 if (!LHS->hasNoSignedWrap()) 7506 return false; 7507 7508 const SCEV *Step = LHS->getStepRecurrence(*this); 7509 7510 if (isKnownNonNegative(Step)) { 7511 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7512 return true; 7513 } 7514 7515 if (isKnownNonPositive(Step)) { 7516 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7517 return true; 7518 } 7519 7520 return false; 7521 } 7522 7523 } 7524 7525 llvm_unreachable("switch has default clause!"); 7526 } 7527 7528 bool ScalarEvolution::isLoopInvariantPredicate( 7529 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7530 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7531 const SCEV *&InvariantRHS) { 7532 7533 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7534 if (!isLoopInvariant(RHS, L)) { 7535 if (!isLoopInvariant(LHS, L)) 7536 return false; 7537 7538 std::swap(LHS, RHS); 7539 Pred = ICmpInst::getSwappedPredicate(Pred); 7540 } 7541 7542 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7543 if (!ArLHS || ArLHS->getLoop() != L) 7544 return false; 7545 7546 bool Increasing; 7547 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7548 return false; 7549 7550 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7551 // true as the loop iterates, and the backedge is control dependent on 7552 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7553 // 7554 // * if the predicate was false in the first iteration then the predicate 7555 // is never evaluated again, since the loop exits without taking the 7556 // backedge. 7557 // * if the predicate was true in the first iteration then it will 7558 // continue to be true for all future iterations since it is 7559 // monotonically increasing. 7560 // 7561 // For both the above possibilities, we can replace the loop varying 7562 // predicate with its value on the first iteration of the loop (which is 7563 // loop invariant). 7564 // 7565 // A similar reasoning applies for a monotonically decreasing predicate, by 7566 // replacing true with false and false with true in the above two bullets. 7567 7568 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7569 7570 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7571 return false; 7572 7573 InvariantPred = Pred; 7574 InvariantLHS = ArLHS->getStart(); 7575 InvariantRHS = RHS; 7576 return true; 7577 } 7578 7579 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 7580 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7581 if (HasSameValue(LHS, RHS)) 7582 return ICmpInst::isTrueWhenEqual(Pred); 7583 7584 // This code is split out from isKnownPredicate because it is called from 7585 // within isLoopEntryGuardedByCond. 7586 7587 auto CheckRanges = 7588 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 7589 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 7590 .contains(RangeLHS); 7591 }; 7592 7593 // The check at the top of the function catches the case where the values are 7594 // known to be equal. 7595 if (Pred == CmpInst::ICMP_EQ) 7596 return false; 7597 7598 if (Pred == CmpInst::ICMP_NE) 7599 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 7600 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 7601 isKnownNonZero(getMinusSCEV(LHS, RHS)); 7602 7603 if (CmpInst::isSigned(Pred)) 7604 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 7605 7606 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 7607 } 7608 7609 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7610 const SCEV *LHS, 7611 const SCEV *RHS) { 7612 7613 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7614 // Return Y via OutY. 7615 auto MatchBinaryAddToConst = 7616 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7617 SCEV::NoWrapFlags ExpectedFlags) { 7618 const SCEV *NonConstOp, *ConstOp; 7619 SCEV::NoWrapFlags FlagsPresent; 7620 7621 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7622 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7623 return false; 7624 7625 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 7626 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7627 }; 7628 7629 APInt C; 7630 7631 switch (Pred) { 7632 default: 7633 break; 7634 7635 case ICmpInst::ICMP_SGE: 7636 std::swap(LHS, RHS); 7637 case ICmpInst::ICMP_SLE: 7638 // X s<= (X + C)<nsw> if C >= 0 7639 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7640 return true; 7641 7642 // (X + C)<nsw> s<= X if C <= 0 7643 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7644 !C.isStrictlyPositive()) 7645 return true; 7646 break; 7647 7648 case ICmpInst::ICMP_SGT: 7649 std::swap(LHS, RHS); 7650 case ICmpInst::ICMP_SLT: 7651 // X s< (X + C)<nsw> if C > 0 7652 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7653 C.isStrictlyPositive()) 7654 return true; 7655 7656 // (X + C)<nsw> s< X if C < 0 7657 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7658 return true; 7659 break; 7660 } 7661 7662 return false; 7663 } 7664 7665 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7666 const SCEV *LHS, 7667 const SCEV *RHS) { 7668 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7669 return false; 7670 7671 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7672 // the stack can result in exponential time complexity. 7673 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7674 7675 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7676 // 7677 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7678 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7679 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7680 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7681 // use isKnownPredicate later if needed. 7682 return isKnownNonNegative(RHS) && 7683 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7684 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 7685 } 7686 7687 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7688 /// protected by a conditional between LHS and RHS. This is used to 7689 /// to eliminate casts. 7690 bool 7691 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7692 ICmpInst::Predicate Pred, 7693 const SCEV *LHS, const SCEV *RHS) { 7694 // Interpret a null as meaning no loop, where there is obviously no guard 7695 // (interprocedural conditions notwithstanding). 7696 if (!L) return true; 7697 7698 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7699 return true; 7700 7701 BasicBlock *Latch = L->getLoopLatch(); 7702 if (!Latch) 7703 return false; 7704 7705 BranchInst *LoopContinuePredicate = 7706 dyn_cast<BranchInst>(Latch->getTerminator()); 7707 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7708 isImpliedCond(Pred, LHS, RHS, 7709 LoopContinuePredicate->getCondition(), 7710 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7711 return true; 7712 7713 // We don't want more than one activation of the following loops on the stack 7714 // -- that can lead to O(n!) time complexity. 7715 if (WalkingBEDominatingConds) 7716 return false; 7717 7718 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7719 7720 // See if we can exploit a trip count to prove the predicate. 7721 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7722 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7723 if (LatchBECount != getCouldNotCompute()) { 7724 // We know that Latch branches back to the loop header exactly 7725 // LatchBECount times. This means the backdege condition at Latch is 7726 // equivalent to "{0,+,1} u< LatchBECount". 7727 Type *Ty = LatchBECount->getType(); 7728 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7729 const SCEV *LoopCounter = 7730 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7731 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7732 LatchBECount)) 7733 return true; 7734 } 7735 7736 // Check conditions due to any @llvm.assume intrinsics. 7737 for (auto &AssumeVH : AC.assumptions()) { 7738 if (!AssumeVH) 7739 continue; 7740 auto *CI = cast<CallInst>(AssumeVH); 7741 if (!DT.dominates(CI, Latch->getTerminator())) 7742 continue; 7743 7744 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7745 return true; 7746 } 7747 7748 // If the loop is not reachable from the entry block, we risk running into an 7749 // infinite loop as we walk up into the dom tree. These loops do not matter 7750 // anyway, so we just return a conservative answer when we see them. 7751 if (!DT.isReachableFromEntry(L->getHeader())) 7752 return false; 7753 7754 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7755 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7756 7757 assert(DTN && "should reach the loop header before reaching the root!"); 7758 7759 BasicBlock *BB = DTN->getBlock(); 7760 BasicBlock *PBB = BB->getSinglePredecessor(); 7761 if (!PBB) 7762 continue; 7763 7764 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7765 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7766 continue; 7767 7768 Value *Condition = ContinuePredicate->getCondition(); 7769 7770 // If we have an edge `E` within the loop body that dominates the only 7771 // latch, the condition guarding `E` also guards the backedge. This 7772 // reasoning works only for loops with a single latch. 7773 7774 BasicBlockEdge DominatingEdge(PBB, BB); 7775 if (DominatingEdge.isSingleEdge()) { 7776 // We're constructively (and conservatively) enumerating edges within the 7777 // loop body that dominate the latch. The dominator tree better agree 7778 // with us on this: 7779 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7780 7781 if (isImpliedCond(Pred, LHS, RHS, Condition, 7782 BB != ContinuePredicate->getSuccessor(0))) 7783 return true; 7784 } 7785 } 7786 7787 return false; 7788 } 7789 7790 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7791 /// by a conditional between LHS and RHS. This is used to help avoid max 7792 /// expressions in loop trip counts, and to eliminate casts. 7793 bool 7794 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7795 ICmpInst::Predicate Pred, 7796 const SCEV *LHS, const SCEV *RHS) { 7797 // Interpret a null as meaning no loop, where there is obviously no guard 7798 // (interprocedural conditions notwithstanding). 7799 if (!L) return false; 7800 7801 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 7802 return true; 7803 7804 // Starting at the loop predecessor, climb up the predecessor chain, as long 7805 // as there are predecessors that can be found that have unique successors 7806 // leading to the original header. 7807 for (std::pair<BasicBlock *, BasicBlock *> 7808 Pair(L->getLoopPredecessor(), L->getHeader()); 7809 Pair.first; 7810 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7811 7812 BranchInst *LoopEntryPredicate = 7813 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7814 if (!LoopEntryPredicate || 7815 LoopEntryPredicate->isUnconditional()) 7816 continue; 7817 7818 if (isImpliedCond(Pred, LHS, RHS, 7819 LoopEntryPredicate->getCondition(), 7820 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7821 return true; 7822 } 7823 7824 // Check conditions due to any @llvm.assume intrinsics. 7825 for (auto &AssumeVH : AC.assumptions()) { 7826 if (!AssumeVH) 7827 continue; 7828 auto *CI = cast<CallInst>(AssumeVH); 7829 if (!DT.dominates(CI, L->getHeader())) 7830 continue; 7831 7832 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7833 return true; 7834 } 7835 7836 return false; 7837 } 7838 7839 namespace { 7840 /// RAII wrapper to prevent recursive application of isImpliedCond. 7841 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7842 /// currently evaluating isImpliedCond. 7843 struct MarkPendingLoopPredicate { 7844 Value *Cond; 7845 DenseSet<Value*> &LoopPreds; 7846 bool Pending; 7847 7848 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7849 : Cond(C), LoopPreds(LP) { 7850 Pending = !LoopPreds.insert(Cond).second; 7851 } 7852 ~MarkPendingLoopPredicate() { 7853 if (!Pending) 7854 LoopPreds.erase(Cond); 7855 } 7856 }; 7857 } // end anonymous namespace 7858 7859 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7860 /// and RHS is true whenever the given Cond value evaluates to true. 7861 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7862 const SCEV *LHS, const SCEV *RHS, 7863 Value *FoundCondValue, 7864 bool Inverse) { 7865 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7866 if (Mark.Pending) 7867 return false; 7868 7869 // Recursively handle And and Or conditions. 7870 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7871 if (BO->getOpcode() == Instruction::And) { 7872 if (!Inverse) 7873 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7874 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7875 } else if (BO->getOpcode() == Instruction::Or) { 7876 if (Inverse) 7877 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7878 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7879 } 7880 } 7881 7882 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7883 if (!ICI) return false; 7884 7885 // Now that we found a conditional branch that dominates the loop or controls 7886 // the loop latch. Check to see if it is the comparison we are looking for. 7887 ICmpInst::Predicate FoundPred; 7888 if (Inverse) 7889 FoundPred = ICI->getInversePredicate(); 7890 else 7891 FoundPred = ICI->getPredicate(); 7892 7893 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7894 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7895 7896 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7897 } 7898 7899 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7900 const SCEV *RHS, 7901 ICmpInst::Predicate FoundPred, 7902 const SCEV *FoundLHS, 7903 const SCEV *FoundRHS) { 7904 // Balance the types. 7905 if (getTypeSizeInBits(LHS->getType()) < 7906 getTypeSizeInBits(FoundLHS->getType())) { 7907 if (CmpInst::isSigned(Pred)) { 7908 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7909 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7910 } else { 7911 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7912 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7913 } 7914 } else if (getTypeSizeInBits(LHS->getType()) > 7915 getTypeSizeInBits(FoundLHS->getType())) { 7916 if (CmpInst::isSigned(FoundPred)) { 7917 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7918 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7919 } else { 7920 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7921 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7922 } 7923 } 7924 7925 // Canonicalize the query to match the way instcombine will have 7926 // canonicalized the comparison. 7927 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7928 if (LHS == RHS) 7929 return CmpInst::isTrueWhenEqual(Pred); 7930 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7931 if (FoundLHS == FoundRHS) 7932 return CmpInst::isFalseWhenEqual(FoundPred); 7933 7934 // Check to see if we can make the LHS or RHS match. 7935 if (LHS == FoundRHS || RHS == FoundLHS) { 7936 if (isa<SCEVConstant>(RHS)) { 7937 std::swap(FoundLHS, FoundRHS); 7938 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7939 } else { 7940 std::swap(LHS, RHS); 7941 Pred = ICmpInst::getSwappedPredicate(Pred); 7942 } 7943 } 7944 7945 // Check whether the found predicate is the same as the desired predicate. 7946 if (FoundPred == Pred) 7947 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7948 7949 // Check whether swapping the found predicate makes it the same as the 7950 // desired predicate. 7951 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7952 if (isa<SCEVConstant>(RHS)) 7953 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7954 else 7955 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7956 RHS, LHS, FoundLHS, FoundRHS); 7957 } 7958 7959 // Unsigned comparison is the same as signed comparison when both the operands 7960 // are non-negative. 7961 if (CmpInst::isUnsigned(FoundPred) && 7962 CmpInst::getSignedPredicate(FoundPred) == Pred && 7963 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7964 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7965 7966 // Check if we can make progress by sharpening ranges. 7967 if (FoundPred == ICmpInst::ICMP_NE && 7968 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7969 7970 const SCEVConstant *C = nullptr; 7971 const SCEV *V = nullptr; 7972 7973 if (isa<SCEVConstant>(FoundLHS)) { 7974 C = cast<SCEVConstant>(FoundLHS); 7975 V = FoundRHS; 7976 } else { 7977 C = cast<SCEVConstant>(FoundRHS); 7978 V = FoundLHS; 7979 } 7980 7981 // The guarding predicate tells us that C != V. If the known range 7982 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7983 // range we consider has to correspond to same signedness as the 7984 // predicate we're interested in folding. 7985 7986 APInt Min = ICmpInst::isSigned(Pred) ? 7987 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7988 7989 if (Min == C->getAPInt()) { 7990 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7991 // This is true even if (Min + 1) wraps around -- in case of 7992 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7993 7994 APInt SharperMin = Min + 1; 7995 7996 switch (Pred) { 7997 case ICmpInst::ICMP_SGE: 7998 case ICmpInst::ICMP_UGE: 7999 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8000 // RHS, we're done. 8001 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8002 getConstant(SharperMin))) 8003 return true; 8004 8005 case ICmpInst::ICMP_SGT: 8006 case ICmpInst::ICMP_UGT: 8007 // We know from the range information that (V `Pred` Min || 8008 // V == Min). We know from the guarding condition that !(V 8009 // == Min). This gives us 8010 // 8011 // V `Pred` Min || V == Min && !(V == Min) 8012 // => V `Pred` Min 8013 // 8014 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8015 8016 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8017 return true; 8018 8019 default: 8020 // No change 8021 break; 8022 } 8023 } 8024 } 8025 8026 // Check whether the actual condition is beyond sufficient. 8027 if (FoundPred == ICmpInst::ICMP_EQ) 8028 if (ICmpInst::isTrueWhenEqual(Pred)) 8029 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8030 return true; 8031 if (Pred == ICmpInst::ICMP_NE) 8032 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8033 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8034 return true; 8035 8036 // Otherwise assume the worst. 8037 return false; 8038 } 8039 8040 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8041 const SCEV *&L, const SCEV *&R, 8042 SCEV::NoWrapFlags &Flags) { 8043 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8044 if (!AE || AE->getNumOperands() != 2) 8045 return false; 8046 8047 L = AE->getOperand(0); 8048 R = AE->getOperand(1); 8049 Flags = AE->getNoWrapFlags(); 8050 return true; 8051 } 8052 8053 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 8054 const SCEV *More, 8055 APInt &C) { 8056 // We avoid subtracting expressions here because this function is usually 8057 // fairly deep in the call stack (i.e. is called many times). 8058 8059 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8060 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8061 const auto *MAR = cast<SCEVAddRecExpr>(More); 8062 8063 if (LAR->getLoop() != MAR->getLoop()) 8064 return false; 8065 8066 // We look at affine expressions only; not for correctness but to keep 8067 // getStepRecurrence cheap. 8068 if (!LAR->isAffine() || !MAR->isAffine()) 8069 return false; 8070 8071 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8072 return false; 8073 8074 Less = LAR->getStart(); 8075 More = MAR->getStart(); 8076 8077 // fall through 8078 } 8079 8080 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8081 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8082 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8083 C = M - L; 8084 return true; 8085 } 8086 8087 const SCEV *L, *R; 8088 SCEV::NoWrapFlags Flags; 8089 if (splitBinaryAdd(Less, L, R, Flags)) 8090 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8091 if (R == More) { 8092 C = -(LC->getAPInt()); 8093 return true; 8094 } 8095 8096 if (splitBinaryAdd(More, L, R, Flags)) 8097 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8098 if (R == Less) { 8099 C = LC->getAPInt(); 8100 return true; 8101 } 8102 8103 return false; 8104 } 8105 8106 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8107 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8108 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8109 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8110 return false; 8111 8112 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8113 if (!AddRecLHS) 8114 return false; 8115 8116 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8117 if (!AddRecFoundLHS) 8118 return false; 8119 8120 // We'd like to let SCEV reason about control dependencies, so we constrain 8121 // both the inequalities to be about add recurrences on the same loop. This 8122 // way we can use isLoopEntryGuardedByCond later. 8123 8124 const Loop *L = AddRecFoundLHS->getLoop(); 8125 if (L != AddRecLHS->getLoop()) 8126 return false; 8127 8128 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8129 // 8130 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8131 // ... (2) 8132 // 8133 // Informal proof for (2), assuming (1) [*]: 8134 // 8135 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8136 // 8137 // Then 8138 // 8139 // FoundLHS s< FoundRHS s< INT_MIN - C 8140 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8141 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8142 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8143 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8144 // <=> FoundLHS + C s< FoundRHS + C 8145 // 8146 // [*]: (1) can be proved by ruling out overflow. 8147 // 8148 // [**]: This can be proved by analyzing all the four possibilities: 8149 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8150 // (A s>= 0, B s>= 0). 8151 // 8152 // Note: 8153 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8154 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8155 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8156 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8157 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8158 // C)". 8159 8160 APInt LDiff, RDiff; 8161 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 8162 !computeConstantDifference(FoundRHS, RHS, RDiff) || 8163 LDiff != RDiff) 8164 return false; 8165 8166 if (LDiff == 0) 8167 return true; 8168 8169 APInt FoundRHSLimit; 8170 8171 if (Pred == CmpInst::ICMP_ULT) { 8172 FoundRHSLimit = -RDiff; 8173 } else { 8174 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8175 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 8176 } 8177 8178 // Try to prove (1) or (2), as needed. 8179 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8180 getConstant(FoundRHSLimit)); 8181 } 8182 8183 /// isImpliedCondOperands - Test whether the condition described by Pred, 8184 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 8185 /// and FoundRHS is true. 8186 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8187 const SCEV *LHS, const SCEV *RHS, 8188 const SCEV *FoundLHS, 8189 const SCEV *FoundRHS) { 8190 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8191 return true; 8192 8193 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8194 return true; 8195 8196 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8197 FoundLHS, FoundRHS) || 8198 // ~x < ~y --> x > y 8199 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8200 getNotSCEV(FoundRHS), 8201 getNotSCEV(FoundLHS)); 8202 } 8203 8204 8205 /// If Expr computes ~A, return A else return nullptr 8206 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8207 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8208 if (!Add || Add->getNumOperands() != 2 || 8209 !Add->getOperand(0)->isAllOnesValue()) 8210 return nullptr; 8211 8212 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8213 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8214 !AddRHS->getOperand(0)->isAllOnesValue()) 8215 return nullptr; 8216 8217 return AddRHS->getOperand(1); 8218 } 8219 8220 8221 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8222 template<typename MaxExprType> 8223 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8224 const SCEV *Candidate) { 8225 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8226 if (!MaxExpr) return false; 8227 8228 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8229 } 8230 8231 8232 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8233 template<typename MaxExprType> 8234 static bool IsMinConsistingOf(ScalarEvolution &SE, 8235 const SCEV *MaybeMinExpr, 8236 const SCEV *Candidate) { 8237 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8238 if (!MaybeMaxExpr) 8239 return false; 8240 8241 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8242 } 8243 8244 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8245 ICmpInst::Predicate Pred, 8246 const SCEV *LHS, const SCEV *RHS) { 8247 8248 // If both sides are affine addrecs for the same loop, with equal 8249 // steps, and we know the recurrences don't wrap, then we only 8250 // need to check the predicate on the starting values. 8251 8252 if (!ICmpInst::isRelational(Pred)) 8253 return false; 8254 8255 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8256 if (!LAR) 8257 return false; 8258 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8259 if (!RAR) 8260 return false; 8261 if (LAR->getLoop() != RAR->getLoop()) 8262 return false; 8263 if (!LAR->isAffine() || !RAR->isAffine()) 8264 return false; 8265 8266 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8267 return false; 8268 8269 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8270 SCEV::FlagNSW : SCEV::FlagNUW; 8271 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8272 return false; 8273 8274 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8275 } 8276 8277 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8278 /// expression? 8279 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8280 ICmpInst::Predicate Pred, 8281 const SCEV *LHS, const SCEV *RHS) { 8282 switch (Pred) { 8283 default: 8284 return false; 8285 8286 case ICmpInst::ICMP_SGE: 8287 std::swap(LHS, RHS); 8288 // fall through 8289 case ICmpInst::ICMP_SLE: 8290 return 8291 // min(A, ...) <= A 8292 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8293 // A <= max(A, ...) 8294 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8295 8296 case ICmpInst::ICMP_UGE: 8297 std::swap(LHS, RHS); 8298 // fall through 8299 case ICmpInst::ICMP_ULE: 8300 return 8301 // min(A, ...) <= A 8302 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8303 // A <= max(A, ...) 8304 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8305 } 8306 8307 llvm_unreachable("covered switch fell through?!"); 8308 } 8309 8310 /// isImpliedCondOperandsHelper - Test whether the condition described by 8311 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 8312 /// FoundLHS, and FoundRHS is true. 8313 bool 8314 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8315 const SCEV *LHS, const SCEV *RHS, 8316 const SCEV *FoundLHS, 8317 const SCEV *FoundRHS) { 8318 auto IsKnownPredicateFull = 8319 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8320 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8321 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8322 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8323 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8324 }; 8325 8326 switch (Pred) { 8327 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8328 case ICmpInst::ICMP_EQ: 8329 case ICmpInst::ICMP_NE: 8330 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8331 return true; 8332 break; 8333 case ICmpInst::ICMP_SLT: 8334 case ICmpInst::ICMP_SLE: 8335 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8336 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8337 return true; 8338 break; 8339 case ICmpInst::ICMP_SGT: 8340 case ICmpInst::ICMP_SGE: 8341 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8342 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8343 return true; 8344 break; 8345 case ICmpInst::ICMP_ULT: 8346 case ICmpInst::ICMP_ULE: 8347 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8348 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8349 return true; 8350 break; 8351 case ICmpInst::ICMP_UGT: 8352 case ICmpInst::ICMP_UGE: 8353 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8354 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8355 return true; 8356 break; 8357 } 8358 8359 return false; 8360 } 8361 8362 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 8363 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 8364 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8365 const SCEV *LHS, 8366 const SCEV *RHS, 8367 const SCEV *FoundLHS, 8368 const SCEV *FoundRHS) { 8369 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 8370 // The restriction on `FoundRHS` be lifted easily -- it exists only to 8371 // reduce the compile time impact of this optimization. 8372 return false; 8373 8374 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 8375 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 8376 !isa<SCEVConstant>(AddLHS->getOperand(0))) 8377 return false; 8378 8379 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 8380 8381 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 8382 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 8383 ConstantRange FoundLHSRange = 8384 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 8385 8386 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 8387 // for `LHS`: 8388 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt(); 8389 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 8390 8391 // We can also compute the range of values for `LHS` that satisfy the 8392 // consequent, "`LHS` `Pred` `RHS`": 8393 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 8394 ConstantRange SatisfyingLHSRange = 8395 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 8396 8397 // The antecedent implies the consequent if every value of `LHS` that 8398 // satisfies the antecedent also satisfies the consequent. 8399 return SatisfyingLHSRange.contains(LHSRange); 8400 } 8401 8402 // Verify if an linear IV with positive stride can overflow when in a 8403 // less-than comparison, knowing the invariant term of the comparison, the 8404 // stride and the knowledge of NSW/NUW flags on the recurrence. 8405 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 8406 bool IsSigned, bool NoWrap) { 8407 if (NoWrap) return false; 8408 8409 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8410 const SCEV *One = getOne(Stride->getType()); 8411 8412 if (IsSigned) { 8413 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 8414 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 8415 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8416 .getSignedMax(); 8417 8418 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 8419 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 8420 } 8421 8422 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 8423 APInt MaxValue = APInt::getMaxValue(BitWidth); 8424 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8425 .getUnsignedMax(); 8426 8427 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 8428 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 8429 } 8430 8431 // Verify if an linear IV with negative stride can overflow when in a 8432 // greater-than comparison, knowing the invariant term of the comparison, 8433 // the stride and the knowledge of NSW/NUW flags on the recurrence. 8434 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 8435 bool IsSigned, bool NoWrap) { 8436 if (NoWrap) return false; 8437 8438 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8439 const SCEV *One = getOne(Stride->getType()); 8440 8441 if (IsSigned) { 8442 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 8443 APInt MinValue = APInt::getSignedMinValue(BitWidth); 8444 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 8445 .getSignedMax(); 8446 8447 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 8448 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 8449 } 8450 8451 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8452 APInt MinValue = APInt::getMinValue(BitWidth); 8453 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8454 .getUnsignedMax(); 8455 8456 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8457 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8458 } 8459 8460 // Compute the backedge taken count knowing the interval difference, the 8461 // stride and presence of the equality in the comparison. 8462 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8463 bool Equality) { 8464 const SCEV *One = getOne(Step->getType()); 8465 Delta = Equality ? getAddExpr(Delta, Step) 8466 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8467 return getUDivExpr(Delta, Step); 8468 } 8469 8470 /// HowManyLessThans - Return the number of times a backedge containing the 8471 /// specified less-than comparison will execute. If not computable, return 8472 /// CouldNotCompute. 8473 /// 8474 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8475 /// the branch (loops exits only if condition is true). In this case, we can use 8476 /// NoWrapFlags to skip overflow checks. 8477 ScalarEvolution::ExitLimit 8478 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8479 const Loop *L, bool IsSigned, 8480 bool ControlsExit) { 8481 // We handle only IV < Invariant 8482 if (!isLoopInvariant(RHS, L)) 8483 return getCouldNotCompute(); 8484 8485 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8486 8487 // Avoid weird loops 8488 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8489 return getCouldNotCompute(); 8490 8491 bool NoWrap = ControlsExit && 8492 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8493 8494 const SCEV *Stride = IV->getStepRecurrence(*this); 8495 8496 // Avoid negative or zero stride values 8497 if (!isKnownPositive(Stride)) 8498 return getCouldNotCompute(); 8499 8500 // Avoid proven overflow cases: this will ensure that the backedge taken count 8501 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8502 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8503 // behaviors like the case of C language. 8504 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8505 return getCouldNotCompute(); 8506 8507 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8508 : ICmpInst::ICMP_ULT; 8509 const SCEV *Start = IV->getStart(); 8510 const SCEV *End = RHS; 8511 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8512 const SCEV *Diff = getMinusSCEV(RHS, Start); 8513 // If we have NoWrap set, then we can assume that the increment won't 8514 // overflow, in which case if RHS - Start is a constant, we don't need to 8515 // do a max operation since we can just figure it out statically 8516 if (NoWrap && isa<SCEVConstant>(Diff)) { 8517 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8518 if (D.isNegative()) 8519 End = Start; 8520 } else 8521 End = IsSigned ? getSMaxExpr(RHS, Start) 8522 : getUMaxExpr(RHS, Start); 8523 } 8524 8525 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8526 8527 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8528 : getUnsignedRange(Start).getUnsignedMin(); 8529 8530 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8531 : getUnsignedRange(Stride).getUnsignedMin(); 8532 8533 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8534 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8535 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8536 8537 // Although End can be a MAX expression we estimate MaxEnd considering only 8538 // the case End = RHS. This is safe because in the other case (End - Start) 8539 // is zero, leading to a zero maximum backedge taken count. 8540 APInt MaxEnd = 8541 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8542 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8543 8544 const SCEV *MaxBECount; 8545 if (isa<SCEVConstant>(BECount)) 8546 MaxBECount = BECount; 8547 else 8548 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8549 getConstant(MinStride), false); 8550 8551 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8552 MaxBECount = BECount; 8553 8554 return ExitLimit(BECount, MaxBECount); 8555 } 8556 8557 ScalarEvolution::ExitLimit 8558 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8559 const Loop *L, bool IsSigned, 8560 bool ControlsExit) { 8561 // We handle only IV > Invariant 8562 if (!isLoopInvariant(RHS, L)) 8563 return getCouldNotCompute(); 8564 8565 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8566 8567 // Avoid weird loops 8568 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8569 return getCouldNotCompute(); 8570 8571 bool NoWrap = ControlsExit && 8572 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8573 8574 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8575 8576 // Avoid negative or zero stride values 8577 if (!isKnownPositive(Stride)) 8578 return getCouldNotCompute(); 8579 8580 // Avoid proven overflow cases: this will ensure that the backedge taken count 8581 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8582 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8583 // behaviors like the case of C language. 8584 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8585 return getCouldNotCompute(); 8586 8587 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8588 : ICmpInst::ICMP_UGT; 8589 8590 const SCEV *Start = IV->getStart(); 8591 const SCEV *End = RHS; 8592 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8593 const SCEV *Diff = getMinusSCEV(RHS, Start); 8594 // If we have NoWrap set, then we can assume that the increment won't 8595 // overflow, in which case if RHS - Start is a constant, we don't need to 8596 // do a max operation since we can just figure it out statically 8597 if (NoWrap && isa<SCEVConstant>(Diff)) { 8598 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt(); 8599 if (!D.isNegative()) 8600 End = Start; 8601 } else 8602 End = IsSigned ? getSMinExpr(RHS, Start) 8603 : getUMinExpr(RHS, Start); 8604 } 8605 8606 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8607 8608 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8609 : getUnsignedRange(Start).getUnsignedMax(); 8610 8611 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8612 : getUnsignedRange(Stride).getUnsignedMin(); 8613 8614 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8615 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8616 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8617 8618 // Although End can be a MIN expression we estimate MinEnd considering only 8619 // the case End = RHS. This is safe because in the other case (Start - End) 8620 // is zero, leading to a zero maximum backedge taken count. 8621 APInt MinEnd = 8622 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8623 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8624 8625 8626 const SCEV *MaxBECount = getCouldNotCompute(); 8627 if (isa<SCEVConstant>(BECount)) 8628 MaxBECount = BECount; 8629 else 8630 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8631 getConstant(MinStride), false); 8632 8633 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8634 MaxBECount = BECount; 8635 8636 return ExitLimit(BECount, MaxBECount); 8637 } 8638 8639 /// getNumIterationsInRange - Return the number of iterations of this loop that 8640 /// produce values in the specified constant range. Another way of looking at 8641 /// this is that it returns the first iteration number where the value is not in 8642 /// the condition, thus computing the exit count. If the iteration count can't 8643 /// be computed, an instance of SCEVCouldNotCompute is returned. 8644 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8645 ScalarEvolution &SE) const { 8646 if (Range.isFullSet()) // Infinite loop. 8647 return SE.getCouldNotCompute(); 8648 8649 // If the start is a non-zero constant, shift the range to simplify things. 8650 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8651 if (!SC->getValue()->isZero()) { 8652 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8653 Operands[0] = SE.getZero(SC->getType()); 8654 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8655 getNoWrapFlags(FlagNW)); 8656 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8657 return ShiftedAddRec->getNumIterationsInRange( 8658 Range.subtract(SC->getAPInt()), SE); 8659 // This is strange and shouldn't happen. 8660 return SE.getCouldNotCompute(); 8661 } 8662 8663 // The only time we can solve this is when we have all constant indices. 8664 // Otherwise, we cannot determine the overflow conditions. 8665 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 8666 return SE.getCouldNotCompute(); 8667 8668 // Okay at this point we know that all elements of the chrec are constants and 8669 // that the start element is zero. 8670 8671 // First check to see if the range contains zero. If not, the first 8672 // iteration exits. 8673 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8674 if (!Range.contains(APInt(BitWidth, 0))) 8675 return SE.getZero(getType()); 8676 8677 if (isAffine()) { 8678 // If this is an affine expression then we have this situation: 8679 // Solve {0,+,A} in Range === Ax in Range 8680 8681 // We know that zero is in the range. If A is positive then we know that 8682 // the upper value of the range must be the first possible exit value. 8683 // If A is negative then the lower of the range is the last possible loop 8684 // value. Also note that we already checked for a full range. 8685 APInt One(BitWidth,1); 8686 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 8687 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8688 8689 // The exit value should be (End+A)/A. 8690 APInt ExitVal = (End + A).udiv(A); 8691 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8692 8693 // Evaluate at the exit value. If we really did fall out of the valid 8694 // range, then we computed our trip count, otherwise wrap around or other 8695 // things must have happened. 8696 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8697 if (Range.contains(Val->getValue())) 8698 return SE.getCouldNotCompute(); // Something strange happened 8699 8700 // Ensure that the previous value is in the range. This is a sanity check. 8701 assert(Range.contains( 8702 EvaluateConstantChrecAtConstant(this, 8703 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8704 "Linear scev computation is off in a bad way!"); 8705 return SE.getConstant(ExitValue); 8706 } else if (isQuadratic()) { 8707 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8708 // quadratic equation to solve it. To do this, we must frame our problem in 8709 // terms of figuring out when zero is crossed, instead of when 8710 // Range.getUpper() is crossed. 8711 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8712 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8713 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8714 // getNoWrapFlags(FlagNW) 8715 FlagAnyWrap); 8716 8717 // Next, solve the constructed addrec 8718 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8719 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8720 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8721 if (R1) { 8722 // Pick the smallest positive root value. 8723 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 8724 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 8725 if (!CB->getZExtValue()) 8726 std::swap(R1, R2); // R1 is the minimum root now. 8727 8728 // Make sure the root is not off by one. The returned iteration should 8729 // not be in the range, but the previous one should be. When solving 8730 // for "X*X < 5", for example, we should not return a root of 2. 8731 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8732 R1->getValue(), 8733 SE); 8734 if (Range.contains(R1Val->getValue())) { 8735 // The next iteration must be out of the range... 8736 ConstantInt *NextVal = 8737 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 8738 8739 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8740 if (!Range.contains(R1Val->getValue())) 8741 return SE.getConstant(NextVal); 8742 return SE.getCouldNotCompute(); // Something strange happened 8743 } 8744 8745 // If R1 was not in the range, then it is a good return value. Make 8746 // sure that R1-1 WAS in the range though, just in case. 8747 ConstantInt *NextVal = 8748 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 8749 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8750 if (Range.contains(R1Val->getValue())) 8751 return R1; 8752 return SE.getCouldNotCompute(); // Something strange happened 8753 } 8754 } 8755 } 8756 8757 return SE.getCouldNotCompute(); 8758 } 8759 8760 namespace { 8761 struct FindUndefs { 8762 bool Found; 8763 FindUndefs() : Found(false) {} 8764 8765 bool follow(const SCEV *S) { 8766 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8767 if (isa<UndefValue>(C->getValue())) 8768 Found = true; 8769 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8770 if (isa<UndefValue>(C->getValue())) 8771 Found = true; 8772 } 8773 8774 // Keep looking if we haven't found it yet. 8775 return !Found; 8776 } 8777 bool isDone() const { 8778 // Stop recursion if we have found an undef. 8779 return Found; 8780 } 8781 }; 8782 } 8783 8784 // Return true when S contains at least an undef value. 8785 static inline bool 8786 containsUndefs(const SCEV *S) { 8787 FindUndefs F; 8788 SCEVTraversal<FindUndefs> ST(F); 8789 ST.visitAll(S); 8790 8791 return F.Found; 8792 } 8793 8794 namespace { 8795 // Collect all steps of SCEV expressions. 8796 struct SCEVCollectStrides { 8797 ScalarEvolution &SE; 8798 SmallVectorImpl<const SCEV *> &Strides; 8799 8800 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8801 : SE(SE), Strides(S) {} 8802 8803 bool follow(const SCEV *S) { 8804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8805 Strides.push_back(AR->getStepRecurrence(SE)); 8806 return true; 8807 } 8808 bool isDone() const { return false; } 8809 }; 8810 8811 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8812 struct SCEVCollectTerms { 8813 SmallVectorImpl<const SCEV *> &Terms; 8814 8815 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8816 : Terms(T) {} 8817 8818 bool follow(const SCEV *S) { 8819 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8820 if (!containsUndefs(S)) 8821 Terms.push_back(S); 8822 8823 // Stop recursion: once we collected a term, do not walk its operands. 8824 return false; 8825 } 8826 8827 // Keep looking. 8828 return true; 8829 } 8830 bool isDone() const { return false; } 8831 }; 8832 8833 // Check if a SCEV contains an AddRecExpr. 8834 struct SCEVHasAddRec { 8835 bool &ContainsAddRec; 8836 8837 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8838 ContainsAddRec = false; 8839 } 8840 8841 bool follow(const SCEV *S) { 8842 if (isa<SCEVAddRecExpr>(S)) { 8843 ContainsAddRec = true; 8844 8845 // Stop recursion: once we collected a term, do not walk its operands. 8846 return false; 8847 } 8848 8849 // Keep looking. 8850 return true; 8851 } 8852 bool isDone() const { return false; } 8853 }; 8854 8855 // Find factors that are multiplied with an expression that (possibly as a 8856 // subexpression) contains an AddRecExpr. In the expression: 8857 // 8858 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8859 // 8860 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8861 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8862 // parameters as they form a product with an induction variable. 8863 // 8864 // This collector expects all array size parameters to be in the same MulExpr. 8865 // It might be necessary to later add support for collecting parameters that are 8866 // spread over different nested MulExpr. 8867 struct SCEVCollectAddRecMultiplies { 8868 SmallVectorImpl<const SCEV *> &Terms; 8869 ScalarEvolution &SE; 8870 8871 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8872 : Terms(T), SE(SE) {} 8873 8874 bool follow(const SCEV *S) { 8875 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8876 bool HasAddRec = false; 8877 SmallVector<const SCEV *, 0> Operands; 8878 for (auto Op : Mul->operands()) { 8879 if (isa<SCEVUnknown>(Op)) { 8880 Operands.push_back(Op); 8881 } else { 8882 bool ContainsAddRec; 8883 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8884 visitAll(Op, ContiansAddRec); 8885 HasAddRec |= ContainsAddRec; 8886 } 8887 } 8888 if (Operands.size() == 0) 8889 return true; 8890 8891 if (!HasAddRec) 8892 return false; 8893 8894 Terms.push_back(SE.getMulExpr(Operands)); 8895 // Stop recursion: once we collected a term, do not walk its operands. 8896 return false; 8897 } 8898 8899 // Keep looking. 8900 return true; 8901 } 8902 bool isDone() const { return false; } 8903 }; 8904 } 8905 8906 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8907 /// two places: 8908 /// 1) The strides of AddRec expressions. 8909 /// 2) Unknowns that are multiplied with AddRec expressions. 8910 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8911 SmallVectorImpl<const SCEV *> &Terms) { 8912 SmallVector<const SCEV *, 4> Strides; 8913 SCEVCollectStrides StrideCollector(*this, Strides); 8914 visitAll(Expr, StrideCollector); 8915 8916 DEBUG({ 8917 dbgs() << "Strides:\n"; 8918 for (const SCEV *S : Strides) 8919 dbgs() << *S << "\n"; 8920 }); 8921 8922 for (const SCEV *S : Strides) { 8923 SCEVCollectTerms TermCollector(Terms); 8924 visitAll(S, TermCollector); 8925 } 8926 8927 DEBUG({ 8928 dbgs() << "Terms:\n"; 8929 for (const SCEV *T : Terms) 8930 dbgs() << *T << "\n"; 8931 }); 8932 8933 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8934 visitAll(Expr, MulCollector); 8935 } 8936 8937 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8938 SmallVectorImpl<const SCEV *> &Terms, 8939 SmallVectorImpl<const SCEV *> &Sizes) { 8940 int Last = Terms.size() - 1; 8941 const SCEV *Step = Terms[Last]; 8942 8943 // End of recursion. 8944 if (Last == 0) { 8945 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8946 SmallVector<const SCEV *, 2> Qs; 8947 for (const SCEV *Op : M->operands()) 8948 if (!isa<SCEVConstant>(Op)) 8949 Qs.push_back(Op); 8950 8951 Step = SE.getMulExpr(Qs); 8952 } 8953 8954 Sizes.push_back(Step); 8955 return true; 8956 } 8957 8958 for (const SCEV *&Term : Terms) { 8959 // Normalize the terms before the next call to findArrayDimensionsRec. 8960 const SCEV *Q, *R; 8961 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8962 8963 // Bail out when GCD does not evenly divide one of the terms. 8964 if (!R->isZero()) 8965 return false; 8966 8967 Term = Q; 8968 } 8969 8970 // Remove all SCEVConstants. 8971 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8972 return isa<SCEVConstant>(E); 8973 }), 8974 Terms.end()); 8975 8976 if (Terms.size() > 0) 8977 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8978 return false; 8979 8980 Sizes.push_back(Step); 8981 return true; 8982 } 8983 8984 // Returns true when S contains at least a SCEVUnknown parameter. 8985 static inline bool 8986 containsParameters(const SCEV *S) { 8987 struct FindParameter { 8988 bool FoundParameter; 8989 FindParameter() : FoundParameter(false) {} 8990 8991 bool follow(const SCEV *S) { 8992 if (isa<SCEVUnknown>(S)) { 8993 FoundParameter = true; 8994 // Stop recursion: we found a parameter. 8995 return false; 8996 } 8997 // Keep looking. 8998 return true; 8999 } 9000 bool isDone() const { 9001 // Stop recursion if we have found a parameter. 9002 return FoundParameter; 9003 } 9004 }; 9005 9006 FindParameter F; 9007 SCEVTraversal<FindParameter> ST(F); 9008 ST.visitAll(S); 9009 9010 return F.FoundParameter; 9011 } 9012 9013 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9014 static inline bool 9015 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9016 for (const SCEV *T : Terms) 9017 if (containsParameters(T)) 9018 return true; 9019 return false; 9020 } 9021 9022 // Return the number of product terms in S. 9023 static inline int numberOfTerms(const SCEV *S) { 9024 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9025 return Expr->getNumOperands(); 9026 return 1; 9027 } 9028 9029 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9030 if (isa<SCEVConstant>(T)) 9031 return nullptr; 9032 9033 if (isa<SCEVUnknown>(T)) 9034 return T; 9035 9036 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9037 SmallVector<const SCEV *, 2> Factors; 9038 for (const SCEV *Op : M->operands()) 9039 if (!isa<SCEVConstant>(Op)) 9040 Factors.push_back(Op); 9041 9042 return SE.getMulExpr(Factors); 9043 } 9044 9045 return T; 9046 } 9047 9048 /// Return the size of an element read or written by Inst. 9049 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9050 Type *Ty; 9051 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9052 Ty = Store->getValueOperand()->getType(); 9053 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9054 Ty = Load->getType(); 9055 else 9056 return nullptr; 9057 9058 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9059 return getSizeOfExpr(ETy, Ty); 9060 } 9061 9062 /// Second step of delinearization: compute the array dimensions Sizes from the 9063 /// set of Terms extracted from the memory access function of this SCEVAddRec. 9064 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9065 SmallVectorImpl<const SCEV *> &Sizes, 9066 const SCEV *ElementSize) const { 9067 9068 if (Terms.size() < 1 || !ElementSize) 9069 return; 9070 9071 // Early return when Terms do not contain parameters: we do not delinearize 9072 // non parametric SCEVs. 9073 if (!containsParameters(Terms)) 9074 return; 9075 9076 DEBUG({ 9077 dbgs() << "Terms:\n"; 9078 for (const SCEV *T : Terms) 9079 dbgs() << *T << "\n"; 9080 }); 9081 9082 // Remove duplicates. 9083 std::sort(Terms.begin(), Terms.end()); 9084 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9085 9086 // Put larger terms first. 9087 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9088 return numberOfTerms(LHS) > numberOfTerms(RHS); 9089 }); 9090 9091 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9092 9093 // Try to divide all terms by the element size. If term is not divisible by 9094 // element size, proceed with the original term. 9095 for (const SCEV *&Term : Terms) { 9096 const SCEV *Q, *R; 9097 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 9098 if (!Q->isZero()) 9099 Term = Q; 9100 } 9101 9102 SmallVector<const SCEV *, 4> NewTerms; 9103 9104 // Remove constant factors. 9105 for (const SCEV *T : Terms) 9106 if (const SCEV *NewT = removeConstantFactors(SE, T)) 9107 NewTerms.push_back(NewT); 9108 9109 DEBUG({ 9110 dbgs() << "Terms after sorting:\n"; 9111 for (const SCEV *T : NewTerms) 9112 dbgs() << *T << "\n"; 9113 }); 9114 9115 if (NewTerms.empty() || 9116 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 9117 Sizes.clear(); 9118 return; 9119 } 9120 9121 // The last element to be pushed into Sizes is the size of an element. 9122 Sizes.push_back(ElementSize); 9123 9124 DEBUG({ 9125 dbgs() << "Sizes:\n"; 9126 for (const SCEV *S : Sizes) 9127 dbgs() << *S << "\n"; 9128 }); 9129 } 9130 9131 /// Third step of delinearization: compute the access functions for the 9132 /// Subscripts based on the dimensions in Sizes. 9133 void ScalarEvolution::computeAccessFunctions( 9134 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9135 SmallVectorImpl<const SCEV *> &Sizes) { 9136 9137 // Early exit in case this SCEV is not an affine multivariate function. 9138 if (Sizes.empty()) 9139 return; 9140 9141 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9142 if (!AR->isAffine()) 9143 return; 9144 9145 const SCEV *Res = Expr; 9146 int Last = Sizes.size() - 1; 9147 for (int i = Last; i >= 0; i--) { 9148 const SCEV *Q, *R; 9149 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9150 9151 DEBUG({ 9152 dbgs() << "Res: " << *Res << "\n"; 9153 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9154 dbgs() << "Res divided by Sizes[i]:\n"; 9155 dbgs() << "Quotient: " << *Q << "\n"; 9156 dbgs() << "Remainder: " << *R << "\n"; 9157 }); 9158 9159 Res = Q; 9160 9161 // Do not record the last subscript corresponding to the size of elements in 9162 // the array. 9163 if (i == Last) { 9164 9165 // Bail out if the remainder is too complex. 9166 if (isa<SCEVAddRecExpr>(R)) { 9167 Subscripts.clear(); 9168 Sizes.clear(); 9169 return; 9170 } 9171 9172 continue; 9173 } 9174 9175 // Record the access function for the current subscript. 9176 Subscripts.push_back(R); 9177 } 9178 9179 // Also push in last position the remainder of the last division: it will be 9180 // the access function of the innermost dimension. 9181 Subscripts.push_back(Res); 9182 9183 std::reverse(Subscripts.begin(), Subscripts.end()); 9184 9185 DEBUG({ 9186 dbgs() << "Subscripts:\n"; 9187 for (const SCEV *S : Subscripts) 9188 dbgs() << *S << "\n"; 9189 }); 9190 } 9191 9192 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9193 /// sizes of an array access. Returns the remainder of the delinearization that 9194 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9195 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9196 /// expressions in the stride and base of a SCEV corresponding to the 9197 /// computation of a GCD (greatest common divisor) of base and stride. When 9198 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9199 /// 9200 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9201 /// 9202 /// void foo(long n, long m, long o, double A[n][m][o]) { 9203 /// 9204 /// for (long i = 0; i < n; i++) 9205 /// for (long j = 0; j < m; j++) 9206 /// for (long k = 0; k < o; k++) 9207 /// A[i][j][k] = 1.0; 9208 /// } 9209 /// 9210 /// the delinearization input is the following AddRec SCEV: 9211 /// 9212 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9213 /// 9214 /// From this SCEV, we are able to say that the base offset of the access is %A 9215 /// because it appears as an offset that does not divide any of the strides in 9216 /// the loops: 9217 /// 9218 /// CHECK: Base offset: %A 9219 /// 9220 /// and then SCEV->delinearize determines the size of some of the dimensions of 9221 /// the array as these are the multiples by which the strides are happening: 9222 /// 9223 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9224 /// 9225 /// Note that the outermost dimension remains of UnknownSize because there are 9226 /// no strides that would help identifying the size of the last dimension: when 9227 /// the array has been statically allocated, one could compute the size of that 9228 /// dimension by dividing the overall size of the array by the size of the known 9229 /// dimensions: %m * %o * 8. 9230 /// 9231 /// Finally delinearize provides the access functions for the array reference 9232 /// that does correspond to A[i][j][k] of the above C testcase: 9233 /// 9234 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9235 /// 9236 /// The testcases are checking the output of a function pass: 9237 /// DelinearizationPass that walks through all loads and stores of a function 9238 /// asking for the SCEV of the memory access with respect to all enclosing 9239 /// loops, calling SCEV->delinearize on that and printing the results. 9240 9241 void ScalarEvolution::delinearize(const SCEV *Expr, 9242 SmallVectorImpl<const SCEV *> &Subscripts, 9243 SmallVectorImpl<const SCEV *> &Sizes, 9244 const SCEV *ElementSize) { 9245 // First step: collect parametric terms. 9246 SmallVector<const SCEV *, 4> Terms; 9247 collectParametricTerms(Expr, Terms); 9248 9249 if (Terms.empty()) 9250 return; 9251 9252 // Second step: find subscript sizes. 9253 findArrayDimensions(Terms, Sizes, ElementSize); 9254 9255 if (Sizes.empty()) 9256 return; 9257 9258 // Third step: compute the access functions for each subscript. 9259 computeAccessFunctions(Expr, Subscripts, Sizes); 9260 9261 if (Subscripts.empty()) 9262 return; 9263 9264 DEBUG({ 9265 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9266 dbgs() << "ArrayDecl[UnknownSize]"; 9267 for (const SCEV *S : Sizes) 9268 dbgs() << "[" << *S << "]"; 9269 9270 dbgs() << "\nArrayRef"; 9271 for (const SCEV *S : Subscripts) 9272 dbgs() << "[" << *S << "]"; 9273 dbgs() << "\n"; 9274 }); 9275 } 9276 9277 //===----------------------------------------------------------------------===// 9278 // SCEVCallbackVH Class Implementation 9279 //===----------------------------------------------------------------------===// 9280 9281 void ScalarEvolution::SCEVCallbackVH::deleted() { 9282 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9283 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9284 SE->ConstantEvolutionLoopExitValue.erase(PN); 9285 SE->eraseValueFromMap(getValPtr()); 9286 // this now dangles! 9287 } 9288 9289 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9290 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9291 9292 // Forget all the expressions associated with users of the old value, 9293 // so that future queries will recompute the expressions using the new 9294 // value. 9295 Value *Old = getValPtr(); 9296 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9297 SmallPtrSet<User *, 8> Visited; 9298 while (!Worklist.empty()) { 9299 User *U = Worklist.pop_back_val(); 9300 // Deleting the Old value will cause this to dangle. Postpone 9301 // that until everything else is done. 9302 if (U == Old) 9303 continue; 9304 if (!Visited.insert(U).second) 9305 continue; 9306 if (PHINode *PN = dyn_cast<PHINode>(U)) 9307 SE->ConstantEvolutionLoopExitValue.erase(PN); 9308 SE->eraseValueFromMap(U); 9309 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9310 } 9311 // Delete the Old value. 9312 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9313 SE->ConstantEvolutionLoopExitValue.erase(PN); 9314 SE->eraseValueFromMap(Old); 9315 // this now dangles! 9316 } 9317 9318 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9319 : CallbackVH(V), SE(se) {} 9320 9321 //===----------------------------------------------------------------------===// 9322 // ScalarEvolution Class Implementation 9323 //===----------------------------------------------------------------------===// 9324 9325 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9326 AssumptionCache &AC, DominatorTree &DT, 9327 LoopInfo &LI) 9328 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9329 CouldNotCompute(new SCEVCouldNotCompute()), 9330 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9331 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9332 FirstUnknown(nullptr) {} 9333 9334 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9335 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 9336 CouldNotCompute(std::move(Arg.CouldNotCompute)), 9337 ValueExprMap(std::move(Arg.ValueExprMap)), 9338 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9339 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9340 ConstantEvolutionLoopExitValue( 9341 std::move(Arg.ConstantEvolutionLoopExitValue)), 9342 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9343 LoopDispositions(std::move(Arg.LoopDispositions)), 9344 BlockDispositions(std::move(Arg.BlockDispositions)), 9345 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9346 SignedRanges(std::move(Arg.SignedRanges)), 9347 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9348 UniquePreds(std::move(Arg.UniquePreds)), 9349 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9350 FirstUnknown(Arg.FirstUnknown) { 9351 Arg.FirstUnknown = nullptr; 9352 } 9353 9354 ScalarEvolution::~ScalarEvolution() { 9355 // Iterate through all the SCEVUnknown instances and call their 9356 // destructors, so that they release their references to their values. 9357 for (SCEVUnknown *U = FirstUnknown; U;) { 9358 SCEVUnknown *Tmp = U; 9359 U = U->Next; 9360 Tmp->~SCEVUnknown(); 9361 } 9362 FirstUnknown = nullptr; 9363 9364 ExprValueMap.clear(); 9365 ValueExprMap.clear(); 9366 HasRecMap.clear(); 9367 9368 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 9369 // that a loop had multiple computable exits. 9370 for (auto &BTCI : BackedgeTakenCounts) 9371 BTCI.second.clear(); 9372 9373 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 9374 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 9375 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 9376 } 9377 9378 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 9379 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 9380 } 9381 9382 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 9383 const Loop *L) { 9384 // Print all inner loops first 9385 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 9386 PrintLoopInfo(OS, SE, *I); 9387 9388 OS << "Loop "; 9389 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9390 OS << ": "; 9391 9392 SmallVector<BasicBlock *, 8> ExitBlocks; 9393 L->getExitBlocks(ExitBlocks); 9394 if (ExitBlocks.size() != 1) 9395 OS << "<multiple exits> "; 9396 9397 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 9398 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 9399 } else { 9400 OS << "Unpredictable backedge-taken count. "; 9401 } 9402 9403 OS << "\n" 9404 "Loop "; 9405 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 9406 OS << ": "; 9407 9408 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 9409 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 9410 } else { 9411 OS << "Unpredictable max backedge-taken count. "; 9412 } 9413 9414 OS << "\n"; 9415 } 9416 9417 void ScalarEvolution::print(raw_ostream &OS) const { 9418 // ScalarEvolution's implementation of the print method is to print 9419 // out SCEV values of all instructions that are interesting. Doing 9420 // this potentially causes it to create new SCEV objects though, 9421 // which technically conflicts with the const qualifier. This isn't 9422 // observable from outside the class though, so casting away the 9423 // const isn't dangerous. 9424 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9425 9426 OS << "Classifying expressions for: "; 9427 F.printAsOperand(OS, /*PrintType=*/false); 9428 OS << "\n"; 9429 for (Instruction &I : instructions(F)) 9430 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 9431 OS << I << '\n'; 9432 OS << " --> "; 9433 const SCEV *SV = SE.getSCEV(&I); 9434 SV->print(OS); 9435 if (!isa<SCEVCouldNotCompute>(SV)) { 9436 OS << " U: "; 9437 SE.getUnsignedRange(SV).print(OS); 9438 OS << " S: "; 9439 SE.getSignedRange(SV).print(OS); 9440 } 9441 9442 const Loop *L = LI.getLoopFor(I.getParent()); 9443 9444 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 9445 if (AtUse != SV) { 9446 OS << " --> "; 9447 AtUse->print(OS); 9448 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9449 OS << " U: "; 9450 SE.getUnsignedRange(AtUse).print(OS); 9451 OS << " S: "; 9452 SE.getSignedRange(AtUse).print(OS); 9453 } 9454 } 9455 9456 if (L) { 9457 OS << "\t\t" "Exits: "; 9458 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9459 if (!SE.isLoopInvariant(ExitValue, L)) { 9460 OS << "<<Unknown>>"; 9461 } else { 9462 OS << *ExitValue; 9463 } 9464 } 9465 9466 OS << "\n"; 9467 } 9468 9469 OS << "Determining loop execution counts for: "; 9470 F.printAsOperand(OS, /*PrintType=*/false); 9471 OS << "\n"; 9472 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9473 PrintLoopInfo(OS, &SE, *I); 9474 } 9475 9476 ScalarEvolution::LoopDisposition 9477 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9478 auto &Values = LoopDispositions[S]; 9479 for (auto &V : Values) { 9480 if (V.getPointer() == L) 9481 return V.getInt(); 9482 } 9483 Values.emplace_back(L, LoopVariant); 9484 LoopDisposition D = computeLoopDisposition(S, L); 9485 auto &Values2 = LoopDispositions[S]; 9486 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9487 if (V.getPointer() == L) { 9488 V.setInt(D); 9489 break; 9490 } 9491 } 9492 return D; 9493 } 9494 9495 ScalarEvolution::LoopDisposition 9496 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9497 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9498 case scConstant: 9499 return LoopInvariant; 9500 case scTruncate: 9501 case scZeroExtend: 9502 case scSignExtend: 9503 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9504 case scAddRecExpr: { 9505 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9506 9507 // If L is the addrec's loop, it's computable. 9508 if (AR->getLoop() == L) 9509 return LoopComputable; 9510 9511 // Add recurrences are never invariant in the function-body (null loop). 9512 if (!L) 9513 return LoopVariant; 9514 9515 // This recurrence is variant w.r.t. L if L contains AR's loop. 9516 if (L->contains(AR->getLoop())) 9517 return LoopVariant; 9518 9519 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9520 if (AR->getLoop()->contains(L)) 9521 return LoopInvariant; 9522 9523 // This recurrence is variant w.r.t. L if any of its operands 9524 // are variant. 9525 for (auto *Op : AR->operands()) 9526 if (!isLoopInvariant(Op, L)) 9527 return LoopVariant; 9528 9529 // Otherwise it's loop-invariant. 9530 return LoopInvariant; 9531 } 9532 case scAddExpr: 9533 case scMulExpr: 9534 case scUMaxExpr: 9535 case scSMaxExpr: { 9536 bool HasVarying = false; 9537 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 9538 LoopDisposition D = getLoopDisposition(Op, L); 9539 if (D == LoopVariant) 9540 return LoopVariant; 9541 if (D == LoopComputable) 9542 HasVarying = true; 9543 } 9544 return HasVarying ? LoopComputable : LoopInvariant; 9545 } 9546 case scUDivExpr: { 9547 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9548 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9549 if (LD == LoopVariant) 9550 return LoopVariant; 9551 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9552 if (RD == LoopVariant) 9553 return LoopVariant; 9554 return (LD == LoopInvariant && RD == LoopInvariant) ? 9555 LoopInvariant : LoopComputable; 9556 } 9557 case scUnknown: 9558 // All non-instruction values are loop invariant. All instructions are loop 9559 // invariant if they are not contained in the specified loop. 9560 // Instructions are never considered invariant in the function body 9561 // (null loop) because they are defined within the "loop". 9562 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9563 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9564 return LoopInvariant; 9565 case scCouldNotCompute: 9566 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9567 } 9568 llvm_unreachable("Unknown SCEV kind!"); 9569 } 9570 9571 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9572 return getLoopDisposition(S, L) == LoopInvariant; 9573 } 9574 9575 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9576 return getLoopDisposition(S, L) == LoopComputable; 9577 } 9578 9579 ScalarEvolution::BlockDisposition 9580 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9581 auto &Values = BlockDispositions[S]; 9582 for (auto &V : Values) { 9583 if (V.getPointer() == BB) 9584 return V.getInt(); 9585 } 9586 Values.emplace_back(BB, DoesNotDominateBlock); 9587 BlockDisposition D = computeBlockDisposition(S, BB); 9588 auto &Values2 = BlockDispositions[S]; 9589 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9590 if (V.getPointer() == BB) { 9591 V.setInt(D); 9592 break; 9593 } 9594 } 9595 return D; 9596 } 9597 9598 ScalarEvolution::BlockDisposition 9599 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9600 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9601 case scConstant: 9602 return ProperlyDominatesBlock; 9603 case scTruncate: 9604 case scZeroExtend: 9605 case scSignExtend: 9606 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9607 case scAddRecExpr: { 9608 // This uses a "dominates" query instead of "properly dominates" query 9609 // to test for proper dominance too, because the instruction which 9610 // produces the addrec's value is a PHI, and a PHI effectively properly 9611 // dominates its entire containing block. 9612 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9613 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9614 return DoesNotDominateBlock; 9615 } 9616 // FALL THROUGH into SCEVNAryExpr handling. 9617 case scAddExpr: 9618 case scMulExpr: 9619 case scUMaxExpr: 9620 case scSMaxExpr: { 9621 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9622 bool Proper = true; 9623 for (const SCEV *NAryOp : NAry->operands()) { 9624 BlockDisposition D = getBlockDisposition(NAryOp, BB); 9625 if (D == DoesNotDominateBlock) 9626 return DoesNotDominateBlock; 9627 if (D == DominatesBlock) 9628 Proper = false; 9629 } 9630 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9631 } 9632 case scUDivExpr: { 9633 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9634 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9635 BlockDisposition LD = getBlockDisposition(LHS, BB); 9636 if (LD == DoesNotDominateBlock) 9637 return DoesNotDominateBlock; 9638 BlockDisposition RD = getBlockDisposition(RHS, BB); 9639 if (RD == DoesNotDominateBlock) 9640 return DoesNotDominateBlock; 9641 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9642 ProperlyDominatesBlock : DominatesBlock; 9643 } 9644 case scUnknown: 9645 if (Instruction *I = 9646 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9647 if (I->getParent() == BB) 9648 return DominatesBlock; 9649 if (DT.properlyDominates(I->getParent(), BB)) 9650 return ProperlyDominatesBlock; 9651 return DoesNotDominateBlock; 9652 } 9653 return ProperlyDominatesBlock; 9654 case scCouldNotCompute: 9655 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9656 } 9657 llvm_unreachable("Unknown SCEV kind!"); 9658 } 9659 9660 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9661 return getBlockDisposition(S, BB) >= DominatesBlock; 9662 } 9663 9664 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9665 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9666 } 9667 9668 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9669 // Search for a SCEV expression node within an expression tree. 9670 // Implements SCEVTraversal::Visitor. 9671 struct SCEVSearch { 9672 const SCEV *Node; 9673 bool IsFound; 9674 9675 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9676 9677 bool follow(const SCEV *S) { 9678 IsFound |= (S == Node); 9679 return !IsFound; 9680 } 9681 bool isDone() const { return IsFound; } 9682 }; 9683 9684 SCEVSearch Search(Op); 9685 visitAll(S, Search); 9686 return Search.IsFound; 9687 } 9688 9689 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9690 ValuesAtScopes.erase(S); 9691 LoopDispositions.erase(S); 9692 BlockDispositions.erase(S); 9693 UnsignedRanges.erase(S); 9694 SignedRanges.erase(S); 9695 ExprValueMap.erase(S); 9696 HasRecMap.erase(S); 9697 9698 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9699 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9700 BackedgeTakenInfo &BEInfo = I->second; 9701 if (BEInfo.hasOperand(S, this)) { 9702 BEInfo.clear(); 9703 BackedgeTakenCounts.erase(I++); 9704 } 9705 else 9706 ++I; 9707 } 9708 } 9709 9710 typedef DenseMap<const Loop *, std::string> VerifyMap; 9711 9712 /// replaceSubString - Replaces all occurrences of From in Str with To. 9713 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9714 size_t Pos = 0; 9715 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9716 Str.replace(Pos, From.size(), To.data(), To.size()); 9717 Pos += To.size(); 9718 } 9719 } 9720 9721 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9722 static void 9723 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9724 std::string &S = Map[L]; 9725 if (S.empty()) { 9726 raw_string_ostream OS(S); 9727 SE.getBackedgeTakenCount(L)->print(OS); 9728 9729 // false and 0 are semantically equivalent. This can happen in dead loops. 9730 replaceSubString(OS.str(), "false", "0"); 9731 // Remove wrap flags, their use in SCEV is highly fragile. 9732 // FIXME: Remove this when SCEV gets smarter about them. 9733 replaceSubString(OS.str(), "<nw>", ""); 9734 replaceSubString(OS.str(), "<nsw>", ""); 9735 replaceSubString(OS.str(), "<nuw>", ""); 9736 } 9737 9738 for (auto *R : reverse(*L)) 9739 getLoopBackedgeTakenCounts(R, Map, SE); // recurse. 9740 } 9741 9742 void ScalarEvolution::verify() const { 9743 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9744 9745 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9746 // FIXME: It would be much better to store actual values instead of strings, 9747 // but SCEV pointers will change if we drop the caches. 9748 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9749 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9750 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9751 9752 // Gather stringified backedge taken counts for all loops using a fresh 9753 // ScalarEvolution object. 9754 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9755 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9756 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9757 9758 // Now compare whether they're the same with and without caches. This allows 9759 // verifying that no pass changed the cache. 9760 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9761 "New loops suddenly appeared!"); 9762 9763 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9764 OldE = BackedgeDumpsOld.end(), 9765 NewI = BackedgeDumpsNew.begin(); 9766 OldI != OldE; ++OldI, ++NewI) { 9767 assert(OldI->first == NewI->first && "Loop order changed!"); 9768 9769 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9770 // changes. 9771 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9772 // means that a pass is buggy or SCEV has to learn a new pattern but is 9773 // usually not harmful. 9774 if (OldI->second != NewI->second && 9775 OldI->second.find("undef") == std::string::npos && 9776 NewI->second.find("undef") == std::string::npos && 9777 OldI->second != "***COULDNOTCOMPUTE***" && 9778 NewI->second != "***COULDNOTCOMPUTE***") { 9779 dbgs() << "SCEVValidator: SCEV for loop '" 9780 << OldI->first->getHeader()->getName() 9781 << "' changed from '" << OldI->second 9782 << "' to '" << NewI->second << "'!\n"; 9783 std::abort(); 9784 } 9785 } 9786 9787 // TODO: Verify more things. 9788 } 9789 9790 char ScalarEvolutionAnalysis::PassID; 9791 9792 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9793 AnalysisManager<Function> &AM) { 9794 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 9795 AM.getResult<AssumptionAnalysis>(F), 9796 AM.getResult<DominatorTreeAnalysis>(F), 9797 AM.getResult<LoopAnalysis>(F)); 9798 } 9799 9800 PreservedAnalyses 9801 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) { 9802 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 9803 return PreservedAnalyses::all(); 9804 } 9805 9806 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9807 "Scalar Evolution Analysis", false, true) 9808 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9809 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9810 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9811 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9812 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9813 "Scalar Evolution Analysis", false, true) 9814 char ScalarEvolutionWrapperPass::ID = 0; 9815 9816 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9817 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9818 } 9819 9820 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9821 SE.reset(new ScalarEvolution( 9822 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9823 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9824 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9825 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9826 return false; 9827 } 9828 9829 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9830 9831 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9832 SE->print(OS); 9833 } 9834 9835 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9836 if (!VerifySCEV) 9837 return; 9838 9839 SE->verify(); 9840 } 9841 9842 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9843 AU.setPreservesAll(); 9844 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9845 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9846 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9847 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9848 } 9849 9850 const SCEVPredicate * 9851 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 9852 const SCEVConstant *RHS) { 9853 FoldingSetNodeID ID; 9854 // Unique this node based on the arguments 9855 ID.AddInteger(SCEVPredicate::P_Equal); 9856 ID.AddPointer(LHS); 9857 ID.AddPointer(RHS); 9858 void *IP = nullptr; 9859 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9860 return S; 9861 SCEVEqualPredicate *Eq = new (SCEVAllocator) 9862 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 9863 UniquePreds.InsertNode(Eq, IP); 9864 return Eq; 9865 } 9866 9867 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 9868 const SCEVAddRecExpr *AR, 9869 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9870 FoldingSetNodeID ID; 9871 // Unique this node based on the arguments 9872 ID.AddInteger(SCEVPredicate::P_Wrap); 9873 ID.AddPointer(AR); 9874 ID.AddInteger(AddedFlags); 9875 void *IP = nullptr; 9876 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 9877 return S; 9878 auto *OF = new (SCEVAllocator) 9879 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 9880 UniquePreds.InsertNode(OF, IP); 9881 return OF; 9882 } 9883 9884 namespace { 9885 9886 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 9887 public: 9888 // Rewrites \p S in the context of a loop L and the predicate A. 9889 // If Assume is true, rewrite is free to add further predicates to A 9890 // such that the result will be an AddRecExpr. 9891 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 9892 SCEVUnionPredicate &A, bool Assume) { 9893 SCEVPredicateRewriter Rewriter(L, SE, A, Assume); 9894 return Rewriter.visit(S); 9895 } 9896 9897 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 9898 SCEVUnionPredicate &P, bool Assume) 9899 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {} 9900 9901 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 9902 auto ExprPreds = P.getPredicatesForExpr(Expr); 9903 for (auto *Pred : ExprPreds) 9904 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred)) 9905 if (IPred->getLHS() == Expr) 9906 return IPred->getRHS(); 9907 9908 return Expr; 9909 } 9910 9911 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 9912 const SCEV *Operand = visit(Expr->getOperand()); 9913 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9914 if (AR && AR->getLoop() == L && AR->isAffine()) { 9915 // This couldn't be folded because the operand didn't have the nuw 9916 // flag. Add the nusw flag as an assumption that we could make. 9917 const SCEV *Step = AR->getStepRecurrence(SE); 9918 Type *Ty = Expr->getType(); 9919 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 9920 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 9921 SE.getSignExtendExpr(Step, Ty), L, 9922 AR->getNoWrapFlags()); 9923 } 9924 return SE.getZeroExtendExpr(Operand, Expr->getType()); 9925 } 9926 9927 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 9928 const SCEV *Operand = visit(Expr->getOperand()); 9929 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand); 9930 if (AR && AR->getLoop() == L && AR->isAffine()) { 9931 // This couldn't be folded because the operand didn't have the nsw 9932 // flag. Add the nssw flag as an assumption that we could make. 9933 const SCEV *Step = AR->getStepRecurrence(SE); 9934 Type *Ty = Expr->getType(); 9935 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 9936 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 9937 SE.getSignExtendExpr(Step, Ty), L, 9938 AR->getNoWrapFlags()); 9939 } 9940 return SE.getSignExtendExpr(Operand, Expr->getType()); 9941 } 9942 9943 private: 9944 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 9945 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 9946 auto *A = SE.getWrapPredicate(AR, AddedFlags); 9947 if (!Assume) { 9948 // Check if we've already made this assumption. 9949 if (P.implies(A)) 9950 return true; 9951 return false; 9952 } 9953 P.add(A); 9954 return true; 9955 } 9956 9957 SCEVUnionPredicate &P; 9958 const Loop *L; 9959 bool Assume; 9960 }; 9961 } // end anonymous namespace 9962 9963 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 9964 SCEVUnionPredicate &Preds) { 9965 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false); 9966 } 9967 9968 const SCEVAddRecExpr * 9969 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, 9970 SCEVUnionPredicate &Preds) { 9971 SCEVUnionPredicate TransformPreds; 9972 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true); 9973 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 9974 9975 if (!AddRec) 9976 return nullptr; 9977 9978 // Since the transformation was successful, we can now transfer the SCEV 9979 // predicates. 9980 Preds.add(&TransformPreds); 9981 return AddRec; 9982 } 9983 9984 /// SCEV predicates 9985 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 9986 SCEVPredicateKind Kind) 9987 : FastID(ID), Kind(Kind) {} 9988 9989 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 9990 const SCEVUnknown *LHS, 9991 const SCEVConstant *RHS) 9992 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 9993 9994 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 9995 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N); 9996 9997 if (!Op) 9998 return false; 9999 10000 return Op->LHS == LHS && Op->RHS == RHS; 10001 } 10002 10003 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10004 10005 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10006 10007 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10008 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10009 } 10010 10011 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10012 const SCEVAddRecExpr *AR, 10013 IncrementWrapFlags Flags) 10014 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10015 10016 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10017 10018 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10019 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10020 10021 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10022 } 10023 10024 bool SCEVWrapPredicate::isAlwaysTrue() const { 10025 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10026 IncrementWrapFlags IFlags = Flags; 10027 10028 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10029 IFlags = clearFlags(IFlags, IncrementNSSW); 10030 10031 return IFlags == IncrementAnyWrap; 10032 } 10033 10034 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10035 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10036 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10037 OS << "<nusw>"; 10038 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10039 OS << "<nssw>"; 10040 OS << "\n"; 10041 } 10042 10043 SCEVWrapPredicate::IncrementWrapFlags 10044 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10045 ScalarEvolution &SE) { 10046 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10047 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10048 10049 // We can safely transfer the NSW flag as NSSW. 10050 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10051 ImpliedFlags = IncrementNSSW; 10052 10053 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10054 // If the increment is positive, the SCEV NUW flag will also imply the 10055 // WrapPredicate NUSW flag. 10056 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10057 if (Step->getValue()->getValue().isNonNegative()) 10058 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10059 } 10060 10061 return ImpliedFlags; 10062 } 10063 10064 /// Union predicates don't get cached so create a dummy set ID for it. 10065 SCEVUnionPredicate::SCEVUnionPredicate() 10066 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10067 10068 bool SCEVUnionPredicate::isAlwaysTrue() const { 10069 return all_of(Preds, 10070 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10071 } 10072 10073 ArrayRef<const SCEVPredicate *> 10074 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10075 auto I = SCEVToPreds.find(Expr); 10076 if (I == SCEVToPreds.end()) 10077 return ArrayRef<const SCEVPredicate *>(); 10078 return I->second; 10079 } 10080 10081 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10082 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) 10083 return all_of(Set->Preds, 10084 [this](const SCEVPredicate *I) { return this->implies(I); }); 10085 10086 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10087 if (ScevPredsIt == SCEVToPreds.end()) 10088 return false; 10089 auto &SCEVPreds = ScevPredsIt->second; 10090 10091 return any_of(SCEVPreds, 10092 [N](const SCEVPredicate *I) { return I->implies(N); }); 10093 } 10094 10095 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10096 10097 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10098 for (auto Pred : Preds) 10099 Pred->print(OS, Depth); 10100 } 10101 10102 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10103 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) { 10104 for (auto Pred : Set->Preds) 10105 add(Pred); 10106 return; 10107 } 10108 10109 if (implies(N)) 10110 return; 10111 10112 const SCEV *Key = N->getExpr(); 10113 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10114 " associated expression!"); 10115 10116 SCEVToPreds[Key].push_back(N); 10117 Preds.push_back(N); 10118 } 10119 10120 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10121 Loop &L) 10122 : SE(SE), L(L), Generation(0) {} 10123 10124 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10125 const SCEV *Expr = SE.getSCEV(V); 10126 RewriteEntry &Entry = RewriteMap[Expr]; 10127 10128 // If we already have an entry and the version matches, return it. 10129 if (Entry.second && Generation == Entry.first) 10130 return Entry.second; 10131 10132 // We found an entry but it's stale. Rewrite the stale entry 10133 // acording to the current predicate. 10134 if (Entry.second) 10135 Expr = Entry.second; 10136 10137 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10138 Entry = {Generation, NewSCEV}; 10139 10140 return NewSCEV; 10141 } 10142 10143 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10144 if (Preds.implies(&Pred)) 10145 return; 10146 Preds.add(&Pred); 10147 updateGeneration(); 10148 } 10149 10150 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10151 return Preds; 10152 } 10153 10154 void PredicatedScalarEvolution::updateGeneration() { 10155 // If the generation number wrapped recompute everything. 10156 if (++Generation == 0) { 10157 for (auto &II : RewriteMap) { 10158 const SCEV *Rewritten = II.second.second; 10159 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10160 } 10161 } 10162 } 10163 10164 void PredicatedScalarEvolution::setNoOverflow( 10165 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10166 const SCEV *Expr = getSCEV(V); 10167 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10168 10169 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10170 10171 // Clear the statically implied flags. 10172 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10173 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10174 10175 auto II = FlagsMap.insert({V, Flags}); 10176 if (!II.second) 10177 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10178 } 10179 10180 bool PredicatedScalarEvolution::hasNoOverflow( 10181 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10182 const SCEV *Expr = getSCEV(V); 10183 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10184 10185 Flags = SCEVWrapPredicate::clearFlags( 10186 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10187 10188 auto II = FlagsMap.find(V); 10189 10190 if (II != FlagsMap.end()) 10191 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10192 10193 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10194 } 10195 10196 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10197 const SCEV *Expr = this->getSCEV(V); 10198 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds); 10199 10200 if (!New) 10201 return nullptr; 10202 10203 updateGeneration(); 10204 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10205 return New; 10206 } 10207 10208 PredicatedScalarEvolution:: 10209 PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) : 10210 RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10211 Generation(Init.Generation) { 10212 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I) 10213 FlagsMap.insert(*I); 10214 } 10215