1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 LLVM_DUMP_METHOD 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 132 void SCEV::print(raw_ostream &OS) const { 133 switch (static_cast<SCEVTypes>(getSCEVType())) { 134 case scConstant: 135 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 136 return; 137 case scTruncate: { 138 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 139 const SCEV *Op = Trunc->getOperand(); 140 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 141 << *Trunc->getType() << ")"; 142 return; 143 } 144 case scZeroExtend: { 145 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 146 const SCEV *Op = ZExt->getOperand(); 147 OS << "(zext " << *Op->getType() << " " << *Op << " to " 148 << *ZExt->getType() << ")"; 149 return; 150 } 151 case scSignExtend: { 152 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 153 const SCEV *Op = SExt->getOperand(); 154 OS << "(sext " << *Op->getType() << " " << *Op << " to " 155 << *SExt->getType() << ")"; 156 return; 157 } 158 case scAddRecExpr: { 159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 160 OS << "{" << *AR->getOperand(0); 161 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 162 OS << ",+," << *AR->getOperand(i); 163 OS << "}<"; 164 if (AR->getNoWrapFlags(FlagNUW)) 165 OS << "nuw><"; 166 if (AR->getNoWrapFlags(FlagNSW)) 167 OS << "nsw><"; 168 if (AR->getNoWrapFlags(FlagNW) && 169 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 170 OS << "nw><"; 171 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 172 OS << ">"; 173 return; 174 } 175 case scAddExpr: 176 case scMulExpr: 177 case scUMaxExpr: 178 case scSMaxExpr: { 179 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 180 const char *OpStr = nullptr; 181 switch (NAry->getSCEVType()) { 182 case scAddExpr: OpStr = " + "; break; 183 case scMulExpr: OpStr = " * "; break; 184 case scUMaxExpr: OpStr = " umax "; break; 185 case scSMaxExpr: OpStr = " smax "; break; 186 } 187 OS << "("; 188 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 189 I != E; ++I) { 190 OS << **I; 191 if (std::next(I) != E) 192 OS << OpStr; 193 } 194 OS << ")"; 195 switch (NAry->getSCEVType()) { 196 case scAddExpr: 197 case scMulExpr: 198 if (NAry->getNoWrapFlags(FlagNUW)) 199 OS << "<nuw>"; 200 if (NAry->getNoWrapFlags(FlagNSW)) 201 OS << "<nsw>"; 202 } 203 return; 204 } 205 case scUDivExpr: { 206 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 207 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 208 return; 209 } 210 case scUnknown: { 211 const SCEVUnknown *U = cast<SCEVUnknown>(this); 212 Type *AllocTy; 213 if (U->isSizeOf(AllocTy)) { 214 OS << "sizeof(" << *AllocTy << ")"; 215 return; 216 } 217 if (U->isAlignOf(AllocTy)) { 218 OS << "alignof(" << *AllocTy << ")"; 219 return; 220 } 221 222 Type *CTy; 223 Constant *FieldNo; 224 if (U->isOffsetOf(CTy, FieldNo)) { 225 OS << "offsetof(" << *CTy << ", "; 226 FieldNo->printAsOperand(OS, false); 227 OS << ")"; 228 return; 229 } 230 231 // Otherwise just print it normally. 232 U->getValue()->printAsOperand(OS, false); 233 return; 234 } 235 case scCouldNotCompute: 236 OS << "***COULDNOTCOMPUTE***"; 237 return; 238 } 239 llvm_unreachable("Unknown SCEV kind!"); 240 } 241 242 Type *SCEV::getType() const { 243 switch (static_cast<SCEVTypes>(getSCEVType())) { 244 case scConstant: 245 return cast<SCEVConstant>(this)->getType(); 246 case scTruncate: 247 case scZeroExtend: 248 case scSignExtend: 249 return cast<SCEVCastExpr>(this)->getType(); 250 case scAddRecExpr: 251 case scMulExpr: 252 case scUMaxExpr: 253 case scSMaxExpr: 254 return cast<SCEVNAryExpr>(this)->getType(); 255 case scAddExpr: 256 return cast<SCEVAddExpr>(this)->getType(); 257 case scUDivExpr: 258 return cast<SCEVUDivExpr>(this)->getType(); 259 case scUnknown: 260 return cast<SCEVUnknown>(this)->getType(); 261 case scCouldNotCompute: 262 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 263 } 264 llvm_unreachable("Unknown SCEV kind!"); 265 } 266 267 bool SCEV::isZero() const { 268 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 269 return SC->getValue()->isZero(); 270 return false; 271 } 272 273 bool SCEV::isOne() const { 274 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 275 return SC->getValue()->isOne(); 276 return false; 277 } 278 279 bool SCEV::isAllOnesValue() const { 280 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 281 return SC->getValue()->isAllOnesValue(); 282 return false; 283 } 284 285 /// isNonConstantNegative - Return true if the specified scev is negated, but 286 /// not a constant. 287 bool SCEV::isNonConstantNegative() const { 288 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 289 if (!Mul) return false; 290 291 // If there is a constant factor, it will be first. 292 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 293 if (!SC) return false; 294 295 // Return true if the value is negative, this matches things like (-42 * V). 296 return SC->getValue()->getValue().isNegative(); 297 } 298 299 SCEVCouldNotCompute::SCEVCouldNotCompute() : 300 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 301 302 bool SCEVCouldNotCompute::classof(const SCEV *S) { 303 return S->getSCEVType() == scCouldNotCompute; 304 } 305 306 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 307 FoldingSetNodeID ID; 308 ID.AddInteger(scConstant); 309 ID.AddPointer(V); 310 void *IP = nullptr; 311 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 312 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 313 UniqueSCEVs.InsertNode(S, IP); 314 return S; 315 } 316 317 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 318 return getConstant(ConstantInt::get(getContext(), Val)); 319 } 320 321 const SCEV * 322 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 323 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 324 return getConstant(ConstantInt::get(ITy, V, isSigned)); 325 } 326 327 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 328 unsigned SCEVTy, const SCEV *op, Type *ty) 329 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 330 331 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 332 const SCEV *op, Type *ty) 333 : SCEVCastExpr(ID, scTruncate, op, ty) { 334 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 335 (Ty->isIntegerTy() || Ty->isPointerTy()) && 336 "Cannot truncate non-integer value!"); 337 } 338 339 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 340 const SCEV *op, Type *ty) 341 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 342 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 343 (Ty->isIntegerTy() || Ty->isPointerTy()) && 344 "Cannot zero extend non-integer value!"); 345 } 346 347 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 348 const SCEV *op, Type *ty) 349 : SCEVCastExpr(ID, scSignExtend, op, ty) { 350 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 351 (Ty->isIntegerTy() || Ty->isPointerTy()) && 352 "Cannot sign extend non-integer value!"); 353 } 354 355 void SCEVUnknown::deleted() { 356 // Clear this SCEVUnknown from various maps. 357 SE->forgetMemoizedResults(this); 358 359 // Remove this SCEVUnknown from the uniquing map. 360 SE->UniqueSCEVs.RemoveNode(this); 361 362 // Release the value. 363 setValPtr(nullptr); 364 } 365 366 void SCEVUnknown::allUsesReplacedWith(Value *New) { 367 // Clear this SCEVUnknown from various maps. 368 SE->forgetMemoizedResults(this); 369 370 // Remove this SCEVUnknown from the uniquing map. 371 SE->UniqueSCEVs.RemoveNode(this); 372 373 // Update this SCEVUnknown to point to the new value. This is needed 374 // because there may still be outstanding SCEVs which still point to 375 // this SCEVUnknown. 376 setValPtr(New); 377 } 378 379 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 380 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 381 if (VCE->getOpcode() == Instruction::PtrToInt) 382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 383 if (CE->getOpcode() == Instruction::GetElementPtr && 384 CE->getOperand(0)->isNullValue() && 385 CE->getNumOperands() == 2) 386 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 387 if (CI->isOne()) { 388 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 389 ->getElementType(); 390 return true; 391 } 392 393 return false; 394 } 395 396 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 398 if (VCE->getOpcode() == Instruction::PtrToInt) 399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 400 if (CE->getOpcode() == Instruction::GetElementPtr && 401 CE->getOperand(0)->isNullValue()) { 402 Type *Ty = 403 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 404 if (StructType *STy = dyn_cast<StructType>(Ty)) 405 if (!STy->isPacked() && 406 CE->getNumOperands() == 3 && 407 CE->getOperand(1)->isNullValue()) { 408 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 409 if (CI->isOne() && 410 STy->getNumElements() == 2 && 411 STy->getElementType(0)->isIntegerTy(1)) { 412 AllocTy = STy->getElementType(1); 413 return true; 414 } 415 } 416 } 417 418 return false; 419 } 420 421 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 422 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 423 if (VCE->getOpcode() == Instruction::PtrToInt) 424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 425 if (CE->getOpcode() == Instruction::GetElementPtr && 426 CE->getNumOperands() == 3 && 427 CE->getOperand(0)->isNullValue() && 428 CE->getOperand(1)->isNullValue()) { 429 Type *Ty = 430 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 431 // Ignore vector types here so that ScalarEvolutionExpander doesn't 432 // emit getelementptrs that index into vectors. 433 if (Ty->isStructTy() || Ty->isArrayTy()) { 434 CTy = Ty; 435 FieldNo = CE->getOperand(2); 436 return true; 437 } 438 } 439 440 return false; 441 } 442 443 //===----------------------------------------------------------------------===// 444 // SCEV Utilities 445 //===----------------------------------------------------------------------===// 446 447 namespace { 448 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 449 /// than the complexity of the RHS. This comparator is used to canonicalize 450 /// expressions. 451 class SCEVComplexityCompare { 452 const LoopInfo *const LI; 453 public: 454 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 455 456 // Return true or false if LHS is less than, or at least RHS, respectively. 457 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 458 return compare(LHS, RHS) < 0; 459 } 460 461 // Return negative, zero, or positive, if LHS is less than, equal to, or 462 // greater than RHS, respectively. A three-way result allows recursive 463 // comparisons to be more efficient. 464 int compare(const SCEV *LHS, const SCEV *RHS) const { 465 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 466 if (LHS == RHS) 467 return 0; 468 469 // Primarily, sort the SCEVs by their getSCEVType(). 470 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 471 if (LType != RType) 472 return (int)LType - (int)RType; 473 474 // Aside from the getSCEVType() ordering, the particular ordering 475 // isn't very important except that it's beneficial to be consistent, 476 // so that (a + b) and (b + a) don't end up as different expressions. 477 switch (static_cast<SCEVTypes>(LType)) { 478 case scUnknown: { 479 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 480 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 481 482 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 483 // not as complete as it could be. 484 const Value *LV = LU->getValue(), *RV = RU->getValue(); 485 486 // Order pointer values after integer values. This helps SCEVExpander 487 // form GEPs. 488 bool LIsPointer = LV->getType()->isPointerTy(), 489 RIsPointer = RV->getType()->isPointerTy(); 490 if (LIsPointer != RIsPointer) 491 return (int)LIsPointer - (int)RIsPointer; 492 493 // Compare getValueID values. 494 unsigned LID = LV->getValueID(), 495 RID = RV->getValueID(); 496 if (LID != RID) 497 return (int)LID - (int)RID; 498 499 // Sort arguments by their position. 500 if (const Argument *LA = dyn_cast<Argument>(LV)) { 501 const Argument *RA = cast<Argument>(RV); 502 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 503 return (int)LArgNo - (int)RArgNo; 504 } 505 506 // For instructions, compare their loop depth, and their operand 507 // count. This is pretty loose. 508 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 509 const Instruction *RInst = cast<Instruction>(RV); 510 511 // Compare loop depths. 512 const BasicBlock *LParent = LInst->getParent(), 513 *RParent = RInst->getParent(); 514 if (LParent != RParent) { 515 unsigned LDepth = LI->getLoopDepth(LParent), 516 RDepth = LI->getLoopDepth(RParent); 517 if (LDepth != RDepth) 518 return (int)LDepth - (int)RDepth; 519 } 520 521 // Compare the number of operands. 522 unsigned LNumOps = LInst->getNumOperands(), 523 RNumOps = RInst->getNumOperands(); 524 return (int)LNumOps - (int)RNumOps; 525 } 526 527 return 0; 528 } 529 530 case scConstant: { 531 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 532 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 533 534 // Compare constant values. 535 const APInt &LA = LC->getValue()->getValue(); 536 const APInt &RA = RC->getValue()->getValue(); 537 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 538 if (LBitWidth != RBitWidth) 539 return (int)LBitWidth - (int)RBitWidth; 540 return LA.ult(RA) ? -1 : 1; 541 } 542 543 case scAddRecExpr: { 544 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 545 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 546 547 // Compare addrec loop depths. 548 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 549 if (LLoop != RLoop) { 550 unsigned LDepth = LLoop->getLoopDepth(), 551 RDepth = RLoop->getLoopDepth(); 552 if (LDepth != RDepth) 553 return (int)LDepth - (int)RDepth; 554 } 555 556 // Addrec complexity grows with operand count. 557 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 558 if (LNumOps != RNumOps) 559 return (int)LNumOps - (int)RNumOps; 560 561 // Lexicographically compare. 562 for (unsigned i = 0; i != LNumOps; ++i) { 563 long X = compare(LA->getOperand(i), RA->getOperand(i)); 564 if (X != 0) 565 return X; 566 } 567 568 return 0; 569 } 570 571 case scAddExpr: 572 case scMulExpr: 573 case scSMaxExpr: 574 case scUMaxExpr: { 575 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 578 // Lexicographically compare n-ary expressions. 579 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 580 if (LNumOps != RNumOps) 581 return (int)LNumOps - (int)RNumOps; 582 583 for (unsigned i = 0; i != LNumOps; ++i) { 584 if (i >= RNumOps) 585 return 1; 586 long X = compare(LC->getOperand(i), RC->getOperand(i)); 587 if (X != 0) 588 return X; 589 } 590 return (int)LNumOps - (int)RNumOps; 591 } 592 593 case scUDivExpr: { 594 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 595 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 596 597 // Lexicographically compare udiv expressions. 598 long X = compare(LC->getLHS(), RC->getLHS()); 599 if (X != 0) 600 return X; 601 return compare(LC->getRHS(), RC->getRHS()); 602 } 603 604 case scTruncate: 605 case scZeroExtend: 606 case scSignExtend: { 607 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 608 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 609 610 // Compare cast expressions by operand. 611 return compare(LC->getOperand(), RC->getOperand()); 612 } 613 614 case scCouldNotCompute: 615 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 616 } 617 llvm_unreachable("Unknown SCEV kind!"); 618 } 619 }; 620 } 621 622 /// GroupByComplexity - Given a list of SCEV objects, order them by their 623 /// complexity, and group objects of the same complexity together by value. 624 /// When this routine is finished, we know that any duplicates in the vector are 625 /// consecutive and that complexity is monotonically increasing. 626 /// 627 /// Note that we go take special precautions to ensure that we get deterministic 628 /// results from this routine. In other words, we don't want the results of 629 /// this to depend on where the addresses of various SCEV objects happened to 630 /// land in memory. 631 /// 632 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 633 LoopInfo *LI) { 634 if (Ops.size() < 2) return; // Noop 635 if (Ops.size() == 2) { 636 // This is the common case, which also happens to be trivially simple. 637 // Special case it. 638 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 639 if (SCEVComplexityCompare(LI)(RHS, LHS)) 640 std::swap(LHS, RHS); 641 return; 642 } 643 644 // Do the rough sort by complexity. 645 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 646 647 // Now that we are sorted by complexity, group elements of the same 648 // complexity. Note that this is, at worst, N^2, but the vector is likely to 649 // be extremely short in practice. Note that we take this approach because we 650 // do not want to depend on the addresses of the objects we are grouping. 651 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 652 const SCEV *S = Ops[i]; 653 unsigned Complexity = S->getSCEVType(); 654 655 // If there are any objects of the same complexity and same value as this 656 // one, group them. 657 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 658 if (Ops[j] == S) { // Found a duplicate. 659 // Move it to immediately after i'th element. 660 std::swap(Ops[i+1], Ops[j]); 661 ++i; // no need to rescan it. 662 if (i == e-2) return; // Done! 663 } 664 } 665 } 666 } 667 668 namespace { 669 struct FindSCEVSize { 670 int Size; 671 FindSCEVSize() : Size(0) {} 672 673 bool follow(const SCEV *S) { 674 ++Size; 675 // Keep looking at all operands of S. 676 return true; 677 } 678 bool isDone() const { 679 return false; 680 } 681 }; 682 } 683 684 // Returns the size of the SCEV S. 685 static inline int sizeOfSCEV(const SCEV *S) { 686 FindSCEVSize F; 687 SCEVTraversal<FindSCEVSize> ST(F); 688 ST.visitAll(S); 689 return F.Size; 690 } 691 692 namespace { 693 694 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 695 public: 696 // Computes the Quotient and Remainder of the division of Numerator by 697 // Denominator. 698 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 699 const SCEV *Denominator, const SCEV **Quotient, 700 const SCEV **Remainder) { 701 assert(Numerator && Denominator && "Uninitialized SCEV"); 702 703 SCEVDivision D(SE, Numerator, Denominator); 704 705 // Check for the trivial case here to avoid having to check for it in the 706 // rest of the code. 707 if (Numerator == Denominator) { 708 *Quotient = D.One; 709 *Remainder = D.Zero; 710 return; 711 } 712 713 if (Numerator->isZero()) { 714 *Quotient = D.Zero; 715 *Remainder = D.Zero; 716 return; 717 } 718 719 // A simple case when N/1. The quotient is N. 720 if (Denominator->isOne()) { 721 *Quotient = Numerator; 722 *Remainder = D.Zero; 723 return; 724 } 725 726 // Split the Denominator when it is a product. 727 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 728 const SCEV *Q, *R; 729 *Quotient = Numerator; 730 for (const SCEV *Op : T->operands()) { 731 divide(SE, *Quotient, Op, &Q, &R); 732 *Quotient = Q; 733 734 // Bail out when the Numerator is not divisible by one of the terms of 735 // the Denominator. 736 if (!R->isZero()) { 737 *Quotient = D.Zero; 738 *Remainder = Numerator; 739 return; 740 } 741 } 742 *Remainder = D.Zero; 743 return; 744 } 745 746 D.visit(Numerator); 747 *Quotient = D.Quotient; 748 *Remainder = D.Remainder; 749 } 750 751 // Except in the trivial case described above, we do not know how to divide 752 // Expr by Denominator for the following functions with empty implementation. 753 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 754 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 755 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 756 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 757 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 758 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 759 void visitUnknown(const SCEVUnknown *Numerator) {} 760 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 761 762 void visitConstant(const SCEVConstant *Numerator) { 763 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 764 APInt NumeratorVal = Numerator->getValue()->getValue(); 765 APInt DenominatorVal = D->getValue()->getValue(); 766 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 767 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 768 769 if (NumeratorBW > DenominatorBW) 770 DenominatorVal = DenominatorVal.sext(NumeratorBW); 771 else if (NumeratorBW < DenominatorBW) 772 NumeratorVal = NumeratorVal.sext(DenominatorBW); 773 774 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 775 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 776 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 777 Quotient = SE.getConstant(QuotientVal); 778 Remainder = SE.getConstant(RemainderVal); 779 return; 780 } 781 } 782 783 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 784 const SCEV *StartQ, *StartR, *StepQ, *StepR; 785 if (!Numerator->isAffine()) 786 return cannotDivide(Numerator); 787 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 788 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 789 // Bail out if the types do not match. 790 Type *Ty = Denominator->getType(); 791 if (Ty != StartQ->getType() || Ty != StartR->getType() || 792 Ty != StepQ->getType() || Ty != StepR->getType()) 793 return cannotDivide(Numerator); 794 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 795 Numerator->getNoWrapFlags()); 796 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 797 Numerator->getNoWrapFlags()); 798 } 799 800 void visitAddExpr(const SCEVAddExpr *Numerator) { 801 SmallVector<const SCEV *, 2> Qs, Rs; 802 Type *Ty = Denominator->getType(); 803 804 for (const SCEV *Op : Numerator->operands()) { 805 const SCEV *Q, *R; 806 divide(SE, Op, Denominator, &Q, &R); 807 808 // Bail out if types do not match. 809 if (Ty != Q->getType() || Ty != R->getType()) 810 return cannotDivide(Numerator); 811 812 Qs.push_back(Q); 813 Rs.push_back(R); 814 } 815 816 if (Qs.size() == 1) { 817 Quotient = Qs[0]; 818 Remainder = Rs[0]; 819 return; 820 } 821 822 Quotient = SE.getAddExpr(Qs); 823 Remainder = SE.getAddExpr(Rs); 824 } 825 826 void visitMulExpr(const SCEVMulExpr *Numerator) { 827 SmallVector<const SCEV *, 2> Qs; 828 Type *Ty = Denominator->getType(); 829 830 bool FoundDenominatorTerm = false; 831 for (const SCEV *Op : Numerator->operands()) { 832 // Bail out if types do not match. 833 if (Ty != Op->getType()) 834 return cannotDivide(Numerator); 835 836 if (FoundDenominatorTerm) { 837 Qs.push_back(Op); 838 continue; 839 } 840 841 // Check whether Denominator divides one of the product operands. 842 const SCEV *Q, *R; 843 divide(SE, Op, Denominator, &Q, &R); 844 if (!R->isZero()) { 845 Qs.push_back(Op); 846 continue; 847 } 848 849 // Bail out if types do not match. 850 if (Ty != Q->getType()) 851 return cannotDivide(Numerator); 852 853 FoundDenominatorTerm = true; 854 Qs.push_back(Q); 855 } 856 857 if (FoundDenominatorTerm) { 858 Remainder = Zero; 859 if (Qs.size() == 1) 860 Quotient = Qs[0]; 861 else 862 Quotient = SE.getMulExpr(Qs); 863 return; 864 } 865 866 if (!isa<SCEVUnknown>(Denominator)) 867 return cannotDivide(Numerator); 868 869 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 870 ValueToValueMap RewriteMap; 871 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 872 cast<SCEVConstant>(Zero)->getValue(); 873 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 874 875 if (Remainder->isZero()) { 876 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 877 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 878 cast<SCEVConstant>(One)->getValue(); 879 Quotient = 880 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 881 return; 882 } 883 884 // Quotient is (Numerator - Remainder) divided by Denominator. 885 const SCEV *Q, *R; 886 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 887 // This SCEV does not seem to simplify: fail the division here. 888 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 889 return cannotDivide(Numerator); 890 divide(SE, Diff, Denominator, &Q, &R); 891 if (R != Zero) 892 return cannotDivide(Numerator); 893 Quotient = Q; 894 } 895 896 private: 897 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 898 const SCEV *Denominator) 899 : SE(S), Denominator(Denominator) { 900 Zero = SE.getZero(Denominator->getType()); 901 One = SE.getOne(Denominator->getType()); 902 903 // We generally do not know how to divide Expr by Denominator. We 904 // initialize the division to a "cannot divide" state to simplify the rest 905 // of the code. 906 cannotDivide(Numerator); 907 } 908 909 // Convenience function for giving up on the division. We set the quotient to 910 // be equal to zero and the remainder to be equal to the numerator. 911 void cannotDivide(const SCEV *Numerator) { 912 Quotient = Zero; 913 Remainder = Numerator; 914 } 915 916 ScalarEvolution &SE; 917 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 918 }; 919 920 } 921 922 //===----------------------------------------------------------------------===// 923 // Simple SCEV method implementations 924 //===----------------------------------------------------------------------===// 925 926 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 927 /// Assume, K > 0. 928 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 929 ScalarEvolution &SE, 930 Type *ResultTy) { 931 // Handle the simplest case efficiently. 932 if (K == 1) 933 return SE.getTruncateOrZeroExtend(It, ResultTy); 934 935 // We are using the following formula for BC(It, K): 936 // 937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 938 // 939 // Suppose, W is the bitwidth of the return value. We must be prepared for 940 // overflow. Hence, we must assure that the result of our computation is 941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 942 // safe in modular arithmetic. 943 // 944 // However, this code doesn't use exactly that formula; the formula it uses 945 // is something like the following, where T is the number of factors of 2 in 946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 947 // exponentiation: 948 // 949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 950 // 951 // This formula is trivially equivalent to the previous formula. However, 952 // this formula can be implemented much more efficiently. The trick is that 953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 954 // arithmetic. To do exact division in modular arithmetic, all we have 955 // to do is multiply by the inverse. Therefore, this step can be done at 956 // width W. 957 // 958 // The next issue is how to safely do the division by 2^T. The way this 959 // is done is by doing the multiplication step at a width of at least W + T 960 // bits. This way, the bottom W+T bits of the product are accurate. Then, 961 // when we perform the division by 2^T (which is equivalent to a right shift 962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 963 // truncated out after the division by 2^T. 964 // 965 // In comparison to just directly using the first formula, this technique 966 // is much more efficient; using the first formula requires W * K bits, 967 // but this formula less than W + K bits. Also, the first formula requires 968 // a division step, whereas this formula only requires multiplies and shifts. 969 // 970 // It doesn't matter whether the subtraction step is done in the calculation 971 // width or the input iteration count's width; if the subtraction overflows, 972 // the result must be zero anyway. We prefer here to do it in the width of 973 // the induction variable because it helps a lot for certain cases; CodeGen 974 // isn't smart enough to ignore the overflow, which leads to much less 975 // efficient code if the width of the subtraction is wider than the native 976 // register width. 977 // 978 // (It's possible to not widen at all by pulling out factors of 2 before 979 // the multiplication; for example, K=2 can be calculated as 980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 981 // extra arithmetic, so it's not an obvious win, and it gets 982 // much more complicated for K > 3.) 983 984 // Protection from insane SCEVs; this bound is conservative, 985 // but it probably doesn't matter. 986 if (K > 1000) 987 return SE.getCouldNotCompute(); 988 989 unsigned W = SE.getTypeSizeInBits(ResultTy); 990 991 // Calculate K! / 2^T and T; we divide out the factors of two before 992 // multiplying for calculating K! / 2^T to avoid overflow. 993 // Other overflow doesn't matter because we only care about the bottom 994 // W bits of the result. 995 APInt OddFactorial(W, 1); 996 unsigned T = 1; 997 for (unsigned i = 3; i <= K; ++i) { 998 APInt Mult(W, i); 999 unsigned TwoFactors = Mult.countTrailingZeros(); 1000 T += TwoFactors; 1001 Mult = Mult.lshr(TwoFactors); 1002 OddFactorial *= Mult; 1003 } 1004 1005 // We need at least W + T bits for the multiplication step 1006 unsigned CalculationBits = W + T; 1007 1008 // Calculate 2^T, at width T+W. 1009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1010 1011 // Calculate the multiplicative inverse of K! / 2^T; 1012 // this multiplication factor will perform the exact division by 1013 // K! / 2^T. 1014 APInt Mod = APInt::getSignedMinValue(W+1); 1015 APInt MultiplyFactor = OddFactorial.zext(W+1); 1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1017 MultiplyFactor = MultiplyFactor.trunc(W); 1018 1019 // Calculate the product, at width T+W 1020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1021 CalculationBits); 1022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1023 for (unsigned i = 1; i != K; ++i) { 1024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1025 Dividend = SE.getMulExpr(Dividend, 1026 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1027 } 1028 1029 // Divide by 2^T 1030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1031 1032 // Truncate the result, and divide by K! / 2^T. 1033 1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1036 } 1037 1038 /// evaluateAtIteration - Return the value of this chain of recurrences at 1039 /// the specified iteration number. We can evaluate this recurrence by 1040 /// multiplying each element in the chain by the binomial coefficient 1041 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1042 /// 1043 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1044 /// 1045 /// where BC(It, k) stands for binomial coefficient. 1046 /// 1047 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1048 ScalarEvolution &SE) const { 1049 const SCEV *Result = getStart(); 1050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1051 // The computation is correct in the face of overflow provided that the 1052 // multiplication is performed _after_ the evaluation of the binomial 1053 // coefficient. 1054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1055 if (isa<SCEVCouldNotCompute>(Coeff)) 1056 return Coeff; 1057 1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1059 } 1060 return Result; 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // SCEV Expression folder implementations 1065 //===----------------------------------------------------------------------===// 1066 1067 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1068 Type *Ty) { 1069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1070 "This is not a truncating conversion!"); 1071 assert(isSCEVable(Ty) && 1072 "This is not a conversion to a SCEVable type!"); 1073 Ty = getEffectiveSCEVType(Ty); 1074 1075 FoldingSetNodeID ID; 1076 ID.AddInteger(scTruncate); 1077 ID.AddPointer(Op); 1078 ID.AddPointer(Ty); 1079 void *IP = nullptr; 1080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1081 1082 // Fold if the operand is constant. 1083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1084 return getConstant( 1085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1086 1087 // trunc(trunc(x)) --> trunc(x) 1088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1089 return getTruncateExpr(ST->getOperand(), Ty); 1090 1091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1093 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1094 1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1098 1099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1100 // eliminate all the truncates, or we replace other casts with truncates. 1101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1102 SmallVector<const SCEV *, 4> Operands; 1103 bool hasTrunc = false; 1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1106 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1107 hasTrunc = isa<SCEVTruncateExpr>(S); 1108 Operands.push_back(S); 1109 } 1110 if (!hasTrunc) 1111 return getAddExpr(Operands); 1112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1113 } 1114 1115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1116 // eliminate all the truncates, or we replace other casts with truncates. 1117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1118 SmallVector<const SCEV *, 4> Operands; 1119 bool hasTrunc = false; 1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1122 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1123 hasTrunc = isa<SCEVTruncateExpr>(S); 1124 Operands.push_back(S); 1125 } 1126 if (!hasTrunc) 1127 return getMulExpr(Operands); 1128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1129 } 1130 1131 // If the input value is a chrec scev, truncate the chrec's operands. 1132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1133 SmallVector<const SCEV *, 4> Operands; 1134 for (const SCEV *Op : AddRec->operands()) 1135 Operands.push_back(getTruncateExpr(Op, Ty)); 1136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1137 } 1138 1139 // The cast wasn't folded; create an explicit cast node. We can reuse 1140 // the existing insert position since if we get here, we won't have 1141 // made any changes which would invalidate it. 1142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1143 Op, Ty); 1144 UniqueSCEVs.InsertNode(S, IP); 1145 return S; 1146 } 1147 1148 // Get the limit of a recurrence such that incrementing by Step cannot cause 1149 // signed overflow as long as the value of the recurrence within the 1150 // loop does not exceed this limit before incrementing. 1151 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1152 ICmpInst::Predicate *Pred, 1153 ScalarEvolution *SE) { 1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1155 if (SE->isKnownPositive(Step)) { 1156 *Pred = ICmpInst::ICMP_SLT; 1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1158 SE->getSignedRange(Step).getSignedMax()); 1159 } 1160 if (SE->isKnownNegative(Step)) { 1161 *Pred = ICmpInst::ICMP_SGT; 1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1163 SE->getSignedRange(Step).getSignedMin()); 1164 } 1165 return nullptr; 1166 } 1167 1168 // Get the limit of a recurrence such that incrementing by Step cannot cause 1169 // unsigned overflow as long as the value of the recurrence within the loop does 1170 // not exceed this limit before incrementing. 1171 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1172 ICmpInst::Predicate *Pred, 1173 ScalarEvolution *SE) { 1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1175 *Pred = ICmpInst::ICMP_ULT; 1176 1177 return SE->getConstant(APInt::getMinValue(BitWidth) - 1178 SE->getUnsignedRange(Step).getUnsignedMax()); 1179 } 1180 1181 namespace { 1182 1183 struct ExtendOpTraitsBase { 1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1185 }; 1186 1187 // Used to make code generic over signed and unsigned overflow. 1188 template <typename ExtendOp> struct ExtendOpTraits { 1189 // Members present: 1190 // 1191 // static const SCEV::NoWrapFlags WrapType; 1192 // 1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1194 // 1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1196 // ICmpInst::Predicate *Pred, 1197 // ScalarEvolution *SE); 1198 }; 1199 1200 template <> 1201 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1203 1204 static const GetExtendExprTy GetExtendExpr; 1205 1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1207 ICmpInst::Predicate *Pred, 1208 ScalarEvolution *SE) { 1209 return getSignedOverflowLimitForStep(Step, Pred, SE); 1210 } 1211 }; 1212 1213 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1215 1216 template <> 1217 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1219 1220 static const GetExtendExprTy GetExtendExpr; 1221 1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1223 ICmpInst::Predicate *Pred, 1224 ScalarEvolution *SE) { 1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1226 } 1227 }; 1228 1229 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1231 } 1232 1233 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1234 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1235 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1236 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1237 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1238 // expression "Step + sext/zext(PreIncAR)" is congruent with 1239 // "sext/zext(PostIncAR)" 1240 template <typename ExtendOpTy> 1241 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1242 ScalarEvolution *SE) { 1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1245 1246 const Loop *L = AR->getLoop(); 1247 const SCEV *Start = AR->getStart(); 1248 const SCEV *Step = AR->getStepRecurrence(*SE); 1249 1250 // Check for a simple looking step prior to loop entry. 1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1252 if (!SA) 1253 return nullptr; 1254 1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1256 // subtraction is expensive. For this purpose, perform a quick and dirty 1257 // difference, by checking for Step in the operand list. 1258 SmallVector<const SCEV *, 4> DiffOps; 1259 for (const SCEV *Op : SA->operands()) 1260 if (Op != Step) 1261 DiffOps.push_back(Op); 1262 1263 if (DiffOps.size() == SA->getNumOperands()) 1264 return nullptr; 1265 1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1267 // `Step`: 1268 1269 // 1. NSW/NUW flags on the step increment. 1270 auto PreStartFlags = 1271 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1272 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1273 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1274 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1275 1276 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1277 // "S+X does not sign/unsign-overflow". 1278 // 1279 1280 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1281 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1282 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1283 return PreStart; 1284 1285 // 2. Direct overflow check on the step operation's expression. 1286 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1287 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1288 const SCEV *OperandExtendedStart = 1289 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1290 (SE->*GetExtendExpr)(Step, WideTy)); 1291 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1292 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1293 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1294 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1295 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1296 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1297 } 1298 return PreStart; 1299 } 1300 1301 // 3. Loop precondition. 1302 ICmpInst::Predicate Pred; 1303 const SCEV *OverflowLimit = 1304 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1305 1306 if (OverflowLimit && 1307 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1308 return PreStart; 1309 1310 return nullptr; 1311 } 1312 1313 // Get the normalized zero or sign extended expression for this AddRec's Start. 1314 template <typename ExtendOpTy> 1315 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1316 ScalarEvolution *SE) { 1317 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1318 1319 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1320 if (!PreStart) 1321 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1322 1323 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1324 (SE->*GetExtendExpr)(PreStart, Ty)); 1325 } 1326 1327 // Try to prove away overflow by looking at "nearby" add recurrences. A 1328 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1329 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1330 // 1331 // Formally: 1332 // 1333 // {S,+,X} == {S-T,+,X} + T 1334 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1335 // 1336 // If ({S-T,+,X} + T) does not overflow ... (1) 1337 // 1338 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1339 // 1340 // If {S-T,+,X} does not overflow ... (2) 1341 // 1342 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1343 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1344 // 1345 // If (S-T)+T does not overflow ... (3) 1346 // 1347 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1348 // == {Ext(S),+,Ext(X)} == LHS 1349 // 1350 // Thus, if (1), (2) and (3) are true for some T, then 1351 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1352 // 1353 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1354 // does not overflow" restricted to the 0th iteration. Therefore we only need 1355 // to check for (1) and (2). 1356 // 1357 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1358 // is `Delta` (defined below). 1359 // 1360 template <typename ExtendOpTy> 1361 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1362 const SCEV *Step, 1363 const Loop *L) { 1364 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1365 1366 // We restrict `Start` to a constant to prevent SCEV from spending too much 1367 // time here. It is correct (but more expensive) to continue with a 1368 // non-constant `Start` and do a general SCEV subtraction to compute 1369 // `PreStart` below. 1370 // 1371 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1372 if (!StartC) 1373 return false; 1374 1375 APInt StartAI = StartC->getValue()->getValue(); 1376 1377 for (unsigned Delta : {-2, -1, 1, 2}) { 1378 const SCEV *PreStart = getConstant(StartAI - Delta); 1379 1380 FoldingSetNodeID ID; 1381 ID.AddInteger(scAddRecExpr); 1382 ID.AddPointer(PreStart); 1383 ID.AddPointer(Step); 1384 ID.AddPointer(L); 1385 void *IP = nullptr; 1386 const auto *PreAR = 1387 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1388 1389 // Give up if we don't already have the add recurrence we need because 1390 // actually constructing an add recurrence is relatively expensive. 1391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1395 DeltaS, &Pred, this); 1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1397 return true; 1398 } 1399 } 1400 1401 return false; 1402 } 1403 1404 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1405 Type *Ty) { 1406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1407 "This is not an extending conversion!"); 1408 assert(isSCEVable(Ty) && 1409 "This is not a conversion to a SCEVable type!"); 1410 Ty = getEffectiveSCEVType(Ty); 1411 1412 // Fold if the operand is constant. 1413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1414 return getConstant( 1415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1416 1417 // zext(zext(x)) --> zext(x) 1418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1419 return getZeroExtendExpr(SZ->getOperand(), Ty); 1420 1421 // Before doing any expensive analysis, check to see if we've already 1422 // computed a SCEV for this Op and Ty. 1423 FoldingSetNodeID ID; 1424 ID.AddInteger(scZeroExtend); 1425 ID.AddPointer(Op); 1426 ID.AddPointer(Ty); 1427 void *IP = nullptr; 1428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1429 1430 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1432 // It's possible the bits taken off by the truncate were all zero bits. If 1433 // so, we should be able to simplify this further. 1434 const SCEV *X = ST->getOperand(); 1435 ConstantRange CR = getUnsignedRange(X); 1436 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1437 unsigned NewBits = getTypeSizeInBits(Ty); 1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1439 CR.zextOrTrunc(NewBits))) 1440 return getTruncateOrZeroExtend(X, Ty); 1441 } 1442 1443 // If the input value is a chrec scev, and we can prove that the value 1444 // did not overflow the old, smaller, value, we can zero extend all of the 1445 // operands (often constants). This allows analysis of something like 1446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1448 if (AR->isAffine()) { 1449 const SCEV *Start = AR->getStart(); 1450 const SCEV *Step = AR->getStepRecurrence(*this); 1451 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1452 const Loop *L = AR->getLoop(); 1453 1454 // If we have special knowledge that this addrec won't overflow, 1455 // we don't need to do any further analysis. 1456 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1457 return getAddRecExpr( 1458 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1459 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1460 1461 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1462 // Note that this serves two purposes: It filters out loops that are 1463 // simply not analyzable, and it covers the case where this code is 1464 // being called from within backedge-taken count analysis, such that 1465 // attempting to ask for the backedge-taken count would likely result 1466 // in infinite recursion. In the later case, the analysis code will 1467 // cope with a conservative value, and it will take care to purge 1468 // that value once it has finished. 1469 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1470 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1471 // Manually compute the final value for AR, checking for 1472 // overflow. 1473 1474 // Check whether the backedge-taken count can be losslessly casted to 1475 // the addrec's type. The count is always unsigned. 1476 const SCEV *CastedMaxBECount = 1477 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1478 const SCEV *RecastedMaxBECount = 1479 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1480 if (MaxBECount == RecastedMaxBECount) { 1481 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1482 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1483 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1484 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1485 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1486 const SCEV *WideMaxBECount = 1487 getZeroExtendExpr(CastedMaxBECount, WideTy); 1488 const SCEV *OperandExtendedAdd = 1489 getAddExpr(WideStart, 1490 getMulExpr(WideMaxBECount, 1491 getZeroExtendExpr(Step, WideTy))); 1492 if (ZAdd == OperandExtendedAdd) { 1493 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1494 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1495 // Return the expression with the addrec on the outside. 1496 return getAddRecExpr( 1497 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1498 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1499 } 1500 // Similar to above, only this time treat the step value as signed. 1501 // This covers loops that count down. 1502 OperandExtendedAdd = 1503 getAddExpr(WideStart, 1504 getMulExpr(WideMaxBECount, 1505 getSignExtendExpr(Step, WideTy))); 1506 if (ZAdd == OperandExtendedAdd) { 1507 // Cache knowledge of AR NW, which is propagated to this AddRec. 1508 // Negative step causes unsigned wrap, but it still can't self-wrap. 1509 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1510 // Return the expression with the addrec on the outside. 1511 return getAddRecExpr( 1512 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1513 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1514 } 1515 } 1516 1517 // If the backedge is guarded by a comparison with the pre-inc value 1518 // the addrec is safe. Also, if the entry is guarded by a comparison 1519 // with the start value and the backedge is guarded by a comparison 1520 // with the post-inc value, the addrec is safe. 1521 if (isKnownPositive(Step)) { 1522 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1523 getUnsignedRange(Step).getUnsignedMax()); 1524 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1525 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1526 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1527 AR->getPostIncExpr(*this), N))) { 1528 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1529 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1530 // Return the expression with the addrec on the outside. 1531 return getAddRecExpr( 1532 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1533 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1534 } 1535 } else if (isKnownNegative(Step)) { 1536 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1537 getSignedRange(Step).getSignedMin()); 1538 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1539 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1540 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1541 AR->getPostIncExpr(*this), N))) { 1542 // Cache knowledge of AR NW, which is propagated to this AddRec. 1543 // Negative step causes unsigned wrap, but it still can't self-wrap. 1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1545 // Return the expression with the addrec on the outside. 1546 return getAddRecExpr( 1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1548 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1549 } 1550 } 1551 } 1552 1553 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1554 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1555 return getAddRecExpr( 1556 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1557 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1558 } 1559 } 1560 1561 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1562 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1563 if (SA->getNoWrapFlags(SCEV::FlagNUW)) { 1564 // If the addition does not unsign overflow then we can, by definition, 1565 // commute the zero extension with the addition operation. 1566 SmallVector<const SCEV *, 4> Ops; 1567 for (const auto *Op : SA->operands()) 1568 Ops.push_back(getZeroExtendExpr(Op, Ty)); 1569 return getAddExpr(Ops, SCEV::FlagNUW); 1570 } 1571 } 1572 1573 // The cast wasn't folded; create an explicit cast node. 1574 // Recompute the insert position, as it may have been invalidated. 1575 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1576 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1577 Op, Ty); 1578 UniqueSCEVs.InsertNode(S, IP); 1579 return S; 1580 } 1581 1582 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1583 Type *Ty) { 1584 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1585 "This is not an extending conversion!"); 1586 assert(isSCEVable(Ty) && 1587 "This is not a conversion to a SCEVable type!"); 1588 Ty = getEffectiveSCEVType(Ty); 1589 1590 // Fold if the operand is constant. 1591 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1592 return getConstant( 1593 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1594 1595 // sext(sext(x)) --> sext(x) 1596 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1597 return getSignExtendExpr(SS->getOperand(), Ty); 1598 1599 // sext(zext(x)) --> zext(x) 1600 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1601 return getZeroExtendExpr(SZ->getOperand(), Ty); 1602 1603 // Before doing any expensive analysis, check to see if we've already 1604 // computed a SCEV for this Op and Ty. 1605 FoldingSetNodeID ID; 1606 ID.AddInteger(scSignExtend); 1607 ID.AddPointer(Op); 1608 ID.AddPointer(Ty); 1609 void *IP = nullptr; 1610 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1611 1612 // If the input value is provably positive, build a zext instead. 1613 if (isKnownNonNegative(Op)) 1614 return getZeroExtendExpr(Op, Ty); 1615 1616 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1617 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1618 // It's possible the bits taken off by the truncate were all sign bits. If 1619 // so, we should be able to simplify this further. 1620 const SCEV *X = ST->getOperand(); 1621 ConstantRange CR = getSignedRange(X); 1622 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1623 unsigned NewBits = getTypeSizeInBits(Ty); 1624 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1625 CR.sextOrTrunc(NewBits))) 1626 return getTruncateOrSignExtend(X, Ty); 1627 } 1628 1629 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1630 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1631 if (SA->getNumOperands() == 2) { 1632 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1633 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1634 if (SMul && SC1) { 1635 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1636 const APInt &C1 = SC1->getValue()->getValue(); 1637 const APInt &C2 = SC2->getValue()->getValue(); 1638 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1639 C2.ugt(C1) && C2.isPowerOf2()) 1640 return getAddExpr(getSignExtendExpr(SC1, Ty), 1641 getSignExtendExpr(SMul, Ty)); 1642 } 1643 } 1644 } 1645 1646 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1647 if (SA->getNoWrapFlags(SCEV::FlagNSW)) { 1648 // If the addition does not sign overflow then we can, by definition, 1649 // commute the sign extension with the addition operation. 1650 SmallVector<const SCEV *, 4> Ops; 1651 for (const auto *Op : SA->operands()) 1652 Ops.push_back(getSignExtendExpr(Op, Ty)); 1653 return getAddExpr(Ops, SCEV::FlagNSW); 1654 } 1655 } 1656 // If the input value is a chrec scev, and we can prove that the value 1657 // did not overflow the old, smaller, value, we can sign extend all of the 1658 // operands (often constants). This allows analysis of something like 1659 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1660 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1661 if (AR->isAffine()) { 1662 const SCEV *Start = AR->getStart(); 1663 const SCEV *Step = AR->getStepRecurrence(*this); 1664 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1665 const Loop *L = AR->getLoop(); 1666 1667 // If we have special knowledge that this addrec won't overflow, 1668 // we don't need to do any further analysis. 1669 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1670 return getAddRecExpr( 1671 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1672 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1673 1674 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1675 // Note that this serves two purposes: It filters out loops that are 1676 // simply not analyzable, and it covers the case where this code is 1677 // being called from within backedge-taken count analysis, such that 1678 // attempting to ask for the backedge-taken count would likely result 1679 // in infinite recursion. In the later case, the analysis code will 1680 // cope with a conservative value, and it will take care to purge 1681 // that value once it has finished. 1682 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1683 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1684 // Manually compute the final value for AR, checking for 1685 // overflow. 1686 1687 // Check whether the backedge-taken count can be losslessly casted to 1688 // the addrec's type. The count is always unsigned. 1689 const SCEV *CastedMaxBECount = 1690 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1691 const SCEV *RecastedMaxBECount = 1692 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1693 if (MaxBECount == RecastedMaxBECount) { 1694 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1695 // Check whether Start+Step*MaxBECount has no signed overflow. 1696 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1697 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1698 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1699 const SCEV *WideMaxBECount = 1700 getZeroExtendExpr(CastedMaxBECount, WideTy); 1701 const SCEV *OperandExtendedAdd = 1702 getAddExpr(WideStart, 1703 getMulExpr(WideMaxBECount, 1704 getSignExtendExpr(Step, WideTy))); 1705 if (SAdd == OperandExtendedAdd) { 1706 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1708 // Return the expression with the addrec on the outside. 1709 return getAddRecExpr( 1710 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1711 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1712 } 1713 // Similar to above, only this time treat the step value as unsigned. 1714 // This covers loops that count up with an unsigned step. 1715 OperandExtendedAdd = 1716 getAddExpr(WideStart, 1717 getMulExpr(WideMaxBECount, 1718 getZeroExtendExpr(Step, WideTy))); 1719 if (SAdd == OperandExtendedAdd) { 1720 // If AR wraps around then 1721 // 1722 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1723 // => SAdd != OperandExtendedAdd 1724 // 1725 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1726 // (SAdd == OperandExtendedAdd => AR is NW) 1727 1728 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1729 1730 // Return the expression with the addrec on the outside. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1733 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1734 } 1735 } 1736 1737 // If the backedge is guarded by a comparison with the pre-inc value 1738 // the addrec is safe. Also, if the entry is guarded by a comparison 1739 // with the start value and the backedge is guarded by a comparison 1740 // with the post-inc value, the addrec is safe. 1741 ICmpInst::Predicate Pred; 1742 const SCEV *OverflowLimit = 1743 getSignedOverflowLimitForStep(Step, &Pred, this); 1744 if (OverflowLimit && 1745 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1746 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1747 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1748 OverflowLimit)))) { 1749 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1750 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1751 return getAddRecExpr( 1752 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1753 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1754 } 1755 } 1756 // If Start and Step are constants, check if we can apply this 1757 // transformation: 1758 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1759 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1760 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1761 if (SC1 && SC2) { 1762 const APInt &C1 = SC1->getValue()->getValue(); 1763 const APInt &C2 = SC2->getValue()->getValue(); 1764 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1765 C2.isPowerOf2()) { 1766 Start = getSignExtendExpr(Start, Ty); 1767 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1768 AR->getNoWrapFlags()); 1769 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1770 } 1771 } 1772 1773 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1774 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1775 return getAddRecExpr( 1776 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1777 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1778 } 1779 } 1780 1781 // The cast wasn't folded; create an explicit cast node. 1782 // Recompute the insert position, as it may have been invalidated. 1783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1784 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1785 Op, Ty); 1786 UniqueSCEVs.InsertNode(S, IP); 1787 return S; 1788 } 1789 1790 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1791 /// unspecified bits out to the given type. 1792 /// 1793 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1794 Type *Ty) { 1795 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1796 "This is not an extending conversion!"); 1797 assert(isSCEVable(Ty) && 1798 "This is not a conversion to a SCEVable type!"); 1799 Ty = getEffectiveSCEVType(Ty); 1800 1801 // Sign-extend negative constants. 1802 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1803 if (SC->getValue()->getValue().isNegative()) 1804 return getSignExtendExpr(Op, Ty); 1805 1806 // Peel off a truncate cast. 1807 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1808 const SCEV *NewOp = T->getOperand(); 1809 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1810 return getAnyExtendExpr(NewOp, Ty); 1811 return getTruncateOrNoop(NewOp, Ty); 1812 } 1813 1814 // Next try a zext cast. If the cast is folded, use it. 1815 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1816 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1817 return ZExt; 1818 1819 // Next try a sext cast. If the cast is folded, use it. 1820 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1821 if (!isa<SCEVSignExtendExpr>(SExt)) 1822 return SExt; 1823 1824 // Force the cast to be folded into the operands of an addrec. 1825 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1826 SmallVector<const SCEV *, 4> Ops; 1827 for (const SCEV *Op : AR->operands()) 1828 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1829 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1830 } 1831 1832 // If the expression is obviously signed, use the sext cast value. 1833 if (isa<SCEVSMaxExpr>(Op)) 1834 return SExt; 1835 1836 // Absent any other information, use the zext cast value. 1837 return ZExt; 1838 } 1839 1840 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1841 /// a list of operands to be added under the given scale, update the given 1842 /// map. This is a helper function for getAddRecExpr. As an example of 1843 /// what it does, given a sequence of operands that would form an add 1844 /// expression like this: 1845 /// 1846 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1847 /// 1848 /// where A and B are constants, update the map with these values: 1849 /// 1850 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1851 /// 1852 /// and add 13 + A*B*29 to AccumulatedConstant. 1853 /// This will allow getAddRecExpr to produce this: 1854 /// 1855 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1856 /// 1857 /// This form often exposes folding opportunities that are hidden in 1858 /// the original operand list. 1859 /// 1860 /// Return true iff it appears that any interesting folding opportunities 1861 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1862 /// the common case where no interesting opportunities are present, and 1863 /// is also used as a check to avoid infinite recursion. 1864 /// 1865 static bool 1866 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1867 SmallVectorImpl<const SCEV *> &NewOps, 1868 APInt &AccumulatedConstant, 1869 const SCEV *const *Ops, size_t NumOperands, 1870 const APInt &Scale, 1871 ScalarEvolution &SE) { 1872 bool Interesting = false; 1873 1874 // Iterate over the add operands. They are sorted, with constants first. 1875 unsigned i = 0; 1876 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1877 ++i; 1878 // Pull a buried constant out to the outside. 1879 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1880 Interesting = true; 1881 AccumulatedConstant += Scale * C->getValue()->getValue(); 1882 } 1883 1884 // Next comes everything else. We're especially interested in multiplies 1885 // here, but they're in the middle, so just visit the rest with one loop. 1886 for (; i != NumOperands; ++i) { 1887 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1888 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1889 APInt NewScale = 1890 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1891 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1892 // A multiplication of a constant with another add; recurse. 1893 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1894 Interesting |= 1895 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1896 Add->op_begin(), Add->getNumOperands(), 1897 NewScale, SE); 1898 } else { 1899 // A multiplication of a constant with some other value. Update 1900 // the map. 1901 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1902 const SCEV *Key = SE.getMulExpr(MulOps); 1903 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1904 if (Pair.second) { 1905 NewOps.push_back(Pair.first->first); 1906 } else { 1907 Pair.first->second += NewScale; 1908 // The map already had an entry for this value, which may indicate 1909 // a folding opportunity. 1910 Interesting = true; 1911 } 1912 } 1913 } else { 1914 // An ordinary operand. Update the map. 1915 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1916 M.insert(std::make_pair(Ops[i], Scale)); 1917 if (Pair.second) { 1918 NewOps.push_back(Pair.first->first); 1919 } else { 1920 Pair.first->second += Scale; 1921 // The map already had an entry for this value, which may indicate 1922 // a folding opportunity. 1923 Interesting = true; 1924 } 1925 } 1926 } 1927 1928 return Interesting; 1929 } 1930 1931 namespace { 1932 struct APIntCompare { 1933 bool operator()(const APInt &LHS, const APInt &RHS) const { 1934 return LHS.ult(RHS); 1935 } 1936 }; 1937 } 1938 1939 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1940 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1941 // can't-overflow flags for the operation if possible. 1942 static SCEV::NoWrapFlags 1943 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1944 const SmallVectorImpl<const SCEV *> &Ops, 1945 SCEV::NoWrapFlags Flags) { 1946 using namespace std::placeholders; 1947 typedef OverflowingBinaryOperator OBO; 1948 1949 bool CanAnalyze = 1950 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1951 (void)CanAnalyze; 1952 assert(CanAnalyze && "don't call from other places!"); 1953 1954 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1955 SCEV::NoWrapFlags SignOrUnsignWrap = 1956 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1957 1958 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1959 auto IsKnownNonNegative = 1960 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1961 1962 if (SignOrUnsignWrap == SCEV::FlagNSW && 1963 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1964 Flags = 1965 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 1966 1967 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 1968 1969 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 1970 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 1971 1972 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 1973 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 1974 1975 const APInt &C = cast<SCEVConstant>(Ops[0])->getValue()->getValue(); 1976 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 1977 auto NSWRegion = 1978 ConstantRange::makeNoWrapRegion(Instruction::Add, C, OBO::NoSignedWrap); 1979 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 1980 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 1981 } 1982 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 1983 auto NUWRegion = 1984 ConstantRange::makeNoWrapRegion(Instruction::Add, C, 1985 OBO::NoUnsignedWrap); 1986 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 1987 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 1988 } 1989 } 1990 1991 return Flags; 1992 } 1993 1994 /// getAddExpr - Get a canonical add expression, or something simpler if 1995 /// possible. 1996 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1997 SCEV::NoWrapFlags Flags) { 1998 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1999 "only nuw or nsw allowed"); 2000 assert(!Ops.empty() && "Cannot get empty add!"); 2001 if (Ops.size() == 1) return Ops[0]; 2002 #ifndef NDEBUG 2003 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2004 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2005 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2006 "SCEVAddExpr operand types don't match!"); 2007 #endif 2008 2009 // Sort by complexity, this groups all similar expression types together. 2010 GroupByComplexity(Ops, &LI); 2011 2012 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2013 2014 // If there are any constants, fold them together. 2015 unsigned Idx = 0; 2016 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2017 ++Idx; 2018 assert(Idx < Ops.size()); 2019 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2020 // We found two constants, fold them together! 2021 Ops[0] = getConstant(LHSC->getValue()->getValue() + 2022 RHSC->getValue()->getValue()); 2023 if (Ops.size() == 2) return Ops[0]; 2024 Ops.erase(Ops.begin()+1); // Erase the folded element 2025 LHSC = cast<SCEVConstant>(Ops[0]); 2026 } 2027 2028 // If we are left with a constant zero being added, strip it off. 2029 if (LHSC->getValue()->isZero()) { 2030 Ops.erase(Ops.begin()); 2031 --Idx; 2032 } 2033 2034 if (Ops.size() == 1) return Ops[0]; 2035 } 2036 2037 // Okay, check to see if the same value occurs in the operand list more than 2038 // once. If so, merge them together into an multiply expression. Since we 2039 // sorted the list, these values are required to be adjacent. 2040 Type *Ty = Ops[0]->getType(); 2041 bool FoundMatch = false; 2042 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2043 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2044 // Scan ahead to count how many equal operands there are. 2045 unsigned Count = 2; 2046 while (i+Count != e && Ops[i+Count] == Ops[i]) 2047 ++Count; 2048 // Merge the values into a multiply. 2049 const SCEV *Scale = getConstant(Ty, Count); 2050 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2051 if (Ops.size() == Count) 2052 return Mul; 2053 Ops[i] = Mul; 2054 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2055 --i; e -= Count - 1; 2056 FoundMatch = true; 2057 } 2058 if (FoundMatch) 2059 return getAddExpr(Ops, Flags); 2060 2061 // Check for truncates. If all the operands are truncated from the same 2062 // type, see if factoring out the truncate would permit the result to be 2063 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2064 // if the contents of the resulting outer trunc fold to something simple. 2065 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2066 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2067 Type *DstType = Trunc->getType(); 2068 Type *SrcType = Trunc->getOperand()->getType(); 2069 SmallVector<const SCEV *, 8> LargeOps; 2070 bool Ok = true; 2071 // Check all the operands to see if they can be represented in the 2072 // source type of the truncate. 2073 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2074 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2075 if (T->getOperand()->getType() != SrcType) { 2076 Ok = false; 2077 break; 2078 } 2079 LargeOps.push_back(T->getOperand()); 2080 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2081 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2082 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2083 SmallVector<const SCEV *, 8> LargeMulOps; 2084 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2085 if (const SCEVTruncateExpr *T = 2086 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2087 if (T->getOperand()->getType() != SrcType) { 2088 Ok = false; 2089 break; 2090 } 2091 LargeMulOps.push_back(T->getOperand()); 2092 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2093 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2094 } else { 2095 Ok = false; 2096 break; 2097 } 2098 } 2099 if (Ok) 2100 LargeOps.push_back(getMulExpr(LargeMulOps)); 2101 } else { 2102 Ok = false; 2103 break; 2104 } 2105 } 2106 if (Ok) { 2107 // Evaluate the expression in the larger type. 2108 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2109 // If it folds to something simple, use it. Otherwise, don't. 2110 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2111 return getTruncateExpr(Fold, DstType); 2112 } 2113 } 2114 2115 // Skip past any other cast SCEVs. 2116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2117 ++Idx; 2118 2119 // If there are add operands they would be next. 2120 if (Idx < Ops.size()) { 2121 bool DeletedAdd = false; 2122 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2123 // If we have an add, expand the add operands onto the end of the operands 2124 // list. 2125 Ops.erase(Ops.begin()+Idx); 2126 Ops.append(Add->op_begin(), Add->op_end()); 2127 DeletedAdd = true; 2128 } 2129 2130 // If we deleted at least one add, we added operands to the end of the list, 2131 // and they are not necessarily sorted. Recurse to resort and resimplify 2132 // any operands we just acquired. 2133 if (DeletedAdd) 2134 return getAddExpr(Ops); 2135 } 2136 2137 // Skip over the add expression until we get to a multiply. 2138 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2139 ++Idx; 2140 2141 // Check to see if there are any folding opportunities present with 2142 // operands multiplied by constant values. 2143 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2144 uint64_t BitWidth = getTypeSizeInBits(Ty); 2145 DenseMap<const SCEV *, APInt> M; 2146 SmallVector<const SCEV *, 8> NewOps; 2147 APInt AccumulatedConstant(BitWidth, 0); 2148 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2149 Ops.data(), Ops.size(), 2150 APInt(BitWidth, 1), *this)) { 2151 // Some interesting folding opportunity is present, so its worthwhile to 2152 // re-generate the operands list. Group the operands by constant scale, 2153 // to avoid multiplying by the same constant scale multiple times. 2154 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2155 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2156 E = NewOps.end(); I != E; ++I) 2157 MulOpLists[M.find(*I)->second].push_back(*I); 2158 // Re-generate the operands list. 2159 Ops.clear(); 2160 if (AccumulatedConstant != 0) 2161 Ops.push_back(getConstant(AccumulatedConstant)); 2162 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2163 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2164 if (I->first != 0) 2165 Ops.push_back(getMulExpr(getConstant(I->first), 2166 getAddExpr(I->second))); 2167 if (Ops.empty()) 2168 return getZero(Ty); 2169 if (Ops.size() == 1) 2170 return Ops[0]; 2171 return getAddExpr(Ops); 2172 } 2173 } 2174 2175 // If we are adding something to a multiply expression, make sure the 2176 // something is not already an operand of the multiply. If so, merge it into 2177 // the multiply. 2178 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2179 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2180 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2181 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2182 if (isa<SCEVConstant>(MulOpSCEV)) 2183 continue; 2184 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2185 if (MulOpSCEV == Ops[AddOp]) { 2186 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2187 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2188 if (Mul->getNumOperands() != 2) { 2189 // If the multiply has more than two operands, we must get the 2190 // Y*Z term. 2191 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2192 Mul->op_begin()+MulOp); 2193 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2194 InnerMul = getMulExpr(MulOps); 2195 } 2196 const SCEV *One = getOne(Ty); 2197 const SCEV *AddOne = getAddExpr(One, InnerMul); 2198 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2199 if (Ops.size() == 2) return OuterMul; 2200 if (AddOp < Idx) { 2201 Ops.erase(Ops.begin()+AddOp); 2202 Ops.erase(Ops.begin()+Idx-1); 2203 } else { 2204 Ops.erase(Ops.begin()+Idx); 2205 Ops.erase(Ops.begin()+AddOp-1); 2206 } 2207 Ops.push_back(OuterMul); 2208 return getAddExpr(Ops); 2209 } 2210 2211 // Check this multiply against other multiplies being added together. 2212 for (unsigned OtherMulIdx = Idx+1; 2213 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2214 ++OtherMulIdx) { 2215 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2216 // If MulOp occurs in OtherMul, we can fold the two multiplies 2217 // together. 2218 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2219 OMulOp != e; ++OMulOp) 2220 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2221 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2222 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2223 if (Mul->getNumOperands() != 2) { 2224 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2225 Mul->op_begin()+MulOp); 2226 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2227 InnerMul1 = getMulExpr(MulOps); 2228 } 2229 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2230 if (OtherMul->getNumOperands() != 2) { 2231 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2232 OtherMul->op_begin()+OMulOp); 2233 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2234 InnerMul2 = getMulExpr(MulOps); 2235 } 2236 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2237 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2238 if (Ops.size() == 2) return OuterMul; 2239 Ops.erase(Ops.begin()+Idx); 2240 Ops.erase(Ops.begin()+OtherMulIdx-1); 2241 Ops.push_back(OuterMul); 2242 return getAddExpr(Ops); 2243 } 2244 } 2245 } 2246 } 2247 2248 // If there are any add recurrences in the operands list, see if any other 2249 // added values are loop invariant. If so, we can fold them into the 2250 // recurrence. 2251 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2252 ++Idx; 2253 2254 // Scan over all recurrences, trying to fold loop invariants into them. 2255 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2256 // Scan all of the other operands to this add and add them to the vector if 2257 // they are loop invariant w.r.t. the recurrence. 2258 SmallVector<const SCEV *, 8> LIOps; 2259 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2260 const Loop *AddRecLoop = AddRec->getLoop(); 2261 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2262 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2263 LIOps.push_back(Ops[i]); 2264 Ops.erase(Ops.begin()+i); 2265 --i; --e; 2266 } 2267 2268 // If we found some loop invariants, fold them into the recurrence. 2269 if (!LIOps.empty()) { 2270 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2271 LIOps.push_back(AddRec->getStart()); 2272 2273 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2274 AddRec->op_end()); 2275 AddRecOps[0] = getAddExpr(LIOps); 2276 2277 // Build the new addrec. Propagate the NUW and NSW flags if both the 2278 // outer add and the inner addrec are guaranteed to have no overflow. 2279 // Always propagate NW. 2280 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2281 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2282 2283 // If all of the other operands were loop invariant, we are done. 2284 if (Ops.size() == 1) return NewRec; 2285 2286 // Otherwise, add the folded AddRec by the non-invariant parts. 2287 for (unsigned i = 0;; ++i) 2288 if (Ops[i] == AddRec) { 2289 Ops[i] = NewRec; 2290 break; 2291 } 2292 return getAddExpr(Ops); 2293 } 2294 2295 // Okay, if there weren't any loop invariants to be folded, check to see if 2296 // there are multiple AddRec's with the same loop induction variable being 2297 // added together. If so, we can fold them. 2298 for (unsigned OtherIdx = Idx+1; 2299 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2300 ++OtherIdx) 2301 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2302 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2303 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2304 AddRec->op_end()); 2305 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2306 ++OtherIdx) 2307 if (const SCEVAddRecExpr *OtherAddRec = 2308 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2309 if (OtherAddRec->getLoop() == AddRecLoop) { 2310 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2311 i != e; ++i) { 2312 if (i >= AddRecOps.size()) { 2313 AddRecOps.append(OtherAddRec->op_begin()+i, 2314 OtherAddRec->op_end()); 2315 break; 2316 } 2317 AddRecOps[i] = getAddExpr(AddRecOps[i], 2318 OtherAddRec->getOperand(i)); 2319 } 2320 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2321 } 2322 // Step size has changed, so we cannot guarantee no self-wraparound. 2323 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2324 return getAddExpr(Ops); 2325 } 2326 2327 // Otherwise couldn't fold anything into this recurrence. Move onto the 2328 // next one. 2329 } 2330 2331 // Okay, it looks like we really DO need an add expr. Check to see if we 2332 // already have one, otherwise create a new one. 2333 FoldingSetNodeID ID; 2334 ID.AddInteger(scAddExpr); 2335 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2336 ID.AddPointer(Ops[i]); 2337 void *IP = nullptr; 2338 SCEVAddExpr *S = 2339 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2340 if (!S) { 2341 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2342 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2343 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2344 O, Ops.size()); 2345 UniqueSCEVs.InsertNode(S, IP); 2346 } 2347 S->setNoWrapFlags(Flags); 2348 return S; 2349 } 2350 2351 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2352 uint64_t k = i*j; 2353 if (j > 1 && k / j != i) Overflow = true; 2354 return k; 2355 } 2356 2357 /// Compute the result of "n choose k", the binomial coefficient. If an 2358 /// intermediate computation overflows, Overflow will be set and the return will 2359 /// be garbage. Overflow is not cleared on absence of overflow. 2360 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2361 // We use the multiplicative formula: 2362 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2363 // At each iteration, we take the n-th term of the numeral and divide by the 2364 // (k-n)th term of the denominator. This division will always produce an 2365 // integral result, and helps reduce the chance of overflow in the 2366 // intermediate computations. However, we can still overflow even when the 2367 // final result would fit. 2368 2369 if (n == 0 || n == k) return 1; 2370 if (k > n) return 0; 2371 2372 if (k > n/2) 2373 k = n-k; 2374 2375 uint64_t r = 1; 2376 for (uint64_t i = 1; i <= k; ++i) { 2377 r = umul_ov(r, n-(i-1), Overflow); 2378 r /= i; 2379 } 2380 return r; 2381 } 2382 2383 /// Determine if any of the operands in this SCEV are a constant or if 2384 /// any of the add or multiply expressions in this SCEV contain a constant. 2385 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2386 SmallVector<const SCEV *, 4> Ops; 2387 Ops.push_back(StartExpr); 2388 while (!Ops.empty()) { 2389 const SCEV *CurrentExpr = Ops.pop_back_val(); 2390 if (isa<SCEVConstant>(*CurrentExpr)) 2391 return true; 2392 2393 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2394 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2395 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2396 } 2397 } 2398 return false; 2399 } 2400 2401 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2402 /// possible. 2403 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2404 SCEV::NoWrapFlags Flags) { 2405 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2406 "only nuw or nsw allowed"); 2407 assert(!Ops.empty() && "Cannot get empty mul!"); 2408 if (Ops.size() == 1) return Ops[0]; 2409 #ifndef NDEBUG 2410 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2411 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2412 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2413 "SCEVMulExpr operand types don't match!"); 2414 #endif 2415 2416 // Sort by complexity, this groups all similar expression types together. 2417 GroupByComplexity(Ops, &LI); 2418 2419 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2420 2421 // If there are any constants, fold them together. 2422 unsigned Idx = 0; 2423 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2424 2425 // C1*(C2+V) -> C1*C2 + C1*V 2426 if (Ops.size() == 2) 2427 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2428 // If any of Add's ops are Adds or Muls with a constant, 2429 // apply this transformation as well. 2430 if (Add->getNumOperands() == 2) 2431 if (containsConstantSomewhere(Add)) 2432 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2433 getMulExpr(LHSC, Add->getOperand(1))); 2434 2435 ++Idx; 2436 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2437 // We found two constants, fold them together! 2438 ConstantInt *Fold = ConstantInt::get(getContext(), 2439 LHSC->getValue()->getValue() * 2440 RHSC->getValue()->getValue()); 2441 Ops[0] = getConstant(Fold); 2442 Ops.erase(Ops.begin()+1); // Erase the folded element 2443 if (Ops.size() == 1) return Ops[0]; 2444 LHSC = cast<SCEVConstant>(Ops[0]); 2445 } 2446 2447 // If we are left with a constant one being multiplied, strip it off. 2448 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2449 Ops.erase(Ops.begin()); 2450 --Idx; 2451 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2452 // If we have a multiply of zero, it will always be zero. 2453 return Ops[0]; 2454 } else if (Ops[0]->isAllOnesValue()) { 2455 // If we have a mul by -1 of an add, try distributing the -1 among the 2456 // add operands. 2457 if (Ops.size() == 2) { 2458 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2459 SmallVector<const SCEV *, 4> NewOps; 2460 bool AnyFolded = false; 2461 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2462 E = Add->op_end(); I != E; ++I) { 2463 const SCEV *Mul = getMulExpr(Ops[0], *I); 2464 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2465 NewOps.push_back(Mul); 2466 } 2467 if (AnyFolded) 2468 return getAddExpr(NewOps); 2469 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2470 // Negation preserves a recurrence's no self-wrap property. 2471 SmallVector<const SCEV *, 4> Operands; 2472 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2473 E = AddRec->op_end(); I != E; ++I) { 2474 Operands.push_back(getMulExpr(Ops[0], *I)); 2475 } 2476 return getAddRecExpr(Operands, AddRec->getLoop(), 2477 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2478 } 2479 } 2480 } 2481 2482 if (Ops.size() == 1) 2483 return Ops[0]; 2484 } 2485 2486 // Skip over the add expression until we get to a multiply. 2487 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2488 ++Idx; 2489 2490 // If there are mul operands inline them all into this expression. 2491 if (Idx < Ops.size()) { 2492 bool DeletedMul = false; 2493 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2494 // If we have an mul, expand the mul operands onto the end of the operands 2495 // list. 2496 Ops.erase(Ops.begin()+Idx); 2497 Ops.append(Mul->op_begin(), Mul->op_end()); 2498 DeletedMul = true; 2499 } 2500 2501 // If we deleted at least one mul, we added operands to the end of the list, 2502 // and they are not necessarily sorted. Recurse to resort and resimplify 2503 // any operands we just acquired. 2504 if (DeletedMul) 2505 return getMulExpr(Ops); 2506 } 2507 2508 // If there are any add recurrences in the operands list, see if any other 2509 // added values are loop invariant. If so, we can fold them into the 2510 // recurrence. 2511 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2512 ++Idx; 2513 2514 // Scan over all recurrences, trying to fold loop invariants into them. 2515 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2516 // Scan all of the other operands to this mul and add them to the vector if 2517 // they are loop invariant w.r.t. the recurrence. 2518 SmallVector<const SCEV *, 8> LIOps; 2519 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2520 const Loop *AddRecLoop = AddRec->getLoop(); 2521 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2522 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2523 LIOps.push_back(Ops[i]); 2524 Ops.erase(Ops.begin()+i); 2525 --i; --e; 2526 } 2527 2528 // If we found some loop invariants, fold them into the recurrence. 2529 if (!LIOps.empty()) { 2530 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2531 SmallVector<const SCEV *, 4> NewOps; 2532 NewOps.reserve(AddRec->getNumOperands()); 2533 const SCEV *Scale = getMulExpr(LIOps); 2534 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2535 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2536 2537 // Build the new addrec. Propagate the NUW and NSW flags if both the 2538 // outer mul and the inner addrec are guaranteed to have no overflow. 2539 // 2540 // No self-wrap cannot be guaranteed after changing the step size, but 2541 // will be inferred if either NUW or NSW is true. 2542 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2543 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2544 2545 // If all of the other operands were loop invariant, we are done. 2546 if (Ops.size() == 1) return NewRec; 2547 2548 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2549 for (unsigned i = 0;; ++i) 2550 if (Ops[i] == AddRec) { 2551 Ops[i] = NewRec; 2552 break; 2553 } 2554 return getMulExpr(Ops); 2555 } 2556 2557 // Okay, if there weren't any loop invariants to be folded, check to see if 2558 // there are multiple AddRec's with the same loop induction variable being 2559 // multiplied together. If so, we can fold them. 2560 2561 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2562 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2563 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2564 // ]]],+,...up to x=2n}. 2565 // Note that the arguments to choose() are always integers with values 2566 // known at compile time, never SCEV objects. 2567 // 2568 // The implementation avoids pointless extra computations when the two 2569 // addrec's are of different length (mathematically, it's equivalent to 2570 // an infinite stream of zeros on the right). 2571 bool OpsModified = false; 2572 for (unsigned OtherIdx = Idx+1; 2573 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2574 ++OtherIdx) { 2575 const SCEVAddRecExpr *OtherAddRec = 2576 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2577 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2578 continue; 2579 2580 bool Overflow = false; 2581 Type *Ty = AddRec->getType(); 2582 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2583 SmallVector<const SCEV*, 7> AddRecOps; 2584 for (int x = 0, xe = AddRec->getNumOperands() + 2585 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2586 const SCEV *Term = getZero(Ty); 2587 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2588 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2589 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2590 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2591 z < ze && !Overflow; ++z) { 2592 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2593 uint64_t Coeff; 2594 if (LargerThan64Bits) 2595 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2596 else 2597 Coeff = Coeff1*Coeff2; 2598 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2599 const SCEV *Term1 = AddRec->getOperand(y-z); 2600 const SCEV *Term2 = OtherAddRec->getOperand(z); 2601 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2602 } 2603 } 2604 AddRecOps.push_back(Term); 2605 } 2606 if (!Overflow) { 2607 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2608 SCEV::FlagAnyWrap); 2609 if (Ops.size() == 2) return NewAddRec; 2610 Ops[Idx] = NewAddRec; 2611 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2612 OpsModified = true; 2613 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2614 if (!AddRec) 2615 break; 2616 } 2617 } 2618 if (OpsModified) 2619 return getMulExpr(Ops); 2620 2621 // Otherwise couldn't fold anything into this recurrence. Move onto the 2622 // next one. 2623 } 2624 2625 // Okay, it looks like we really DO need an mul expr. Check to see if we 2626 // already have one, otherwise create a new one. 2627 FoldingSetNodeID ID; 2628 ID.AddInteger(scMulExpr); 2629 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2630 ID.AddPointer(Ops[i]); 2631 void *IP = nullptr; 2632 SCEVMulExpr *S = 2633 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2634 if (!S) { 2635 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2636 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2637 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2638 O, Ops.size()); 2639 UniqueSCEVs.InsertNode(S, IP); 2640 } 2641 S->setNoWrapFlags(Flags); 2642 return S; 2643 } 2644 2645 /// getUDivExpr - Get a canonical unsigned division expression, or something 2646 /// simpler if possible. 2647 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2648 const SCEV *RHS) { 2649 assert(getEffectiveSCEVType(LHS->getType()) == 2650 getEffectiveSCEVType(RHS->getType()) && 2651 "SCEVUDivExpr operand types don't match!"); 2652 2653 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2654 if (RHSC->getValue()->equalsInt(1)) 2655 return LHS; // X udiv 1 --> x 2656 // If the denominator is zero, the result of the udiv is undefined. Don't 2657 // try to analyze it, because the resolution chosen here may differ from 2658 // the resolution chosen in other parts of the compiler. 2659 if (!RHSC->getValue()->isZero()) { 2660 // Determine if the division can be folded into the operands of 2661 // its operands. 2662 // TODO: Generalize this to non-constants by using known-bits information. 2663 Type *Ty = LHS->getType(); 2664 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2665 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2666 // For non-power-of-two values, effectively round the value up to the 2667 // nearest power of two. 2668 if (!RHSC->getValue()->getValue().isPowerOf2()) 2669 ++MaxShiftAmt; 2670 IntegerType *ExtTy = 2671 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2672 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2673 if (const SCEVConstant *Step = 2674 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2675 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2676 const APInt &StepInt = Step->getValue()->getValue(); 2677 const APInt &DivInt = RHSC->getValue()->getValue(); 2678 if (!StepInt.urem(DivInt) && 2679 getZeroExtendExpr(AR, ExtTy) == 2680 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2681 getZeroExtendExpr(Step, ExtTy), 2682 AR->getLoop(), SCEV::FlagAnyWrap)) { 2683 SmallVector<const SCEV *, 4> Operands; 2684 for (const SCEV *Op : AR->operands()) 2685 Operands.push_back(getUDivExpr(Op, RHS)); 2686 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2687 } 2688 /// Get a canonical UDivExpr for a recurrence. 2689 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2690 // We can currently only fold X%N if X is constant. 2691 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2692 if (StartC && !DivInt.urem(StepInt) && 2693 getZeroExtendExpr(AR, ExtTy) == 2694 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2695 getZeroExtendExpr(Step, ExtTy), 2696 AR->getLoop(), SCEV::FlagAnyWrap)) { 2697 const APInt &StartInt = StartC->getValue()->getValue(); 2698 const APInt &StartRem = StartInt.urem(StepInt); 2699 if (StartRem != 0) 2700 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2701 AR->getLoop(), SCEV::FlagNW); 2702 } 2703 } 2704 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2705 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2706 SmallVector<const SCEV *, 4> Operands; 2707 for (const SCEV *Op : M->operands()) 2708 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2709 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2710 // Find an operand that's safely divisible. 2711 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2712 const SCEV *Op = M->getOperand(i); 2713 const SCEV *Div = getUDivExpr(Op, RHSC); 2714 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2715 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2716 M->op_end()); 2717 Operands[i] = Div; 2718 return getMulExpr(Operands); 2719 } 2720 } 2721 } 2722 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2723 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2724 SmallVector<const SCEV *, 4> Operands; 2725 for (const SCEV *Op : A->operands()) 2726 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2727 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2728 Operands.clear(); 2729 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2730 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2731 if (isa<SCEVUDivExpr>(Op) || 2732 getMulExpr(Op, RHS) != A->getOperand(i)) 2733 break; 2734 Operands.push_back(Op); 2735 } 2736 if (Operands.size() == A->getNumOperands()) 2737 return getAddExpr(Operands); 2738 } 2739 } 2740 2741 // Fold if both operands are constant. 2742 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2743 Constant *LHSCV = LHSC->getValue(); 2744 Constant *RHSCV = RHSC->getValue(); 2745 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2746 RHSCV))); 2747 } 2748 } 2749 } 2750 2751 FoldingSetNodeID ID; 2752 ID.AddInteger(scUDivExpr); 2753 ID.AddPointer(LHS); 2754 ID.AddPointer(RHS); 2755 void *IP = nullptr; 2756 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2757 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2758 LHS, RHS); 2759 UniqueSCEVs.InsertNode(S, IP); 2760 return S; 2761 } 2762 2763 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2764 APInt A = C1->getValue()->getValue().abs(); 2765 APInt B = C2->getValue()->getValue().abs(); 2766 uint32_t ABW = A.getBitWidth(); 2767 uint32_t BBW = B.getBitWidth(); 2768 2769 if (ABW > BBW) 2770 B = B.zext(ABW); 2771 else if (ABW < BBW) 2772 A = A.zext(BBW); 2773 2774 return APIntOps::GreatestCommonDivisor(A, B); 2775 } 2776 2777 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2778 /// something simpler if possible. There is no representation for an exact udiv 2779 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2780 /// We can't do this when it's not exact because the udiv may be clearing bits. 2781 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2782 const SCEV *RHS) { 2783 // TODO: we could try to find factors in all sorts of things, but for now we 2784 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2785 // end of this file for inspiration. 2786 2787 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2788 if (!Mul) 2789 return getUDivExpr(LHS, RHS); 2790 2791 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2792 // If the mulexpr multiplies by a constant, then that constant must be the 2793 // first element of the mulexpr. 2794 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2795 if (LHSCst == RHSCst) { 2796 SmallVector<const SCEV *, 2> Operands; 2797 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2798 return getMulExpr(Operands); 2799 } 2800 2801 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2802 // that there's a factor provided by one of the other terms. We need to 2803 // check. 2804 APInt Factor = gcd(LHSCst, RHSCst); 2805 if (!Factor.isIntN(1)) { 2806 LHSCst = cast<SCEVConstant>( 2807 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2808 RHSCst = cast<SCEVConstant>( 2809 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2810 SmallVector<const SCEV *, 2> Operands; 2811 Operands.push_back(LHSCst); 2812 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2813 LHS = getMulExpr(Operands); 2814 RHS = RHSCst; 2815 Mul = dyn_cast<SCEVMulExpr>(LHS); 2816 if (!Mul) 2817 return getUDivExactExpr(LHS, RHS); 2818 } 2819 } 2820 } 2821 2822 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2823 if (Mul->getOperand(i) == RHS) { 2824 SmallVector<const SCEV *, 2> Operands; 2825 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2826 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2827 return getMulExpr(Operands); 2828 } 2829 } 2830 2831 return getUDivExpr(LHS, RHS); 2832 } 2833 2834 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2835 /// Simplify the expression as much as possible. 2836 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2837 const Loop *L, 2838 SCEV::NoWrapFlags Flags) { 2839 SmallVector<const SCEV *, 4> Operands; 2840 Operands.push_back(Start); 2841 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2842 if (StepChrec->getLoop() == L) { 2843 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2844 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2845 } 2846 2847 Operands.push_back(Step); 2848 return getAddRecExpr(Operands, L, Flags); 2849 } 2850 2851 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2852 /// Simplify the expression as much as possible. 2853 const SCEV * 2854 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2855 const Loop *L, SCEV::NoWrapFlags Flags) { 2856 if (Operands.size() == 1) return Operands[0]; 2857 #ifndef NDEBUG 2858 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2859 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2860 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2861 "SCEVAddRecExpr operand types don't match!"); 2862 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2863 assert(isLoopInvariant(Operands[i], L) && 2864 "SCEVAddRecExpr operand is not loop-invariant!"); 2865 #endif 2866 2867 if (Operands.back()->isZero()) { 2868 Operands.pop_back(); 2869 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2870 } 2871 2872 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2873 // use that information to infer NUW and NSW flags. However, computing a 2874 // BE count requires calling getAddRecExpr, so we may not yet have a 2875 // meaningful BE count at this point (and if we don't, we'd be stuck 2876 // with a SCEVCouldNotCompute as the cached BE count). 2877 2878 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2879 2880 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2881 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2882 const Loop *NestedLoop = NestedAR->getLoop(); 2883 if (L->contains(NestedLoop) 2884 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2885 : (!NestedLoop->contains(L) && 2886 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2887 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2888 NestedAR->op_end()); 2889 Operands[0] = NestedAR->getStart(); 2890 // AddRecs require their operands be loop-invariant with respect to their 2891 // loops. Don't perform this transformation if it would break this 2892 // requirement. 2893 bool AllInvariant = 2894 std::all_of(Operands.begin(), Operands.end(), 2895 [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 2896 2897 if (AllInvariant) { 2898 // Create a recurrence for the outer loop with the same step size. 2899 // 2900 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2901 // inner recurrence has the same property. 2902 SCEV::NoWrapFlags OuterFlags = 2903 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2904 2905 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2906 AllInvariant = std::all_of( 2907 NestedOperands.begin(), NestedOperands.end(), 2908 [&](const SCEV *Op) { return isLoopInvariant(Op, NestedLoop); }); 2909 2910 if (AllInvariant) { 2911 // Ok, both add recurrences are valid after the transformation. 2912 // 2913 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2914 // the outer recurrence has the same property. 2915 SCEV::NoWrapFlags InnerFlags = 2916 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2917 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2918 } 2919 } 2920 // Reset Operands to its original state. 2921 Operands[0] = NestedAR; 2922 } 2923 } 2924 2925 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2926 // already have one, otherwise create a new one. 2927 FoldingSetNodeID ID; 2928 ID.AddInteger(scAddRecExpr); 2929 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2930 ID.AddPointer(Operands[i]); 2931 ID.AddPointer(L); 2932 void *IP = nullptr; 2933 SCEVAddRecExpr *S = 2934 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2935 if (!S) { 2936 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2937 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2938 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2939 O, Operands.size(), L); 2940 UniqueSCEVs.InsertNode(S, IP); 2941 } 2942 S->setNoWrapFlags(Flags); 2943 return S; 2944 } 2945 2946 const SCEV * 2947 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2948 const SmallVectorImpl<const SCEV *> &IndexExprs, 2949 bool InBounds) { 2950 // getSCEV(Base)->getType() has the same address space as Base->getType() 2951 // because SCEV::getType() preserves the address space. 2952 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2953 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2954 // instruction to its SCEV, because the Instruction may be guarded by control 2955 // flow and the no-overflow bits may not be valid for the expression in any 2956 // context. This can be fixed similarly to how these flags are handled for 2957 // adds. 2958 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2959 2960 const SCEV *TotalOffset = getZero(IntPtrTy); 2961 // The address space is unimportant. The first thing we do on CurTy is getting 2962 // its element type. 2963 Type *CurTy = PointerType::getUnqual(PointeeType); 2964 for (const SCEV *IndexExpr : IndexExprs) { 2965 // Compute the (potentially symbolic) offset in bytes for this index. 2966 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2967 // For a struct, add the member offset. 2968 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2969 unsigned FieldNo = Index->getZExtValue(); 2970 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2971 2972 // Add the field offset to the running total offset. 2973 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2974 2975 // Update CurTy to the type of the field at Index. 2976 CurTy = STy->getTypeAtIndex(Index); 2977 } else { 2978 // Update CurTy to its element type. 2979 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2980 // For an array, add the element offset, explicitly scaled. 2981 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2982 // Getelementptr indices are signed. 2983 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2984 2985 // Multiply the index by the element size to compute the element offset. 2986 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2987 2988 // Add the element offset to the running total offset. 2989 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2990 } 2991 } 2992 2993 // Add the total offset from all the GEP indices to the base. 2994 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2995 } 2996 2997 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2998 const SCEV *RHS) { 2999 SmallVector<const SCEV *, 2> Ops; 3000 Ops.push_back(LHS); 3001 Ops.push_back(RHS); 3002 return getSMaxExpr(Ops); 3003 } 3004 3005 const SCEV * 3006 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3007 assert(!Ops.empty() && "Cannot get empty smax!"); 3008 if (Ops.size() == 1) return Ops[0]; 3009 #ifndef NDEBUG 3010 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3011 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3012 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3013 "SCEVSMaxExpr operand types don't match!"); 3014 #endif 3015 3016 // Sort by complexity, this groups all similar expression types together. 3017 GroupByComplexity(Ops, &LI); 3018 3019 // If there are any constants, fold them together. 3020 unsigned Idx = 0; 3021 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3022 ++Idx; 3023 assert(Idx < Ops.size()); 3024 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3025 // We found two constants, fold them together! 3026 ConstantInt *Fold = ConstantInt::get(getContext(), 3027 APIntOps::smax(LHSC->getValue()->getValue(), 3028 RHSC->getValue()->getValue())); 3029 Ops[0] = getConstant(Fold); 3030 Ops.erase(Ops.begin()+1); // Erase the folded element 3031 if (Ops.size() == 1) return Ops[0]; 3032 LHSC = cast<SCEVConstant>(Ops[0]); 3033 } 3034 3035 // If we are left with a constant minimum-int, strip it off. 3036 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3037 Ops.erase(Ops.begin()); 3038 --Idx; 3039 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3040 // If we have an smax with a constant maximum-int, it will always be 3041 // maximum-int. 3042 return Ops[0]; 3043 } 3044 3045 if (Ops.size() == 1) return Ops[0]; 3046 } 3047 3048 // Find the first SMax 3049 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3050 ++Idx; 3051 3052 // Check to see if one of the operands is an SMax. If so, expand its operands 3053 // onto our operand list, and recurse to simplify. 3054 if (Idx < Ops.size()) { 3055 bool DeletedSMax = false; 3056 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3057 Ops.erase(Ops.begin()+Idx); 3058 Ops.append(SMax->op_begin(), SMax->op_end()); 3059 DeletedSMax = true; 3060 } 3061 3062 if (DeletedSMax) 3063 return getSMaxExpr(Ops); 3064 } 3065 3066 // Okay, check to see if the same value occurs in the operand list twice. If 3067 // so, delete one. Since we sorted the list, these values are required to 3068 // be adjacent. 3069 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3070 // X smax Y smax Y --> X smax Y 3071 // X smax Y --> X, if X is always greater than Y 3072 if (Ops[i] == Ops[i+1] || 3073 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3074 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3075 --i; --e; 3076 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3077 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3078 --i; --e; 3079 } 3080 3081 if (Ops.size() == 1) return Ops[0]; 3082 3083 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3084 3085 // Okay, it looks like we really DO need an smax expr. Check to see if we 3086 // already have one, otherwise create a new one. 3087 FoldingSetNodeID ID; 3088 ID.AddInteger(scSMaxExpr); 3089 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3090 ID.AddPointer(Ops[i]); 3091 void *IP = nullptr; 3092 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3093 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3094 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3095 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3096 O, Ops.size()); 3097 UniqueSCEVs.InsertNode(S, IP); 3098 return S; 3099 } 3100 3101 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3102 const SCEV *RHS) { 3103 SmallVector<const SCEV *, 2> Ops; 3104 Ops.push_back(LHS); 3105 Ops.push_back(RHS); 3106 return getUMaxExpr(Ops); 3107 } 3108 3109 const SCEV * 3110 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3111 assert(!Ops.empty() && "Cannot get empty umax!"); 3112 if (Ops.size() == 1) return Ops[0]; 3113 #ifndef NDEBUG 3114 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3115 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3116 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3117 "SCEVUMaxExpr operand types don't match!"); 3118 #endif 3119 3120 // Sort by complexity, this groups all similar expression types together. 3121 GroupByComplexity(Ops, &LI); 3122 3123 // If there are any constants, fold them together. 3124 unsigned Idx = 0; 3125 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3126 ++Idx; 3127 assert(Idx < Ops.size()); 3128 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3129 // We found two constants, fold them together! 3130 ConstantInt *Fold = ConstantInt::get(getContext(), 3131 APIntOps::umax(LHSC->getValue()->getValue(), 3132 RHSC->getValue()->getValue())); 3133 Ops[0] = getConstant(Fold); 3134 Ops.erase(Ops.begin()+1); // Erase the folded element 3135 if (Ops.size() == 1) return Ops[0]; 3136 LHSC = cast<SCEVConstant>(Ops[0]); 3137 } 3138 3139 // If we are left with a constant minimum-int, strip it off. 3140 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3141 Ops.erase(Ops.begin()); 3142 --Idx; 3143 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3144 // If we have an umax with a constant maximum-int, it will always be 3145 // maximum-int. 3146 return Ops[0]; 3147 } 3148 3149 if (Ops.size() == 1) return Ops[0]; 3150 } 3151 3152 // Find the first UMax 3153 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3154 ++Idx; 3155 3156 // Check to see if one of the operands is a UMax. If so, expand its operands 3157 // onto our operand list, and recurse to simplify. 3158 if (Idx < Ops.size()) { 3159 bool DeletedUMax = false; 3160 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3161 Ops.erase(Ops.begin()+Idx); 3162 Ops.append(UMax->op_begin(), UMax->op_end()); 3163 DeletedUMax = true; 3164 } 3165 3166 if (DeletedUMax) 3167 return getUMaxExpr(Ops); 3168 } 3169 3170 // Okay, check to see if the same value occurs in the operand list twice. If 3171 // so, delete one. Since we sorted the list, these values are required to 3172 // be adjacent. 3173 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3174 // X umax Y umax Y --> X umax Y 3175 // X umax Y --> X, if X is always greater than Y 3176 if (Ops[i] == Ops[i+1] || 3177 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3178 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3179 --i; --e; 3180 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3181 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3182 --i; --e; 3183 } 3184 3185 if (Ops.size() == 1) return Ops[0]; 3186 3187 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3188 3189 // Okay, it looks like we really DO need a umax expr. Check to see if we 3190 // already have one, otherwise create a new one. 3191 FoldingSetNodeID ID; 3192 ID.AddInteger(scUMaxExpr); 3193 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3194 ID.AddPointer(Ops[i]); 3195 void *IP = nullptr; 3196 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3197 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3198 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3199 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3200 O, Ops.size()); 3201 UniqueSCEVs.InsertNode(S, IP); 3202 return S; 3203 } 3204 3205 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3206 const SCEV *RHS) { 3207 // ~smax(~x, ~y) == smin(x, y). 3208 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3209 } 3210 3211 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3212 const SCEV *RHS) { 3213 // ~umax(~x, ~y) == umin(x, y) 3214 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3215 } 3216 3217 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3218 // We can bypass creating a target-independent 3219 // constant expression and then folding it back into a ConstantInt. 3220 // This is just a compile-time optimization. 3221 return getConstant(IntTy, 3222 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3223 } 3224 3225 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3226 StructType *STy, 3227 unsigned FieldNo) { 3228 // We can bypass creating a target-independent 3229 // constant expression and then folding it back into a ConstantInt. 3230 // This is just a compile-time optimization. 3231 return getConstant( 3232 IntTy, 3233 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3234 FieldNo)); 3235 } 3236 3237 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3238 // Don't attempt to do anything other than create a SCEVUnknown object 3239 // here. createSCEV only calls getUnknown after checking for all other 3240 // interesting possibilities, and any other code that calls getUnknown 3241 // is doing so in order to hide a value from SCEV canonicalization. 3242 3243 FoldingSetNodeID ID; 3244 ID.AddInteger(scUnknown); 3245 ID.AddPointer(V); 3246 void *IP = nullptr; 3247 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3248 assert(cast<SCEVUnknown>(S)->getValue() == V && 3249 "Stale SCEVUnknown in uniquing map!"); 3250 return S; 3251 } 3252 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3253 FirstUnknown); 3254 FirstUnknown = cast<SCEVUnknown>(S); 3255 UniqueSCEVs.InsertNode(S, IP); 3256 return S; 3257 } 3258 3259 //===----------------------------------------------------------------------===// 3260 // Basic SCEV Analysis and PHI Idiom Recognition Code 3261 // 3262 3263 /// isSCEVable - Test if values of the given type are analyzable within 3264 /// the SCEV framework. This primarily includes integer types, and it 3265 /// can optionally include pointer types if the ScalarEvolution class 3266 /// has access to target-specific information. 3267 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3268 // Integers and pointers are always SCEVable. 3269 return Ty->isIntegerTy() || Ty->isPointerTy(); 3270 } 3271 3272 /// getTypeSizeInBits - Return the size in bits of the specified type, 3273 /// for which isSCEVable must return true. 3274 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3275 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3276 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3277 } 3278 3279 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3280 /// the given type and which represents how SCEV will treat the given 3281 /// type, for which isSCEVable must return true. For pointer types, 3282 /// this is the pointer-sized integer type. 3283 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3284 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3285 3286 if (Ty->isIntegerTy()) 3287 return Ty; 3288 3289 // The only other support type is pointer. 3290 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3291 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3292 } 3293 3294 const SCEV *ScalarEvolution::getCouldNotCompute() { 3295 return CouldNotCompute.get(); 3296 } 3297 3298 namespace { 3299 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3300 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3301 // is set iff if find such SCEVUnknown. 3302 // 3303 struct FindInvalidSCEVUnknown { 3304 bool FindOne; 3305 FindInvalidSCEVUnknown() { FindOne = false; } 3306 bool follow(const SCEV *S) { 3307 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3308 case scConstant: 3309 return false; 3310 case scUnknown: 3311 if (!cast<SCEVUnknown>(S)->getValue()) 3312 FindOne = true; 3313 return false; 3314 default: 3315 return true; 3316 } 3317 } 3318 bool isDone() const { return FindOne; } 3319 }; 3320 } 3321 3322 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3323 FindInvalidSCEVUnknown F; 3324 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3325 ST.visitAll(S); 3326 3327 return !F.FindOne; 3328 } 3329 3330 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3331 /// expression and create a new one. 3332 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3333 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3334 3335 const SCEV *S = getExistingSCEV(V); 3336 if (S == nullptr) { 3337 S = createSCEV(V); 3338 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3339 } 3340 return S; 3341 } 3342 3343 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3344 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3345 3346 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3347 if (I != ValueExprMap.end()) { 3348 const SCEV *S = I->second; 3349 if (checkValidity(S)) 3350 return S; 3351 ValueExprMap.erase(I); 3352 } 3353 return nullptr; 3354 } 3355 3356 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3357 /// 3358 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3359 SCEV::NoWrapFlags Flags) { 3360 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3361 return getConstant( 3362 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3363 3364 Type *Ty = V->getType(); 3365 Ty = getEffectiveSCEVType(Ty); 3366 return getMulExpr( 3367 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3368 } 3369 3370 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3371 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3372 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3373 return getConstant( 3374 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3375 3376 Type *Ty = V->getType(); 3377 Ty = getEffectiveSCEVType(Ty); 3378 const SCEV *AllOnes = 3379 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3380 return getMinusSCEV(AllOnes, V); 3381 } 3382 3383 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3384 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3385 SCEV::NoWrapFlags Flags) { 3386 // Fast path: X - X --> 0. 3387 if (LHS == RHS) 3388 return getZero(LHS->getType()); 3389 3390 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3391 // makes it so that we cannot make much use of NUW. 3392 auto AddFlags = SCEV::FlagAnyWrap; 3393 const bool RHSIsNotMinSigned = 3394 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3395 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3396 // Let M be the minimum representable signed value. Then (-1)*RHS 3397 // signed-wraps if and only if RHS is M. That can happen even for 3398 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3399 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3400 // (-1)*RHS, we need to prove that RHS != M. 3401 // 3402 // If LHS is non-negative and we know that LHS - RHS does not 3403 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3404 // either by proving that RHS > M or that LHS >= 0. 3405 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3406 AddFlags = SCEV::FlagNSW; 3407 } 3408 } 3409 3410 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3411 // RHS is NSW and LHS >= 0. 3412 // 3413 // The difficulty here is that the NSW flag may have been proven 3414 // relative to a loop that is to be found in a recurrence in LHS and 3415 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3416 // larger scope than intended. 3417 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3418 3419 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3420 } 3421 3422 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3423 /// input value to the specified type. If the type must be extended, it is zero 3424 /// extended. 3425 const SCEV * 3426 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3427 Type *SrcTy = V->getType(); 3428 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3429 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3430 "Cannot truncate or zero extend with non-integer arguments!"); 3431 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3432 return V; // No conversion 3433 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3434 return getTruncateExpr(V, Ty); 3435 return getZeroExtendExpr(V, Ty); 3436 } 3437 3438 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3439 /// input value to the specified type. If the type must be extended, it is sign 3440 /// extended. 3441 const SCEV * 3442 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3443 Type *Ty) { 3444 Type *SrcTy = V->getType(); 3445 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3446 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3447 "Cannot truncate or zero extend with non-integer arguments!"); 3448 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3449 return V; // No conversion 3450 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3451 return getTruncateExpr(V, Ty); 3452 return getSignExtendExpr(V, Ty); 3453 } 3454 3455 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3456 /// input value to the specified type. If the type must be extended, it is zero 3457 /// extended. The conversion must not be narrowing. 3458 const SCEV * 3459 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3460 Type *SrcTy = V->getType(); 3461 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3462 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3463 "Cannot noop or zero extend with non-integer arguments!"); 3464 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3465 "getNoopOrZeroExtend cannot truncate!"); 3466 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3467 return V; // No conversion 3468 return getZeroExtendExpr(V, Ty); 3469 } 3470 3471 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3472 /// input value to the specified type. If the type must be extended, it is sign 3473 /// extended. The conversion must not be narrowing. 3474 const SCEV * 3475 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3476 Type *SrcTy = V->getType(); 3477 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3478 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3479 "Cannot noop or sign extend with non-integer arguments!"); 3480 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3481 "getNoopOrSignExtend cannot truncate!"); 3482 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3483 return V; // No conversion 3484 return getSignExtendExpr(V, Ty); 3485 } 3486 3487 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3488 /// the input value to the specified type. If the type must be extended, 3489 /// it is extended with unspecified bits. The conversion must not be 3490 /// narrowing. 3491 const SCEV * 3492 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3493 Type *SrcTy = V->getType(); 3494 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3495 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3496 "Cannot noop or any extend with non-integer arguments!"); 3497 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3498 "getNoopOrAnyExtend cannot truncate!"); 3499 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3500 return V; // No conversion 3501 return getAnyExtendExpr(V, Ty); 3502 } 3503 3504 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3505 /// input value to the specified type. The conversion must not be widening. 3506 const SCEV * 3507 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3508 Type *SrcTy = V->getType(); 3509 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3510 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3511 "Cannot truncate or noop with non-integer arguments!"); 3512 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3513 "getTruncateOrNoop cannot extend!"); 3514 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3515 return V; // No conversion 3516 return getTruncateExpr(V, Ty); 3517 } 3518 3519 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3520 /// the types using zero-extension, and then perform a umax operation 3521 /// with them. 3522 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3523 const SCEV *RHS) { 3524 const SCEV *PromotedLHS = LHS; 3525 const SCEV *PromotedRHS = RHS; 3526 3527 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3528 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3529 else 3530 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3531 3532 return getUMaxExpr(PromotedLHS, PromotedRHS); 3533 } 3534 3535 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3536 /// the types using zero-extension, and then perform a umin operation 3537 /// with them. 3538 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3539 const SCEV *RHS) { 3540 const SCEV *PromotedLHS = LHS; 3541 const SCEV *PromotedRHS = RHS; 3542 3543 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3544 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3545 else 3546 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3547 3548 return getUMinExpr(PromotedLHS, PromotedRHS); 3549 } 3550 3551 /// getPointerBase - Transitively follow the chain of pointer-type operands 3552 /// until reaching a SCEV that does not have a single pointer operand. This 3553 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3554 /// but corner cases do exist. 3555 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3556 // A pointer operand may evaluate to a nonpointer expression, such as null. 3557 if (!V->getType()->isPointerTy()) 3558 return V; 3559 3560 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3561 return getPointerBase(Cast->getOperand()); 3562 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3563 const SCEV *PtrOp = nullptr; 3564 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3565 I != E; ++I) { 3566 if ((*I)->getType()->isPointerTy()) { 3567 // Cannot find the base of an expression with multiple pointer operands. 3568 if (PtrOp) 3569 return V; 3570 PtrOp = *I; 3571 } 3572 } 3573 if (!PtrOp) 3574 return V; 3575 return getPointerBase(PtrOp); 3576 } 3577 return V; 3578 } 3579 3580 /// PushDefUseChildren - Push users of the given Instruction 3581 /// onto the given Worklist. 3582 static void 3583 PushDefUseChildren(Instruction *I, 3584 SmallVectorImpl<Instruction *> &Worklist) { 3585 // Push the def-use children onto the Worklist stack. 3586 for (User *U : I->users()) 3587 Worklist.push_back(cast<Instruction>(U)); 3588 } 3589 3590 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3591 /// instructions that depend on the given instruction and removes them from 3592 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3593 /// resolution. 3594 void 3595 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3596 SmallVector<Instruction *, 16> Worklist; 3597 PushDefUseChildren(PN, Worklist); 3598 3599 SmallPtrSet<Instruction *, 8> Visited; 3600 Visited.insert(PN); 3601 while (!Worklist.empty()) { 3602 Instruction *I = Worklist.pop_back_val(); 3603 if (!Visited.insert(I).second) 3604 continue; 3605 3606 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3607 if (It != ValueExprMap.end()) { 3608 const SCEV *Old = It->second; 3609 3610 // Short-circuit the def-use traversal if the symbolic name 3611 // ceases to appear in expressions. 3612 if (Old != SymName && !hasOperand(Old, SymName)) 3613 continue; 3614 3615 // SCEVUnknown for a PHI either means that it has an unrecognized 3616 // structure, it's a PHI that's in the progress of being computed 3617 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3618 // additional loop trip count information isn't going to change anything. 3619 // In the second case, createNodeForPHI will perform the necessary 3620 // updates on its own when it gets to that point. In the third, we do 3621 // want to forget the SCEVUnknown. 3622 if (!isa<PHINode>(I) || 3623 !isa<SCEVUnknown>(Old) || 3624 (I != PN && Old == SymName)) { 3625 forgetMemoizedResults(Old); 3626 ValueExprMap.erase(It); 3627 } 3628 } 3629 3630 PushDefUseChildren(I, Worklist); 3631 } 3632 } 3633 3634 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 3635 const Loop *L = LI.getLoopFor(PN->getParent()); 3636 if (!L || L->getHeader() != PN->getParent()) 3637 return nullptr; 3638 3639 // The loop may have multiple entrances or multiple exits; we can analyze 3640 // this phi as an addrec if it has a unique entry value and a unique 3641 // backedge value. 3642 Value *BEValueV = nullptr, *StartValueV = nullptr; 3643 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3644 Value *V = PN->getIncomingValue(i); 3645 if (L->contains(PN->getIncomingBlock(i))) { 3646 if (!BEValueV) { 3647 BEValueV = V; 3648 } else if (BEValueV != V) { 3649 BEValueV = nullptr; 3650 break; 3651 } 3652 } else if (!StartValueV) { 3653 StartValueV = V; 3654 } else if (StartValueV != V) { 3655 StartValueV = nullptr; 3656 break; 3657 } 3658 } 3659 if (BEValueV && StartValueV) { 3660 // While we are analyzing this PHI node, handle its value symbolically. 3661 const SCEV *SymbolicName = getUnknown(PN); 3662 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3663 "PHI node already processed?"); 3664 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3665 3666 // Using this symbolic name for the PHI, analyze the value coming around 3667 // the back-edge. 3668 const SCEV *BEValue = getSCEV(BEValueV); 3669 3670 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3671 // has a special value for the first iteration of the loop. 3672 3673 // If the value coming around the backedge is an add with the symbolic 3674 // value we just inserted, then we found a simple induction variable! 3675 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3676 // If there is a single occurrence of the symbolic value, replace it 3677 // with a recurrence. 3678 unsigned FoundIndex = Add->getNumOperands(); 3679 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3680 if (Add->getOperand(i) == SymbolicName) 3681 if (FoundIndex == e) { 3682 FoundIndex = i; 3683 break; 3684 } 3685 3686 if (FoundIndex != Add->getNumOperands()) { 3687 // Create an add with everything but the specified operand. 3688 SmallVector<const SCEV *, 8> Ops; 3689 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3690 if (i != FoundIndex) 3691 Ops.push_back(Add->getOperand(i)); 3692 const SCEV *Accum = getAddExpr(Ops); 3693 3694 // This is not a valid addrec if the step amount is varying each 3695 // loop iteration, but is not itself an addrec in this loop. 3696 if (isLoopInvariant(Accum, L) || 3697 (isa<SCEVAddRecExpr>(Accum) && 3698 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3699 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3700 3701 // If the increment doesn't overflow, then neither the addrec nor 3702 // the post-increment will overflow. 3703 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3704 if (OBO->getOperand(0) == PN) { 3705 if (OBO->hasNoUnsignedWrap()) 3706 Flags = setFlags(Flags, SCEV::FlagNUW); 3707 if (OBO->hasNoSignedWrap()) 3708 Flags = setFlags(Flags, SCEV::FlagNSW); 3709 } 3710 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3711 // If the increment is an inbounds GEP, then we know the address 3712 // space cannot be wrapped around. We cannot make any guarantee 3713 // about signed or unsigned overflow because pointers are 3714 // unsigned but we may have a negative index from the base 3715 // pointer. We can guarantee that no unsigned wrap occurs if the 3716 // indices form a positive value. 3717 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3718 Flags = setFlags(Flags, SCEV::FlagNW); 3719 3720 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3721 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3722 Flags = setFlags(Flags, SCEV::FlagNUW); 3723 } 3724 3725 // We cannot transfer nuw and nsw flags from subtraction 3726 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3727 // for instance. 3728 } 3729 3730 const SCEV *StartVal = getSCEV(StartValueV); 3731 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3732 3733 // Since the no-wrap flags are on the increment, they apply to the 3734 // post-incremented value as well. 3735 if (isLoopInvariant(Accum, L)) 3736 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 3737 3738 // Okay, for the entire analysis of this edge we assumed the PHI 3739 // to be symbolic. We now need to go back and purge all of the 3740 // entries for the scalars that use the symbolic expression. 3741 ForgetSymbolicName(PN, SymbolicName); 3742 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3743 return PHISCEV; 3744 } 3745 } 3746 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 3747 // Otherwise, this could be a loop like this: 3748 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3749 // In this case, j = {1,+,1} and BEValue is j. 3750 // Because the other in-value of i (0) fits the evolution of BEValue 3751 // i really is an addrec evolution. 3752 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3753 const SCEV *StartVal = getSCEV(StartValueV); 3754 3755 // If StartVal = j.start - j.stride, we can use StartVal as the 3756 // initial step of the addrec evolution. 3757 if (StartVal == 3758 getMinusSCEV(AddRec->getOperand(0), AddRec->getOperand(1))) { 3759 // FIXME: For constant StartVal, we should be able to infer 3760 // no-wrap flags. 3761 const SCEV *PHISCEV = getAddRecExpr(StartVal, AddRec->getOperand(1), 3762 L, SCEV::FlagAnyWrap); 3763 3764 // Okay, for the entire analysis of this edge we assumed the PHI 3765 // to be symbolic. We now need to go back and purge all of the 3766 // entries for the scalars that use the symbolic expression. 3767 ForgetSymbolicName(PN, SymbolicName); 3768 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3769 return PHISCEV; 3770 } 3771 } 3772 } 3773 } 3774 3775 return nullptr; 3776 } 3777 3778 // Checks if the SCEV S is available at BB. S is considered available at BB 3779 // if S can be materialized at BB without introducing a fault. 3780 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 3781 BasicBlock *BB) { 3782 struct CheckAvailable { 3783 bool TraversalDone = false; 3784 bool Available = true; 3785 3786 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 3787 BasicBlock *BB = nullptr; 3788 DominatorTree &DT; 3789 3790 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 3791 : L(L), BB(BB), DT(DT) {} 3792 3793 bool setUnavailable() { 3794 TraversalDone = true; 3795 Available = false; 3796 return false; 3797 } 3798 3799 bool follow(const SCEV *S) { 3800 switch (S->getSCEVType()) { 3801 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 3802 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 3803 // These expressions are available if their operand(s) is/are. 3804 return true; 3805 3806 case scAddRecExpr: { 3807 // We allow add recurrences that are on the loop BB is in, or some 3808 // outer loop. This guarantees availability because the value of the 3809 // add recurrence at BB is simply the "current" value of the induction 3810 // variable. We can relax this in the future; for instance an add 3811 // recurrence on a sibling dominating loop is also available at BB. 3812 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 3813 if (L && (ARLoop == L || ARLoop->contains(L))) 3814 return true; 3815 3816 return setUnavailable(); 3817 } 3818 3819 case scUnknown: { 3820 // For SCEVUnknown, we check for simple dominance. 3821 const auto *SU = cast<SCEVUnknown>(S); 3822 Value *V = SU->getValue(); 3823 3824 if (isa<Argument>(V)) 3825 return false; 3826 3827 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 3828 return false; 3829 3830 return setUnavailable(); 3831 } 3832 3833 case scUDivExpr: 3834 case scCouldNotCompute: 3835 // We do not try to smart about these at all. 3836 return setUnavailable(); 3837 } 3838 llvm_unreachable("switch should be fully covered!"); 3839 } 3840 3841 bool isDone() { return TraversalDone; } 3842 }; 3843 3844 CheckAvailable CA(L, BB, DT); 3845 SCEVTraversal<CheckAvailable> ST(CA); 3846 3847 ST.visitAll(S); 3848 return CA.Available; 3849 } 3850 3851 // Try to match a control flow sequence that branches out at BI and merges back 3852 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 3853 // match. 3854 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 3855 Value *&C, Value *&LHS, Value *&RHS) { 3856 C = BI->getCondition(); 3857 3858 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 3859 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 3860 3861 if (!LeftEdge.isSingleEdge()) 3862 return false; 3863 3864 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 3865 3866 Use &LeftUse = Merge->getOperandUse(0); 3867 Use &RightUse = Merge->getOperandUse(1); 3868 3869 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 3870 LHS = LeftUse; 3871 RHS = RightUse; 3872 return true; 3873 } 3874 3875 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 3876 LHS = RightUse; 3877 RHS = LeftUse; 3878 return true; 3879 } 3880 3881 return false; 3882 } 3883 3884 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 3885 if (PN->getNumIncomingValues() == 2) { 3886 const Loop *L = LI.getLoopFor(PN->getParent()); 3887 3888 // Try to match 3889 // 3890 // br %cond, label %left, label %right 3891 // left: 3892 // br label %merge 3893 // right: 3894 // br label %merge 3895 // merge: 3896 // V = phi [ %x, %left ], [ %y, %right ] 3897 // 3898 // as "select %cond, %x, %y" 3899 3900 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 3901 assert(IDom && "At least the entry block should dominate PN"); 3902 3903 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 3904 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 3905 3906 if (BI && BI->isConditional() && 3907 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 3908 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 3909 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 3910 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 3911 } 3912 3913 return nullptr; 3914 } 3915 3916 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3917 if (const SCEV *S = createAddRecFromPHI(PN)) 3918 return S; 3919 3920 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 3921 return S; 3922 3923 // If the PHI has a single incoming value, follow that value, unless the 3924 // PHI's incoming blocks are in a different loop, in which case doing so 3925 // risks breaking LCSSA form. Instcombine would normally zap these, but 3926 // it doesn't have DominatorTree information, so it may miss cases. 3927 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3928 &DT, &AC)) 3929 if (LI.replacementPreservesLCSSAForm(PN, V)) 3930 return getSCEV(V); 3931 3932 // If it's not a loop phi, we can't handle it yet. 3933 return getUnknown(PN); 3934 } 3935 3936 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 3937 Value *Cond, 3938 Value *TrueVal, 3939 Value *FalseVal) { 3940 // Handle "constant" branch or select. This can occur for instance when a 3941 // loop pass transforms an inner loop and moves on to process the outer loop. 3942 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 3943 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 3944 3945 // Try to match some simple smax or umax patterns. 3946 auto *ICI = dyn_cast<ICmpInst>(Cond); 3947 if (!ICI) 3948 return getUnknown(I); 3949 3950 Value *LHS = ICI->getOperand(0); 3951 Value *RHS = ICI->getOperand(1); 3952 3953 switch (ICI->getPredicate()) { 3954 case ICmpInst::ICMP_SLT: 3955 case ICmpInst::ICMP_SLE: 3956 std::swap(LHS, RHS); 3957 // fall through 3958 case ICmpInst::ICMP_SGT: 3959 case ICmpInst::ICMP_SGE: 3960 // a >s b ? a+x : b+x -> smax(a, b)+x 3961 // a >s b ? b+x : a+x -> smin(a, b)+x 3962 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3963 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 3964 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 3965 const SCEV *LA = getSCEV(TrueVal); 3966 const SCEV *RA = getSCEV(FalseVal); 3967 const SCEV *LDiff = getMinusSCEV(LA, LS); 3968 const SCEV *RDiff = getMinusSCEV(RA, RS); 3969 if (LDiff == RDiff) 3970 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 3971 LDiff = getMinusSCEV(LA, RS); 3972 RDiff = getMinusSCEV(RA, LS); 3973 if (LDiff == RDiff) 3974 return getAddExpr(getSMinExpr(LS, RS), LDiff); 3975 } 3976 break; 3977 case ICmpInst::ICMP_ULT: 3978 case ICmpInst::ICMP_ULE: 3979 std::swap(LHS, RHS); 3980 // fall through 3981 case ICmpInst::ICMP_UGT: 3982 case ICmpInst::ICMP_UGE: 3983 // a >u b ? a+x : b+x -> umax(a, b)+x 3984 // a >u b ? b+x : a+x -> umin(a, b)+x 3985 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 3986 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 3987 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 3988 const SCEV *LA = getSCEV(TrueVal); 3989 const SCEV *RA = getSCEV(FalseVal); 3990 const SCEV *LDiff = getMinusSCEV(LA, LS); 3991 const SCEV *RDiff = getMinusSCEV(RA, RS); 3992 if (LDiff == RDiff) 3993 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 3994 LDiff = getMinusSCEV(LA, RS); 3995 RDiff = getMinusSCEV(RA, LS); 3996 if (LDiff == RDiff) 3997 return getAddExpr(getUMinExpr(LS, RS), LDiff); 3998 } 3999 break; 4000 case ICmpInst::ICMP_NE: 4001 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4002 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4003 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4004 const SCEV *One = getOne(I->getType()); 4005 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4006 const SCEV *LA = getSCEV(TrueVal); 4007 const SCEV *RA = getSCEV(FalseVal); 4008 const SCEV *LDiff = getMinusSCEV(LA, LS); 4009 const SCEV *RDiff = getMinusSCEV(RA, One); 4010 if (LDiff == RDiff) 4011 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4012 } 4013 break; 4014 case ICmpInst::ICMP_EQ: 4015 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4016 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4017 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4018 const SCEV *One = getOne(I->getType()); 4019 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4020 const SCEV *LA = getSCEV(TrueVal); 4021 const SCEV *RA = getSCEV(FalseVal); 4022 const SCEV *LDiff = getMinusSCEV(LA, One); 4023 const SCEV *RDiff = getMinusSCEV(RA, LS); 4024 if (LDiff == RDiff) 4025 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4026 } 4027 break; 4028 default: 4029 break; 4030 } 4031 4032 return getUnknown(I); 4033 } 4034 4035 /// createNodeForGEP - Expand GEP instructions into add and multiply 4036 /// operations. This allows them to be analyzed by regular SCEV code. 4037 /// 4038 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4039 Value *Base = GEP->getOperand(0); 4040 // Don't attempt to analyze GEPs over unsized objects. 4041 if (!Base->getType()->getPointerElementType()->isSized()) 4042 return getUnknown(GEP); 4043 4044 SmallVector<const SCEV *, 4> IndexExprs; 4045 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4046 IndexExprs.push_back(getSCEV(*Index)); 4047 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 4048 GEP->isInBounds()); 4049 } 4050 4051 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 4052 /// guaranteed to end in (at every loop iteration). It is, at the same time, 4053 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 4054 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 4055 uint32_t 4056 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4057 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4058 return C->getValue()->getValue().countTrailingZeros(); 4059 4060 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4061 return std::min(GetMinTrailingZeros(T->getOperand()), 4062 (uint32_t)getTypeSizeInBits(T->getType())); 4063 4064 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4065 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4066 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4067 getTypeSizeInBits(E->getType()) : OpRes; 4068 } 4069 4070 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4071 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4072 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 4073 getTypeSizeInBits(E->getType()) : OpRes; 4074 } 4075 4076 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4077 // The result is the min of all operands results. 4078 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4079 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4080 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4081 return MinOpRes; 4082 } 4083 4084 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4085 // The result is the sum of all operands results. 4086 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4087 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4088 for (unsigned i = 1, e = M->getNumOperands(); 4089 SumOpRes != BitWidth && i != e; ++i) 4090 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 4091 BitWidth); 4092 return SumOpRes; 4093 } 4094 4095 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4096 // The result is the min of all operands results. 4097 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4098 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4099 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4100 return MinOpRes; 4101 } 4102 4103 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4104 // The result is the min of all operands results. 4105 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4106 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4107 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4108 return MinOpRes; 4109 } 4110 4111 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4112 // The result is the min of all operands results. 4113 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4114 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4115 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4116 return MinOpRes; 4117 } 4118 4119 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4120 // For a SCEVUnknown, ask ValueTracking. 4121 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4122 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4123 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 4124 0, &AC, nullptr, &DT); 4125 return Zeros.countTrailingOnes(); 4126 } 4127 4128 // SCEVUDivExpr 4129 return 0; 4130 } 4131 4132 /// GetRangeFromMetadata - Helper method to assign a range to V from 4133 /// metadata present in the IR. 4134 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4135 if (Instruction *I = dyn_cast<Instruction>(V)) 4136 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4137 return getConstantRangeFromMetadata(*MD); 4138 4139 return None; 4140 } 4141 4142 /// getRange - Determine the range for a particular SCEV. If SignHint is 4143 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4144 /// with a "cleaner" unsigned (resp. signed) representation. 4145 /// 4146 ConstantRange 4147 ScalarEvolution::getRange(const SCEV *S, 4148 ScalarEvolution::RangeSignHint SignHint) { 4149 DenseMap<const SCEV *, ConstantRange> &Cache = 4150 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4151 : SignedRanges; 4152 4153 // See if we've computed this range already. 4154 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4155 if (I != Cache.end()) 4156 return I->second; 4157 4158 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4159 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 4160 4161 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4162 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4163 4164 // If the value has known zeros, the maximum value will have those known zeros 4165 // as well. 4166 uint32_t TZ = GetMinTrailingZeros(S); 4167 if (TZ != 0) { 4168 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4169 ConservativeResult = 4170 ConstantRange(APInt::getMinValue(BitWidth), 4171 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4172 else 4173 ConservativeResult = ConstantRange( 4174 APInt::getSignedMinValue(BitWidth), 4175 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4176 } 4177 4178 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4179 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4180 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4181 X = X.add(getRange(Add->getOperand(i), SignHint)); 4182 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4183 } 4184 4185 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4186 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4187 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4188 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4189 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4190 } 4191 4192 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4193 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4194 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4195 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4196 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4197 } 4198 4199 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4200 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4201 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4202 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4203 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4204 } 4205 4206 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4207 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4208 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4209 return setRange(UDiv, SignHint, 4210 ConservativeResult.intersectWith(X.udiv(Y))); 4211 } 4212 4213 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4214 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4215 return setRange(ZExt, SignHint, 4216 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4217 } 4218 4219 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4220 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4221 return setRange(SExt, SignHint, 4222 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4223 } 4224 4225 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4226 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4227 return setRange(Trunc, SignHint, 4228 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4229 } 4230 4231 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4232 // If there's no unsigned wrap, the value will never be less than its 4233 // initial value. 4234 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 4235 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4236 if (!C->getValue()->isZero()) 4237 ConservativeResult = 4238 ConservativeResult.intersectWith( 4239 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 4240 4241 // If there's no signed wrap, and all the operands have the same sign or 4242 // zero, the value won't ever change sign. 4243 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 4244 bool AllNonNeg = true; 4245 bool AllNonPos = true; 4246 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4247 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4248 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4249 } 4250 if (AllNonNeg) 4251 ConservativeResult = ConservativeResult.intersectWith( 4252 ConstantRange(APInt(BitWidth, 0), 4253 APInt::getSignedMinValue(BitWidth))); 4254 else if (AllNonPos) 4255 ConservativeResult = ConservativeResult.intersectWith( 4256 ConstantRange(APInt::getSignedMinValue(BitWidth), 4257 APInt(BitWidth, 1))); 4258 } 4259 4260 // TODO: non-affine addrec 4261 if (AddRec->isAffine()) { 4262 Type *Ty = AddRec->getType(); 4263 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4264 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4265 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4266 4267 // Check for overflow. This must be done with ConstantRange arithmetic 4268 // because we could be called from within the ScalarEvolution overflow 4269 // checking code. 4270 4271 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4272 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4273 ConstantRange ZExtMaxBECountRange = 4274 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4275 4276 const SCEV *Start = AddRec->getStart(); 4277 const SCEV *Step = AddRec->getStepRecurrence(*this); 4278 ConstantRange StepSRange = getSignedRange(Step); 4279 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4280 4281 ConstantRange StartURange = getUnsignedRange(Start); 4282 ConstantRange EndURange = 4283 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4284 4285 // Check for unsigned overflow. 4286 ConstantRange ZExtStartURange = 4287 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4288 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4289 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4290 ZExtEndURange) { 4291 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4292 EndURange.getUnsignedMin()); 4293 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4294 EndURange.getUnsignedMax()); 4295 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4296 if (!IsFullRange) 4297 ConservativeResult = 4298 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4299 } 4300 4301 ConstantRange StartSRange = getSignedRange(Start); 4302 ConstantRange EndSRange = 4303 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4304 4305 // Check for signed overflow. This must be done with ConstantRange 4306 // arithmetic because we could be called from within the ScalarEvolution 4307 // overflow checking code. 4308 ConstantRange SExtStartSRange = 4309 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4310 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4311 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4312 SExtEndSRange) { 4313 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4314 EndSRange.getSignedMin()); 4315 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4316 EndSRange.getSignedMax()); 4317 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4318 if (!IsFullRange) 4319 ConservativeResult = 4320 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4321 } 4322 } 4323 } 4324 4325 return setRange(AddRec, SignHint, ConservativeResult); 4326 } 4327 4328 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4329 // Check if the IR explicitly contains !range metadata. 4330 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4331 if (MDRange.hasValue()) 4332 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4333 4334 // Split here to avoid paying the compile-time cost of calling both 4335 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4336 // if needed. 4337 const DataLayout &DL = F.getParent()->getDataLayout(); 4338 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4339 // For a SCEVUnknown, ask ValueTracking. 4340 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4341 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4342 if (Ones != ~Zeros + 1) 4343 ConservativeResult = 4344 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4345 } else { 4346 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4347 "generalize as needed!"); 4348 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4349 if (NS > 1) 4350 ConservativeResult = ConservativeResult.intersectWith( 4351 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4352 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4353 } 4354 4355 return setRange(U, SignHint, ConservativeResult); 4356 } 4357 4358 return setRange(S, SignHint, ConservativeResult); 4359 } 4360 4361 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4362 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4363 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4364 4365 // Return early if there are no flags to propagate to the SCEV. 4366 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4367 if (BinOp->hasNoUnsignedWrap()) 4368 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4369 if (BinOp->hasNoSignedWrap()) 4370 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4371 if (Flags == SCEV::FlagAnyWrap) { 4372 return SCEV::FlagAnyWrap; 4373 } 4374 4375 // Here we check that BinOp is in the header of the innermost loop 4376 // containing BinOp, since we only deal with instructions in the loop 4377 // header. The actual loop we need to check later will come from an add 4378 // recurrence, but getting that requires computing the SCEV of the operands, 4379 // which can be expensive. This check we can do cheaply to rule out some 4380 // cases early. 4381 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4382 if (innermostContainingLoop == nullptr || 4383 innermostContainingLoop->getHeader() != BinOp->getParent()) 4384 return SCEV::FlagAnyWrap; 4385 4386 // Only proceed if we can prove that BinOp does not yield poison. 4387 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4388 4389 // At this point we know that if V is executed, then it does not wrap 4390 // according to at least one of NSW or NUW. If V is not executed, then we do 4391 // not know if the calculation that V represents would wrap. Multiple 4392 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4393 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4394 // derived from other instructions that map to the same SCEV. We cannot make 4395 // that guarantee for cases where V is not executed. So we need to find the 4396 // loop that V is considered in relation to and prove that V is executed for 4397 // every iteration of that loop. That implies that the value that V 4398 // calculates does not wrap anywhere in the loop, so then we can apply the 4399 // flags to the SCEV. 4400 // 4401 // We check isLoopInvariant to disambiguate in case we are adding two 4402 // recurrences from different loops, so that we know which loop to prove 4403 // that V is executed in. 4404 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4405 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4406 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4407 const int OtherOpIndex = 1 - OpIndex; 4408 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4409 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4410 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4411 return Flags; 4412 } 4413 } 4414 return SCEV::FlagAnyWrap; 4415 } 4416 4417 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4418 /// the expression. 4419 /// 4420 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4421 if (!isSCEVable(V->getType())) 4422 return getUnknown(V); 4423 4424 unsigned Opcode = Instruction::UserOp1; 4425 if (Instruction *I = dyn_cast<Instruction>(V)) { 4426 Opcode = I->getOpcode(); 4427 4428 // Don't attempt to analyze instructions in blocks that aren't 4429 // reachable. Such instructions don't matter, and they aren't required 4430 // to obey basic rules for definitions dominating uses which this 4431 // analysis depends on. 4432 if (!DT.isReachableFromEntry(I->getParent())) 4433 return getUnknown(V); 4434 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4435 Opcode = CE->getOpcode(); 4436 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4437 return getConstant(CI); 4438 else if (isa<ConstantPointerNull>(V)) 4439 return getZero(V->getType()); 4440 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4441 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4442 else 4443 return getUnknown(V); 4444 4445 Operator *U = cast<Operator>(V); 4446 switch (Opcode) { 4447 case Instruction::Add: { 4448 // The simple thing to do would be to just call getSCEV on both operands 4449 // and call getAddExpr with the result. However if we're looking at a 4450 // bunch of things all added together, this can be quite inefficient, 4451 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4452 // Instead, gather up all the operands and make a single getAddExpr call. 4453 // LLVM IR canonical form means we need only traverse the left operands. 4454 SmallVector<const SCEV *, 4> AddOps; 4455 for (Value *Op = U;; Op = U->getOperand(0)) { 4456 U = dyn_cast<Operator>(Op); 4457 unsigned Opcode = U ? U->getOpcode() : 0; 4458 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4459 assert(Op != V && "V should be an add"); 4460 AddOps.push_back(getSCEV(Op)); 4461 break; 4462 } 4463 4464 if (auto *OpSCEV = getExistingSCEV(U)) { 4465 AddOps.push_back(OpSCEV); 4466 break; 4467 } 4468 4469 // If a NUW or NSW flag can be applied to the SCEV for this 4470 // addition, then compute the SCEV for this addition by itself 4471 // with a separate call to getAddExpr. We need to do that 4472 // instead of pushing the operands of the addition onto AddOps, 4473 // since the flags are only known to apply to this particular 4474 // addition - they may not apply to other additions that can be 4475 // formed with operands from AddOps. 4476 const SCEV *RHS = getSCEV(U->getOperand(1)); 4477 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4478 if (Flags != SCEV::FlagAnyWrap) { 4479 const SCEV *LHS = getSCEV(U->getOperand(0)); 4480 if (Opcode == Instruction::Sub) 4481 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4482 else 4483 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4484 break; 4485 } 4486 4487 if (Opcode == Instruction::Sub) 4488 AddOps.push_back(getNegativeSCEV(RHS)); 4489 else 4490 AddOps.push_back(RHS); 4491 } 4492 return getAddExpr(AddOps); 4493 } 4494 4495 case Instruction::Mul: { 4496 SmallVector<const SCEV *, 4> MulOps; 4497 for (Value *Op = U;; Op = U->getOperand(0)) { 4498 U = dyn_cast<Operator>(Op); 4499 if (!U || U->getOpcode() != Instruction::Mul) { 4500 assert(Op != V && "V should be a mul"); 4501 MulOps.push_back(getSCEV(Op)); 4502 break; 4503 } 4504 4505 if (auto *OpSCEV = getExistingSCEV(U)) { 4506 MulOps.push_back(OpSCEV); 4507 break; 4508 } 4509 4510 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4511 if (Flags != SCEV::FlagAnyWrap) { 4512 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4513 getSCEV(U->getOperand(1)), Flags)); 4514 break; 4515 } 4516 4517 MulOps.push_back(getSCEV(U->getOperand(1))); 4518 } 4519 return getMulExpr(MulOps); 4520 } 4521 case Instruction::UDiv: 4522 return getUDivExpr(getSCEV(U->getOperand(0)), 4523 getSCEV(U->getOperand(1))); 4524 case Instruction::Sub: 4525 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4526 getNoWrapFlagsFromUB(U)); 4527 case Instruction::And: 4528 // For an expression like x&255 that merely masks off the high bits, 4529 // use zext(trunc(x)) as the SCEV expression. 4530 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4531 if (CI->isNullValue()) 4532 return getSCEV(U->getOperand(1)); 4533 if (CI->isAllOnesValue()) 4534 return getSCEV(U->getOperand(0)); 4535 const APInt &A = CI->getValue(); 4536 4537 // Instcombine's ShrinkDemandedConstant may strip bits out of 4538 // constants, obscuring what would otherwise be a low-bits mask. 4539 // Use computeKnownBits to compute what ShrinkDemandedConstant 4540 // knew about to reconstruct a low-bits mask value. 4541 unsigned LZ = A.countLeadingZeros(); 4542 unsigned TZ = A.countTrailingZeros(); 4543 unsigned BitWidth = A.getBitWidth(); 4544 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4545 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4546 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4547 4548 APInt EffectiveMask = 4549 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4550 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4551 const SCEV *MulCount = getConstant( 4552 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4553 return getMulExpr( 4554 getZeroExtendExpr( 4555 getTruncateExpr( 4556 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4557 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4558 U->getType()), 4559 MulCount); 4560 } 4561 } 4562 break; 4563 4564 case Instruction::Or: 4565 // If the RHS of the Or is a constant, we may have something like: 4566 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4567 // optimizations will transparently handle this case. 4568 // 4569 // In order for this transformation to be safe, the LHS must be of the 4570 // form X*(2^n) and the Or constant must be less than 2^n. 4571 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4572 const SCEV *LHS = getSCEV(U->getOperand(0)); 4573 const APInt &CIVal = CI->getValue(); 4574 if (GetMinTrailingZeros(LHS) >= 4575 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4576 // Build a plain add SCEV. 4577 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4578 // If the LHS of the add was an addrec and it has no-wrap flags, 4579 // transfer the no-wrap flags, since an or won't introduce a wrap. 4580 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4581 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4582 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4583 OldAR->getNoWrapFlags()); 4584 } 4585 return S; 4586 } 4587 } 4588 break; 4589 case Instruction::Xor: 4590 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4591 // If the RHS of the xor is a signbit, then this is just an add. 4592 // Instcombine turns add of signbit into xor as a strength reduction step. 4593 if (CI->getValue().isSignBit()) 4594 return getAddExpr(getSCEV(U->getOperand(0)), 4595 getSCEV(U->getOperand(1))); 4596 4597 // If the RHS of xor is -1, then this is a not operation. 4598 if (CI->isAllOnesValue()) 4599 return getNotSCEV(getSCEV(U->getOperand(0))); 4600 4601 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4602 // This is a variant of the check for xor with -1, and it handles 4603 // the case where instcombine has trimmed non-demanded bits out 4604 // of an xor with -1. 4605 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4606 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4607 if (BO->getOpcode() == Instruction::And && 4608 LCI->getValue() == CI->getValue()) 4609 if (const SCEVZeroExtendExpr *Z = 4610 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4611 Type *UTy = U->getType(); 4612 const SCEV *Z0 = Z->getOperand(); 4613 Type *Z0Ty = Z0->getType(); 4614 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4615 4616 // If C is a low-bits mask, the zero extend is serving to 4617 // mask off the high bits. Complement the operand and 4618 // re-apply the zext. 4619 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4620 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4621 4622 // If C is a single bit, it may be in the sign-bit position 4623 // before the zero-extend. In this case, represent the xor 4624 // using an add, which is equivalent, and re-apply the zext. 4625 APInt Trunc = CI->getValue().trunc(Z0TySize); 4626 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4627 Trunc.isSignBit()) 4628 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4629 UTy); 4630 } 4631 } 4632 break; 4633 4634 case Instruction::Shl: 4635 // Turn shift left of a constant amount into a multiply. 4636 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4637 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4638 4639 // If the shift count is not less than the bitwidth, the result of 4640 // the shift is undefined. Don't try to analyze it, because the 4641 // resolution chosen here may differ from the resolution chosen in 4642 // other parts of the compiler. 4643 if (SA->getValue().uge(BitWidth)) 4644 break; 4645 4646 // It is currently not resolved how to interpret NSW for left 4647 // shift by BitWidth - 1, so we avoid applying flags in that 4648 // case. Remove this check (or this comment) once the situation 4649 // is resolved. See 4650 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4651 // and http://reviews.llvm.org/D8890 . 4652 auto Flags = SCEV::FlagAnyWrap; 4653 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4654 4655 Constant *X = ConstantInt::get(getContext(), 4656 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4657 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4658 } 4659 break; 4660 4661 case Instruction::LShr: 4662 // Turn logical shift right of a constant into a unsigned divide. 4663 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4664 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4665 4666 // If the shift count is not less than the bitwidth, the result of 4667 // the shift is undefined. Don't try to analyze it, because the 4668 // resolution chosen here may differ from the resolution chosen in 4669 // other parts of the compiler. 4670 if (SA->getValue().uge(BitWidth)) 4671 break; 4672 4673 Constant *X = ConstantInt::get(getContext(), 4674 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4675 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4676 } 4677 break; 4678 4679 case Instruction::AShr: 4680 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4681 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4682 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4683 if (L->getOpcode() == Instruction::Shl && 4684 L->getOperand(1) == U->getOperand(1)) { 4685 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4686 4687 // If the shift count is not less than the bitwidth, the result of 4688 // the shift is undefined. Don't try to analyze it, because the 4689 // resolution chosen here may differ from the resolution chosen in 4690 // other parts of the compiler. 4691 if (CI->getValue().uge(BitWidth)) 4692 break; 4693 4694 uint64_t Amt = BitWidth - CI->getZExtValue(); 4695 if (Amt == BitWidth) 4696 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4697 return 4698 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4699 IntegerType::get(getContext(), 4700 Amt)), 4701 U->getType()); 4702 } 4703 break; 4704 4705 case Instruction::Trunc: 4706 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4707 4708 case Instruction::ZExt: 4709 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4710 4711 case Instruction::SExt: 4712 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4713 4714 case Instruction::BitCast: 4715 // BitCasts are no-op casts so we just eliminate the cast. 4716 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4717 return getSCEV(U->getOperand(0)); 4718 break; 4719 4720 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4721 // lead to pointer expressions which cannot safely be expanded to GEPs, 4722 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4723 // simplifying integer expressions. 4724 4725 case Instruction::GetElementPtr: 4726 return createNodeForGEP(cast<GEPOperator>(U)); 4727 4728 case Instruction::PHI: 4729 return createNodeForPHI(cast<PHINode>(U)); 4730 4731 case Instruction::Select: 4732 // U can also be a select constant expr, which let fall through. Since 4733 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 4734 // constant expressions cannot have instructions as operands, we'd have 4735 // returned getUnknown for a select constant expressions anyway. 4736 if (isa<Instruction>(U)) 4737 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 4738 U->getOperand(1), U->getOperand(2)); 4739 4740 default: // We cannot analyze this expression. 4741 break; 4742 } 4743 4744 return getUnknown(V); 4745 } 4746 4747 4748 4749 //===----------------------------------------------------------------------===// 4750 // Iteration Count Computation Code 4751 // 4752 4753 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4754 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4755 return getSmallConstantTripCount(L, ExitingBB); 4756 4757 // No trip count information for multiple exits. 4758 return 0; 4759 } 4760 4761 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4762 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4763 /// constant. Will also return 0 if the maximum trip count is very large (>= 4764 /// 2^32). 4765 /// 4766 /// This "trip count" assumes that control exits via ExitingBlock. More 4767 /// precisely, it is the number of times that control may reach ExitingBlock 4768 /// before taking the branch. For loops with multiple exits, it may not be the 4769 /// number times that the loop header executes because the loop may exit 4770 /// prematurely via another branch. 4771 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4772 BasicBlock *ExitingBlock) { 4773 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4774 assert(L->isLoopExiting(ExitingBlock) && 4775 "Exiting block must actually branch out of the loop!"); 4776 const SCEVConstant *ExitCount = 4777 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4778 if (!ExitCount) 4779 return 0; 4780 4781 ConstantInt *ExitConst = ExitCount->getValue(); 4782 4783 // Guard against huge trip counts. 4784 if (ExitConst->getValue().getActiveBits() > 32) 4785 return 0; 4786 4787 // In case of integer overflow, this returns 0, which is correct. 4788 return ((unsigned)ExitConst->getZExtValue()) + 1; 4789 } 4790 4791 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4792 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4793 return getSmallConstantTripMultiple(L, ExitingBB); 4794 4795 // No trip multiple information for multiple exits. 4796 return 0; 4797 } 4798 4799 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4800 /// trip count of this loop as a normal unsigned value, if possible. This 4801 /// means that the actual trip count is always a multiple of the returned 4802 /// value (don't forget the trip count could very well be zero as well!). 4803 /// 4804 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4805 /// multiple of a constant (which is also the case if the trip count is simply 4806 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4807 /// if the trip count is very large (>= 2^32). 4808 /// 4809 /// As explained in the comments for getSmallConstantTripCount, this assumes 4810 /// that control exits the loop via ExitingBlock. 4811 unsigned 4812 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4813 BasicBlock *ExitingBlock) { 4814 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4815 assert(L->isLoopExiting(ExitingBlock) && 4816 "Exiting block must actually branch out of the loop!"); 4817 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4818 if (ExitCount == getCouldNotCompute()) 4819 return 1; 4820 4821 // Get the trip count from the BE count by adding 1. 4822 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4823 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4824 // to factor simple cases. 4825 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4826 TCMul = Mul->getOperand(0); 4827 4828 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4829 if (!MulC) 4830 return 1; 4831 4832 ConstantInt *Result = MulC->getValue(); 4833 4834 // Guard against huge trip counts (this requires checking 4835 // for zero to handle the case where the trip count == -1 and the 4836 // addition wraps). 4837 if (!Result || Result->getValue().getActiveBits() > 32 || 4838 Result->getValue().getActiveBits() == 0) 4839 return 1; 4840 4841 return (unsigned)Result->getZExtValue(); 4842 } 4843 4844 // getExitCount - Get the expression for the number of loop iterations for which 4845 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4846 // SCEVCouldNotCompute. 4847 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4848 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4849 } 4850 4851 /// getBackedgeTakenCount - If the specified loop has a predictable 4852 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4853 /// object. The backedge-taken count is the number of times the loop header 4854 /// will be branched to from within the loop. This is one less than the 4855 /// trip count of the loop, since it doesn't count the first iteration, 4856 /// when the header is branched to from outside the loop. 4857 /// 4858 /// Note that it is not valid to call this method on a loop without a 4859 /// loop-invariant backedge-taken count (see 4860 /// hasLoopInvariantBackedgeTakenCount). 4861 /// 4862 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4863 return getBackedgeTakenInfo(L).getExact(this); 4864 } 4865 4866 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4867 /// return the least SCEV value that is known never to be less than the 4868 /// actual backedge taken count. 4869 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4870 return getBackedgeTakenInfo(L).getMax(this); 4871 } 4872 4873 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4874 /// onto the given Worklist. 4875 static void 4876 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4877 BasicBlock *Header = L->getHeader(); 4878 4879 // Push all Loop-header PHIs onto the Worklist stack. 4880 for (BasicBlock::iterator I = Header->begin(); 4881 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4882 Worklist.push_back(PN); 4883 } 4884 4885 const ScalarEvolution::BackedgeTakenInfo & 4886 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4887 // Initially insert an invalid entry for this loop. If the insertion 4888 // succeeds, proceed to actually compute a backedge-taken count and 4889 // update the value. The temporary CouldNotCompute value tells SCEV 4890 // code elsewhere that it shouldn't attempt to request a new 4891 // backedge-taken count, which could result in infinite recursion. 4892 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4893 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4894 if (!Pair.second) 4895 return Pair.first->second; 4896 4897 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 4898 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4899 // must be cleared in this scope. 4900 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 4901 4902 if (Result.getExact(this) != getCouldNotCompute()) { 4903 assert(isLoopInvariant(Result.getExact(this), L) && 4904 isLoopInvariant(Result.getMax(this), L) && 4905 "Computed backedge-taken count isn't loop invariant for loop!"); 4906 ++NumTripCountsComputed; 4907 } 4908 else if (Result.getMax(this) == getCouldNotCompute() && 4909 isa<PHINode>(L->getHeader()->begin())) { 4910 // Only count loops that have phi nodes as not being computable. 4911 ++NumTripCountsNotComputed; 4912 } 4913 4914 // Now that we know more about the trip count for this loop, forget any 4915 // existing SCEV values for PHI nodes in this loop since they are only 4916 // conservative estimates made without the benefit of trip count 4917 // information. This is similar to the code in forgetLoop, except that 4918 // it handles SCEVUnknown PHI nodes specially. 4919 if (Result.hasAnyInfo()) { 4920 SmallVector<Instruction *, 16> Worklist; 4921 PushLoopPHIs(L, Worklist); 4922 4923 SmallPtrSet<Instruction *, 8> Visited; 4924 while (!Worklist.empty()) { 4925 Instruction *I = Worklist.pop_back_val(); 4926 if (!Visited.insert(I).second) 4927 continue; 4928 4929 ValueExprMapType::iterator It = 4930 ValueExprMap.find_as(static_cast<Value *>(I)); 4931 if (It != ValueExprMap.end()) { 4932 const SCEV *Old = It->second; 4933 4934 // SCEVUnknown for a PHI either means that it has an unrecognized 4935 // structure, or it's a PHI that's in the progress of being computed 4936 // by createNodeForPHI. In the former case, additional loop trip 4937 // count information isn't going to change anything. In the later 4938 // case, createNodeForPHI will perform the necessary updates on its 4939 // own when it gets to that point. 4940 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4941 forgetMemoizedResults(Old); 4942 ValueExprMap.erase(It); 4943 } 4944 if (PHINode *PN = dyn_cast<PHINode>(I)) 4945 ConstantEvolutionLoopExitValue.erase(PN); 4946 } 4947 4948 PushDefUseChildren(I, Worklist); 4949 } 4950 } 4951 4952 // Re-lookup the insert position, since the call to 4953 // computeBackedgeTakenCount above could result in a 4954 // recusive call to getBackedgeTakenInfo (on a different 4955 // loop), which would invalidate the iterator computed 4956 // earlier. 4957 return BackedgeTakenCounts.find(L)->second = Result; 4958 } 4959 4960 /// forgetLoop - This method should be called by the client when it has 4961 /// changed a loop in a way that may effect ScalarEvolution's ability to 4962 /// compute a trip count, or if the loop is deleted. 4963 void ScalarEvolution::forgetLoop(const Loop *L) { 4964 // Drop any stored trip count value. 4965 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4966 BackedgeTakenCounts.find(L); 4967 if (BTCPos != BackedgeTakenCounts.end()) { 4968 BTCPos->second.clear(); 4969 BackedgeTakenCounts.erase(BTCPos); 4970 } 4971 4972 // Drop information about expressions based on loop-header PHIs. 4973 SmallVector<Instruction *, 16> Worklist; 4974 PushLoopPHIs(L, Worklist); 4975 4976 SmallPtrSet<Instruction *, 8> Visited; 4977 while (!Worklist.empty()) { 4978 Instruction *I = Worklist.pop_back_val(); 4979 if (!Visited.insert(I).second) 4980 continue; 4981 4982 ValueExprMapType::iterator It = 4983 ValueExprMap.find_as(static_cast<Value *>(I)); 4984 if (It != ValueExprMap.end()) { 4985 forgetMemoizedResults(It->second); 4986 ValueExprMap.erase(It); 4987 if (PHINode *PN = dyn_cast<PHINode>(I)) 4988 ConstantEvolutionLoopExitValue.erase(PN); 4989 } 4990 4991 PushDefUseChildren(I, Worklist); 4992 } 4993 4994 // Forget all contained loops too, to avoid dangling entries in the 4995 // ValuesAtScopes map. 4996 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4997 forgetLoop(*I); 4998 } 4999 5000 /// forgetValue - This method should be called by the client when it has 5001 /// changed a value in a way that may effect its value, or which may 5002 /// disconnect it from a def-use chain linking it to a loop. 5003 void ScalarEvolution::forgetValue(Value *V) { 5004 Instruction *I = dyn_cast<Instruction>(V); 5005 if (!I) return; 5006 5007 // Drop information about expressions based on loop-header PHIs. 5008 SmallVector<Instruction *, 16> Worklist; 5009 Worklist.push_back(I); 5010 5011 SmallPtrSet<Instruction *, 8> Visited; 5012 while (!Worklist.empty()) { 5013 I = Worklist.pop_back_val(); 5014 if (!Visited.insert(I).second) 5015 continue; 5016 5017 ValueExprMapType::iterator It = 5018 ValueExprMap.find_as(static_cast<Value *>(I)); 5019 if (It != ValueExprMap.end()) { 5020 forgetMemoizedResults(It->second); 5021 ValueExprMap.erase(It); 5022 if (PHINode *PN = dyn_cast<PHINode>(I)) 5023 ConstantEvolutionLoopExitValue.erase(PN); 5024 } 5025 5026 PushDefUseChildren(I, Worklist); 5027 } 5028 } 5029 5030 /// getExact - Get the exact loop backedge taken count considering all loop 5031 /// exits. A computable result can only be returned for loops with a single 5032 /// exit. Returning the minimum taken count among all exits is incorrect 5033 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 5034 /// assumes that the limit of each loop test is never skipped. This is a valid 5035 /// assumption as long as the loop exits via that test. For precise results, it 5036 /// is the caller's responsibility to specify the relevant loop exit using 5037 /// getExact(ExitingBlock, SE). 5038 const SCEV * 5039 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 5040 // If any exits were not computable, the loop is not computable. 5041 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 5042 5043 // We need exactly one computable exit. 5044 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 5045 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 5046 5047 const SCEV *BECount = nullptr; 5048 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5049 ENT != nullptr; ENT = ENT->getNextExit()) { 5050 5051 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5052 5053 if (!BECount) 5054 BECount = ENT->ExactNotTaken; 5055 else if (BECount != ENT->ExactNotTaken) 5056 return SE->getCouldNotCompute(); 5057 } 5058 assert(BECount && "Invalid not taken count for loop exit"); 5059 return BECount; 5060 } 5061 5062 /// getExact - Get the exact not taken count for this loop exit. 5063 const SCEV * 5064 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5065 ScalarEvolution *SE) const { 5066 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5067 ENT != nullptr; ENT = ENT->getNextExit()) { 5068 5069 if (ENT->ExitingBlock == ExitingBlock) 5070 return ENT->ExactNotTaken; 5071 } 5072 return SE->getCouldNotCompute(); 5073 } 5074 5075 /// getMax - Get the max backedge taken count for the loop. 5076 const SCEV * 5077 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5078 return Max ? Max : SE->getCouldNotCompute(); 5079 } 5080 5081 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5082 ScalarEvolution *SE) const { 5083 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 5084 return true; 5085 5086 if (!ExitNotTaken.ExitingBlock) 5087 return false; 5088 5089 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 5090 ENT != nullptr; ENT = ENT->getNextExit()) { 5091 5092 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 5093 && SE->hasOperand(ENT->ExactNotTaken, S)) { 5094 return true; 5095 } 5096 } 5097 return false; 5098 } 5099 5100 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 5101 /// computable exit into a persistent ExitNotTakenInfo array. 5102 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 5103 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 5104 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 5105 5106 if (!Complete) 5107 ExitNotTaken.setIncomplete(); 5108 5109 unsigned NumExits = ExitCounts.size(); 5110 if (NumExits == 0) return; 5111 5112 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 5113 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 5114 if (NumExits == 1) return; 5115 5116 // Handle the rare case of multiple computable exits. 5117 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 5118 5119 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 5120 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 5121 PrevENT->setNextExit(ENT); 5122 ENT->ExitingBlock = ExitCounts[i].first; 5123 ENT->ExactNotTaken = ExitCounts[i].second; 5124 } 5125 } 5126 5127 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 5128 void ScalarEvolution::BackedgeTakenInfo::clear() { 5129 ExitNotTaken.ExitingBlock = nullptr; 5130 ExitNotTaken.ExactNotTaken = nullptr; 5131 delete[] ExitNotTaken.getNextExit(); 5132 } 5133 5134 /// computeBackedgeTakenCount - Compute the number of times the backedge 5135 /// of the specified loop will execute. 5136 ScalarEvolution::BackedgeTakenInfo 5137 ScalarEvolution::computeBackedgeTakenCount(const Loop *L) { 5138 SmallVector<BasicBlock *, 8> ExitingBlocks; 5139 L->getExitingBlocks(ExitingBlocks); 5140 5141 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 5142 bool CouldComputeBECount = true; 5143 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 5144 const SCEV *MustExitMaxBECount = nullptr; 5145 const SCEV *MayExitMaxBECount = nullptr; 5146 5147 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 5148 // and compute maxBECount. 5149 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 5150 BasicBlock *ExitBB = ExitingBlocks[i]; 5151 ExitLimit EL = computeExitLimit(L, ExitBB); 5152 5153 // 1. For each exit that can be computed, add an entry to ExitCounts. 5154 // CouldComputeBECount is true only if all exits can be computed. 5155 if (EL.Exact == getCouldNotCompute()) 5156 // We couldn't compute an exact value for this exit, so 5157 // we won't be able to compute an exact value for the loop. 5158 CouldComputeBECount = false; 5159 else 5160 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 5161 5162 // 2. Derive the loop's MaxBECount from each exit's max number of 5163 // non-exiting iterations. Partition the loop exits into two kinds: 5164 // LoopMustExits and LoopMayExits. 5165 // 5166 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 5167 // is a LoopMayExit. If any computable LoopMustExit is found, then 5168 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 5169 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 5170 // considered greater than any computable EL.Max. 5171 if (EL.Max != getCouldNotCompute() && Latch && 5172 DT.dominates(ExitBB, Latch)) { 5173 if (!MustExitMaxBECount) 5174 MustExitMaxBECount = EL.Max; 5175 else { 5176 MustExitMaxBECount = 5177 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5178 } 5179 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5180 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5181 MayExitMaxBECount = EL.Max; 5182 else { 5183 MayExitMaxBECount = 5184 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5185 } 5186 } 5187 } 5188 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5189 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5190 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5191 } 5192 5193 ScalarEvolution::ExitLimit 5194 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5195 5196 // Okay, we've chosen an exiting block. See what condition causes us to exit 5197 // at this block and remember the exit block and whether all other targets 5198 // lead to the loop header. 5199 bool MustExecuteLoopHeader = true; 5200 BasicBlock *Exit = nullptr; 5201 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5202 SI != SE; ++SI) 5203 if (!L->contains(*SI)) { 5204 if (Exit) // Multiple exit successors. 5205 return getCouldNotCompute(); 5206 Exit = *SI; 5207 } else if (*SI != L->getHeader()) { 5208 MustExecuteLoopHeader = false; 5209 } 5210 5211 // At this point, we know we have a conditional branch that determines whether 5212 // the loop is exited. However, we don't know if the branch is executed each 5213 // time through the loop. If not, then the execution count of the branch will 5214 // not be equal to the trip count of the loop. 5215 // 5216 // Currently we check for this by checking to see if the Exit branch goes to 5217 // the loop header. If so, we know it will always execute the same number of 5218 // times as the loop. We also handle the case where the exit block *is* the 5219 // loop header. This is common for un-rotated loops. 5220 // 5221 // If both of those tests fail, walk up the unique predecessor chain to the 5222 // header, stopping if there is an edge that doesn't exit the loop. If the 5223 // header is reached, the execution count of the branch will be equal to the 5224 // trip count of the loop. 5225 // 5226 // More extensive analysis could be done to handle more cases here. 5227 // 5228 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5229 // The simple checks failed, try climbing the unique predecessor chain 5230 // up to the header. 5231 bool Ok = false; 5232 for (BasicBlock *BB = ExitingBlock; BB; ) { 5233 BasicBlock *Pred = BB->getUniquePredecessor(); 5234 if (!Pred) 5235 return getCouldNotCompute(); 5236 TerminatorInst *PredTerm = Pred->getTerminator(); 5237 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5238 if (PredSucc == BB) 5239 continue; 5240 // If the predecessor has a successor that isn't BB and isn't 5241 // outside the loop, assume the worst. 5242 if (L->contains(PredSucc)) 5243 return getCouldNotCompute(); 5244 } 5245 if (Pred == L->getHeader()) { 5246 Ok = true; 5247 break; 5248 } 5249 BB = Pred; 5250 } 5251 if (!Ok) 5252 return getCouldNotCompute(); 5253 } 5254 5255 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5256 TerminatorInst *Term = ExitingBlock->getTerminator(); 5257 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5258 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5259 // Proceed to the next level to examine the exit condition expression. 5260 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5261 BI->getSuccessor(1), 5262 /*ControlsExit=*/IsOnlyExit); 5263 } 5264 5265 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5266 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 5267 /*ControlsExit=*/IsOnlyExit); 5268 5269 return getCouldNotCompute(); 5270 } 5271 5272 /// computeExitLimitFromCond - Compute the number of times the 5273 /// backedge of the specified loop will execute if its exit condition 5274 /// were a conditional branch of ExitCond, TBB, and FBB. 5275 /// 5276 /// @param ControlsExit is true if ExitCond directly controls the exit 5277 /// branch. In this case, we can assume that the loop exits only if the 5278 /// condition is true and can infer that failing to meet the condition prior to 5279 /// integer wraparound results in undefined behavior. 5280 ScalarEvolution::ExitLimit 5281 ScalarEvolution::computeExitLimitFromCond(const Loop *L, 5282 Value *ExitCond, 5283 BasicBlock *TBB, 5284 BasicBlock *FBB, 5285 bool ControlsExit) { 5286 // Check if the controlling expression for this loop is an And or Or. 5287 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5288 if (BO->getOpcode() == Instruction::And) { 5289 // Recurse on the operands of the and. 5290 bool EitherMayExit = L->contains(TBB); 5291 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5292 ControlsExit && !EitherMayExit); 5293 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5294 ControlsExit && !EitherMayExit); 5295 const SCEV *BECount = getCouldNotCompute(); 5296 const SCEV *MaxBECount = getCouldNotCompute(); 5297 if (EitherMayExit) { 5298 // Both conditions must be true for the loop to continue executing. 5299 // Choose the less conservative count. 5300 if (EL0.Exact == getCouldNotCompute() || 5301 EL1.Exact == getCouldNotCompute()) 5302 BECount = getCouldNotCompute(); 5303 else 5304 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5305 if (EL0.Max == getCouldNotCompute()) 5306 MaxBECount = EL1.Max; 5307 else if (EL1.Max == getCouldNotCompute()) 5308 MaxBECount = EL0.Max; 5309 else 5310 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5311 } else { 5312 // Both conditions must be true at the same time for the loop to exit. 5313 // For now, be conservative. 5314 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5315 if (EL0.Max == EL1.Max) 5316 MaxBECount = EL0.Max; 5317 if (EL0.Exact == EL1.Exact) 5318 BECount = EL0.Exact; 5319 } 5320 5321 return ExitLimit(BECount, MaxBECount); 5322 } 5323 if (BO->getOpcode() == Instruction::Or) { 5324 // Recurse on the operands of the or. 5325 bool EitherMayExit = L->contains(FBB); 5326 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5327 ControlsExit && !EitherMayExit); 5328 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5329 ControlsExit && !EitherMayExit); 5330 const SCEV *BECount = getCouldNotCompute(); 5331 const SCEV *MaxBECount = getCouldNotCompute(); 5332 if (EitherMayExit) { 5333 // Both conditions must be false for the loop to continue executing. 5334 // Choose the less conservative count. 5335 if (EL0.Exact == getCouldNotCompute() || 5336 EL1.Exact == getCouldNotCompute()) 5337 BECount = getCouldNotCompute(); 5338 else 5339 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5340 if (EL0.Max == getCouldNotCompute()) 5341 MaxBECount = EL1.Max; 5342 else if (EL1.Max == getCouldNotCompute()) 5343 MaxBECount = EL0.Max; 5344 else 5345 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5346 } else { 5347 // Both conditions must be false at the same time for the loop to exit. 5348 // For now, be conservative. 5349 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5350 if (EL0.Max == EL1.Max) 5351 MaxBECount = EL0.Max; 5352 if (EL0.Exact == EL1.Exact) 5353 BECount = EL0.Exact; 5354 } 5355 5356 return ExitLimit(BECount, MaxBECount); 5357 } 5358 } 5359 5360 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5361 // Proceed to the next level to examine the icmp. 5362 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5363 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5364 5365 // Check for a constant condition. These are normally stripped out by 5366 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5367 // preserve the CFG and is temporarily leaving constant conditions 5368 // in place. 5369 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5370 if (L->contains(FBB) == !CI->getZExtValue()) 5371 // The backedge is always taken. 5372 return getCouldNotCompute(); 5373 else 5374 // The backedge is never taken. 5375 return getZero(CI->getType()); 5376 } 5377 5378 // If it's not an integer or pointer comparison then compute it the hard way. 5379 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5380 } 5381 5382 ScalarEvolution::ExitLimit 5383 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 5384 ICmpInst *ExitCond, 5385 BasicBlock *TBB, 5386 BasicBlock *FBB, 5387 bool ControlsExit) { 5388 5389 // If the condition was exit on true, convert the condition to exit on false 5390 ICmpInst::Predicate Cond; 5391 if (!L->contains(FBB)) 5392 Cond = ExitCond->getPredicate(); 5393 else 5394 Cond = ExitCond->getInversePredicate(); 5395 5396 // Handle common loops like: for (X = "string"; *X; ++X) 5397 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5398 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5399 ExitLimit ItCnt = 5400 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5401 if (ItCnt.hasAnyInfo()) 5402 return ItCnt; 5403 } 5404 5405 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5406 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5407 5408 // Try to evaluate any dependencies out of the loop. 5409 LHS = getSCEVAtScope(LHS, L); 5410 RHS = getSCEVAtScope(RHS, L); 5411 5412 // At this point, we would like to compute how many iterations of the 5413 // loop the predicate will return true for these inputs. 5414 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5415 // If there is a loop-invariant, force it into the RHS. 5416 std::swap(LHS, RHS); 5417 Cond = ICmpInst::getSwappedPredicate(Cond); 5418 } 5419 5420 // Simplify the operands before analyzing them. 5421 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5422 5423 // If we have a comparison of a chrec against a constant, try to use value 5424 // ranges to answer this query. 5425 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5426 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5427 if (AddRec->getLoop() == L) { 5428 // Form the constant range. 5429 ConstantRange CompRange( 5430 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5431 5432 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5433 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5434 } 5435 5436 switch (Cond) { 5437 case ICmpInst::ICMP_NE: { // while (X != Y) 5438 // Convert to: while (X-Y != 0) 5439 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5440 if (EL.hasAnyInfo()) return EL; 5441 break; 5442 } 5443 case ICmpInst::ICMP_EQ: { // while (X == Y) 5444 // Convert to: while (X-Y == 0) 5445 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5446 if (EL.hasAnyInfo()) return EL; 5447 break; 5448 } 5449 case ICmpInst::ICMP_SLT: 5450 case ICmpInst::ICMP_ULT: { // while (X < Y) 5451 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5452 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5453 if (EL.hasAnyInfo()) return EL; 5454 break; 5455 } 5456 case ICmpInst::ICMP_SGT: 5457 case ICmpInst::ICMP_UGT: { // while (X > Y) 5458 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5459 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5460 if (EL.hasAnyInfo()) return EL; 5461 break; 5462 } 5463 default: 5464 #if 0 5465 dbgs() << "computeBackedgeTakenCount "; 5466 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5467 dbgs() << "[unsigned] "; 5468 dbgs() << *LHS << " " 5469 << Instruction::getOpcodeName(Instruction::ICmp) 5470 << " " << *RHS << "\n"; 5471 #endif 5472 break; 5473 } 5474 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5475 } 5476 5477 ScalarEvolution::ExitLimit 5478 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 5479 SwitchInst *Switch, 5480 BasicBlock *ExitingBlock, 5481 bool ControlsExit) { 5482 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5483 5484 // Give up if the exit is the default dest of a switch. 5485 if (Switch->getDefaultDest() == ExitingBlock) 5486 return getCouldNotCompute(); 5487 5488 assert(L->contains(Switch->getDefaultDest()) && 5489 "Default case must not exit the loop!"); 5490 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5491 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5492 5493 // while (X != Y) --> while (X-Y != 0) 5494 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5495 if (EL.hasAnyInfo()) 5496 return EL; 5497 5498 return getCouldNotCompute(); 5499 } 5500 5501 static ConstantInt * 5502 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5503 ScalarEvolution &SE) { 5504 const SCEV *InVal = SE.getConstant(C); 5505 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5506 assert(isa<SCEVConstant>(Val) && 5507 "Evaluation of SCEV at constant didn't fold correctly?"); 5508 return cast<SCEVConstant>(Val)->getValue(); 5509 } 5510 5511 /// computeLoadConstantCompareExitLimit - Given an exit condition of 5512 /// 'icmp op load X, cst', try to see if we can compute the backedge 5513 /// execution count. 5514 ScalarEvolution::ExitLimit 5515 ScalarEvolution::computeLoadConstantCompareExitLimit( 5516 LoadInst *LI, 5517 Constant *RHS, 5518 const Loop *L, 5519 ICmpInst::Predicate predicate) { 5520 5521 if (LI->isVolatile()) return getCouldNotCompute(); 5522 5523 // Check to see if the loaded pointer is a getelementptr of a global. 5524 // TODO: Use SCEV instead of manually grubbing with GEPs. 5525 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5526 if (!GEP) return getCouldNotCompute(); 5527 5528 // Make sure that it is really a constant global we are gepping, with an 5529 // initializer, and make sure the first IDX is really 0. 5530 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5531 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5532 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5533 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5534 return getCouldNotCompute(); 5535 5536 // Okay, we allow one non-constant index into the GEP instruction. 5537 Value *VarIdx = nullptr; 5538 std::vector<Constant*> Indexes; 5539 unsigned VarIdxNum = 0; 5540 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5541 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5542 Indexes.push_back(CI); 5543 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5544 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5545 VarIdx = GEP->getOperand(i); 5546 VarIdxNum = i-2; 5547 Indexes.push_back(nullptr); 5548 } 5549 5550 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5551 if (!VarIdx) 5552 return getCouldNotCompute(); 5553 5554 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5555 // Check to see if X is a loop variant variable value now. 5556 const SCEV *Idx = getSCEV(VarIdx); 5557 Idx = getSCEVAtScope(Idx, L); 5558 5559 // We can only recognize very limited forms of loop index expressions, in 5560 // particular, only affine AddRec's like {C1,+,C2}. 5561 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5562 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5563 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5564 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5565 return getCouldNotCompute(); 5566 5567 unsigned MaxSteps = MaxBruteForceIterations; 5568 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5569 ConstantInt *ItCst = ConstantInt::get( 5570 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5571 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5572 5573 // Form the GEP offset. 5574 Indexes[VarIdxNum] = Val; 5575 5576 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5577 Indexes); 5578 if (!Result) break; // Cannot compute! 5579 5580 // Evaluate the condition for this iteration. 5581 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5582 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5583 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5584 #if 0 5585 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5586 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5587 << "***\n"; 5588 #endif 5589 ++NumArrayLenItCounts; 5590 return getConstant(ItCst); // Found terminating iteration! 5591 } 5592 } 5593 return getCouldNotCompute(); 5594 } 5595 5596 5597 /// CanConstantFold - Return true if we can constant fold an instruction of the 5598 /// specified type, assuming that all operands were constants. 5599 static bool CanConstantFold(const Instruction *I) { 5600 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5601 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5602 isa<LoadInst>(I)) 5603 return true; 5604 5605 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5606 if (const Function *F = CI->getCalledFunction()) 5607 return canConstantFoldCallTo(F); 5608 return false; 5609 } 5610 5611 /// Determine whether this instruction can constant evolve within this loop 5612 /// assuming its operands can all constant evolve. 5613 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5614 // An instruction outside of the loop can't be derived from a loop PHI. 5615 if (!L->contains(I)) return false; 5616 5617 if (isa<PHINode>(I)) { 5618 // We don't currently keep track of the control flow needed to evaluate 5619 // PHIs, so we cannot handle PHIs inside of loops. 5620 return L->getHeader() == I->getParent(); 5621 } 5622 5623 // If we won't be able to constant fold this expression even if the operands 5624 // are constants, bail early. 5625 return CanConstantFold(I); 5626 } 5627 5628 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5629 /// recursing through each instruction operand until reaching a loop header phi. 5630 static PHINode * 5631 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5632 DenseMap<Instruction *, PHINode *> &PHIMap) { 5633 5634 // Otherwise, we can evaluate this instruction if all of its operands are 5635 // constant or derived from a PHI node themselves. 5636 PHINode *PHI = nullptr; 5637 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5638 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5639 5640 if (isa<Constant>(*OpI)) continue; 5641 5642 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5643 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5644 5645 PHINode *P = dyn_cast<PHINode>(OpInst); 5646 if (!P) 5647 // If this operand is already visited, reuse the prior result. 5648 // We may have P != PHI if this is the deepest point at which the 5649 // inconsistent paths meet. 5650 P = PHIMap.lookup(OpInst); 5651 if (!P) { 5652 // Recurse and memoize the results, whether a phi is found or not. 5653 // This recursive call invalidates pointers into PHIMap. 5654 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5655 PHIMap[OpInst] = P; 5656 } 5657 if (!P) 5658 return nullptr; // Not evolving from PHI 5659 if (PHI && PHI != P) 5660 return nullptr; // Evolving from multiple different PHIs. 5661 PHI = P; 5662 } 5663 // This is a expression evolving from a constant PHI! 5664 return PHI; 5665 } 5666 5667 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5668 /// in the loop that V is derived from. We allow arbitrary operations along the 5669 /// way, but the operands of an operation must either be constants or a value 5670 /// derived from a constant PHI. If this expression does not fit with these 5671 /// constraints, return null. 5672 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5673 Instruction *I = dyn_cast<Instruction>(V); 5674 if (!I || !canConstantEvolve(I, L)) return nullptr; 5675 5676 if (PHINode *PN = dyn_cast<PHINode>(I)) 5677 return PN; 5678 5679 // Record non-constant instructions contained by the loop. 5680 DenseMap<Instruction *, PHINode *> PHIMap; 5681 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5682 } 5683 5684 /// EvaluateExpression - Given an expression that passes the 5685 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5686 /// in the loop has the value PHIVal. If we can't fold this expression for some 5687 /// reason, return null. 5688 static Constant *EvaluateExpression(Value *V, const Loop *L, 5689 DenseMap<Instruction *, Constant *> &Vals, 5690 const DataLayout &DL, 5691 const TargetLibraryInfo *TLI) { 5692 // Convenient constant check, but redundant for recursive calls. 5693 if (Constant *C = dyn_cast<Constant>(V)) return C; 5694 Instruction *I = dyn_cast<Instruction>(V); 5695 if (!I) return nullptr; 5696 5697 if (Constant *C = Vals.lookup(I)) return C; 5698 5699 // An instruction inside the loop depends on a value outside the loop that we 5700 // weren't given a mapping for, or a value such as a call inside the loop. 5701 if (!canConstantEvolve(I, L)) return nullptr; 5702 5703 // An unmapped PHI can be due to a branch or another loop inside this loop, 5704 // or due to this not being the initial iteration through a loop where we 5705 // couldn't compute the evolution of this particular PHI last time. 5706 if (isa<PHINode>(I)) return nullptr; 5707 5708 std::vector<Constant*> Operands(I->getNumOperands()); 5709 5710 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5711 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5712 if (!Operand) { 5713 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5714 if (!Operands[i]) return nullptr; 5715 continue; 5716 } 5717 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5718 Vals[Operand] = C; 5719 if (!C) return nullptr; 5720 Operands[i] = C; 5721 } 5722 5723 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5724 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5725 Operands[1], DL, TLI); 5726 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5727 if (!LI->isVolatile()) 5728 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5729 } 5730 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5731 TLI); 5732 } 5733 5734 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5735 /// in the header of its containing loop, we know the loop executes a 5736 /// constant number of times, and the PHI node is just a recurrence 5737 /// involving constants, fold it. 5738 Constant * 5739 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5740 const APInt &BEs, 5741 const Loop *L) { 5742 auto I = ConstantEvolutionLoopExitValue.find(PN); 5743 if (I != ConstantEvolutionLoopExitValue.end()) 5744 return I->second; 5745 5746 if (BEs.ugt(MaxBruteForceIterations)) 5747 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5748 5749 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5750 5751 DenseMap<Instruction *, Constant *> CurrentIterVals; 5752 BasicBlock *Header = L->getHeader(); 5753 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5754 5755 BasicBlock *Latch = L->getLoopLatch(); 5756 if (!Latch) 5757 return nullptr; 5758 5759 // Since the loop has one latch, the PHI node must have two entries. One 5760 // entry must be a constant (coming in from outside of the loop), and the 5761 // second must be derived from the same PHI. 5762 5763 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5764 ? PN->getIncomingBlock(1) 5765 : PN->getIncomingBlock(0); 5766 5767 assert(PN->getNumIncomingValues() == 2 && "Follows from having one latch!"); 5768 5769 // Note: not all PHI nodes in the same block have to have their incoming 5770 // values in the same order, so we use the basic block to look up the incoming 5771 // value, not an index. 5772 5773 for (auto &I : *Header) { 5774 PHINode *PHI = dyn_cast<PHINode>(&I); 5775 if (!PHI) break; 5776 auto *StartCST = 5777 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5778 if (!StartCST) continue; 5779 CurrentIterVals[PHI] = StartCST; 5780 } 5781 if (!CurrentIterVals.count(PN)) 5782 return RetVal = nullptr; 5783 5784 Value *BEValue = PN->getIncomingValueForBlock(Latch); 5785 5786 // Execute the loop symbolically to determine the exit value. 5787 if (BEs.getActiveBits() >= 32) 5788 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5789 5790 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5791 unsigned IterationNum = 0; 5792 const DataLayout &DL = F.getParent()->getDataLayout(); 5793 for (; ; ++IterationNum) { 5794 if (IterationNum == NumIterations) 5795 return RetVal = CurrentIterVals[PN]; // Got exit value! 5796 5797 // Compute the value of the PHIs for the next iteration. 5798 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5799 DenseMap<Instruction *, Constant *> NextIterVals; 5800 Constant *NextPHI = 5801 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5802 if (!NextPHI) 5803 return nullptr; // Couldn't evaluate! 5804 NextIterVals[PN] = NextPHI; 5805 5806 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5807 5808 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5809 // cease to be able to evaluate one of them or if they stop evolving, 5810 // because that doesn't necessarily prevent us from computing PN. 5811 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5812 for (const auto &I : CurrentIterVals) { 5813 PHINode *PHI = dyn_cast<PHINode>(I.first); 5814 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5815 PHIsToCompute.emplace_back(PHI, I.second); 5816 } 5817 // We use two distinct loops because EvaluateExpression may invalidate any 5818 // iterators into CurrentIterVals. 5819 for (const auto &I : PHIsToCompute) { 5820 PHINode *PHI = I.first; 5821 Constant *&NextPHI = NextIterVals[PHI]; 5822 if (!NextPHI) { // Not already computed. 5823 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5824 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5825 } 5826 if (NextPHI != I.second) 5827 StoppedEvolving = false; 5828 } 5829 5830 // If all entries in CurrentIterVals == NextIterVals then we can stop 5831 // iterating, the loop can't continue to change. 5832 if (StoppedEvolving) 5833 return RetVal = CurrentIterVals[PN]; 5834 5835 CurrentIterVals.swap(NextIterVals); 5836 } 5837 } 5838 5839 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 5840 Value *Cond, 5841 bool ExitWhen) { 5842 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5843 if (!PN) return getCouldNotCompute(); 5844 5845 // If the loop is canonicalized, the PHI will have exactly two entries. 5846 // That's the only form we support here. 5847 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5848 5849 DenseMap<Instruction *, Constant *> CurrentIterVals; 5850 BasicBlock *Header = L->getHeader(); 5851 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5852 5853 BasicBlock *Latch = L->getLoopLatch(); 5854 assert(Latch && "Should follow from NumIncomingValues == 2!"); 5855 5856 // NonLatch is the preheader, or something equivalent. 5857 BasicBlock *NonLatch = Latch == PN->getIncomingBlock(0) 5858 ? PN->getIncomingBlock(1) 5859 : PN->getIncomingBlock(0); 5860 5861 // Note: not all PHI nodes in the same block have to have their incoming 5862 // values in the same order, so we use the basic block to look up the incoming 5863 // value, not an index. 5864 5865 for (auto &I : *Header) { 5866 PHINode *PHI = dyn_cast<PHINode>(&I); 5867 if (!PHI) 5868 break; 5869 auto *StartCST = 5870 dyn_cast<Constant>(PHI->getIncomingValueForBlock(NonLatch)); 5871 if (!StartCST) continue; 5872 CurrentIterVals[PHI] = StartCST; 5873 } 5874 if (!CurrentIterVals.count(PN)) 5875 return getCouldNotCompute(); 5876 5877 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5878 // the loop symbolically to determine when the condition gets a value of 5879 // "ExitWhen". 5880 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5881 const DataLayout &DL = F.getParent()->getDataLayout(); 5882 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5883 auto *CondVal = dyn_cast_or_null<ConstantInt>( 5884 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5885 5886 // Couldn't symbolically evaluate. 5887 if (!CondVal) return getCouldNotCompute(); 5888 5889 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5890 ++NumBruteForceTripCountsComputed; 5891 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5892 } 5893 5894 // Update all the PHI nodes for the next iteration. 5895 DenseMap<Instruction *, Constant *> NextIterVals; 5896 5897 // Create a list of which PHIs we need to compute. We want to do this before 5898 // calling EvaluateExpression on them because that may invalidate iterators 5899 // into CurrentIterVals. 5900 SmallVector<PHINode *, 8> PHIsToCompute; 5901 for (const auto &I : CurrentIterVals) { 5902 PHINode *PHI = dyn_cast<PHINode>(I.first); 5903 if (!PHI || PHI->getParent() != Header) continue; 5904 PHIsToCompute.push_back(PHI); 5905 } 5906 for (PHINode *PHI : PHIsToCompute) { 5907 Constant *&NextPHI = NextIterVals[PHI]; 5908 if (NextPHI) continue; // Already computed! 5909 5910 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 5911 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5912 } 5913 CurrentIterVals.swap(NextIterVals); 5914 } 5915 5916 // Too many iterations were needed to evaluate. 5917 return getCouldNotCompute(); 5918 } 5919 5920 /// getSCEVAtScope - Return a SCEV expression for the specified value 5921 /// at the specified scope in the program. The L value specifies a loop 5922 /// nest to evaluate the expression at, where null is the top-level or a 5923 /// specified loop is immediately inside of the loop. 5924 /// 5925 /// This method can be used to compute the exit value for a variable defined 5926 /// in a loop by querying what the value will hold in the parent loop. 5927 /// 5928 /// In the case that a relevant loop exit value cannot be computed, the 5929 /// original value V is returned. 5930 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5931 // Check to see if we've folded this expression at this loop before. 5932 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5933 for (unsigned u = 0; u < Values.size(); u++) { 5934 if (Values[u].first == L) 5935 return Values[u].second ? Values[u].second : V; 5936 } 5937 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5938 // Otherwise compute it. 5939 const SCEV *C = computeSCEVAtScope(V, L); 5940 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5941 for (unsigned u = Values2.size(); u > 0; u--) { 5942 if (Values2[u - 1].first == L) { 5943 Values2[u - 1].second = C; 5944 break; 5945 } 5946 } 5947 return C; 5948 } 5949 5950 /// This builds up a Constant using the ConstantExpr interface. That way, we 5951 /// will return Constants for objects which aren't represented by a 5952 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5953 /// Returns NULL if the SCEV isn't representable as a Constant. 5954 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5955 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5956 case scCouldNotCompute: 5957 case scAddRecExpr: 5958 break; 5959 case scConstant: 5960 return cast<SCEVConstant>(V)->getValue(); 5961 case scUnknown: 5962 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5963 case scSignExtend: { 5964 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5965 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5966 return ConstantExpr::getSExt(CastOp, SS->getType()); 5967 break; 5968 } 5969 case scZeroExtend: { 5970 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5971 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5972 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5973 break; 5974 } 5975 case scTruncate: { 5976 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5977 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5978 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5979 break; 5980 } 5981 case scAddExpr: { 5982 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5983 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5984 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5985 unsigned AS = PTy->getAddressSpace(); 5986 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5987 C = ConstantExpr::getBitCast(C, DestPtrTy); 5988 } 5989 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5990 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5991 if (!C2) return nullptr; 5992 5993 // First pointer! 5994 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5995 unsigned AS = C2->getType()->getPointerAddressSpace(); 5996 std::swap(C, C2); 5997 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5998 // The offsets have been converted to bytes. We can add bytes to an 5999 // i8* by GEP with the byte count in the first index. 6000 C = ConstantExpr::getBitCast(C, DestPtrTy); 6001 } 6002 6003 // Don't bother trying to sum two pointers. We probably can't 6004 // statically compute a load that results from it anyway. 6005 if (C2->getType()->isPointerTy()) 6006 return nullptr; 6007 6008 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 6009 if (PTy->getElementType()->isStructTy()) 6010 C2 = ConstantExpr::getIntegerCast( 6011 C2, Type::getInt32Ty(C->getContext()), true); 6012 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 6013 } else 6014 C = ConstantExpr::getAdd(C, C2); 6015 } 6016 return C; 6017 } 6018 break; 6019 } 6020 case scMulExpr: { 6021 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 6022 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 6023 // Don't bother with pointers at all. 6024 if (C->getType()->isPointerTy()) return nullptr; 6025 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 6026 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 6027 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 6028 C = ConstantExpr::getMul(C, C2); 6029 } 6030 return C; 6031 } 6032 break; 6033 } 6034 case scUDivExpr: { 6035 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 6036 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 6037 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 6038 if (LHS->getType() == RHS->getType()) 6039 return ConstantExpr::getUDiv(LHS, RHS); 6040 break; 6041 } 6042 case scSMaxExpr: 6043 case scUMaxExpr: 6044 break; // TODO: smax, umax. 6045 } 6046 return nullptr; 6047 } 6048 6049 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 6050 if (isa<SCEVConstant>(V)) return V; 6051 6052 // If this instruction is evolved from a constant-evolving PHI, compute the 6053 // exit value from the loop without using SCEVs. 6054 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 6055 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 6056 const Loop *LI = this->LI[I->getParent()]; 6057 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 6058 if (PHINode *PN = dyn_cast<PHINode>(I)) 6059 if (PN->getParent() == LI->getHeader()) { 6060 // Okay, there is no closed form solution for the PHI node. Check 6061 // to see if the loop that contains it has a known backedge-taken 6062 // count. If so, we may be able to force computation of the exit 6063 // value. 6064 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 6065 if (const SCEVConstant *BTCC = 6066 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 6067 // Okay, we know how many times the containing loop executes. If 6068 // this is a constant evolving PHI node, get the final value at 6069 // the specified iteration number. 6070 Constant *RV = getConstantEvolutionLoopExitValue(PN, 6071 BTCC->getValue()->getValue(), 6072 LI); 6073 if (RV) return getSCEV(RV); 6074 } 6075 } 6076 6077 // Okay, this is an expression that we cannot symbolically evaluate 6078 // into a SCEV. Check to see if it's possible to symbolically evaluate 6079 // the arguments into constants, and if so, try to constant propagate the 6080 // result. This is particularly useful for computing loop exit values. 6081 if (CanConstantFold(I)) { 6082 SmallVector<Constant *, 4> Operands; 6083 bool MadeImprovement = false; 6084 for (Value *Op : I->operands()) { 6085 if (Constant *C = dyn_cast<Constant>(Op)) { 6086 Operands.push_back(C); 6087 continue; 6088 } 6089 6090 // If any of the operands is non-constant and if they are 6091 // non-integer and non-pointer, don't even try to analyze them 6092 // with scev techniques. 6093 if (!isSCEVable(Op->getType())) 6094 return V; 6095 6096 const SCEV *OrigV = getSCEV(Op); 6097 const SCEV *OpV = getSCEVAtScope(OrigV, L); 6098 MadeImprovement |= OrigV != OpV; 6099 6100 Constant *C = BuildConstantFromSCEV(OpV); 6101 if (!C) return V; 6102 if (C->getType() != Op->getType()) 6103 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 6104 Op->getType(), 6105 false), 6106 C, Op->getType()); 6107 Operands.push_back(C); 6108 } 6109 6110 // Check to see if getSCEVAtScope actually made an improvement. 6111 if (MadeImprovement) { 6112 Constant *C = nullptr; 6113 const DataLayout &DL = F.getParent()->getDataLayout(); 6114 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 6115 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6116 Operands[1], DL, &TLI); 6117 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 6118 if (!LI->isVolatile()) 6119 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 6120 } else 6121 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 6122 DL, &TLI); 6123 if (!C) return V; 6124 return getSCEV(C); 6125 } 6126 } 6127 } 6128 6129 // This is some other type of SCEVUnknown, just return it. 6130 return V; 6131 } 6132 6133 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 6134 // Avoid performing the look-up in the common case where the specified 6135 // expression has no loop-variant portions. 6136 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 6137 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6138 if (OpAtScope != Comm->getOperand(i)) { 6139 // Okay, at least one of these operands is loop variant but might be 6140 // foldable. Build a new instance of the folded commutative expression. 6141 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 6142 Comm->op_begin()+i); 6143 NewOps.push_back(OpAtScope); 6144 6145 for (++i; i != e; ++i) { 6146 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 6147 NewOps.push_back(OpAtScope); 6148 } 6149 if (isa<SCEVAddExpr>(Comm)) 6150 return getAddExpr(NewOps); 6151 if (isa<SCEVMulExpr>(Comm)) 6152 return getMulExpr(NewOps); 6153 if (isa<SCEVSMaxExpr>(Comm)) 6154 return getSMaxExpr(NewOps); 6155 if (isa<SCEVUMaxExpr>(Comm)) 6156 return getUMaxExpr(NewOps); 6157 llvm_unreachable("Unknown commutative SCEV type!"); 6158 } 6159 } 6160 // If we got here, all operands are loop invariant. 6161 return Comm; 6162 } 6163 6164 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 6165 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 6166 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 6167 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 6168 return Div; // must be loop invariant 6169 return getUDivExpr(LHS, RHS); 6170 } 6171 6172 // If this is a loop recurrence for a loop that does not contain L, then we 6173 // are dealing with the final value computed by the loop. 6174 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 6175 // First, attempt to evaluate each operand. 6176 // Avoid performing the look-up in the common case where the specified 6177 // expression has no loop-variant portions. 6178 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 6179 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 6180 if (OpAtScope == AddRec->getOperand(i)) 6181 continue; 6182 6183 // Okay, at least one of these operands is loop variant but might be 6184 // foldable. Build a new instance of the folded commutative expression. 6185 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6186 AddRec->op_begin()+i); 6187 NewOps.push_back(OpAtScope); 6188 for (++i; i != e; ++i) 6189 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6190 6191 const SCEV *FoldedRec = 6192 getAddRecExpr(NewOps, AddRec->getLoop(), 6193 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6194 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6195 // The addrec may be folded to a nonrecurrence, for example, if the 6196 // induction variable is multiplied by zero after constant folding. Go 6197 // ahead and return the folded value. 6198 if (!AddRec) 6199 return FoldedRec; 6200 break; 6201 } 6202 6203 // If the scope is outside the addrec's loop, evaluate it by using the 6204 // loop exit value of the addrec. 6205 if (!AddRec->getLoop()->contains(L)) { 6206 // To evaluate this recurrence, we need to know how many times the AddRec 6207 // loop iterates. Compute this now. 6208 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6209 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6210 6211 // Then, evaluate the AddRec. 6212 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6213 } 6214 6215 return AddRec; 6216 } 6217 6218 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6219 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6220 if (Op == Cast->getOperand()) 6221 return Cast; // must be loop invariant 6222 return getZeroExtendExpr(Op, Cast->getType()); 6223 } 6224 6225 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6226 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6227 if (Op == Cast->getOperand()) 6228 return Cast; // must be loop invariant 6229 return getSignExtendExpr(Op, Cast->getType()); 6230 } 6231 6232 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6233 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6234 if (Op == Cast->getOperand()) 6235 return Cast; // must be loop invariant 6236 return getTruncateExpr(Op, Cast->getType()); 6237 } 6238 6239 llvm_unreachable("Unknown SCEV type!"); 6240 } 6241 6242 /// getSCEVAtScope - This is a convenience function which does 6243 /// getSCEVAtScope(getSCEV(V), L). 6244 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6245 return getSCEVAtScope(getSCEV(V), L); 6246 } 6247 6248 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6249 /// following equation: 6250 /// 6251 /// A * X = B (mod N) 6252 /// 6253 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6254 /// A and B isn't important. 6255 /// 6256 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6257 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6258 ScalarEvolution &SE) { 6259 uint32_t BW = A.getBitWidth(); 6260 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6261 assert(A != 0 && "A must be non-zero."); 6262 6263 // 1. D = gcd(A, N) 6264 // 6265 // The gcd of A and N may have only one prime factor: 2. The number of 6266 // trailing zeros in A is its multiplicity 6267 uint32_t Mult2 = A.countTrailingZeros(); 6268 // D = 2^Mult2 6269 6270 // 2. Check if B is divisible by D. 6271 // 6272 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6273 // is not less than multiplicity of this prime factor for D. 6274 if (B.countTrailingZeros() < Mult2) 6275 return SE.getCouldNotCompute(); 6276 6277 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6278 // modulo (N / D). 6279 // 6280 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6281 // bit width during computations. 6282 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6283 APInt Mod(BW + 1, 0); 6284 Mod.setBit(BW - Mult2); // Mod = N / D 6285 APInt I = AD.multiplicativeInverse(Mod); 6286 6287 // 4. Compute the minimum unsigned root of the equation: 6288 // I * (B / D) mod (N / D) 6289 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6290 6291 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6292 // bits. 6293 return SE.getConstant(Result.trunc(BW)); 6294 } 6295 6296 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6297 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6298 /// might be the same) or two SCEVCouldNotCompute objects. 6299 /// 6300 static std::pair<const SCEV *,const SCEV *> 6301 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6302 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6303 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6304 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6305 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6306 6307 // We currently can only solve this if the coefficients are constants. 6308 if (!LC || !MC || !NC) { 6309 const SCEV *CNC = SE.getCouldNotCompute(); 6310 return std::make_pair(CNC, CNC); 6311 } 6312 6313 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6314 const APInt &L = LC->getValue()->getValue(); 6315 const APInt &M = MC->getValue()->getValue(); 6316 const APInt &N = NC->getValue()->getValue(); 6317 APInt Two(BitWidth, 2); 6318 APInt Four(BitWidth, 4); 6319 6320 { 6321 using namespace APIntOps; 6322 const APInt& C = L; 6323 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6324 // The B coefficient is M-N/2 6325 APInt B(M); 6326 B -= sdiv(N,Two); 6327 6328 // The A coefficient is N/2 6329 APInt A(N.sdiv(Two)); 6330 6331 // Compute the B^2-4ac term. 6332 APInt SqrtTerm(B); 6333 SqrtTerm *= B; 6334 SqrtTerm -= Four * (A * C); 6335 6336 if (SqrtTerm.isNegative()) { 6337 // The loop is provably infinite. 6338 const SCEV *CNC = SE.getCouldNotCompute(); 6339 return std::make_pair(CNC, CNC); 6340 } 6341 6342 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6343 // integer value or else APInt::sqrt() will assert. 6344 APInt SqrtVal(SqrtTerm.sqrt()); 6345 6346 // Compute the two solutions for the quadratic formula. 6347 // The divisions must be performed as signed divisions. 6348 APInt NegB(-B); 6349 APInt TwoA(A << 1); 6350 if (TwoA.isMinValue()) { 6351 const SCEV *CNC = SE.getCouldNotCompute(); 6352 return std::make_pair(CNC, CNC); 6353 } 6354 6355 LLVMContext &Context = SE.getContext(); 6356 6357 ConstantInt *Solution1 = 6358 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6359 ConstantInt *Solution2 = 6360 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6361 6362 return std::make_pair(SE.getConstant(Solution1), 6363 SE.getConstant(Solution2)); 6364 } // end APIntOps namespace 6365 } 6366 6367 /// HowFarToZero - Return the number of times a backedge comparing the specified 6368 /// value to zero will execute. If not computable, return CouldNotCompute. 6369 /// 6370 /// This is only used for loops with a "x != y" exit test. The exit condition is 6371 /// now expressed as a single expression, V = x-y. So the exit test is 6372 /// effectively V != 0. We know and take advantage of the fact that this 6373 /// expression only being used in a comparison by zero context. 6374 ScalarEvolution::ExitLimit 6375 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6376 // If the value is a constant 6377 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6378 // If the value is already zero, the branch will execute zero times. 6379 if (C->getValue()->isZero()) return C; 6380 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6381 } 6382 6383 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6384 if (!AddRec || AddRec->getLoop() != L) 6385 return getCouldNotCompute(); 6386 6387 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6388 // the quadratic equation to solve it. 6389 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6390 std::pair<const SCEV *,const SCEV *> Roots = 6391 SolveQuadraticEquation(AddRec, *this); 6392 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6393 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6394 if (R1 && R2) { 6395 #if 0 6396 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6397 << " sol#2: " << *R2 << "\n"; 6398 #endif 6399 // Pick the smallest positive root value. 6400 if (ConstantInt *CB = 6401 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6402 R1->getValue(), 6403 R2->getValue()))) { 6404 if (!CB->getZExtValue()) 6405 std::swap(R1, R2); // R1 is the minimum root now. 6406 6407 // We can only use this value if the chrec ends up with an exact zero 6408 // value at this index. When solving for "X*X != 5", for example, we 6409 // should not accept a root of 2. 6410 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6411 if (Val->isZero()) 6412 return R1; // We found a quadratic root! 6413 } 6414 } 6415 return getCouldNotCompute(); 6416 } 6417 6418 // Otherwise we can only handle this if it is affine. 6419 if (!AddRec->isAffine()) 6420 return getCouldNotCompute(); 6421 6422 // If this is an affine expression, the execution count of this branch is 6423 // the minimum unsigned root of the following equation: 6424 // 6425 // Start + Step*N = 0 (mod 2^BW) 6426 // 6427 // equivalent to: 6428 // 6429 // Step*N = -Start (mod 2^BW) 6430 // 6431 // where BW is the common bit width of Start and Step. 6432 6433 // Get the initial value for the loop. 6434 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6435 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6436 6437 // For now we handle only constant steps. 6438 // 6439 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6440 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6441 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6442 // We have not yet seen any such cases. 6443 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6444 if (!StepC || StepC->getValue()->equalsInt(0)) 6445 return getCouldNotCompute(); 6446 6447 // For positive steps (counting up until unsigned overflow): 6448 // N = -Start/Step (as unsigned) 6449 // For negative steps (counting down to zero): 6450 // N = Start/-Step 6451 // First compute the unsigned distance from zero in the direction of Step. 6452 bool CountDown = StepC->getValue()->getValue().isNegative(); 6453 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6454 6455 // Handle unitary steps, which cannot wraparound. 6456 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6457 // N = Distance (as unsigned) 6458 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6459 ConstantRange CR = getUnsignedRange(Start); 6460 const SCEV *MaxBECount; 6461 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6462 // When counting up, the worst starting value is 1, not 0. 6463 MaxBECount = CR.getUnsignedMax().isMinValue() 6464 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6465 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6466 else 6467 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6468 : -CR.getUnsignedMin()); 6469 return ExitLimit(Distance, MaxBECount); 6470 } 6471 6472 // As a special case, handle the instance where Step is a positive power of 6473 // two. In this case, determining whether Step divides Distance evenly can be 6474 // done by counting and comparing the number of trailing zeros of Step and 6475 // Distance. 6476 if (!CountDown) { 6477 const APInt &StepV = StepC->getValue()->getValue(); 6478 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6479 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6480 // case is not handled as this code is guarded by !CountDown. 6481 if (StepV.isPowerOf2() && 6482 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6483 // Here we've constrained the equation to be of the form 6484 // 6485 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6486 // 6487 // where we're operating on a W bit wide integer domain and k is 6488 // non-negative. The smallest unsigned solution for X is the trip count. 6489 // 6490 // (0) is equivalent to: 6491 // 6492 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6493 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6494 // <=> 2^k * Distance' - X = L * 2^(W - N) 6495 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6496 // 6497 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6498 // by 2^(W - N). 6499 // 6500 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6501 // 6502 // E.g. say we're solving 6503 // 6504 // 2 * Val = 2 * X (in i8) ... (3) 6505 // 6506 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6507 // 6508 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6509 // necessarily the smallest unsigned value of X that satisfies (3). 6510 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6511 // is i8 1, not i8 -127 6512 6513 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6514 6515 // Since SCEV does not have a URem node, we construct one using a truncate 6516 // and a zero extend. 6517 6518 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6519 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6520 auto *WideTy = Distance->getType(); 6521 6522 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6523 } 6524 } 6525 6526 // If the condition controls loop exit (the loop exits only if the expression 6527 // is true) and the addition is no-wrap we can use unsigned divide to 6528 // compute the backedge count. In this case, the step may not divide the 6529 // distance, but we don't care because if the condition is "missed" the loop 6530 // will have undefined behavior due to wrapping. 6531 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6532 const SCEV *Exact = 6533 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6534 return ExitLimit(Exact, Exact); 6535 } 6536 6537 // Then, try to solve the above equation provided that Start is constant. 6538 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6539 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6540 -StartC->getValue()->getValue(), 6541 *this); 6542 return getCouldNotCompute(); 6543 } 6544 6545 /// HowFarToNonZero - Return the number of times a backedge checking the 6546 /// specified value for nonzero will execute. If not computable, return 6547 /// CouldNotCompute 6548 ScalarEvolution::ExitLimit 6549 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6550 // Loops that look like: while (X == 0) are very strange indeed. We don't 6551 // handle them yet except for the trivial case. This could be expanded in the 6552 // future as needed. 6553 6554 // If the value is a constant, check to see if it is known to be non-zero 6555 // already. If so, the backedge will execute zero times. 6556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6557 if (!C->getValue()->isNullValue()) 6558 return getZero(C->getType()); 6559 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6560 } 6561 6562 // We could implement others, but I really doubt anyone writes loops like 6563 // this, and if they did, they would already be constant folded. 6564 return getCouldNotCompute(); 6565 } 6566 6567 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6568 /// (which may not be an immediate predecessor) which has exactly one 6569 /// successor from which BB is reachable, or null if no such block is 6570 /// found. 6571 /// 6572 std::pair<BasicBlock *, BasicBlock *> 6573 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6574 // If the block has a unique predecessor, then there is no path from the 6575 // predecessor to the block that does not go through the direct edge 6576 // from the predecessor to the block. 6577 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6578 return std::make_pair(Pred, BB); 6579 6580 // A loop's header is defined to be a block that dominates the loop. 6581 // If the header has a unique predecessor outside the loop, it must be 6582 // a block that has exactly one successor that can reach the loop. 6583 if (Loop *L = LI.getLoopFor(BB)) 6584 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6585 6586 return std::pair<BasicBlock *, BasicBlock *>(); 6587 } 6588 6589 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6590 /// testing whether two expressions are equal, however for the purposes of 6591 /// looking for a condition guarding a loop, it can be useful to be a little 6592 /// more general, since a front-end may have replicated the controlling 6593 /// expression. 6594 /// 6595 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6596 // Quick check to see if they are the same SCEV. 6597 if (A == B) return true; 6598 6599 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6600 // Not all instructions that are "identical" compute the same value. For 6601 // instance, two distinct alloca instructions allocating the same type are 6602 // identical and do not read memory; but compute distinct values. 6603 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6604 }; 6605 6606 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6607 // two different instructions with the same value. Check for this case. 6608 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6609 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6610 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6611 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6612 if (ComputesEqualValues(AI, BI)) 6613 return true; 6614 6615 // Otherwise assume they may have a different value. 6616 return false; 6617 } 6618 6619 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6620 /// predicate Pred. Return true iff any changes were made. 6621 /// 6622 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6623 const SCEV *&LHS, const SCEV *&RHS, 6624 unsigned Depth) { 6625 bool Changed = false; 6626 6627 // If we hit the max recursion limit bail out. 6628 if (Depth >= 3) 6629 return false; 6630 6631 // Canonicalize a constant to the right side. 6632 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6633 // Check for both operands constant. 6634 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6635 if (ConstantExpr::getICmp(Pred, 6636 LHSC->getValue(), 6637 RHSC->getValue())->isNullValue()) 6638 goto trivially_false; 6639 else 6640 goto trivially_true; 6641 } 6642 // Otherwise swap the operands to put the constant on the right. 6643 std::swap(LHS, RHS); 6644 Pred = ICmpInst::getSwappedPredicate(Pred); 6645 Changed = true; 6646 } 6647 6648 // If we're comparing an addrec with a value which is loop-invariant in the 6649 // addrec's loop, put the addrec on the left. Also make a dominance check, 6650 // as both operands could be addrecs loop-invariant in each other's loop. 6651 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6652 const Loop *L = AR->getLoop(); 6653 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6654 std::swap(LHS, RHS); 6655 Pred = ICmpInst::getSwappedPredicate(Pred); 6656 Changed = true; 6657 } 6658 } 6659 6660 // If there's a constant operand, canonicalize comparisons with boundary 6661 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6662 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6663 const APInt &RA = RC->getValue()->getValue(); 6664 switch (Pred) { 6665 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6666 case ICmpInst::ICMP_EQ: 6667 case ICmpInst::ICMP_NE: 6668 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6669 if (!RA) 6670 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6671 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6672 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6673 ME->getOperand(0)->isAllOnesValue()) { 6674 RHS = AE->getOperand(1); 6675 LHS = ME->getOperand(1); 6676 Changed = true; 6677 } 6678 break; 6679 case ICmpInst::ICMP_UGE: 6680 if ((RA - 1).isMinValue()) { 6681 Pred = ICmpInst::ICMP_NE; 6682 RHS = getConstant(RA - 1); 6683 Changed = true; 6684 break; 6685 } 6686 if (RA.isMaxValue()) { 6687 Pred = ICmpInst::ICMP_EQ; 6688 Changed = true; 6689 break; 6690 } 6691 if (RA.isMinValue()) goto trivially_true; 6692 6693 Pred = ICmpInst::ICMP_UGT; 6694 RHS = getConstant(RA - 1); 6695 Changed = true; 6696 break; 6697 case ICmpInst::ICMP_ULE: 6698 if ((RA + 1).isMaxValue()) { 6699 Pred = ICmpInst::ICMP_NE; 6700 RHS = getConstant(RA + 1); 6701 Changed = true; 6702 break; 6703 } 6704 if (RA.isMinValue()) { 6705 Pred = ICmpInst::ICMP_EQ; 6706 Changed = true; 6707 break; 6708 } 6709 if (RA.isMaxValue()) goto trivially_true; 6710 6711 Pred = ICmpInst::ICMP_ULT; 6712 RHS = getConstant(RA + 1); 6713 Changed = true; 6714 break; 6715 case ICmpInst::ICMP_SGE: 6716 if ((RA - 1).isMinSignedValue()) { 6717 Pred = ICmpInst::ICMP_NE; 6718 RHS = getConstant(RA - 1); 6719 Changed = true; 6720 break; 6721 } 6722 if (RA.isMaxSignedValue()) { 6723 Pred = ICmpInst::ICMP_EQ; 6724 Changed = true; 6725 break; 6726 } 6727 if (RA.isMinSignedValue()) goto trivially_true; 6728 6729 Pred = ICmpInst::ICMP_SGT; 6730 RHS = getConstant(RA - 1); 6731 Changed = true; 6732 break; 6733 case ICmpInst::ICMP_SLE: 6734 if ((RA + 1).isMaxSignedValue()) { 6735 Pred = ICmpInst::ICMP_NE; 6736 RHS = getConstant(RA + 1); 6737 Changed = true; 6738 break; 6739 } 6740 if (RA.isMinSignedValue()) { 6741 Pred = ICmpInst::ICMP_EQ; 6742 Changed = true; 6743 break; 6744 } 6745 if (RA.isMaxSignedValue()) goto trivially_true; 6746 6747 Pred = ICmpInst::ICMP_SLT; 6748 RHS = getConstant(RA + 1); 6749 Changed = true; 6750 break; 6751 case ICmpInst::ICMP_UGT: 6752 if (RA.isMinValue()) { 6753 Pred = ICmpInst::ICMP_NE; 6754 Changed = true; 6755 break; 6756 } 6757 if ((RA + 1).isMaxValue()) { 6758 Pred = ICmpInst::ICMP_EQ; 6759 RHS = getConstant(RA + 1); 6760 Changed = true; 6761 break; 6762 } 6763 if (RA.isMaxValue()) goto trivially_false; 6764 break; 6765 case ICmpInst::ICMP_ULT: 6766 if (RA.isMaxValue()) { 6767 Pred = ICmpInst::ICMP_NE; 6768 Changed = true; 6769 break; 6770 } 6771 if ((RA - 1).isMinValue()) { 6772 Pred = ICmpInst::ICMP_EQ; 6773 RHS = getConstant(RA - 1); 6774 Changed = true; 6775 break; 6776 } 6777 if (RA.isMinValue()) goto trivially_false; 6778 break; 6779 case ICmpInst::ICMP_SGT: 6780 if (RA.isMinSignedValue()) { 6781 Pred = ICmpInst::ICMP_NE; 6782 Changed = true; 6783 break; 6784 } 6785 if ((RA + 1).isMaxSignedValue()) { 6786 Pred = ICmpInst::ICMP_EQ; 6787 RHS = getConstant(RA + 1); 6788 Changed = true; 6789 break; 6790 } 6791 if (RA.isMaxSignedValue()) goto trivially_false; 6792 break; 6793 case ICmpInst::ICMP_SLT: 6794 if (RA.isMaxSignedValue()) { 6795 Pred = ICmpInst::ICMP_NE; 6796 Changed = true; 6797 break; 6798 } 6799 if ((RA - 1).isMinSignedValue()) { 6800 Pred = ICmpInst::ICMP_EQ; 6801 RHS = getConstant(RA - 1); 6802 Changed = true; 6803 break; 6804 } 6805 if (RA.isMinSignedValue()) goto trivially_false; 6806 break; 6807 } 6808 } 6809 6810 // Check for obvious equality. 6811 if (HasSameValue(LHS, RHS)) { 6812 if (ICmpInst::isTrueWhenEqual(Pred)) 6813 goto trivially_true; 6814 if (ICmpInst::isFalseWhenEqual(Pred)) 6815 goto trivially_false; 6816 } 6817 6818 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6819 // adding or subtracting 1 from one of the operands. 6820 switch (Pred) { 6821 case ICmpInst::ICMP_SLE: 6822 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6823 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6824 SCEV::FlagNSW); 6825 Pred = ICmpInst::ICMP_SLT; 6826 Changed = true; 6827 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6828 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6829 SCEV::FlagNSW); 6830 Pred = ICmpInst::ICMP_SLT; 6831 Changed = true; 6832 } 6833 break; 6834 case ICmpInst::ICMP_SGE: 6835 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6836 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6837 SCEV::FlagNSW); 6838 Pred = ICmpInst::ICMP_SGT; 6839 Changed = true; 6840 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6841 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6842 SCEV::FlagNSW); 6843 Pred = ICmpInst::ICMP_SGT; 6844 Changed = true; 6845 } 6846 break; 6847 case ICmpInst::ICMP_ULE: 6848 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6849 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6850 SCEV::FlagNUW); 6851 Pred = ICmpInst::ICMP_ULT; 6852 Changed = true; 6853 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6854 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6855 SCEV::FlagNUW); 6856 Pred = ICmpInst::ICMP_ULT; 6857 Changed = true; 6858 } 6859 break; 6860 case ICmpInst::ICMP_UGE: 6861 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6862 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6863 SCEV::FlagNUW); 6864 Pred = ICmpInst::ICMP_UGT; 6865 Changed = true; 6866 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6867 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6868 SCEV::FlagNUW); 6869 Pred = ICmpInst::ICMP_UGT; 6870 Changed = true; 6871 } 6872 break; 6873 default: 6874 break; 6875 } 6876 6877 // TODO: More simplifications are possible here. 6878 6879 // Recursively simplify until we either hit a recursion limit or nothing 6880 // changes. 6881 if (Changed) 6882 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6883 6884 return Changed; 6885 6886 trivially_true: 6887 // Return 0 == 0. 6888 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6889 Pred = ICmpInst::ICMP_EQ; 6890 return true; 6891 6892 trivially_false: 6893 // Return 0 != 0. 6894 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6895 Pred = ICmpInst::ICMP_NE; 6896 return true; 6897 } 6898 6899 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6900 return getSignedRange(S).getSignedMax().isNegative(); 6901 } 6902 6903 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6904 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6905 } 6906 6907 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6908 return !getSignedRange(S).getSignedMin().isNegative(); 6909 } 6910 6911 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6912 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6913 } 6914 6915 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6916 return isKnownNegative(S) || isKnownPositive(S); 6917 } 6918 6919 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6920 const SCEV *LHS, const SCEV *RHS) { 6921 // Canonicalize the inputs first. 6922 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6923 6924 // If LHS or RHS is an addrec, check to see if the condition is true in 6925 // every iteration of the loop. 6926 // If LHS and RHS are both addrec, both conditions must be true in 6927 // every iteration of the loop. 6928 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6929 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6930 bool LeftGuarded = false; 6931 bool RightGuarded = false; 6932 if (LAR) { 6933 const Loop *L = LAR->getLoop(); 6934 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6935 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6936 if (!RAR) return true; 6937 LeftGuarded = true; 6938 } 6939 } 6940 if (RAR) { 6941 const Loop *L = RAR->getLoop(); 6942 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6943 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6944 if (!LAR) return true; 6945 RightGuarded = true; 6946 } 6947 } 6948 if (LeftGuarded && RightGuarded) 6949 return true; 6950 6951 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 6952 return true; 6953 6954 // Otherwise see what can be done with known constant ranges. 6955 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6956 } 6957 6958 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6959 ICmpInst::Predicate Pred, 6960 bool &Increasing) { 6961 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6962 6963 #ifndef NDEBUG 6964 // Verify an invariant: inverting the predicate should turn a monotonically 6965 // increasing change to a monotonically decreasing one, and vice versa. 6966 bool IncreasingSwapped; 6967 bool ResultSwapped = isMonotonicPredicateImpl( 6968 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6969 6970 assert(Result == ResultSwapped && "should be able to analyze both!"); 6971 if (ResultSwapped) 6972 assert(Increasing == !IncreasingSwapped && 6973 "monotonicity should flip as we flip the predicate"); 6974 #endif 6975 6976 return Result; 6977 } 6978 6979 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6980 ICmpInst::Predicate Pred, 6981 bool &Increasing) { 6982 6983 // A zero step value for LHS means the induction variable is essentially a 6984 // loop invariant value. We don't really depend on the predicate actually 6985 // flipping from false to true (for increasing predicates, and the other way 6986 // around for decreasing predicates), all we care about is that *if* the 6987 // predicate changes then it only changes from false to true. 6988 // 6989 // A zero step value in itself is not very useful, but there may be places 6990 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6991 // as general as possible. 6992 6993 switch (Pred) { 6994 default: 6995 return false; // Conservative answer 6996 6997 case ICmpInst::ICMP_UGT: 6998 case ICmpInst::ICMP_UGE: 6999 case ICmpInst::ICMP_ULT: 7000 case ICmpInst::ICMP_ULE: 7001 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 7002 return false; 7003 7004 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7005 return true; 7006 7007 case ICmpInst::ICMP_SGT: 7008 case ICmpInst::ICMP_SGE: 7009 case ICmpInst::ICMP_SLT: 7010 case ICmpInst::ICMP_SLE: { 7011 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 7012 return false; 7013 7014 const SCEV *Step = LHS->getStepRecurrence(*this); 7015 7016 if (isKnownNonNegative(Step)) { 7017 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 7018 return true; 7019 } 7020 7021 if (isKnownNonPositive(Step)) { 7022 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 7023 return true; 7024 } 7025 7026 return false; 7027 } 7028 7029 } 7030 7031 llvm_unreachable("switch has default clause!"); 7032 } 7033 7034 bool ScalarEvolution::isLoopInvariantPredicate( 7035 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 7036 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 7037 const SCEV *&InvariantRHS) { 7038 7039 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 7040 if (!isLoopInvariant(RHS, L)) { 7041 if (!isLoopInvariant(LHS, L)) 7042 return false; 7043 7044 std::swap(LHS, RHS); 7045 Pred = ICmpInst::getSwappedPredicate(Pred); 7046 } 7047 7048 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7049 if (!ArLHS || ArLHS->getLoop() != L) 7050 return false; 7051 7052 bool Increasing; 7053 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 7054 return false; 7055 7056 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 7057 // true as the loop iterates, and the backedge is control dependent on 7058 // "ArLHS `Pred` RHS" == true then we can reason as follows: 7059 // 7060 // * if the predicate was false in the first iteration then the predicate 7061 // is never evaluated again, since the loop exits without taking the 7062 // backedge. 7063 // * if the predicate was true in the first iteration then it will 7064 // continue to be true for all future iterations since it is 7065 // monotonically increasing. 7066 // 7067 // For both the above possibilities, we can replace the loop varying 7068 // predicate with its value on the first iteration of the loop (which is 7069 // loop invariant). 7070 // 7071 // A similar reasoning applies for a monotonically decreasing predicate, by 7072 // replacing true with false and false with true in the above two bullets. 7073 7074 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 7075 7076 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 7077 return false; 7078 7079 InvariantPred = Pred; 7080 InvariantLHS = ArLHS->getStart(); 7081 InvariantRHS = RHS; 7082 return true; 7083 } 7084 7085 bool 7086 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 7087 const SCEV *LHS, const SCEV *RHS) { 7088 if (HasSameValue(LHS, RHS)) 7089 return ICmpInst::isTrueWhenEqual(Pred); 7090 7091 // This code is split out from isKnownPredicate because it is called from 7092 // within isLoopEntryGuardedByCond. 7093 switch (Pred) { 7094 default: 7095 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7096 case ICmpInst::ICMP_SGT: 7097 std::swap(LHS, RHS); 7098 case ICmpInst::ICMP_SLT: { 7099 ConstantRange LHSRange = getSignedRange(LHS); 7100 ConstantRange RHSRange = getSignedRange(RHS); 7101 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 7102 return true; 7103 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 7104 return false; 7105 break; 7106 } 7107 case ICmpInst::ICMP_SGE: 7108 std::swap(LHS, RHS); 7109 case ICmpInst::ICMP_SLE: { 7110 ConstantRange LHSRange = getSignedRange(LHS); 7111 ConstantRange RHSRange = getSignedRange(RHS); 7112 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 7113 return true; 7114 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 7115 return false; 7116 break; 7117 } 7118 case ICmpInst::ICMP_UGT: 7119 std::swap(LHS, RHS); 7120 case ICmpInst::ICMP_ULT: { 7121 ConstantRange LHSRange = getUnsignedRange(LHS); 7122 ConstantRange RHSRange = getUnsignedRange(RHS); 7123 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 7124 return true; 7125 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 7126 return false; 7127 break; 7128 } 7129 case ICmpInst::ICMP_UGE: 7130 std::swap(LHS, RHS); 7131 case ICmpInst::ICMP_ULE: { 7132 ConstantRange LHSRange = getUnsignedRange(LHS); 7133 ConstantRange RHSRange = getUnsignedRange(RHS); 7134 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 7135 return true; 7136 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 7137 return false; 7138 break; 7139 } 7140 case ICmpInst::ICMP_NE: { 7141 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 7142 return true; 7143 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 7144 return true; 7145 7146 const SCEV *Diff = getMinusSCEV(LHS, RHS); 7147 if (isKnownNonZero(Diff)) 7148 return true; 7149 break; 7150 } 7151 case ICmpInst::ICMP_EQ: 7152 // The check at the top of the function catches the case where 7153 // the values are known to be equal. 7154 break; 7155 } 7156 return false; 7157 } 7158 7159 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 7160 const SCEV *LHS, 7161 const SCEV *RHS) { 7162 7163 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 7164 // Return Y via OutY. 7165 auto MatchBinaryAddToConst = 7166 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 7167 SCEV::NoWrapFlags ExpectedFlags) { 7168 const SCEV *NonConstOp, *ConstOp; 7169 SCEV::NoWrapFlags FlagsPresent; 7170 7171 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 7172 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 7173 return false; 7174 7175 OutY = cast<SCEVConstant>(ConstOp)->getValue()->getValue(); 7176 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 7177 }; 7178 7179 APInt C; 7180 7181 switch (Pred) { 7182 default: 7183 break; 7184 7185 case ICmpInst::ICMP_SGE: 7186 std::swap(LHS, RHS); 7187 case ICmpInst::ICMP_SLE: 7188 // X s<= (X + C)<nsw> if C >= 0 7189 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 7190 return true; 7191 7192 // (X + C)<nsw> s<= X if C <= 0 7193 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 7194 !C.isStrictlyPositive()) 7195 return true; 7196 7197 case ICmpInst::ICMP_SGT: 7198 std::swap(LHS, RHS); 7199 case ICmpInst::ICMP_SLT: 7200 // X s< (X + C)<nsw> if C > 0 7201 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 7202 C.isStrictlyPositive()) 7203 return true; 7204 7205 // (X + C)<nsw> s< X if C < 0 7206 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 7207 return true; 7208 } 7209 7210 return false; 7211 } 7212 7213 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 7214 const SCEV *LHS, 7215 const SCEV *RHS) { 7216 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 7217 return false; 7218 7219 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 7220 // the stack can result in exponential time complexity. 7221 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 7222 7223 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 7224 // 7225 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 7226 // isKnownPredicate. isKnownPredicate is more powerful, but also more 7227 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 7228 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 7229 // use isKnownPredicate later if needed. 7230 if (isKnownNonNegative(RHS) && 7231 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 7232 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS)) 7233 return true; 7234 7235 return false; 7236 } 7237 7238 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 7239 /// protected by a conditional between LHS and RHS. This is used to 7240 /// to eliminate casts. 7241 bool 7242 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 7243 ICmpInst::Predicate Pred, 7244 const SCEV *LHS, const SCEV *RHS) { 7245 // Interpret a null as meaning no loop, where there is obviously no guard 7246 // (interprocedural conditions notwithstanding). 7247 if (!L) return true; 7248 7249 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7250 7251 BasicBlock *Latch = L->getLoopLatch(); 7252 if (!Latch) 7253 return false; 7254 7255 BranchInst *LoopContinuePredicate = 7256 dyn_cast<BranchInst>(Latch->getTerminator()); 7257 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 7258 isImpliedCond(Pred, LHS, RHS, 7259 LoopContinuePredicate->getCondition(), 7260 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 7261 return true; 7262 7263 // We don't want more than one activation of the following loops on the stack 7264 // -- that can lead to O(n!) time complexity. 7265 if (WalkingBEDominatingConds) 7266 return false; 7267 7268 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7269 7270 // See if we can exploit a trip count to prove the predicate. 7271 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7272 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7273 if (LatchBECount != getCouldNotCompute()) { 7274 // We know that Latch branches back to the loop header exactly 7275 // LatchBECount times. This means the backdege condition at Latch is 7276 // equivalent to "{0,+,1} u< LatchBECount". 7277 Type *Ty = LatchBECount->getType(); 7278 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7279 const SCEV *LoopCounter = 7280 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7281 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7282 LatchBECount)) 7283 return true; 7284 } 7285 7286 // Check conditions due to any @llvm.assume intrinsics. 7287 for (auto &AssumeVH : AC.assumptions()) { 7288 if (!AssumeVH) 7289 continue; 7290 auto *CI = cast<CallInst>(AssumeVH); 7291 if (!DT.dominates(CI, Latch->getTerminator())) 7292 continue; 7293 7294 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7295 return true; 7296 } 7297 7298 // If the loop is not reachable from the entry block, we risk running into an 7299 // infinite loop as we walk up into the dom tree. These loops do not matter 7300 // anyway, so we just return a conservative answer when we see them. 7301 if (!DT.isReachableFromEntry(L->getHeader())) 7302 return false; 7303 7304 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7305 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7306 7307 assert(DTN && "should reach the loop header before reaching the root!"); 7308 7309 BasicBlock *BB = DTN->getBlock(); 7310 BasicBlock *PBB = BB->getSinglePredecessor(); 7311 if (!PBB) 7312 continue; 7313 7314 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7315 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7316 continue; 7317 7318 Value *Condition = ContinuePredicate->getCondition(); 7319 7320 // If we have an edge `E` within the loop body that dominates the only 7321 // latch, the condition guarding `E` also guards the backedge. This 7322 // reasoning works only for loops with a single latch. 7323 7324 BasicBlockEdge DominatingEdge(PBB, BB); 7325 if (DominatingEdge.isSingleEdge()) { 7326 // We're constructively (and conservatively) enumerating edges within the 7327 // loop body that dominate the latch. The dominator tree better agree 7328 // with us on this: 7329 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7330 7331 if (isImpliedCond(Pred, LHS, RHS, Condition, 7332 BB != ContinuePredicate->getSuccessor(0))) 7333 return true; 7334 } 7335 } 7336 7337 return false; 7338 } 7339 7340 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7341 /// by a conditional between LHS and RHS. This is used to help avoid max 7342 /// expressions in loop trip counts, and to eliminate casts. 7343 bool 7344 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7345 ICmpInst::Predicate Pred, 7346 const SCEV *LHS, const SCEV *RHS) { 7347 // Interpret a null as meaning no loop, where there is obviously no guard 7348 // (interprocedural conditions notwithstanding). 7349 if (!L) return false; 7350 7351 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7352 7353 // Starting at the loop predecessor, climb up the predecessor chain, as long 7354 // as there are predecessors that can be found that have unique successors 7355 // leading to the original header. 7356 for (std::pair<BasicBlock *, BasicBlock *> 7357 Pair(L->getLoopPredecessor(), L->getHeader()); 7358 Pair.first; 7359 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7360 7361 BranchInst *LoopEntryPredicate = 7362 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7363 if (!LoopEntryPredicate || 7364 LoopEntryPredicate->isUnconditional()) 7365 continue; 7366 7367 if (isImpliedCond(Pred, LHS, RHS, 7368 LoopEntryPredicate->getCondition(), 7369 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7370 return true; 7371 } 7372 7373 // Check conditions due to any @llvm.assume intrinsics. 7374 for (auto &AssumeVH : AC.assumptions()) { 7375 if (!AssumeVH) 7376 continue; 7377 auto *CI = cast<CallInst>(AssumeVH); 7378 if (!DT.dominates(CI, L->getHeader())) 7379 continue; 7380 7381 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7382 return true; 7383 } 7384 7385 return false; 7386 } 7387 7388 /// RAII wrapper to prevent recursive application of isImpliedCond. 7389 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7390 /// currently evaluating isImpliedCond. 7391 struct MarkPendingLoopPredicate { 7392 Value *Cond; 7393 DenseSet<Value*> &LoopPreds; 7394 bool Pending; 7395 7396 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7397 : Cond(C), LoopPreds(LP) { 7398 Pending = !LoopPreds.insert(Cond).second; 7399 } 7400 ~MarkPendingLoopPredicate() { 7401 if (!Pending) 7402 LoopPreds.erase(Cond); 7403 } 7404 }; 7405 7406 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7407 /// and RHS is true whenever the given Cond value evaluates to true. 7408 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7409 const SCEV *LHS, const SCEV *RHS, 7410 Value *FoundCondValue, 7411 bool Inverse) { 7412 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7413 if (Mark.Pending) 7414 return false; 7415 7416 // Recursively handle And and Or conditions. 7417 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7418 if (BO->getOpcode() == Instruction::And) { 7419 if (!Inverse) 7420 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7421 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7422 } else if (BO->getOpcode() == Instruction::Or) { 7423 if (Inverse) 7424 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7425 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7426 } 7427 } 7428 7429 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7430 if (!ICI) return false; 7431 7432 // Now that we found a conditional branch that dominates the loop or controls 7433 // the loop latch. Check to see if it is the comparison we are looking for. 7434 ICmpInst::Predicate FoundPred; 7435 if (Inverse) 7436 FoundPred = ICI->getInversePredicate(); 7437 else 7438 FoundPred = ICI->getPredicate(); 7439 7440 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7441 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7442 7443 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7444 } 7445 7446 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7447 const SCEV *RHS, 7448 ICmpInst::Predicate FoundPred, 7449 const SCEV *FoundLHS, 7450 const SCEV *FoundRHS) { 7451 // Balance the types. 7452 if (getTypeSizeInBits(LHS->getType()) < 7453 getTypeSizeInBits(FoundLHS->getType())) { 7454 if (CmpInst::isSigned(Pred)) { 7455 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7456 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7457 } else { 7458 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7459 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7460 } 7461 } else if (getTypeSizeInBits(LHS->getType()) > 7462 getTypeSizeInBits(FoundLHS->getType())) { 7463 if (CmpInst::isSigned(FoundPred)) { 7464 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7465 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7466 } else { 7467 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7468 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7469 } 7470 } 7471 7472 // Canonicalize the query to match the way instcombine will have 7473 // canonicalized the comparison. 7474 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7475 if (LHS == RHS) 7476 return CmpInst::isTrueWhenEqual(Pred); 7477 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7478 if (FoundLHS == FoundRHS) 7479 return CmpInst::isFalseWhenEqual(FoundPred); 7480 7481 // Check to see if we can make the LHS or RHS match. 7482 if (LHS == FoundRHS || RHS == FoundLHS) { 7483 if (isa<SCEVConstant>(RHS)) { 7484 std::swap(FoundLHS, FoundRHS); 7485 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7486 } else { 7487 std::swap(LHS, RHS); 7488 Pred = ICmpInst::getSwappedPredicate(Pred); 7489 } 7490 } 7491 7492 // Check whether the found predicate is the same as the desired predicate. 7493 if (FoundPred == Pred) 7494 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7495 7496 // Check whether swapping the found predicate makes it the same as the 7497 // desired predicate. 7498 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7499 if (isa<SCEVConstant>(RHS)) 7500 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7501 else 7502 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7503 RHS, LHS, FoundLHS, FoundRHS); 7504 } 7505 7506 // Unsigned comparison is the same as signed comparison when both the operands 7507 // are non-negative. 7508 if (CmpInst::isUnsigned(FoundPred) && 7509 CmpInst::getSignedPredicate(FoundPred) == Pred && 7510 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 7511 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7512 7513 // Check if we can make progress by sharpening ranges. 7514 if (FoundPred == ICmpInst::ICMP_NE && 7515 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7516 7517 const SCEVConstant *C = nullptr; 7518 const SCEV *V = nullptr; 7519 7520 if (isa<SCEVConstant>(FoundLHS)) { 7521 C = cast<SCEVConstant>(FoundLHS); 7522 V = FoundRHS; 7523 } else { 7524 C = cast<SCEVConstant>(FoundRHS); 7525 V = FoundLHS; 7526 } 7527 7528 // The guarding predicate tells us that C != V. If the known range 7529 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7530 // range we consider has to correspond to same signedness as the 7531 // predicate we're interested in folding. 7532 7533 APInt Min = ICmpInst::isSigned(Pred) ? 7534 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7535 7536 if (Min == C->getValue()->getValue()) { 7537 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7538 // This is true even if (Min + 1) wraps around -- in case of 7539 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7540 7541 APInt SharperMin = Min + 1; 7542 7543 switch (Pred) { 7544 case ICmpInst::ICMP_SGE: 7545 case ICmpInst::ICMP_UGE: 7546 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7547 // RHS, we're done. 7548 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7549 getConstant(SharperMin))) 7550 return true; 7551 7552 case ICmpInst::ICMP_SGT: 7553 case ICmpInst::ICMP_UGT: 7554 // We know from the range information that (V `Pred` Min || 7555 // V == Min). We know from the guarding condition that !(V 7556 // == Min). This gives us 7557 // 7558 // V `Pred` Min || V == Min && !(V == Min) 7559 // => V `Pred` Min 7560 // 7561 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7562 7563 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7564 return true; 7565 7566 default: 7567 // No change 7568 break; 7569 } 7570 } 7571 } 7572 7573 // Check whether the actual condition is beyond sufficient. 7574 if (FoundPred == ICmpInst::ICMP_EQ) 7575 if (ICmpInst::isTrueWhenEqual(Pred)) 7576 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7577 return true; 7578 if (Pred == ICmpInst::ICMP_NE) 7579 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7580 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7581 return true; 7582 7583 // Otherwise assume the worst. 7584 return false; 7585 } 7586 7587 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 7588 const SCEV *&L, const SCEV *&R, 7589 SCEV::NoWrapFlags &Flags) { 7590 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7591 if (!AE || AE->getNumOperands() != 2) 7592 return false; 7593 7594 L = AE->getOperand(0); 7595 R = AE->getOperand(1); 7596 Flags = AE->getNoWrapFlags(); 7597 return true; 7598 } 7599 7600 bool ScalarEvolution::computeConstantDifference(const SCEV *Less, 7601 const SCEV *More, 7602 APInt &C) { 7603 // We avoid subtracting expressions here because this function is usually 7604 // fairly deep in the call stack (i.e. is called many times). 7605 7606 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7607 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7608 const auto *MAR = cast<SCEVAddRecExpr>(More); 7609 7610 if (LAR->getLoop() != MAR->getLoop()) 7611 return false; 7612 7613 // We look at affine expressions only; not for correctness but to keep 7614 // getStepRecurrence cheap. 7615 if (!LAR->isAffine() || !MAR->isAffine()) 7616 return false; 7617 7618 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 7619 return false; 7620 7621 Less = LAR->getStart(); 7622 More = MAR->getStart(); 7623 7624 // fall through 7625 } 7626 7627 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7628 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7629 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7630 C = M - L; 7631 return true; 7632 } 7633 7634 const SCEV *L, *R; 7635 SCEV::NoWrapFlags Flags; 7636 if (splitBinaryAdd(Less, L, R, Flags)) 7637 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7638 if (R == More) { 7639 C = -(LC->getValue()->getValue()); 7640 return true; 7641 } 7642 7643 if (splitBinaryAdd(More, L, R, Flags)) 7644 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7645 if (R == Less) { 7646 C = LC->getValue()->getValue(); 7647 return true; 7648 } 7649 7650 return false; 7651 } 7652 7653 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7654 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7655 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7656 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7657 return false; 7658 7659 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7660 if (!AddRecLHS) 7661 return false; 7662 7663 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7664 if (!AddRecFoundLHS) 7665 return false; 7666 7667 // We'd like to let SCEV reason about control dependencies, so we constrain 7668 // both the inequalities to be about add recurrences on the same loop. This 7669 // way we can use isLoopEntryGuardedByCond later. 7670 7671 const Loop *L = AddRecFoundLHS->getLoop(); 7672 if (L != AddRecLHS->getLoop()) 7673 return false; 7674 7675 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7676 // 7677 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7678 // ... (2) 7679 // 7680 // Informal proof for (2), assuming (1) [*]: 7681 // 7682 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7683 // 7684 // Then 7685 // 7686 // FoundLHS s< FoundRHS s< INT_MIN - C 7687 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7688 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7689 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7690 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7691 // <=> FoundLHS + C s< FoundRHS + C 7692 // 7693 // [*]: (1) can be proved by ruling out overflow. 7694 // 7695 // [**]: This can be proved by analyzing all the four possibilities: 7696 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7697 // (A s>= 0, B s>= 0). 7698 // 7699 // Note: 7700 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7701 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7702 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7703 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7704 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7705 // C)". 7706 7707 APInt LDiff, RDiff; 7708 if (!computeConstantDifference(FoundLHS, LHS, LDiff) || 7709 !computeConstantDifference(FoundRHS, RHS, RDiff) || 7710 LDiff != RDiff) 7711 return false; 7712 7713 if (LDiff == 0) 7714 return true; 7715 7716 APInt FoundRHSLimit; 7717 7718 if (Pred == CmpInst::ICMP_ULT) { 7719 FoundRHSLimit = -RDiff; 7720 } else { 7721 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7722 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7723 } 7724 7725 // Try to prove (1) or (2), as needed. 7726 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7727 getConstant(FoundRHSLimit)); 7728 } 7729 7730 /// isImpliedCondOperands - Test whether the condition described by Pred, 7731 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7732 /// and FoundRHS is true. 7733 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7734 const SCEV *LHS, const SCEV *RHS, 7735 const SCEV *FoundLHS, 7736 const SCEV *FoundRHS) { 7737 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7738 return true; 7739 7740 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7741 return true; 7742 7743 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7744 FoundLHS, FoundRHS) || 7745 // ~x < ~y --> x > y 7746 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7747 getNotSCEV(FoundRHS), 7748 getNotSCEV(FoundLHS)); 7749 } 7750 7751 7752 /// If Expr computes ~A, return A else return nullptr 7753 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7754 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7755 if (!Add || Add->getNumOperands() != 2 || 7756 !Add->getOperand(0)->isAllOnesValue()) 7757 return nullptr; 7758 7759 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7760 if (!AddRHS || AddRHS->getNumOperands() != 2 || 7761 !AddRHS->getOperand(0)->isAllOnesValue()) 7762 return nullptr; 7763 7764 return AddRHS->getOperand(1); 7765 } 7766 7767 7768 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7769 template<typename MaxExprType> 7770 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7771 const SCEV *Candidate) { 7772 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7773 if (!MaxExpr) return false; 7774 7775 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7776 return It != MaxExpr->op_end(); 7777 } 7778 7779 7780 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7781 template<typename MaxExprType> 7782 static bool IsMinConsistingOf(ScalarEvolution &SE, 7783 const SCEV *MaybeMinExpr, 7784 const SCEV *Candidate) { 7785 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7786 if (!MaybeMaxExpr) 7787 return false; 7788 7789 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7790 } 7791 7792 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7793 ICmpInst::Predicate Pred, 7794 const SCEV *LHS, const SCEV *RHS) { 7795 7796 // If both sides are affine addrecs for the same loop, with equal 7797 // steps, and we know the recurrences don't wrap, then we only 7798 // need to check the predicate on the starting values. 7799 7800 if (!ICmpInst::isRelational(Pred)) 7801 return false; 7802 7803 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7804 if (!LAR) 7805 return false; 7806 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7807 if (!RAR) 7808 return false; 7809 if (LAR->getLoop() != RAR->getLoop()) 7810 return false; 7811 if (!LAR->isAffine() || !RAR->isAffine()) 7812 return false; 7813 7814 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7815 return false; 7816 7817 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7818 SCEV::FlagNSW : SCEV::FlagNUW; 7819 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7820 return false; 7821 7822 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7823 } 7824 7825 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7826 /// expression? 7827 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7828 ICmpInst::Predicate Pred, 7829 const SCEV *LHS, const SCEV *RHS) { 7830 switch (Pred) { 7831 default: 7832 return false; 7833 7834 case ICmpInst::ICMP_SGE: 7835 std::swap(LHS, RHS); 7836 // fall through 7837 case ICmpInst::ICMP_SLE: 7838 return 7839 // min(A, ...) <= A 7840 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7841 // A <= max(A, ...) 7842 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7843 7844 case ICmpInst::ICMP_UGE: 7845 std::swap(LHS, RHS); 7846 // fall through 7847 case ICmpInst::ICMP_ULE: 7848 return 7849 // min(A, ...) <= A 7850 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7851 // A <= max(A, ...) 7852 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7853 } 7854 7855 llvm_unreachable("covered switch fell through?!"); 7856 } 7857 7858 /// isImpliedCondOperandsHelper - Test whether the condition described by 7859 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7860 /// FoundLHS, and FoundRHS is true. 7861 bool 7862 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7863 const SCEV *LHS, const SCEV *RHS, 7864 const SCEV *FoundLHS, 7865 const SCEV *FoundRHS) { 7866 auto IsKnownPredicateFull = 7867 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7868 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7869 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7870 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 7871 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 7872 }; 7873 7874 switch (Pred) { 7875 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7876 case ICmpInst::ICMP_EQ: 7877 case ICmpInst::ICMP_NE: 7878 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7879 return true; 7880 break; 7881 case ICmpInst::ICMP_SLT: 7882 case ICmpInst::ICMP_SLE: 7883 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7884 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7885 return true; 7886 break; 7887 case ICmpInst::ICMP_SGT: 7888 case ICmpInst::ICMP_SGE: 7889 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7890 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7891 return true; 7892 break; 7893 case ICmpInst::ICMP_ULT: 7894 case ICmpInst::ICMP_ULE: 7895 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7896 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7897 return true; 7898 break; 7899 case ICmpInst::ICMP_UGT: 7900 case ICmpInst::ICMP_UGE: 7901 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7902 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7903 return true; 7904 break; 7905 } 7906 7907 return false; 7908 } 7909 7910 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7911 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7912 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7913 const SCEV *LHS, 7914 const SCEV *RHS, 7915 const SCEV *FoundLHS, 7916 const SCEV *FoundRHS) { 7917 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7918 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7919 // reduce the compile time impact of this optimization. 7920 return false; 7921 7922 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7923 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7924 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7925 return false; 7926 7927 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7928 7929 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7930 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7931 ConstantRange FoundLHSRange = 7932 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7933 7934 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7935 // for `LHS`: 7936 APInt Addend = 7937 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7938 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7939 7940 // We can also compute the range of values for `LHS` that satisfy the 7941 // consequent, "`LHS` `Pred` `RHS`": 7942 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7943 ConstantRange SatisfyingLHSRange = 7944 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7945 7946 // The antecedent implies the consequent if every value of `LHS` that 7947 // satisfies the antecedent also satisfies the consequent. 7948 return SatisfyingLHSRange.contains(LHSRange); 7949 } 7950 7951 // Verify if an linear IV with positive stride can overflow when in a 7952 // less-than comparison, knowing the invariant term of the comparison, the 7953 // stride and the knowledge of NSW/NUW flags on the recurrence. 7954 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7955 bool IsSigned, bool NoWrap) { 7956 if (NoWrap) return false; 7957 7958 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7959 const SCEV *One = getOne(Stride->getType()); 7960 7961 if (IsSigned) { 7962 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7963 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7964 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7965 .getSignedMax(); 7966 7967 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7968 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7969 } 7970 7971 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7972 APInt MaxValue = APInt::getMaxValue(BitWidth); 7973 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7974 .getUnsignedMax(); 7975 7976 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7977 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7978 } 7979 7980 // Verify if an linear IV with negative stride can overflow when in a 7981 // greater-than comparison, knowing the invariant term of the comparison, 7982 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7983 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7984 bool IsSigned, bool NoWrap) { 7985 if (NoWrap) return false; 7986 7987 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7988 const SCEV *One = getOne(Stride->getType()); 7989 7990 if (IsSigned) { 7991 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7992 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7993 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7994 .getSignedMax(); 7995 7996 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7997 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7998 } 7999 8000 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 8001 APInt MinValue = APInt::getMinValue(BitWidth); 8002 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 8003 .getUnsignedMax(); 8004 8005 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 8006 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 8007 } 8008 8009 // Compute the backedge taken count knowing the interval difference, the 8010 // stride and presence of the equality in the comparison. 8011 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 8012 bool Equality) { 8013 const SCEV *One = getOne(Step->getType()); 8014 Delta = Equality ? getAddExpr(Delta, Step) 8015 : getAddExpr(Delta, getMinusSCEV(Step, One)); 8016 return getUDivExpr(Delta, Step); 8017 } 8018 8019 /// HowManyLessThans - Return the number of times a backedge containing the 8020 /// specified less-than comparison will execute. If not computable, return 8021 /// CouldNotCompute. 8022 /// 8023 /// @param ControlsExit is true when the LHS < RHS condition directly controls 8024 /// the branch (loops exits only if condition is true). In this case, we can use 8025 /// NoWrapFlags to skip overflow checks. 8026 ScalarEvolution::ExitLimit 8027 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 8028 const Loop *L, bool IsSigned, 8029 bool ControlsExit) { 8030 // We handle only IV < Invariant 8031 if (!isLoopInvariant(RHS, L)) 8032 return getCouldNotCompute(); 8033 8034 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8035 8036 // Avoid weird loops 8037 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8038 return getCouldNotCompute(); 8039 8040 bool NoWrap = ControlsExit && 8041 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8042 8043 const SCEV *Stride = IV->getStepRecurrence(*this); 8044 8045 // Avoid negative or zero stride values 8046 if (!isKnownPositive(Stride)) 8047 return getCouldNotCompute(); 8048 8049 // Avoid proven overflow cases: this will ensure that the backedge taken count 8050 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8051 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8052 // behaviors like the case of C language. 8053 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 8054 return getCouldNotCompute(); 8055 8056 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 8057 : ICmpInst::ICMP_ULT; 8058 const SCEV *Start = IV->getStart(); 8059 const SCEV *End = RHS; 8060 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 8061 const SCEV *Diff = getMinusSCEV(RHS, Start); 8062 // If we have NoWrap set, then we can assume that the increment won't 8063 // overflow, in which case if RHS - Start is a constant, we don't need to 8064 // do a max operation since we can just figure it out statically 8065 if (NoWrap && isa<SCEVConstant>(Diff)) { 8066 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8067 if (D.isNegative()) 8068 End = Start; 8069 } else 8070 End = IsSigned ? getSMaxExpr(RHS, Start) 8071 : getUMaxExpr(RHS, Start); 8072 } 8073 8074 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 8075 8076 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 8077 : getUnsignedRange(Start).getUnsignedMin(); 8078 8079 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8080 : getUnsignedRange(Stride).getUnsignedMin(); 8081 8082 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8083 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 8084 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 8085 8086 // Although End can be a MAX expression we estimate MaxEnd considering only 8087 // the case End = RHS. This is safe because in the other case (End - Start) 8088 // is zero, leading to a zero maximum backedge taken count. 8089 APInt MaxEnd = 8090 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 8091 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 8092 8093 const SCEV *MaxBECount; 8094 if (isa<SCEVConstant>(BECount)) 8095 MaxBECount = BECount; 8096 else 8097 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 8098 getConstant(MinStride), false); 8099 8100 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8101 MaxBECount = BECount; 8102 8103 return ExitLimit(BECount, MaxBECount); 8104 } 8105 8106 ScalarEvolution::ExitLimit 8107 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 8108 const Loop *L, bool IsSigned, 8109 bool ControlsExit) { 8110 // We handle only IV > Invariant 8111 if (!isLoopInvariant(RHS, L)) 8112 return getCouldNotCompute(); 8113 8114 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 8115 8116 // Avoid weird loops 8117 if (!IV || IV->getLoop() != L || !IV->isAffine()) 8118 return getCouldNotCompute(); 8119 8120 bool NoWrap = ControlsExit && 8121 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 8122 8123 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 8124 8125 // Avoid negative or zero stride values 8126 if (!isKnownPositive(Stride)) 8127 return getCouldNotCompute(); 8128 8129 // Avoid proven overflow cases: this will ensure that the backedge taken count 8130 // will not generate any unsigned overflow. Relaxed no-overflow conditions 8131 // exploit NoWrapFlags, allowing to optimize in presence of undefined 8132 // behaviors like the case of C language. 8133 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 8134 return getCouldNotCompute(); 8135 8136 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 8137 : ICmpInst::ICMP_UGT; 8138 8139 const SCEV *Start = IV->getStart(); 8140 const SCEV *End = RHS; 8141 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 8142 const SCEV *Diff = getMinusSCEV(RHS, Start); 8143 // If we have NoWrap set, then we can assume that the increment won't 8144 // overflow, in which case if RHS - Start is a constant, we don't need to 8145 // do a max operation since we can just figure it out statically 8146 if (NoWrap && isa<SCEVConstant>(Diff)) { 8147 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 8148 if (!D.isNegative()) 8149 End = Start; 8150 } else 8151 End = IsSigned ? getSMinExpr(RHS, Start) 8152 : getUMinExpr(RHS, Start); 8153 } 8154 8155 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 8156 8157 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 8158 : getUnsignedRange(Start).getUnsignedMax(); 8159 8160 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 8161 : getUnsignedRange(Stride).getUnsignedMin(); 8162 8163 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 8164 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 8165 : APInt::getMinValue(BitWidth) + (MinStride - 1); 8166 8167 // Although End can be a MIN expression we estimate MinEnd considering only 8168 // the case End = RHS. This is safe because in the other case (Start - End) 8169 // is zero, leading to a zero maximum backedge taken count. 8170 APInt MinEnd = 8171 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 8172 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 8173 8174 8175 const SCEV *MaxBECount = getCouldNotCompute(); 8176 if (isa<SCEVConstant>(BECount)) 8177 MaxBECount = BECount; 8178 else 8179 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 8180 getConstant(MinStride), false); 8181 8182 if (isa<SCEVCouldNotCompute>(MaxBECount)) 8183 MaxBECount = BECount; 8184 8185 return ExitLimit(BECount, MaxBECount); 8186 } 8187 8188 /// getNumIterationsInRange - Return the number of iterations of this loop that 8189 /// produce values in the specified constant range. Another way of looking at 8190 /// this is that it returns the first iteration number where the value is not in 8191 /// the condition, thus computing the exit count. If the iteration count can't 8192 /// be computed, an instance of SCEVCouldNotCompute is returned. 8193 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 8194 ScalarEvolution &SE) const { 8195 if (Range.isFullSet()) // Infinite loop. 8196 return SE.getCouldNotCompute(); 8197 8198 // If the start is a non-zero constant, shift the range to simplify things. 8199 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 8200 if (!SC->getValue()->isZero()) { 8201 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 8202 Operands[0] = SE.getZero(SC->getType()); 8203 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 8204 getNoWrapFlags(FlagNW)); 8205 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 8206 return ShiftedAddRec->getNumIterationsInRange( 8207 Range.subtract(SC->getValue()->getValue()), SE); 8208 // This is strange and shouldn't happen. 8209 return SE.getCouldNotCompute(); 8210 } 8211 8212 // The only time we can solve this is when we have all constant indices. 8213 // Otherwise, we cannot determine the overflow conditions. 8214 if (std::any_of(op_begin(), op_end(), 8215 [](const SCEV *Op) { return !isa<SCEVConstant>(Op);})) 8216 return SE.getCouldNotCompute(); 8217 8218 // Okay at this point we know that all elements of the chrec are constants and 8219 // that the start element is zero. 8220 8221 // First check to see if the range contains zero. If not, the first 8222 // iteration exits. 8223 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 8224 if (!Range.contains(APInt(BitWidth, 0))) 8225 return SE.getZero(getType()); 8226 8227 if (isAffine()) { 8228 // If this is an affine expression then we have this situation: 8229 // Solve {0,+,A} in Range === Ax in Range 8230 8231 // We know that zero is in the range. If A is positive then we know that 8232 // the upper value of the range must be the first possible exit value. 8233 // If A is negative then the lower of the range is the last possible loop 8234 // value. Also note that we already checked for a full range. 8235 APInt One(BitWidth,1); 8236 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 8237 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 8238 8239 // The exit value should be (End+A)/A. 8240 APInt ExitVal = (End + A).udiv(A); 8241 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 8242 8243 // Evaluate at the exit value. If we really did fall out of the valid 8244 // range, then we computed our trip count, otherwise wrap around or other 8245 // things must have happened. 8246 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 8247 if (Range.contains(Val->getValue())) 8248 return SE.getCouldNotCompute(); // Something strange happened 8249 8250 // Ensure that the previous value is in the range. This is a sanity check. 8251 assert(Range.contains( 8252 EvaluateConstantChrecAtConstant(this, 8253 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 8254 "Linear scev computation is off in a bad way!"); 8255 return SE.getConstant(ExitValue); 8256 } else if (isQuadratic()) { 8257 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 8258 // quadratic equation to solve it. To do this, we must frame our problem in 8259 // terms of figuring out when zero is crossed, instead of when 8260 // Range.getUpper() is crossed. 8261 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 8262 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 8263 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 8264 // getNoWrapFlags(FlagNW) 8265 FlagAnyWrap); 8266 8267 // Next, solve the constructed addrec 8268 std::pair<const SCEV *,const SCEV *> Roots = 8269 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 8270 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 8271 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8272 if (R1) { 8273 // Pick the smallest positive root value. 8274 if (ConstantInt *CB = 8275 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8276 R1->getValue(), R2->getValue()))) { 8277 if (!CB->getZExtValue()) 8278 std::swap(R1, R2); // R1 is the minimum root now. 8279 8280 // Make sure the root is not off by one. The returned iteration should 8281 // not be in the range, but the previous one should be. When solving 8282 // for "X*X < 5", for example, we should not return a root of 2. 8283 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8284 R1->getValue(), 8285 SE); 8286 if (Range.contains(R1Val->getValue())) { 8287 // The next iteration must be out of the range... 8288 ConstantInt *NextVal = 8289 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8290 8291 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8292 if (!Range.contains(R1Val->getValue())) 8293 return SE.getConstant(NextVal); 8294 return SE.getCouldNotCompute(); // Something strange happened 8295 } 8296 8297 // If R1 was not in the range, then it is a good return value. Make 8298 // sure that R1-1 WAS in the range though, just in case. 8299 ConstantInt *NextVal = 8300 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8301 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8302 if (Range.contains(R1Val->getValue())) 8303 return R1; 8304 return SE.getCouldNotCompute(); // Something strange happened 8305 } 8306 } 8307 } 8308 8309 return SE.getCouldNotCompute(); 8310 } 8311 8312 namespace { 8313 struct FindUndefs { 8314 bool Found; 8315 FindUndefs() : Found(false) {} 8316 8317 bool follow(const SCEV *S) { 8318 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8319 if (isa<UndefValue>(C->getValue())) 8320 Found = true; 8321 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8322 if (isa<UndefValue>(C->getValue())) 8323 Found = true; 8324 } 8325 8326 // Keep looking if we haven't found it yet. 8327 return !Found; 8328 } 8329 bool isDone() const { 8330 // Stop recursion if we have found an undef. 8331 return Found; 8332 } 8333 }; 8334 } 8335 8336 // Return true when S contains at least an undef value. 8337 static inline bool 8338 containsUndefs(const SCEV *S) { 8339 FindUndefs F; 8340 SCEVTraversal<FindUndefs> ST(F); 8341 ST.visitAll(S); 8342 8343 return F.Found; 8344 } 8345 8346 namespace { 8347 // Collect all steps of SCEV expressions. 8348 struct SCEVCollectStrides { 8349 ScalarEvolution &SE; 8350 SmallVectorImpl<const SCEV *> &Strides; 8351 8352 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8353 : SE(SE), Strides(S) {} 8354 8355 bool follow(const SCEV *S) { 8356 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8357 Strides.push_back(AR->getStepRecurrence(SE)); 8358 return true; 8359 } 8360 bool isDone() const { return false; } 8361 }; 8362 8363 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8364 struct SCEVCollectTerms { 8365 SmallVectorImpl<const SCEV *> &Terms; 8366 8367 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8368 : Terms(T) {} 8369 8370 bool follow(const SCEV *S) { 8371 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8372 if (!containsUndefs(S)) 8373 Terms.push_back(S); 8374 8375 // Stop recursion: once we collected a term, do not walk its operands. 8376 return false; 8377 } 8378 8379 // Keep looking. 8380 return true; 8381 } 8382 bool isDone() const { return false; } 8383 }; 8384 8385 // Check if a SCEV contains an AddRecExpr. 8386 struct SCEVHasAddRec { 8387 bool &ContainsAddRec; 8388 8389 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 8390 ContainsAddRec = false; 8391 } 8392 8393 bool follow(const SCEV *S) { 8394 if (isa<SCEVAddRecExpr>(S)) { 8395 ContainsAddRec = true; 8396 8397 // Stop recursion: once we collected a term, do not walk its operands. 8398 return false; 8399 } 8400 8401 // Keep looking. 8402 return true; 8403 } 8404 bool isDone() const { return false; } 8405 }; 8406 8407 // Find factors that are multiplied with an expression that (possibly as a 8408 // subexpression) contains an AddRecExpr. In the expression: 8409 // 8410 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 8411 // 8412 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 8413 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 8414 // parameters as they form a product with an induction variable. 8415 // 8416 // This collector expects all array size parameters to be in the same MulExpr. 8417 // It might be necessary to later add support for collecting parameters that are 8418 // spread over different nested MulExpr. 8419 struct SCEVCollectAddRecMultiplies { 8420 SmallVectorImpl<const SCEV *> &Terms; 8421 ScalarEvolution &SE; 8422 8423 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 8424 : Terms(T), SE(SE) {} 8425 8426 bool follow(const SCEV *S) { 8427 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 8428 bool HasAddRec = false; 8429 SmallVector<const SCEV *, 0> Operands; 8430 for (auto Op : Mul->operands()) { 8431 if (isa<SCEVUnknown>(Op)) { 8432 Operands.push_back(Op); 8433 } else { 8434 bool ContainsAddRec; 8435 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 8436 visitAll(Op, ContiansAddRec); 8437 HasAddRec |= ContainsAddRec; 8438 } 8439 } 8440 if (Operands.size() == 0) 8441 return true; 8442 8443 if (!HasAddRec) 8444 return false; 8445 8446 Terms.push_back(SE.getMulExpr(Operands)); 8447 // Stop recursion: once we collected a term, do not walk its operands. 8448 return false; 8449 } 8450 8451 // Keep looking. 8452 return true; 8453 } 8454 bool isDone() const { return false; } 8455 }; 8456 } 8457 8458 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 8459 /// two places: 8460 /// 1) The strides of AddRec expressions. 8461 /// 2) Unknowns that are multiplied with AddRec expressions. 8462 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8463 SmallVectorImpl<const SCEV *> &Terms) { 8464 SmallVector<const SCEV *, 4> Strides; 8465 SCEVCollectStrides StrideCollector(*this, Strides); 8466 visitAll(Expr, StrideCollector); 8467 8468 DEBUG({ 8469 dbgs() << "Strides:\n"; 8470 for (const SCEV *S : Strides) 8471 dbgs() << *S << "\n"; 8472 }); 8473 8474 for (const SCEV *S : Strides) { 8475 SCEVCollectTerms TermCollector(Terms); 8476 visitAll(S, TermCollector); 8477 } 8478 8479 DEBUG({ 8480 dbgs() << "Terms:\n"; 8481 for (const SCEV *T : Terms) 8482 dbgs() << *T << "\n"; 8483 }); 8484 8485 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 8486 visitAll(Expr, MulCollector); 8487 } 8488 8489 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8490 SmallVectorImpl<const SCEV *> &Terms, 8491 SmallVectorImpl<const SCEV *> &Sizes) { 8492 int Last = Terms.size() - 1; 8493 const SCEV *Step = Terms[Last]; 8494 8495 // End of recursion. 8496 if (Last == 0) { 8497 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8498 SmallVector<const SCEV *, 2> Qs; 8499 for (const SCEV *Op : M->operands()) 8500 if (!isa<SCEVConstant>(Op)) 8501 Qs.push_back(Op); 8502 8503 Step = SE.getMulExpr(Qs); 8504 } 8505 8506 Sizes.push_back(Step); 8507 return true; 8508 } 8509 8510 for (const SCEV *&Term : Terms) { 8511 // Normalize the terms before the next call to findArrayDimensionsRec. 8512 const SCEV *Q, *R; 8513 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8514 8515 // Bail out when GCD does not evenly divide one of the terms. 8516 if (!R->isZero()) 8517 return false; 8518 8519 Term = Q; 8520 } 8521 8522 // Remove all SCEVConstants. 8523 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8524 return isa<SCEVConstant>(E); 8525 }), 8526 Terms.end()); 8527 8528 if (Terms.size() > 0) 8529 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8530 return false; 8531 8532 Sizes.push_back(Step); 8533 return true; 8534 } 8535 8536 namespace { 8537 struct FindParameter { 8538 bool FoundParameter; 8539 FindParameter() : FoundParameter(false) {} 8540 8541 bool follow(const SCEV *S) { 8542 if (isa<SCEVUnknown>(S)) { 8543 FoundParameter = true; 8544 // Stop recursion: we found a parameter. 8545 return false; 8546 } 8547 // Keep looking. 8548 return true; 8549 } 8550 bool isDone() const { 8551 // Stop recursion if we have found a parameter. 8552 return FoundParameter; 8553 } 8554 }; 8555 } 8556 8557 // Returns true when S contains at least a SCEVUnknown parameter. 8558 static inline bool 8559 containsParameters(const SCEV *S) { 8560 FindParameter F; 8561 SCEVTraversal<FindParameter> ST(F); 8562 ST.visitAll(S); 8563 8564 return F.FoundParameter; 8565 } 8566 8567 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8568 static inline bool 8569 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8570 for (const SCEV *T : Terms) 8571 if (containsParameters(T)) 8572 return true; 8573 return false; 8574 } 8575 8576 // Return the number of product terms in S. 8577 static inline int numberOfTerms(const SCEV *S) { 8578 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8579 return Expr->getNumOperands(); 8580 return 1; 8581 } 8582 8583 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8584 if (isa<SCEVConstant>(T)) 8585 return nullptr; 8586 8587 if (isa<SCEVUnknown>(T)) 8588 return T; 8589 8590 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8591 SmallVector<const SCEV *, 2> Factors; 8592 for (const SCEV *Op : M->operands()) 8593 if (!isa<SCEVConstant>(Op)) 8594 Factors.push_back(Op); 8595 8596 return SE.getMulExpr(Factors); 8597 } 8598 8599 return T; 8600 } 8601 8602 /// Return the size of an element read or written by Inst. 8603 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8604 Type *Ty; 8605 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8606 Ty = Store->getValueOperand()->getType(); 8607 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8608 Ty = Load->getType(); 8609 else 8610 return nullptr; 8611 8612 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8613 return getSizeOfExpr(ETy, Ty); 8614 } 8615 8616 /// Second step of delinearization: compute the array dimensions Sizes from the 8617 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8618 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8619 SmallVectorImpl<const SCEV *> &Sizes, 8620 const SCEV *ElementSize) const { 8621 8622 if (Terms.size() < 1 || !ElementSize) 8623 return; 8624 8625 // Early return when Terms do not contain parameters: we do not delinearize 8626 // non parametric SCEVs. 8627 if (!containsParameters(Terms)) 8628 return; 8629 8630 DEBUG({ 8631 dbgs() << "Terms:\n"; 8632 for (const SCEV *T : Terms) 8633 dbgs() << *T << "\n"; 8634 }); 8635 8636 // Remove duplicates. 8637 std::sort(Terms.begin(), Terms.end()); 8638 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8639 8640 // Put larger terms first. 8641 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8642 return numberOfTerms(LHS) > numberOfTerms(RHS); 8643 }); 8644 8645 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8646 8647 // Try to divide all terms by the element size. If term is not divisible by 8648 // element size, proceed with the original term. 8649 for (const SCEV *&Term : Terms) { 8650 const SCEV *Q, *R; 8651 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8652 if (!Q->isZero()) 8653 Term = Q; 8654 } 8655 8656 SmallVector<const SCEV *, 4> NewTerms; 8657 8658 // Remove constant factors. 8659 for (const SCEV *T : Terms) 8660 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8661 NewTerms.push_back(NewT); 8662 8663 DEBUG({ 8664 dbgs() << "Terms after sorting:\n"; 8665 for (const SCEV *T : NewTerms) 8666 dbgs() << *T << "\n"; 8667 }); 8668 8669 if (NewTerms.empty() || 8670 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8671 Sizes.clear(); 8672 return; 8673 } 8674 8675 // The last element to be pushed into Sizes is the size of an element. 8676 Sizes.push_back(ElementSize); 8677 8678 DEBUG({ 8679 dbgs() << "Sizes:\n"; 8680 for (const SCEV *S : Sizes) 8681 dbgs() << *S << "\n"; 8682 }); 8683 } 8684 8685 /// Third step of delinearization: compute the access functions for the 8686 /// Subscripts based on the dimensions in Sizes. 8687 void ScalarEvolution::computeAccessFunctions( 8688 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8689 SmallVectorImpl<const SCEV *> &Sizes) { 8690 8691 // Early exit in case this SCEV is not an affine multivariate function. 8692 if (Sizes.empty()) 8693 return; 8694 8695 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8696 if (!AR->isAffine()) 8697 return; 8698 8699 const SCEV *Res = Expr; 8700 int Last = Sizes.size() - 1; 8701 for (int i = Last; i >= 0; i--) { 8702 const SCEV *Q, *R; 8703 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8704 8705 DEBUG({ 8706 dbgs() << "Res: " << *Res << "\n"; 8707 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8708 dbgs() << "Res divided by Sizes[i]:\n"; 8709 dbgs() << "Quotient: " << *Q << "\n"; 8710 dbgs() << "Remainder: " << *R << "\n"; 8711 }); 8712 8713 Res = Q; 8714 8715 // Do not record the last subscript corresponding to the size of elements in 8716 // the array. 8717 if (i == Last) { 8718 8719 // Bail out if the remainder is too complex. 8720 if (isa<SCEVAddRecExpr>(R)) { 8721 Subscripts.clear(); 8722 Sizes.clear(); 8723 return; 8724 } 8725 8726 continue; 8727 } 8728 8729 // Record the access function for the current subscript. 8730 Subscripts.push_back(R); 8731 } 8732 8733 // Also push in last position the remainder of the last division: it will be 8734 // the access function of the innermost dimension. 8735 Subscripts.push_back(Res); 8736 8737 std::reverse(Subscripts.begin(), Subscripts.end()); 8738 8739 DEBUG({ 8740 dbgs() << "Subscripts:\n"; 8741 for (const SCEV *S : Subscripts) 8742 dbgs() << *S << "\n"; 8743 }); 8744 } 8745 8746 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8747 /// sizes of an array access. Returns the remainder of the delinearization that 8748 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8749 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8750 /// expressions in the stride and base of a SCEV corresponding to the 8751 /// computation of a GCD (greatest common divisor) of base and stride. When 8752 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8753 /// 8754 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8755 /// 8756 /// void foo(long n, long m, long o, double A[n][m][o]) { 8757 /// 8758 /// for (long i = 0; i < n; i++) 8759 /// for (long j = 0; j < m; j++) 8760 /// for (long k = 0; k < o; k++) 8761 /// A[i][j][k] = 1.0; 8762 /// } 8763 /// 8764 /// the delinearization input is the following AddRec SCEV: 8765 /// 8766 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8767 /// 8768 /// From this SCEV, we are able to say that the base offset of the access is %A 8769 /// because it appears as an offset that does not divide any of the strides in 8770 /// the loops: 8771 /// 8772 /// CHECK: Base offset: %A 8773 /// 8774 /// and then SCEV->delinearize determines the size of some of the dimensions of 8775 /// the array as these are the multiples by which the strides are happening: 8776 /// 8777 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8778 /// 8779 /// Note that the outermost dimension remains of UnknownSize because there are 8780 /// no strides that would help identifying the size of the last dimension: when 8781 /// the array has been statically allocated, one could compute the size of that 8782 /// dimension by dividing the overall size of the array by the size of the known 8783 /// dimensions: %m * %o * 8. 8784 /// 8785 /// Finally delinearize provides the access functions for the array reference 8786 /// that does correspond to A[i][j][k] of the above C testcase: 8787 /// 8788 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8789 /// 8790 /// The testcases are checking the output of a function pass: 8791 /// DelinearizationPass that walks through all loads and stores of a function 8792 /// asking for the SCEV of the memory access with respect to all enclosing 8793 /// loops, calling SCEV->delinearize on that and printing the results. 8794 8795 void ScalarEvolution::delinearize(const SCEV *Expr, 8796 SmallVectorImpl<const SCEV *> &Subscripts, 8797 SmallVectorImpl<const SCEV *> &Sizes, 8798 const SCEV *ElementSize) { 8799 // First step: collect parametric terms. 8800 SmallVector<const SCEV *, 4> Terms; 8801 collectParametricTerms(Expr, Terms); 8802 8803 if (Terms.empty()) 8804 return; 8805 8806 // Second step: find subscript sizes. 8807 findArrayDimensions(Terms, Sizes, ElementSize); 8808 8809 if (Sizes.empty()) 8810 return; 8811 8812 // Third step: compute the access functions for each subscript. 8813 computeAccessFunctions(Expr, Subscripts, Sizes); 8814 8815 if (Subscripts.empty()) 8816 return; 8817 8818 DEBUG({ 8819 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8820 dbgs() << "ArrayDecl[UnknownSize]"; 8821 for (const SCEV *S : Sizes) 8822 dbgs() << "[" << *S << "]"; 8823 8824 dbgs() << "\nArrayRef"; 8825 for (const SCEV *S : Subscripts) 8826 dbgs() << "[" << *S << "]"; 8827 dbgs() << "\n"; 8828 }); 8829 } 8830 8831 //===----------------------------------------------------------------------===// 8832 // SCEVCallbackVH Class Implementation 8833 //===----------------------------------------------------------------------===// 8834 8835 void ScalarEvolution::SCEVCallbackVH::deleted() { 8836 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8837 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8838 SE->ConstantEvolutionLoopExitValue.erase(PN); 8839 SE->ValueExprMap.erase(getValPtr()); 8840 // this now dangles! 8841 } 8842 8843 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8844 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8845 8846 // Forget all the expressions associated with users of the old value, 8847 // so that future queries will recompute the expressions using the new 8848 // value. 8849 Value *Old = getValPtr(); 8850 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8851 SmallPtrSet<User *, 8> Visited; 8852 while (!Worklist.empty()) { 8853 User *U = Worklist.pop_back_val(); 8854 // Deleting the Old value will cause this to dangle. Postpone 8855 // that until everything else is done. 8856 if (U == Old) 8857 continue; 8858 if (!Visited.insert(U).second) 8859 continue; 8860 if (PHINode *PN = dyn_cast<PHINode>(U)) 8861 SE->ConstantEvolutionLoopExitValue.erase(PN); 8862 SE->ValueExprMap.erase(U); 8863 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8864 } 8865 // Delete the Old value. 8866 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8867 SE->ConstantEvolutionLoopExitValue.erase(PN); 8868 SE->ValueExprMap.erase(Old); 8869 // this now dangles! 8870 } 8871 8872 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8873 : CallbackVH(V), SE(se) {} 8874 8875 //===----------------------------------------------------------------------===// 8876 // ScalarEvolution Class Implementation 8877 //===----------------------------------------------------------------------===// 8878 8879 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8880 AssumptionCache &AC, DominatorTree &DT, 8881 LoopInfo &LI) 8882 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8883 CouldNotCompute(new SCEVCouldNotCompute()), 8884 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8885 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 8886 FirstUnknown(nullptr) {} 8887 8888 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8889 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8890 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8891 ValueExprMap(std::move(Arg.ValueExprMap)), 8892 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 8893 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8894 ConstantEvolutionLoopExitValue( 8895 std::move(Arg.ConstantEvolutionLoopExitValue)), 8896 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8897 LoopDispositions(std::move(Arg.LoopDispositions)), 8898 BlockDispositions(std::move(Arg.BlockDispositions)), 8899 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8900 SignedRanges(std::move(Arg.SignedRanges)), 8901 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8902 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8903 FirstUnknown(Arg.FirstUnknown) { 8904 Arg.FirstUnknown = nullptr; 8905 } 8906 8907 ScalarEvolution::~ScalarEvolution() { 8908 // Iterate through all the SCEVUnknown instances and call their 8909 // destructors, so that they release their references to their values. 8910 for (SCEVUnknown *U = FirstUnknown; U;) { 8911 SCEVUnknown *Tmp = U; 8912 U = U->Next; 8913 Tmp->~SCEVUnknown(); 8914 } 8915 FirstUnknown = nullptr; 8916 8917 ValueExprMap.clear(); 8918 8919 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8920 // that a loop had multiple computable exits. 8921 for (auto &BTCI : BackedgeTakenCounts) 8922 BTCI.second.clear(); 8923 8924 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8925 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8926 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 8927 } 8928 8929 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8930 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8931 } 8932 8933 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8934 const Loop *L) { 8935 // Print all inner loops first 8936 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8937 PrintLoopInfo(OS, SE, *I); 8938 8939 OS << "Loop "; 8940 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8941 OS << ": "; 8942 8943 SmallVector<BasicBlock *, 8> ExitBlocks; 8944 L->getExitBlocks(ExitBlocks); 8945 if (ExitBlocks.size() != 1) 8946 OS << "<multiple exits> "; 8947 8948 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8949 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8950 } else { 8951 OS << "Unpredictable backedge-taken count. "; 8952 } 8953 8954 OS << "\n" 8955 "Loop "; 8956 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8957 OS << ": "; 8958 8959 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8960 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8961 } else { 8962 OS << "Unpredictable max backedge-taken count. "; 8963 } 8964 8965 OS << "\n"; 8966 } 8967 8968 void ScalarEvolution::print(raw_ostream &OS) const { 8969 // ScalarEvolution's implementation of the print method is to print 8970 // out SCEV values of all instructions that are interesting. Doing 8971 // this potentially causes it to create new SCEV objects though, 8972 // which technically conflicts with the const qualifier. This isn't 8973 // observable from outside the class though, so casting away the 8974 // const isn't dangerous. 8975 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8976 8977 OS << "Classifying expressions for: "; 8978 F.printAsOperand(OS, /*PrintType=*/false); 8979 OS << "\n"; 8980 for (Instruction &I : instructions(F)) 8981 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 8982 OS << I << '\n'; 8983 OS << " --> "; 8984 const SCEV *SV = SE.getSCEV(&I); 8985 SV->print(OS); 8986 if (!isa<SCEVCouldNotCompute>(SV)) { 8987 OS << " U: "; 8988 SE.getUnsignedRange(SV).print(OS); 8989 OS << " S: "; 8990 SE.getSignedRange(SV).print(OS); 8991 } 8992 8993 const Loop *L = LI.getLoopFor(I.getParent()); 8994 8995 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8996 if (AtUse != SV) { 8997 OS << " --> "; 8998 AtUse->print(OS); 8999 if (!isa<SCEVCouldNotCompute>(AtUse)) { 9000 OS << " U: "; 9001 SE.getUnsignedRange(AtUse).print(OS); 9002 OS << " S: "; 9003 SE.getSignedRange(AtUse).print(OS); 9004 } 9005 } 9006 9007 if (L) { 9008 OS << "\t\t" "Exits: "; 9009 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 9010 if (!SE.isLoopInvariant(ExitValue, L)) { 9011 OS << "<<Unknown>>"; 9012 } else { 9013 OS << *ExitValue; 9014 } 9015 } 9016 9017 OS << "\n"; 9018 } 9019 9020 OS << "Determining loop execution counts for: "; 9021 F.printAsOperand(OS, /*PrintType=*/false); 9022 OS << "\n"; 9023 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 9024 PrintLoopInfo(OS, &SE, *I); 9025 } 9026 9027 ScalarEvolution::LoopDisposition 9028 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 9029 auto &Values = LoopDispositions[S]; 9030 for (auto &V : Values) { 9031 if (V.getPointer() == L) 9032 return V.getInt(); 9033 } 9034 Values.emplace_back(L, LoopVariant); 9035 LoopDisposition D = computeLoopDisposition(S, L); 9036 auto &Values2 = LoopDispositions[S]; 9037 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9038 if (V.getPointer() == L) { 9039 V.setInt(D); 9040 break; 9041 } 9042 } 9043 return D; 9044 } 9045 9046 ScalarEvolution::LoopDisposition 9047 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 9048 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9049 case scConstant: 9050 return LoopInvariant; 9051 case scTruncate: 9052 case scZeroExtend: 9053 case scSignExtend: 9054 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 9055 case scAddRecExpr: { 9056 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9057 9058 // If L is the addrec's loop, it's computable. 9059 if (AR->getLoop() == L) 9060 return LoopComputable; 9061 9062 // Add recurrences are never invariant in the function-body (null loop). 9063 if (!L) 9064 return LoopVariant; 9065 9066 // This recurrence is variant w.r.t. L if L contains AR's loop. 9067 if (L->contains(AR->getLoop())) 9068 return LoopVariant; 9069 9070 // This recurrence is invariant w.r.t. L if AR's loop contains L. 9071 if (AR->getLoop()->contains(L)) 9072 return LoopInvariant; 9073 9074 // This recurrence is variant w.r.t. L if any of its operands 9075 // are variant. 9076 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 9077 I != E; ++I) 9078 if (!isLoopInvariant(*I, L)) 9079 return LoopVariant; 9080 9081 // Otherwise it's loop-invariant. 9082 return LoopInvariant; 9083 } 9084 case scAddExpr: 9085 case scMulExpr: 9086 case scUMaxExpr: 9087 case scSMaxExpr: { 9088 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9089 bool HasVarying = false; 9090 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9091 I != E; ++I) { 9092 LoopDisposition D = getLoopDisposition(*I, L); 9093 if (D == LoopVariant) 9094 return LoopVariant; 9095 if (D == LoopComputable) 9096 HasVarying = true; 9097 } 9098 return HasVarying ? LoopComputable : LoopInvariant; 9099 } 9100 case scUDivExpr: { 9101 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9102 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 9103 if (LD == LoopVariant) 9104 return LoopVariant; 9105 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 9106 if (RD == LoopVariant) 9107 return LoopVariant; 9108 return (LD == LoopInvariant && RD == LoopInvariant) ? 9109 LoopInvariant : LoopComputable; 9110 } 9111 case scUnknown: 9112 // All non-instruction values are loop invariant. All instructions are loop 9113 // invariant if they are not contained in the specified loop. 9114 // Instructions are never considered invariant in the function body 9115 // (null loop) because they are defined within the "loop". 9116 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 9117 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 9118 return LoopInvariant; 9119 case scCouldNotCompute: 9120 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9121 } 9122 llvm_unreachable("Unknown SCEV kind!"); 9123 } 9124 9125 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 9126 return getLoopDisposition(S, L) == LoopInvariant; 9127 } 9128 9129 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 9130 return getLoopDisposition(S, L) == LoopComputable; 9131 } 9132 9133 ScalarEvolution::BlockDisposition 9134 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9135 auto &Values = BlockDispositions[S]; 9136 for (auto &V : Values) { 9137 if (V.getPointer() == BB) 9138 return V.getInt(); 9139 } 9140 Values.emplace_back(BB, DoesNotDominateBlock); 9141 BlockDisposition D = computeBlockDisposition(S, BB); 9142 auto &Values2 = BlockDispositions[S]; 9143 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 9144 if (V.getPointer() == BB) { 9145 V.setInt(D); 9146 break; 9147 } 9148 } 9149 return D; 9150 } 9151 9152 ScalarEvolution::BlockDisposition 9153 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 9154 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 9155 case scConstant: 9156 return ProperlyDominatesBlock; 9157 case scTruncate: 9158 case scZeroExtend: 9159 case scSignExtend: 9160 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 9161 case scAddRecExpr: { 9162 // This uses a "dominates" query instead of "properly dominates" query 9163 // to test for proper dominance too, because the instruction which 9164 // produces the addrec's value is a PHI, and a PHI effectively properly 9165 // dominates its entire containing block. 9166 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 9167 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 9168 return DoesNotDominateBlock; 9169 } 9170 // FALL THROUGH into SCEVNAryExpr handling. 9171 case scAddExpr: 9172 case scMulExpr: 9173 case scUMaxExpr: 9174 case scSMaxExpr: { 9175 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 9176 bool Proper = true; 9177 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 9178 I != E; ++I) { 9179 BlockDisposition D = getBlockDisposition(*I, BB); 9180 if (D == DoesNotDominateBlock) 9181 return DoesNotDominateBlock; 9182 if (D == DominatesBlock) 9183 Proper = false; 9184 } 9185 return Proper ? ProperlyDominatesBlock : DominatesBlock; 9186 } 9187 case scUDivExpr: { 9188 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 9189 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 9190 BlockDisposition LD = getBlockDisposition(LHS, BB); 9191 if (LD == DoesNotDominateBlock) 9192 return DoesNotDominateBlock; 9193 BlockDisposition RD = getBlockDisposition(RHS, BB); 9194 if (RD == DoesNotDominateBlock) 9195 return DoesNotDominateBlock; 9196 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 9197 ProperlyDominatesBlock : DominatesBlock; 9198 } 9199 case scUnknown: 9200 if (Instruction *I = 9201 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 9202 if (I->getParent() == BB) 9203 return DominatesBlock; 9204 if (DT.properlyDominates(I->getParent(), BB)) 9205 return ProperlyDominatesBlock; 9206 return DoesNotDominateBlock; 9207 } 9208 return ProperlyDominatesBlock; 9209 case scCouldNotCompute: 9210 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 9211 } 9212 llvm_unreachable("Unknown SCEV kind!"); 9213 } 9214 9215 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 9216 return getBlockDisposition(S, BB) >= DominatesBlock; 9217 } 9218 9219 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 9220 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 9221 } 9222 9223 namespace { 9224 // Search for a SCEV expression node within an expression tree. 9225 // Implements SCEVTraversal::Visitor. 9226 struct SCEVSearch { 9227 const SCEV *Node; 9228 bool IsFound; 9229 9230 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 9231 9232 bool follow(const SCEV *S) { 9233 IsFound |= (S == Node); 9234 return !IsFound; 9235 } 9236 bool isDone() const { return IsFound; } 9237 }; 9238 } 9239 9240 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 9241 SCEVSearch Search(Op); 9242 visitAll(S, Search); 9243 return Search.IsFound; 9244 } 9245 9246 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 9247 ValuesAtScopes.erase(S); 9248 LoopDispositions.erase(S); 9249 BlockDispositions.erase(S); 9250 UnsignedRanges.erase(S); 9251 SignedRanges.erase(S); 9252 9253 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 9254 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 9255 BackedgeTakenInfo &BEInfo = I->second; 9256 if (BEInfo.hasOperand(S, this)) { 9257 BEInfo.clear(); 9258 BackedgeTakenCounts.erase(I++); 9259 } 9260 else 9261 ++I; 9262 } 9263 } 9264 9265 typedef DenseMap<const Loop *, std::string> VerifyMap; 9266 9267 /// replaceSubString - Replaces all occurrences of From in Str with To. 9268 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 9269 size_t Pos = 0; 9270 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 9271 Str.replace(Pos, From.size(), To.data(), To.size()); 9272 Pos += To.size(); 9273 } 9274 } 9275 9276 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 9277 static void 9278 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 9279 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 9280 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 9281 9282 std::string &S = Map[L]; 9283 if (S.empty()) { 9284 raw_string_ostream OS(S); 9285 SE.getBackedgeTakenCount(L)->print(OS); 9286 9287 // false and 0 are semantically equivalent. This can happen in dead loops. 9288 replaceSubString(OS.str(), "false", "0"); 9289 // Remove wrap flags, their use in SCEV is highly fragile. 9290 // FIXME: Remove this when SCEV gets smarter about them. 9291 replaceSubString(OS.str(), "<nw>", ""); 9292 replaceSubString(OS.str(), "<nsw>", ""); 9293 replaceSubString(OS.str(), "<nuw>", ""); 9294 } 9295 } 9296 } 9297 9298 void ScalarEvolution::verify() const { 9299 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 9300 9301 // Gather stringified backedge taken counts for all loops using SCEV's caches. 9302 // FIXME: It would be much better to store actual values instead of strings, 9303 // but SCEV pointers will change if we drop the caches. 9304 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 9305 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9306 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 9307 9308 // Gather stringified backedge taken counts for all loops using a fresh 9309 // ScalarEvolution object. 9310 ScalarEvolution SE2(F, TLI, AC, DT, LI); 9311 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 9312 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 9313 9314 // Now compare whether they're the same with and without caches. This allows 9315 // verifying that no pass changed the cache. 9316 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 9317 "New loops suddenly appeared!"); 9318 9319 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 9320 OldE = BackedgeDumpsOld.end(), 9321 NewI = BackedgeDumpsNew.begin(); 9322 OldI != OldE; ++OldI, ++NewI) { 9323 assert(OldI->first == NewI->first && "Loop order changed!"); 9324 9325 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 9326 // changes. 9327 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 9328 // means that a pass is buggy or SCEV has to learn a new pattern but is 9329 // usually not harmful. 9330 if (OldI->second != NewI->second && 9331 OldI->second.find("undef") == std::string::npos && 9332 NewI->second.find("undef") == std::string::npos && 9333 OldI->second != "***COULDNOTCOMPUTE***" && 9334 NewI->second != "***COULDNOTCOMPUTE***") { 9335 dbgs() << "SCEVValidator: SCEV for loop '" 9336 << OldI->first->getHeader()->getName() 9337 << "' changed from '" << OldI->second 9338 << "' to '" << NewI->second << "'!\n"; 9339 std::abort(); 9340 } 9341 } 9342 9343 // TODO: Verify more things. 9344 } 9345 9346 char ScalarEvolutionAnalysis::PassID; 9347 9348 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 9349 AnalysisManager<Function> *AM) { 9350 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9351 AM->getResult<AssumptionAnalysis>(F), 9352 AM->getResult<DominatorTreeAnalysis>(F), 9353 AM->getResult<LoopAnalysis>(F)); 9354 } 9355 9356 PreservedAnalyses 9357 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9358 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9359 return PreservedAnalyses::all(); 9360 } 9361 9362 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9363 "Scalar Evolution Analysis", false, true) 9364 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9365 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9366 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9367 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9368 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9369 "Scalar Evolution Analysis", false, true) 9370 char ScalarEvolutionWrapperPass::ID = 0; 9371 9372 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9373 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9374 } 9375 9376 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9377 SE.reset(new ScalarEvolution( 9378 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9379 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9380 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9381 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9382 return false; 9383 } 9384 9385 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9386 9387 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9388 SE->print(OS); 9389 } 9390 9391 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9392 if (!VerifySCEV) 9393 return; 9394 9395 SE->verify(); 9396 } 9397 9398 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9399 AU.setPreservesAll(); 9400 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9401 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9402 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9403 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9404 } 9405