xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 1f05c51e5ecdf6e35a58689aead4dc162850914a)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionTracker.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/ValueTracking.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DerivedTypes.h"
76 #include "llvm/IR/Dominators.h"
77 #include "llvm/IR/GetElementPtrTypeIterator.h"
78 #include "llvm/IR/GlobalAlias.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/InstIterator.h"
81 #include "llvm/IR/Instructions.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/Support/CommandLine.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetLibraryInfo.h"
91 #include <algorithm>
92 using namespace llvm;
93 
94 #define DEBUG_TYPE "scalar-evolution"
95 
96 STATISTIC(NumArrayLenItCounts,
97           "Number of trip counts computed with array length");
98 STATISTIC(NumTripCountsComputed,
99           "Number of loops with predictable loop counts");
100 STATISTIC(NumTripCountsNotComputed,
101           "Number of loops without predictable loop counts");
102 STATISTIC(NumBruteForceTripCountsComputed,
103           "Number of loops with trip counts computed by force");
104 
105 static cl::opt<unsigned>
106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107                         cl::desc("Maximum number of iterations SCEV will "
108                                  "symbolically execute a constant "
109                                  "derived loop"),
110                         cl::init(100));
111 
112 // FIXME: Enable this with XDEBUG when the test suite is clean.
113 static cl::opt<bool>
114 VerifySCEV("verify-scev",
115            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116 
117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118                 "Scalar Evolution Analysis", false, true)
119 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
120 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
124                 "Scalar Evolution Analysis", false, true)
125 char ScalarEvolution::ID = 0;
126 
127 //===----------------------------------------------------------------------===//
128 //                           SCEV class definitions
129 //===----------------------------------------------------------------------===//
130 
131 //===----------------------------------------------------------------------===//
132 // Implementation of the SCEV class.
133 //
134 
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 void SCEV::dump() const {
137   print(dbgs());
138   dbgs() << '\n';
139 }
140 #endif
141 
142 void SCEV::print(raw_ostream &OS) const {
143   switch (static_cast<SCEVTypes>(getSCEVType())) {
144   case scConstant:
145     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
146     return;
147   case scTruncate: {
148     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149     const SCEV *Op = Trunc->getOperand();
150     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151        << *Trunc->getType() << ")";
152     return;
153   }
154   case scZeroExtend: {
155     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156     const SCEV *Op = ZExt->getOperand();
157     OS << "(zext " << *Op->getType() << " " << *Op << " to "
158        << *ZExt->getType() << ")";
159     return;
160   }
161   case scSignExtend: {
162     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163     const SCEV *Op = SExt->getOperand();
164     OS << "(sext " << *Op->getType() << " " << *Op << " to "
165        << *SExt->getType() << ")";
166     return;
167   }
168   case scAddRecExpr: {
169     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170     OS << "{" << *AR->getOperand(0);
171     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172       OS << ",+," << *AR->getOperand(i);
173     OS << "}<";
174     if (AR->getNoWrapFlags(FlagNUW))
175       OS << "nuw><";
176     if (AR->getNoWrapFlags(FlagNSW))
177       OS << "nsw><";
178     if (AR->getNoWrapFlags(FlagNW) &&
179         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180       OS << "nw><";
181     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
182     OS << ">";
183     return;
184   }
185   case scAddExpr:
186   case scMulExpr:
187   case scUMaxExpr:
188   case scSMaxExpr: {
189     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
190     const char *OpStr = nullptr;
191     switch (NAry->getSCEVType()) {
192     case scAddExpr: OpStr = " + "; break;
193     case scMulExpr: OpStr = " * "; break;
194     case scUMaxExpr: OpStr = " umax "; break;
195     case scSMaxExpr: OpStr = " smax "; break;
196     }
197     OS << "(";
198     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199          I != E; ++I) {
200       OS << **I;
201       if (std::next(I) != E)
202         OS << OpStr;
203     }
204     OS << ")";
205     switch (NAry->getSCEVType()) {
206     case scAddExpr:
207     case scMulExpr:
208       if (NAry->getNoWrapFlags(FlagNUW))
209         OS << "<nuw>";
210       if (NAry->getNoWrapFlags(FlagNSW))
211         OS << "<nsw>";
212     }
213     return;
214   }
215   case scUDivExpr: {
216     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218     return;
219   }
220   case scUnknown: {
221     const SCEVUnknown *U = cast<SCEVUnknown>(this);
222     Type *AllocTy;
223     if (U->isSizeOf(AllocTy)) {
224       OS << "sizeof(" << *AllocTy << ")";
225       return;
226     }
227     if (U->isAlignOf(AllocTy)) {
228       OS << "alignof(" << *AllocTy << ")";
229       return;
230     }
231 
232     Type *CTy;
233     Constant *FieldNo;
234     if (U->isOffsetOf(CTy, FieldNo)) {
235       OS << "offsetof(" << *CTy << ", ";
236       FieldNo->printAsOperand(OS, false);
237       OS << ")";
238       return;
239     }
240 
241     // Otherwise just print it normally.
242     U->getValue()->printAsOperand(OS, false);
243     return;
244   }
245   case scCouldNotCompute:
246     OS << "***COULDNOTCOMPUTE***";
247     return;
248   }
249   llvm_unreachable("Unknown SCEV kind!");
250 }
251 
252 Type *SCEV::getType() const {
253   switch (static_cast<SCEVTypes>(getSCEVType())) {
254   case scConstant:
255     return cast<SCEVConstant>(this)->getType();
256   case scTruncate:
257   case scZeroExtend:
258   case scSignExtend:
259     return cast<SCEVCastExpr>(this)->getType();
260   case scAddRecExpr:
261   case scMulExpr:
262   case scUMaxExpr:
263   case scSMaxExpr:
264     return cast<SCEVNAryExpr>(this)->getType();
265   case scAddExpr:
266     return cast<SCEVAddExpr>(this)->getType();
267   case scUDivExpr:
268     return cast<SCEVUDivExpr>(this)->getType();
269   case scUnknown:
270     return cast<SCEVUnknown>(this)->getType();
271   case scCouldNotCompute:
272     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
273   }
274   llvm_unreachable("Unknown SCEV kind!");
275 }
276 
277 bool SCEV::isZero() const {
278   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279     return SC->getValue()->isZero();
280   return false;
281 }
282 
283 bool SCEV::isOne() const {
284   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285     return SC->getValue()->isOne();
286   return false;
287 }
288 
289 bool SCEV::isAllOnesValue() const {
290   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291     return SC->getValue()->isAllOnesValue();
292   return false;
293 }
294 
295 /// isNonConstantNegative - Return true if the specified scev is negated, but
296 /// not a constant.
297 bool SCEV::isNonConstantNegative() const {
298   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299   if (!Mul) return false;
300 
301   // If there is a constant factor, it will be first.
302   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303   if (!SC) return false;
304 
305   // Return true if the value is negative, this matches things like (-42 * V).
306   return SC->getValue()->getValue().isNegative();
307 }
308 
309 SCEVCouldNotCompute::SCEVCouldNotCompute() :
310   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
311 
312 bool SCEVCouldNotCompute::classof(const SCEV *S) {
313   return S->getSCEVType() == scCouldNotCompute;
314 }
315 
316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
317   FoldingSetNodeID ID;
318   ID.AddInteger(scConstant);
319   ID.AddPointer(V);
320   void *IP = nullptr;
321   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
322   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
323   UniqueSCEVs.InsertNode(S, IP);
324   return S;
325 }
326 
327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
328   return getConstant(ConstantInt::get(getContext(), Val));
329 }
330 
331 const SCEV *
332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
334   return getConstant(ConstantInt::get(ITy, V, isSigned));
335 }
336 
337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
338                            unsigned SCEVTy, const SCEV *op, Type *ty)
339   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
340 
341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
342                                    const SCEV *op, Type *ty)
343   : SCEVCastExpr(ID, scTruncate, op, ty) {
344   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346          "Cannot truncate non-integer value!");
347 }
348 
349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
350                                        const SCEV *op, Type *ty)
351   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
352   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354          "Cannot zero extend non-integer value!");
355 }
356 
357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
358                                        const SCEV *op, Type *ty)
359   : SCEVCastExpr(ID, scSignExtend, op, ty) {
360   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
362          "Cannot sign extend non-integer value!");
363 }
364 
365 void SCEVUnknown::deleted() {
366   // Clear this SCEVUnknown from various maps.
367   SE->forgetMemoizedResults(this);
368 
369   // Remove this SCEVUnknown from the uniquing map.
370   SE->UniqueSCEVs.RemoveNode(this);
371 
372   // Release the value.
373   setValPtr(nullptr);
374 }
375 
376 void SCEVUnknown::allUsesReplacedWith(Value *New) {
377   // Clear this SCEVUnknown from various maps.
378   SE->forgetMemoizedResults(this);
379 
380   // Remove this SCEVUnknown from the uniquing map.
381   SE->UniqueSCEVs.RemoveNode(this);
382 
383   // Update this SCEVUnknown to point to the new value. This is needed
384   // because there may still be outstanding SCEVs which still point to
385   // this SCEVUnknown.
386   setValPtr(New);
387 }
388 
389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
390   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
391     if (VCE->getOpcode() == Instruction::PtrToInt)
392       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
393         if (CE->getOpcode() == Instruction::GetElementPtr &&
394             CE->getOperand(0)->isNullValue() &&
395             CE->getNumOperands() == 2)
396           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397             if (CI->isOne()) {
398               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399                                  ->getElementType();
400               return true;
401             }
402 
403   return false;
404 }
405 
406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
407   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
408     if (VCE->getOpcode() == Instruction::PtrToInt)
409       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410         if (CE->getOpcode() == Instruction::GetElementPtr &&
411             CE->getOperand(0)->isNullValue()) {
412           Type *Ty =
413             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
414           if (StructType *STy = dyn_cast<StructType>(Ty))
415             if (!STy->isPacked() &&
416                 CE->getNumOperands() == 3 &&
417                 CE->getOperand(1)->isNullValue()) {
418               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419                 if (CI->isOne() &&
420                     STy->getNumElements() == 2 &&
421                     STy->getElementType(0)->isIntegerTy(1)) {
422                   AllocTy = STy->getElementType(1);
423                   return true;
424                 }
425             }
426         }
427 
428   return false;
429 }
430 
431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
432   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
433     if (VCE->getOpcode() == Instruction::PtrToInt)
434       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435         if (CE->getOpcode() == Instruction::GetElementPtr &&
436             CE->getNumOperands() == 3 &&
437             CE->getOperand(0)->isNullValue() &&
438             CE->getOperand(1)->isNullValue()) {
439           Type *Ty =
440             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441           // Ignore vector types here so that ScalarEvolutionExpander doesn't
442           // emit getelementptrs that index into vectors.
443           if (Ty->isStructTy() || Ty->isArrayTy()) {
444             CTy = Ty;
445             FieldNo = CE->getOperand(2);
446             return true;
447           }
448         }
449 
450   return false;
451 }
452 
453 //===----------------------------------------------------------------------===//
454 //                               SCEV Utilities
455 //===----------------------------------------------------------------------===//
456 
457 namespace {
458   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459   /// than the complexity of the RHS.  This comparator is used to canonicalize
460   /// expressions.
461   class SCEVComplexityCompare {
462     const LoopInfo *const LI;
463   public:
464     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
465 
466     // Return true or false if LHS is less than, or at least RHS, respectively.
467     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
468       return compare(LHS, RHS) < 0;
469     }
470 
471     // Return negative, zero, or positive, if LHS is less than, equal to, or
472     // greater than RHS, respectively. A three-way result allows recursive
473     // comparisons to be more efficient.
474     int compare(const SCEV *LHS, const SCEV *RHS) const {
475       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476       if (LHS == RHS)
477         return 0;
478 
479       // Primarily, sort the SCEVs by their getSCEVType().
480       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481       if (LType != RType)
482         return (int)LType - (int)RType;
483 
484       // Aside from the getSCEVType() ordering, the particular ordering
485       // isn't very important except that it's beneficial to be consistent,
486       // so that (a + b) and (b + a) don't end up as different expressions.
487       switch (static_cast<SCEVTypes>(LType)) {
488       case scUnknown: {
489         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
490         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
491 
492         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493         // not as complete as it could be.
494         const Value *LV = LU->getValue(), *RV = RU->getValue();
495 
496         // Order pointer values after integer values. This helps SCEVExpander
497         // form GEPs.
498         bool LIsPointer = LV->getType()->isPointerTy(),
499              RIsPointer = RV->getType()->isPointerTy();
500         if (LIsPointer != RIsPointer)
501           return (int)LIsPointer - (int)RIsPointer;
502 
503         // Compare getValueID values.
504         unsigned LID = LV->getValueID(),
505                  RID = RV->getValueID();
506         if (LID != RID)
507           return (int)LID - (int)RID;
508 
509         // Sort arguments by their position.
510         if (const Argument *LA = dyn_cast<Argument>(LV)) {
511           const Argument *RA = cast<Argument>(RV);
512           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513           return (int)LArgNo - (int)RArgNo;
514         }
515 
516         // For instructions, compare their loop depth, and their operand
517         // count.  This is pretty loose.
518         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519           const Instruction *RInst = cast<Instruction>(RV);
520 
521           // Compare loop depths.
522           const BasicBlock *LParent = LInst->getParent(),
523                            *RParent = RInst->getParent();
524           if (LParent != RParent) {
525             unsigned LDepth = LI->getLoopDepth(LParent),
526                      RDepth = LI->getLoopDepth(RParent);
527             if (LDepth != RDepth)
528               return (int)LDepth - (int)RDepth;
529           }
530 
531           // Compare the number of operands.
532           unsigned LNumOps = LInst->getNumOperands(),
533                    RNumOps = RInst->getNumOperands();
534           return (int)LNumOps - (int)RNumOps;
535         }
536 
537         return 0;
538       }
539 
540       case scConstant: {
541         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
542         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
543 
544         // Compare constant values.
545         const APInt &LA = LC->getValue()->getValue();
546         const APInt &RA = RC->getValue()->getValue();
547         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
548         if (LBitWidth != RBitWidth)
549           return (int)LBitWidth - (int)RBitWidth;
550         return LA.ult(RA) ? -1 : 1;
551       }
552 
553       case scAddRecExpr: {
554         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
555         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
556 
557         // Compare addrec loop depths.
558         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559         if (LLoop != RLoop) {
560           unsigned LDepth = LLoop->getLoopDepth(),
561                    RDepth = RLoop->getLoopDepth();
562           if (LDepth != RDepth)
563             return (int)LDepth - (int)RDepth;
564         }
565 
566         // Addrec complexity grows with operand count.
567         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568         if (LNumOps != RNumOps)
569           return (int)LNumOps - (int)RNumOps;
570 
571         // Lexicographically compare.
572         for (unsigned i = 0; i != LNumOps; ++i) {
573           long X = compare(LA->getOperand(i), RA->getOperand(i));
574           if (X != 0)
575             return X;
576         }
577 
578         return 0;
579       }
580 
581       case scAddExpr:
582       case scMulExpr:
583       case scSMaxExpr:
584       case scUMaxExpr: {
585         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
586         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
587 
588         // Lexicographically compare n-ary expressions.
589         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
590         if (LNumOps != RNumOps)
591           return (int)LNumOps - (int)RNumOps;
592 
593         for (unsigned i = 0; i != LNumOps; ++i) {
594           if (i >= RNumOps)
595             return 1;
596           long X = compare(LC->getOperand(i), RC->getOperand(i));
597           if (X != 0)
598             return X;
599         }
600         return (int)LNumOps - (int)RNumOps;
601       }
602 
603       case scUDivExpr: {
604         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
605         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
606 
607         // Lexicographically compare udiv expressions.
608         long X = compare(LC->getLHS(), RC->getLHS());
609         if (X != 0)
610           return X;
611         return compare(LC->getRHS(), RC->getRHS());
612       }
613 
614       case scTruncate:
615       case scZeroExtend:
616       case scSignExtend: {
617         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
618         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
619 
620         // Compare cast expressions by operand.
621         return compare(LC->getOperand(), RC->getOperand());
622       }
623 
624       case scCouldNotCompute:
625         llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
626       }
627       llvm_unreachable("Unknown SCEV kind!");
628     }
629   };
630 }
631 
632 /// GroupByComplexity - Given a list of SCEV objects, order them by their
633 /// complexity, and group objects of the same complexity together by value.
634 /// When this routine is finished, we know that any duplicates in the vector are
635 /// consecutive and that complexity is monotonically increasing.
636 ///
637 /// Note that we go take special precautions to ensure that we get deterministic
638 /// results from this routine.  In other words, we don't want the results of
639 /// this to depend on where the addresses of various SCEV objects happened to
640 /// land in memory.
641 ///
642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
643                               LoopInfo *LI) {
644   if (Ops.size() < 2) return;  // Noop
645   if (Ops.size() == 2) {
646     // This is the common case, which also happens to be trivially simple.
647     // Special case it.
648     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649     if (SCEVComplexityCompare(LI)(RHS, LHS))
650       std::swap(LHS, RHS);
651     return;
652   }
653 
654   // Do the rough sort by complexity.
655   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656 
657   // Now that we are sorted by complexity, group elements of the same
658   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
659   // be extremely short in practice.  Note that we take this approach because we
660   // do not want to depend on the addresses of the objects we are grouping.
661   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662     const SCEV *S = Ops[i];
663     unsigned Complexity = S->getSCEVType();
664 
665     // If there are any objects of the same complexity and same value as this
666     // one, group them.
667     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668       if (Ops[j] == S) { // Found a duplicate.
669         // Move it to immediately after i'th element.
670         std::swap(Ops[i+1], Ops[j]);
671         ++i;   // no need to rescan it.
672         if (i == e-2) return;  // Done!
673       }
674     }
675   }
676 }
677 
678 static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
679   APInt A = C1->getValue()->getValue();
680   APInt B = C2->getValue()->getValue();
681   uint32_t ABW = A.getBitWidth();
682   uint32_t BBW = B.getBitWidth();
683 
684   if (ABW > BBW)
685     B = B.sext(ABW);
686   else if (ABW < BBW)
687     A = A.sext(BBW);
688 
689   return APIntOps::srem(A, B);
690 }
691 
692 static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
693   APInt A = C1->getValue()->getValue();
694   APInt B = C2->getValue()->getValue();
695   uint32_t ABW = A.getBitWidth();
696   uint32_t BBW = B.getBitWidth();
697 
698   if (ABW > BBW)
699     B = B.sext(ABW);
700   else if (ABW < BBW)
701     A = A.sext(BBW);
702 
703   return APIntOps::sdiv(A, B);
704 }
705 
706 namespace {
707 struct FindSCEVSize {
708   int Size;
709   FindSCEVSize() : Size(0) {}
710 
711   bool follow(const SCEV *S) {
712     ++Size;
713     // Keep looking at all operands of S.
714     return true;
715   }
716   bool isDone() const {
717     return false;
718   }
719 };
720 }
721 
722 // Returns the size of the SCEV S.
723 static inline int sizeOfSCEV(const SCEV *S) {
724   FindSCEVSize F;
725   SCEVTraversal<FindSCEVSize> ST(F);
726   ST.visitAll(S);
727   return F.Size;
728 }
729 
730 namespace {
731 
732 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
733 public:
734   // Computes the Quotient and Remainder of the division of Numerator by
735   // Denominator.
736   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
737                      const SCEV *Denominator, const SCEV **Quotient,
738                      const SCEV **Remainder) {
739     assert(Numerator && Denominator && "Uninitialized SCEV");
740 
741     SCEVDivision D(SE, Numerator, Denominator);
742 
743     // Check for the trivial case here to avoid having to check for it in the
744     // rest of the code.
745     if (Numerator == Denominator) {
746       *Quotient = D.One;
747       *Remainder = D.Zero;
748       return;
749     }
750 
751     if (Numerator->isZero()) {
752       *Quotient = D.Zero;
753       *Remainder = D.Zero;
754       return;
755     }
756 
757     // Split the Denominator when it is a product.
758     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
759       const SCEV *Q, *R;
760       *Quotient = Numerator;
761       for (const SCEV *Op : T->operands()) {
762         divide(SE, *Quotient, Op, &Q, &R);
763         *Quotient = Q;
764 
765         // Bail out when the Numerator is not divisible by one of the terms of
766         // the Denominator.
767         if (!R->isZero()) {
768           *Quotient = D.Zero;
769           *Remainder = Numerator;
770           return;
771         }
772       }
773       *Remainder = D.Zero;
774       return;
775     }
776 
777     D.visit(Numerator);
778     *Quotient = D.Quotient;
779     *Remainder = D.Remainder;
780   }
781 
782   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, const SCEV *Denominator)
783       : SE(S), Denominator(Denominator) {
784     Zero = SE.getConstant(Denominator->getType(), 0);
785     One = SE.getConstant(Denominator->getType(), 1);
786 
787     // By default, we don't know how to divide Expr by Denominator.
788     // Providing the default here simplifies the rest of the code.
789     Quotient = Zero;
790     Remainder = Numerator;
791   }
792 
793   // Except in the trivial case described above, we do not know how to divide
794   // Expr by Denominator for the following functions with empty implementation.
795   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
796   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
797   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
798   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
799   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
800   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
801   void visitUnknown(const SCEVUnknown *Numerator) {}
802   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
803 
804   void visitConstant(const SCEVConstant *Numerator) {
805     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
806       Quotient = SE.getConstant(sdiv(Numerator, D));
807       Remainder = SE.getConstant(srem(Numerator, D));
808       return;
809     }
810   }
811 
812   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
813     const SCEV *StartQ, *StartR, *StepQ, *StepR;
814     assert(Numerator->isAffine() && "Numerator should be affine");
815     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
816     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
817     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
818                                 Numerator->getNoWrapFlags());
819     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
820                                  Numerator->getNoWrapFlags());
821   }
822 
823   void visitAddExpr(const SCEVAddExpr *Numerator) {
824     SmallVector<const SCEV *, 2> Qs, Rs;
825     Type *Ty = Denominator->getType();
826 
827     for (const SCEV *Op : Numerator->operands()) {
828       const SCEV *Q, *R;
829       divide(SE, Op, Denominator, &Q, &R);
830 
831       // Bail out if types do not match.
832       if (Ty != Q->getType() || Ty != R->getType()) {
833         Quotient = Zero;
834         Remainder = Numerator;
835         return;
836       }
837 
838       Qs.push_back(Q);
839       Rs.push_back(R);
840     }
841 
842     if (Qs.size() == 1) {
843       Quotient = Qs[0];
844       Remainder = Rs[0];
845       return;
846     }
847 
848     Quotient = SE.getAddExpr(Qs);
849     Remainder = SE.getAddExpr(Rs);
850   }
851 
852   void visitMulExpr(const SCEVMulExpr *Numerator) {
853     SmallVector<const SCEV *, 2> Qs;
854     Type *Ty = Denominator->getType();
855 
856     bool FoundDenominatorTerm = false;
857     for (const SCEV *Op : Numerator->operands()) {
858       // Bail out if types do not match.
859       if (Ty != Op->getType()) {
860         Quotient = Zero;
861         Remainder = Numerator;
862         return;
863       }
864 
865       if (FoundDenominatorTerm) {
866         Qs.push_back(Op);
867         continue;
868       }
869 
870       // Check whether Denominator divides one of the product operands.
871       const SCEV *Q, *R;
872       divide(SE, Op, Denominator, &Q, &R);
873       if (!R->isZero()) {
874         Qs.push_back(Op);
875         continue;
876       }
877 
878       // Bail out if types do not match.
879       if (Ty != Q->getType()) {
880         Quotient = Zero;
881         Remainder = Numerator;
882         return;
883       }
884 
885       FoundDenominatorTerm = true;
886       Qs.push_back(Q);
887     }
888 
889     if (FoundDenominatorTerm) {
890       Remainder = Zero;
891       if (Qs.size() == 1)
892         Quotient = Qs[0];
893       else
894         Quotient = SE.getMulExpr(Qs);
895       return;
896     }
897 
898     if (!isa<SCEVUnknown>(Denominator)) {
899       Quotient = Zero;
900       Remainder = Numerator;
901       return;
902     }
903 
904     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
905     ValueToValueMap RewriteMap;
906     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
907         cast<SCEVConstant>(Zero)->getValue();
908     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
909 
910     if (Remainder->isZero()) {
911       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
912       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
913           cast<SCEVConstant>(One)->getValue();
914       Quotient =
915           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
916       return;
917     }
918 
919     // Quotient is (Numerator - Remainder) divided by Denominator.
920     const SCEV *Q, *R;
921     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
922     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
923       // This SCEV does not seem to simplify: fail the division here.
924       Quotient = Zero;
925       Remainder = Numerator;
926       return;
927     }
928     divide(SE, Diff, Denominator, &Q, &R);
929     assert(R == Zero &&
930            "(Numerator - Remainder) should evenly divide Denominator");
931     Quotient = Q;
932   }
933 
934 private:
935   ScalarEvolution &SE;
936   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
937 };
938 }
939 
940 
941 
942 //===----------------------------------------------------------------------===//
943 //                      Simple SCEV method implementations
944 //===----------------------------------------------------------------------===//
945 
946 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
947 /// Assume, K > 0.
948 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
949                                        ScalarEvolution &SE,
950                                        Type *ResultTy) {
951   // Handle the simplest case efficiently.
952   if (K == 1)
953     return SE.getTruncateOrZeroExtend(It, ResultTy);
954 
955   // We are using the following formula for BC(It, K):
956   //
957   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
958   //
959   // Suppose, W is the bitwidth of the return value.  We must be prepared for
960   // overflow.  Hence, we must assure that the result of our computation is
961   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
962   // safe in modular arithmetic.
963   //
964   // However, this code doesn't use exactly that formula; the formula it uses
965   // is something like the following, where T is the number of factors of 2 in
966   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
967   // exponentiation:
968   //
969   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
970   //
971   // This formula is trivially equivalent to the previous formula.  However,
972   // this formula can be implemented much more efficiently.  The trick is that
973   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
974   // arithmetic.  To do exact division in modular arithmetic, all we have
975   // to do is multiply by the inverse.  Therefore, this step can be done at
976   // width W.
977   //
978   // The next issue is how to safely do the division by 2^T.  The way this
979   // is done is by doing the multiplication step at a width of at least W + T
980   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
981   // when we perform the division by 2^T (which is equivalent to a right shift
982   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
983   // truncated out after the division by 2^T.
984   //
985   // In comparison to just directly using the first formula, this technique
986   // is much more efficient; using the first formula requires W * K bits,
987   // but this formula less than W + K bits. Also, the first formula requires
988   // a division step, whereas this formula only requires multiplies and shifts.
989   //
990   // It doesn't matter whether the subtraction step is done in the calculation
991   // width or the input iteration count's width; if the subtraction overflows,
992   // the result must be zero anyway.  We prefer here to do it in the width of
993   // the induction variable because it helps a lot for certain cases; CodeGen
994   // isn't smart enough to ignore the overflow, which leads to much less
995   // efficient code if the width of the subtraction is wider than the native
996   // register width.
997   //
998   // (It's possible to not widen at all by pulling out factors of 2 before
999   // the multiplication; for example, K=2 can be calculated as
1000   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1001   // extra arithmetic, so it's not an obvious win, and it gets
1002   // much more complicated for K > 3.)
1003 
1004   // Protection from insane SCEVs; this bound is conservative,
1005   // but it probably doesn't matter.
1006   if (K > 1000)
1007     return SE.getCouldNotCompute();
1008 
1009   unsigned W = SE.getTypeSizeInBits(ResultTy);
1010 
1011   // Calculate K! / 2^T and T; we divide out the factors of two before
1012   // multiplying for calculating K! / 2^T to avoid overflow.
1013   // Other overflow doesn't matter because we only care about the bottom
1014   // W bits of the result.
1015   APInt OddFactorial(W, 1);
1016   unsigned T = 1;
1017   for (unsigned i = 3; i <= K; ++i) {
1018     APInt Mult(W, i);
1019     unsigned TwoFactors = Mult.countTrailingZeros();
1020     T += TwoFactors;
1021     Mult = Mult.lshr(TwoFactors);
1022     OddFactorial *= Mult;
1023   }
1024 
1025   // We need at least W + T bits for the multiplication step
1026   unsigned CalculationBits = W + T;
1027 
1028   // Calculate 2^T, at width T+W.
1029   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1030 
1031   // Calculate the multiplicative inverse of K! / 2^T;
1032   // this multiplication factor will perform the exact division by
1033   // K! / 2^T.
1034   APInt Mod = APInt::getSignedMinValue(W+1);
1035   APInt MultiplyFactor = OddFactorial.zext(W+1);
1036   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1037   MultiplyFactor = MultiplyFactor.trunc(W);
1038 
1039   // Calculate the product, at width T+W
1040   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1041                                                       CalculationBits);
1042   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1043   for (unsigned i = 1; i != K; ++i) {
1044     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1045     Dividend = SE.getMulExpr(Dividend,
1046                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1047   }
1048 
1049   // Divide by 2^T
1050   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1051 
1052   // Truncate the result, and divide by K! / 2^T.
1053 
1054   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1055                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1056 }
1057 
1058 /// evaluateAtIteration - Return the value of this chain of recurrences at
1059 /// the specified iteration number.  We can evaluate this recurrence by
1060 /// multiplying each element in the chain by the binomial coefficient
1061 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1062 ///
1063 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1064 ///
1065 /// where BC(It, k) stands for binomial coefficient.
1066 ///
1067 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1068                                                 ScalarEvolution &SE) const {
1069   const SCEV *Result = getStart();
1070   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1071     // The computation is correct in the face of overflow provided that the
1072     // multiplication is performed _after_ the evaluation of the binomial
1073     // coefficient.
1074     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1075     if (isa<SCEVCouldNotCompute>(Coeff))
1076       return Coeff;
1077 
1078     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1079   }
1080   return Result;
1081 }
1082 
1083 //===----------------------------------------------------------------------===//
1084 //                    SCEV Expression folder implementations
1085 //===----------------------------------------------------------------------===//
1086 
1087 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1088                                              Type *Ty) {
1089   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1090          "This is not a truncating conversion!");
1091   assert(isSCEVable(Ty) &&
1092          "This is not a conversion to a SCEVable type!");
1093   Ty = getEffectiveSCEVType(Ty);
1094 
1095   FoldingSetNodeID ID;
1096   ID.AddInteger(scTruncate);
1097   ID.AddPointer(Op);
1098   ID.AddPointer(Ty);
1099   void *IP = nullptr;
1100   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1101 
1102   // Fold if the operand is constant.
1103   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1104     return getConstant(
1105       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1106 
1107   // trunc(trunc(x)) --> trunc(x)
1108   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1109     return getTruncateExpr(ST->getOperand(), Ty);
1110 
1111   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1112   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1113     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1114 
1115   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1116   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1117     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1118 
1119   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1120   // eliminate all the truncates.
1121   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1122     SmallVector<const SCEV *, 4> Operands;
1123     bool hasTrunc = false;
1124     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1125       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1126       hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getAddExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1135   // eliminate all the truncates.
1136   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1137     SmallVector<const SCEV *, 4> Operands;
1138     bool hasTrunc = false;
1139     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1140       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1141       hasTrunc = isa<SCEVTruncateExpr>(S);
1142       Operands.push_back(S);
1143     }
1144     if (!hasTrunc)
1145       return getMulExpr(Operands);
1146     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1147   }
1148 
1149   // If the input value is a chrec scev, truncate the chrec's operands.
1150   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1151     SmallVector<const SCEV *, 4> Operands;
1152     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1153       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
1154     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1155   }
1156 
1157   // The cast wasn't folded; create an explicit cast node. We can reuse
1158   // the existing insert position since if we get here, we won't have
1159   // made any changes which would invalidate it.
1160   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1161                                                  Op, Ty);
1162   UniqueSCEVs.InsertNode(S, IP);
1163   return S;
1164 }
1165 
1166 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1167                                                Type *Ty) {
1168   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1169          "This is not an extending conversion!");
1170   assert(isSCEVable(Ty) &&
1171          "This is not a conversion to a SCEVable type!");
1172   Ty = getEffectiveSCEVType(Ty);
1173 
1174   // Fold if the operand is constant.
1175   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1176     return getConstant(
1177       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1178 
1179   // zext(zext(x)) --> zext(x)
1180   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1181     return getZeroExtendExpr(SZ->getOperand(), Ty);
1182 
1183   // Before doing any expensive analysis, check to see if we've already
1184   // computed a SCEV for this Op and Ty.
1185   FoldingSetNodeID ID;
1186   ID.AddInteger(scZeroExtend);
1187   ID.AddPointer(Op);
1188   ID.AddPointer(Ty);
1189   void *IP = nullptr;
1190   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1191 
1192   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1193   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1194     // It's possible the bits taken off by the truncate were all zero bits. If
1195     // so, we should be able to simplify this further.
1196     const SCEV *X = ST->getOperand();
1197     ConstantRange CR = getUnsignedRange(X);
1198     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1199     unsigned NewBits = getTypeSizeInBits(Ty);
1200     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1201             CR.zextOrTrunc(NewBits)))
1202       return getTruncateOrZeroExtend(X, Ty);
1203   }
1204 
1205   // If the input value is a chrec scev, and we can prove that the value
1206   // did not overflow the old, smaller, value, we can zero extend all of the
1207   // operands (often constants).  This allows analysis of something like
1208   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1209   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1210     if (AR->isAffine()) {
1211       const SCEV *Start = AR->getStart();
1212       const SCEV *Step = AR->getStepRecurrence(*this);
1213       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1214       const Loop *L = AR->getLoop();
1215 
1216       // If we have special knowledge that this addrec won't overflow,
1217       // we don't need to do any further analysis.
1218       if (AR->getNoWrapFlags(SCEV::FlagNUW))
1219         return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1220                              getZeroExtendExpr(Step, Ty),
1221                              L, AR->getNoWrapFlags());
1222 
1223       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1224       // Note that this serves two purposes: It filters out loops that are
1225       // simply not analyzable, and it covers the case where this code is
1226       // being called from within backedge-taken count analysis, such that
1227       // attempting to ask for the backedge-taken count would likely result
1228       // in infinite recursion. In the later case, the analysis code will
1229       // cope with a conservative value, and it will take care to purge
1230       // that value once it has finished.
1231       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1232       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1233         // Manually compute the final value for AR, checking for
1234         // overflow.
1235 
1236         // Check whether the backedge-taken count can be losslessly casted to
1237         // the addrec's type. The count is always unsigned.
1238         const SCEV *CastedMaxBECount =
1239           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1240         const SCEV *RecastedMaxBECount =
1241           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1242         if (MaxBECount == RecastedMaxBECount) {
1243           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1244           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1245           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1246           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1247           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1248           const SCEV *WideMaxBECount =
1249             getZeroExtendExpr(CastedMaxBECount, WideTy);
1250           const SCEV *OperandExtendedAdd =
1251             getAddExpr(WideStart,
1252                        getMulExpr(WideMaxBECount,
1253                                   getZeroExtendExpr(Step, WideTy)));
1254           if (ZAdd == OperandExtendedAdd) {
1255             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1256             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1257             // Return the expression with the addrec on the outside.
1258             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1259                                  getZeroExtendExpr(Step, Ty),
1260                                  L, AR->getNoWrapFlags());
1261           }
1262           // Similar to above, only this time treat the step value as signed.
1263           // This covers loops that count down.
1264           OperandExtendedAdd =
1265             getAddExpr(WideStart,
1266                        getMulExpr(WideMaxBECount,
1267                                   getSignExtendExpr(Step, WideTy)));
1268           if (ZAdd == OperandExtendedAdd) {
1269             // Cache knowledge of AR NW, which is propagated to this AddRec.
1270             // Negative step causes unsigned wrap, but it still can't self-wrap.
1271             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1272             // Return the expression with the addrec on the outside.
1273             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1274                                  getSignExtendExpr(Step, Ty),
1275                                  L, AR->getNoWrapFlags());
1276           }
1277         }
1278 
1279         // If the backedge is guarded by a comparison with the pre-inc value
1280         // the addrec is safe. Also, if the entry is guarded by a comparison
1281         // with the start value and the backedge is guarded by a comparison
1282         // with the post-inc value, the addrec is safe.
1283         if (isKnownPositive(Step)) {
1284           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1285                                       getUnsignedRange(Step).getUnsignedMax());
1286           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1287               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1288                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1289                                            AR->getPostIncExpr(*this), N))) {
1290             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1291             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1292             // Return the expression with the addrec on the outside.
1293             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1294                                  getZeroExtendExpr(Step, Ty),
1295                                  L, AR->getNoWrapFlags());
1296           }
1297         } else if (isKnownNegative(Step)) {
1298           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1299                                       getSignedRange(Step).getSignedMin());
1300           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1301               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1302                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1303                                            AR->getPostIncExpr(*this), N))) {
1304             // Cache knowledge of AR NW, which is propagated to this AddRec.
1305             // Negative step causes unsigned wrap, but it still can't self-wrap.
1306             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1307             // Return the expression with the addrec on the outside.
1308             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1309                                  getSignExtendExpr(Step, Ty),
1310                                  L, AR->getNoWrapFlags());
1311           }
1312         }
1313       }
1314     }
1315 
1316   // The cast wasn't folded; create an explicit cast node.
1317   // Recompute the insert position, as it may have been invalidated.
1318   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1319   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1320                                                    Op, Ty);
1321   UniqueSCEVs.InsertNode(S, IP);
1322   return S;
1323 }
1324 
1325 // Get the limit of a recurrence such that incrementing by Step cannot cause
1326 // signed overflow as long as the value of the recurrence within the loop does
1327 // not exceed this limit before incrementing.
1328 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1329                                            ICmpInst::Predicate *Pred,
1330                                            ScalarEvolution *SE) {
1331   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1332   if (SE->isKnownPositive(Step)) {
1333     *Pred = ICmpInst::ICMP_SLT;
1334     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1335                            SE->getSignedRange(Step).getSignedMax());
1336   }
1337   if (SE->isKnownNegative(Step)) {
1338     *Pred = ICmpInst::ICMP_SGT;
1339     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1340                        SE->getSignedRange(Step).getSignedMin());
1341   }
1342   return nullptr;
1343 }
1344 
1345 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
1346 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
1347 // or postincrement sibling. This allows normalizing a sign extended AddRec as
1348 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1349 // result, the expression "Step + sext(PreIncAR)" is congruent with
1350 // "sext(PostIncAR)"
1351 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1352                                             Type *Ty,
1353                                             ScalarEvolution *SE) {
1354   const Loop *L = AR->getLoop();
1355   const SCEV *Start = AR->getStart();
1356   const SCEV *Step = AR->getStepRecurrence(*SE);
1357 
1358   // Check for a simple looking step prior to loop entry.
1359   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1360   if (!SA)
1361     return nullptr;
1362 
1363   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1364   // subtraction is expensive. For this purpose, perform a quick and dirty
1365   // difference, by checking for Step in the operand list.
1366   SmallVector<const SCEV *, 4> DiffOps;
1367   for (const SCEV *Op : SA->operands())
1368     if (Op != Step)
1369       DiffOps.push_back(Op);
1370 
1371   if (DiffOps.size() == SA->getNumOperands())
1372     return nullptr;
1373 
1374   // This is a postinc AR. Check for overflow on the preinc recurrence using the
1375   // same three conditions that getSignExtendedExpr checks.
1376 
1377   // 1. NSW flags on the step increment.
1378   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1379   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1380     SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1381 
1382   if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1383     return PreStart;
1384 
1385   // 2. Direct overflow check on the step operation's expression.
1386   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1387   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1388   const SCEV *OperandExtendedStart =
1389     SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1390                    SE->getSignExtendExpr(Step, WideTy));
1391   if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1392     // Cache knowledge of PreAR NSW.
1393     if (PreAR)
1394       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1395     // FIXME: this optimization needs a unit test
1396     DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1397     return PreStart;
1398   }
1399 
1400   // 3. Loop precondition.
1401   ICmpInst::Predicate Pred;
1402   const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1403 
1404   if (OverflowLimit &&
1405       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1406     return PreStart;
1407   }
1408   return nullptr;
1409 }
1410 
1411 // Get the normalized sign-extended expression for this AddRec's Start.
1412 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1413                                             Type *Ty,
1414                                             ScalarEvolution *SE) {
1415   const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1416   if (!PreStart)
1417     return SE->getSignExtendExpr(AR->getStart(), Ty);
1418 
1419   return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1420                         SE->getSignExtendExpr(PreStart, Ty));
1421 }
1422 
1423 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1424                                                Type *Ty) {
1425   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1426          "This is not an extending conversion!");
1427   assert(isSCEVable(Ty) &&
1428          "This is not a conversion to a SCEVable type!");
1429   Ty = getEffectiveSCEVType(Ty);
1430 
1431   // Fold if the operand is constant.
1432   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1433     return getConstant(
1434       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1435 
1436   // sext(sext(x)) --> sext(x)
1437   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1438     return getSignExtendExpr(SS->getOperand(), Ty);
1439 
1440   // sext(zext(x)) --> zext(x)
1441   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1442     return getZeroExtendExpr(SZ->getOperand(), Ty);
1443 
1444   // Before doing any expensive analysis, check to see if we've already
1445   // computed a SCEV for this Op and Ty.
1446   FoldingSetNodeID ID;
1447   ID.AddInteger(scSignExtend);
1448   ID.AddPointer(Op);
1449   ID.AddPointer(Ty);
1450   void *IP = nullptr;
1451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1452 
1453   // If the input value is provably positive, build a zext instead.
1454   if (isKnownNonNegative(Op))
1455     return getZeroExtendExpr(Op, Ty);
1456 
1457   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1458   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1459     // It's possible the bits taken off by the truncate were all sign bits. If
1460     // so, we should be able to simplify this further.
1461     const SCEV *X = ST->getOperand();
1462     ConstantRange CR = getSignedRange(X);
1463     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1464     unsigned NewBits = getTypeSizeInBits(Ty);
1465     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1466             CR.sextOrTrunc(NewBits)))
1467       return getTruncateOrSignExtend(X, Ty);
1468   }
1469 
1470   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1471   if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1472     if (SA->getNumOperands() == 2) {
1473       auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1474       auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1475       if (SMul && SC1) {
1476         if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1477           const APInt &C1 = SC1->getValue()->getValue();
1478           const APInt &C2 = SC2->getValue()->getValue();
1479           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1480               C2.ugt(C1) && C2.isPowerOf2())
1481             return getAddExpr(getSignExtendExpr(SC1, Ty),
1482                               getSignExtendExpr(SMul, Ty));
1483         }
1484       }
1485     }
1486   }
1487   // If the input value is a chrec scev, and we can prove that the value
1488   // did not overflow the old, smaller, value, we can sign extend all of the
1489   // operands (often constants).  This allows analysis of something like
1490   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1491   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1492     if (AR->isAffine()) {
1493       const SCEV *Start = AR->getStart();
1494       const SCEV *Step = AR->getStepRecurrence(*this);
1495       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1496       const Loop *L = AR->getLoop();
1497 
1498       // If we have special knowledge that this addrec won't overflow,
1499       // we don't need to do any further analysis.
1500       if (AR->getNoWrapFlags(SCEV::FlagNSW))
1501         return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1502                              getSignExtendExpr(Step, Ty),
1503                              L, SCEV::FlagNSW);
1504 
1505       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1506       // Note that this serves two purposes: It filters out loops that are
1507       // simply not analyzable, and it covers the case where this code is
1508       // being called from within backedge-taken count analysis, such that
1509       // attempting to ask for the backedge-taken count would likely result
1510       // in infinite recursion. In the later case, the analysis code will
1511       // cope with a conservative value, and it will take care to purge
1512       // that value once it has finished.
1513       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1514       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1515         // Manually compute the final value for AR, checking for
1516         // overflow.
1517 
1518         // Check whether the backedge-taken count can be losslessly casted to
1519         // the addrec's type. The count is always unsigned.
1520         const SCEV *CastedMaxBECount =
1521           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1522         const SCEV *RecastedMaxBECount =
1523           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1524         if (MaxBECount == RecastedMaxBECount) {
1525           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1526           // Check whether Start+Step*MaxBECount has no signed overflow.
1527           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1528           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1529           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1530           const SCEV *WideMaxBECount =
1531             getZeroExtendExpr(CastedMaxBECount, WideTy);
1532           const SCEV *OperandExtendedAdd =
1533             getAddExpr(WideStart,
1534                        getMulExpr(WideMaxBECount,
1535                                   getSignExtendExpr(Step, WideTy)));
1536           if (SAdd == OperandExtendedAdd) {
1537             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1538             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1539             // Return the expression with the addrec on the outside.
1540             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1541                                  getSignExtendExpr(Step, Ty),
1542                                  L, AR->getNoWrapFlags());
1543           }
1544           // Similar to above, only this time treat the step value as unsigned.
1545           // This covers loops that count up with an unsigned step.
1546           OperandExtendedAdd =
1547             getAddExpr(WideStart,
1548                        getMulExpr(WideMaxBECount,
1549                                   getZeroExtendExpr(Step, WideTy)));
1550           if (SAdd == OperandExtendedAdd) {
1551             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1552             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1553             // Return the expression with the addrec on the outside.
1554             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1555                                  getZeroExtendExpr(Step, Ty),
1556                                  L, AR->getNoWrapFlags());
1557           }
1558         }
1559 
1560         // If the backedge is guarded by a comparison with the pre-inc value
1561         // the addrec is safe. Also, if the entry is guarded by a comparison
1562         // with the start value and the backedge is guarded by a comparison
1563         // with the post-inc value, the addrec is safe.
1564         ICmpInst::Predicate Pred;
1565         const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1566         if (OverflowLimit &&
1567             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1568              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1569               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1570                                           OverflowLimit)))) {
1571           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1572           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1573           return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1574                                getSignExtendExpr(Step, Ty),
1575                                L, AR->getNoWrapFlags());
1576         }
1577       }
1578       // If Start and Step are constants, check if we can apply this
1579       // transformation:
1580       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1581       auto SC1 = dyn_cast<SCEVConstant>(Start);
1582       auto SC2 = dyn_cast<SCEVConstant>(Step);
1583       if (SC1 && SC2) {
1584         const APInt &C1 = SC1->getValue()->getValue();
1585         const APInt &C2 = SC2->getValue()->getValue();
1586         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1587             C2.isPowerOf2()) {
1588           Start = getSignExtendExpr(Start, Ty);
1589           const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1590                                             L, AR->getNoWrapFlags());
1591           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1592         }
1593       }
1594     }
1595 
1596   // The cast wasn't folded; create an explicit cast node.
1597   // Recompute the insert position, as it may have been invalidated.
1598   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1599   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1600                                                    Op, Ty);
1601   UniqueSCEVs.InsertNode(S, IP);
1602   return S;
1603 }
1604 
1605 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1606 /// unspecified bits out to the given type.
1607 ///
1608 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1609                                               Type *Ty) {
1610   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1611          "This is not an extending conversion!");
1612   assert(isSCEVable(Ty) &&
1613          "This is not a conversion to a SCEVable type!");
1614   Ty = getEffectiveSCEVType(Ty);
1615 
1616   // Sign-extend negative constants.
1617   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1618     if (SC->getValue()->getValue().isNegative())
1619       return getSignExtendExpr(Op, Ty);
1620 
1621   // Peel off a truncate cast.
1622   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1623     const SCEV *NewOp = T->getOperand();
1624     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1625       return getAnyExtendExpr(NewOp, Ty);
1626     return getTruncateOrNoop(NewOp, Ty);
1627   }
1628 
1629   // Next try a zext cast. If the cast is folded, use it.
1630   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1631   if (!isa<SCEVZeroExtendExpr>(ZExt))
1632     return ZExt;
1633 
1634   // Next try a sext cast. If the cast is folded, use it.
1635   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1636   if (!isa<SCEVSignExtendExpr>(SExt))
1637     return SExt;
1638 
1639   // Force the cast to be folded into the operands of an addrec.
1640   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1641     SmallVector<const SCEV *, 4> Ops;
1642     for (const SCEV *Op : AR->operands())
1643       Ops.push_back(getAnyExtendExpr(Op, Ty));
1644     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1645   }
1646 
1647   // If the expression is obviously signed, use the sext cast value.
1648   if (isa<SCEVSMaxExpr>(Op))
1649     return SExt;
1650 
1651   // Absent any other information, use the zext cast value.
1652   return ZExt;
1653 }
1654 
1655 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1656 /// a list of operands to be added under the given scale, update the given
1657 /// map. This is a helper function for getAddRecExpr. As an example of
1658 /// what it does, given a sequence of operands that would form an add
1659 /// expression like this:
1660 ///
1661 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1662 ///
1663 /// where A and B are constants, update the map with these values:
1664 ///
1665 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1666 ///
1667 /// and add 13 + A*B*29 to AccumulatedConstant.
1668 /// This will allow getAddRecExpr to produce this:
1669 ///
1670 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1671 ///
1672 /// This form often exposes folding opportunities that are hidden in
1673 /// the original operand list.
1674 ///
1675 /// Return true iff it appears that any interesting folding opportunities
1676 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1677 /// the common case where no interesting opportunities are present, and
1678 /// is also used as a check to avoid infinite recursion.
1679 ///
1680 static bool
1681 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1682                              SmallVectorImpl<const SCEV *> &NewOps,
1683                              APInt &AccumulatedConstant,
1684                              const SCEV *const *Ops, size_t NumOperands,
1685                              const APInt &Scale,
1686                              ScalarEvolution &SE) {
1687   bool Interesting = false;
1688 
1689   // Iterate over the add operands. They are sorted, with constants first.
1690   unsigned i = 0;
1691   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1692     ++i;
1693     // Pull a buried constant out to the outside.
1694     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1695       Interesting = true;
1696     AccumulatedConstant += Scale * C->getValue()->getValue();
1697   }
1698 
1699   // Next comes everything else. We're especially interested in multiplies
1700   // here, but they're in the middle, so just visit the rest with one loop.
1701   for (; i != NumOperands; ++i) {
1702     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1703     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1704       APInt NewScale =
1705         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1706       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1707         // A multiplication of a constant with another add; recurse.
1708         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1709         Interesting |=
1710           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1711                                        Add->op_begin(), Add->getNumOperands(),
1712                                        NewScale, SE);
1713       } else {
1714         // A multiplication of a constant with some other value. Update
1715         // the map.
1716         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1717         const SCEV *Key = SE.getMulExpr(MulOps);
1718         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1719           M.insert(std::make_pair(Key, NewScale));
1720         if (Pair.second) {
1721           NewOps.push_back(Pair.first->first);
1722         } else {
1723           Pair.first->second += NewScale;
1724           // The map already had an entry for this value, which may indicate
1725           // a folding opportunity.
1726           Interesting = true;
1727         }
1728       }
1729     } else {
1730       // An ordinary operand. Update the map.
1731       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1732         M.insert(std::make_pair(Ops[i], Scale));
1733       if (Pair.second) {
1734         NewOps.push_back(Pair.first->first);
1735       } else {
1736         Pair.first->second += Scale;
1737         // The map already had an entry for this value, which may indicate
1738         // a folding opportunity.
1739         Interesting = true;
1740       }
1741     }
1742   }
1743 
1744   return Interesting;
1745 }
1746 
1747 namespace {
1748   struct APIntCompare {
1749     bool operator()(const APInt &LHS, const APInt &RHS) const {
1750       return LHS.ult(RHS);
1751     }
1752   };
1753 }
1754 
1755 /// getAddExpr - Get a canonical add expression, or something simpler if
1756 /// possible.
1757 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1758                                         SCEV::NoWrapFlags Flags) {
1759   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1760          "only nuw or nsw allowed");
1761   assert(!Ops.empty() && "Cannot get empty add!");
1762   if (Ops.size() == 1) return Ops[0];
1763 #ifndef NDEBUG
1764   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1765   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1766     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1767            "SCEVAddExpr operand types don't match!");
1768 #endif
1769 
1770   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1771   // And vice-versa.
1772   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1773   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1774   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1775     bool All = true;
1776     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1777          E = Ops.end(); I != E; ++I)
1778       if (!isKnownNonNegative(*I)) {
1779         All = false;
1780         break;
1781       }
1782     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1783   }
1784 
1785   // Sort by complexity, this groups all similar expression types together.
1786   GroupByComplexity(Ops, LI);
1787 
1788   // If there are any constants, fold them together.
1789   unsigned Idx = 0;
1790   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1791     ++Idx;
1792     assert(Idx < Ops.size());
1793     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1794       // We found two constants, fold them together!
1795       Ops[0] = getConstant(LHSC->getValue()->getValue() +
1796                            RHSC->getValue()->getValue());
1797       if (Ops.size() == 2) return Ops[0];
1798       Ops.erase(Ops.begin()+1);  // Erase the folded element
1799       LHSC = cast<SCEVConstant>(Ops[0]);
1800     }
1801 
1802     // If we are left with a constant zero being added, strip it off.
1803     if (LHSC->getValue()->isZero()) {
1804       Ops.erase(Ops.begin());
1805       --Idx;
1806     }
1807 
1808     if (Ops.size() == 1) return Ops[0];
1809   }
1810 
1811   // Okay, check to see if the same value occurs in the operand list more than
1812   // once.  If so, merge them together into an multiply expression.  Since we
1813   // sorted the list, these values are required to be adjacent.
1814   Type *Ty = Ops[0]->getType();
1815   bool FoundMatch = false;
1816   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1817     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1818       // Scan ahead to count how many equal operands there are.
1819       unsigned Count = 2;
1820       while (i+Count != e && Ops[i+Count] == Ops[i])
1821         ++Count;
1822       // Merge the values into a multiply.
1823       const SCEV *Scale = getConstant(Ty, Count);
1824       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1825       if (Ops.size() == Count)
1826         return Mul;
1827       Ops[i] = Mul;
1828       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1829       --i; e -= Count - 1;
1830       FoundMatch = true;
1831     }
1832   if (FoundMatch)
1833     return getAddExpr(Ops, Flags);
1834 
1835   // Check for truncates. If all the operands are truncated from the same
1836   // type, see if factoring out the truncate would permit the result to be
1837   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1838   // if the contents of the resulting outer trunc fold to something simple.
1839   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1840     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1841     Type *DstType = Trunc->getType();
1842     Type *SrcType = Trunc->getOperand()->getType();
1843     SmallVector<const SCEV *, 8> LargeOps;
1844     bool Ok = true;
1845     // Check all the operands to see if they can be represented in the
1846     // source type of the truncate.
1847     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1848       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1849         if (T->getOperand()->getType() != SrcType) {
1850           Ok = false;
1851           break;
1852         }
1853         LargeOps.push_back(T->getOperand());
1854       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1855         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1856       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1857         SmallVector<const SCEV *, 8> LargeMulOps;
1858         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1859           if (const SCEVTruncateExpr *T =
1860                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1861             if (T->getOperand()->getType() != SrcType) {
1862               Ok = false;
1863               break;
1864             }
1865             LargeMulOps.push_back(T->getOperand());
1866           } else if (const SCEVConstant *C =
1867                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
1868             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1869           } else {
1870             Ok = false;
1871             break;
1872           }
1873         }
1874         if (Ok)
1875           LargeOps.push_back(getMulExpr(LargeMulOps));
1876       } else {
1877         Ok = false;
1878         break;
1879       }
1880     }
1881     if (Ok) {
1882       // Evaluate the expression in the larger type.
1883       const SCEV *Fold = getAddExpr(LargeOps, Flags);
1884       // If it folds to something simple, use it. Otherwise, don't.
1885       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1886         return getTruncateExpr(Fold, DstType);
1887     }
1888   }
1889 
1890   // Skip past any other cast SCEVs.
1891   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1892     ++Idx;
1893 
1894   // If there are add operands they would be next.
1895   if (Idx < Ops.size()) {
1896     bool DeletedAdd = false;
1897     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1898       // If we have an add, expand the add operands onto the end of the operands
1899       // list.
1900       Ops.erase(Ops.begin()+Idx);
1901       Ops.append(Add->op_begin(), Add->op_end());
1902       DeletedAdd = true;
1903     }
1904 
1905     // If we deleted at least one add, we added operands to the end of the list,
1906     // and they are not necessarily sorted.  Recurse to resort and resimplify
1907     // any operands we just acquired.
1908     if (DeletedAdd)
1909       return getAddExpr(Ops);
1910   }
1911 
1912   // Skip over the add expression until we get to a multiply.
1913   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1914     ++Idx;
1915 
1916   // Check to see if there are any folding opportunities present with
1917   // operands multiplied by constant values.
1918   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1919     uint64_t BitWidth = getTypeSizeInBits(Ty);
1920     DenseMap<const SCEV *, APInt> M;
1921     SmallVector<const SCEV *, 8> NewOps;
1922     APInt AccumulatedConstant(BitWidth, 0);
1923     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1924                                      Ops.data(), Ops.size(),
1925                                      APInt(BitWidth, 1), *this)) {
1926       // Some interesting folding opportunity is present, so its worthwhile to
1927       // re-generate the operands list. Group the operands by constant scale,
1928       // to avoid multiplying by the same constant scale multiple times.
1929       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1930       for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
1931            E = NewOps.end(); I != E; ++I)
1932         MulOpLists[M.find(*I)->second].push_back(*I);
1933       // Re-generate the operands list.
1934       Ops.clear();
1935       if (AccumulatedConstant != 0)
1936         Ops.push_back(getConstant(AccumulatedConstant));
1937       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1938            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1939         if (I->first != 0)
1940           Ops.push_back(getMulExpr(getConstant(I->first),
1941                                    getAddExpr(I->second)));
1942       if (Ops.empty())
1943         return getConstant(Ty, 0);
1944       if (Ops.size() == 1)
1945         return Ops[0];
1946       return getAddExpr(Ops);
1947     }
1948   }
1949 
1950   // If we are adding something to a multiply expression, make sure the
1951   // something is not already an operand of the multiply.  If so, merge it into
1952   // the multiply.
1953   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1954     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1955     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1956       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1957       if (isa<SCEVConstant>(MulOpSCEV))
1958         continue;
1959       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1960         if (MulOpSCEV == Ops[AddOp]) {
1961           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1962           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1963           if (Mul->getNumOperands() != 2) {
1964             // If the multiply has more than two operands, we must get the
1965             // Y*Z term.
1966             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1967                                                 Mul->op_begin()+MulOp);
1968             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1969             InnerMul = getMulExpr(MulOps);
1970           }
1971           const SCEV *One = getConstant(Ty, 1);
1972           const SCEV *AddOne = getAddExpr(One, InnerMul);
1973           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1974           if (Ops.size() == 2) return OuterMul;
1975           if (AddOp < Idx) {
1976             Ops.erase(Ops.begin()+AddOp);
1977             Ops.erase(Ops.begin()+Idx-1);
1978           } else {
1979             Ops.erase(Ops.begin()+Idx);
1980             Ops.erase(Ops.begin()+AddOp-1);
1981           }
1982           Ops.push_back(OuterMul);
1983           return getAddExpr(Ops);
1984         }
1985 
1986       // Check this multiply against other multiplies being added together.
1987       for (unsigned OtherMulIdx = Idx+1;
1988            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1989            ++OtherMulIdx) {
1990         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1991         // If MulOp occurs in OtherMul, we can fold the two multiplies
1992         // together.
1993         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1994              OMulOp != e; ++OMulOp)
1995           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1996             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1997             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1998             if (Mul->getNumOperands() != 2) {
1999               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2000                                                   Mul->op_begin()+MulOp);
2001               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2002               InnerMul1 = getMulExpr(MulOps);
2003             }
2004             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2005             if (OtherMul->getNumOperands() != 2) {
2006               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2007                                                   OtherMul->op_begin()+OMulOp);
2008               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2009               InnerMul2 = getMulExpr(MulOps);
2010             }
2011             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2012             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2013             if (Ops.size() == 2) return OuterMul;
2014             Ops.erase(Ops.begin()+Idx);
2015             Ops.erase(Ops.begin()+OtherMulIdx-1);
2016             Ops.push_back(OuterMul);
2017             return getAddExpr(Ops);
2018           }
2019       }
2020     }
2021   }
2022 
2023   // If there are any add recurrences in the operands list, see if any other
2024   // added values are loop invariant.  If so, we can fold them into the
2025   // recurrence.
2026   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2027     ++Idx;
2028 
2029   // Scan over all recurrences, trying to fold loop invariants into them.
2030   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2031     // Scan all of the other operands to this add and add them to the vector if
2032     // they are loop invariant w.r.t. the recurrence.
2033     SmallVector<const SCEV *, 8> LIOps;
2034     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2035     const Loop *AddRecLoop = AddRec->getLoop();
2036     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2037       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2038         LIOps.push_back(Ops[i]);
2039         Ops.erase(Ops.begin()+i);
2040         --i; --e;
2041       }
2042 
2043     // If we found some loop invariants, fold them into the recurrence.
2044     if (!LIOps.empty()) {
2045       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2046       LIOps.push_back(AddRec->getStart());
2047 
2048       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2049                                              AddRec->op_end());
2050       AddRecOps[0] = getAddExpr(LIOps);
2051 
2052       // Build the new addrec. Propagate the NUW and NSW flags if both the
2053       // outer add and the inner addrec are guaranteed to have no overflow.
2054       // Always propagate NW.
2055       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2056       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2057 
2058       // If all of the other operands were loop invariant, we are done.
2059       if (Ops.size() == 1) return NewRec;
2060 
2061       // Otherwise, add the folded AddRec by the non-invariant parts.
2062       for (unsigned i = 0;; ++i)
2063         if (Ops[i] == AddRec) {
2064           Ops[i] = NewRec;
2065           break;
2066         }
2067       return getAddExpr(Ops);
2068     }
2069 
2070     // Okay, if there weren't any loop invariants to be folded, check to see if
2071     // there are multiple AddRec's with the same loop induction variable being
2072     // added together.  If so, we can fold them.
2073     for (unsigned OtherIdx = Idx+1;
2074          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2075          ++OtherIdx)
2076       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2077         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2078         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2079                                                AddRec->op_end());
2080         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2081              ++OtherIdx)
2082           if (const SCEVAddRecExpr *OtherAddRec =
2083                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2084             if (OtherAddRec->getLoop() == AddRecLoop) {
2085               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2086                    i != e; ++i) {
2087                 if (i >= AddRecOps.size()) {
2088                   AddRecOps.append(OtherAddRec->op_begin()+i,
2089                                    OtherAddRec->op_end());
2090                   break;
2091                 }
2092                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2093                                           OtherAddRec->getOperand(i));
2094               }
2095               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2096             }
2097         // Step size has changed, so we cannot guarantee no self-wraparound.
2098         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2099         return getAddExpr(Ops);
2100       }
2101 
2102     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2103     // next one.
2104   }
2105 
2106   // Okay, it looks like we really DO need an add expr.  Check to see if we
2107   // already have one, otherwise create a new one.
2108   FoldingSetNodeID ID;
2109   ID.AddInteger(scAddExpr);
2110   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2111     ID.AddPointer(Ops[i]);
2112   void *IP = nullptr;
2113   SCEVAddExpr *S =
2114     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2115   if (!S) {
2116     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2117     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2118     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2119                                         O, Ops.size());
2120     UniqueSCEVs.InsertNode(S, IP);
2121   }
2122   S->setNoWrapFlags(Flags);
2123   return S;
2124 }
2125 
2126 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2127   uint64_t k = i*j;
2128   if (j > 1 && k / j != i) Overflow = true;
2129   return k;
2130 }
2131 
2132 /// Compute the result of "n choose k", the binomial coefficient.  If an
2133 /// intermediate computation overflows, Overflow will be set and the return will
2134 /// be garbage. Overflow is not cleared on absence of overflow.
2135 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2136   // We use the multiplicative formula:
2137   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2138   // At each iteration, we take the n-th term of the numeral and divide by the
2139   // (k-n)th term of the denominator.  This division will always produce an
2140   // integral result, and helps reduce the chance of overflow in the
2141   // intermediate computations. However, we can still overflow even when the
2142   // final result would fit.
2143 
2144   if (n == 0 || n == k) return 1;
2145   if (k > n) return 0;
2146 
2147   if (k > n/2)
2148     k = n-k;
2149 
2150   uint64_t r = 1;
2151   for (uint64_t i = 1; i <= k; ++i) {
2152     r = umul_ov(r, n-(i-1), Overflow);
2153     r /= i;
2154   }
2155   return r;
2156 }
2157 
2158 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2159 /// possible.
2160 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2161                                         SCEV::NoWrapFlags Flags) {
2162   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2163          "only nuw or nsw allowed");
2164   assert(!Ops.empty() && "Cannot get empty mul!");
2165   if (Ops.size() == 1) return Ops[0];
2166 #ifndef NDEBUG
2167   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2168   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2169     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2170            "SCEVMulExpr operand types don't match!");
2171 #endif
2172 
2173   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2174   // And vice-versa.
2175   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2176   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2177   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2178     bool All = true;
2179     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
2180          E = Ops.end(); I != E; ++I)
2181       if (!isKnownNonNegative(*I)) {
2182         All = false;
2183         break;
2184       }
2185     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2186   }
2187 
2188   // Sort by complexity, this groups all similar expression types together.
2189   GroupByComplexity(Ops, LI);
2190 
2191   // If there are any constants, fold them together.
2192   unsigned Idx = 0;
2193   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2194 
2195     // C1*(C2+V) -> C1*C2 + C1*V
2196     if (Ops.size() == 2)
2197       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2198         if (Add->getNumOperands() == 2 &&
2199             isa<SCEVConstant>(Add->getOperand(0)))
2200           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2201                             getMulExpr(LHSC, Add->getOperand(1)));
2202 
2203     ++Idx;
2204     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2205       // We found two constants, fold them together!
2206       ConstantInt *Fold = ConstantInt::get(getContext(),
2207                                            LHSC->getValue()->getValue() *
2208                                            RHSC->getValue()->getValue());
2209       Ops[0] = getConstant(Fold);
2210       Ops.erase(Ops.begin()+1);  // Erase the folded element
2211       if (Ops.size() == 1) return Ops[0];
2212       LHSC = cast<SCEVConstant>(Ops[0]);
2213     }
2214 
2215     // If we are left with a constant one being multiplied, strip it off.
2216     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2217       Ops.erase(Ops.begin());
2218       --Idx;
2219     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2220       // If we have a multiply of zero, it will always be zero.
2221       return Ops[0];
2222     } else if (Ops[0]->isAllOnesValue()) {
2223       // If we have a mul by -1 of an add, try distributing the -1 among the
2224       // add operands.
2225       if (Ops.size() == 2) {
2226         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2227           SmallVector<const SCEV *, 4> NewOps;
2228           bool AnyFolded = false;
2229           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2230                  E = Add->op_end(); I != E; ++I) {
2231             const SCEV *Mul = getMulExpr(Ops[0], *I);
2232             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2233             NewOps.push_back(Mul);
2234           }
2235           if (AnyFolded)
2236             return getAddExpr(NewOps);
2237         }
2238         else if (const SCEVAddRecExpr *
2239                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2240           // Negation preserves a recurrence's no self-wrap property.
2241           SmallVector<const SCEV *, 4> Operands;
2242           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2243                  E = AddRec->op_end(); I != E; ++I) {
2244             Operands.push_back(getMulExpr(Ops[0], *I));
2245           }
2246           return getAddRecExpr(Operands, AddRec->getLoop(),
2247                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2248         }
2249       }
2250     }
2251 
2252     if (Ops.size() == 1)
2253       return Ops[0];
2254   }
2255 
2256   // Skip over the add expression until we get to a multiply.
2257   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2258     ++Idx;
2259 
2260   // If there are mul operands inline them all into this expression.
2261   if (Idx < Ops.size()) {
2262     bool DeletedMul = false;
2263     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2264       // If we have an mul, expand the mul operands onto the end of the operands
2265       // list.
2266       Ops.erase(Ops.begin()+Idx);
2267       Ops.append(Mul->op_begin(), Mul->op_end());
2268       DeletedMul = true;
2269     }
2270 
2271     // If we deleted at least one mul, we added operands to the end of the list,
2272     // and they are not necessarily sorted.  Recurse to resort and resimplify
2273     // any operands we just acquired.
2274     if (DeletedMul)
2275       return getMulExpr(Ops);
2276   }
2277 
2278   // If there are any add recurrences in the operands list, see if any other
2279   // added values are loop invariant.  If so, we can fold them into the
2280   // recurrence.
2281   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2282     ++Idx;
2283 
2284   // Scan over all recurrences, trying to fold loop invariants into them.
2285   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2286     // Scan all of the other operands to this mul and add them to the vector if
2287     // they are loop invariant w.r.t. the recurrence.
2288     SmallVector<const SCEV *, 8> LIOps;
2289     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2290     const Loop *AddRecLoop = AddRec->getLoop();
2291     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2292       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2293         LIOps.push_back(Ops[i]);
2294         Ops.erase(Ops.begin()+i);
2295         --i; --e;
2296       }
2297 
2298     // If we found some loop invariants, fold them into the recurrence.
2299     if (!LIOps.empty()) {
2300       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2301       SmallVector<const SCEV *, 4> NewOps;
2302       NewOps.reserve(AddRec->getNumOperands());
2303       const SCEV *Scale = getMulExpr(LIOps);
2304       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2305         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2306 
2307       // Build the new addrec. Propagate the NUW and NSW flags if both the
2308       // outer mul and the inner addrec are guaranteed to have no overflow.
2309       //
2310       // No self-wrap cannot be guaranteed after changing the step size, but
2311       // will be inferred if either NUW or NSW is true.
2312       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2313       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2314 
2315       // If all of the other operands were loop invariant, we are done.
2316       if (Ops.size() == 1) return NewRec;
2317 
2318       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2319       for (unsigned i = 0;; ++i)
2320         if (Ops[i] == AddRec) {
2321           Ops[i] = NewRec;
2322           break;
2323         }
2324       return getMulExpr(Ops);
2325     }
2326 
2327     // Okay, if there weren't any loop invariants to be folded, check to see if
2328     // there are multiple AddRec's with the same loop induction variable being
2329     // multiplied together.  If so, we can fold them.
2330 
2331     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2332     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2333     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2334     //   ]]],+,...up to x=2n}.
2335     // Note that the arguments to choose() are always integers with values
2336     // known at compile time, never SCEV objects.
2337     //
2338     // The implementation avoids pointless extra computations when the two
2339     // addrec's are of different length (mathematically, it's equivalent to
2340     // an infinite stream of zeros on the right).
2341     bool OpsModified = false;
2342     for (unsigned OtherIdx = Idx+1;
2343          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2344          ++OtherIdx) {
2345       const SCEVAddRecExpr *OtherAddRec =
2346         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2347       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2348         continue;
2349 
2350       bool Overflow = false;
2351       Type *Ty = AddRec->getType();
2352       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2353       SmallVector<const SCEV*, 7> AddRecOps;
2354       for (int x = 0, xe = AddRec->getNumOperands() +
2355              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2356         const SCEV *Term = getConstant(Ty, 0);
2357         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2358           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2359           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2360                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2361                z < ze && !Overflow; ++z) {
2362             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2363             uint64_t Coeff;
2364             if (LargerThan64Bits)
2365               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2366             else
2367               Coeff = Coeff1*Coeff2;
2368             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2369             const SCEV *Term1 = AddRec->getOperand(y-z);
2370             const SCEV *Term2 = OtherAddRec->getOperand(z);
2371             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2372           }
2373         }
2374         AddRecOps.push_back(Term);
2375       }
2376       if (!Overflow) {
2377         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2378                                               SCEV::FlagAnyWrap);
2379         if (Ops.size() == 2) return NewAddRec;
2380         Ops[Idx] = NewAddRec;
2381         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2382         OpsModified = true;
2383         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2384         if (!AddRec)
2385           break;
2386       }
2387     }
2388     if (OpsModified)
2389       return getMulExpr(Ops);
2390 
2391     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2392     // next one.
2393   }
2394 
2395   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2396   // already have one, otherwise create a new one.
2397   FoldingSetNodeID ID;
2398   ID.AddInteger(scMulExpr);
2399   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2400     ID.AddPointer(Ops[i]);
2401   void *IP = nullptr;
2402   SCEVMulExpr *S =
2403     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2404   if (!S) {
2405     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2406     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2407     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2408                                         O, Ops.size());
2409     UniqueSCEVs.InsertNode(S, IP);
2410   }
2411   S->setNoWrapFlags(Flags);
2412   return S;
2413 }
2414 
2415 /// getUDivExpr - Get a canonical unsigned division expression, or something
2416 /// simpler if possible.
2417 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2418                                          const SCEV *RHS) {
2419   assert(getEffectiveSCEVType(LHS->getType()) ==
2420          getEffectiveSCEVType(RHS->getType()) &&
2421          "SCEVUDivExpr operand types don't match!");
2422 
2423   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2424     if (RHSC->getValue()->equalsInt(1))
2425       return LHS;                               // X udiv 1 --> x
2426     // If the denominator is zero, the result of the udiv is undefined. Don't
2427     // try to analyze it, because the resolution chosen here may differ from
2428     // the resolution chosen in other parts of the compiler.
2429     if (!RHSC->getValue()->isZero()) {
2430       // Determine if the division can be folded into the operands of
2431       // its operands.
2432       // TODO: Generalize this to non-constants by using known-bits information.
2433       Type *Ty = LHS->getType();
2434       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2435       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2436       // For non-power-of-two values, effectively round the value up to the
2437       // nearest power of two.
2438       if (!RHSC->getValue()->getValue().isPowerOf2())
2439         ++MaxShiftAmt;
2440       IntegerType *ExtTy =
2441         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2442       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2443         if (const SCEVConstant *Step =
2444             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2445           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2446           const APInt &StepInt = Step->getValue()->getValue();
2447           const APInt &DivInt = RHSC->getValue()->getValue();
2448           if (!StepInt.urem(DivInt) &&
2449               getZeroExtendExpr(AR, ExtTy) ==
2450               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2451                             getZeroExtendExpr(Step, ExtTy),
2452                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2453             SmallVector<const SCEV *, 4> Operands;
2454             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2455               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2456             return getAddRecExpr(Operands, AR->getLoop(),
2457                                  SCEV::FlagNW);
2458           }
2459           /// Get a canonical UDivExpr for a recurrence.
2460           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2461           // We can currently only fold X%N if X is constant.
2462           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2463           if (StartC && !DivInt.urem(StepInt) &&
2464               getZeroExtendExpr(AR, ExtTy) ==
2465               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2466                             getZeroExtendExpr(Step, ExtTy),
2467                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2468             const APInt &StartInt = StartC->getValue()->getValue();
2469             const APInt &StartRem = StartInt.urem(StepInt);
2470             if (StartRem != 0)
2471               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2472                                   AR->getLoop(), SCEV::FlagNW);
2473           }
2474         }
2475       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2476       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2477         SmallVector<const SCEV *, 4> Operands;
2478         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2479           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2480         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2481           // Find an operand that's safely divisible.
2482           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2483             const SCEV *Op = M->getOperand(i);
2484             const SCEV *Div = getUDivExpr(Op, RHSC);
2485             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2486               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2487                                                       M->op_end());
2488               Operands[i] = Div;
2489               return getMulExpr(Operands);
2490             }
2491           }
2492       }
2493       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2494       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2495         SmallVector<const SCEV *, 4> Operands;
2496         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2497           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2498         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2499           Operands.clear();
2500           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2501             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2502             if (isa<SCEVUDivExpr>(Op) ||
2503                 getMulExpr(Op, RHS) != A->getOperand(i))
2504               break;
2505             Operands.push_back(Op);
2506           }
2507           if (Operands.size() == A->getNumOperands())
2508             return getAddExpr(Operands);
2509         }
2510       }
2511 
2512       // Fold if both operands are constant.
2513       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2514         Constant *LHSCV = LHSC->getValue();
2515         Constant *RHSCV = RHSC->getValue();
2516         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2517                                                                    RHSCV)));
2518       }
2519     }
2520   }
2521 
2522   FoldingSetNodeID ID;
2523   ID.AddInteger(scUDivExpr);
2524   ID.AddPointer(LHS);
2525   ID.AddPointer(RHS);
2526   void *IP = nullptr;
2527   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2528   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2529                                              LHS, RHS);
2530   UniqueSCEVs.InsertNode(S, IP);
2531   return S;
2532 }
2533 
2534 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2535   APInt A = C1->getValue()->getValue().abs();
2536   APInt B = C2->getValue()->getValue().abs();
2537   uint32_t ABW = A.getBitWidth();
2538   uint32_t BBW = B.getBitWidth();
2539 
2540   if (ABW > BBW)
2541     B = B.zext(ABW);
2542   else if (ABW < BBW)
2543     A = A.zext(BBW);
2544 
2545   return APIntOps::GreatestCommonDivisor(A, B);
2546 }
2547 
2548 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2549 /// something simpler if possible. There is no representation for an exact udiv
2550 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2551 /// We can't do this when it's not exact because the udiv may be clearing bits.
2552 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2553                                               const SCEV *RHS) {
2554   // TODO: we could try to find factors in all sorts of things, but for now we
2555   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2556   // end of this file for inspiration.
2557 
2558   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2559   if (!Mul)
2560     return getUDivExpr(LHS, RHS);
2561 
2562   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2563     // If the mulexpr multiplies by a constant, then that constant must be the
2564     // first element of the mulexpr.
2565     if (const SCEVConstant *LHSCst =
2566             dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2567       if (LHSCst == RHSCst) {
2568         SmallVector<const SCEV *, 2> Operands;
2569         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2570         return getMulExpr(Operands);
2571       }
2572 
2573       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2574       // that there's a factor provided by one of the other terms. We need to
2575       // check.
2576       APInt Factor = gcd(LHSCst, RHSCst);
2577       if (!Factor.isIntN(1)) {
2578         LHSCst = cast<SCEVConstant>(
2579             getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2580         RHSCst = cast<SCEVConstant>(
2581             getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2582         SmallVector<const SCEV *, 2> Operands;
2583         Operands.push_back(LHSCst);
2584         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2585         LHS = getMulExpr(Operands);
2586         RHS = RHSCst;
2587         Mul = dyn_cast<SCEVMulExpr>(LHS);
2588         if (!Mul)
2589           return getUDivExactExpr(LHS, RHS);
2590       }
2591     }
2592   }
2593 
2594   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2595     if (Mul->getOperand(i) == RHS) {
2596       SmallVector<const SCEV *, 2> Operands;
2597       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2598       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2599       return getMulExpr(Operands);
2600     }
2601   }
2602 
2603   return getUDivExpr(LHS, RHS);
2604 }
2605 
2606 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2607 /// Simplify the expression as much as possible.
2608 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2609                                            const Loop *L,
2610                                            SCEV::NoWrapFlags Flags) {
2611   SmallVector<const SCEV *, 4> Operands;
2612   Operands.push_back(Start);
2613   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2614     if (StepChrec->getLoop() == L) {
2615       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2616       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2617     }
2618 
2619   Operands.push_back(Step);
2620   return getAddRecExpr(Operands, L, Flags);
2621 }
2622 
2623 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2624 /// Simplify the expression as much as possible.
2625 const SCEV *
2626 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2627                                const Loop *L, SCEV::NoWrapFlags Flags) {
2628   if (Operands.size() == 1) return Operands[0];
2629 #ifndef NDEBUG
2630   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2631   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2632     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2633            "SCEVAddRecExpr operand types don't match!");
2634   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2635     assert(isLoopInvariant(Operands[i], L) &&
2636            "SCEVAddRecExpr operand is not loop-invariant!");
2637 #endif
2638 
2639   if (Operands.back()->isZero()) {
2640     Operands.pop_back();
2641     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2642   }
2643 
2644   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2645   // use that information to infer NUW and NSW flags. However, computing a
2646   // BE count requires calling getAddRecExpr, so we may not yet have a
2647   // meaningful BE count at this point (and if we don't, we'd be stuck
2648   // with a SCEVCouldNotCompute as the cached BE count).
2649 
2650   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2651   // And vice-versa.
2652   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2653   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2654   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2655     bool All = true;
2656     for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2657          E = Operands.end(); I != E; ++I)
2658       if (!isKnownNonNegative(*I)) {
2659         All = false;
2660         break;
2661       }
2662     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2663   }
2664 
2665   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2666   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2667     const Loop *NestedLoop = NestedAR->getLoop();
2668     if (L->contains(NestedLoop) ?
2669         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2670         (!NestedLoop->contains(L) &&
2671          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2672       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2673                                                   NestedAR->op_end());
2674       Operands[0] = NestedAR->getStart();
2675       // AddRecs require their operands be loop-invariant with respect to their
2676       // loops. Don't perform this transformation if it would break this
2677       // requirement.
2678       bool AllInvariant = true;
2679       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2680         if (!isLoopInvariant(Operands[i], L)) {
2681           AllInvariant = false;
2682           break;
2683         }
2684       if (AllInvariant) {
2685         // Create a recurrence for the outer loop with the same step size.
2686         //
2687         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2688         // inner recurrence has the same property.
2689         SCEV::NoWrapFlags OuterFlags =
2690           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2691 
2692         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2693         AllInvariant = true;
2694         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2695           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2696             AllInvariant = false;
2697             break;
2698           }
2699         if (AllInvariant) {
2700           // Ok, both add recurrences are valid after the transformation.
2701           //
2702           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2703           // the outer recurrence has the same property.
2704           SCEV::NoWrapFlags InnerFlags =
2705             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2706           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2707         }
2708       }
2709       // Reset Operands to its original state.
2710       Operands[0] = NestedAR;
2711     }
2712   }
2713 
2714   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2715   // already have one, otherwise create a new one.
2716   FoldingSetNodeID ID;
2717   ID.AddInteger(scAddRecExpr);
2718   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2719     ID.AddPointer(Operands[i]);
2720   ID.AddPointer(L);
2721   void *IP = nullptr;
2722   SCEVAddRecExpr *S =
2723     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2724   if (!S) {
2725     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2726     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2727     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2728                                            O, Operands.size(), L);
2729     UniqueSCEVs.InsertNode(S, IP);
2730   }
2731   S->setNoWrapFlags(Flags);
2732   return S;
2733 }
2734 
2735 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2736                                          const SCEV *RHS) {
2737   SmallVector<const SCEV *, 2> Ops;
2738   Ops.push_back(LHS);
2739   Ops.push_back(RHS);
2740   return getSMaxExpr(Ops);
2741 }
2742 
2743 const SCEV *
2744 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2745   assert(!Ops.empty() && "Cannot get empty smax!");
2746   if (Ops.size() == 1) return Ops[0];
2747 #ifndef NDEBUG
2748   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2749   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2750     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2751            "SCEVSMaxExpr operand types don't match!");
2752 #endif
2753 
2754   // Sort by complexity, this groups all similar expression types together.
2755   GroupByComplexity(Ops, LI);
2756 
2757   // If there are any constants, fold them together.
2758   unsigned Idx = 0;
2759   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2760     ++Idx;
2761     assert(Idx < Ops.size());
2762     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2763       // We found two constants, fold them together!
2764       ConstantInt *Fold = ConstantInt::get(getContext(),
2765                               APIntOps::smax(LHSC->getValue()->getValue(),
2766                                              RHSC->getValue()->getValue()));
2767       Ops[0] = getConstant(Fold);
2768       Ops.erase(Ops.begin()+1);  // Erase the folded element
2769       if (Ops.size() == 1) return Ops[0];
2770       LHSC = cast<SCEVConstant>(Ops[0]);
2771     }
2772 
2773     // If we are left with a constant minimum-int, strip it off.
2774     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2775       Ops.erase(Ops.begin());
2776       --Idx;
2777     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2778       // If we have an smax with a constant maximum-int, it will always be
2779       // maximum-int.
2780       return Ops[0];
2781     }
2782 
2783     if (Ops.size() == 1) return Ops[0];
2784   }
2785 
2786   // Find the first SMax
2787   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2788     ++Idx;
2789 
2790   // Check to see if one of the operands is an SMax. If so, expand its operands
2791   // onto our operand list, and recurse to simplify.
2792   if (Idx < Ops.size()) {
2793     bool DeletedSMax = false;
2794     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2795       Ops.erase(Ops.begin()+Idx);
2796       Ops.append(SMax->op_begin(), SMax->op_end());
2797       DeletedSMax = true;
2798     }
2799 
2800     if (DeletedSMax)
2801       return getSMaxExpr(Ops);
2802   }
2803 
2804   // Okay, check to see if the same value occurs in the operand list twice.  If
2805   // so, delete one.  Since we sorted the list, these values are required to
2806   // be adjacent.
2807   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2808     //  X smax Y smax Y  -->  X smax Y
2809     //  X smax Y         -->  X, if X is always greater than Y
2810     if (Ops[i] == Ops[i+1] ||
2811         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2812       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2813       --i; --e;
2814     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2815       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2816       --i; --e;
2817     }
2818 
2819   if (Ops.size() == 1) return Ops[0];
2820 
2821   assert(!Ops.empty() && "Reduced smax down to nothing!");
2822 
2823   // Okay, it looks like we really DO need an smax expr.  Check to see if we
2824   // already have one, otherwise create a new one.
2825   FoldingSetNodeID ID;
2826   ID.AddInteger(scSMaxExpr);
2827   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2828     ID.AddPointer(Ops[i]);
2829   void *IP = nullptr;
2830   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2831   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2832   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2833   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2834                                              O, Ops.size());
2835   UniqueSCEVs.InsertNode(S, IP);
2836   return S;
2837 }
2838 
2839 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2840                                          const SCEV *RHS) {
2841   SmallVector<const SCEV *, 2> Ops;
2842   Ops.push_back(LHS);
2843   Ops.push_back(RHS);
2844   return getUMaxExpr(Ops);
2845 }
2846 
2847 const SCEV *
2848 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2849   assert(!Ops.empty() && "Cannot get empty umax!");
2850   if (Ops.size() == 1) return Ops[0];
2851 #ifndef NDEBUG
2852   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2853   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2854     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2855            "SCEVUMaxExpr operand types don't match!");
2856 #endif
2857 
2858   // Sort by complexity, this groups all similar expression types together.
2859   GroupByComplexity(Ops, LI);
2860 
2861   // If there are any constants, fold them together.
2862   unsigned Idx = 0;
2863   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2864     ++Idx;
2865     assert(Idx < Ops.size());
2866     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2867       // We found two constants, fold them together!
2868       ConstantInt *Fold = ConstantInt::get(getContext(),
2869                               APIntOps::umax(LHSC->getValue()->getValue(),
2870                                              RHSC->getValue()->getValue()));
2871       Ops[0] = getConstant(Fold);
2872       Ops.erase(Ops.begin()+1);  // Erase the folded element
2873       if (Ops.size() == 1) return Ops[0];
2874       LHSC = cast<SCEVConstant>(Ops[0]);
2875     }
2876 
2877     // If we are left with a constant minimum-int, strip it off.
2878     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2879       Ops.erase(Ops.begin());
2880       --Idx;
2881     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2882       // If we have an umax with a constant maximum-int, it will always be
2883       // maximum-int.
2884       return Ops[0];
2885     }
2886 
2887     if (Ops.size() == 1) return Ops[0];
2888   }
2889 
2890   // Find the first UMax
2891   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2892     ++Idx;
2893 
2894   // Check to see if one of the operands is a UMax. If so, expand its operands
2895   // onto our operand list, and recurse to simplify.
2896   if (Idx < Ops.size()) {
2897     bool DeletedUMax = false;
2898     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2899       Ops.erase(Ops.begin()+Idx);
2900       Ops.append(UMax->op_begin(), UMax->op_end());
2901       DeletedUMax = true;
2902     }
2903 
2904     if (DeletedUMax)
2905       return getUMaxExpr(Ops);
2906   }
2907 
2908   // Okay, check to see if the same value occurs in the operand list twice.  If
2909   // so, delete one.  Since we sorted the list, these values are required to
2910   // be adjacent.
2911   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2912     //  X umax Y umax Y  -->  X umax Y
2913     //  X umax Y         -->  X, if X is always greater than Y
2914     if (Ops[i] == Ops[i+1] ||
2915         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2916       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2917       --i; --e;
2918     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2919       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2920       --i; --e;
2921     }
2922 
2923   if (Ops.size() == 1) return Ops[0];
2924 
2925   assert(!Ops.empty() && "Reduced umax down to nothing!");
2926 
2927   // Okay, it looks like we really DO need a umax expr.  Check to see if we
2928   // already have one, otherwise create a new one.
2929   FoldingSetNodeID ID;
2930   ID.AddInteger(scUMaxExpr);
2931   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2932     ID.AddPointer(Ops[i]);
2933   void *IP = nullptr;
2934   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2935   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2936   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2937   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2938                                              O, Ops.size());
2939   UniqueSCEVs.InsertNode(S, IP);
2940   return S;
2941 }
2942 
2943 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2944                                          const SCEV *RHS) {
2945   // ~smax(~x, ~y) == smin(x, y).
2946   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2947 }
2948 
2949 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2950                                          const SCEV *RHS) {
2951   // ~umax(~x, ~y) == umin(x, y)
2952   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2953 }
2954 
2955 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
2956   // If we have DataLayout, we can bypass creating a target-independent
2957   // constant expression and then folding it back into a ConstantInt.
2958   // This is just a compile-time optimization.
2959   if (DL)
2960     return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
2961 
2962   Constant *C = ConstantExpr::getSizeOf(AllocTy);
2963   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2964     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2965       C = Folded;
2966   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2967   assert(Ty == IntTy && "Effective SCEV type doesn't match");
2968   return getTruncateOrZeroExtend(getSCEV(C), Ty);
2969 }
2970 
2971 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2972                                              StructType *STy,
2973                                              unsigned FieldNo) {
2974   // If we have DataLayout, we can bypass creating a target-independent
2975   // constant expression and then folding it back into a ConstantInt.
2976   // This is just a compile-time optimization.
2977   if (DL) {
2978     return getConstant(IntTy,
2979                        DL->getStructLayout(STy)->getElementOffset(FieldNo));
2980   }
2981 
2982   Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2983   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2984     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2985       C = Folded;
2986 
2987   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2988   return getTruncateOrZeroExtend(getSCEV(C), Ty);
2989 }
2990 
2991 const SCEV *ScalarEvolution::getUnknown(Value *V) {
2992   // Don't attempt to do anything other than create a SCEVUnknown object
2993   // here.  createSCEV only calls getUnknown after checking for all other
2994   // interesting possibilities, and any other code that calls getUnknown
2995   // is doing so in order to hide a value from SCEV canonicalization.
2996 
2997   FoldingSetNodeID ID;
2998   ID.AddInteger(scUnknown);
2999   ID.AddPointer(V);
3000   void *IP = nullptr;
3001   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3002     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3003            "Stale SCEVUnknown in uniquing map!");
3004     return S;
3005   }
3006   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3007                                             FirstUnknown);
3008   FirstUnknown = cast<SCEVUnknown>(S);
3009   UniqueSCEVs.InsertNode(S, IP);
3010   return S;
3011 }
3012 
3013 //===----------------------------------------------------------------------===//
3014 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3015 //
3016 
3017 /// isSCEVable - Test if values of the given type are analyzable within
3018 /// the SCEV framework. This primarily includes integer types, and it
3019 /// can optionally include pointer types if the ScalarEvolution class
3020 /// has access to target-specific information.
3021 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3022   // Integers and pointers are always SCEVable.
3023   return Ty->isIntegerTy() || Ty->isPointerTy();
3024 }
3025 
3026 /// getTypeSizeInBits - Return the size in bits of the specified type,
3027 /// for which isSCEVable must return true.
3028 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3029   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3030 
3031   // If we have a DataLayout, use it!
3032   if (DL)
3033     return DL->getTypeSizeInBits(Ty);
3034 
3035   // Integer types have fixed sizes.
3036   if (Ty->isIntegerTy())
3037     return Ty->getPrimitiveSizeInBits();
3038 
3039   // The only other support type is pointer. Without DataLayout, conservatively
3040   // assume pointers are 64-bit.
3041   assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
3042   return 64;
3043 }
3044 
3045 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3046 /// the given type and which represents how SCEV will treat the given
3047 /// type, for which isSCEVable must return true. For pointer types,
3048 /// this is the pointer-sized integer type.
3049 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3050   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3051 
3052   if (Ty->isIntegerTy()) {
3053     return Ty;
3054   }
3055 
3056   // The only other support type is pointer.
3057   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3058 
3059   if (DL)
3060     return DL->getIntPtrType(Ty);
3061 
3062   // Without DataLayout, conservatively assume pointers are 64-bit.
3063   return Type::getInt64Ty(getContext());
3064 }
3065 
3066 const SCEV *ScalarEvolution::getCouldNotCompute() {
3067   return &CouldNotCompute;
3068 }
3069 
3070 namespace {
3071   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3072   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3073   // is set iff if find such SCEVUnknown.
3074   //
3075   struct FindInvalidSCEVUnknown {
3076     bool FindOne;
3077     FindInvalidSCEVUnknown() { FindOne = false; }
3078     bool follow(const SCEV *S) {
3079       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3080       case scConstant:
3081         return false;
3082       case scUnknown:
3083         if (!cast<SCEVUnknown>(S)->getValue())
3084           FindOne = true;
3085         return false;
3086       default:
3087         return true;
3088       }
3089     }
3090     bool isDone() const { return FindOne; }
3091   };
3092 }
3093 
3094 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3095   FindInvalidSCEVUnknown F;
3096   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3097   ST.visitAll(S);
3098 
3099   return !F.FindOne;
3100 }
3101 
3102 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3103 /// expression and create a new one.
3104 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3105   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3106 
3107   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3108   if (I != ValueExprMap.end()) {
3109     const SCEV *S = I->second;
3110     if (checkValidity(S))
3111       return S;
3112     else
3113       ValueExprMap.erase(I);
3114   }
3115   const SCEV *S = createSCEV(V);
3116 
3117   // The process of creating a SCEV for V may have caused other SCEVs
3118   // to have been created, so it's necessary to insert the new entry
3119   // from scratch, rather than trying to remember the insert position
3120   // above.
3121   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3122   return S;
3123 }
3124 
3125 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3126 ///
3127 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
3128   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3129     return getConstant(
3130                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3131 
3132   Type *Ty = V->getType();
3133   Ty = getEffectiveSCEVType(Ty);
3134   return getMulExpr(V,
3135                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
3136 }
3137 
3138 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3139 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3140   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3141     return getConstant(
3142                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3143 
3144   Type *Ty = V->getType();
3145   Ty = getEffectiveSCEVType(Ty);
3146   const SCEV *AllOnes =
3147                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3148   return getMinusSCEV(AllOnes, V);
3149 }
3150 
3151 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3152 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3153                                           SCEV::NoWrapFlags Flags) {
3154   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3155 
3156   // Fast path: X - X --> 0.
3157   if (LHS == RHS)
3158     return getConstant(LHS->getType(), 0);
3159 
3160   // X - Y --> X + -Y
3161   return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
3162 }
3163 
3164 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3165 /// input value to the specified type.  If the type must be extended, it is zero
3166 /// extended.
3167 const SCEV *
3168 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3169   Type *SrcTy = V->getType();
3170   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3171          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3172          "Cannot truncate or zero extend with non-integer arguments!");
3173   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3174     return V;  // No conversion
3175   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3176     return getTruncateExpr(V, Ty);
3177   return getZeroExtendExpr(V, Ty);
3178 }
3179 
3180 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3181 /// input value to the specified type.  If the type must be extended, it is sign
3182 /// extended.
3183 const SCEV *
3184 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3185                                          Type *Ty) {
3186   Type *SrcTy = V->getType();
3187   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3188          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3189          "Cannot truncate or zero extend with non-integer arguments!");
3190   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3191     return V;  // No conversion
3192   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3193     return getTruncateExpr(V, Ty);
3194   return getSignExtendExpr(V, Ty);
3195 }
3196 
3197 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3198 /// input value to the specified type.  If the type must be extended, it is zero
3199 /// extended.  The conversion must not be narrowing.
3200 const SCEV *
3201 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3202   Type *SrcTy = V->getType();
3203   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3204          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3205          "Cannot noop or zero extend with non-integer arguments!");
3206   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3207          "getNoopOrZeroExtend cannot truncate!");
3208   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3209     return V;  // No conversion
3210   return getZeroExtendExpr(V, Ty);
3211 }
3212 
3213 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3214 /// input value to the specified type.  If the type must be extended, it is sign
3215 /// extended.  The conversion must not be narrowing.
3216 const SCEV *
3217 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3218   Type *SrcTy = V->getType();
3219   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3220          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3221          "Cannot noop or sign extend with non-integer arguments!");
3222   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3223          "getNoopOrSignExtend cannot truncate!");
3224   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3225     return V;  // No conversion
3226   return getSignExtendExpr(V, Ty);
3227 }
3228 
3229 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3230 /// the input value to the specified type. If the type must be extended,
3231 /// it is extended with unspecified bits. The conversion must not be
3232 /// narrowing.
3233 const SCEV *
3234 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3235   Type *SrcTy = V->getType();
3236   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3237          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3238          "Cannot noop or any extend with non-integer arguments!");
3239   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3240          "getNoopOrAnyExtend cannot truncate!");
3241   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3242     return V;  // No conversion
3243   return getAnyExtendExpr(V, Ty);
3244 }
3245 
3246 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3247 /// input value to the specified type.  The conversion must not be widening.
3248 const SCEV *
3249 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3250   Type *SrcTy = V->getType();
3251   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3252          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3253          "Cannot truncate or noop with non-integer arguments!");
3254   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3255          "getTruncateOrNoop cannot extend!");
3256   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3257     return V;  // No conversion
3258   return getTruncateExpr(V, Ty);
3259 }
3260 
3261 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3262 /// the types using zero-extension, and then perform a umax operation
3263 /// with them.
3264 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3265                                                         const SCEV *RHS) {
3266   const SCEV *PromotedLHS = LHS;
3267   const SCEV *PromotedRHS = RHS;
3268 
3269   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3270     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3271   else
3272     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3273 
3274   return getUMaxExpr(PromotedLHS, PromotedRHS);
3275 }
3276 
3277 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3278 /// the types using zero-extension, and then perform a umin operation
3279 /// with them.
3280 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3281                                                         const SCEV *RHS) {
3282   const SCEV *PromotedLHS = LHS;
3283   const SCEV *PromotedRHS = RHS;
3284 
3285   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3286     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3287   else
3288     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3289 
3290   return getUMinExpr(PromotedLHS, PromotedRHS);
3291 }
3292 
3293 /// getPointerBase - Transitively follow the chain of pointer-type operands
3294 /// until reaching a SCEV that does not have a single pointer operand. This
3295 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3296 /// but corner cases do exist.
3297 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3298   // A pointer operand may evaluate to a nonpointer expression, such as null.
3299   if (!V->getType()->isPointerTy())
3300     return V;
3301 
3302   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3303     return getPointerBase(Cast->getOperand());
3304   }
3305   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3306     const SCEV *PtrOp = nullptr;
3307     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3308          I != E; ++I) {
3309       if ((*I)->getType()->isPointerTy()) {
3310         // Cannot find the base of an expression with multiple pointer operands.
3311         if (PtrOp)
3312           return V;
3313         PtrOp = *I;
3314       }
3315     }
3316     if (!PtrOp)
3317       return V;
3318     return getPointerBase(PtrOp);
3319   }
3320   return V;
3321 }
3322 
3323 /// PushDefUseChildren - Push users of the given Instruction
3324 /// onto the given Worklist.
3325 static void
3326 PushDefUseChildren(Instruction *I,
3327                    SmallVectorImpl<Instruction *> &Worklist) {
3328   // Push the def-use children onto the Worklist stack.
3329   for (User *U : I->users())
3330     Worklist.push_back(cast<Instruction>(U));
3331 }
3332 
3333 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3334 /// instructions that depend on the given instruction and removes them from
3335 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3336 /// resolution.
3337 void
3338 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3339   SmallVector<Instruction *, 16> Worklist;
3340   PushDefUseChildren(PN, Worklist);
3341 
3342   SmallPtrSet<Instruction *, 8> Visited;
3343   Visited.insert(PN);
3344   while (!Worklist.empty()) {
3345     Instruction *I = Worklist.pop_back_val();
3346     if (!Visited.insert(I)) continue;
3347 
3348     ValueExprMapType::iterator It =
3349       ValueExprMap.find_as(static_cast<Value *>(I));
3350     if (It != ValueExprMap.end()) {
3351       const SCEV *Old = It->second;
3352 
3353       // Short-circuit the def-use traversal if the symbolic name
3354       // ceases to appear in expressions.
3355       if (Old != SymName && !hasOperand(Old, SymName))
3356         continue;
3357 
3358       // SCEVUnknown for a PHI either means that it has an unrecognized
3359       // structure, it's a PHI that's in the progress of being computed
3360       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3361       // additional loop trip count information isn't going to change anything.
3362       // In the second case, createNodeForPHI will perform the necessary
3363       // updates on its own when it gets to that point. In the third, we do
3364       // want to forget the SCEVUnknown.
3365       if (!isa<PHINode>(I) ||
3366           !isa<SCEVUnknown>(Old) ||
3367           (I != PN && Old == SymName)) {
3368         forgetMemoizedResults(Old);
3369         ValueExprMap.erase(It);
3370       }
3371     }
3372 
3373     PushDefUseChildren(I, Worklist);
3374   }
3375 }
3376 
3377 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
3378 /// a loop header, making it a potential recurrence, or it doesn't.
3379 ///
3380 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3381   if (const Loop *L = LI->getLoopFor(PN->getParent()))
3382     if (L->getHeader() == PN->getParent()) {
3383       // The loop may have multiple entrances or multiple exits; we can analyze
3384       // this phi as an addrec if it has a unique entry value and a unique
3385       // backedge value.
3386       Value *BEValueV = nullptr, *StartValueV = nullptr;
3387       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3388         Value *V = PN->getIncomingValue(i);
3389         if (L->contains(PN->getIncomingBlock(i))) {
3390           if (!BEValueV) {
3391             BEValueV = V;
3392           } else if (BEValueV != V) {
3393             BEValueV = nullptr;
3394             break;
3395           }
3396         } else if (!StartValueV) {
3397           StartValueV = V;
3398         } else if (StartValueV != V) {
3399           StartValueV = nullptr;
3400           break;
3401         }
3402       }
3403       if (BEValueV && StartValueV) {
3404         // While we are analyzing this PHI node, handle its value symbolically.
3405         const SCEV *SymbolicName = getUnknown(PN);
3406         assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3407                "PHI node already processed?");
3408         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3409 
3410         // Using this symbolic name for the PHI, analyze the value coming around
3411         // the back-edge.
3412         const SCEV *BEValue = getSCEV(BEValueV);
3413 
3414         // NOTE: If BEValue is loop invariant, we know that the PHI node just
3415         // has a special value for the first iteration of the loop.
3416 
3417         // If the value coming around the backedge is an add with the symbolic
3418         // value we just inserted, then we found a simple induction variable!
3419         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3420           // If there is a single occurrence of the symbolic value, replace it
3421           // with a recurrence.
3422           unsigned FoundIndex = Add->getNumOperands();
3423           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3424             if (Add->getOperand(i) == SymbolicName)
3425               if (FoundIndex == e) {
3426                 FoundIndex = i;
3427                 break;
3428               }
3429 
3430           if (FoundIndex != Add->getNumOperands()) {
3431             // Create an add with everything but the specified operand.
3432             SmallVector<const SCEV *, 8> Ops;
3433             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3434               if (i != FoundIndex)
3435                 Ops.push_back(Add->getOperand(i));
3436             const SCEV *Accum = getAddExpr(Ops);
3437 
3438             // This is not a valid addrec if the step amount is varying each
3439             // loop iteration, but is not itself an addrec in this loop.
3440             if (isLoopInvariant(Accum, L) ||
3441                 (isa<SCEVAddRecExpr>(Accum) &&
3442                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3443               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3444 
3445               // If the increment doesn't overflow, then neither the addrec nor
3446               // the post-increment will overflow.
3447               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3448                 if (OBO->hasNoUnsignedWrap())
3449                   Flags = setFlags(Flags, SCEV::FlagNUW);
3450                 if (OBO->hasNoSignedWrap())
3451                   Flags = setFlags(Flags, SCEV::FlagNSW);
3452               } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3453                 // If the increment is an inbounds GEP, then we know the address
3454                 // space cannot be wrapped around. We cannot make any guarantee
3455                 // about signed or unsigned overflow because pointers are
3456                 // unsigned but we may have a negative index from the base
3457                 // pointer. We can guarantee that no unsigned wrap occurs if the
3458                 // indices form a positive value.
3459                 if (GEP->isInBounds()) {
3460                   Flags = setFlags(Flags, SCEV::FlagNW);
3461 
3462                   const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3463                   if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3464                     Flags = setFlags(Flags, SCEV::FlagNUW);
3465                 }
3466               } else if (const SubOperator *OBO =
3467                            dyn_cast<SubOperator>(BEValueV)) {
3468                 if (OBO->hasNoUnsignedWrap())
3469                   Flags = setFlags(Flags, SCEV::FlagNUW);
3470                 if (OBO->hasNoSignedWrap())
3471                   Flags = setFlags(Flags, SCEV::FlagNSW);
3472               }
3473 
3474               const SCEV *StartVal = getSCEV(StartValueV);
3475               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3476 
3477               // Since the no-wrap flags are on the increment, they apply to the
3478               // post-incremented value as well.
3479               if (isLoopInvariant(Accum, L))
3480                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3481                                     Accum, L, Flags);
3482 
3483               // Okay, for the entire analysis of this edge we assumed the PHI
3484               // to be symbolic.  We now need to go back and purge all of the
3485               // entries for the scalars that use the symbolic expression.
3486               ForgetSymbolicName(PN, SymbolicName);
3487               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3488               return PHISCEV;
3489             }
3490           }
3491         } else if (const SCEVAddRecExpr *AddRec =
3492                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
3493           // Otherwise, this could be a loop like this:
3494           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3495           // In this case, j = {1,+,1}  and BEValue is j.
3496           // Because the other in-value of i (0) fits the evolution of BEValue
3497           // i really is an addrec evolution.
3498           if (AddRec->getLoop() == L && AddRec->isAffine()) {
3499             const SCEV *StartVal = getSCEV(StartValueV);
3500 
3501             // If StartVal = j.start - j.stride, we can use StartVal as the
3502             // initial step of the addrec evolution.
3503             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3504                                          AddRec->getOperand(1))) {
3505               // FIXME: For constant StartVal, we should be able to infer
3506               // no-wrap flags.
3507               const SCEV *PHISCEV =
3508                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3509                               SCEV::FlagAnyWrap);
3510 
3511               // Okay, for the entire analysis of this edge we assumed the PHI
3512               // to be symbolic.  We now need to go back and purge all of the
3513               // entries for the scalars that use the symbolic expression.
3514               ForgetSymbolicName(PN, SymbolicName);
3515               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3516               return PHISCEV;
3517             }
3518           }
3519         }
3520       }
3521     }
3522 
3523   // If the PHI has a single incoming value, follow that value, unless the
3524   // PHI's incoming blocks are in a different loop, in which case doing so
3525   // risks breaking LCSSA form. Instcombine would normally zap these, but
3526   // it doesn't have DominatorTree information, so it may miss cases.
3527   if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AT))
3528     if (LI->replacementPreservesLCSSAForm(PN, V))
3529       return getSCEV(V);
3530 
3531   // If it's not a loop phi, we can't handle it yet.
3532   return getUnknown(PN);
3533 }
3534 
3535 /// createNodeForGEP - Expand GEP instructions into add and multiply
3536 /// operations. This allows them to be analyzed by regular SCEV code.
3537 ///
3538 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3539   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3540   Value *Base = GEP->getOperand(0);
3541   // Don't attempt to analyze GEPs over unsized objects.
3542   if (!Base->getType()->getPointerElementType()->isSized())
3543     return getUnknown(GEP);
3544 
3545   // Don't blindly transfer the inbounds flag from the GEP instruction to the
3546   // Add expression, because the Instruction may be guarded by control flow
3547   // and the no-overflow bits may not be valid for the expression in any
3548   // context.
3549   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3550 
3551   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3552   gep_type_iterator GTI = gep_type_begin(GEP);
3553   for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
3554                                       E = GEP->op_end();
3555        I != E; ++I) {
3556     Value *Index = *I;
3557     // Compute the (potentially symbolic) offset in bytes for this index.
3558     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3559       // For a struct, add the member offset.
3560       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3561       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3562 
3563       // Add the field offset to the running total offset.
3564       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3565     } else {
3566       // For an array, add the element offset, explicitly scaled.
3567       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3568       const SCEV *IndexS = getSCEV(Index);
3569       // Getelementptr indices are signed.
3570       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3571 
3572       // Multiply the index by the element size to compute the element offset.
3573       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3574 
3575       // Add the element offset to the running total offset.
3576       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3577     }
3578   }
3579 
3580   // Get the SCEV for the GEP base.
3581   const SCEV *BaseS = getSCEV(Base);
3582 
3583   // Add the total offset from all the GEP indices to the base.
3584   return getAddExpr(BaseS, TotalOffset, Wrap);
3585 }
3586 
3587 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3588 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
3589 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3590 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3591 uint32_t
3592 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3593   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3594     return C->getValue()->getValue().countTrailingZeros();
3595 
3596   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3597     return std::min(GetMinTrailingZeros(T->getOperand()),
3598                     (uint32_t)getTypeSizeInBits(T->getType()));
3599 
3600   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3601     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3602     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3603              getTypeSizeInBits(E->getType()) : OpRes;
3604   }
3605 
3606   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3607     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3608     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3609              getTypeSizeInBits(E->getType()) : OpRes;
3610   }
3611 
3612   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3613     // The result is the min of all operands results.
3614     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3615     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3616       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3617     return MinOpRes;
3618   }
3619 
3620   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3621     // The result is the sum of all operands results.
3622     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3623     uint32_t BitWidth = getTypeSizeInBits(M->getType());
3624     for (unsigned i = 1, e = M->getNumOperands();
3625          SumOpRes != BitWidth && i != e; ++i)
3626       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3627                           BitWidth);
3628     return SumOpRes;
3629   }
3630 
3631   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3632     // The result is the min of all operands results.
3633     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3634     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3635       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3636     return MinOpRes;
3637   }
3638 
3639   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3640     // The result is the min of all operands results.
3641     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3642     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3643       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3644     return MinOpRes;
3645   }
3646 
3647   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3648     // The result is the min of all operands results.
3649     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3650     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3651       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3652     return MinOpRes;
3653   }
3654 
3655   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3656     // For a SCEVUnknown, ask ValueTracking.
3657     unsigned BitWidth = getTypeSizeInBits(U->getType());
3658     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3659     computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
3660     return Zeros.countTrailingOnes();
3661   }
3662 
3663   // SCEVUDivExpr
3664   return 0;
3665 }
3666 
3667 /// GetRangeFromMetadata - Helper method to assign a range to V from
3668 /// metadata present in the IR.
3669 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3670   if (Instruction *I = dyn_cast<Instruction>(V)) {
3671     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
3672       ConstantRange TotalRange(
3673           cast<IntegerType>(I->getType())->getBitWidth(), false);
3674 
3675       unsigned NumRanges = MD->getNumOperands() / 2;
3676       assert(NumRanges >= 1);
3677 
3678       for (unsigned i = 0; i < NumRanges; ++i) {
3679         ConstantInt *Lower = cast<ConstantInt>(MD->getOperand(2*i + 0));
3680         ConstantInt *Upper = cast<ConstantInt>(MD->getOperand(2*i + 1));
3681         ConstantRange Range(Lower->getValue(), Upper->getValue());
3682         TotalRange = TotalRange.unionWith(Range);
3683       }
3684 
3685       return TotalRange;
3686     }
3687   }
3688 
3689   return None;
3690 }
3691 
3692 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3693 ///
3694 ConstantRange
3695 ScalarEvolution::getUnsignedRange(const SCEV *S) {
3696   // See if we've computed this range already.
3697   DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3698   if (I != UnsignedRanges.end())
3699     return I->second;
3700 
3701   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3702     return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3703 
3704   unsigned BitWidth = getTypeSizeInBits(S->getType());
3705   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3706 
3707   // If the value has known zeros, the maximum unsigned value will have those
3708   // known zeros as well.
3709   uint32_t TZ = GetMinTrailingZeros(S);
3710   if (TZ != 0)
3711     ConservativeResult =
3712       ConstantRange(APInt::getMinValue(BitWidth),
3713                     APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3714 
3715   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3716     ConstantRange X = getUnsignedRange(Add->getOperand(0));
3717     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3718       X = X.add(getUnsignedRange(Add->getOperand(i)));
3719     return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3720   }
3721 
3722   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3723     ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3724     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3725       X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3726     return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3727   }
3728 
3729   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3730     ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3731     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3732       X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3733     return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3734   }
3735 
3736   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3737     ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3738     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3739       X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3740     return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3741   }
3742 
3743   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3744     ConstantRange X = getUnsignedRange(UDiv->getLHS());
3745     ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3746     return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3747   }
3748 
3749   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3750     ConstantRange X = getUnsignedRange(ZExt->getOperand());
3751     return setUnsignedRange(ZExt,
3752       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3753   }
3754 
3755   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3756     ConstantRange X = getUnsignedRange(SExt->getOperand());
3757     return setUnsignedRange(SExt,
3758       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3759   }
3760 
3761   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3762     ConstantRange X = getUnsignedRange(Trunc->getOperand());
3763     return setUnsignedRange(Trunc,
3764       ConservativeResult.intersectWith(X.truncate(BitWidth)));
3765   }
3766 
3767   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3768     // If there's no unsigned wrap, the value will never be less than its
3769     // initial value.
3770     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3771       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3772         if (!C->getValue()->isZero())
3773           ConservativeResult =
3774             ConservativeResult.intersectWith(
3775               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3776 
3777     // TODO: non-affine addrec
3778     if (AddRec->isAffine()) {
3779       Type *Ty = AddRec->getType();
3780       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3781       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3782           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3783         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3784 
3785         const SCEV *Start = AddRec->getStart();
3786         const SCEV *Step = AddRec->getStepRecurrence(*this);
3787 
3788         ConstantRange StartRange = getUnsignedRange(Start);
3789         ConstantRange StepRange = getSignedRange(Step);
3790         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3791         ConstantRange EndRange =
3792           StartRange.add(MaxBECountRange.multiply(StepRange));
3793 
3794         // Check for overflow. This must be done with ConstantRange arithmetic
3795         // because we could be called from within the ScalarEvolution overflow
3796         // checking code.
3797         ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3798         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3799         ConstantRange ExtMaxBECountRange =
3800           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3801         ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3802         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3803             ExtEndRange)
3804           return setUnsignedRange(AddRec, ConservativeResult);
3805 
3806         APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3807                                    EndRange.getUnsignedMin());
3808         APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3809                                    EndRange.getUnsignedMax());
3810         if (Min.isMinValue() && Max.isMaxValue())
3811           return setUnsignedRange(AddRec, ConservativeResult);
3812         return setUnsignedRange(AddRec,
3813           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3814       }
3815     }
3816 
3817     return setUnsignedRange(AddRec, ConservativeResult);
3818   }
3819 
3820   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3821     // Check if the IR explicitly contains !range metadata.
3822     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3823     if (MDRange.hasValue())
3824       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3825 
3826     // For a SCEVUnknown, ask ValueTracking.
3827     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3828     computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AT, nullptr, DT);
3829     if (Ones == ~Zeros + 1)
3830       return setUnsignedRange(U, ConservativeResult);
3831     return setUnsignedRange(U,
3832       ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3833   }
3834 
3835   return setUnsignedRange(S, ConservativeResult);
3836 }
3837 
3838 /// getSignedRange - Determine the signed range for a particular SCEV.
3839 ///
3840 ConstantRange
3841 ScalarEvolution::getSignedRange(const SCEV *S) {
3842   // See if we've computed this range already.
3843   DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3844   if (I != SignedRanges.end())
3845     return I->second;
3846 
3847   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3848     return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3849 
3850   unsigned BitWidth = getTypeSizeInBits(S->getType());
3851   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3852 
3853   // If the value has known zeros, the maximum signed value will have those
3854   // known zeros as well.
3855   uint32_t TZ = GetMinTrailingZeros(S);
3856   if (TZ != 0)
3857     ConservativeResult =
3858       ConstantRange(APInt::getSignedMinValue(BitWidth),
3859                     APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3860 
3861   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3862     ConstantRange X = getSignedRange(Add->getOperand(0));
3863     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3864       X = X.add(getSignedRange(Add->getOperand(i)));
3865     return setSignedRange(Add, ConservativeResult.intersectWith(X));
3866   }
3867 
3868   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3869     ConstantRange X = getSignedRange(Mul->getOperand(0));
3870     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3871       X = X.multiply(getSignedRange(Mul->getOperand(i)));
3872     return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3873   }
3874 
3875   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3876     ConstantRange X = getSignedRange(SMax->getOperand(0));
3877     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3878       X = X.smax(getSignedRange(SMax->getOperand(i)));
3879     return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3880   }
3881 
3882   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3883     ConstantRange X = getSignedRange(UMax->getOperand(0));
3884     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3885       X = X.umax(getSignedRange(UMax->getOperand(i)));
3886     return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3887   }
3888 
3889   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3890     ConstantRange X = getSignedRange(UDiv->getLHS());
3891     ConstantRange Y = getSignedRange(UDiv->getRHS());
3892     return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3893   }
3894 
3895   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3896     ConstantRange X = getSignedRange(ZExt->getOperand());
3897     return setSignedRange(ZExt,
3898       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3899   }
3900 
3901   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3902     ConstantRange X = getSignedRange(SExt->getOperand());
3903     return setSignedRange(SExt,
3904       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3905   }
3906 
3907   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3908     ConstantRange X = getSignedRange(Trunc->getOperand());
3909     return setSignedRange(Trunc,
3910       ConservativeResult.intersectWith(X.truncate(BitWidth)));
3911   }
3912 
3913   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3914     // If there's no signed wrap, and all the operands have the same sign or
3915     // zero, the value won't ever change sign.
3916     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3917       bool AllNonNeg = true;
3918       bool AllNonPos = true;
3919       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3920         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3921         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3922       }
3923       if (AllNonNeg)
3924         ConservativeResult = ConservativeResult.intersectWith(
3925           ConstantRange(APInt(BitWidth, 0),
3926                         APInt::getSignedMinValue(BitWidth)));
3927       else if (AllNonPos)
3928         ConservativeResult = ConservativeResult.intersectWith(
3929           ConstantRange(APInt::getSignedMinValue(BitWidth),
3930                         APInt(BitWidth, 1)));
3931     }
3932 
3933     // TODO: non-affine addrec
3934     if (AddRec->isAffine()) {
3935       Type *Ty = AddRec->getType();
3936       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3937       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3938           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3939         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3940 
3941         const SCEV *Start = AddRec->getStart();
3942         const SCEV *Step = AddRec->getStepRecurrence(*this);
3943 
3944         ConstantRange StartRange = getSignedRange(Start);
3945         ConstantRange StepRange = getSignedRange(Step);
3946         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3947         ConstantRange EndRange =
3948           StartRange.add(MaxBECountRange.multiply(StepRange));
3949 
3950         // Check for overflow. This must be done with ConstantRange arithmetic
3951         // because we could be called from within the ScalarEvolution overflow
3952         // checking code.
3953         ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3954         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3955         ConstantRange ExtMaxBECountRange =
3956           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3957         ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3958         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3959             ExtEndRange)
3960           return setSignedRange(AddRec, ConservativeResult);
3961 
3962         APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3963                                    EndRange.getSignedMin());
3964         APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3965                                    EndRange.getSignedMax());
3966         if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3967           return setSignedRange(AddRec, ConservativeResult);
3968         return setSignedRange(AddRec,
3969           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3970       }
3971     }
3972 
3973     return setSignedRange(AddRec, ConservativeResult);
3974   }
3975 
3976   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3977     // Check if the IR explicitly contains !range metadata.
3978     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3979     if (MDRange.hasValue())
3980       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3981 
3982     // For a SCEVUnknown, ask ValueTracking.
3983     if (!U->getValue()->getType()->isIntegerTy() && !DL)
3984       return setSignedRange(U, ConservativeResult);
3985     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AT, nullptr, DT);
3986     if (NS <= 1)
3987       return setSignedRange(U, ConservativeResult);
3988     return setSignedRange(U, ConservativeResult.intersectWith(
3989       ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3990                     APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3991   }
3992 
3993   return setSignedRange(S, ConservativeResult);
3994 }
3995 
3996 /// createSCEV - We know that there is no SCEV for the specified value.
3997 /// Analyze the expression.
3998 ///
3999 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4000   if (!isSCEVable(V->getType()))
4001     return getUnknown(V);
4002 
4003   unsigned Opcode = Instruction::UserOp1;
4004   if (Instruction *I = dyn_cast<Instruction>(V)) {
4005     Opcode = I->getOpcode();
4006 
4007     // Don't attempt to analyze instructions in blocks that aren't
4008     // reachable. Such instructions don't matter, and they aren't required
4009     // to obey basic rules for definitions dominating uses which this
4010     // analysis depends on.
4011     if (!DT->isReachableFromEntry(I->getParent()))
4012       return getUnknown(V);
4013   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4014     Opcode = CE->getOpcode();
4015   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4016     return getConstant(CI);
4017   else if (isa<ConstantPointerNull>(V))
4018     return getConstant(V->getType(), 0);
4019   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4020     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4021   else
4022     return getUnknown(V);
4023 
4024   Operator *U = cast<Operator>(V);
4025   switch (Opcode) {
4026   case Instruction::Add: {
4027     // The simple thing to do would be to just call getSCEV on both operands
4028     // and call getAddExpr with the result. However if we're looking at a
4029     // bunch of things all added together, this can be quite inefficient,
4030     // because it leads to N-1 getAddExpr calls for N ultimate operands.
4031     // Instead, gather up all the operands and make a single getAddExpr call.
4032     // LLVM IR canonical form means we need only traverse the left operands.
4033     //
4034     // Don't apply this instruction's NSW or NUW flags to the new
4035     // expression. The instruction may be guarded by control flow that the
4036     // no-wrap behavior depends on. Non-control-equivalent instructions can be
4037     // mapped to the same SCEV expression, and it would be incorrect to transfer
4038     // NSW/NUW semantics to those operations.
4039     SmallVector<const SCEV *, 4> AddOps;
4040     AddOps.push_back(getSCEV(U->getOperand(1)));
4041     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4042       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4043       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4044         break;
4045       U = cast<Operator>(Op);
4046       const SCEV *Op1 = getSCEV(U->getOperand(1));
4047       if (Opcode == Instruction::Sub)
4048         AddOps.push_back(getNegativeSCEV(Op1));
4049       else
4050         AddOps.push_back(Op1);
4051     }
4052     AddOps.push_back(getSCEV(U->getOperand(0)));
4053     return getAddExpr(AddOps);
4054   }
4055   case Instruction::Mul: {
4056     // Don't transfer NSW/NUW for the same reason as AddExpr.
4057     SmallVector<const SCEV *, 4> MulOps;
4058     MulOps.push_back(getSCEV(U->getOperand(1)));
4059     for (Value *Op = U->getOperand(0);
4060          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
4061          Op = U->getOperand(0)) {
4062       U = cast<Operator>(Op);
4063       MulOps.push_back(getSCEV(U->getOperand(1)));
4064     }
4065     MulOps.push_back(getSCEV(U->getOperand(0)));
4066     return getMulExpr(MulOps);
4067   }
4068   case Instruction::UDiv:
4069     return getUDivExpr(getSCEV(U->getOperand(0)),
4070                        getSCEV(U->getOperand(1)));
4071   case Instruction::Sub:
4072     return getMinusSCEV(getSCEV(U->getOperand(0)),
4073                         getSCEV(U->getOperand(1)));
4074   case Instruction::And:
4075     // For an expression like x&255 that merely masks off the high bits,
4076     // use zext(trunc(x)) as the SCEV expression.
4077     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4078       if (CI->isNullValue())
4079         return getSCEV(U->getOperand(1));
4080       if (CI->isAllOnesValue())
4081         return getSCEV(U->getOperand(0));
4082       const APInt &A = CI->getValue();
4083 
4084       // Instcombine's ShrinkDemandedConstant may strip bits out of
4085       // constants, obscuring what would otherwise be a low-bits mask.
4086       // Use computeKnownBits to compute what ShrinkDemandedConstant
4087       // knew about to reconstruct a low-bits mask value.
4088       unsigned LZ = A.countLeadingZeros();
4089       unsigned TZ = A.countTrailingZeros();
4090       unsigned BitWidth = A.getBitWidth();
4091       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4092       computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL,
4093                        0, AT, nullptr, DT);
4094 
4095       APInt EffectiveMask =
4096           APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4097       if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4098         const SCEV *MulCount = getConstant(
4099             ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4100         return getMulExpr(
4101             getZeroExtendExpr(
4102                 getTruncateExpr(
4103                     getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4104                     IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4105                 U->getType()),
4106             MulCount);
4107       }
4108     }
4109     break;
4110 
4111   case Instruction::Or:
4112     // If the RHS of the Or is a constant, we may have something like:
4113     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
4114     // optimizations will transparently handle this case.
4115     //
4116     // In order for this transformation to be safe, the LHS must be of the
4117     // form X*(2^n) and the Or constant must be less than 2^n.
4118     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4119       const SCEV *LHS = getSCEV(U->getOperand(0));
4120       const APInt &CIVal = CI->getValue();
4121       if (GetMinTrailingZeros(LHS) >=
4122           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4123         // Build a plain add SCEV.
4124         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4125         // If the LHS of the add was an addrec and it has no-wrap flags,
4126         // transfer the no-wrap flags, since an or won't introduce a wrap.
4127         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4128           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4129           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4130             OldAR->getNoWrapFlags());
4131         }
4132         return S;
4133       }
4134     }
4135     break;
4136   case Instruction::Xor:
4137     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4138       // If the RHS of the xor is a signbit, then this is just an add.
4139       // Instcombine turns add of signbit into xor as a strength reduction step.
4140       if (CI->getValue().isSignBit())
4141         return getAddExpr(getSCEV(U->getOperand(0)),
4142                           getSCEV(U->getOperand(1)));
4143 
4144       // If the RHS of xor is -1, then this is a not operation.
4145       if (CI->isAllOnesValue())
4146         return getNotSCEV(getSCEV(U->getOperand(0)));
4147 
4148       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4149       // This is a variant of the check for xor with -1, and it handles
4150       // the case where instcombine has trimmed non-demanded bits out
4151       // of an xor with -1.
4152       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4153         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4154           if (BO->getOpcode() == Instruction::And &&
4155               LCI->getValue() == CI->getValue())
4156             if (const SCEVZeroExtendExpr *Z =
4157                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4158               Type *UTy = U->getType();
4159               const SCEV *Z0 = Z->getOperand();
4160               Type *Z0Ty = Z0->getType();
4161               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4162 
4163               // If C is a low-bits mask, the zero extend is serving to
4164               // mask off the high bits. Complement the operand and
4165               // re-apply the zext.
4166               if (APIntOps::isMask(Z0TySize, CI->getValue()))
4167                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4168 
4169               // If C is a single bit, it may be in the sign-bit position
4170               // before the zero-extend. In this case, represent the xor
4171               // using an add, which is equivalent, and re-apply the zext.
4172               APInt Trunc = CI->getValue().trunc(Z0TySize);
4173               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4174                   Trunc.isSignBit())
4175                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4176                                          UTy);
4177             }
4178     }
4179     break;
4180 
4181   case Instruction::Shl:
4182     // Turn shift left of a constant amount into a multiply.
4183     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4184       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4185 
4186       // If the shift count is not less than the bitwidth, the result of
4187       // the shift is undefined. Don't try to analyze it, because the
4188       // resolution chosen here may differ from the resolution chosen in
4189       // other parts of the compiler.
4190       if (SA->getValue().uge(BitWidth))
4191         break;
4192 
4193       Constant *X = ConstantInt::get(getContext(),
4194         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4195       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4196     }
4197     break;
4198 
4199   case Instruction::LShr:
4200     // Turn logical shift right of a constant into a unsigned divide.
4201     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4202       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4203 
4204       // If the shift count is not less than the bitwidth, the result of
4205       // the shift is undefined. Don't try to analyze it, because the
4206       // resolution chosen here may differ from the resolution chosen in
4207       // other parts of the compiler.
4208       if (SA->getValue().uge(BitWidth))
4209         break;
4210 
4211       Constant *X = ConstantInt::get(getContext(),
4212         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4213       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4214     }
4215     break;
4216 
4217   case Instruction::AShr:
4218     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4219     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4220       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4221         if (L->getOpcode() == Instruction::Shl &&
4222             L->getOperand(1) == U->getOperand(1)) {
4223           uint64_t BitWidth = getTypeSizeInBits(U->getType());
4224 
4225           // If the shift count is not less than the bitwidth, the result of
4226           // the shift is undefined. Don't try to analyze it, because the
4227           // resolution chosen here may differ from the resolution chosen in
4228           // other parts of the compiler.
4229           if (CI->getValue().uge(BitWidth))
4230             break;
4231 
4232           uint64_t Amt = BitWidth - CI->getZExtValue();
4233           if (Amt == BitWidth)
4234             return getSCEV(L->getOperand(0));       // shift by zero --> noop
4235           return
4236             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4237                                               IntegerType::get(getContext(),
4238                                                                Amt)),
4239                               U->getType());
4240         }
4241     break;
4242 
4243   case Instruction::Trunc:
4244     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4245 
4246   case Instruction::ZExt:
4247     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4248 
4249   case Instruction::SExt:
4250     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4251 
4252   case Instruction::BitCast:
4253     // BitCasts are no-op casts so we just eliminate the cast.
4254     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4255       return getSCEV(U->getOperand(0));
4256     break;
4257 
4258   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4259   // lead to pointer expressions which cannot safely be expanded to GEPs,
4260   // because ScalarEvolution doesn't respect the GEP aliasing rules when
4261   // simplifying integer expressions.
4262 
4263   case Instruction::GetElementPtr:
4264     return createNodeForGEP(cast<GEPOperator>(U));
4265 
4266   case Instruction::PHI:
4267     return createNodeForPHI(cast<PHINode>(U));
4268 
4269   case Instruction::Select:
4270     // This could be a smax or umax that was lowered earlier.
4271     // Try to recover it.
4272     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4273       Value *LHS = ICI->getOperand(0);
4274       Value *RHS = ICI->getOperand(1);
4275       switch (ICI->getPredicate()) {
4276       case ICmpInst::ICMP_SLT:
4277       case ICmpInst::ICMP_SLE:
4278         std::swap(LHS, RHS);
4279         // fall through
4280       case ICmpInst::ICMP_SGT:
4281       case ICmpInst::ICMP_SGE:
4282         // a >s b ? a+x : b+x  ->  smax(a, b)+x
4283         // a >s b ? b+x : a+x  ->  smin(a, b)+x
4284         if (LHS->getType() == U->getType()) {
4285           const SCEV *LS = getSCEV(LHS);
4286           const SCEV *RS = getSCEV(RHS);
4287           const SCEV *LA = getSCEV(U->getOperand(1));
4288           const SCEV *RA = getSCEV(U->getOperand(2));
4289           const SCEV *LDiff = getMinusSCEV(LA, LS);
4290           const SCEV *RDiff = getMinusSCEV(RA, RS);
4291           if (LDiff == RDiff)
4292             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4293           LDiff = getMinusSCEV(LA, RS);
4294           RDiff = getMinusSCEV(RA, LS);
4295           if (LDiff == RDiff)
4296             return getAddExpr(getSMinExpr(LS, RS), LDiff);
4297         }
4298         break;
4299       case ICmpInst::ICMP_ULT:
4300       case ICmpInst::ICMP_ULE:
4301         std::swap(LHS, RHS);
4302         // fall through
4303       case ICmpInst::ICMP_UGT:
4304       case ICmpInst::ICMP_UGE:
4305         // a >u b ? a+x : b+x  ->  umax(a, b)+x
4306         // a >u b ? b+x : a+x  ->  umin(a, b)+x
4307         if (LHS->getType() == U->getType()) {
4308           const SCEV *LS = getSCEV(LHS);
4309           const SCEV *RS = getSCEV(RHS);
4310           const SCEV *LA = getSCEV(U->getOperand(1));
4311           const SCEV *RA = getSCEV(U->getOperand(2));
4312           const SCEV *LDiff = getMinusSCEV(LA, LS);
4313           const SCEV *RDiff = getMinusSCEV(RA, RS);
4314           if (LDiff == RDiff)
4315             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4316           LDiff = getMinusSCEV(LA, RS);
4317           RDiff = getMinusSCEV(RA, LS);
4318           if (LDiff == RDiff)
4319             return getAddExpr(getUMinExpr(LS, RS), LDiff);
4320         }
4321         break;
4322       case ICmpInst::ICMP_NE:
4323         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4324         if (LHS->getType() == U->getType() &&
4325             isa<ConstantInt>(RHS) &&
4326             cast<ConstantInt>(RHS)->isZero()) {
4327           const SCEV *One = getConstant(LHS->getType(), 1);
4328           const SCEV *LS = getSCEV(LHS);
4329           const SCEV *LA = getSCEV(U->getOperand(1));
4330           const SCEV *RA = getSCEV(U->getOperand(2));
4331           const SCEV *LDiff = getMinusSCEV(LA, LS);
4332           const SCEV *RDiff = getMinusSCEV(RA, One);
4333           if (LDiff == RDiff)
4334             return getAddExpr(getUMaxExpr(One, LS), LDiff);
4335         }
4336         break;
4337       case ICmpInst::ICMP_EQ:
4338         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4339         if (LHS->getType() == U->getType() &&
4340             isa<ConstantInt>(RHS) &&
4341             cast<ConstantInt>(RHS)->isZero()) {
4342           const SCEV *One = getConstant(LHS->getType(), 1);
4343           const SCEV *LS = getSCEV(LHS);
4344           const SCEV *LA = getSCEV(U->getOperand(1));
4345           const SCEV *RA = getSCEV(U->getOperand(2));
4346           const SCEV *LDiff = getMinusSCEV(LA, One);
4347           const SCEV *RDiff = getMinusSCEV(RA, LS);
4348           if (LDiff == RDiff)
4349             return getAddExpr(getUMaxExpr(One, LS), LDiff);
4350         }
4351         break;
4352       default:
4353         break;
4354       }
4355     }
4356 
4357   default: // We cannot analyze this expression.
4358     break;
4359   }
4360 
4361   return getUnknown(V);
4362 }
4363 
4364 
4365 
4366 //===----------------------------------------------------------------------===//
4367 //                   Iteration Count Computation Code
4368 //
4369 
4370 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4371 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4372 /// constant. Will also return 0 if the maximum trip count is very large (>=
4373 /// 2^32).
4374 ///
4375 /// This "trip count" assumes that control exits via ExitingBlock. More
4376 /// precisely, it is the number of times that control may reach ExitingBlock
4377 /// before taking the branch. For loops with multiple exits, it may not be the
4378 /// number times that the loop header executes because the loop may exit
4379 /// prematurely via another branch.
4380 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4381                                                     BasicBlock *ExitingBlock) {
4382   const SCEVConstant *ExitCount =
4383       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4384   if (!ExitCount)
4385     return 0;
4386 
4387   ConstantInt *ExitConst = ExitCount->getValue();
4388 
4389   // Guard against huge trip counts.
4390   if (ExitConst->getValue().getActiveBits() > 32)
4391     return 0;
4392 
4393   // In case of integer overflow, this returns 0, which is correct.
4394   return ((unsigned)ExitConst->getZExtValue()) + 1;
4395 }
4396 
4397 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4398 /// trip count of this loop as a normal unsigned value, if possible. This
4399 /// means that the actual trip count is always a multiple of the returned
4400 /// value (don't forget the trip count could very well be zero as well!).
4401 ///
4402 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4403 /// multiple of a constant (which is also the case if the trip count is simply
4404 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4405 /// if the trip count is very large (>= 2^32).
4406 ///
4407 /// As explained in the comments for getSmallConstantTripCount, this assumes
4408 /// that control exits the loop via ExitingBlock.
4409 unsigned
4410 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4411                                               BasicBlock *ExitingBlock) {
4412   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4413   if (ExitCount == getCouldNotCompute())
4414     return 1;
4415 
4416   // Get the trip count from the BE count by adding 1.
4417   const SCEV *TCMul = getAddExpr(ExitCount,
4418                                  getConstant(ExitCount->getType(), 1));
4419   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4420   // to factor simple cases.
4421   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4422     TCMul = Mul->getOperand(0);
4423 
4424   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4425   if (!MulC)
4426     return 1;
4427 
4428   ConstantInt *Result = MulC->getValue();
4429 
4430   // Guard against huge trip counts (this requires checking
4431   // for zero to handle the case where the trip count == -1 and the
4432   // addition wraps).
4433   if (!Result || Result->getValue().getActiveBits() > 32 ||
4434       Result->getValue().getActiveBits() == 0)
4435     return 1;
4436 
4437   return (unsigned)Result->getZExtValue();
4438 }
4439 
4440 // getExitCount - Get the expression for the number of loop iterations for which
4441 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4442 // SCEVCouldNotCompute.
4443 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4444   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4445 }
4446 
4447 /// getBackedgeTakenCount - If the specified loop has a predictable
4448 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4449 /// object. The backedge-taken count is the number of times the loop header
4450 /// will be branched to from within the loop. This is one less than the
4451 /// trip count of the loop, since it doesn't count the first iteration,
4452 /// when the header is branched to from outside the loop.
4453 ///
4454 /// Note that it is not valid to call this method on a loop without a
4455 /// loop-invariant backedge-taken count (see
4456 /// hasLoopInvariantBackedgeTakenCount).
4457 ///
4458 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4459   return getBackedgeTakenInfo(L).getExact(this);
4460 }
4461 
4462 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4463 /// return the least SCEV value that is known never to be less than the
4464 /// actual backedge taken count.
4465 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4466   return getBackedgeTakenInfo(L).getMax(this);
4467 }
4468 
4469 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
4470 /// onto the given Worklist.
4471 static void
4472 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4473   BasicBlock *Header = L->getHeader();
4474 
4475   // Push all Loop-header PHIs onto the Worklist stack.
4476   for (BasicBlock::iterator I = Header->begin();
4477        PHINode *PN = dyn_cast<PHINode>(I); ++I)
4478     Worklist.push_back(PN);
4479 }
4480 
4481 const ScalarEvolution::BackedgeTakenInfo &
4482 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4483   // Initially insert an invalid entry for this loop. If the insertion
4484   // succeeds, proceed to actually compute a backedge-taken count and
4485   // update the value. The temporary CouldNotCompute value tells SCEV
4486   // code elsewhere that it shouldn't attempt to request a new
4487   // backedge-taken count, which could result in infinite recursion.
4488   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4489     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4490   if (!Pair.second)
4491     return Pair.first->second;
4492 
4493   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4494   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4495   // must be cleared in this scope.
4496   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4497 
4498   if (Result.getExact(this) != getCouldNotCompute()) {
4499     assert(isLoopInvariant(Result.getExact(this), L) &&
4500            isLoopInvariant(Result.getMax(this), L) &&
4501            "Computed backedge-taken count isn't loop invariant for loop!");
4502     ++NumTripCountsComputed;
4503   }
4504   else if (Result.getMax(this) == getCouldNotCompute() &&
4505            isa<PHINode>(L->getHeader()->begin())) {
4506     // Only count loops that have phi nodes as not being computable.
4507     ++NumTripCountsNotComputed;
4508   }
4509 
4510   // Now that we know more about the trip count for this loop, forget any
4511   // existing SCEV values for PHI nodes in this loop since they are only
4512   // conservative estimates made without the benefit of trip count
4513   // information. This is similar to the code in forgetLoop, except that
4514   // it handles SCEVUnknown PHI nodes specially.
4515   if (Result.hasAnyInfo()) {
4516     SmallVector<Instruction *, 16> Worklist;
4517     PushLoopPHIs(L, Worklist);
4518 
4519     SmallPtrSet<Instruction *, 8> Visited;
4520     while (!Worklist.empty()) {
4521       Instruction *I = Worklist.pop_back_val();
4522       if (!Visited.insert(I)) continue;
4523 
4524       ValueExprMapType::iterator It =
4525         ValueExprMap.find_as(static_cast<Value *>(I));
4526       if (It != ValueExprMap.end()) {
4527         const SCEV *Old = It->second;
4528 
4529         // SCEVUnknown for a PHI either means that it has an unrecognized
4530         // structure, or it's a PHI that's in the progress of being computed
4531         // by createNodeForPHI.  In the former case, additional loop trip
4532         // count information isn't going to change anything. In the later
4533         // case, createNodeForPHI will perform the necessary updates on its
4534         // own when it gets to that point.
4535         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4536           forgetMemoizedResults(Old);
4537           ValueExprMap.erase(It);
4538         }
4539         if (PHINode *PN = dyn_cast<PHINode>(I))
4540           ConstantEvolutionLoopExitValue.erase(PN);
4541       }
4542 
4543       PushDefUseChildren(I, Worklist);
4544     }
4545   }
4546 
4547   // Re-lookup the insert position, since the call to
4548   // ComputeBackedgeTakenCount above could result in a
4549   // recusive call to getBackedgeTakenInfo (on a different
4550   // loop), which would invalidate the iterator computed
4551   // earlier.
4552   return BackedgeTakenCounts.find(L)->second = Result;
4553 }
4554 
4555 /// forgetLoop - This method should be called by the client when it has
4556 /// changed a loop in a way that may effect ScalarEvolution's ability to
4557 /// compute a trip count, or if the loop is deleted.
4558 void ScalarEvolution::forgetLoop(const Loop *L) {
4559   // Drop any stored trip count value.
4560   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4561     BackedgeTakenCounts.find(L);
4562   if (BTCPos != BackedgeTakenCounts.end()) {
4563     BTCPos->second.clear();
4564     BackedgeTakenCounts.erase(BTCPos);
4565   }
4566 
4567   // Drop information about expressions based on loop-header PHIs.
4568   SmallVector<Instruction *, 16> Worklist;
4569   PushLoopPHIs(L, Worklist);
4570 
4571   SmallPtrSet<Instruction *, 8> Visited;
4572   while (!Worklist.empty()) {
4573     Instruction *I = Worklist.pop_back_val();
4574     if (!Visited.insert(I)) continue;
4575 
4576     ValueExprMapType::iterator It =
4577       ValueExprMap.find_as(static_cast<Value *>(I));
4578     if (It != ValueExprMap.end()) {
4579       forgetMemoizedResults(It->second);
4580       ValueExprMap.erase(It);
4581       if (PHINode *PN = dyn_cast<PHINode>(I))
4582         ConstantEvolutionLoopExitValue.erase(PN);
4583     }
4584 
4585     PushDefUseChildren(I, Worklist);
4586   }
4587 
4588   // Forget all contained loops too, to avoid dangling entries in the
4589   // ValuesAtScopes map.
4590   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4591     forgetLoop(*I);
4592 }
4593 
4594 /// forgetValue - This method should be called by the client when it has
4595 /// changed a value in a way that may effect its value, or which may
4596 /// disconnect it from a def-use chain linking it to a loop.
4597 void ScalarEvolution::forgetValue(Value *V) {
4598   Instruction *I = dyn_cast<Instruction>(V);
4599   if (!I) return;
4600 
4601   // Drop information about expressions based on loop-header PHIs.
4602   SmallVector<Instruction *, 16> Worklist;
4603   Worklist.push_back(I);
4604 
4605   SmallPtrSet<Instruction *, 8> Visited;
4606   while (!Worklist.empty()) {
4607     I = Worklist.pop_back_val();
4608     if (!Visited.insert(I)) continue;
4609 
4610     ValueExprMapType::iterator It =
4611       ValueExprMap.find_as(static_cast<Value *>(I));
4612     if (It != ValueExprMap.end()) {
4613       forgetMemoizedResults(It->second);
4614       ValueExprMap.erase(It);
4615       if (PHINode *PN = dyn_cast<PHINode>(I))
4616         ConstantEvolutionLoopExitValue.erase(PN);
4617     }
4618 
4619     PushDefUseChildren(I, Worklist);
4620   }
4621 }
4622 
4623 /// getExact - Get the exact loop backedge taken count considering all loop
4624 /// exits. A computable result can only be return for loops with a single exit.
4625 /// Returning the minimum taken count among all exits is incorrect because one
4626 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4627 /// the limit of each loop test is never skipped. This is a valid assumption as
4628 /// long as the loop exits via that test. For precise results, it is the
4629 /// caller's responsibility to specify the relevant loop exit using
4630 /// getExact(ExitingBlock, SE).
4631 const SCEV *
4632 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4633   // If any exits were not computable, the loop is not computable.
4634   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4635 
4636   // We need exactly one computable exit.
4637   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4638   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4639 
4640   const SCEV *BECount = nullptr;
4641   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4642        ENT != nullptr; ENT = ENT->getNextExit()) {
4643 
4644     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4645 
4646     if (!BECount)
4647       BECount = ENT->ExactNotTaken;
4648     else if (BECount != ENT->ExactNotTaken)
4649       return SE->getCouldNotCompute();
4650   }
4651   assert(BECount && "Invalid not taken count for loop exit");
4652   return BECount;
4653 }
4654 
4655 /// getExact - Get the exact not taken count for this loop exit.
4656 const SCEV *
4657 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4658                                              ScalarEvolution *SE) const {
4659   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4660        ENT != nullptr; ENT = ENT->getNextExit()) {
4661 
4662     if (ENT->ExitingBlock == ExitingBlock)
4663       return ENT->ExactNotTaken;
4664   }
4665   return SE->getCouldNotCompute();
4666 }
4667 
4668 /// getMax - Get the max backedge taken count for the loop.
4669 const SCEV *
4670 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4671   return Max ? Max : SE->getCouldNotCompute();
4672 }
4673 
4674 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4675                                                     ScalarEvolution *SE) const {
4676   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4677     return true;
4678 
4679   if (!ExitNotTaken.ExitingBlock)
4680     return false;
4681 
4682   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4683        ENT != nullptr; ENT = ENT->getNextExit()) {
4684 
4685     if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4686         && SE->hasOperand(ENT->ExactNotTaken, S)) {
4687       return true;
4688     }
4689   }
4690   return false;
4691 }
4692 
4693 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4694 /// computable exit into a persistent ExitNotTakenInfo array.
4695 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4696   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4697   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4698 
4699   if (!Complete)
4700     ExitNotTaken.setIncomplete();
4701 
4702   unsigned NumExits = ExitCounts.size();
4703   if (NumExits == 0) return;
4704 
4705   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4706   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4707   if (NumExits == 1) return;
4708 
4709   // Handle the rare case of multiple computable exits.
4710   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4711 
4712   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4713   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4714     PrevENT->setNextExit(ENT);
4715     ENT->ExitingBlock = ExitCounts[i].first;
4716     ENT->ExactNotTaken = ExitCounts[i].second;
4717   }
4718 }
4719 
4720 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
4721 void ScalarEvolution::BackedgeTakenInfo::clear() {
4722   ExitNotTaken.ExitingBlock = nullptr;
4723   ExitNotTaken.ExactNotTaken = nullptr;
4724   delete[] ExitNotTaken.getNextExit();
4725 }
4726 
4727 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
4728 /// of the specified loop will execute.
4729 ScalarEvolution::BackedgeTakenInfo
4730 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4731   SmallVector<BasicBlock *, 8> ExitingBlocks;
4732   L->getExitingBlocks(ExitingBlocks);
4733 
4734   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4735   bool CouldComputeBECount = true;
4736   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4737   const SCEV *MustExitMaxBECount = nullptr;
4738   const SCEV *MayExitMaxBECount = nullptr;
4739 
4740   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4741   // and compute maxBECount.
4742   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4743     BasicBlock *ExitBB = ExitingBlocks[i];
4744     ExitLimit EL = ComputeExitLimit(L, ExitBB);
4745 
4746     // 1. For each exit that can be computed, add an entry to ExitCounts.
4747     // CouldComputeBECount is true only if all exits can be computed.
4748     if (EL.Exact == getCouldNotCompute())
4749       // We couldn't compute an exact value for this exit, so
4750       // we won't be able to compute an exact value for the loop.
4751       CouldComputeBECount = false;
4752     else
4753       ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
4754 
4755     // 2. Derive the loop's MaxBECount from each exit's max number of
4756     // non-exiting iterations. Partition the loop exits into two kinds:
4757     // LoopMustExits and LoopMayExits.
4758     //
4759     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4760     // is a LoopMayExit.  If any computable LoopMustExit is found, then
4761     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4762     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4763     // considered greater than any computable EL.Max.
4764     if (EL.Max != getCouldNotCompute() && Latch &&
4765         DT->dominates(ExitBB, Latch)) {
4766       if (!MustExitMaxBECount)
4767         MustExitMaxBECount = EL.Max;
4768       else {
4769         MustExitMaxBECount =
4770           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
4771       }
4772     } else if (MayExitMaxBECount != getCouldNotCompute()) {
4773       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4774         MayExitMaxBECount = EL.Max;
4775       else {
4776         MayExitMaxBECount =
4777           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4778       }
4779     }
4780   }
4781   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4782     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
4783   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4784 }
4785 
4786 /// ComputeExitLimit - Compute the number of times the backedge of the specified
4787 /// loop will execute if it exits via the specified block.
4788 ScalarEvolution::ExitLimit
4789 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4790 
4791   // Okay, we've chosen an exiting block.  See what condition causes us to
4792   // exit at this block and remember the exit block and whether all other targets
4793   // lead to the loop header.
4794   bool MustExecuteLoopHeader = true;
4795   BasicBlock *Exit = nullptr;
4796   for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4797        SI != SE; ++SI)
4798     if (!L->contains(*SI)) {
4799       if (Exit) // Multiple exit successors.
4800         return getCouldNotCompute();
4801       Exit = *SI;
4802     } else if (*SI != L->getHeader()) {
4803       MustExecuteLoopHeader = false;
4804     }
4805 
4806   // At this point, we know we have a conditional branch that determines whether
4807   // the loop is exited.  However, we don't know if the branch is executed each
4808   // time through the loop.  If not, then the execution count of the branch will
4809   // not be equal to the trip count of the loop.
4810   //
4811   // Currently we check for this by checking to see if the Exit branch goes to
4812   // the loop header.  If so, we know it will always execute the same number of
4813   // times as the loop.  We also handle the case where the exit block *is* the
4814   // loop header.  This is common for un-rotated loops.
4815   //
4816   // If both of those tests fail, walk up the unique predecessor chain to the
4817   // header, stopping if there is an edge that doesn't exit the loop. If the
4818   // header is reached, the execution count of the branch will be equal to the
4819   // trip count of the loop.
4820   //
4821   //  More extensive analysis could be done to handle more cases here.
4822   //
4823   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
4824     // The simple checks failed, try climbing the unique predecessor chain
4825     // up to the header.
4826     bool Ok = false;
4827     for (BasicBlock *BB = ExitingBlock; BB; ) {
4828       BasicBlock *Pred = BB->getUniquePredecessor();
4829       if (!Pred)
4830         return getCouldNotCompute();
4831       TerminatorInst *PredTerm = Pred->getTerminator();
4832       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4833         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4834         if (PredSucc == BB)
4835           continue;
4836         // If the predecessor has a successor that isn't BB and isn't
4837         // outside the loop, assume the worst.
4838         if (L->contains(PredSucc))
4839           return getCouldNotCompute();
4840       }
4841       if (Pred == L->getHeader()) {
4842         Ok = true;
4843         break;
4844       }
4845       BB = Pred;
4846     }
4847     if (!Ok)
4848       return getCouldNotCompute();
4849   }
4850 
4851   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
4852   TerminatorInst *Term = ExitingBlock->getTerminator();
4853   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4854     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4855     // Proceed to the next level to examine the exit condition expression.
4856     return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4857                                     BI->getSuccessor(1),
4858                                     /*ControlsExit=*/IsOnlyExit);
4859   }
4860 
4861   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4862     return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4863                                                 /*ControlsExit=*/IsOnlyExit);
4864 
4865   return getCouldNotCompute();
4866 }
4867 
4868 /// ComputeExitLimitFromCond - Compute the number of times the
4869 /// backedge of the specified loop will execute if its exit condition
4870 /// were a conditional branch of ExitCond, TBB, and FBB.
4871 ///
4872 /// @param ControlsExit is true if ExitCond directly controls the exit
4873 /// branch. In this case, we can assume that the loop exits only if the
4874 /// condition is true and can infer that failing to meet the condition prior to
4875 /// integer wraparound results in undefined behavior.
4876 ScalarEvolution::ExitLimit
4877 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4878                                           Value *ExitCond,
4879                                           BasicBlock *TBB,
4880                                           BasicBlock *FBB,
4881                                           bool ControlsExit) {
4882   // Check if the controlling expression for this loop is an And or Or.
4883   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4884     if (BO->getOpcode() == Instruction::And) {
4885       // Recurse on the operands of the and.
4886       bool EitherMayExit = L->contains(TBB);
4887       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4888                                                ControlsExit && !EitherMayExit);
4889       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4890                                                ControlsExit && !EitherMayExit);
4891       const SCEV *BECount = getCouldNotCompute();
4892       const SCEV *MaxBECount = getCouldNotCompute();
4893       if (EitherMayExit) {
4894         // Both conditions must be true for the loop to continue executing.
4895         // Choose the less conservative count.
4896         if (EL0.Exact == getCouldNotCompute() ||
4897             EL1.Exact == getCouldNotCompute())
4898           BECount = getCouldNotCompute();
4899         else
4900           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4901         if (EL0.Max == getCouldNotCompute())
4902           MaxBECount = EL1.Max;
4903         else if (EL1.Max == getCouldNotCompute())
4904           MaxBECount = EL0.Max;
4905         else
4906           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4907       } else {
4908         // Both conditions must be true at the same time for the loop to exit.
4909         // For now, be conservative.
4910         assert(L->contains(FBB) && "Loop block has no successor in loop!");
4911         if (EL0.Max == EL1.Max)
4912           MaxBECount = EL0.Max;
4913         if (EL0.Exact == EL1.Exact)
4914           BECount = EL0.Exact;
4915       }
4916 
4917       return ExitLimit(BECount, MaxBECount);
4918     }
4919     if (BO->getOpcode() == Instruction::Or) {
4920       // Recurse on the operands of the or.
4921       bool EitherMayExit = L->contains(FBB);
4922       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4923                                                ControlsExit && !EitherMayExit);
4924       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4925                                                ControlsExit && !EitherMayExit);
4926       const SCEV *BECount = getCouldNotCompute();
4927       const SCEV *MaxBECount = getCouldNotCompute();
4928       if (EitherMayExit) {
4929         // Both conditions must be false for the loop to continue executing.
4930         // Choose the less conservative count.
4931         if (EL0.Exact == getCouldNotCompute() ||
4932             EL1.Exact == getCouldNotCompute())
4933           BECount = getCouldNotCompute();
4934         else
4935           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4936         if (EL0.Max == getCouldNotCompute())
4937           MaxBECount = EL1.Max;
4938         else if (EL1.Max == getCouldNotCompute())
4939           MaxBECount = EL0.Max;
4940         else
4941           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4942       } else {
4943         // Both conditions must be false at the same time for the loop to exit.
4944         // For now, be conservative.
4945         assert(L->contains(TBB) && "Loop block has no successor in loop!");
4946         if (EL0.Max == EL1.Max)
4947           MaxBECount = EL0.Max;
4948         if (EL0.Exact == EL1.Exact)
4949           BECount = EL0.Exact;
4950       }
4951 
4952       return ExitLimit(BECount, MaxBECount);
4953     }
4954   }
4955 
4956   // With an icmp, it may be feasible to compute an exact backedge-taken count.
4957   // Proceed to the next level to examine the icmp.
4958   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4959     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
4960 
4961   // Check for a constant condition. These are normally stripped out by
4962   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4963   // preserve the CFG and is temporarily leaving constant conditions
4964   // in place.
4965   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4966     if (L->contains(FBB) == !CI->getZExtValue())
4967       // The backedge is always taken.
4968       return getCouldNotCompute();
4969     else
4970       // The backedge is never taken.
4971       return getConstant(CI->getType(), 0);
4972   }
4973 
4974   // If it's not an integer or pointer comparison then compute it the hard way.
4975   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4976 }
4977 
4978 /// ComputeExitLimitFromICmp - Compute the number of times the
4979 /// backedge of the specified loop will execute if its exit condition
4980 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4981 ScalarEvolution::ExitLimit
4982 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4983                                           ICmpInst *ExitCond,
4984                                           BasicBlock *TBB,
4985                                           BasicBlock *FBB,
4986                                           bool ControlsExit) {
4987 
4988   // If the condition was exit on true, convert the condition to exit on false
4989   ICmpInst::Predicate Cond;
4990   if (!L->contains(FBB))
4991     Cond = ExitCond->getPredicate();
4992   else
4993     Cond = ExitCond->getInversePredicate();
4994 
4995   // Handle common loops like: for (X = "string"; *X; ++X)
4996   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4997     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4998       ExitLimit ItCnt =
4999         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5000       if (ItCnt.hasAnyInfo())
5001         return ItCnt;
5002     }
5003 
5004   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5005   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5006 
5007   // Try to evaluate any dependencies out of the loop.
5008   LHS = getSCEVAtScope(LHS, L);
5009   RHS = getSCEVAtScope(RHS, L);
5010 
5011   // At this point, we would like to compute how many iterations of the
5012   // loop the predicate will return true for these inputs.
5013   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5014     // If there is a loop-invariant, force it into the RHS.
5015     std::swap(LHS, RHS);
5016     Cond = ICmpInst::getSwappedPredicate(Cond);
5017   }
5018 
5019   // Simplify the operands before analyzing them.
5020   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5021 
5022   // If we have a comparison of a chrec against a constant, try to use value
5023   // ranges to answer this query.
5024   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5025     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5026       if (AddRec->getLoop() == L) {
5027         // Form the constant range.
5028         ConstantRange CompRange(
5029             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
5030 
5031         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5032         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5033       }
5034 
5035   switch (Cond) {
5036   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5037     // Convert to: while (X-Y != 0)
5038     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5039     if (EL.hasAnyInfo()) return EL;
5040     break;
5041   }
5042   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5043     // Convert to: while (X-Y == 0)
5044     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5045     if (EL.hasAnyInfo()) return EL;
5046     break;
5047   }
5048   case ICmpInst::ICMP_SLT:
5049   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5050     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5051     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5052     if (EL.hasAnyInfo()) return EL;
5053     break;
5054   }
5055   case ICmpInst::ICMP_SGT:
5056   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5057     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5058     ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5059     if (EL.hasAnyInfo()) return EL;
5060     break;
5061   }
5062   default:
5063 #if 0
5064     dbgs() << "ComputeBackedgeTakenCount ";
5065     if (ExitCond->getOperand(0)->getType()->isUnsigned())
5066       dbgs() << "[unsigned] ";
5067     dbgs() << *LHS << "   "
5068          << Instruction::getOpcodeName(Instruction::ICmp)
5069          << "   " << *RHS << "\n";
5070 #endif
5071     break;
5072   }
5073   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5074 }
5075 
5076 ScalarEvolution::ExitLimit
5077 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5078                                                       SwitchInst *Switch,
5079                                                       BasicBlock *ExitingBlock,
5080                                                       bool ControlsExit) {
5081   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5082 
5083   // Give up if the exit is the default dest of a switch.
5084   if (Switch->getDefaultDest() == ExitingBlock)
5085     return getCouldNotCompute();
5086 
5087   assert(L->contains(Switch->getDefaultDest()) &&
5088          "Default case must not exit the loop!");
5089   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5090   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5091 
5092   // while (X != Y) --> while (X-Y != 0)
5093   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5094   if (EL.hasAnyInfo())
5095     return EL;
5096 
5097   return getCouldNotCompute();
5098 }
5099 
5100 static ConstantInt *
5101 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5102                                 ScalarEvolution &SE) {
5103   const SCEV *InVal = SE.getConstant(C);
5104   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5105   assert(isa<SCEVConstant>(Val) &&
5106          "Evaluation of SCEV at constant didn't fold correctly?");
5107   return cast<SCEVConstant>(Val)->getValue();
5108 }
5109 
5110 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
5111 /// 'icmp op load X, cst', try to see if we can compute the backedge
5112 /// execution count.
5113 ScalarEvolution::ExitLimit
5114 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5115   LoadInst *LI,
5116   Constant *RHS,
5117   const Loop *L,
5118   ICmpInst::Predicate predicate) {
5119 
5120   if (LI->isVolatile()) return getCouldNotCompute();
5121 
5122   // Check to see if the loaded pointer is a getelementptr of a global.
5123   // TODO: Use SCEV instead of manually grubbing with GEPs.
5124   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5125   if (!GEP) return getCouldNotCompute();
5126 
5127   // Make sure that it is really a constant global we are gepping, with an
5128   // initializer, and make sure the first IDX is really 0.
5129   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5130   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5131       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5132       !cast<Constant>(GEP->getOperand(1))->isNullValue())
5133     return getCouldNotCompute();
5134 
5135   // Okay, we allow one non-constant index into the GEP instruction.
5136   Value *VarIdx = nullptr;
5137   std::vector<Constant*> Indexes;
5138   unsigned VarIdxNum = 0;
5139   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5140     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5141       Indexes.push_back(CI);
5142     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5143       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
5144       VarIdx = GEP->getOperand(i);
5145       VarIdxNum = i-2;
5146       Indexes.push_back(nullptr);
5147     }
5148 
5149   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5150   if (!VarIdx)
5151     return getCouldNotCompute();
5152 
5153   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5154   // Check to see if X is a loop variant variable value now.
5155   const SCEV *Idx = getSCEV(VarIdx);
5156   Idx = getSCEVAtScope(Idx, L);
5157 
5158   // We can only recognize very limited forms of loop index expressions, in
5159   // particular, only affine AddRec's like {C1,+,C2}.
5160   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5161   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5162       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5163       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5164     return getCouldNotCompute();
5165 
5166   unsigned MaxSteps = MaxBruteForceIterations;
5167   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5168     ConstantInt *ItCst = ConstantInt::get(
5169                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
5170     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5171 
5172     // Form the GEP offset.
5173     Indexes[VarIdxNum] = Val;
5174 
5175     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5176                                                          Indexes);
5177     if (!Result) break;  // Cannot compute!
5178 
5179     // Evaluate the condition for this iteration.
5180     Result = ConstantExpr::getICmp(predicate, Result, RHS);
5181     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
5182     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5183 #if 0
5184       dbgs() << "\n***\n*** Computed loop count " << *ItCst
5185              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5186              << "***\n";
5187 #endif
5188       ++NumArrayLenItCounts;
5189       return getConstant(ItCst);   // Found terminating iteration!
5190     }
5191   }
5192   return getCouldNotCompute();
5193 }
5194 
5195 
5196 /// CanConstantFold - Return true if we can constant fold an instruction of the
5197 /// specified type, assuming that all operands were constants.
5198 static bool CanConstantFold(const Instruction *I) {
5199   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5200       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5201       isa<LoadInst>(I))
5202     return true;
5203 
5204   if (const CallInst *CI = dyn_cast<CallInst>(I))
5205     if (const Function *F = CI->getCalledFunction())
5206       return canConstantFoldCallTo(F);
5207   return false;
5208 }
5209 
5210 /// Determine whether this instruction can constant evolve within this loop
5211 /// assuming its operands can all constant evolve.
5212 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5213   // An instruction outside of the loop can't be derived from a loop PHI.
5214   if (!L->contains(I)) return false;
5215 
5216   if (isa<PHINode>(I)) {
5217     if (L->getHeader() == I->getParent())
5218       return true;
5219     else
5220       // We don't currently keep track of the control flow needed to evaluate
5221       // PHIs, so we cannot handle PHIs inside of loops.
5222       return false;
5223   }
5224 
5225   // If we won't be able to constant fold this expression even if the operands
5226   // are constants, bail early.
5227   return CanConstantFold(I);
5228 }
5229 
5230 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5231 /// recursing through each instruction operand until reaching a loop header phi.
5232 static PHINode *
5233 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5234                                DenseMap<Instruction *, PHINode *> &PHIMap) {
5235 
5236   // Otherwise, we can evaluate this instruction if all of its operands are
5237   // constant or derived from a PHI node themselves.
5238   PHINode *PHI = nullptr;
5239   for (Instruction::op_iterator OpI = UseInst->op_begin(),
5240          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5241 
5242     if (isa<Constant>(*OpI)) continue;
5243 
5244     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
5245     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5246 
5247     PHINode *P = dyn_cast<PHINode>(OpInst);
5248     if (!P)
5249       // If this operand is already visited, reuse the prior result.
5250       // We may have P != PHI if this is the deepest point at which the
5251       // inconsistent paths meet.
5252       P = PHIMap.lookup(OpInst);
5253     if (!P) {
5254       // Recurse and memoize the results, whether a phi is found or not.
5255       // This recursive call invalidates pointers into PHIMap.
5256       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5257       PHIMap[OpInst] = P;
5258     }
5259     if (!P)
5260       return nullptr;  // Not evolving from PHI
5261     if (PHI && PHI != P)
5262       return nullptr;  // Evolving from multiple different PHIs.
5263     PHI = P;
5264   }
5265   // This is a expression evolving from a constant PHI!
5266   return PHI;
5267 }
5268 
5269 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5270 /// in the loop that V is derived from.  We allow arbitrary operations along the
5271 /// way, but the operands of an operation must either be constants or a value
5272 /// derived from a constant PHI.  If this expression does not fit with these
5273 /// constraints, return null.
5274 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5275   Instruction *I = dyn_cast<Instruction>(V);
5276   if (!I || !canConstantEvolve(I, L)) return nullptr;
5277 
5278   if (PHINode *PN = dyn_cast<PHINode>(I)) {
5279     return PN;
5280   }
5281 
5282   // Record non-constant instructions contained by the loop.
5283   DenseMap<Instruction *, PHINode *> PHIMap;
5284   return getConstantEvolvingPHIOperands(I, L, PHIMap);
5285 }
5286 
5287 /// EvaluateExpression - Given an expression that passes the
5288 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5289 /// in the loop has the value PHIVal.  If we can't fold this expression for some
5290 /// reason, return null.
5291 static Constant *EvaluateExpression(Value *V, const Loop *L,
5292                                     DenseMap<Instruction *, Constant *> &Vals,
5293                                     const DataLayout *DL,
5294                                     const TargetLibraryInfo *TLI) {
5295   // Convenient constant check, but redundant for recursive calls.
5296   if (Constant *C = dyn_cast<Constant>(V)) return C;
5297   Instruction *I = dyn_cast<Instruction>(V);
5298   if (!I) return nullptr;
5299 
5300   if (Constant *C = Vals.lookup(I)) return C;
5301 
5302   // An instruction inside the loop depends on a value outside the loop that we
5303   // weren't given a mapping for, or a value such as a call inside the loop.
5304   if (!canConstantEvolve(I, L)) return nullptr;
5305 
5306   // An unmapped PHI can be due to a branch or another loop inside this loop,
5307   // or due to this not being the initial iteration through a loop where we
5308   // couldn't compute the evolution of this particular PHI last time.
5309   if (isa<PHINode>(I)) return nullptr;
5310 
5311   std::vector<Constant*> Operands(I->getNumOperands());
5312 
5313   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5314     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5315     if (!Operand) {
5316       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5317       if (!Operands[i]) return nullptr;
5318       continue;
5319     }
5320     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5321     Vals[Operand] = C;
5322     if (!C) return nullptr;
5323     Operands[i] = C;
5324   }
5325 
5326   if (CmpInst *CI = dyn_cast<CmpInst>(I))
5327     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5328                                            Operands[1], DL, TLI);
5329   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5330     if (!LI->isVolatile())
5331       return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5332   }
5333   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5334                                   TLI);
5335 }
5336 
5337 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5338 /// in the header of its containing loop, we know the loop executes a
5339 /// constant number of times, and the PHI node is just a recurrence
5340 /// involving constants, fold it.
5341 Constant *
5342 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5343                                                    const APInt &BEs,
5344                                                    const Loop *L) {
5345   DenseMap<PHINode*, Constant*>::const_iterator I =
5346     ConstantEvolutionLoopExitValue.find(PN);
5347   if (I != ConstantEvolutionLoopExitValue.end())
5348     return I->second;
5349 
5350   if (BEs.ugt(MaxBruteForceIterations))
5351     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
5352 
5353   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5354 
5355   DenseMap<Instruction *, Constant *> CurrentIterVals;
5356   BasicBlock *Header = L->getHeader();
5357   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5358 
5359   // Since the loop is canonicalized, the PHI node must have two entries.  One
5360   // entry must be a constant (coming in from outside of the loop), and the
5361   // second must be derived from the same PHI.
5362   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5363   PHINode *PHI = nullptr;
5364   for (BasicBlock::iterator I = Header->begin();
5365        (PHI = dyn_cast<PHINode>(I)); ++I) {
5366     Constant *StartCST =
5367       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5368     if (!StartCST) continue;
5369     CurrentIterVals[PHI] = StartCST;
5370   }
5371   if (!CurrentIterVals.count(PN))
5372     return RetVal = nullptr;
5373 
5374   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
5375 
5376   // Execute the loop symbolically to determine the exit value.
5377   if (BEs.getActiveBits() >= 32)
5378     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5379 
5380   unsigned NumIterations = BEs.getZExtValue(); // must be in range
5381   unsigned IterationNum = 0;
5382   for (; ; ++IterationNum) {
5383     if (IterationNum == NumIterations)
5384       return RetVal = CurrentIterVals[PN];  // Got exit value!
5385 
5386     // Compute the value of the PHIs for the next iteration.
5387     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5388     DenseMap<Instruction *, Constant *> NextIterVals;
5389     Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
5390                                            TLI);
5391     if (!NextPHI)
5392       return nullptr;        // Couldn't evaluate!
5393     NextIterVals[PN] = NextPHI;
5394 
5395     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5396 
5397     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
5398     // cease to be able to evaluate one of them or if they stop evolving,
5399     // because that doesn't necessarily prevent us from computing PN.
5400     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
5401     for (DenseMap<Instruction *, Constant *>::const_iterator
5402            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5403       PHINode *PHI = dyn_cast<PHINode>(I->first);
5404       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
5405       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5406     }
5407     // We use two distinct loops because EvaluateExpression may invalidate any
5408     // iterators into CurrentIterVals.
5409     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5410              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5411       PHINode *PHI = I->first;
5412       Constant *&NextPHI = NextIterVals[PHI];
5413       if (!NextPHI) {   // Not already computed.
5414         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5415         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5416       }
5417       if (NextPHI != I->second)
5418         StoppedEvolving = false;
5419     }
5420 
5421     // If all entries in CurrentIterVals == NextIterVals then we can stop
5422     // iterating, the loop can't continue to change.
5423     if (StoppedEvolving)
5424       return RetVal = CurrentIterVals[PN];
5425 
5426     CurrentIterVals.swap(NextIterVals);
5427   }
5428 }
5429 
5430 /// ComputeExitCountExhaustively - If the loop is known to execute a
5431 /// constant number of times (the condition evolves only from constants),
5432 /// try to evaluate a few iterations of the loop until we get the exit
5433 /// condition gets a value of ExitWhen (true or false).  If we cannot
5434 /// evaluate the trip count of the loop, return getCouldNotCompute().
5435 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5436                                                           Value *Cond,
5437                                                           bool ExitWhen) {
5438   PHINode *PN = getConstantEvolvingPHI(Cond, L);
5439   if (!PN) return getCouldNotCompute();
5440 
5441   // If the loop is canonicalized, the PHI will have exactly two entries.
5442   // That's the only form we support here.
5443   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5444 
5445   DenseMap<Instruction *, Constant *> CurrentIterVals;
5446   BasicBlock *Header = L->getHeader();
5447   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5448 
5449   // One entry must be a constant (coming in from outside of the loop), and the
5450   // second must be derived from the same PHI.
5451   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5452   PHINode *PHI = nullptr;
5453   for (BasicBlock::iterator I = Header->begin();
5454        (PHI = dyn_cast<PHINode>(I)); ++I) {
5455     Constant *StartCST =
5456       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5457     if (!StartCST) continue;
5458     CurrentIterVals[PHI] = StartCST;
5459   }
5460   if (!CurrentIterVals.count(PN))
5461     return getCouldNotCompute();
5462 
5463   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
5464   // the loop symbolically to determine when the condition gets a value of
5465   // "ExitWhen".
5466 
5467   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
5468   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5469     ConstantInt *CondVal =
5470       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5471                                                        DL, TLI));
5472 
5473     // Couldn't symbolically evaluate.
5474     if (!CondVal) return getCouldNotCompute();
5475 
5476     if (CondVal->getValue() == uint64_t(ExitWhen)) {
5477       ++NumBruteForceTripCountsComputed;
5478       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5479     }
5480 
5481     // Update all the PHI nodes for the next iteration.
5482     DenseMap<Instruction *, Constant *> NextIterVals;
5483 
5484     // Create a list of which PHIs we need to compute. We want to do this before
5485     // calling EvaluateExpression on them because that may invalidate iterators
5486     // into CurrentIterVals.
5487     SmallVector<PHINode *, 8> PHIsToCompute;
5488     for (DenseMap<Instruction *, Constant *>::const_iterator
5489            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5490       PHINode *PHI = dyn_cast<PHINode>(I->first);
5491       if (!PHI || PHI->getParent() != Header) continue;
5492       PHIsToCompute.push_back(PHI);
5493     }
5494     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5495              E = PHIsToCompute.end(); I != E; ++I) {
5496       PHINode *PHI = *I;
5497       Constant *&NextPHI = NextIterVals[PHI];
5498       if (NextPHI) continue;    // Already computed!
5499 
5500       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5501       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5502     }
5503     CurrentIterVals.swap(NextIterVals);
5504   }
5505 
5506   // Too many iterations were needed to evaluate.
5507   return getCouldNotCompute();
5508 }
5509 
5510 /// getSCEVAtScope - Return a SCEV expression for the specified value
5511 /// at the specified scope in the program.  The L value specifies a loop
5512 /// nest to evaluate the expression at, where null is the top-level or a
5513 /// specified loop is immediately inside of the loop.
5514 ///
5515 /// This method can be used to compute the exit value for a variable defined
5516 /// in a loop by querying what the value will hold in the parent loop.
5517 ///
5518 /// In the case that a relevant loop exit value cannot be computed, the
5519 /// original value V is returned.
5520 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5521   // Check to see if we've folded this expression at this loop before.
5522   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5523   for (unsigned u = 0; u < Values.size(); u++) {
5524     if (Values[u].first == L)
5525       return Values[u].second ? Values[u].second : V;
5526   }
5527   Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
5528   // Otherwise compute it.
5529   const SCEV *C = computeSCEVAtScope(V, L);
5530   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5531   for (unsigned u = Values2.size(); u > 0; u--) {
5532     if (Values2[u - 1].first == L) {
5533       Values2[u - 1].second = C;
5534       break;
5535     }
5536   }
5537   return C;
5538 }
5539 
5540 /// This builds up a Constant using the ConstantExpr interface.  That way, we
5541 /// will return Constants for objects which aren't represented by a
5542 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5543 /// Returns NULL if the SCEV isn't representable as a Constant.
5544 static Constant *BuildConstantFromSCEV(const SCEV *V) {
5545   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
5546     case scCouldNotCompute:
5547     case scAddRecExpr:
5548       break;
5549     case scConstant:
5550       return cast<SCEVConstant>(V)->getValue();
5551     case scUnknown:
5552       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5553     case scSignExtend: {
5554       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5555       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5556         return ConstantExpr::getSExt(CastOp, SS->getType());
5557       break;
5558     }
5559     case scZeroExtend: {
5560       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5561       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5562         return ConstantExpr::getZExt(CastOp, SZ->getType());
5563       break;
5564     }
5565     case scTruncate: {
5566       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5567       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5568         return ConstantExpr::getTrunc(CastOp, ST->getType());
5569       break;
5570     }
5571     case scAddExpr: {
5572       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5573       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5574         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5575           unsigned AS = PTy->getAddressSpace();
5576           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5577           C = ConstantExpr::getBitCast(C, DestPtrTy);
5578         }
5579         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5580           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5581           if (!C2) return nullptr;
5582 
5583           // First pointer!
5584           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5585             unsigned AS = C2->getType()->getPointerAddressSpace();
5586             std::swap(C, C2);
5587             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5588             // The offsets have been converted to bytes.  We can add bytes to an
5589             // i8* by GEP with the byte count in the first index.
5590             C = ConstantExpr::getBitCast(C, DestPtrTy);
5591           }
5592 
5593           // Don't bother trying to sum two pointers. We probably can't
5594           // statically compute a load that results from it anyway.
5595           if (C2->getType()->isPointerTy())
5596             return nullptr;
5597 
5598           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5599             if (PTy->getElementType()->isStructTy())
5600               C2 = ConstantExpr::getIntegerCast(
5601                   C2, Type::getInt32Ty(C->getContext()), true);
5602             C = ConstantExpr::getGetElementPtr(C, C2);
5603           } else
5604             C = ConstantExpr::getAdd(C, C2);
5605         }
5606         return C;
5607       }
5608       break;
5609     }
5610     case scMulExpr: {
5611       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5612       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5613         // Don't bother with pointers at all.
5614         if (C->getType()->isPointerTy()) return nullptr;
5615         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5616           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5617           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
5618           C = ConstantExpr::getMul(C, C2);
5619         }
5620         return C;
5621       }
5622       break;
5623     }
5624     case scUDivExpr: {
5625       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5626       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5627         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5628           if (LHS->getType() == RHS->getType())
5629             return ConstantExpr::getUDiv(LHS, RHS);
5630       break;
5631     }
5632     case scSMaxExpr:
5633     case scUMaxExpr:
5634       break; // TODO: smax, umax.
5635   }
5636   return nullptr;
5637 }
5638 
5639 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5640   if (isa<SCEVConstant>(V)) return V;
5641 
5642   // If this instruction is evolved from a constant-evolving PHI, compute the
5643   // exit value from the loop without using SCEVs.
5644   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5645     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5646       const Loop *LI = (*this->LI)[I->getParent()];
5647       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5648         if (PHINode *PN = dyn_cast<PHINode>(I))
5649           if (PN->getParent() == LI->getHeader()) {
5650             // Okay, there is no closed form solution for the PHI node.  Check
5651             // to see if the loop that contains it has a known backedge-taken
5652             // count.  If so, we may be able to force computation of the exit
5653             // value.
5654             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5655             if (const SCEVConstant *BTCC =
5656                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5657               // Okay, we know how many times the containing loop executes.  If
5658               // this is a constant evolving PHI node, get the final value at
5659               // the specified iteration number.
5660               Constant *RV = getConstantEvolutionLoopExitValue(PN,
5661                                                    BTCC->getValue()->getValue(),
5662                                                                LI);
5663               if (RV) return getSCEV(RV);
5664             }
5665           }
5666 
5667       // Okay, this is an expression that we cannot symbolically evaluate
5668       // into a SCEV.  Check to see if it's possible to symbolically evaluate
5669       // the arguments into constants, and if so, try to constant propagate the
5670       // result.  This is particularly useful for computing loop exit values.
5671       if (CanConstantFold(I)) {
5672         SmallVector<Constant *, 4> Operands;
5673         bool MadeImprovement = false;
5674         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5675           Value *Op = I->getOperand(i);
5676           if (Constant *C = dyn_cast<Constant>(Op)) {
5677             Operands.push_back(C);
5678             continue;
5679           }
5680 
5681           // If any of the operands is non-constant and if they are
5682           // non-integer and non-pointer, don't even try to analyze them
5683           // with scev techniques.
5684           if (!isSCEVable(Op->getType()))
5685             return V;
5686 
5687           const SCEV *OrigV = getSCEV(Op);
5688           const SCEV *OpV = getSCEVAtScope(OrigV, L);
5689           MadeImprovement |= OrigV != OpV;
5690 
5691           Constant *C = BuildConstantFromSCEV(OpV);
5692           if (!C) return V;
5693           if (C->getType() != Op->getType())
5694             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5695                                                               Op->getType(),
5696                                                               false),
5697                                       C, Op->getType());
5698           Operands.push_back(C);
5699         }
5700 
5701         // Check to see if getSCEVAtScope actually made an improvement.
5702         if (MadeImprovement) {
5703           Constant *C = nullptr;
5704           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5705             C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5706                                                 Operands[0], Operands[1], DL,
5707                                                 TLI);
5708           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5709             if (!LI->isVolatile())
5710               C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
5711           } else
5712             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5713                                          Operands, DL, TLI);
5714           if (!C) return V;
5715           return getSCEV(C);
5716         }
5717       }
5718     }
5719 
5720     // This is some other type of SCEVUnknown, just return it.
5721     return V;
5722   }
5723 
5724   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5725     // Avoid performing the look-up in the common case where the specified
5726     // expression has no loop-variant portions.
5727     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5728       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5729       if (OpAtScope != Comm->getOperand(i)) {
5730         // Okay, at least one of these operands is loop variant but might be
5731         // foldable.  Build a new instance of the folded commutative expression.
5732         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5733                                             Comm->op_begin()+i);
5734         NewOps.push_back(OpAtScope);
5735 
5736         for (++i; i != e; ++i) {
5737           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5738           NewOps.push_back(OpAtScope);
5739         }
5740         if (isa<SCEVAddExpr>(Comm))
5741           return getAddExpr(NewOps);
5742         if (isa<SCEVMulExpr>(Comm))
5743           return getMulExpr(NewOps);
5744         if (isa<SCEVSMaxExpr>(Comm))
5745           return getSMaxExpr(NewOps);
5746         if (isa<SCEVUMaxExpr>(Comm))
5747           return getUMaxExpr(NewOps);
5748         llvm_unreachable("Unknown commutative SCEV type!");
5749       }
5750     }
5751     // If we got here, all operands are loop invariant.
5752     return Comm;
5753   }
5754 
5755   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5756     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5757     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5758     if (LHS == Div->getLHS() && RHS == Div->getRHS())
5759       return Div;   // must be loop invariant
5760     return getUDivExpr(LHS, RHS);
5761   }
5762 
5763   // If this is a loop recurrence for a loop that does not contain L, then we
5764   // are dealing with the final value computed by the loop.
5765   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5766     // First, attempt to evaluate each operand.
5767     // Avoid performing the look-up in the common case where the specified
5768     // expression has no loop-variant portions.
5769     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5770       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5771       if (OpAtScope == AddRec->getOperand(i))
5772         continue;
5773 
5774       // Okay, at least one of these operands is loop variant but might be
5775       // foldable.  Build a new instance of the folded commutative expression.
5776       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5777                                           AddRec->op_begin()+i);
5778       NewOps.push_back(OpAtScope);
5779       for (++i; i != e; ++i)
5780         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5781 
5782       const SCEV *FoldedRec =
5783         getAddRecExpr(NewOps, AddRec->getLoop(),
5784                       AddRec->getNoWrapFlags(SCEV::FlagNW));
5785       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5786       // The addrec may be folded to a nonrecurrence, for example, if the
5787       // induction variable is multiplied by zero after constant folding. Go
5788       // ahead and return the folded value.
5789       if (!AddRec)
5790         return FoldedRec;
5791       break;
5792     }
5793 
5794     // If the scope is outside the addrec's loop, evaluate it by using the
5795     // loop exit value of the addrec.
5796     if (!AddRec->getLoop()->contains(L)) {
5797       // To evaluate this recurrence, we need to know how many times the AddRec
5798       // loop iterates.  Compute this now.
5799       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5800       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5801 
5802       // Then, evaluate the AddRec.
5803       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5804     }
5805 
5806     return AddRec;
5807   }
5808 
5809   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5810     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5811     if (Op == Cast->getOperand())
5812       return Cast;  // must be loop invariant
5813     return getZeroExtendExpr(Op, Cast->getType());
5814   }
5815 
5816   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5817     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5818     if (Op == Cast->getOperand())
5819       return Cast;  // must be loop invariant
5820     return getSignExtendExpr(Op, Cast->getType());
5821   }
5822 
5823   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5824     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5825     if (Op == Cast->getOperand())
5826       return Cast;  // must be loop invariant
5827     return getTruncateExpr(Op, Cast->getType());
5828   }
5829 
5830   llvm_unreachable("Unknown SCEV type!");
5831 }
5832 
5833 /// getSCEVAtScope - This is a convenience function which does
5834 /// getSCEVAtScope(getSCEV(V), L).
5835 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5836   return getSCEVAtScope(getSCEV(V), L);
5837 }
5838 
5839 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5840 /// following equation:
5841 ///
5842 ///     A * X = B (mod N)
5843 ///
5844 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5845 /// A and B isn't important.
5846 ///
5847 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5848 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5849                                                ScalarEvolution &SE) {
5850   uint32_t BW = A.getBitWidth();
5851   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5852   assert(A != 0 && "A must be non-zero.");
5853 
5854   // 1. D = gcd(A, N)
5855   //
5856   // The gcd of A and N may have only one prime factor: 2. The number of
5857   // trailing zeros in A is its multiplicity
5858   uint32_t Mult2 = A.countTrailingZeros();
5859   // D = 2^Mult2
5860 
5861   // 2. Check if B is divisible by D.
5862   //
5863   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5864   // is not less than multiplicity of this prime factor for D.
5865   if (B.countTrailingZeros() < Mult2)
5866     return SE.getCouldNotCompute();
5867 
5868   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5869   // modulo (N / D).
5870   //
5871   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5872   // bit width during computations.
5873   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5874   APInt Mod(BW + 1, 0);
5875   Mod.setBit(BW - Mult2);  // Mod = N / D
5876   APInt I = AD.multiplicativeInverse(Mod);
5877 
5878   // 4. Compute the minimum unsigned root of the equation:
5879   // I * (B / D) mod (N / D)
5880   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5881 
5882   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5883   // bits.
5884   return SE.getConstant(Result.trunc(BW));
5885 }
5886 
5887 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5888 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5889 /// might be the same) or two SCEVCouldNotCompute objects.
5890 ///
5891 static std::pair<const SCEV *,const SCEV *>
5892 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5893   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5894   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5895   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5896   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5897 
5898   // We currently can only solve this if the coefficients are constants.
5899   if (!LC || !MC || !NC) {
5900     const SCEV *CNC = SE.getCouldNotCompute();
5901     return std::make_pair(CNC, CNC);
5902   }
5903 
5904   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5905   const APInt &L = LC->getValue()->getValue();
5906   const APInt &M = MC->getValue()->getValue();
5907   const APInt &N = NC->getValue()->getValue();
5908   APInt Two(BitWidth, 2);
5909   APInt Four(BitWidth, 4);
5910 
5911   {
5912     using namespace APIntOps;
5913     const APInt& C = L;
5914     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5915     // The B coefficient is M-N/2
5916     APInt B(M);
5917     B -= sdiv(N,Two);
5918 
5919     // The A coefficient is N/2
5920     APInt A(N.sdiv(Two));
5921 
5922     // Compute the B^2-4ac term.
5923     APInt SqrtTerm(B);
5924     SqrtTerm *= B;
5925     SqrtTerm -= Four * (A * C);
5926 
5927     if (SqrtTerm.isNegative()) {
5928       // The loop is provably infinite.
5929       const SCEV *CNC = SE.getCouldNotCompute();
5930       return std::make_pair(CNC, CNC);
5931     }
5932 
5933     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5934     // integer value or else APInt::sqrt() will assert.
5935     APInt SqrtVal(SqrtTerm.sqrt());
5936 
5937     // Compute the two solutions for the quadratic formula.
5938     // The divisions must be performed as signed divisions.
5939     APInt NegB(-B);
5940     APInt TwoA(A << 1);
5941     if (TwoA.isMinValue()) {
5942       const SCEV *CNC = SE.getCouldNotCompute();
5943       return std::make_pair(CNC, CNC);
5944     }
5945 
5946     LLVMContext &Context = SE.getContext();
5947 
5948     ConstantInt *Solution1 =
5949       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5950     ConstantInt *Solution2 =
5951       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5952 
5953     return std::make_pair(SE.getConstant(Solution1),
5954                           SE.getConstant(Solution2));
5955   } // end APIntOps namespace
5956 }
5957 
5958 /// HowFarToZero - Return the number of times a backedge comparing the specified
5959 /// value to zero will execute.  If not computable, return CouldNotCompute.
5960 ///
5961 /// This is only used for loops with a "x != y" exit test. The exit condition is
5962 /// now expressed as a single expression, V = x-y. So the exit test is
5963 /// effectively V != 0.  We know and take advantage of the fact that this
5964 /// expression only being used in a comparison by zero context.
5965 ScalarEvolution::ExitLimit
5966 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
5967   // If the value is a constant
5968   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5969     // If the value is already zero, the branch will execute zero times.
5970     if (C->getValue()->isZero()) return C;
5971     return getCouldNotCompute();  // Otherwise it will loop infinitely.
5972   }
5973 
5974   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5975   if (!AddRec || AddRec->getLoop() != L)
5976     return getCouldNotCompute();
5977 
5978   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5979   // the quadratic equation to solve it.
5980   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5981     std::pair<const SCEV *,const SCEV *> Roots =
5982       SolveQuadraticEquation(AddRec, *this);
5983     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5984     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5985     if (R1 && R2) {
5986 #if 0
5987       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5988              << "  sol#2: " << *R2 << "\n";
5989 #endif
5990       // Pick the smallest positive root value.
5991       if (ConstantInt *CB =
5992           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5993                                                       R1->getValue(),
5994                                                       R2->getValue()))) {
5995         if (CB->getZExtValue() == false)
5996           std::swap(R1, R2);   // R1 is the minimum root now.
5997 
5998         // We can only use this value if the chrec ends up with an exact zero
5999         // value at this index.  When solving for "X*X != 5", for example, we
6000         // should not accept a root of 2.
6001         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6002         if (Val->isZero())
6003           return R1;  // We found a quadratic root!
6004       }
6005     }
6006     return getCouldNotCompute();
6007   }
6008 
6009   // Otherwise we can only handle this if it is affine.
6010   if (!AddRec->isAffine())
6011     return getCouldNotCompute();
6012 
6013   // If this is an affine expression, the execution count of this branch is
6014   // the minimum unsigned root of the following equation:
6015   //
6016   //     Start + Step*N = 0 (mod 2^BW)
6017   //
6018   // equivalent to:
6019   //
6020   //             Step*N = -Start (mod 2^BW)
6021   //
6022   // where BW is the common bit width of Start and Step.
6023 
6024   // Get the initial value for the loop.
6025   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6026   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6027 
6028   // For now we handle only constant steps.
6029   //
6030   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6031   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6032   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6033   // We have not yet seen any such cases.
6034   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6035   if (!StepC || StepC->getValue()->equalsInt(0))
6036     return getCouldNotCompute();
6037 
6038   // For positive steps (counting up until unsigned overflow):
6039   //   N = -Start/Step (as unsigned)
6040   // For negative steps (counting down to zero):
6041   //   N = Start/-Step
6042   // First compute the unsigned distance from zero in the direction of Step.
6043   bool CountDown = StepC->getValue()->getValue().isNegative();
6044   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6045 
6046   // Handle unitary steps, which cannot wraparound.
6047   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6048   //   N = Distance (as unsigned)
6049   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6050     ConstantRange CR = getUnsignedRange(Start);
6051     const SCEV *MaxBECount;
6052     if (!CountDown && CR.getUnsignedMin().isMinValue())
6053       // When counting up, the worst starting value is 1, not 0.
6054       MaxBECount = CR.getUnsignedMax().isMinValue()
6055         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6056         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6057     else
6058       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6059                                          : -CR.getUnsignedMin());
6060     return ExitLimit(Distance, MaxBECount);
6061   }
6062 
6063   // If the step exactly divides the distance then unsigned divide computes the
6064   // backedge count.
6065   const SCEV *Q, *R;
6066   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6067   SCEVDivision::divide(SE, Distance, Step, &Q, &R);
6068   if (R->isZero()) {
6069     const SCEV *Exact =
6070         getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6071     return ExitLimit(Exact, Exact);
6072   }
6073 
6074   // If the condition controls loop exit (the loop exits only if the expression
6075   // is true) and the addition is no-wrap we can use unsigned divide to
6076   // compute the backedge count.  In this case, the step may not divide the
6077   // distance, but we don't care because if the condition is "missed" the loop
6078   // will have undefined behavior due to wrapping.
6079   if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6080     const SCEV *Exact =
6081         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6082     return ExitLimit(Exact, Exact);
6083   }
6084 
6085   // Then, try to solve the above equation provided that Start is constant.
6086   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6087     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6088                                         -StartC->getValue()->getValue(),
6089                                         *this);
6090   return getCouldNotCompute();
6091 }
6092 
6093 /// HowFarToNonZero - Return the number of times a backedge checking the
6094 /// specified value for nonzero will execute.  If not computable, return
6095 /// CouldNotCompute
6096 ScalarEvolution::ExitLimit
6097 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6098   // Loops that look like: while (X == 0) are very strange indeed.  We don't
6099   // handle them yet except for the trivial case.  This could be expanded in the
6100   // future as needed.
6101 
6102   // If the value is a constant, check to see if it is known to be non-zero
6103   // already.  If so, the backedge will execute zero times.
6104   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6105     if (!C->getValue()->isNullValue())
6106       return getConstant(C->getType(), 0);
6107     return getCouldNotCompute();  // Otherwise it will loop infinitely.
6108   }
6109 
6110   // We could implement others, but I really doubt anyone writes loops like
6111   // this, and if they did, they would already be constant folded.
6112   return getCouldNotCompute();
6113 }
6114 
6115 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6116 /// (which may not be an immediate predecessor) which has exactly one
6117 /// successor from which BB is reachable, or null if no such block is
6118 /// found.
6119 ///
6120 std::pair<BasicBlock *, BasicBlock *>
6121 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6122   // If the block has a unique predecessor, then there is no path from the
6123   // predecessor to the block that does not go through the direct edge
6124   // from the predecessor to the block.
6125   if (BasicBlock *Pred = BB->getSinglePredecessor())
6126     return std::make_pair(Pred, BB);
6127 
6128   // A loop's header is defined to be a block that dominates the loop.
6129   // If the header has a unique predecessor outside the loop, it must be
6130   // a block that has exactly one successor that can reach the loop.
6131   if (Loop *L = LI->getLoopFor(BB))
6132     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
6133 
6134   return std::pair<BasicBlock *, BasicBlock *>();
6135 }
6136 
6137 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6138 /// testing whether two expressions are equal, however for the purposes of
6139 /// looking for a condition guarding a loop, it can be useful to be a little
6140 /// more general, since a front-end may have replicated the controlling
6141 /// expression.
6142 ///
6143 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6144   // Quick check to see if they are the same SCEV.
6145   if (A == B) return true;
6146 
6147   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6148   // two different instructions with the same value. Check for this case.
6149   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6150     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6151       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6152         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6153           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
6154             return true;
6155 
6156   // Otherwise assume they may have a different value.
6157   return false;
6158 }
6159 
6160 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6161 /// predicate Pred. Return true iff any changes were made.
6162 ///
6163 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6164                                            const SCEV *&LHS, const SCEV *&RHS,
6165                                            unsigned Depth) {
6166   bool Changed = false;
6167 
6168   // If we hit the max recursion limit bail out.
6169   if (Depth >= 3)
6170     return false;
6171 
6172   // Canonicalize a constant to the right side.
6173   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6174     // Check for both operands constant.
6175     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6176       if (ConstantExpr::getICmp(Pred,
6177                                 LHSC->getValue(),
6178                                 RHSC->getValue())->isNullValue())
6179         goto trivially_false;
6180       else
6181         goto trivially_true;
6182     }
6183     // Otherwise swap the operands to put the constant on the right.
6184     std::swap(LHS, RHS);
6185     Pred = ICmpInst::getSwappedPredicate(Pred);
6186     Changed = true;
6187   }
6188 
6189   // If we're comparing an addrec with a value which is loop-invariant in the
6190   // addrec's loop, put the addrec on the left. Also make a dominance check,
6191   // as both operands could be addrecs loop-invariant in each other's loop.
6192   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6193     const Loop *L = AR->getLoop();
6194     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6195       std::swap(LHS, RHS);
6196       Pred = ICmpInst::getSwappedPredicate(Pred);
6197       Changed = true;
6198     }
6199   }
6200 
6201   // If there's a constant operand, canonicalize comparisons with boundary
6202   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6203   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6204     const APInt &RA = RC->getValue()->getValue();
6205     switch (Pred) {
6206     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6207     case ICmpInst::ICMP_EQ:
6208     case ICmpInst::ICMP_NE:
6209       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6210       if (!RA)
6211         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6212           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6213             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6214                 ME->getOperand(0)->isAllOnesValue()) {
6215               RHS = AE->getOperand(1);
6216               LHS = ME->getOperand(1);
6217               Changed = true;
6218             }
6219       break;
6220     case ICmpInst::ICMP_UGE:
6221       if ((RA - 1).isMinValue()) {
6222         Pred = ICmpInst::ICMP_NE;
6223         RHS = getConstant(RA - 1);
6224         Changed = true;
6225         break;
6226       }
6227       if (RA.isMaxValue()) {
6228         Pred = ICmpInst::ICMP_EQ;
6229         Changed = true;
6230         break;
6231       }
6232       if (RA.isMinValue()) goto trivially_true;
6233 
6234       Pred = ICmpInst::ICMP_UGT;
6235       RHS = getConstant(RA - 1);
6236       Changed = true;
6237       break;
6238     case ICmpInst::ICMP_ULE:
6239       if ((RA + 1).isMaxValue()) {
6240         Pred = ICmpInst::ICMP_NE;
6241         RHS = getConstant(RA + 1);
6242         Changed = true;
6243         break;
6244       }
6245       if (RA.isMinValue()) {
6246         Pred = ICmpInst::ICMP_EQ;
6247         Changed = true;
6248         break;
6249       }
6250       if (RA.isMaxValue()) goto trivially_true;
6251 
6252       Pred = ICmpInst::ICMP_ULT;
6253       RHS = getConstant(RA + 1);
6254       Changed = true;
6255       break;
6256     case ICmpInst::ICMP_SGE:
6257       if ((RA - 1).isMinSignedValue()) {
6258         Pred = ICmpInst::ICMP_NE;
6259         RHS = getConstant(RA - 1);
6260         Changed = true;
6261         break;
6262       }
6263       if (RA.isMaxSignedValue()) {
6264         Pred = ICmpInst::ICMP_EQ;
6265         Changed = true;
6266         break;
6267       }
6268       if (RA.isMinSignedValue()) goto trivially_true;
6269 
6270       Pred = ICmpInst::ICMP_SGT;
6271       RHS = getConstant(RA - 1);
6272       Changed = true;
6273       break;
6274     case ICmpInst::ICMP_SLE:
6275       if ((RA + 1).isMaxSignedValue()) {
6276         Pred = ICmpInst::ICMP_NE;
6277         RHS = getConstant(RA + 1);
6278         Changed = true;
6279         break;
6280       }
6281       if (RA.isMinSignedValue()) {
6282         Pred = ICmpInst::ICMP_EQ;
6283         Changed = true;
6284         break;
6285       }
6286       if (RA.isMaxSignedValue()) goto trivially_true;
6287 
6288       Pred = ICmpInst::ICMP_SLT;
6289       RHS = getConstant(RA + 1);
6290       Changed = true;
6291       break;
6292     case ICmpInst::ICMP_UGT:
6293       if (RA.isMinValue()) {
6294         Pred = ICmpInst::ICMP_NE;
6295         Changed = true;
6296         break;
6297       }
6298       if ((RA + 1).isMaxValue()) {
6299         Pred = ICmpInst::ICMP_EQ;
6300         RHS = getConstant(RA + 1);
6301         Changed = true;
6302         break;
6303       }
6304       if (RA.isMaxValue()) goto trivially_false;
6305       break;
6306     case ICmpInst::ICMP_ULT:
6307       if (RA.isMaxValue()) {
6308         Pred = ICmpInst::ICMP_NE;
6309         Changed = true;
6310         break;
6311       }
6312       if ((RA - 1).isMinValue()) {
6313         Pred = ICmpInst::ICMP_EQ;
6314         RHS = getConstant(RA - 1);
6315         Changed = true;
6316         break;
6317       }
6318       if (RA.isMinValue()) goto trivially_false;
6319       break;
6320     case ICmpInst::ICMP_SGT:
6321       if (RA.isMinSignedValue()) {
6322         Pred = ICmpInst::ICMP_NE;
6323         Changed = true;
6324         break;
6325       }
6326       if ((RA + 1).isMaxSignedValue()) {
6327         Pred = ICmpInst::ICMP_EQ;
6328         RHS = getConstant(RA + 1);
6329         Changed = true;
6330         break;
6331       }
6332       if (RA.isMaxSignedValue()) goto trivially_false;
6333       break;
6334     case ICmpInst::ICMP_SLT:
6335       if (RA.isMaxSignedValue()) {
6336         Pred = ICmpInst::ICMP_NE;
6337         Changed = true;
6338         break;
6339       }
6340       if ((RA - 1).isMinSignedValue()) {
6341        Pred = ICmpInst::ICMP_EQ;
6342        RHS = getConstant(RA - 1);
6343         Changed = true;
6344        break;
6345       }
6346       if (RA.isMinSignedValue()) goto trivially_false;
6347       break;
6348     }
6349   }
6350 
6351   // Check for obvious equality.
6352   if (HasSameValue(LHS, RHS)) {
6353     if (ICmpInst::isTrueWhenEqual(Pred))
6354       goto trivially_true;
6355     if (ICmpInst::isFalseWhenEqual(Pred))
6356       goto trivially_false;
6357   }
6358 
6359   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6360   // adding or subtracting 1 from one of the operands.
6361   switch (Pred) {
6362   case ICmpInst::ICMP_SLE:
6363     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6364       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6365                        SCEV::FlagNSW);
6366       Pred = ICmpInst::ICMP_SLT;
6367       Changed = true;
6368     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
6369       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6370                        SCEV::FlagNSW);
6371       Pred = ICmpInst::ICMP_SLT;
6372       Changed = true;
6373     }
6374     break;
6375   case ICmpInst::ICMP_SGE:
6376     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
6377       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6378                        SCEV::FlagNSW);
6379       Pred = ICmpInst::ICMP_SGT;
6380       Changed = true;
6381     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6382       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6383                        SCEV::FlagNSW);
6384       Pred = ICmpInst::ICMP_SGT;
6385       Changed = true;
6386     }
6387     break;
6388   case ICmpInst::ICMP_ULE:
6389     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
6390       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6391                        SCEV::FlagNUW);
6392       Pred = ICmpInst::ICMP_ULT;
6393       Changed = true;
6394     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
6395       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6396                        SCEV::FlagNUW);
6397       Pred = ICmpInst::ICMP_ULT;
6398       Changed = true;
6399     }
6400     break;
6401   case ICmpInst::ICMP_UGE:
6402     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
6403       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6404                        SCEV::FlagNUW);
6405       Pred = ICmpInst::ICMP_UGT;
6406       Changed = true;
6407     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
6408       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6409                        SCEV::FlagNUW);
6410       Pred = ICmpInst::ICMP_UGT;
6411       Changed = true;
6412     }
6413     break;
6414   default:
6415     break;
6416   }
6417 
6418   // TODO: More simplifications are possible here.
6419 
6420   // Recursively simplify until we either hit a recursion limit or nothing
6421   // changes.
6422   if (Changed)
6423     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6424 
6425   return Changed;
6426 
6427 trivially_true:
6428   // Return 0 == 0.
6429   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6430   Pred = ICmpInst::ICMP_EQ;
6431   return true;
6432 
6433 trivially_false:
6434   // Return 0 != 0.
6435   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6436   Pred = ICmpInst::ICMP_NE;
6437   return true;
6438 }
6439 
6440 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6441   return getSignedRange(S).getSignedMax().isNegative();
6442 }
6443 
6444 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6445   return getSignedRange(S).getSignedMin().isStrictlyPositive();
6446 }
6447 
6448 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6449   return !getSignedRange(S).getSignedMin().isNegative();
6450 }
6451 
6452 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6453   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6454 }
6455 
6456 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6457   return isKnownNegative(S) || isKnownPositive(S);
6458 }
6459 
6460 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6461                                        const SCEV *LHS, const SCEV *RHS) {
6462   // Canonicalize the inputs first.
6463   (void)SimplifyICmpOperands(Pred, LHS, RHS);
6464 
6465   // If LHS or RHS is an addrec, check to see if the condition is true in
6466   // every iteration of the loop.
6467   // If LHS and RHS are both addrec, both conditions must be true in
6468   // every iteration of the loop.
6469   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6470   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6471   bool LeftGuarded = false;
6472   bool RightGuarded = false;
6473   if (LAR) {
6474     const Loop *L = LAR->getLoop();
6475     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6476         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6477       if (!RAR) return true;
6478       LeftGuarded = true;
6479     }
6480   }
6481   if (RAR) {
6482     const Loop *L = RAR->getLoop();
6483     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6484         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6485       if (!LAR) return true;
6486       RightGuarded = true;
6487     }
6488   }
6489   if (LeftGuarded && RightGuarded)
6490     return true;
6491 
6492   // Otherwise see what can be done with known constant ranges.
6493   return isKnownPredicateWithRanges(Pred, LHS, RHS);
6494 }
6495 
6496 bool
6497 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6498                                             const SCEV *LHS, const SCEV *RHS) {
6499   if (HasSameValue(LHS, RHS))
6500     return ICmpInst::isTrueWhenEqual(Pred);
6501 
6502   // This code is split out from isKnownPredicate because it is called from
6503   // within isLoopEntryGuardedByCond.
6504   switch (Pred) {
6505   default:
6506     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6507   case ICmpInst::ICMP_SGT:
6508     std::swap(LHS, RHS);
6509   case ICmpInst::ICMP_SLT: {
6510     ConstantRange LHSRange = getSignedRange(LHS);
6511     ConstantRange RHSRange = getSignedRange(RHS);
6512     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6513       return true;
6514     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6515       return false;
6516     break;
6517   }
6518   case ICmpInst::ICMP_SGE:
6519     std::swap(LHS, RHS);
6520   case ICmpInst::ICMP_SLE: {
6521     ConstantRange LHSRange = getSignedRange(LHS);
6522     ConstantRange RHSRange = getSignedRange(RHS);
6523     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6524       return true;
6525     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6526       return false;
6527     break;
6528   }
6529   case ICmpInst::ICMP_UGT:
6530     std::swap(LHS, RHS);
6531   case ICmpInst::ICMP_ULT: {
6532     ConstantRange LHSRange = getUnsignedRange(LHS);
6533     ConstantRange RHSRange = getUnsignedRange(RHS);
6534     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6535       return true;
6536     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6537       return false;
6538     break;
6539   }
6540   case ICmpInst::ICMP_UGE:
6541     std::swap(LHS, RHS);
6542   case ICmpInst::ICMP_ULE: {
6543     ConstantRange LHSRange = getUnsignedRange(LHS);
6544     ConstantRange RHSRange = getUnsignedRange(RHS);
6545     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6546       return true;
6547     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6548       return false;
6549     break;
6550   }
6551   case ICmpInst::ICMP_NE: {
6552     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6553       return true;
6554     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6555       return true;
6556 
6557     const SCEV *Diff = getMinusSCEV(LHS, RHS);
6558     if (isKnownNonZero(Diff))
6559       return true;
6560     break;
6561   }
6562   case ICmpInst::ICMP_EQ:
6563     // The check at the top of the function catches the case where
6564     // the values are known to be equal.
6565     break;
6566   }
6567   return false;
6568 }
6569 
6570 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6571 /// protected by a conditional between LHS and RHS.  This is used to
6572 /// to eliminate casts.
6573 bool
6574 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6575                                              ICmpInst::Predicate Pred,
6576                                              const SCEV *LHS, const SCEV *RHS) {
6577   // Interpret a null as meaning no loop, where there is obviously no guard
6578   // (interprocedural conditions notwithstanding).
6579   if (!L) return true;
6580 
6581   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6582 
6583   BasicBlock *Latch = L->getLoopLatch();
6584   if (!Latch)
6585     return false;
6586 
6587   BranchInst *LoopContinuePredicate =
6588     dyn_cast<BranchInst>(Latch->getTerminator());
6589   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6590       isImpliedCond(Pred, LHS, RHS,
6591                     LoopContinuePredicate->getCondition(),
6592                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6593     return true;
6594 
6595   // Check conditions due to any @llvm.assume intrinsics.
6596   for (auto &CI : AT->assumptions(F)) {
6597     if (!DT->dominates(CI, Latch->getTerminator()))
6598       continue;
6599 
6600     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6601       return true;
6602   }
6603 
6604   return false;
6605 }
6606 
6607 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6608 /// by a conditional between LHS and RHS.  This is used to help avoid max
6609 /// expressions in loop trip counts, and to eliminate casts.
6610 bool
6611 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6612                                           ICmpInst::Predicate Pred,
6613                                           const SCEV *LHS, const SCEV *RHS) {
6614   // Interpret a null as meaning no loop, where there is obviously no guard
6615   // (interprocedural conditions notwithstanding).
6616   if (!L) return false;
6617 
6618   if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6619 
6620   // Starting at the loop predecessor, climb up the predecessor chain, as long
6621   // as there are predecessors that can be found that have unique successors
6622   // leading to the original header.
6623   for (std::pair<BasicBlock *, BasicBlock *>
6624          Pair(L->getLoopPredecessor(), L->getHeader());
6625        Pair.first;
6626        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6627 
6628     BranchInst *LoopEntryPredicate =
6629       dyn_cast<BranchInst>(Pair.first->getTerminator());
6630     if (!LoopEntryPredicate ||
6631         LoopEntryPredicate->isUnconditional())
6632       continue;
6633 
6634     if (isImpliedCond(Pred, LHS, RHS,
6635                       LoopEntryPredicate->getCondition(),
6636                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
6637       return true;
6638   }
6639 
6640   // Check conditions due to any @llvm.assume intrinsics.
6641   for (auto &CI : AT->assumptions(F)) {
6642     if (!DT->dominates(CI, L->getHeader()))
6643       continue;
6644 
6645     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6646       return true;
6647   }
6648 
6649   return false;
6650 }
6651 
6652 /// RAII wrapper to prevent recursive application of isImpliedCond.
6653 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6654 /// currently evaluating isImpliedCond.
6655 struct MarkPendingLoopPredicate {
6656   Value *Cond;
6657   DenseSet<Value*> &LoopPreds;
6658   bool Pending;
6659 
6660   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6661     : Cond(C), LoopPreds(LP) {
6662     Pending = !LoopPreds.insert(Cond).second;
6663   }
6664   ~MarkPendingLoopPredicate() {
6665     if (!Pending)
6666       LoopPreds.erase(Cond);
6667   }
6668 };
6669 
6670 /// isImpliedCond - Test whether the condition described by Pred, LHS,
6671 /// and RHS is true whenever the given Cond value evaluates to true.
6672 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6673                                     const SCEV *LHS, const SCEV *RHS,
6674                                     Value *FoundCondValue,
6675                                     bool Inverse) {
6676   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6677   if (Mark.Pending)
6678     return false;
6679 
6680   // Recursively handle And and Or conditions.
6681   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6682     if (BO->getOpcode() == Instruction::And) {
6683       if (!Inverse)
6684         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6685                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6686     } else if (BO->getOpcode() == Instruction::Or) {
6687       if (Inverse)
6688         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6689                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6690     }
6691   }
6692 
6693   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6694   if (!ICI) return false;
6695 
6696   // Bail if the ICmp's operands' types are wider than the needed type
6697   // before attempting to call getSCEV on them. This avoids infinite
6698   // recursion, since the analysis of widening casts can require loop
6699   // exit condition information for overflow checking, which would
6700   // lead back here.
6701   if (getTypeSizeInBits(LHS->getType()) <
6702       getTypeSizeInBits(ICI->getOperand(0)->getType()))
6703     return false;
6704 
6705   // Now that we found a conditional branch that dominates the loop or controls
6706   // the loop latch. Check to see if it is the comparison we are looking for.
6707   ICmpInst::Predicate FoundPred;
6708   if (Inverse)
6709     FoundPred = ICI->getInversePredicate();
6710   else
6711     FoundPred = ICI->getPredicate();
6712 
6713   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6714   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6715 
6716   // Balance the types. The case where FoundLHS' type is wider than
6717   // LHS' type is checked for above.
6718   if (getTypeSizeInBits(LHS->getType()) >
6719       getTypeSizeInBits(FoundLHS->getType())) {
6720     if (CmpInst::isSigned(FoundPred)) {
6721       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6722       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6723     } else {
6724       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6725       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6726     }
6727   }
6728 
6729   // Canonicalize the query to match the way instcombine will have
6730   // canonicalized the comparison.
6731   if (SimplifyICmpOperands(Pred, LHS, RHS))
6732     if (LHS == RHS)
6733       return CmpInst::isTrueWhenEqual(Pred);
6734   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6735     if (FoundLHS == FoundRHS)
6736       return CmpInst::isFalseWhenEqual(FoundPred);
6737 
6738   // Check to see if we can make the LHS or RHS match.
6739   if (LHS == FoundRHS || RHS == FoundLHS) {
6740     if (isa<SCEVConstant>(RHS)) {
6741       std::swap(FoundLHS, FoundRHS);
6742       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6743     } else {
6744       std::swap(LHS, RHS);
6745       Pred = ICmpInst::getSwappedPredicate(Pred);
6746     }
6747   }
6748 
6749   // Check whether the found predicate is the same as the desired predicate.
6750   if (FoundPred == Pred)
6751     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6752 
6753   // Check whether swapping the found predicate makes it the same as the
6754   // desired predicate.
6755   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6756     if (isa<SCEVConstant>(RHS))
6757       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6758     else
6759       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6760                                    RHS, LHS, FoundLHS, FoundRHS);
6761   }
6762 
6763   // Check whether the actual condition is beyond sufficient.
6764   if (FoundPred == ICmpInst::ICMP_EQ)
6765     if (ICmpInst::isTrueWhenEqual(Pred))
6766       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6767         return true;
6768   if (Pred == ICmpInst::ICMP_NE)
6769     if (!ICmpInst::isTrueWhenEqual(FoundPred))
6770       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6771         return true;
6772 
6773   // Otherwise assume the worst.
6774   return false;
6775 }
6776 
6777 /// isImpliedCondOperands - Test whether the condition described by Pred,
6778 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6779 /// and FoundRHS is true.
6780 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6781                                             const SCEV *LHS, const SCEV *RHS,
6782                                             const SCEV *FoundLHS,
6783                                             const SCEV *FoundRHS) {
6784   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6785                                      FoundLHS, FoundRHS) ||
6786          // ~x < ~y --> x > y
6787          isImpliedCondOperandsHelper(Pred, LHS, RHS,
6788                                      getNotSCEV(FoundRHS),
6789                                      getNotSCEV(FoundLHS));
6790 }
6791 
6792 /// isImpliedCondOperandsHelper - Test whether the condition described by
6793 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
6794 /// FoundLHS, and FoundRHS is true.
6795 bool
6796 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6797                                              const SCEV *LHS, const SCEV *RHS,
6798                                              const SCEV *FoundLHS,
6799                                              const SCEV *FoundRHS) {
6800   switch (Pred) {
6801   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6802   case ICmpInst::ICMP_EQ:
6803   case ICmpInst::ICMP_NE:
6804     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6805       return true;
6806     break;
6807   case ICmpInst::ICMP_SLT:
6808   case ICmpInst::ICMP_SLE:
6809     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6810         isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6811       return true;
6812     break;
6813   case ICmpInst::ICMP_SGT:
6814   case ICmpInst::ICMP_SGE:
6815     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6816         isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6817       return true;
6818     break;
6819   case ICmpInst::ICMP_ULT:
6820   case ICmpInst::ICMP_ULE:
6821     if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6822         isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6823       return true;
6824     break;
6825   case ICmpInst::ICMP_UGT:
6826   case ICmpInst::ICMP_UGE:
6827     if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6828         isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6829       return true;
6830     break;
6831   }
6832 
6833   return false;
6834 }
6835 
6836 // Verify if an linear IV with positive stride can overflow when in a
6837 // less-than comparison, knowing the invariant term of the comparison, the
6838 // stride and the knowledge of NSW/NUW flags on the recurrence.
6839 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6840                                          bool IsSigned, bool NoWrap) {
6841   if (NoWrap) return false;
6842 
6843   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6844   const SCEV *One = getConstant(Stride->getType(), 1);
6845 
6846   if (IsSigned) {
6847     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6848     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6849     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6850                                 .getSignedMax();
6851 
6852     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6853     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
6854   }
6855 
6856   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6857   APInt MaxValue = APInt::getMaxValue(BitWidth);
6858   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6859                               .getUnsignedMax();
6860 
6861   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6862   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6863 }
6864 
6865 // Verify if an linear IV with negative stride can overflow when in a
6866 // greater-than comparison, knowing the invariant term of the comparison,
6867 // the stride and the knowledge of NSW/NUW flags on the recurrence.
6868 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6869                                          bool IsSigned, bool NoWrap) {
6870   if (NoWrap) return false;
6871 
6872   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6873   const SCEV *One = getConstant(Stride->getType(), 1);
6874 
6875   if (IsSigned) {
6876     APInt MinRHS = getSignedRange(RHS).getSignedMin();
6877     APInt MinValue = APInt::getSignedMinValue(BitWidth);
6878     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6879                                .getSignedMax();
6880 
6881     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6882     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6883   }
6884 
6885   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6886   APInt MinValue = APInt::getMinValue(BitWidth);
6887   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6888                             .getUnsignedMax();
6889 
6890   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6891   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6892 }
6893 
6894 // Compute the backedge taken count knowing the interval difference, the
6895 // stride and presence of the equality in the comparison.
6896 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6897                                             bool Equality) {
6898   const SCEV *One = getConstant(Step->getType(), 1);
6899   Delta = Equality ? getAddExpr(Delta, Step)
6900                    : getAddExpr(Delta, getMinusSCEV(Step, One));
6901   return getUDivExpr(Delta, Step);
6902 }
6903 
6904 /// HowManyLessThans - Return the number of times a backedge containing the
6905 /// specified less-than comparison will execute.  If not computable, return
6906 /// CouldNotCompute.
6907 ///
6908 /// @param ControlsExit is true when the LHS < RHS condition directly controls
6909 /// the branch (loops exits only if condition is true). In this case, we can use
6910 /// NoWrapFlags to skip overflow checks.
6911 ScalarEvolution::ExitLimit
6912 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6913                                   const Loop *L, bool IsSigned,
6914                                   bool ControlsExit) {
6915   // We handle only IV < Invariant
6916   if (!isLoopInvariant(RHS, L))
6917     return getCouldNotCompute();
6918 
6919   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6920 
6921   // Avoid weird loops
6922   if (!IV || IV->getLoop() != L || !IV->isAffine())
6923     return getCouldNotCompute();
6924 
6925   bool NoWrap = ControlsExit &&
6926                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6927 
6928   const SCEV *Stride = IV->getStepRecurrence(*this);
6929 
6930   // Avoid negative or zero stride values
6931   if (!isKnownPositive(Stride))
6932     return getCouldNotCompute();
6933 
6934   // Avoid proven overflow cases: this will ensure that the backedge taken count
6935   // will not generate any unsigned overflow. Relaxed no-overflow conditions
6936   // exploit NoWrapFlags, allowing to optimize in presence of undefined
6937   // behaviors like the case of C language.
6938   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6939     return getCouldNotCompute();
6940 
6941   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6942                                       : ICmpInst::ICMP_ULT;
6943   const SCEV *Start = IV->getStart();
6944   const SCEV *End = RHS;
6945   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6946     End = IsSigned ? getSMaxExpr(RHS, Start)
6947                    : getUMaxExpr(RHS, Start);
6948 
6949   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
6950 
6951   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6952                             : getUnsignedRange(Start).getUnsignedMin();
6953 
6954   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6955                              : getUnsignedRange(Stride).getUnsignedMin();
6956 
6957   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6958   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6959                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
6960 
6961   // Although End can be a MAX expression we estimate MaxEnd considering only
6962   // the case End = RHS. This is safe because in the other case (End - Start)
6963   // is zero, leading to a zero maximum backedge taken count.
6964   APInt MaxEnd =
6965     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6966              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6967 
6968   const SCEV *MaxBECount;
6969   if (isa<SCEVConstant>(BECount))
6970     MaxBECount = BECount;
6971   else
6972     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6973                                 getConstant(MinStride), false);
6974 
6975   if (isa<SCEVCouldNotCompute>(MaxBECount))
6976     MaxBECount = BECount;
6977 
6978   return ExitLimit(BECount, MaxBECount);
6979 }
6980 
6981 ScalarEvolution::ExitLimit
6982 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6983                                      const Loop *L, bool IsSigned,
6984                                      bool ControlsExit) {
6985   // We handle only IV > Invariant
6986   if (!isLoopInvariant(RHS, L))
6987     return getCouldNotCompute();
6988 
6989   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6990 
6991   // Avoid weird loops
6992   if (!IV || IV->getLoop() != L || !IV->isAffine())
6993     return getCouldNotCompute();
6994 
6995   bool NoWrap = ControlsExit &&
6996                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6997 
6998   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6999 
7000   // Avoid negative or zero stride values
7001   if (!isKnownPositive(Stride))
7002     return getCouldNotCompute();
7003 
7004   // Avoid proven overflow cases: this will ensure that the backedge taken count
7005   // will not generate any unsigned overflow. Relaxed no-overflow conditions
7006   // exploit NoWrapFlags, allowing to optimize in presence of undefined
7007   // behaviors like the case of C language.
7008   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7009     return getCouldNotCompute();
7010 
7011   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7012                                       : ICmpInst::ICMP_UGT;
7013 
7014   const SCEV *Start = IV->getStart();
7015   const SCEV *End = RHS;
7016   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
7017     End = IsSigned ? getSMinExpr(RHS, Start)
7018                    : getUMinExpr(RHS, Start);
7019 
7020   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7021 
7022   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7023                             : getUnsignedRange(Start).getUnsignedMax();
7024 
7025   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7026                              : getUnsignedRange(Stride).getUnsignedMin();
7027 
7028   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7029   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7030                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
7031 
7032   // Although End can be a MIN expression we estimate MinEnd considering only
7033   // the case End = RHS. This is safe because in the other case (Start - End)
7034   // is zero, leading to a zero maximum backedge taken count.
7035   APInt MinEnd =
7036     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7037              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7038 
7039 
7040   const SCEV *MaxBECount = getCouldNotCompute();
7041   if (isa<SCEVConstant>(BECount))
7042     MaxBECount = BECount;
7043   else
7044     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7045                                 getConstant(MinStride), false);
7046 
7047   if (isa<SCEVCouldNotCompute>(MaxBECount))
7048     MaxBECount = BECount;
7049 
7050   return ExitLimit(BECount, MaxBECount);
7051 }
7052 
7053 /// getNumIterationsInRange - Return the number of iterations of this loop that
7054 /// produce values in the specified constant range.  Another way of looking at
7055 /// this is that it returns the first iteration number where the value is not in
7056 /// the condition, thus computing the exit count. If the iteration count can't
7057 /// be computed, an instance of SCEVCouldNotCompute is returned.
7058 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
7059                                                     ScalarEvolution &SE) const {
7060   if (Range.isFullSet())  // Infinite loop.
7061     return SE.getCouldNotCompute();
7062 
7063   // If the start is a non-zero constant, shift the range to simplify things.
7064   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
7065     if (!SC->getValue()->isZero()) {
7066       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
7067       Operands[0] = SE.getConstant(SC->getType(), 0);
7068       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
7069                                              getNoWrapFlags(FlagNW));
7070       if (const SCEVAddRecExpr *ShiftedAddRec =
7071             dyn_cast<SCEVAddRecExpr>(Shifted))
7072         return ShiftedAddRec->getNumIterationsInRange(
7073                            Range.subtract(SC->getValue()->getValue()), SE);
7074       // This is strange and shouldn't happen.
7075       return SE.getCouldNotCompute();
7076     }
7077 
7078   // The only time we can solve this is when we have all constant indices.
7079   // Otherwise, we cannot determine the overflow conditions.
7080   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7081     if (!isa<SCEVConstant>(getOperand(i)))
7082       return SE.getCouldNotCompute();
7083 
7084 
7085   // Okay at this point we know that all elements of the chrec are constants and
7086   // that the start element is zero.
7087 
7088   // First check to see if the range contains zero.  If not, the first
7089   // iteration exits.
7090   unsigned BitWidth = SE.getTypeSizeInBits(getType());
7091   if (!Range.contains(APInt(BitWidth, 0)))
7092     return SE.getConstant(getType(), 0);
7093 
7094   if (isAffine()) {
7095     // If this is an affine expression then we have this situation:
7096     //   Solve {0,+,A} in Range  ===  Ax in Range
7097 
7098     // We know that zero is in the range.  If A is positive then we know that
7099     // the upper value of the range must be the first possible exit value.
7100     // If A is negative then the lower of the range is the last possible loop
7101     // value.  Also note that we already checked for a full range.
7102     APInt One(BitWidth,1);
7103     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7104     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
7105 
7106     // The exit value should be (End+A)/A.
7107     APInt ExitVal = (End + A).udiv(A);
7108     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
7109 
7110     // Evaluate at the exit value.  If we really did fall out of the valid
7111     // range, then we computed our trip count, otherwise wrap around or other
7112     // things must have happened.
7113     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
7114     if (Range.contains(Val->getValue()))
7115       return SE.getCouldNotCompute();  // Something strange happened
7116 
7117     // Ensure that the previous value is in the range.  This is a sanity check.
7118     assert(Range.contains(
7119            EvaluateConstantChrecAtConstant(this,
7120            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
7121            "Linear scev computation is off in a bad way!");
7122     return SE.getConstant(ExitValue);
7123   } else if (isQuadratic()) {
7124     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7125     // quadratic equation to solve it.  To do this, we must frame our problem in
7126     // terms of figuring out when zero is crossed, instead of when
7127     // Range.getUpper() is crossed.
7128     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
7129     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
7130     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7131                                              // getNoWrapFlags(FlagNW)
7132                                              FlagAnyWrap);
7133 
7134     // Next, solve the constructed addrec
7135     std::pair<const SCEV *,const SCEV *> Roots =
7136       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
7137     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7138     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7139     if (R1) {
7140       // Pick the smallest positive root value.
7141       if (ConstantInt *CB =
7142           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
7143                          R1->getValue(), R2->getValue()))) {
7144         if (CB->getZExtValue() == false)
7145           std::swap(R1, R2);   // R1 is the minimum root now.
7146 
7147         // Make sure the root is not off by one.  The returned iteration should
7148         // not be in the range, but the previous one should be.  When solving
7149         // for "X*X < 5", for example, we should not return a root of 2.
7150         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
7151                                                              R1->getValue(),
7152                                                              SE);
7153         if (Range.contains(R1Val->getValue())) {
7154           // The next iteration must be out of the range...
7155           ConstantInt *NextVal =
7156                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
7157 
7158           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7159           if (!Range.contains(R1Val->getValue()))
7160             return SE.getConstant(NextVal);
7161           return SE.getCouldNotCompute();  // Something strange happened
7162         }
7163 
7164         // If R1 was not in the range, then it is a good return value.  Make
7165         // sure that R1-1 WAS in the range though, just in case.
7166         ConstantInt *NextVal =
7167                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
7168         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7169         if (Range.contains(R1Val->getValue()))
7170           return R1;
7171         return SE.getCouldNotCompute();  // Something strange happened
7172       }
7173     }
7174   }
7175 
7176   return SE.getCouldNotCompute();
7177 }
7178 
7179 namespace {
7180 struct FindUndefs {
7181   bool Found;
7182   FindUndefs() : Found(false) {}
7183 
7184   bool follow(const SCEV *S) {
7185     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7186       if (isa<UndefValue>(C->getValue()))
7187         Found = true;
7188     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7189       if (isa<UndefValue>(C->getValue()))
7190         Found = true;
7191     }
7192 
7193     // Keep looking if we haven't found it yet.
7194     return !Found;
7195   }
7196   bool isDone() const {
7197     // Stop recursion if we have found an undef.
7198     return Found;
7199   }
7200 };
7201 }
7202 
7203 // Return true when S contains at least an undef value.
7204 static inline bool
7205 containsUndefs(const SCEV *S) {
7206   FindUndefs F;
7207   SCEVTraversal<FindUndefs> ST(F);
7208   ST.visitAll(S);
7209 
7210   return F.Found;
7211 }
7212 
7213 namespace {
7214 // Collect all steps of SCEV expressions.
7215 struct SCEVCollectStrides {
7216   ScalarEvolution &SE;
7217   SmallVectorImpl<const SCEV *> &Strides;
7218 
7219   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7220       : SE(SE), Strides(S) {}
7221 
7222   bool follow(const SCEV *S) {
7223     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7224       Strides.push_back(AR->getStepRecurrence(SE));
7225     return true;
7226   }
7227   bool isDone() const { return false; }
7228 };
7229 
7230 // Collect all SCEVUnknown and SCEVMulExpr expressions.
7231 struct SCEVCollectTerms {
7232   SmallVectorImpl<const SCEV *> &Terms;
7233 
7234   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7235       : Terms(T) {}
7236 
7237   bool follow(const SCEV *S) {
7238     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
7239       if (!containsUndefs(S))
7240         Terms.push_back(S);
7241 
7242       // Stop recursion: once we collected a term, do not walk its operands.
7243       return false;
7244     }
7245 
7246     // Keep looking.
7247     return true;
7248   }
7249   bool isDone() const { return false; }
7250 };
7251 }
7252 
7253 /// Find parametric terms in this SCEVAddRecExpr.
7254 void SCEVAddRecExpr::collectParametricTerms(
7255     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7256   SmallVector<const SCEV *, 4> Strides;
7257   SCEVCollectStrides StrideCollector(SE, Strides);
7258   visitAll(this, StrideCollector);
7259 
7260   DEBUG({
7261       dbgs() << "Strides:\n";
7262       for (const SCEV *S : Strides)
7263         dbgs() << *S << "\n";
7264     });
7265 
7266   for (const SCEV *S : Strides) {
7267     SCEVCollectTerms TermCollector(Terms);
7268     visitAll(S, TermCollector);
7269   }
7270 
7271   DEBUG({
7272       dbgs() << "Terms:\n";
7273       for (const SCEV *T : Terms)
7274         dbgs() << *T << "\n";
7275     });
7276 }
7277 
7278 static bool findArrayDimensionsRec(ScalarEvolution &SE,
7279                                    SmallVectorImpl<const SCEV *> &Terms,
7280                                    SmallVectorImpl<const SCEV *> &Sizes) {
7281   int Last = Terms.size() - 1;
7282   const SCEV *Step = Terms[Last];
7283 
7284   // End of recursion.
7285   if (Last == 0) {
7286     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
7287       SmallVector<const SCEV *, 2> Qs;
7288       for (const SCEV *Op : M->operands())
7289         if (!isa<SCEVConstant>(Op))
7290           Qs.push_back(Op);
7291 
7292       Step = SE.getMulExpr(Qs);
7293     }
7294 
7295     Sizes.push_back(Step);
7296     return true;
7297   }
7298 
7299   for (const SCEV *&Term : Terms) {
7300     // Normalize the terms before the next call to findArrayDimensionsRec.
7301     const SCEV *Q, *R;
7302     SCEVDivision::divide(SE, Term, Step, &Q, &R);
7303 
7304     // Bail out when GCD does not evenly divide one of the terms.
7305     if (!R->isZero())
7306       return false;
7307 
7308     Term = Q;
7309   }
7310 
7311   // Remove all SCEVConstants.
7312   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7313                 return isa<SCEVConstant>(E);
7314               }),
7315               Terms.end());
7316 
7317   if (Terms.size() > 0)
7318     if (!findArrayDimensionsRec(SE, Terms, Sizes))
7319       return false;
7320 
7321   Sizes.push_back(Step);
7322   return true;
7323 }
7324 
7325 namespace {
7326 struct FindParameter {
7327   bool FoundParameter;
7328   FindParameter() : FoundParameter(false) {}
7329 
7330   bool follow(const SCEV *S) {
7331     if (isa<SCEVUnknown>(S)) {
7332       FoundParameter = true;
7333       // Stop recursion: we found a parameter.
7334       return false;
7335     }
7336     // Keep looking.
7337     return true;
7338   }
7339   bool isDone() const {
7340     // Stop recursion if we have found a parameter.
7341     return FoundParameter;
7342   }
7343 };
7344 }
7345 
7346 // Returns true when S contains at least a SCEVUnknown parameter.
7347 static inline bool
7348 containsParameters(const SCEV *S) {
7349   FindParameter F;
7350   SCEVTraversal<FindParameter> ST(F);
7351   ST.visitAll(S);
7352 
7353   return F.FoundParameter;
7354 }
7355 
7356 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7357 static inline bool
7358 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7359   for (const SCEV *T : Terms)
7360     if (containsParameters(T))
7361       return true;
7362   return false;
7363 }
7364 
7365 // Return the number of product terms in S.
7366 static inline int numberOfTerms(const SCEV *S) {
7367   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7368     return Expr->getNumOperands();
7369   return 1;
7370 }
7371 
7372 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7373   if (isa<SCEVConstant>(T))
7374     return nullptr;
7375 
7376   if (isa<SCEVUnknown>(T))
7377     return T;
7378 
7379   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7380     SmallVector<const SCEV *, 2> Factors;
7381     for (const SCEV *Op : M->operands())
7382       if (!isa<SCEVConstant>(Op))
7383         Factors.push_back(Op);
7384 
7385     return SE.getMulExpr(Factors);
7386   }
7387 
7388   return T;
7389 }
7390 
7391 /// Return the size of an element read or written by Inst.
7392 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7393   Type *Ty;
7394   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7395     Ty = Store->getValueOperand()->getType();
7396   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
7397     Ty = Load->getType();
7398   else
7399     return nullptr;
7400 
7401   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7402   return getSizeOfExpr(ETy, Ty);
7403 }
7404 
7405 /// Second step of delinearization: compute the array dimensions Sizes from the
7406 /// set of Terms extracted from the memory access function of this SCEVAddRec.
7407 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7408                                           SmallVectorImpl<const SCEV *> &Sizes,
7409                                           const SCEV *ElementSize) const {
7410 
7411   if (Terms.size() < 1 || !ElementSize)
7412     return;
7413 
7414   // Early return when Terms do not contain parameters: we do not delinearize
7415   // non parametric SCEVs.
7416   if (!containsParameters(Terms))
7417     return;
7418 
7419   DEBUG({
7420       dbgs() << "Terms:\n";
7421       for (const SCEV *T : Terms)
7422         dbgs() << *T << "\n";
7423     });
7424 
7425   // Remove duplicates.
7426   std::sort(Terms.begin(), Terms.end());
7427   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7428 
7429   // Put larger terms first.
7430   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7431     return numberOfTerms(LHS) > numberOfTerms(RHS);
7432   });
7433 
7434   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7435 
7436   // Divide all terms by the element size.
7437   for (const SCEV *&Term : Terms) {
7438     const SCEV *Q, *R;
7439     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7440     Term = Q;
7441   }
7442 
7443   SmallVector<const SCEV *, 4> NewTerms;
7444 
7445   // Remove constant factors.
7446   for (const SCEV *T : Terms)
7447     if (const SCEV *NewT = removeConstantFactors(SE, T))
7448       NewTerms.push_back(NewT);
7449 
7450   DEBUG({
7451       dbgs() << "Terms after sorting:\n";
7452       for (const SCEV *T : NewTerms)
7453         dbgs() << *T << "\n";
7454     });
7455 
7456   if (NewTerms.empty() ||
7457       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
7458     Sizes.clear();
7459     return;
7460   }
7461 
7462   // The last element to be pushed into Sizes is the size of an element.
7463   Sizes.push_back(ElementSize);
7464 
7465   DEBUG({
7466       dbgs() << "Sizes:\n";
7467       for (const SCEV *S : Sizes)
7468         dbgs() << *S << "\n";
7469     });
7470 }
7471 
7472 /// Third step of delinearization: compute the access functions for the
7473 /// Subscripts based on the dimensions in Sizes.
7474 void SCEVAddRecExpr::computeAccessFunctions(
7475     ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7476     SmallVectorImpl<const SCEV *> &Sizes) const {
7477 
7478   // Early exit in case this SCEV is not an affine multivariate function.
7479   if (Sizes.empty() || !this->isAffine())
7480     return;
7481 
7482   const SCEV *Res = this;
7483   int Last = Sizes.size() - 1;
7484   for (int i = Last; i >= 0; i--) {
7485     const SCEV *Q, *R;
7486     SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7487 
7488     DEBUG({
7489         dbgs() << "Res: " << *Res << "\n";
7490         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7491         dbgs() << "Res divided by Sizes[i]:\n";
7492         dbgs() << "Quotient: " << *Q << "\n";
7493         dbgs() << "Remainder: " << *R << "\n";
7494       });
7495 
7496     Res = Q;
7497 
7498     // Do not record the last subscript corresponding to the size of elements in
7499     // the array.
7500     if (i == Last) {
7501 
7502       // Bail out if the remainder is too complex.
7503       if (isa<SCEVAddRecExpr>(R)) {
7504         Subscripts.clear();
7505         Sizes.clear();
7506         return;
7507       }
7508 
7509       continue;
7510     }
7511 
7512     // Record the access function for the current subscript.
7513     Subscripts.push_back(R);
7514   }
7515 
7516   // Also push in last position the remainder of the last division: it will be
7517   // the access function of the innermost dimension.
7518   Subscripts.push_back(Res);
7519 
7520   std::reverse(Subscripts.begin(), Subscripts.end());
7521 
7522   DEBUG({
7523       dbgs() << "Subscripts:\n";
7524       for (const SCEV *S : Subscripts)
7525         dbgs() << *S << "\n";
7526     });
7527 }
7528 
7529 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7530 /// sizes of an array access. Returns the remainder of the delinearization that
7531 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
7532 /// the multiples of SCEV coefficients: that is a pattern matching of sub
7533 /// expressions in the stride and base of a SCEV corresponding to the
7534 /// computation of a GCD (greatest common divisor) of base and stride.  When
7535 /// SCEV->delinearize fails, it returns the SCEV unchanged.
7536 ///
7537 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
7538 ///
7539 ///  void foo(long n, long m, long o, double A[n][m][o]) {
7540 ///
7541 ///    for (long i = 0; i < n; i++)
7542 ///      for (long j = 0; j < m; j++)
7543 ///        for (long k = 0; k < o; k++)
7544 ///          A[i][j][k] = 1.0;
7545 ///  }
7546 ///
7547 /// the delinearization input is the following AddRec SCEV:
7548 ///
7549 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7550 ///
7551 /// From this SCEV, we are able to say that the base offset of the access is %A
7552 /// because it appears as an offset that does not divide any of the strides in
7553 /// the loops:
7554 ///
7555 ///  CHECK: Base offset: %A
7556 ///
7557 /// and then SCEV->delinearize determines the size of some of the dimensions of
7558 /// the array as these are the multiples by which the strides are happening:
7559 ///
7560 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7561 ///
7562 /// Note that the outermost dimension remains of UnknownSize because there are
7563 /// no strides that would help identifying the size of the last dimension: when
7564 /// the array has been statically allocated, one could compute the size of that
7565 /// dimension by dividing the overall size of the array by the size of the known
7566 /// dimensions: %m * %o * 8.
7567 ///
7568 /// Finally delinearize provides the access functions for the array reference
7569 /// that does correspond to A[i][j][k] of the above C testcase:
7570 ///
7571 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7572 ///
7573 /// The testcases are checking the output of a function pass:
7574 /// DelinearizationPass that walks through all loads and stores of a function
7575 /// asking for the SCEV of the memory access with respect to all enclosing
7576 /// loops, calling SCEV->delinearize on that and printing the results.
7577 
7578 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7579                                  SmallVectorImpl<const SCEV *> &Subscripts,
7580                                  SmallVectorImpl<const SCEV *> &Sizes,
7581                                  const SCEV *ElementSize) const {
7582   // First step: collect parametric terms.
7583   SmallVector<const SCEV *, 4> Terms;
7584   collectParametricTerms(SE, Terms);
7585 
7586   if (Terms.empty())
7587     return;
7588 
7589   // Second step: find subscript sizes.
7590   SE.findArrayDimensions(Terms, Sizes, ElementSize);
7591 
7592   if (Sizes.empty())
7593     return;
7594 
7595   // Third step: compute the access functions for each subscript.
7596   computeAccessFunctions(SE, Subscripts, Sizes);
7597 
7598   if (Subscripts.empty())
7599     return;
7600 
7601   DEBUG({
7602       dbgs() << "succeeded to delinearize " << *this << "\n";
7603       dbgs() << "ArrayDecl[UnknownSize]";
7604       for (const SCEV *S : Sizes)
7605         dbgs() << "[" << *S << "]";
7606 
7607       dbgs() << "\nArrayRef";
7608       for (const SCEV *S : Subscripts)
7609         dbgs() << "[" << *S << "]";
7610       dbgs() << "\n";
7611     });
7612 }
7613 
7614 //===----------------------------------------------------------------------===//
7615 //                   SCEVCallbackVH Class Implementation
7616 //===----------------------------------------------------------------------===//
7617 
7618 void ScalarEvolution::SCEVCallbackVH::deleted() {
7619   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7620   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7621     SE->ConstantEvolutionLoopExitValue.erase(PN);
7622   SE->ValueExprMap.erase(getValPtr());
7623   // this now dangles!
7624 }
7625 
7626 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7627   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7628 
7629   // Forget all the expressions associated with users of the old value,
7630   // so that future queries will recompute the expressions using the new
7631   // value.
7632   Value *Old = getValPtr();
7633   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
7634   SmallPtrSet<User *, 8> Visited;
7635   while (!Worklist.empty()) {
7636     User *U = Worklist.pop_back_val();
7637     // Deleting the Old value will cause this to dangle. Postpone
7638     // that until everything else is done.
7639     if (U == Old)
7640       continue;
7641     if (!Visited.insert(U))
7642       continue;
7643     if (PHINode *PN = dyn_cast<PHINode>(U))
7644       SE->ConstantEvolutionLoopExitValue.erase(PN);
7645     SE->ValueExprMap.erase(U);
7646     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
7647   }
7648   // Delete the Old value.
7649   if (PHINode *PN = dyn_cast<PHINode>(Old))
7650     SE->ConstantEvolutionLoopExitValue.erase(PN);
7651   SE->ValueExprMap.erase(Old);
7652   // this now dangles!
7653 }
7654 
7655 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7656   : CallbackVH(V), SE(se) {}
7657 
7658 //===----------------------------------------------------------------------===//
7659 //                   ScalarEvolution Class Implementation
7660 //===----------------------------------------------------------------------===//
7661 
7662 ScalarEvolution::ScalarEvolution()
7663   : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7664     BlockDispositions(64), FirstUnknown(nullptr) {
7665   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7666 }
7667 
7668 bool ScalarEvolution::runOnFunction(Function &F) {
7669   this->F = &F;
7670   AT = &getAnalysis<AssumptionTracker>();
7671   LI = &getAnalysis<LoopInfo>();
7672   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
7673   DL = DLP ? &DLP->getDataLayout() : nullptr;
7674   TLI = &getAnalysis<TargetLibraryInfo>();
7675   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7676   return false;
7677 }
7678 
7679 void ScalarEvolution::releaseMemory() {
7680   // Iterate through all the SCEVUnknown instances and call their
7681   // destructors, so that they release their references to their values.
7682   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7683     U->~SCEVUnknown();
7684   FirstUnknown = nullptr;
7685 
7686   ValueExprMap.clear();
7687 
7688   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7689   // that a loop had multiple computable exits.
7690   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7691          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7692        I != E; ++I) {
7693     I->second.clear();
7694   }
7695 
7696   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7697 
7698   BackedgeTakenCounts.clear();
7699   ConstantEvolutionLoopExitValue.clear();
7700   ValuesAtScopes.clear();
7701   LoopDispositions.clear();
7702   BlockDispositions.clear();
7703   UnsignedRanges.clear();
7704   SignedRanges.clear();
7705   UniqueSCEVs.clear();
7706   SCEVAllocator.Reset();
7707 }
7708 
7709 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7710   AU.setPreservesAll();
7711   AU.addRequired<AssumptionTracker>();
7712   AU.addRequiredTransitive<LoopInfo>();
7713   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
7714   AU.addRequired<TargetLibraryInfo>();
7715 }
7716 
7717 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
7718   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
7719 }
7720 
7721 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
7722                           const Loop *L) {
7723   // Print all inner loops first
7724   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7725     PrintLoopInfo(OS, SE, *I);
7726 
7727   OS << "Loop ";
7728   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7729   OS << ": ";
7730 
7731   SmallVector<BasicBlock *, 8> ExitBlocks;
7732   L->getExitBlocks(ExitBlocks);
7733   if (ExitBlocks.size() != 1)
7734     OS << "<multiple exits> ";
7735 
7736   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7737     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
7738   } else {
7739     OS << "Unpredictable backedge-taken count. ";
7740   }
7741 
7742   OS << "\n"
7743         "Loop ";
7744   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7745   OS << ": ";
7746 
7747   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7748     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7749   } else {
7750     OS << "Unpredictable max backedge-taken count. ";
7751   }
7752 
7753   OS << "\n";
7754 }
7755 
7756 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
7757   // ScalarEvolution's implementation of the print method is to print
7758   // out SCEV values of all instructions that are interesting. Doing
7759   // this potentially causes it to create new SCEV objects though,
7760   // which technically conflicts with the const qualifier. This isn't
7761   // observable from outside the class though, so casting away the
7762   // const isn't dangerous.
7763   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7764 
7765   OS << "Classifying expressions for: ";
7766   F->printAsOperand(OS, /*PrintType=*/false);
7767   OS << "\n";
7768   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
7769     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
7770       OS << *I << '\n';
7771       OS << "  -->  ";
7772       const SCEV *SV = SE.getSCEV(&*I);
7773       SV->print(OS);
7774 
7775       const Loop *L = LI->getLoopFor((*I).getParent());
7776 
7777       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
7778       if (AtUse != SV) {
7779         OS << "  -->  ";
7780         AtUse->print(OS);
7781       }
7782 
7783       if (L) {
7784         OS << "\t\t" "Exits: ";
7785         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
7786         if (!SE.isLoopInvariant(ExitValue, L)) {
7787           OS << "<<Unknown>>";
7788         } else {
7789           OS << *ExitValue;
7790         }
7791       }
7792 
7793       OS << "\n";
7794     }
7795 
7796   OS << "Determining loop execution counts for: ";
7797   F->printAsOperand(OS, /*PrintType=*/false);
7798   OS << "\n";
7799   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7800     PrintLoopInfo(OS, &SE, *I);
7801 }
7802 
7803 ScalarEvolution::LoopDisposition
7804 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
7805   SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7806   for (unsigned u = 0; u < Values.size(); u++) {
7807     if (Values[u].first == L)
7808       return Values[u].second;
7809   }
7810   Values.push_back(std::make_pair(L, LoopVariant));
7811   LoopDisposition D = computeLoopDisposition(S, L);
7812   SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7813   for (unsigned u = Values2.size(); u > 0; u--) {
7814     if (Values2[u - 1].first == L) {
7815       Values2[u - 1].second = D;
7816       break;
7817     }
7818   }
7819   return D;
7820 }
7821 
7822 ScalarEvolution::LoopDisposition
7823 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
7824   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
7825   case scConstant:
7826     return LoopInvariant;
7827   case scTruncate:
7828   case scZeroExtend:
7829   case scSignExtend:
7830     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
7831   case scAddRecExpr: {
7832     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7833 
7834     // If L is the addrec's loop, it's computable.
7835     if (AR->getLoop() == L)
7836       return LoopComputable;
7837 
7838     // Add recurrences are never invariant in the function-body (null loop).
7839     if (!L)
7840       return LoopVariant;
7841 
7842     // This recurrence is variant w.r.t. L if L contains AR's loop.
7843     if (L->contains(AR->getLoop()))
7844       return LoopVariant;
7845 
7846     // This recurrence is invariant w.r.t. L if AR's loop contains L.
7847     if (AR->getLoop()->contains(L))
7848       return LoopInvariant;
7849 
7850     // This recurrence is variant w.r.t. L if any of its operands
7851     // are variant.
7852     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7853          I != E; ++I)
7854       if (!isLoopInvariant(*I, L))
7855         return LoopVariant;
7856 
7857     // Otherwise it's loop-invariant.
7858     return LoopInvariant;
7859   }
7860   case scAddExpr:
7861   case scMulExpr:
7862   case scUMaxExpr:
7863   case scSMaxExpr: {
7864     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7865     bool HasVarying = false;
7866     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7867          I != E; ++I) {
7868       LoopDisposition D = getLoopDisposition(*I, L);
7869       if (D == LoopVariant)
7870         return LoopVariant;
7871       if (D == LoopComputable)
7872         HasVarying = true;
7873     }
7874     return HasVarying ? LoopComputable : LoopInvariant;
7875   }
7876   case scUDivExpr: {
7877     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7878     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7879     if (LD == LoopVariant)
7880       return LoopVariant;
7881     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7882     if (RD == LoopVariant)
7883       return LoopVariant;
7884     return (LD == LoopInvariant && RD == LoopInvariant) ?
7885            LoopInvariant : LoopComputable;
7886   }
7887   case scUnknown:
7888     // All non-instruction values are loop invariant.  All instructions are loop
7889     // invariant if they are not contained in the specified loop.
7890     // Instructions are never considered invariant in the function body
7891     // (null loop) because they are defined within the "loop".
7892     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7893       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7894     return LoopInvariant;
7895   case scCouldNotCompute:
7896     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7897   }
7898   llvm_unreachable("Unknown SCEV kind!");
7899 }
7900 
7901 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7902   return getLoopDisposition(S, L) == LoopInvariant;
7903 }
7904 
7905 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7906   return getLoopDisposition(S, L) == LoopComputable;
7907 }
7908 
7909 ScalarEvolution::BlockDisposition
7910 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7911   SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7912   for (unsigned u = 0; u < Values.size(); u++) {
7913     if (Values[u].first == BB)
7914       return Values[u].second;
7915   }
7916   Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
7917   BlockDisposition D = computeBlockDisposition(S, BB);
7918   SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7919   for (unsigned u = Values2.size(); u > 0; u--) {
7920     if (Values2[u - 1].first == BB) {
7921       Values2[u - 1].second = D;
7922       break;
7923     }
7924   }
7925   return D;
7926 }
7927 
7928 ScalarEvolution::BlockDisposition
7929 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
7930   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
7931   case scConstant:
7932     return ProperlyDominatesBlock;
7933   case scTruncate:
7934   case scZeroExtend:
7935   case scSignExtend:
7936     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
7937   case scAddRecExpr: {
7938     // This uses a "dominates" query instead of "properly dominates" query
7939     // to test for proper dominance too, because the instruction which
7940     // produces the addrec's value is a PHI, and a PHI effectively properly
7941     // dominates its entire containing block.
7942     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7943     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
7944       return DoesNotDominateBlock;
7945   }
7946   // FALL THROUGH into SCEVNAryExpr handling.
7947   case scAddExpr:
7948   case scMulExpr:
7949   case scUMaxExpr:
7950   case scSMaxExpr: {
7951     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
7952     bool Proper = true;
7953     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7954          I != E; ++I) {
7955       BlockDisposition D = getBlockDisposition(*I, BB);
7956       if (D == DoesNotDominateBlock)
7957         return DoesNotDominateBlock;
7958       if (D == DominatesBlock)
7959         Proper = false;
7960     }
7961     return Proper ? ProperlyDominatesBlock : DominatesBlock;
7962   }
7963   case scUDivExpr: {
7964     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
7965     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7966     BlockDisposition LD = getBlockDisposition(LHS, BB);
7967     if (LD == DoesNotDominateBlock)
7968       return DoesNotDominateBlock;
7969     BlockDisposition RD = getBlockDisposition(RHS, BB);
7970     if (RD == DoesNotDominateBlock)
7971       return DoesNotDominateBlock;
7972     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7973       ProperlyDominatesBlock : DominatesBlock;
7974   }
7975   case scUnknown:
7976     if (Instruction *I =
7977           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7978       if (I->getParent() == BB)
7979         return DominatesBlock;
7980       if (DT->properlyDominates(I->getParent(), BB))
7981         return ProperlyDominatesBlock;
7982       return DoesNotDominateBlock;
7983     }
7984     return ProperlyDominatesBlock;
7985   case scCouldNotCompute:
7986     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
7987   }
7988   llvm_unreachable("Unknown SCEV kind!");
7989 }
7990 
7991 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7992   return getBlockDisposition(S, BB) >= DominatesBlock;
7993 }
7994 
7995 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7996   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
7997 }
7998 
7999 namespace {
8000 // Search for a SCEV expression node within an expression tree.
8001 // Implements SCEVTraversal::Visitor.
8002 struct SCEVSearch {
8003   const SCEV *Node;
8004   bool IsFound;
8005 
8006   SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8007 
8008   bool follow(const SCEV *S) {
8009     IsFound |= (S == Node);
8010     return !IsFound;
8011   }
8012   bool isDone() const { return IsFound; }
8013 };
8014 }
8015 
8016 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
8017   SCEVSearch Search(Op);
8018   visitAll(S, Search);
8019   return Search.IsFound;
8020 }
8021 
8022 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8023   ValuesAtScopes.erase(S);
8024   LoopDispositions.erase(S);
8025   BlockDispositions.erase(S);
8026   UnsignedRanges.erase(S);
8027   SignedRanges.erase(S);
8028 
8029   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8030          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8031     BackedgeTakenInfo &BEInfo = I->second;
8032     if (BEInfo.hasOperand(S, this)) {
8033       BEInfo.clear();
8034       BackedgeTakenCounts.erase(I++);
8035     }
8036     else
8037       ++I;
8038   }
8039 }
8040 
8041 typedef DenseMap<const Loop *, std::string> VerifyMap;
8042 
8043 /// replaceSubString - Replaces all occurrences of From in Str with To.
8044 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8045   size_t Pos = 0;
8046   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8047     Str.replace(Pos, From.size(), To.data(), To.size());
8048     Pos += To.size();
8049   }
8050 }
8051 
8052 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8053 static void
8054 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8055   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8056     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8057 
8058     std::string &S = Map[L];
8059     if (S.empty()) {
8060       raw_string_ostream OS(S);
8061       SE.getBackedgeTakenCount(L)->print(OS);
8062 
8063       // false and 0 are semantically equivalent. This can happen in dead loops.
8064       replaceSubString(OS.str(), "false", "0");
8065       // Remove wrap flags, their use in SCEV is highly fragile.
8066       // FIXME: Remove this when SCEV gets smarter about them.
8067       replaceSubString(OS.str(), "<nw>", "");
8068       replaceSubString(OS.str(), "<nsw>", "");
8069       replaceSubString(OS.str(), "<nuw>", "");
8070     }
8071   }
8072 }
8073 
8074 void ScalarEvolution::verifyAnalysis() const {
8075   if (!VerifySCEV)
8076     return;
8077 
8078   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8079 
8080   // Gather stringified backedge taken counts for all loops using SCEV's caches.
8081   // FIXME: It would be much better to store actual values instead of strings,
8082   //        but SCEV pointers will change if we drop the caches.
8083   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8084   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8085     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8086 
8087   // Gather stringified backedge taken counts for all loops without using
8088   // SCEV's caches.
8089   SE.releaseMemory();
8090   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8091     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8092 
8093   // Now compare whether they're the same with and without caches. This allows
8094   // verifying that no pass changed the cache.
8095   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8096          "New loops suddenly appeared!");
8097 
8098   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8099                            OldE = BackedgeDumpsOld.end(),
8100                            NewI = BackedgeDumpsNew.begin();
8101        OldI != OldE; ++OldI, ++NewI) {
8102     assert(OldI->first == NewI->first && "Loop order changed!");
8103 
8104     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8105     // changes.
8106     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
8107     // means that a pass is buggy or SCEV has to learn a new pattern but is
8108     // usually not harmful.
8109     if (OldI->second != NewI->second &&
8110         OldI->second.find("undef") == std::string::npos &&
8111         NewI->second.find("undef") == std::string::npos &&
8112         OldI->second != "***COULDNOTCOMPUTE***" &&
8113         NewI->second != "***COULDNOTCOMPUTE***") {
8114       dbgs() << "SCEVValidator: SCEV for loop '"
8115              << OldI->first->getHeader()->getName()
8116              << "' changed from '" << OldI->second
8117              << "' to '" << NewI->second << "'!\n";
8118       std::abort();
8119     }
8120   }
8121 
8122   // TODO: Verify more things.
8123 }
8124