xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 1eda9bfd6129a0da4cb6e4619d230ab0e08d33f9)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/ConstantRange.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/Dominators.h"
95 #include "llvm/IR/Function.h"
96 #include "llvm/IR/GlobalAlias.h"
97 #include "llvm/IR/GlobalValue.h"
98 #include "llvm/IR/GlobalVariable.h"
99 #include "llvm/IR/InstIterator.h"
100 #include "llvm/IR/InstrTypes.h"
101 #include "llvm/IR/Instruction.h"
102 #include "llvm/IR/Instructions.h"
103 #include "llvm/IR/IntrinsicInst.h"
104 #include "llvm/IR/Intrinsics.h"
105 #include "llvm/IR/LLVMContext.h"
106 #include "llvm/IR/Metadata.h"
107 #include "llvm/IR/Operator.h"
108 #include "llvm/IR/PatternMatch.h"
109 #include "llvm/IR/Type.h"
110 #include "llvm/IR/Use.h"
111 #include "llvm/IR/User.h"
112 #include "llvm/IR/Value.h"
113 #include "llvm/IR/Verifier.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135 
136 using namespace llvm;
137 
138 #define DEBUG_TYPE "scalar-evolution"
139 
140 STATISTIC(NumArrayLenItCounts,
141           "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::ZeroOrMore,
152                         cl::desc("Maximum number of iterations SCEV will "
153                                  "symbolically execute a constant "
154                                  "derived loop"),
155                         cl::init(100));
156 
157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158 static cl::opt<bool> VerifySCEV(
159     "verify-scev", cl::Hidden,
160     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt<bool> VerifySCEVStrict(
162     "verify-scev-strict", cl::Hidden,
163     cl::desc("Enable stricter verification with -verify-scev is passed"));
164 static cl::opt<bool>
165     VerifySCEVMap("verify-scev-maps", cl::Hidden,
166                   cl::desc("Verify no dangling value in ScalarEvolution's "
167                            "ExprValueMap (slow)"));
168 
169 static cl::opt<bool> VerifyIR(
170     "scev-verify-ir", cl::Hidden,
171     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172     cl::init(false));
173 
174 static cl::opt<unsigned> MulOpsInlineThreshold(
175     "scev-mulops-inline-threshold", cl::Hidden,
176     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177     cl::init(32));
178 
179 static cl::opt<unsigned> AddOpsInlineThreshold(
180     "scev-addops-inline-threshold", cl::Hidden,
181     cl::desc("Threshold for inlining addition operands into a SCEV"),
182     cl::init(500));
183 
184 static cl::opt<unsigned> MaxSCEVCompareDepth(
185     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187     cl::init(32));
188 
189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192     cl::init(2));
193 
194 static cl::opt<unsigned> MaxValueCompareDepth(
195     "scalar-evolution-max-value-compare-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive value complexity comparisons"),
197     cl::init(2));
198 
199 static cl::opt<unsigned>
200     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201                   cl::desc("Maximum depth of recursive arithmetics"),
202                   cl::init(32));
203 
204 static cl::opt<unsigned> MaxConstantEvolvingDepth(
205     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207 
208 static cl::opt<unsigned>
209     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211                  cl::init(8));
212 
213 static cl::opt<unsigned>
214     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215                   cl::desc("Max coefficients in AddRec during evolving"),
216                   cl::init(8));
217 
218 static cl::opt<unsigned>
219     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220                   cl::desc("Size of the expression which is considered huge"),
221                   cl::init(4096));
222 
223 static cl::opt<bool>
224 ClassifyExpressions("scalar-evolution-classify-expressions",
225     cl::Hidden, cl::init(true),
226     cl::desc("When printing analysis, include information on every instruction"));
227 
228 
229 //===----------------------------------------------------------------------===//
230 //                           SCEV class definitions
231 //===----------------------------------------------------------------------===//
232 
233 //===----------------------------------------------------------------------===//
234 // Implementation of the SCEV class.
235 //
236 
237 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
238 LLVM_DUMP_METHOD void SCEV::dump() const {
239   print(dbgs());
240   dbgs() << '\n';
241 }
242 #endif
243 
244 void SCEV::print(raw_ostream &OS) const {
245   switch (static_cast<SCEVTypes>(getSCEVType())) {
246   case scConstant:
247     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
248     return;
249   case scTruncate: {
250     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
251     const SCEV *Op = Trunc->getOperand();
252     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
253        << *Trunc->getType() << ")";
254     return;
255   }
256   case scZeroExtend: {
257     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
258     const SCEV *Op = ZExt->getOperand();
259     OS << "(zext " << *Op->getType() << " " << *Op << " to "
260        << *ZExt->getType() << ")";
261     return;
262   }
263   case scSignExtend: {
264     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
265     const SCEV *Op = SExt->getOperand();
266     OS << "(sext " << *Op->getType() << " " << *Op << " to "
267        << *SExt->getType() << ")";
268     return;
269   }
270   case scAddRecExpr: {
271     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
272     OS << "{" << *AR->getOperand(0);
273     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
274       OS << ",+," << *AR->getOperand(i);
275     OS << "}<";
276     if (AR->hasNoUnsignedWrap())
277       OS << "nuw><";
278     if (AR->hasNoSignedWrap())
279       OS << "nsw><";
280     if (AR->hasNoSelfWrap() &&
281         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
282       OS << "nw><";
283     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
284     OS << ">";
285     return;
286   }
287   case scAddExpr:
288   case scMulExpr:
289   case scUMaxExpr:
290   case scSMaxExpr:
291   case scUMinExpr:
292   case scSMinExpr: {
293     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
294     const char *OpStr = nullptr;
295     switch (NAry->getSCEVType()) {
296     case scAddExpr: OpStr = " + "; break;
297     case scMulExpr: OpStr = " * "; break;
298     case scUMaxExpr: OpStr = " umax "; break;
299     case scSMaxExpr: OpStr = " smax "; break;
300     case scUMinExpr:
301       OpStr = " umin ";
302       break;
303     case scSMinExpr:
304       OpStr = " smin ";
305       break;
306     }
307     OS << "(";
308     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
309          I != E; ++I) {
310       OS << **I;
311       if (std::next(I) != E)
312         OS << OpStr;
313     }
314     OS << ")";
315     switch (NAry->getSCEVType()) {
316     case scAddExpr:
317     case scMulExpr:
318       if (NAry->hasNoUnsignedWrap())
319         OS << "<nuw>";
320       if (NAry->hasNoSignedWrap())
321         OS << "<nsw>";
322     }
323     return;
324   }
325   case scUDivExpr: {
326     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
327     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
328     return;
329   }
330   case scUnknown: {
331     const SCEVUnknown *U = cast<SCEVUnknown>(this);
332     Type *AllocTy;
333     if (U->isSizeOf(AllocTy)) {
334       OS << "sizeof(" << *AllocTy << ")";
335       return;
336     }
337     if (U->isAlignOf(AllocTy)) {
338       OS << "alignof(" << *AllocTy << ")";
339       return;
340     }
341 
342     Type *CTy;
343     Constant *FieldNo;
344     if (U->isOffsetOf(CTy, FieldNo)) {
345       OS << "offsetof(" << *CTy << ", ";
346       FieldNo->printAsOperand(OS, false);
347       OS << ")";
348       return;
349     }
350 
351     // Otherwise just print it normally.
352     U->getValue()->printAsOperand(OS, false);
353     return;
354   }
355   case scCouldNotCompute:
356     OS << "***COULDNOTCOMPUTE***";
357     return;
358   }
359   llvm_unreachable("Unknown SCEV kind!");
360 }
361 
362 Type *SCEV::getType() const {
363   switch (static_cast<SCEVTypes>(getSCEVType())) {
364   case scConstant:
365     return cast<SCEVConstant>(this)->getType();
366   case scTruncate:
367   case scZeroExtend:
368   case scSignExtend:
369     return cast<SCEVCastExpr>(this)->getType();
370   case scAddRecExpr:
371   case scMulExpr:
372   case scUMaxExpr:
373   case scSMaxExpr:
374   case scUMinExpr:
375   case scSMinExpr:
376     return cast<SCEVNAryExpr>(this)->getType();
377   case scAddExpr:
378     return cast<SCEVAddExpr>(this)->getType();
379   case scUDivExpr:
380     return cast<SCEVUDivExpr>(this)->getType();
381   case scUnknown:
382     return cast<SCEVUnknown>(this)->getType();
383   case scCouldNotCompute:
384     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
385   }
386   llvm_unreachable("Unknown SCEV kind!");
387 }
388 
389 bool SCEV::isZero() const {
390   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
391     return SC->getValue()->isZero();
392   return false;
393 }
394 
395 bool SCEV::isOne() const {
396   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
397     return SC->getValue()->isOne();
398   return false;
399 }
400 
401 bool SCEV::isAllOnesValue() const {
402   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
403     return SC->getValue()->isMinusOne();
404   return false;
405 }
406 
407 bool SCEV::isNonConstantNegative() const {
408   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
409   if (!Mul) return false;
410 
411   // If there is a constant factor, it will be first.
412   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
413   if (!SC) return false;
414 
415   // Return true if the value is negative, this matches things like (-42 * V).
416   return SC->getAPInt().isNegative();
417 }
418 
419 SCEVCouldNotCompute::SCEVCouldNotCompute() :
420   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
421 
422 bool SCEVCouldNotCompute::classof(const SCEV *S) {
423   return S->getSCEVType() == scCouldNotCompute;
424 }
425 
426 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
427   FoldingSetNodeID ID;
428   ID.AddInteger(scConstant);
429   ID.AddPointer(V);
430   void *IP = nullptr;
431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
432   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
433   UniqueSCEVs.InsertNode(S, IP);
434   return S;
435 }
436 
437 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
438   return getConstant(ConstantInt::get(getContext(), Val));
439 }
440 
441 const SCEV *
442 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
443   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
444   return getConstant(ConstantInt::get(ITy, V, isSigned));
445 }
446 
447 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
448                            unsigned SCEVTy, const SCEV *op, Type *ty)
449   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
450 
451 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
452                                    const SCEV *op, Type *ty)
453   : SCEVCastExpr(ID, scTruncate, op, ty) {
454   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
455          "Cannot truncate non-integer value!");
456 }
457 
458 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
459                                        const SCEV *op, Type *ty)
460   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
461   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
462          "Cannot zero extend non-integer value!");
463 }
464 
465 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
466                                        const SCEV *op, Type *ty)
467   : SCEVCastExpr(ID, scSignExtend, op, ty) {
468   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
469          "Cannot sign extend non-integer value!");
470 }
471 
472 void SCEVUnknown::deleted() {
473   // Clear this SCEVUnknown from various maps.
474   SE->forgetMemoizedResults(this);
475 
476   // Remove this SCEVUnknown from the uniquing map.
477   SE->UniqueSCEVs.RemoveNode(this);
478 
479   // Release the value.
480   setValPtr(nullptr);
481 }
482 
483 void SCEVUnknown::allUsesReplacedWith(Value *New) {
484   // Remove this SCEVUnknown from the uniquing map.
485   SE->UniqueSCEVs.RemoveNode(this);
486 
487   // Update this SCEVUnknown to point to the new value. This is needed
488   // because there may still be outstanding SCEVs which still point to
489   // this SCEVUnknown.
490   setValPtr(New);
491 }
492 
493 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
494   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
495     if (VCE->getOpcode() == Instruction::PtrToInt)
496       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
497         if (CE->getOpcode() == Instruction::GetElementPtr &&
498             CE->getOperand(0)->isNullValue() &&
499             CE->getNumOperands() == 2)
500           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
501             if (CI->isOne()) {
502               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
503                                  ->getElementType();
504               return true;
505             }
506 
507   return false;
508 }
509 
510 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
511   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
512     if (VCE->getOpcode() == Instruction::PtrToInt)
513       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
514         if (CE->getOpcode() == Instruction::GetElementPtr &&
515             CE->getOperand(0)->isNullValue()) {
516           Type *Ty =
517             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
518           if (StructType *STy = dyn_cast<StructType>(Ty))
519             if (!STy->isPacked() &&
520                 CE->getNumOperands() == 3 &&
521                 CE->getOperand(1)->isNullValue()) {
522               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
523                 if (CI->isOne() &&
524                     STy->getNumElements() == 2 &&
525                     STy->getElementType(0)->isIntegerTy(1)) {
526                   AllocTy = STy->getElementType(1);
527                   return true;
528                 }
529             }
530         }
531 
532   return false;
533 }
534 
535 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
536   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
537     if (VCE->getOpcode() == Instruction::PtrToInt)
538       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
539         if (CE->getOpcode() == Instruction::GetElementPtr &&
540             CE->getNumOperands() == 3 &&
541             CE->getOperand(0)->isNullValue() &&
542             CE->getOperand(1)->isNullValue()) {
543           Type *Ty =
544             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
545           // Ignore vector types here so that ScalarEvolutionExpander doesn't
546           // emit getelementptrs that index into vectors.
547           if (Ty->isStructTy() || Ty->isArrayTy()) {
548             CTy = Ty;
549             FieldNo = CE->getOperand(2);
550             return true;
551           }
552         }
553 
554   return false;
555 }
556 
557 //===----------------------------------------------------------------------===//
558 //                               SCEV Utilities
559 //===----------------------------------------------------------------------===//
560 
561 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
562 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
563 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
564 /// have been previously deemed to be "equally complex" by this routine.  It is
565 /// intended to avoid exponential time complexity in cases like:
566 ///
567 ///   %a = f(%x, %y)
568 ///   %b = f(%a, %a)
569 ///   %c = f(%b, %b)
570 ///
571 ///   %d = f(%x, %y)
572 ///   %e = f(%d, %d)
573 ///   %f = f(%e, %e)
574 ///
575 ///   CompareValueComplexity(%f, %c)
576 ///
577 /// Since we do not continue running this routine on expression trees once we
578 /// have seen unequal values, there is no need to track them in the cache.
579 static int
580 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
581                        const LoopInfo *const LI, Value *LV, Value *RV,
582                        unsigned Depth) {
583   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
584     return 0;
585 
586   // Order pointer values after integer values. This helps SCEVExpander form
587   // GEPs.
588   bool LIsPointer = LV->getType()->isPointerTy(),
589        RIsPointer = RV->getType()->isPointerTy();
590   if (LIsPointer != RIsPointer)
591     return (int)LIsPointer - (int)RIsPointer;
592 
593   // Compare getValueID values.
594   unsigned LID = LV->getValueID(), RID = RV->getValueID();
595   if (LID != RID)
596     return (int)LID - (int)RID;
597 
598   // Sort arguments by their position.
599   if (const auto *LA = dyn_cast<Argument>(LV)) {
600     const auto *RA = cast<Argument>(RV);
601     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
602     return (int)LArgNo - (int)RArgNo;
603   }
604 
605   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
606     const auto *RGV = cast<GlobalValue>(RV);
607 
608     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
609       auto LT = GV->getLinkage();
610       return !(GlobalValue::isPrivateLinkage(LT) ||
611                GlobalValue::isInternalLinkage(LT));
612     };
613 
614     // Use the names to distinguish the two values, but only if the
615     // names are semantically important.
616     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
617       return LGV->getName().compare(RGV->getName());
618   }
619 
620   // For instructions, compare their loop depth, and their operand count.  This
621   // is pretty loose.
622   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
623     const auto *RInst = cast<Instruction>(RV);
624 
625     // Compare loop depths.
626     const BasicBlock *LParent = LInst->getParent(),
627                      *RParent = RInst->getParent();
628     if (LParent != RParent) {
629       unsigned LDepth = LI->getLoopDepth(LParent),
630                RDepth = LI->getLoopDepth(RParent);
631       if (LDepth != RDepth)
632         return (int)LDepth - (int)RDepth;
633     }
634 
635     // Compare the number of operands.
636     unsigned LNumOps = LInst->getNumOperands(),
637              RNumOps = RInst->getNumOperands();
638     if (LNumOps != RNumOps)
639       return (int)LNumOps - (int)RNumOps;
640 
641     for (unsigned Idx : seq(0u, LNumOps)) {
642       int Result =
643           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
644                                  RInst->getOperand(Idx), Depth + 1);
645       if (Result != 0)
646         return Result;
647     }
648   }
649 
650   EqCacheValue.unionSets(LV, RV);
651   return 0;
652 }
653 
654 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
655 // than RHS, respectively. A three-way result allows recursive comparisons to be
656 // more efficient.
657 static int CompareSCEVComplexity(
658     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
659     EquivalenceClasses<const Value *> &EqCacheValue,
660     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
661     DominatorTree &DT, unsigned Depth = 0) {
662   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
663   if (LHS == RHS)
664     return 0;
665 
666   // Primarily, sort the SCEVs by their getSCEVType().
667   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
668   if (LType != RType)
669     return (int)LType - (int)RType;
670 
671   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
672     return 0;
673   // Aside from the getSCEVType() ordering, the particular ordering
674   // isn't very important except that it's beneficial to be consistent,
675   // so that (a + b) and (b + a) don't end up as different expressions.
676   switch (static_cast<SCEVTypes>(LType)) {
677   case scUnknown: {
678     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
679     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
680 
681     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
682                                    RU->getValue(), Depth + 1);
683     if (X == 0)
684       EqCacheSCEV.unionSets(LHS, RHS);
685     return X;
686   }
687 
688   case scConstant: {
689     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
690     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
691 
692     // Compare constant values.
693     const APInt &LA = LC->getAPInt();
694     const APInt &RA = RC->getAPInt();
695     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
696     if (LBitWidth != RBitWidth)
697       return (int)LBitWidth - (int)RBitWidth;
698     return LA.ult(RA) ? -1 : 1;
699   }
700 
701   case scAddRecExpr: {
702     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
703     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
704 
705     // There is always a dominance between two recs that are used by one SCEV,
706     // so we can safely sort recs by loop header dominance. We require such
707     // order in getAddExpr.
708     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
709     if (LLoop != RLoop) {
710       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
711       assert(LHead != RHead && "Two loops share the same header?");
712       if (DT.dominates(LHead, RHead))
713         return 1;
714       else
715         assert(DT.dominates(RHead, LHead) &&
716                "No dominance between recurrences used by one SCEV?");
717       return -1;
718     }
719 
720     // Addrec complexity grows with operand count.
721     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
722     if (LNumOps != RNumOps)
723       return (int)LNumOps - (int)RNumOps;
724 
725     // Lexicographically compare.
726     for (unsigned i = 0; i != LNumOps; ++i) {
727       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
728                                     LA->getOperand(i), RA->getOperand(i), DT,
729                                     Depth + 1);
730       if (X != 0)
731         return X;
732     }
733     EqCacheSCEV.unionSets(LHS, RHS);
734     return 0;
735   }
736 
737   case scAddExpr:
738   case scMulExpr:
739   case scSMaxExpr:
740   case scUMaxExpr:
741   case scSMinExpr:
742   case scUMinExpr: {
743     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
744     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
745 
746     // Lexicographically compare n-ary expressions.
747     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
748     if (LNumOps != RNumOps)
749       return (int)LNumOps - (int)RNumOps;
750 
751     for (unsigned i = 0; i != LNumOps; ++i) {
752       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
753                                     LC->getOperand(i), RC->getOperand(i), DT,
754                                     Depth + 1);
755       if (X != 0)
756         return X;
757     }
758     EqCacheSCEV.unionSets(LHS, RHS);
759     return 0;
760   }
761 
762   case scUDivExpr: {
763     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
764     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
765 
766     // Lexicographically compare udiv expressions.
767     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
768                                   RC->getLHS(), DT, Depth + 1);
769     if (X != 0)
770       return X;
771     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
772                               RC->getRHS(), DT, Depth + 1);
773     if (X == 0)
774       EqCacheSCEV.unionSets(LHS, RHS);
775     return X;
776   }
777 
778   case scTruncate:
779   case scZeroExtend:
780   case scSignExtend: {
781     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
782     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
783 
784     // Compare cast expressions by operand.
785     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
786                                   LC->getOperand(), RC->getOperand(), DT,
787                                   Depth + 1);
788     if (X == 0)
789       EqCacheSCEV.unionSets(LHS, RHS);
790     return X;
791   }
792 
793   case scCouldNotCompute:
794     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
795   }
796   llvm_unreachable("Unknown SCEV kind!");
797 }
798 
799 /// Given a list of SCEV objects, order them by their complexity, and group
800 /// objects of the same complexity together by value.  When this routine is
801 /// finished, we know that any duplicates in the vector are consecutive and that
802 /// complexity is monotonically increasing.
803 ///
804 /// Note that we go take special precautions to ensure that we get deterministic
805 /// results from this routine.  In other words, we don't want the results of
806 /// this to depend on where the addresses of various SCEV objects happened to
807 /// land in memory.
808 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
809                               LoopInfo *LI, DominatorTree &DT) {
810   if (Ops.size() < 2) return;  // Noop
811 
812   EquivalenceClasses<const SCEV *> EqCacheSCEV;
813   EquivalenceClasses<const Value *> EqCacheValue;
814   if (Ops.size() == 2) {
815     // This is the common case, which also happens to be trivially simple.
816     // Special case it.
817     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
818     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
819       std::swap(LHS, RHS);
820     return;
821   }
822 
823   // Do the rough sort by complexity.
824   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
825     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
826            0;
827   });
828 
829   // Now that we are sorted by complexity, group elements of the same
830   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
831   // be extremely short in practice.  Note that we take this approach because we
832   // do not want to depend on the addresses of the objects we are grouping.
833   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
834     const SCEV *S = Ops[i];
835     unsigned Complexity = S->getSCEVType();
836 
837     // If there are any objects of the same complexity and same value as this
838     // one, group them.
839     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
840       if (Ops[j] == S) { // Found a duplicate.
841         // Move it to immediately after i'th element.
842         std::swap(Ops[i+1], Ops[j]);
843         ++i;   // no need to rescan it.
844         if (i == e-2) return;  // Done!
845       }
846     }
847   }
848 }
849 
850 // Returns the size of the SCEV S.
851 static inline int sizeOfSCEV(const SCEV *S) {
852   struct FindSCEVSize {
853     int Size = 0;
854 
855     FindSCEVSize() = default;
856 
857     bool follow(const SCEV *S) {
858       ++Size;
859       // Keep looking at all operands of S.
860       return true;
861     }
862 
863     bool isDone() const {
864       return false;
865     }
866   };
867 
868   FindSCEVSize F;
869   SCEVTraversal<FindSCEVSize> ST(F);
870   ST.visitAll(S);
871   return F.Size;
872 }
873 
874 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
875 /// least HugeExprThreshold nodes).
876 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
877   return any_of(Ops, [](const SCEV *S) {
878     return S->getExpressionSize() >= HugeExprThreshold;
879   });
880 }
881 
882 namespace {
883 
884 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
885 public:
886   // Computes the Quotient and Remainder of the division of Numerator by
887   // Denominator.
888   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
889                      const SCEV *Denominator, const SCEV **Quotient,
890                      const SCEV **Remainder) {
891     assert(Numerator && Denominator && "Uninitialized SCEV");
892 
893     SCEVDivision D(SE, Numerator, Denominator);
894 
895     // Check for the trivial case here to avoid having to check for it in the
896     // rest of the code.
897     if (Numerator == Denominator) {
898       *Quotient = D.One;
899       *Remainder = D.Zero;
900       return;
901     }
902 
903     if (Numerator->isZero()) {
904       *Quotient = D.Zero;
905       *Remainder = D.Zero;
906       return;
907     }
908 
909     // A simple case when N/1. The quotient is N.
910     if (Denominator->isOne()) {
911       *Quotient = Numerator;
912       *Remainder = D.Zero;
913       return;
914     }
915 
916     // Split the Denominator when it is a product.
917     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
918       const SCEV *Q, *R;
919       *Quotient = Numerator;
920       for (const SCEV *Op : T->operands()) {
921         divide(SE, *Quotient, Op, &Q, &R);
922         *Quotient = Q;
923 
924         // Bail out when the Numerator is not divisible by one of the terms of
925         // the Denominator.
926         if (!R->isZero()) {
927           *Quotient = D.Zero;
928           *Remainder = Numerator;
929           return;
930         }
931       }
932       *Remainder = D.Zero;
933       return;
934     }
935 
936     D.visit(Numerator);
937     *Quotient = D.Quotient;
938     *Remainder = D.Remainder;
939   }
940 
941   // Except in the trivial case described above, we do not know how to divide
942   // Expr by Denominator for the following functions with empty implementation.
943   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
944   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
945   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
946   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
947   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
948   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
949   void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
950   void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
951   void visitUnknown(const SCEVUnknown *Numerator) {}
952   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
953 
954   void visitConstant(const SCEVConstant *Numerator) {
955     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
956       APInt NumeratorVal = Numerator->getAPInt();
957       APInt DenominatorVal = D->getAPInt();
958       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
959       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
960 
961       if (NumeratorBW > DenominatorBW)
962         DenominatorVal = DenominatorVal.sext(NumeratorBW);
963       else if (NumeratorBW < DenominatorBW)
964         NumeratorVal = NumeratorVal.sext(DenominatorBW);
965 
966       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
967       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
968       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
969       Quotient = SE.getConstant(QuotientVal);
970       Remainder = SE.getConstant(RemainderVal);
971       return;
972     }
973   }
974 
975   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
976     const SCEV *StartQ, *StartR, *StepQ, *StepR;
977     if (!Numerator->isAffine())
978       return cannotDivide(Numerator);
979     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
980     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
981     // Bail out if the types do not match.
982     Type *Ty = Denominator->getType();
983     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
984         Ty != StepQ->getType() || Ty != StepR->getType())
985       return cannotDivide(Numerator);
986     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
987                                 Numerator->getNoWrapFlags());
988     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
989                                  Numerator->getNoWrapFlags());
990   }
991 
992   void visitAddExpr(const SCEVAddExpr *Numerator) {
993     SmallVector<const SCEV *, 2> Qs, Rs;
994     Type *Ty = Denominator->getType();
995 
996     for (const SCEV *Op : Numerator->operands()) {
997       const SCEV *Q, *R;
998       divide(SE, Op, Denominator, &Q, &R);
999 
1000       // Bail out if types do not match.
1001       if (Ty != Q->getType() || Ty != R->getType())
1002         return cannotDivide(Numerator);
1003 
1004       Qs.push_back(Q);
1005       Rs.push_back(R);
1006     }
1007 
1008     if (Qs.size() == 1) {
1009       Quotient = Qs[0];
1010       Remainder = Rs[0];
1011       return;
1012     }
1013 
1014     Quotient = SE.getAddExpr(Qs);
1015     Remainder = SE.getAddExpr(Rs);
1016   }
1017 
1018   void visitMulExpr(const SCEVMulExpr *Numerator) {
1019     SmallVector<const SCEV *, 2> Qs;
1020     Type *Ty = Denominator->getType();
1021 
1022     bool FoundDenominatorTerm = false;
1023     for (const SCEV *Op : Numerator->operands()) {
1024       // Bail out if types do not match.
1025       if (Ty != Op->getType())
1026         return cannotDivide(Numerator);
1027 
1028       if (FoundDenominatorTerm) {
1029         Qs.push_back(Op);
1030         continue;
1031       }
1032 
1033       // Check whether Denominator divides one of the product operands.
1034       const SCEV *Q, *R;
1035       divide(SE, Op, Denominator, &Q, &R);
1036       if (!R->isZero()) {
1037         Qs.push_back(Op);
1038         continue;
1039       }
1040 
1041       // Bail out if types do not match.
1042       if (Ty != Q->getType())
1043         return cannotDivide(Numerator);
1044 
1045       FoundDenominatorTerm = true;
1046       Qs.push_back(Q);
1047     }
1048 
1049     if (FoundDenominatorTerm) {
1050       Remainder = Zero;
1051       if (Qs.size() == 1)
1052         Quotient = Qs[0];
1053       else
1054         Quotient = SE.getMulExpr(Qs);
1055       return;
1056     }
1057 
1058     if (!isa<SCEVUnknown>(Denominator))
1059       return cannotDivide(Numerator);
1060 
1061     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1062     ValueToValueMap RewriteMap;
1063     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1064         cast<SCEVConstant>(Zero)->getValue();
1065     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1066 
1067     if (Remainder->isZero()) {
1068       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1069       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1070           cast<SCEVConstant>(One)->getValue();
1071       Quotient =
1072           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1073       return;
1074     }
1075 
1076     // Quotient is (Numerator - Remainder) divided by Denominator.
1077     const SCEV *Q, *R;
1078     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1079     // This SCEV does not seem to simplify: fail the division here.
1080     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1081       return cannotDivide(Numerator);
1082     divide(SE, Diff, Denominator, &Q, &R);
1083     if (R != Zero)
1084       return cannotDivide(Numerator);
1085     Quotient = Q;
1086   }
1087 
1088 private:
1089   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1090                const SCEV *Denominator)
1091       : SE(S), Denominator(Denominator) {
1092     Zero = SE.getZero(Denominator->getType());
1093     One = SE.getOne(Denominator->getType());
1094 
1095     // We generally do not know how to divide Expr by Denominator. We
1096     // initialize the division to a "cannot divide" state to simplify the rest
1097     // of the code.
1098     cannotDivide(Numerator);
1099   }
1100 
1101   // Convenience function for giving up on the division. We set the quotient to
1102   // be equal to zero and the remainder to be equal to the numerator.
1103   void cannotDivide(const SCEV *Numerator) {
1104     Quotient = Zero;
1105     Remainder = Numerator;
1106   }
1107 
1108   ScalarEvolution &SE;
1109   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1110 };
1111 
1112 } // end anonymous namespace
1113 
1114 //===----------------------------------------------------------------------===//
1115 //                      Simple SCEV method implementations
1116 //===----------------------------------------------------------------------===//
1117 
1118 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1119 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1120                                        ScalarEvolution &SE,
1121                                        Type *ResultTy) {
1122   // Handle the simplest case efficiently.
1123   if (K == 1)
1124     return SE.getTruncateOrZeroExtend(It, ResultTy);
1125 
1126   // We are using the following formula for BC(It, K):
1127   //
1128   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1129   //
1130   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1131   // overflow.  Hence, we must assure that the result of our computation is
1132   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1133   // safe in modular arithmetic.
1134   //
1135   // However, this code doesn't use exactly that formula; the formula it uses
1136   // is something like the following, where T is the number of factors of 2 in
1137   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1138   // exponentiation:
1139   //
1140   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1141   //
1142   // This formula is trivially equivalent to the previous formula.  However,
1143   // this formula can be implemented much more efficiently.  The trick is that
1144   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1145   // arithmetic.  To do exact division in modular arithmetic, all we have
1146   // to do is multiply by the inverse.  Therefore, this step can be done at
1147   // width W.
1148   //
1149   // The next issue is how to safely do the division by 2^T.  The way this
1150   // is done is by doing the multiplication step at a width of at least W + T
1151   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1152   // when we perform the division by 2^T (which is equivalent to a right shift
1153   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1154   // truncated out after the division by 2^T.
1155   //
1156   // In comparison to just directly using the first formula, this technique
1157   // is much more efficient; using the first formula requires W * K bits,
1158   // but this formula less than W + K bits. Also, the first formula requires
1159   // a division step, whereas this formula only requires multiplies and shifts.
1160   //
1161   // It doesn't matter whether the subtraction step is done in the calculation
1162   // width or the input iteration count's width; if the subtraction overflows,
1163   // the result must be zero anyway.  We prefer here to do it in the width of
1164   // the induction variable because it helps a lot for certain cases; CodeGen
1165   // isn't smart enough to ignore the overflow, which leads to much less
1166   // efficient code if the width of the subtraction is wider than the native
1167   // register width.
1168   //
1169   // (It's possible to not widen at all by pulling out factors of 2 before
1170   // the multiplication; for example, K=2 can be calculated as
1171   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1172   // extra arithmetic, so it's not an obvious win, and it gets
1173   // much more complicated for K > 3.)
1174 
1175   // Protection from insane SCEVs; this bound is conservative,
1176   // but it probably doesn't matter.
1177   if (K > 1000)
1178     return SE.getCouldNotCompute();
1179 
1180   unsigned W = SE.getTypeSizeInBits(ResultTy);
1181 
1182   // Calculate K! / 2^T and T; we divide out the factors of two before
1183   // multiplying for calculating K! / 2^T to avoid overflow.
1184   // Other overflow doesn't matter because we only care about the bottom
1185   // W bits of the result.
1186   APInt OddFactorial(W, 1);
1187   unsigned T = 1;
1188   for (unsigned i = 3; i <= K; ++i) {
1189     APInt Mult(W, i);
1190     unsigned TwoFactors = Mult.countTrailingZeros();
1191     T += TwoFactors;
1192     Mult.lshrInPlace(TwoFactors);
1193     OddFactorial *= Mult;
1194   }
1195 
1196   // We need at least W + T bits for the multiplication step
1197   unsigned CalculationBits = W + T;
1198 
1199   // Calculate 2^T, at width T+W.
1200   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1201 
1202   // Calculate the multiplicative inverse of K! / 2^T;
1203   // this multiplication factor will perform the exact division by
1204   // K! / 2^T.
1205   APInt Mod = APInt::getSignedMinValue(W+1);
1206   APInt MultiplyFactor = OddFactorial.zext(W+1);
1207   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1208   MultiplyFactor = MultiplyFactor.trunc(W);
1209 
1210   // Calculate the product, at width T+W
1211   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1212                                                       CalculationBits);
1213   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1214   for (unsigned i = 1; i != K; ++i) {
1215     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1216     Dividend = SE.getMulExpr(Dividend,
1217                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1218   }
1219 
1220   // Divide by 2^T
1221   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1222 
1223   // Truncate the result, and divide by K! / 2^T.
1224 
1225   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1226                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1227 }
1228 
1229 /// Return the value of this chain of recurrences at the specified iteration
1230 /// number.  We can evaluate this recurrence by multiplying each element in the
1231 /// chain by the binomial coefficient corresponding to it.  In other words, we
1232 /// can evaluate {A,+,B,+,C,+,D} as:
1233 ///
1234 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1235 ///
1236 /// where BC(It, k) stands for binomial coefficient.
1237 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1238                                                 ScalarEvolution &SE) const {
1239   const SCEV *Result = getStart();
1240   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1241     // The computation is correct in the face of overflow provided that the
1242     // multiplication is performed _after_ the evaluation of the binomial
1243     // coefficient.
1244     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1245     if (isa<SCEVCouldNotCompute>(Coeff))
1246       return Coeff;
1247 
1248     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1249   }
1250   return Result;
1251 }
1252 
1253 //===----------------------------------------------------------------------===//
1254 //                    SCEV Expression folder implementations
1255 //===----------------------------------------------------------------------===//
1256 
1257 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1258                                              unsigned Depth) {
1259   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1260          "This is not a truncating conversion!");
1261   assert(isSCEVable(Ty) &&
1262          "This is not a conversion to a SCEVable type!");
1263   Ty = getEffectiveSCEVType(Ty);
1264 
1265   FoldingSetNodeID ID;
1266   ID.AddInteger(scTruncate);
1267   ID.AddPointer(Op);
1268   ID.AddPointer(Ty);
1269   void *IP = nullptr;
1270   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1271 
1272   // Fold if the operand is constant.
1273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1274     return getConstant(
1275       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1276 
1277   // trunc(trunc(x)) --> trunc(x)
1278   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1279     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1280 
1281   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1282   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1283     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1284 
1285   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1286   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1287     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1288 
1289   if (Depth > MaxCastDepth) {
1290     SCEV *S =
1291         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1292     UniqueSCEVs.InsertNode(S, IP);
1293     addToLoopUseLists(S);
1294     return S;
1295   }
1296 
1297   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1298   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1299   // if after transforming we have at most one truncate, not counting truncates
1300   // that replace other casts.
1301   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1302     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1303     SmallVector<const SCEV *, 4> Operands;
1304     unsigned numTruncs = 0;
1305     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1306          ++i) {
1307       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1308       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1309         numTruncs++;
1310       Operands.push_back(S);
1311     }
1312     if (numTruncs < 2) {
1313       if (isa<SCEVAddExpr>(Op))
1314         return getAddExpr(Operands);
1315       else if (isa<SCEVMulExpr>(Op))
1316         return getMulExpr(Operands);
1317       else
1318         llvm_unreachable("Unexpected SCEV type for Op.");
1319     }
1320     // Although we checked in the beginning that ID is not in the cache, it is
1321     // possible that during recursion and different modification ID was inserted
1322     // into the cache. So if we find it, just return it.
1323     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1324       return S;
1325   }
1326 
1327   // If the input value is a chrec scev, truncate the chrec's operands.
1328   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1329     SmallVector<const SCEV *, 4> Operands;
1330     for (const SCEV *Op : AddRec->operands())
1331       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1332     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1333   }
1334 
1335   // The cast wasn't folded; create an explicit cast node. We can reuse
1336   // the existing insert position since if we get here, we won't have
1337   // made any changes which would invalidate it.
1338   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1339                                                  Op, Ty);
1340   UniqueSCEVs.InsertNode(S, IP);
1341   addToLoopUseLists(S);
1342   return S;
1343 }
1344 
1345 // Get the limit of a recurrence such that incrementing by Step cannot cause
1346 // signed overflow as long as the value of the recurrence within the
1347 // loop does not exceed this limit before incrementing.
1348 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1349                                                  ICmpInst::Predicate *Pred,
1350                                                  ScalarEvolution *SE) {
1351   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1352   if (SE->isKnownPositive(Step)) {
1353     *Pred = ICmpInst::ICMP_SLT;
1354     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1355                            SE->getSignedRangeMax(Step));
1356   }
1357   if (SE->isKnownNegative(Step)) {
1358     *Pred = ICmpInst::ICMP_SGT;
1359     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1360                            SE->getSignedRangeMin(Step));
1361   }
1362   return nullptr;
1363 }
1364 
1365 // Get the limit of a recurrence such that incrementing by Step cannot cause
1366 // unsigned overflow as long as the value of the recurrence within the loop does
1367 // not exceed this limit before incrementing.
1368 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1369                                                    ICmpInst::Predicate *Pred,
1370                                                    ScalarEvolution *SE) {
1371   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1372   *Pred = ICmpInst::ICMP_ULT;
1373 
1374   return SE->getConstant(APInt::getMinValue(BitWidth) -
1375                          SE->getUnsignedRangeMax(Step));
1376 }
1377 
1378 namespace {
1379 
1380 struct ExtendOpTraitsBase {
1381   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1382                                                           unsigned);
1383 };
1384 
1385 // Used to make code generic over signed and unsigned overflow.
1386 template <typename ExtendOp> struct ExtendOpTraits {
1387   // Members present:
1388   //
1389   // static const SCEV::NoWrapFlags WrapType;
1390   //
1391   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1392   //
1393   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1394   //                                           ICmpInst::Predicate *Pred,
1395   //                                           ScalarEvolution *SE);
1396 };
1397 
1398 template <>
1399 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1400   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1401 
1402   static const GetExtendExprTy GetExtendExpr;
1403 
1404   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1405                                              ICmpInst::Predicate *Pred,
1406                                              ScalarEvolution *SE) {
1407     return getSignedOverflowLimitForStep(Step, Pred, SE);
1408   }
1409 };
1410 
1411 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1412     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1413 
1414 template <>
1415 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1416   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1417 
1418   static const GetExtendExprTy GetExtendExpr;
1419 
1420   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1421                                              ICmpInst::Predicate *Pred,
1422                                              ScalarEvolution *SE) {
1423     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1424   }
1425 };
1426 
1427 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1428     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1429 
1430 } // end anonymous namespace
1431 
1432 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1433 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1434 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1435 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1436 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1437 // expression "Step + sext/zext(PreIncAR)" is congruent with
1438 // "sext/zext(PostIncAR)"
1439 template <typename ExtendOpTy>
1440 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1441                                         ScalarEvolution *SE, unsigned Depth) {
1442   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1443   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1444 
1445   const Loop *L = AR->getLoop();
1446   const SCEV *Start = AR->getStart();
1447   const SCEV *Step = AR->getStepRecurrence(*SE);
1448 
1449   // Check for a simple looking step prior to loop entry.
1450   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1451   if (!SA)
1452     return nullptr;
1453 
1454   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1455   // subtraction is expensive. For this purpose, perform a quick and dirty
1456   // difference, by checking for Step in the operand list.
1457   SmallVector<const SCEV *, 4> DiffOps;
1458   for (const SCEV *Op : SA->operands())
1459     if (Op != Step)
1460       DiffOps.push_back(Op);
1461 
1462   if (DiffOps.size() == SA->getNumOperands())
1463     return nullptr;
1464 
1465   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1466   // `Step`:
1467 
1468   // 1. NSW/NUW flags on the step increment.
1469   auto PreStartFlags =
1470     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1471   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1472   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1473       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1474 
1475   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1476   // "S+X does not sign/unsign-overflow".
1477   //
1478 
1479   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1480   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1481       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1482     return PreStart;
1483 
1484   // 2. Direct overflow check on the step operation's expression.
1485   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1486   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1487   const SCEV *OperandExtendedStart =
1488       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1489                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1490   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1491     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1492       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1493       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1494       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1495       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1496     }
1497     return PreStart;
1498   }
1499 
1500   // 3. Loop precondition.
1501   ICmpInst::Predicate Pred;
1502   const SCEV *OverflowLimit =
1503       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1504 
1505   if (OverflowLimit &&
1506       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1507     return PreStart;
1508 
1509   return nullptr;
1510 }
1511 
1512 // Get the normalized zero or sign extended expression for this AddRec's Start.
1513 template <typename ExtendOpTy>
1514 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1515                                         ScalarEvolution *SE,
1516                                         unsigned Depth) {
1517   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1518 
1519   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1520   if (!PreStart)
1521     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1522 
1523   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1524                                              Depth),
1525                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1526 }
1527 
1528 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1529 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1530 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1531 //
1532 // Formally:
1533 //
1534 //     {S,+,X} == {S-T,+,X} + T
1535 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1536 //
1537 // If ({S-T,+,X} + T) does not overflow  ... (1)
1538 //
1539 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1540 //
1541 // If {S-T,+,X} does not overflow  ... (2)
1542 //
1543 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1544 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1545 //
1546 // If (S-T)+T does not overflow  ... (3)
1547 //
1548 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1549 //      == {Ext(S),+,Ext(X)} == LHS
1550 //
1551 // Thus, if (1), (2) and (3) are true for some T, then
1552 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1553 //
1554 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1555 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1556 // to check for (1) and (2).
1557 //
1558 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1559 // is `Delta` (defined below).
1560 template <typename ExtendOpTy>
1561 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1562                                                 const SCEV *Step,
1563                                                 const Loop *L) {
1564   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1565 
1566   // We restrict `Start` to a constant to prevent SCEV from spending too much
1567   // time here.  It is correct (but more expensive) to continue with a
1568   // non-constant `Start` and do a general SCEV subtraction to compute
1569   // `PreStart` below.
1570   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1571   if (!StartC)
1572     return false;
1573 
1574   APInt StartAI = StartC->getAPInt();
1575 
1576   for (unsigned Delta : {-2, -1, 1, 2}) {
1577     const SCEV *PreStart = getConstant(StartAI - Delta);
1578 
1579     FoldingSetNodeID ID;
1580     ID.AddInteger(scAddRecExpr);
1581     ID.AddPointer(PreStart);
1582     ID.AddPointer(Step);
1583     ID.AddPointer(L);
1584     void *IP = nullptr;
1585     const auto *PreAR =
1586       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1587 
1588     // Give up if we don't already have the add recurrence we need because
1589     // actually constructing an add recurrence is relatively expensive.
1590     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1591       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1592       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1593       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1594           DeltaS, &Pred, this);
1595       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1596         return true;
1597     }
1598   }
1599 
1600   return false;
1601 }
1602 
1603 // Finds an integer D for an expression (C + x + y + ...) such that the top
1604 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1605 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1606 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1607 // the (C + x + y + ...) expression is \p WholeAddExpr.
1608 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1609                                             const SCEVConstant *ConstantTerm,
1610                                             const SCEVAddExpr *WholeAddExpr) {
1611   const APInt C = ConstantTerm->getAPInt();
1612   const unsigned BitWidth = C.getBitWidth();
1613   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1614   uint32_t TZ = BitWidth;
1615   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1616     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1617   if (TZ) {
1618     // Set D to be as many least significant bits of C as possible while still
1619     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1620     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1621   }
1622   return APInt(BitWidth, 0);
1623 }
1624 
1625 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1626 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1627 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1628 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1629 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1630                                             const APInt &ConstantStart,
1631                                             const SCEV *Step) {
1632   const unsigned BitWidth = ConstantStart.getBitWidth();
1633   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1634   if (TZ)
1635     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1636                          : ConstantStart;
1637   return APInt(BitWidth, 0);
1638 }
1639 
1640 const SCEV *
1641 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1642   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1643          "This is not an extending conversion!");
1644   assert(isSCEVable(Ty) &&
1645          "This is not a conversion to a SCEVable type!");
1646   Ty = getEffectiveSCEVType(Ty);
1647 
1648   // Fold if the operand is constant.
1649   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1650     return getConstant(
1651       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1652 
1653   // zext(zext(x)) --> zext(x)
1654   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1655     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1656 
1657   // Before doing any expensive analysis, check to see if we've already
1658   // computed a SCEV for this Op and Ty.
1659   FoldingSetNodeID ID;
1660   ID.AddInteger(scZeroExtend);
1661   ID.AddPointer(Op);
1662   ID.AddPointer(Ty);
1663   void *IP = nullptr;
1664   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1665   if (Depth > MaxCastDepth) {
1666     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1667                                                      Op, Ty);
1668     UniqueSCEVs.InsertNode(S, IP);
1669     addToLoopUseLists(S);
1670     return S;
1671   }
1672 
1673   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1674   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1675     // It's possible the bits taken off by the truncate were all zero bits. If
1676     // so, we should be able to simplify this further.
1677     const SCEV *X = ST->getOperand();
1678     ConstantRange CR = getUnsignedRange(X);
1679     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1680     unsigned NewBits = getTypeSizeInBits(Ty);
1681     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1682             CR.zextOrTrunc(NewBits)))
1683       return getTruncateOrZeroExtend(X, Ty, Depth);
1684   }
1685 
1686   // If the input value is a chrec scev, and we can prove that the value
1687   // did not overflow the old, smaller, value, we can zero extend all of the
1688   // operands (often constants).  This allows analysis of something like
1689   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1690   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1691     if (AR->isAffine()) {
1692       const SCEV *Start = AR->getStart();
1693       const SCEV *Step = AR->getStepRecurrence(*this);
1694       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1695       const Loop *L = AR->getLoop();
1696 
1697       if (!AR->hasNoUnsignedWrap()) {
1698         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1699         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1700       }
1701 
1702       // If we have special knowledge that this addrec won't overflow,
1703       // we don't need to do any further analysis.
1704       if (AR->hasNoUnsignedWrap())
1705         return getAddRecExpr(
1706             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1707             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1708 
1709       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1710       // Note that this serves two purposes: It filters out loops that are
1711       // simply not analyzable, and it covers the case where this code is
1712       // being called from within backedge-taken count analysis, such that
1713       // attempting to ask for the backedge-taken count would likely result
1714       // in infinite recursion. In the later case, the analysis code will
1715       // cope with a conservative value, and it will take care to purge
1716       // that value once it has finished.
1717       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1718       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1719         // Manually compute the final value for AR, checking for
1720         // overflow.
1721 
1722         // Check whether the backedge-taken count can be losslessly casted to
1723         // the addrec's type. The count is always unsigned.
1724         const SCEV *CastedMaxBECount =
1725             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1726         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1727             CastedMaxBECount, MaxBECount->getType(), Depth);
1728         if (MaxBECount == RecastedMaxBECount) {
1729           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1730           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1731           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1732                                         SCEV::FlagAnyWrap, Depth + 1);
1733           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1734                                                           SCEV::FlagAnyWrap,
1735                                                           Depth + 1),
1736                                                WideTy, Depth + 1);
1737           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1738           const SCEV *WideMaxBECount =
1739             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1740           const SCEV *OperandExtendedAdd =
1741             getAddExpr(WideStart,
1742                        getMulExpr(WideMaxBECount,
1743                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1744                                   SCEV::FlagAnyWrap, Depth + 1),
1745                        SCEV::FlagAnyWrap, Depth + 1);
1746           if (ZAdd == OperandExtendedAdd) {
1747             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1748             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756           // Similar to above, only this time treat the step value as signed.
1757           // This covers loops that count down.
1758           OperandExtendedAdd =
1759             getAddExpr(WideStart,
1760                        getMulExpr(WideMaxBECount,
1761                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1762                                   SCEV::FlagAnyWrap, Depth + 1),
1763                        SCEV::FlagAnyWrap, Depth + 1);
1764           if (ZAdd == OperandExtendedAdd) {
1765             // Cache knowledge of AR NW, which is propagated to this AddRec.
1766             // Negative step causes unsigned wrap, but it still can't self-wrap.
1767             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1768             // Return the expression with the addrec on the outside.
1769             return getAddRecExpr(
1770                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1771                                                          Depth + 1),
1772                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1773                 AR->getNoWrapFlags());
1774           }
1775         }
1776       }
1777 
1778       // Normally, in the cases we can prove no-overflow via a
1779       // backedge guarding condition, we can also compute a backedge
1780       // taken count for the loop.  The exceptions are assumptions and
1781       // guards present in the loop -- SCEV is not great at exploiting
1782       // these to compute max backedge taken counts, but can still use
1783       // these to prove lack of overflow.  Use this fact to avoid
1784       // doing extra work that may not pay off.
1785       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1786           !AC.assumptions().empty()) {
1787         // If the backedge is guarded by a comparison with the pre-inc
1788         // value the addrec is safe. Also, if the entry is guarded by
1789         // a comparison with the start value and the backedge is
1790         // guarded by a comparison with the post-inc value, the addrec
1791         // is safe.
1792         if (isKnownPositive(Step)) {
1793           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1794                                       getUnsignedRangeMax(Step));
1795           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1796               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1797             // Cache knowledge of AR NUW, which is propagated to this
1798             // AddRec.
1799             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1800             // Return the expression with the addrec on the outside.
1801             return getAddRecExpr(
1802                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1803                                                          Depth + 1),
1804                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1805                 AR->getNoWrapFlags());
1806           }
1807         } else if (isKnownNegative(Step)) {
1808           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1809                                       getSignedRangeMin(Step));
1810           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1811               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1812             // Cache knowledge of AR NW, which is propagated to this
1813             // AddRec.  Negative step causes unsigned wrap, but it
1814             // still can't self-wrap.
1815             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1816             // Return the expression with the addrec on the outside.
1817             return getAddRecExpr(
1818                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1819                                                          Depth + 1),
1820                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1821                 AR->getNoWrapFlags());
1822           }
1823         }
1824       }
1825 
1826       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1827       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1828       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1829       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1830         const APInt &C = SC->getAPInt();
1831         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1832         if (D != 0) {
1833           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1834           const SCEV *SResidual =
1835               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1836           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1837           return getAddExpr(SZExtD, SZExtR,
1838                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1839                             Depth + 1);
1840         }
1841       }
1842 
1843       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1844         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1845         return getAddRecExpr(
1846             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1847             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1848       }
1849     }
1850 
1851   // zext(A % B) --> zext(A) % zext(B)
1852   {
1853     const SCEV *LHS;
1854     const SCEV *RHS;
1855     if (matchURem(Op, LHS, RHS))
1856       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1857                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1858   }
1859 
1860   // zext(A / B) --> zext(A) / zext(B).
1861   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1862     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1863                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1864 
1865   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1866     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1867     if (SA->hasNoUnsignedWrap()) {
1868       // If the addition does not unsign overflow then we can, by definition,
1869       // commute the zero extension with the addition operation.
1870       SmallVector<const SCEV *, 4> Ops;
1871       for (const auto *Op : SA->operands())
1872         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1873       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1874     }
1875 
1876     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1877     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1878     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1879     //
1880     // Often address arithmetics contain expressions like
1881     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1882     // This transformation is useful while proving that such expressions are
1883     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1884     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1885       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1886       if (D != 0) {
1887         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1888         const SCEV *SResidual =
1889             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1890         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1891         return getAddExpr(SZExtD, SZExtR,
1892                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1893                           Depth + 1);
1894       }
1895     }
1896   }
1897 
1898   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1899     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1900     if (SM->hasNoUnsignedWrap()) {
1901       // If the multiply does not unsign overflow then we can, by definition,
1902       // commute the zero extension with the multiply operation.
1903       SmallVector<const SCEV *, 4> Ops;
1904       for (const auto *Op : SM->operands())
1905         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1906       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1907     }
1908 
1909     // zext(2^K * (trunc X to iN)) to iM ->
1910     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1911     //
1912     // Proof:
1913     //
1914     //     zext(2^K * (trunc X to iN)) to iM
1915     //   = zext((trunc X to iN) << K) to iM
1916     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1917     //     (because shl removes the top K bits)
1918     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1919     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1920     //
1921     if (SM->getNumOperands() == 2)
1922       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1923         if (MulLHS->getAPInt().isPowerOf2())
1924           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1925             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1926                                MulLHS->getAPInt().logBase2();
1927             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1928             return getMulExpr(
1929                 getZeroExtendExpr(MulLHS, Ty),
1930                 getZeroExtendExpr(
1931                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1932                 SCEV::FlagNUW, Depth + 1);
1933           }
1934   }
1935 
1936   // The cast wasn't folded; create an explicit cast node.
1937   // Recompute the insert position, as it may have been invalidated.
1938   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1939   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1940                                                    Op, Ty);
1941   UniqueSCEVs.InsertNode(S, IP);
1942   addToLoopUseLists(S);
1943   return S;
1944 }
1945 
1946 const SCEV *
1947 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1948   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1949          "This is not an extending conversion!");
1950   assert(isSCEVable(Ty) &&
1951          "This is not a conversion to a SCEVable type!");
1952   Ty = getEffectiveSCEVType(Ty);
1953 
1954   // Fold if the operand is constant.
1955   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1956     return getConstant(
1957       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1958 
1959   // sext(sext(x)) --> sext(x)
1960   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1961     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1962 
1963   // sext(zext(x)) --> zext(x)
1964   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1965     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1966 
1967   // Before doing any expensive analysis, check to see if we've already
1968   // computed a SCEV for this Op and Ty.
1969   FoldingSetNodeID ID;
1970   ID.AddInteger(scSignExtend);
1971   ID.AddPointer(Op);
1972   ID.AddPointer(Ty);
1973   void *IP = nullptr;
1974   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1975   // Limit recursion depth.
1976   if (Depth > MaxCastDepth) {
1977     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1978                                                      Op, Ty);
1979     UniqueSCEVs.InsertNode(S, IP);
1980     addToLoopUseLists(S);
1981     return S;
1982   }
1983 
1984   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1985   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1986     // It's possible the bits taken off by the truncate were all sign bits. If
1987     // so, we should be able to simplify this further.
1988     const SCEV *X = ST->getOperand();
1989     ConstantRange CR = getSignedRange(X);
1990     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1991     unsigned NewBits = getTypeSizeInBits(Ty);
1992     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1993             CR.sextOrTrunc(NewBits)))
1994       return getTruncateOrSignExtend(X, Ty, Depth);
1995   }
1996 
1997   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1998     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1999     if (SA->hasNoSignedWrap()) {
2000       // If the addition does not sign overflow then we can, by definition,
2001       // commute the sign extension with the addition operation.
2002       SmallVector<const SCEV *, 4> Ops;
2003       for (const auto *Op : SA->operands())
2004         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
2005       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
2006     }
2007 
2008     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2009     // if D + (C - D + x + y + ...) could be proven to not signed wrap
2010     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2011     //
2012     // For instance, this will bring two seemingly different expressions:
2013     //     1 + sext(5 + 20 * %x + 24 * %y)  and
2014     //         sext(6 + 20 * %x + 24 * %y)
2015     // to the same form:
2016     //     2 + sext(4 + 20 * %x + 24 * %y)
2017     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2018       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2019       if (D != 0) {
2020         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2021         const SCEV *SResidual =
2022             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2023         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2024         return getAddExpr(SSExtD, SSExtR,
2025                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2026                           Depth + 1);
2027       }
2028     }
2029   }
2030   // If the input value is a chrec scev, and we can prove that the value
2031   // did not overflow the old, smaller, value, we can sign extend all of the
2032   // operands (often constants).  This allows analysis of something like
2033   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2034   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2035     if (AR->isAffine()) {
2036       const SCEV *Start = AR->getStart();
2037       const SCEV *Step = AR->getStepRecurrence(*this);
2038       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2039       const Loop *L = AR->getLoop();
2040 
2041       if (!AR->hasNoSignedWrap()) {
2042         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2043         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2044       }
2045 
2046       // If we have special knowledge that this addrec won't overflow,
2047       // we don't need to do any further analysis.
2048       if (AR->hasNoSignedWrap())
2049         return getAddRecExpr(
2050             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2051             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2052 
2053       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2054       // Note that this serves two purposes: It filters out loops that are
2055       // simply not analyzable, and it covers the case where this code is
2056       // being called from within backedge-taken count analysis, such that
2057       // attempting to ask for the backedge-taken count would likely result
2058       // in infinite recursion. In the later case, the analysis code will
2059       // cope with a conservative value, and it will take care to purge
2060       // that value once it has finished.
2061       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2062       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2063         // Manually compute the final value for AR, checking for
2064         // overflow.
2065 
2066         // Check whether the backedge-taken count can be losslessly casted to
2067         // the addrec's type. The count is always unsigned.
2068         const SCEV *CastedMaxBECount =
2069             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2070         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2071             CastedMaxBECount, MaxBECount->getType(), Depth);
2072         if (MaxBECount == RecastedMaxBECount) {
2073           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2074           // Check whether Start+Step*MaxBECount has no signed overflow.
2075           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2076                                         SCEV::FlagAnyWrap, Depth + 1);
2077           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2078                                                           SCEV::FlagAnyWrap,
2079                                                           Depth + 1),
2080                                                WideTy, Depth + 1);
2081           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2082           const SCEV *WideMaxBECount =
2083             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2084           const SCEV *OperandExtendedAdd =
2085             getAddExpr(WideStart,
2086                        getMulExpr(WideMaxBECount,
2087                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2088                                   SCEV::FlagAnyWrap, Depth + 1),
2089                        SCEV::FlagAnyWrap, Depth + 1);
2090           if (SAdd == OperandExtendedAdd) {
2091             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2092             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2093             // Return the expression with the addrec on the outside.
2094             return getAddRecExpr(
2095                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2096                                                          Depth + 1),
2097                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2098                 AR->getNoWrapFlags());
2099           }
2100           // Similar to above, only this time treat the step value as unsigned.
2101           // This covers loops that count up with an unsigned step.
2102           OperandExtendedAdd =
2103             getAddExpr(WideStart,
2104                        getMulExpr(WideMaxBECount,
2105                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2106                                   SCEV::FlagAnyWrap, Depth + 1),
2107                        SCEV::FlagAnyWrap, Depth + 1);
2108           if (SAdd == OperandExtendedAdd) {
2109             // If AR wraps around then
2110             //
2111             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2112             // => SAdd != OperandExtendedAdd
2113             //
2114             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2115             // (SAdd == OperandExtendedAdd => AR is NW)
2116 
2117             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2118 
2119             // Return the expression with the addrec on the outside.
2120             return getAddRecExpr(
2121                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2122                                                          Depth + 1),
2123                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2124                 AR->getNoWrapFlags());
2125           }
2126         }
2127       }
2128 
2129       // Normally, in the cases we can prove no-overflow via a
2130       // backedge guarding condition, we can also compute a backedge
2131       // taken count for the loop.  The exceptions are assumptions and
2132       // guards present in the loop -- SCEV is not great at exploiting
2133       // these to compute max backedge taken counts, but can still use
2134       // these to prove lack of overflow.  Use this fact to avoid
2135       // doing extra work that may not pay off.
2136 
2137       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2138           !AC.assumptions().empty()) {
2139         // If the backedge is guarded by a comparison with the pre-inc
2140         // value the addrec is safe. Also, if the entry is guarded by
2141         // a comparison with the start value and the backedge is
2142         // guarded by a comparison with the post-inc value, the addrec
2143         // is safe.
2144         ICmpInst::Predicate Pred;
2145         const SCEV *OverflowLimit =
2146             getSignedOverflowLimitForStep(Step, &Pred, this);
2147         if (OverflowLimit &&
2148             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2149              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2150           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2151           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2152           return getAddRecExpr(
2153               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2154               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2155         }
2156       }
2157 
2158       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2159       // if D + (C - D + Step * n) could be proven to not signed wrap
2160       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2161       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2162         const APInt &C = SC->getAPInt();
2163         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2164         if (D != 0) {
2165           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2166           const SCEV *SResidual =
2167               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2168           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2169           return getAddExpr(SSExtD, SSExtR,
2170                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2171                             Depth + 1);
2172         }
2173       }
2174 
2175       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2176         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2177         return getAddRecExpr(
2178             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2179             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2180       }
2181     }
2182 
2183   // If the input value is provably positive and we could not simplify
2184   // away the sext build a zext instead.
2185   if (isKnownNonNegative(Op))
2186     return getZeroExtendExpr(Op, Ty, Depth + 1);
2187 
2188   // The cast wasn't folded; create an explicit cast node.
2189   // Recompute the insert position, as it may have been invalidated.
2190   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2191   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2192                                                    Op, Ty);
2193   UniqueSCEVs.InsertNode(S, IP);
2194   addToLoopUseLists(S);
2195   return S;
2196 }
2197 
2198 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2199 /// unspecified bits out to the given type.
2200 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2201                                               Type *Ty) {
2202   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2203          "This is not an extending conversion!");
2204   assert(isSCEVable(Ty) &&
2205          "This is not a conversion to a SCEVable type!");
2206   Ty = getEffectiveSCEVType(Ty);
2207 
2208   // Sign-extend negative constants.
2209   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2210     if (SC->getAPInt().isNegative())
2211       return getSignExtendExpr(Op, Ty);
2212 
2213   // Peel off a truncate cast.
2214   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2215     const SCEV *NewOp = T->getOperand();
2216     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2217       return getAnyExtendExpr(NewOp, Ty);
2218     return getTruncateOrNoop(NewOp, Ty);
2219   }
2220 
2221   // Next try a zext cast. If the cast is folded, use it.
2222   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2223   if (!isa<SCEVZeroExtendExpr>(ZExt))
2224     return ZExt;
2225 
2226   // Next try a sext cast. If the cast is folded, use it.
2227   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2228   if (!isa<SCEVSignExtendExpr>(SExt))
2229     return SExt;
2230 
2231   // Force the cast to be folded into the operands of an addrec.
2232   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2233     SmallVector<const SCEV *, 4> Ops;
2234     for (const SCEV *Op : AR->operands())
2235       Ops.push_back(getAnyExtendExpr(Op, Ty));
2236     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2237   }
2238 
2239   // If the expression is obviously signed, use the sext cast value.
2240   if (isa<SCEVSMaxExpr>(Op))
2241     return SExt;
2242 
2243   // Absent any other information, use the zext cast value.
2244   return ZExt;
2245 }
2246 
2247 /// Process the given Ops list, which is a list of operands to be added under
2248 /// the given scale, update the given map. This is a helper function for
2249 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2250 /// that would form an add expression like this:
2251 ///
2252 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2253 ///
2254 /// where A and B are constants, update the map with these values:
2255 ///
2256 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2257 ///
2258 /// and add 13 + A*B*29 to AccumulatedConstant.
2259 /// This will allow getAddRecExpr to produce this:
2260 ///
2261 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2262 ///
2263 /// This form often exposes folding opportunities that are hidden in
2264 /// the original operand list.
2265 ///
2266 /// Return true iff it appears that any interesting folding opportunities
2267 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2268 /// the common case where no interesting opportunities are present, and
2269 /// is also used as a check to avoid infinite recursion.
2270 static bool
2271 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2272                              SmallVectorImpl<const SCEV *> &NewOps,
2273                              APInt &AccumulatedConstant,
2274                              const SCEV *const *Ops, size_t NumOperands,
2275                              const APInt &Scale,
2276                              ScalarEvolution &SE) {
2277   bool Interesting = false;
2278 
2279   // Iterate over the add operands. They are sorted, with constants first.
2280   unsigned i = 0;
2281   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2282     ++i;
2283     // Pull a buried constant out to the outside.
2284     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2285       Interesting = true;
2286     AccumulatedConstant += Scale * C->getAPInt();
2287   }
2288 
2289   // Next comes everything else. We're especially interested in multiplies
2290   // here, but they're in the middle, so just visit the rest with one loop.
2291   for (; i != NumOperands; ++i) {
2292     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2293     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2294       APInt NewScale =
2295           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2296       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2297         // A multiplication of a constant with another add; recurse.
2298         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2299         Interesting |=
2300           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2301                                        Add->op_begin(), Add->getNumOperands(),
2302                                        NewScale, SE);
2303       } else {
2304         // A multiplication of a constant with some other value. Update
2305         // the map.
2306         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2307         const SCEV *Key = SE.getMulExpr(MulOps);
2308         auto Pair = M.insert({Key, NewScale});
2309         if (Pair.second) {
2310           NewOps.push_back(Pair.first->first);
2311         } else {
2312           Pair.first->second += NewScale;
2313           // The map already had an entry for this value, which may indicate
2314           // a folding opportunity.
2315           Interesting = true;
2316         }
2317       }
2318     } else {
2319       // An ordinary operand. Update the map.
2320       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2321           M.insert({Ops[i], Scale});
2322       if (Pair.second) {
2323         NewOps.push_back(Pair.first->first);
2324       } else {
2325         Pair.first->second += Scale;
2326         // The map already had an entry for this value, which may indicate
2327         // a folding opportunity.
2328         Interesting = true;
2329       }
2330     }
2331   }
2332 
2333   return Interesting;
2334 }
2335 
2336 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2337 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2338 // can't-overflow flags for the operation if possible.
2339 static SCEV::NoWrapFlags
2340 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2341                       const ArrayRef<const SCEV *> Ops,
2342                       SCEV::NoWrapFlags Flags) {
2343   using namespace std::placeholders;
2344 
2345   using OBO = OverflowingBinaryOperator;
2346 
2347   bool CanAnalyze =
2348       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2349   (void)CanAnalyze;
2350   assert(CanAnalyze && "don't call from other places!");
2351 
2352   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2353   SCEV::NoWrapFlags SignOrUnsignWrap =
2354       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2355 
2356   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2357   auto IsKnownNonNegative = [&](const SCEV *S) {
2358     return SE->isKnownNonNegative(S);
2359   };
2360 
2361   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2362     Flags =
2363         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2364 
2365   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2366 
2367   if (SignOrUnsignWrap != SignOrUnsignMask &&
2368       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2369       isa<SCEVConstant>(Ops[0])) {
2370 
2371     auto Opcode = [&] {
2372       switch (Type) {
2373       case scAddExpr:
2374         return Instruction::Add;
2375       case scMulExpr:
2376         return Instruction::Mul;
2377       default:
2378         llvm_unreachable("Unexpected SCEV op.");
2379       }
2380     }();
2381 
2382     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2386       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoSignedWrap);
2388       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2390     }
2391 
2392     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2393     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2394       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2395           Opcode, C, OBO::NoUnsignedWrap);
2396       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2397         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2398     }
2399   }
2400 
2401   return Flags;
2402 }
2403 
2404 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2405   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2406 }
2407 
2408 /// Get a canonical add expression, or something simpler if possible.
2409 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2410                                         SCEV::NoWrapFlags Flags,
2411                                         unsigned Depth) {
2412   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2413          "only nuw or nsw allowed");
2414   assert(!Ops.empty() && "Cannot get empty add!");
2415   if (Ops.size() == 1) return Ops[0];
2416 #ifndef NDEBUG
2417   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2418   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2419     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2420            "SCEVAddExpr operand types don't match!");
2421 #endif
2422 
2423   // Sort by complexity, this groups all similar expression types together.
2424   GroupByComplexity(Ops, &LI, DT);
2425 
2426   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2427 
2428   // If there are any constants, fold them together.
2429   unsigned Idx = 0;
2430   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2431     ++Idx;
2432     assert(Idx < Ops.size());
2433     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2434       // We found two constants, fold them together!
2435       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2436       if (Ops.size() == 2) return Ops[0];
2437       Ops.erase(Ops.begin()+1);  // Erase the folded element
2438       LHSC = cast<SCEVConstant>(Ops[0]);
2439     }
2440 
2441     // If we are left with a constant zero being added, strip it off.
2442     if (LHSC->getValue()->isZero()) {
2443       Ops.erase(Ops.begin());
2444       --Idx;
2445     }
2446 
2447     if (Ops.size() == 1) return Ops[0];
2448   }
2449 
2450   // Limit recursion calls depth.
2451   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2452     return getOrCreateAddExpr(Ops, Flags);
2453 
2454   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2455     static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2456     return S;
2457   }
2458 
2459   // Okay, check to see if the same value occurs in the operand list more than
2460   // once.  If so, merge them together into an multiply expression.  Since we
2461   // sorted the list, these values are required to be adjacent.
2462   Type *Ty = Ops[0]->getType();
2463   bool FoundMatch = false;
2464   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2465     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2466       // Scan ahead to count how many equal operands there are.
2467       unsigned Count = 2;
2468       while (i+Count != e && Ops[i+Count] == Ops[i])
2469         ++Count;
2470       // Merge the values into a multiply.
2471       const SCEV *Scale = getConstant(Ty, Count);
2472       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2473       if (Ops.size() == Count)
2474         return Mul;
2475       Ops[i] = Mul;
2476       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2477       --i; e -= Count - 1;
2478       FoundMatch = true;
2479     }
2480   if (FoundMatch)
2481     return getAddExpr(Ops, Flags, Depth + 1);
2482 
2483   // Check for truncates. If all the operands are truncated from the same
2484   // type, see if factoring out the truncate would permit the result to be
2485   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2486   // if the contents of the resulting outer trunc fold to something simple.
2487   auto FindTruncSrcType = [&]() -> Type * {
2488     // We're ultimately looking to fold an addrec of truncs and muls of only
2489     // constants and truncs, so if we find any other types of SCEV
2490     // as operands of the addrec then we bail and return nullptr here.
2491     // Otherwise, we return the type of the operand of a trunc that we find.
2492     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2493       return T->getOperand()->getType();
2494     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2495       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2496       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2497         return T->getOperand()->getType();
2498     }
2499     return nullptr;
2500   };
2501   if (auto *SrcType = FindTruncSrcType()) {
2502     SmallVector<const SCEV *, 8> LargeOps;
2503     bool Ok = true;
2504     // Check all the operands to see if they can be represented in the
2505     // source type of the truncate.
2506     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2507       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2508         if (T->getOperand()->getType() != SrcType) {
2509           Ok = false;
2510           break;
2511         }
2512         LargeOps.push_back(T->getOperand());
2513       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2514         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2515       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2516         SmallVector<const SCEV *, 8> LargeMulOps;
2517         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2518           if (const SCEVTruncateExpr *T =
2519                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2520             if (T->getOperand()->getType() != SrcType) {
2521               Ok = false;
2522               break;
2523             }
2524             LargeMulOps.push_back(T->getOperand());
2525           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2526             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2527           } else {
2528             Ok = false;
2529             break;
2530           }
2531         }
2532         if (Ok)
2533           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2534       } else {
2535         Ok = false;
2536         break;
2537       }
2538     }
2539     if (Ok) {
2540       // Evaluate the expression in the larger type.
2541       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2542       // If it folds to something simple, use it. Otherwise, don't.
2543       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2544         return getTruncateExpr(Fold, Ty);
2545     }
2546   }
2547 
2548   // Skip past any other cast SCEVs.
2549   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2550     ++Idx;
2551 
2552   // If there are add operands they would be next.
2553   if (Idx < Ops.size()) {
2554     bool DeletedAdd = false;
2555     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2556       if (Ops.size() > AddOpsInlineThreshold ||
2557           Add->getNumOperands() > AddOpsInlineThreshold)
2558         break;
2559       // If we have an add, expand the add operands onto the end of the operands
2560       // list.
2561       Ops.erase(Ops.begin()+Idx);
2562       Ops.append(Add->op_begin(), Add->op_end());
2563       DeletedAdd = true;
2564     }
2565 
2566     // If we deleted at least one add, we added operands to the end of the list,
2567     // and they are not necessarily sorted.  Recurse to resort and resimplify
2568     // any operands we just acquired.
2569     if (DeletedAdd)
2570       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2571   }
2572 
2573   // Skip over the add expression until we get to a multiply.
2574   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2575     ++Idx;
2576 
2577   // Check to see if there are any folding opportunities present with
2578   // operands multiplied by constant values.
2579   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2580     uint64_t BitWidth = getTypeSizeInBits(Ty);
2581     DenseMap<const SCEV *, APInt> M;
2582     SmallVector<const SCEV *, 8> NewOps;
2583     APInt AccumulatedConstant(BitWidth, 0);
2584     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2585                                      Ops.data(), Ops.size(),
2586                                      APInt(BitWidth, 1), *this)) {
2587       struct APIntCompare {
2588         bool operator()(const APInt &LHS, const APInt &RHS) const {
2589           return LHS.ult(RHS);
2590         }
2591       };
2592 
2593       // Some interesting folding opportunity is present, so its worthwhile to
2594       // re-generate the operands list. Group the operands by constant scale,
2595       // to avoid multiplying by the same constant scale multiple times.
2596       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2597       for (const SCEV *NewOp : NewOps)
2598         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2599       // Re-generate the operands list.
2600       Ops.clear();
2601       if (AccumulatedConstant != 0)
2602         Ops.push_back(getConstant(AccumulatedConstant));
2603       for (auto &MulOp : MulOpLists)
2604         if (MulOp.first != 0)
2605           Ops.push_back(getMulExpr(
2606               getConstant(MulOp.first),
2607               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2608               SCEV::FlagAnyWrap, Depth + 1));
2609       if (Ops.empty())
2610         return getZero(Ty);
2611       if (Ops.size() == 1)
2612         return Ops[0];
2613       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2614     }
2615   }
2616 
2617   // If we are adding something to a multiply expression, make sure the
2618   // something is not already an operand of the multiply.  If so, merge it into
2619   // the multiply.
2620   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2621     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2622     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2623       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2624       if (isa<SCEVConstant>(MulOpSCEV))
2625         continue;
2626       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2627         if (MulOpSCEV == Ops[AddOp]) {
2628           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2629           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2630           if (Mul->getNumOperands() != 2) {
2631             // If the multiply has more than two operands, we must get the
2632             // Y*Z term.
2633             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2634                                                 Mul->op_begin()+MulOp);
2635             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2636             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2637           }
2638           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2639           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2640           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2641                                             SCEV::FlagAnyWrap, Depth + 1);
2642           if (Ops.size() == 2) return OuterMul;
2643           if (AddOp < Idx) {
2644             Ops.erase(Ops.begin()+AddOp);
2645             Ops.erase(Ops.begin()+Idx-1);
2646           } else {
2647             Ops.erase(Ops.begin()+Idx);
2648             Ops.erase(Ops.begin()+AddOp-1);
2649           }
2650           Ops.push_back(OuterMul);
2651           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2652         }
2653 
2654       // Check this multiply against other multiplies being added together.
2655       for (unsigned OtherMulIdx = Idx+1;
2656            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2657            ++OtherMulIdx) {
2658         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2659         // If MulOp occurs in OtherMul, we can fold the two multiplies
2660         // together.
2661         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2662              OMulOp != e; ++OMulOp)
2663           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2664             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2665             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2666             if (Mul->getNumOperands() != 2) {
2667               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2668                                                   Mul->op_begin()+MulOp);
2669               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2670               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2671             }
2672             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2673             if (OtherMul->getNumOperands() != 2) {
2674               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2675                                                   OtherMul->op_begin()+OMulOp);
2676               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2677               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2678             }
2679             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2680             const SCEV *InnerMulSum =
2681                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2682             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2683                                               SCEV::FlagAnyWrap, Depth + 1);
2684             if (Ops.size() == 2) return OuterMul;
2685             Ops.erase(Ops.begin()+Idx);
2686             Ops.erase(Ops.begin()+OtherMulIdx-1);
2687             Ops.push_back(OuterMul);
2688             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2689           }
2690       }
2691     }
2692   }
2693 
2694   // If there are any add recurrences in the operands list, see if any other
2695   // added values are loop invariant.  If so, we can fold them into the
2696   // recurrence.
2697   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2698     ++Idx;
2699 
2700   // Scan over all recurrences, trying to fold loop invariants into them.
2701   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2702     // Scan all of the other operands to this add and add them to the vector if
2703     // they are loop invariant w.r.t. the recurrence.
2704     SmallVector<const SCEV *, 8> LIOps;
2705     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2706     const Loop *AddRecLoop = AddRec->getLoop();
2707     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2708       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2709         LIOps.push_back(Ops[i]);
2710         Ops.erase(Ops.begin()+i);
2711         --i; --e;
2712       }
2713 
2714     // If we found some loop invariants, fold them into the recurrence.
2715     if (!LIOps.empty()) {
2716       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2717       LIOps.push_back(AddRec->getStart());
2718 
2719       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2720                                              AddRec->op_end());
2721       // This follows from the fact that the no-wrap flags on the outer add
2722       // expression are applicable on the 0th iteration, when the add recurrence
2723       // will be equal to its start value.
2724       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2725 
2726       // Build the new addrec. Propagate the NUW and NSW flags if both the
2727       // outer add and the inner addrec are guaranteed to have no overflow.
2728       // Always propagate NW.
2729       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2730       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2731 
2732       // If all of the other operands were loop invariant, we are done.
2733       if (Ops.size() == 1) return NewRec;
2734 
2735       // Otherwise, add the folded AddRec by the non-invariant parts.
2736       for (unsigned i = 0;; ++i)
2737         if (Ops[i] == AddRec) {
2738           Ops[i] = NewRec;
2739           break;
2740         }
2741       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2742     }
2743 
2744     // Okay, if there weren't any loop invariants to be folded, check to see if
2745     // there are multiple AddRec's with the same loop induction variable being
2746     // added together.  If so, we can fold them.
2747     for (unsigned OtherIdx = Idx+1;
2748          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2749          ++OtherIdx) {
2750       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2751       // so that the 1st found AddRecExpr is dominated by all others.
2752       assert(DT.dominates(
2753            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2754            AddRec->getLoop()->getHeader()) &&
2755         "AddRecExprs are not sorted in reverse dominance order?");
2756       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2757         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2758         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2759                                                AddRec->op_end());
2760         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2761              ++OtherIdx) {
2762           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2763           if (OtherAddRec->getLoop() == AddRecLoop) {
2764             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2765                  i != e; ++i) {
2766               if (i >= AddRecOps.size()) {
2767                 AddRecOps.append(OtherAddRec->op_begin()+i,
2768                                  OtherAddRec->op_end());
2769                 break;
2770               }
2771               SmallVector<const SCEV *, 2> TwoOps = {
2772                   AddRecOps[i], OtherAddRec->getOperand(i)};
2773               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2774             }
2775             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2776           }
2777         }
2778         // Step size has changed, so we cannot guarantee no self-wraparound.
2779         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2780         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2781       }
2782     }
2783 
2784     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2785     // next one.
2786   }
2787 
2788   // Okay, it looks like we really DO need an add expr.  Check to see if we
2789   // already have one, otherwise create a new one.
2790   return getOrCreateAddExpr(Ops, Flags);
2791 }
2792 
2793 const SCEV *
2794 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2795                                     SCEV::NoWrapFlags Flags) {
2796   FoldingSetNodeID ID;
2797   ID.AddInteger(scAddExpr);
2798   for (const SCEV *Op : Ops)
2799     ID.AddPointer(Op);
2800   void *IP = nullptr;
2801   SCEVAddExpr *S =
2802       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2803   if (!S) {
2804     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2805     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2806     S = new (SCEVAllocator)
2807         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2808     UniqueSCEVs.InsertNode(S, IP);
2809     addToLoopUseLists(S);
2810   }
2811   S->setNoWrapFlags(Flags);
2812   return S;
2813 }
2814 
2815 const SCEV *
2816 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2817                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2818   FoldingSetNodeID ID;
2819   ID.AddInteger(scAddRecExpr);
2820   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2821     ID.AddPointer(Ops[i]);
2822   ID.AddPointer(L);
2823   void *IP = nullptr;
2824   SCEVAddRecExpr *S =
2825       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2826   if (!S) {
2827     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2828     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2829     S = new (SCEVAllocator)
2830         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2831     UniqueSCEVs.InsertNode(S, IP);
2832     addToLoopUseLists(S);
2833   }
2834   S->setNoWrapFlags(Flags);
2835   return S;
2836 }
2837 
2838 const SCEV *
2839 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2840                                     SCEV::NoWrapFlags Flags) {
2841   FoldingSetNodeID ID;
2842   ID.AddInteger(scMulExpr);
2843   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2844     ID.AddPointer(Ops[i]);
2845   void *IP = nullptr;
2846   SCEVMulExpr *S =
2847     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2848   if (!S) {
2849     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2850     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2851     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2852                                         O, Ops.size());
2853     UniqueSCEVs.InsertNode(S, IP);
2854     addToLoopUseLists(S);
2855   }
2856   S->setNoWrapFlags(Flags);
2857   return S;
2858 }
2859 
2860 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2861   uint64_t k = i*j;
2862   if (j > 1 && k / j != i) Overflow = true;
2863   return k;
2864 }
2865 
2866 /// Compute the result of "n choose k", the binomial coefficient.  If an
2867 /// intermediate computation overflows, Overflow will be set and the return will
2868 /// be garbage. Overflow is not cleared on absence of overflow.
2869 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2870   // We use the multiplicative formula:
2871   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2872   // At each iteration, we take the n-th term of the numeral and divide by the
2873   // (k-n)th term of the denominator.  This division will always produce an
2874   // integral result, and helps reduce the chance of overflow in the
2875   // intermediate computations. However, we can still overflow even when the
2876   // final result would fit.
2877 
2878   if (n == 0 || n == k) return 1;
2879   if (k > n) return 0;
2880 
2881   if (k > n/2)
2882     k = n-k;
2883 
2884   uint64_t r = 1;
2885   for (uint64_t i = 1; i <= k; ++i) {
2886     r = umul_ov(r, n-(i-1), Overflow);
2887     r /= i;
2888   }
2889   return r;
2890 }
2891 
2892 /// Determine if any of the operands in this SCEV are a constant or if
2893 /// any of the add or multiply expressions in this SCEV contain a constant.
2894 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2895   struct FindConstantInAddMulChain {
2896     bool FoundConstant = false;
2897 
2898     bool follow(const SCEV *S) {
2899       FoundConstant |= isa<SCEVConstant>(S);
2900       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2901     }
2902 
2903     bool isDone() const {
2904       return FoundConstant;
2905     }
2906   };
2907 
2908   FindConstantInAddMulChain F;
2909   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2910   ST.visitAll(StartExpr);
2911   return F.FoundConstant;
2912 }
2913 
2914 /// Get a canonical multiply expression, or something simpler if possible.
2915 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2916                                         SCEV::NoWrapFlags Flags,
2917                                         unsigned Depth) {
2918   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2919          "only nuw or nsw allowed");
2920   assert(!Ops.empty() && "Cannot get empty mul!");
2921   if (Ops.size() == 1) return Ops[0];
2922 #ifndef NDEBUG
2923   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2924   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2925     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2926            "SCEVMulExpr operand types don't match!");
2927 #endif
2928 
2929   // Sort by complexity, this groups all similar expression types together.
2930   GroupByComplexity(Ops, &LI, DT);
2931 
2932   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2933 
2934   // Limit recursion calls depth, but fold all-constant expressions.
2935   // `Ops` is sorted, so it's enough to check just last one.
2936   if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) &&
2937       !isa<SCEVConstant>(Ops.back()))
2938     return getOrCreateMulExpr(Ops, Flags);
2939 
2940   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2941     static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2942     return S;
2943   }
2944 
2945   // If there are any constants, fold them together.
2946   unsigned Idx = 0;
2947   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2948 
2949     if (Ops.size() == 2)
2950       // C1*(C2+V) -> C1*C2 + C1*V
2951       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2952         // If any of Add's ops are Adds or Muls with a constant, apply this
2953         // transformation as well.
2954         //
2955         // TODO: There are some cases where this transformation is not
2956         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2957         // this transformation should be narrowed down.
2958         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2959           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2960                                        SCEV::FlagAnyWrap, Depth + 1),
2961                             getMulExpr(LHSC, Add->getOperand(1),
2962                                        SCEV::FlagAnyWrap, Depth + 1),
2963                             SCEV::FlagAnyWrap, Depth + 1);
2964 
2965     ++Idx;
2966     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2967       // We found two constants, fold them together!
2968       ConstantInt *Fold =
2969           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2970       Ops[0] = getConstant(Fold);
2971       Ops.erase(Ops.begin()+1);  // Erase the folded element
2972       if (Ops.size() == 1) return Ops[0];
2973       LHSC = cast<SCEVConstant>(Ops[0]);
2974     }
2975 
2976     // If we are left with a constant one being multiplied, strip it off.
2977     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2978       Ops.erase(Ops.begin());
2979       --Idx;
2980     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2981       // If we have a multiply of zero, it will always be zero.
2982       return Ops[0];
2983     } else if (Ops[0]->isAllOnesValue()) {
2984       // If we have a mul by -1 of an add, try distributing the -1 among the
2985       // add operands.
2986       if (Ops.size() == 2) {
2987         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2988           SmallVector<const SCEV *, 4> NewOps;
2989           bool AnyFolded = false;
2990           for (const SCEV *AddOp : Add->operands()) {
2991             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2992                                          Depth + 1);
2993             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2994             NewOps.push_back(Mul);
2995           }
2996           if (AnyFolded)
2997             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2998         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2999           // Negation preserves a recurrence's no self-wrap property.
3000           SmallVector<const SCEV *, 4> Operands;
3001           for (const SCEV *AddRecOp : AddRec->operands())
3002             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3003                                           Depth + 1));
3004 
3005           return getAddRecExpr(Operands, AddRec->getLoop(),
3006                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3007         }
3008       }
3009     }
3010 
3011     if (Ops.size() == 1)
3012       return Ops[0];
3013   }
3014 
3015   // Skip over the add expression until we get to a multiply.
3016   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3017     ++Idx;
3018 
3019   // If there are mul operands inline them all into this expression.
3020   if (Idx < Ops.size()) {
3021     bool DeletedMul = false;
3022     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3023       if (Ops.size() > MulOpsInlineThreshold)
3024         break;
3025       // If we have an mul, expand the mul operands onto the end of the
3026       // operands list.
3027       Ops.erase(Ops.begin()+Idx);
3028       Ops.append(Mul->op_begin(), Mul->op_end());
3029       DeletedMul = true;
3030     }
3031 
3032     // If we deleted at least one mul, we added operands to the end of the
3033     // list, and they are not necessarily sorted.  Recurse to resort and
3034     // resimplify any operands we just acquired.
3035     if (DeletedMul)
3036       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3037   }
3038 
3039   // If there are any add recurrences in the operands list, see if any other
3040   // added values are loop invariant.  If so, we can fold them into the
3041   // recurrence.
3042   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3043     ++Idx;
3044 
3045   // Scan over all recurrences, trying to fold loop invariants into them.
3046   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3047     // Scan all of the other operands to this mul and add them to the vector
3048     // if they are loop invariant w.r.t. the recurrence.
3049     SmallVector<const SCEV *, 8> LIOps;
3050     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3051     const Loop *AddRecLoop = AddRec->getLoop();
3052     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3053       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3054         LIOps.push_back(Ops[i]);
3055         Ops.erase(Ops.begin()+i);
3056         --i; --e;
3057       }
3058 
3059     // If we found some loop invariants, fold them into the recurrence.
3060     if (!LIOps.empty()) {
3061       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3062       SmallVector<const SCEV *, 4> NewOps;
3063       NewOps.reserve(AddRec->getNumOperands());
3064       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3065       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3066         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3067                                     SCEV::FlagAnyWrap, Depth + 1));
3068 
3069       // Build the new addrec. Propagate the NUW and NSW flags if both the
3070       // outer mul and the inner addrec are guaranteed to have no overflow.
3071       //
3072       // No self-wrap cannot be guaranteed after changing the step size, but
3073       // will be inferred if either NUW or NSW is true.
3074       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3075       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3076 
3077       // If all of the other operands were loop invariant, we are done.
3078       if (Ops.size() == 1) return NewRec;
3079 
3080       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3081       for (unsigned i = 0;; ++i)
3082         if (Ops[i] == AddRec) {
3083           Ops[i] = NewRec;
3084           break;
3085         }
3086       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3087     }
3088 
3089     // Okay, if there weren't any loop invariants to be folded, check to see
3090     // if there are multiple AddRec's with the same loop induction variable
3091     // being multiplied together.  If so, we can fold them.
3092 
3093     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3094     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3095     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3096     //   ]]],+,...up to x=2n}.
3097     // Note that the arguments to choose() are always integers with values
3098     // known at compile time, never SCEV objects.
3099     //
3100     // The implementation avoids pointless extra computations when the two
3101     // addrec's are of different length (mathematically, it's equivalent to
3102     // an infinite stream of zeros on the right).
3103     bool OpsModified = false;
3104     for (unsigned OtherIdx = Idx+1;
3105          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3106          ++OtherIdx) {
3107       const SCEVAddRecExpr *OtherAddRec =
3108         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3109       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3110         continue;
3111 
3112       // Limit max number of arguments to avoid creation of unreasonably big
3113       // SCEVAddRecs with very complex operands.
3114       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3115           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3116         continue;
3117 
3118       bool Overflow = false;
3119       Type *Ty = AddRec->getType();
3120       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3121       SmallVector<const SCEV*, 7> AddRecOps;
3122       for (int x = 0, xe = AddRec->getNumOperands() +
3123              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3124         SmallVector <const SCEV *, 7> SumOps;
3125         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3126           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3127           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3128                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3129                z < ze && !Overflow; ++z) {
3130             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3131             uint64_t Coeff;
3132             if (LargerThan64Bits)
3133               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3134             else
3135               Coeff = Coeff1*Coeff2;
3136             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3137             const SCEV *Term1 = AddRec->getOperand(y-z);
3138             const SCEV *Term2 = OtherAddRec->getOperand(z);
3139             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3140                                         SCEV::FlagAnyWrap, Depth + 1));
3141           }
3142         }
3143         if (SumOps.empty())
3144           SumOps.push_back(getZero(Ty));
3145         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3146       }
3147       if (!Overflow) {
3148         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3149                                               SCEV::FlagAnyWrap);
3150         if (Ops.size() == 2) return NewAddRec;
3151         Ops[Idx] = NewAddRec;
3152         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3153         OpsModified = true;
3154         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3155         if (!AddRec)
3156           break;
3157       }
3158     }
3159     if (OpsModified)
3160       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3161 
3162     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3163     // next one.
3164   }
3165 
3166   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3167   // already have one, otherwise create a new one.
3168   return getOrCreateMulExpr(Ops, Flags);
3169 }
3170 
3171 /// Represents an unsigned remainder expression based on unsigned division.
3172 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3173                                          const SCEV *RHS) {
3174   assert(getEffectiveSCEVType(LHS->getType()) ==
3175          getEffectiveSCEVType(RHS->getType()) &&
3176          "SCEVURemExpr operand types don't match!");
3177 
3178   // Short-circuit easy cases
3179   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3180     // If constant is one, the result is trivial
3181     if (RHSC->getValue()->isOne())
3182       return getZero(LHS->getType()); // X urem 1 --> 0
3183 
3184     // If constant is a power of two, fold into a zext(trunc(LHS)).
3185     if (RHSC->getAPInt().isPowerOf2()) {
3186       Type *FullTy = LHS->getType();
3187       Type *TruncTy =
3188           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3189       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3190     }
3191   }
3192 
3193   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3194   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3195   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3196   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3197 }
3198 
3199 /// Get a canonical unsigned division expression, or something simpler if
3200 /// possible.
3201 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3202                                          const SCEV *RHS) {
3203   assert(getEffectiveSCEVType(LHS->getType()) ==
3204          getEffectiveSCEVType(RHS->getType()) &&
3205          "SCEVUDivExpr operand types don't match!");
3206 
3207   FoldingSetNodeID ID;
3208   ID.AddInteger(scUDivExpr);
3209   ID.AddPointer(LHS);
3210   ID.AddPointer(RHS);
3211   void *IP = nullptr;
3212   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3213     return S;
3214 
3215   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3216     if (RHSC->getValue()->isOne())
3217       return LHS;                               // X udiv 1 --> x
3218     // If the denominator is zero, the result of the udiv is undefined. Don't
3219     // try to analyze it, because the resolution chosen here may differ from
3220     // the resolution chosen in other parts of the compiler.
3221     if (!RHSC->getValue()->isZero()) {
3222       // Determine if the division can be folded into the operands of
3223       // its operands.
3224       // TODO: Generalize this to non-constants by using known-bits information.
3225       Type *Ty = LHS->getType();
3226       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3227       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3228       // For non-power-of-two values, effectively round the value up to the
3229       // nearest power of two.
3230       if (!RHSC->getAPInt().isPowerOf2())
3231         ++MaxShiftAmt;
3232       IntegerType *ExtTy =
3233         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3234       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3235         if (const SCEVConstant *Step =
3236             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3237           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3238           const APInt &StepInt = Step->getAPInt();
3239           const APInt &DivInt = RHSC->getAPInt();
3240           if (!StepInt.urem(DivInt) &&
3241               getZeroExtendExpr(AR, ExtTy) ==
3242               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3243                             getZeroExtendExpr(Step, ExtTy),
3244                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3245             SmallVector<const SCEV *, 4> Operands;
3246             for (const SCEV *Op : AR->operands())
3247               Operands.push_back(getUDivExpr(Op, RHS));
3248             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3249           }
3250           /// Get a canonical UDivExpr for a recurrence.
3251           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3252           // We can currently only fold X%N if X is constant.
3253           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3254           if (StartC && !DivInt.urem(StepInt) &&
3255               getZeroExtendExpr(AR, ExtTy) ==
3256               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3257                             getZeroExtendExpr(Step, ExtTy),
3258                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3259             const APInt &StartInt = StartC->getAPInt();
3260             const APInt &StartRem = StartInt.urem(StepInt);
3261             if (StartRem != 0) {
3262               const SCEV *NewLHS =
3263                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3264                                 AR->getLoop(), SCEV::FlagNW);
3265               if (LHS != NewLHS) {
3266                 LHS = NewLHS;
3267 
3268                 // Reset the ID to include the new LHS, and check if it is
3269                 // already cached.
3270                 ID.clear();
3271                 ID.AddInteger(scUDivExpr);
3272                 ID.AddPointer(LHS);
3273                 ID.AddPointer(RHS);
3274                 IP = nullptr;
3275                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3276                   return S;
3277               }
3278             }
3279           }
3280         }
3281       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3282       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3283         SmallVector<const SCEV *, 4> Operands;
3284         for (const SCEV *Op : M->operands())
3285           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3286         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3287           // Find an operand that's safely divisible.
3288           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3289             const SCEV *Op = M->getOperand(i);
3290             const SCEV *Div = getUDivExpr(Op, RHSC);
3291             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3292               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3293                                                       M->op_end());
3294               Operands[i] = Div;
3295               return getMulExpr(Operands);
3296             }
3297           }
3298       }
3299 
3300       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3301       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3302         if (auto *DivisorConstant =
3303                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3304           bool Overflow = false;
3305           APInt NewRHS =
3306               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3307           if (Overflow) {
3308             return getConstant(RHSC->getType(), 0, false);
3309           }
3310           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3311         }
3312       }
3313 
3314       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3315       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3316         SmallVector<const SCEV *, 4> Operands;
3317         for (const SCEV *Op : A->operands())
3318           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3319         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3320           Operands.clear();
3321           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3322             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3323             if (isa<SCEVUDivExpr>(Op) ||
3324                 getMulExpr(Op, RHS) != A->getOperand(i))
3325               break;
3326             Operands.push_back(Op);
3327           }
3328           if (Operands.size() == A->getNumOperands())
3329             return getAddExpr(Operands);
3330         }
3331       }
3332 
3333       // Fold if both operands are constant.
3334       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3335         Constant *LHSCV = LHSC->getValue();
3336         Constant *RHSCV = RHSC->getValue();
3337         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3338                                                                    RHSCV)));
3339       }
3340     }
3341   }
3342 
3343   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3344   // changes). Make sure we get a new one.
3345   IP = nullptr;
3346   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3347   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3348                                              LHS, RHS);
3349   UniqueSCEVs.InsertNode(S, IP);
3350   addToLoopUseLists(S);
3351   return S;
3352 }
3353 
3354 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3355   APInt A = C1->getAPInt().abs();
3356   APInt B = C2->getAPInt().abs();
3357   uint32_t ABW = A.getBitWidth();
3358   uint32_t BBW = B.getBitWidth();
3359 
3360   if (ABW > BBW)
3361     B = B.zext(ABW);
3362   else if (ABW < BBW)
3363     A = A.zext(BBW);
3364 
3365   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3366 }
3367 
3368 /// Get a canonical unsigned division expression, or something simpler if
3369 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3370 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3371 /// it's not exact because the udiv may be clearing bits.
3372 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3373                                               const SCEV *RHS) {
3374   // TODO: we could try to find factors in all sorts of things, but for now we
3375   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3376   // end of this file for inspiration.
3377 
3378   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3379   if (!Mul || !Mul->hasNoUnsignedWrap())
3380     return getUDivExpr(LHS, RHS);
3381 
3382   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3383     // If the mulexpr multiplies by a constant, then that constant must be the
3384     // first element of the mulexpr.
3385     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3386       if (LHSCst == RHSCst) {
3387         SmallVector<const SCEV *, 2> Operands;
3388         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3389         return getMulExpr(Operands);
3390       }
3391 
3392       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3393       // that there's a factor provided by one of the other terms. We need to
3394       // check.
3395       APInt Factor = gcd(LHSCst, RHSCst);
3396       if (!Factor.isIntN(1)) {
3397         LHSCst =
3398             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3399         RHSCst =
3400             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3401         SmallVector<const SCEV *, 2> Operands;
3402         Operands.push_back(LHSCst);
3403         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3404         LHS = getMulExpr(Operands);
3405         RHS = RHSCst;
3406         Mul = dyn_cast<SCEVMulExpr>(LHS);
3407         if (!Mul)
3408           return getUDivExactExpr(LHS, RHS);
3409       }
3410     }
3411   }
3412 
3413   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3414     if (Mul->getOperand(i) == RHS) {
3415       SmallVector<const SCEV *, 2> Operands;
3416       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3417       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3418       return getMulExpr(Operands);
3419     }
3420   }
3421 
3422   return getUDivExpr(LHS, RHS);
3423 }
3424 
3425 /// Get an add recurrence expression for the specified loop.  Simplify the
3426 /// expression as much as possible.
3427 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3428                                            const Loop *L,
3429                                            SCEV::NoWrapFlags Flags) {
3430   SmallVector<const SCEV *, 4> Operands;
3431   Operands.push_back(Start);
3432   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3433     if (StepChrec->getLoop() == L) {
3434       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3435       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3436     }
3437 
3438   Operands.push_back(Step);
3439   return getAddRecExpr(Operands, L, Flags);
3440 }
3441 
3442 /// Get an add recurrence expression for the specified loop.  Simplify the
3443 /// expression as much as possible.
3444 const SCEV *
3445 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3446                                const Loop *L, SCEV::NoWrapFlags Flags) {
3447   if (Operands.size() == 1) return Operands[0];
3448 #ifndef NDEBUG
3449   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3450   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3451     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3452            "SCEVAddRecExpr operand types don't match!");
3453   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3454     assert(isLoopInvariant(Operands[i], L) &&
3455            "SCEVAddRecExpr operand is not loop-invariant!");
3456 #endif
3457 
3458   if (Operands.back()->isZero()) {
3459     Operands.pop_back();
3460     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3461   }
3462 
3463   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3464   // use that information to infer NUW and NSW flags. However, computing a
3465   // BE count requires calling getAddRecExpr, so we may not yet have a
3466   // meaningful BE count at this point (and if we don't, we'd be stuck
3467   // with a SCEVCouldNotCompute as the cached BE count).
3468 
3469   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3470 
3471   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3472   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3473     const Loop *NestedLoop = NestedAR->getLoop();
3474     if (L->contains(NestedLoop)
3475             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3476             : (!NestedLoop->contains(L) &&
3477                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3478       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3479                                                   NestedAR->op_end());
3480       Operands[0] = NestedAR->getStart();
3481       // AddRecs require their operands be loop-invariant with respect to their
3482       // loops. Don't perform this transformation if it would break this
3483       // requirement.
3484       bool AllInvariant = all_of(
3485           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3486 
3487       if (AllInvariant) {
3488         // Create a recurrence for the outer loop with the same step size.
3489         //
3490         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3491         // inner recurrence has the same property.
3492         SCEV::NoWrapFlags OuterFlags =
3493           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3494 
3495         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3496         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3497           return isLoopInvariant(Op, NestedLoop);
3498         });
3499 
3500         if (AllInvariant) {
3501           // Ok, both add recurrences are valid after the transformation.
3502           //
3503           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3504           // the outer recurrence has the same property.
3505           SCEV::NoWrapFlags InnerFlags =
3506             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3507           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3508         }
3509       }
3510       // Reset Operands to its original state.
3511       Operands[0] = NestedAR;
3512     }
3513   }
3514 
3515   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3516   // already have one, otherwise create a new one.
3517   return getOrCreateAddRecExpr(Operands, L, Flags);
3518 }
3519 
3520 const SCEV *
3521 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3522                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3523   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3524   // getSCEV(Base)->getType() has the same address space as Base->getType()
3525   // because SCEV::getType() preserves the address space.
3526   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3527   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3528   // instruction to its SCEV, because the Instruction may be guarded by control
3529   // flow and the no-overflow bits may not be valid for the expression in any
3530   // context. This can be fixed similarly to how these flags are handled for
3531   // adds.
3532   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3533                                              : SCEV::FlagAnyWrap;
3534 
3535   const SCEV *TotalOffset = getZero(IntIdxTy);
3536   Type *CurTy = GEP->getType();
3537   bool FirstIter = true;
3538   for (const SCEV *IndexExpr : IndexExprs) {
3539     // Compute the (potentially symbolic) offset in bytes for this index.
3540     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3541       // For a struct, add the member offset.
3542       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3543       unsigned FieldNo = Index->getZExtValue();
3544       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3545 
3546       // Add the field offset to the running total offset.
3547       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3548 
3549       // Update CurTy to the type of the field at Index.
3550       CurTy = STy->getTypeAtIndex(Index);
3551     } else {
3552       // Update CurTy to its element type.
3553       if (FirstIter) {
3554         assert(isa<PointerType>(CurTy) &&
3555                "The first index of a GEP indexes a pointer");
3556         CurTy = GEP->getSourceElementType();
3557         FirstIter = false;
3558       } else {
3559         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3560       }
3561       // For an array, add the element offset, explicitly scaled.
3562       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3563       // Getelementptr indices are signed.
3564       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3565 
3566       // Multiply the index by the element size to compute the element offset.
3567       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3568 
3569       // Add the element offset to the running total offset.
3570       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3571     }
3572   }
3573 
3574   // Add the total offset from all the GEP indices to the base.
3575   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3576 }
3577 
3578 std::tuple<SCEV *, FoldingSetNodeID, void *>
3579 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3580                                          ArrayRef<const SCEV *> Ops) {
3581   FoldingSetNodeID ID;
3582   void *IP = nullptr;
3583   ID.AddInteger(SCEVType);
3584   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3585     ID.AddPointer(Ops[i]);
3586   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3587       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3588 }
3589 
3590 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3591                                            SmallVectorImpl<const SCEV *> &Ops) {
3592   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3593   if (Ops.size() == 1) return Ops[0];
3594 #ifndef NDEBUG
3595   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3596   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3597     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3598            "Operand types don't match!");
3599 #endif
3600 
3601   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3602   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3603 
3604   // Sort by complexity, this groups all similar expression types together.
3605   GroupByComplexity(Ops, &LI, DT);
3606 
3607   // Check if we have created the same expression before.
3608   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3609     return S;
3610   }
3611 
3612   // If there are any constants, fold them together.
3613   unsigned Idx = 0;
3614   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3615     ++Idx;
3616     assert(Idx < Ops.size());
3617     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3618       if (Kind == scSMaxExpr)
3619         return APIntOps::smax(LHS, RHS);
3620       else if (Kind == scSMinExpr)
3621         return APIntOps::smin(LHS, RHS);
3622       else if (Kind == scUMaxExpr)
3623         return APIntOps::umax(LHS, RHS);
3624       else if (Kind == scUMinExpr)
3625         return APIntOps::umin(LHS, RHS);
3626       llvm_unreachable("Unknown SCEV min/max opcode");
3627     };
3628 
3629     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3630       // We found two constants, fold them together!
3631       ConstantInt *Fold = ConstantInt::get(
3632           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3633       Ops[0] = getConstant(Fold);
3634       Ops.erase(Ops.begin()+1);  // Erase the folded element
3635       if (Ops.size() == 1) return Ops[0];
3636       LHSC = cast<SCEVConstant>(Ops[0]);
3637     }
3638 
3639     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3640     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3641 
3642     if (IsMax ? IsMinV : IsMaxV) {
3643       // If we are left with a constant minimum(/maximum)-int, strip it off.
3644       Ops.erase(Ops.begin());
3645       --Idx;
3646     } else if (IsMax ? IsMaxV : IsMinV) {
3647       // If we have a max(/min) with a constant maximum(/minimum)-int,
3648       // it will always be the extremum.
3649       return LHSC;
3650     }
3651 
3652     if (Ops.size() == 1) return Ops[0];
3653   }
3654 
3655   // Find the first operation of the same kind
3656   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3657     ++Idx;
3658 
3659   // Check to see if one of the operands is of the same kind. If so, expand its
3660   // operands onto our operand list, and recurse to simplify.
3661   if (Idx < Ops.size()) {
3662     bool DeletedAny = false;
3663     while (Ops[Idx]->getSCEVType() == Kind) {
3664       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3665       Ops.erase(Ops.begin()+Idx);
3666       Ops.append(SMME->op_begin(), SMME->op_end());
3667       DeletedAny = true;
3668     }
3669 
3670     if (DeletedAny)
3671       return getMinMaxExpr(Kind, Ops);
3672   }
3673 
3674   // Okay, check to see if the same value occurs in the operand list twice.  If
3675   // so, delete one.  Since we sorted the list, these values are required to
3676   // be adjacent.
3677   llvm::CmpInst::Predicate GEPred =
3678       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3679   llvm::CmpInst::Predicate LEPred =
3680       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3681   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3682   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3683   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3684     if (Ops[i] == Ops[i + 1] ||
3685         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3686       //  X op Y op Y  -->  X op Y
3687       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3688       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3689       --i;
3690       --e;
3691     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3692                                                Ops[i + 1])) {
3693       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3694       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3695       --i;
3696       --e;
3697     }
3698   }
3699 
3700   if (Ops.size() == 1) return Ops[0];
3701 
3702   assert(!Ops.empty() && "Reduced smax down to nothing!");
3703 
3704   // Okay, it looks like we really DO need an expr.  Check to see if we
3705   // already have one, otherwise create a new one.
3706   const SCEV *ExistingSCEV;
3707   FoldingSetNodeID ID;
3708   void *IP;
3709   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3710   if (ExistingSCEV)
3711     return ExistingSCEV;
3712   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3713   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3714   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3715       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3716 
3717   UniqueSCEVs.InsertNode(S, IP);
3718   addToLoopUseLists(S);
3719   return S;
3720 }
3721 
3722 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3723   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3724   return getSMaxExpr(Ops);
3725 }
3726 
3727 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3728   return getMinMaxExpr(scSMaxExpr, Ops);
3729 }
3730 
3731 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3732   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3733   return getUMaxExpr(Ops);
3734 }
3735 
3736 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3737   return getMinMaxExpr(scUMaxExpr, Ops);
3738 }
3739 
3740 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3741                                          const SCEV *RHS) {
3742   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3743   return getSMinExpr(Ops);
3744 }
3745 
3746 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3747   return getMinMaxExpr(scSMinExpr, Ops);
3748 }
3749 
3750 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3751                                          const SCEV *RHS) {
3752   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3753   return getUMinExpr(Ops);
3754 }
3755 
3756 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3757   return getMinMaxExpr(scUMinExpr, Ops);
3758 }
3759 
3760 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3761   // We can bypass creating a target-independent
3762   // constant expression and then folding it back into a ConstantInt.
3763   // This is just a compile-time optimization.
3764   if (isa<ScalableVectorType>(AllocTy)) {
3765     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3766     Constant *One = ConstantInt::get(IntTy, 1);
3767     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3768     return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy));
3769   }
3770   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3771 }
3772 
3773 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3774                                              StructType *STy,
3775                                              unsigned FieldNo) {
3776   // We can bypass creating a target-independent
3777   // constant expression and then folding it back into a ConstantInt.
3778   // This is just a compile-time optimization.
3779   return getConstant(
3780       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3781 }
3782 
3783 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3784   // Don't attempt to do anything other than create a SCEVUnknown object
3785   // here.  createSCEV only calls getUnknown after checking for all other
3786   // interesting possibilities, and any other code that calls getUnknown
3787   // is doing so in order to hide a value from SCEV canonicalization.
3788 
3789   FoldingSetNodeID ID;
3790   ID.AddInteger(scUnknown);
3791   ID.AddPointer(V);
3792   void *IP = nullptr;
3793   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3794     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3795            "Stale SCEVUnknown in uniquing map!");
3796     return S;
3797   }
3798   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3799                                             FirstUnknown);
3800   FirstUnknown = cast<SCEVUnknown>(S);
3801   UniqueSCEVs.InsertNode(S, IP);
3802   return S;
3803 }
3804 
3805 //===----------------------------------------------------------------------===//
3806 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3807 //
3808 
3809 /// Test if values of the given type are analyzable within the SCEV
3810 /// framework. This primarily includes integer types, and it can optionally
3811 /// include pointer types if the ScalarEvolution class has access to
3812 /// target-specific information.
3813 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3814   // Integers and pointers are always SCEVable.
3815   return Ty->isIntOrPtrTy();
3816 }
3817 
3818 /// Return the size in bits of the specified type, for which isSCEVable must
3819 /// return true.
3820 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3821   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3822   if (Ty->isPointerTy())
3823     return getDataLayout().getIndexTypeSizeInBits(Ty);
3824   return getDataLayout().getTypeSizeInBits(Ty);
3825 }
3826 
3827 /// Return a type with the same bitwidth as the given type and which represents
3828 /// how SCEV will treat the given type, for which isSCEVable must return
3829 /// true. For pointer types, this is the pointer index sized integer type.
3830 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3831   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3832 
3833   if (Ty->isIntegerTy())
3834     return Ty;
3835 
3836   // The only other support type is pointer.
3837   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3838   return getDataLayout().getIndexType(Ty);
3839 }
3840 
3841 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3842   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3843 }
3844 
3845 const SCEV *ScalarEvolution::getCouldNotCompute() {
3846   return CouldNotCompute.get();
3847 }
3848 
3849 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3850   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3851     auto *SU = dyn_cast<SCEVUnknown>(S);
3852     return SU && SU->getValue() == nullptr;
3853   });
3854 
3855   return !ContainsNulls;
3856 }
3857 
3858 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3859   HasRecMapType::iterator I = HasRecMap.find(S);
3860   if (I != HasRecMap.end())
3861     return I->second;
3862 
3863   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3864   HasRecMap.insert({S, FoundAddRec});
3865   return FoundAddRec;
3866 }
3867 
3868 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3869 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3870 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3871 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3872   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3873   if (!Add)
3874     return {S, nullptr};
3875 
3876   if (Add->getNumOperands() != 2)
3877     return {S, nullptr};
3878 
3879   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3880   if (!ConstOp)
3881     return {S, nullptr};
3882 
3883   return {Add->getOperand(1), ConstOp->getValue()};
3884 }
3885 
3886 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3887 /// by the value and offset from any ValueOffsetPair in the set.
3888 SetVector<ScalarEvolution::ValueOffsetPair> *
3889 ScalarEvolution::getSCEVValues(const SCEV *S) {
3890   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3891   if (SI == ExprValueMap.end())
3892     return nullptr;
3893 #ifndef NDEBUG
3894   if (VerifySCEVMap) {
3895     // Check there is no dangling Value in the set returned.
3896     for (const auto &VE : SI->second)
3897       assert(ValueExprMap.count(VE.first));
3898   }
3899 #endif
3900   return &SI->second;
3901 }
3902 
3903 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3904 /// cannot be used separately. eraseValueFromMap should be used to remove
3905 /// V from ValueExprMap and ExprValueMap at the same time.
3906 void ScalarEvolution::eraseValueFromMap(Value *V) {
3907   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3908   if (I != ValueExprMap.end()) {
3909     const SCEV *S = I->second;
3910     // Remove {V, 0} from the set of ExprValueMap[S]
3911     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3912       SV->remove({V, nullptr});
3913 
3914     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3915     const SCEV *Stripped;
3916     ConstantInt *Offset;
3917     std::tie(Stripped, Offset) = splitAddExpr(S);
3918     if (Offset != nullptr) {
3919       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3920         SV->remove({V, Offset});
3921     }
3922     ValueExprMap.erase(V);
3923   }
3924 }
3925 
3926 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3927 /// TODO: In reality it is better to check the poison recursively
3928 /// but this is better than nothing.
3929 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3930   if (auto *I = dyn_cast<Instruction>(V)) {
3931     if (isa<OverflowingBinaryOperator>(I)) {
3932       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3933         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3934           return true;
3935         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3936           return true;
3937       }
3938     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3939       return true;
3940   }
3941   return false;
3942 }
3943 
3944 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3945 /// create a new one.
3946 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3947   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3948 
3949   const SCEV *S = getExistingSCEV(V);
3950   if (S == nullptr) {
3951     S = createSCEV(V);
3952     // During PHI resolution, it is possible to create two SCEVs for the same
3953     // V, so it is needed to double check whether V->S is inserted into
3954     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3955     std::pair<ValueExprMapType::iterator, bool> Pair =
3956         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3957     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3958       ExprValueMap[S].insert({V, nullptr});
3959 
3960       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3961       // ExprValueMap.
3962       const SCEV *Stripped = S;
3963       ConstantInt *Offset = nullptr;
3964       std::tie(Stripped, Offset) = splitAddExpr(S);
3965       // If stripped is SCEVUnknown, don't bother to save
3966       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3967       // increase the complexity of the expansion code.
3968       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3969       // because it may generate add/sub instead of GEP in SCEV expansion.
3970       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3971           !isa<GetElementPtrInst>(V))
3972         ExprValueMap[Stripped].insert({V, Offset});
3973     }
3974   }
3975   return S;
3976 }
3977 
3978 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3979   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3980 
3981   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3982   if (I != ValueExprMap.end()) {
3983     const SCEV *S = I->second;
3984     if (checkValidity(S))
3985       return S;
3986     eraseValueFromMap(V);
3987     forgetMemoizedResults(S);
3988   }
3989   return nullptr;
3990 }
3991 
3992 /// Return a SCEV corresponding to -V = -1*V
3993 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3994                                              SCEV::NoWrapFlags Flags) {
3995   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3996     return getConstant(
3997                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3998 
3999   Type *Ty = V->getType();
4000   Ty = getEffectiveSCEVType(Ty);
4001   return getMulExpr(
4002       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
4003 }
4004 
4005 /// If Expr computes ~A, return A else return nullptr
4006 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4007   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4008   if (!Add || Add->getNumOperands() != 2 ||
4009       !Add->getOperand(0)->isAllOnesValue())
4010     return nullptr;
4011 
4012   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4013   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4014       !AddRHS->getOperand(0)->isAllOnesValue())
4015     return nullptr;
4016 
4017   return AddRHS->getOperand(1);
4018 }
4019 
4020 /// Return a SCEV corresponding to ~V = -1-V
4021 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4022   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4023     return getConstant(
4024                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4025 
4026   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4027   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4028     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4029       SmallVector<const SCEV *, 2> MatchedOperands;
4030       for (const SCEV *Operand : MME->operands()) {
4031         const SCEV *Matched = MatchNotExpr(Operand);
4032         if (!Matched)
4033           return (const SCEV *)nullptr;
4034         MatchedOperands.push_back(Matched);
4035       }
4036       return getMinMaxExpr(
4037           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
4038           MatchedOperands);
4039     };
4040     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4041       return Replaced;
4042   }
4043 
4044   Type *Ty = V->getType();
4045   Ty = getEffectiveSCEVType(Ty);
4046   const SCEV *AllOnes =
4047                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4048   return getMinusSCEV(AllOnes, V);
4049 }
4050 
4051 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4052                                           SCEV::NoWrapFlags Flags,
4053                                           unsigned Depth) {
4054   // Fast path: X - X --> 0.
4055   if (LHS == RHS)
4056     return getZero(LHS->getType());
4057 
4058   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4059   // makes it so that we cannot make much use of NUW.
4060   auto AddFlags = SCEV::FlagAnyWrap;
4061   const bool RHSIsNotMinSigned =
4062       !getSignedRangeMin(RHS).isMinSignedValue();
4063   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4064     // Let M be the minimum representable signed value. Then (-1)*RHS
4065     // signed-wraps if and only if RHS is M. That can happen even for
4066     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4067     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4068     // (-1)*RHS, we need to prove that RHS != M.
4069     //
4070     // If LHS is non-negative and we know that LHS - RHS does not
4071     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4072     // either by proving that RHS > M or that LHS >= 0.
4073     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4074       AddFlags = SCEV::FlagNSW;
4075     }
4076   }
4077 
4078   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4079   // RHS is NSW and LHS >= 0.
4080   //
4081   // The difficulty here is that the NSW flag may have been proven
4082   // relative to a loop that is to be found in a recurrence in LHS and
4083   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4084   // larger scope than intended.
4085   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4086 
4087   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4088 }
4089 
4090 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4091                                                      unsigned Depth) {
4092   Type *SrcTy = V->getType();
4093   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4094          "Cannot truncate or zero extend with non-integer arguments!");
4095   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4096     return V;  // No conversion
4097   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4098     return getTruncateExpr(V, Ty, Depth);
4099   return getZeroExtendExpr(V, Ty, Depth);
4100 }
4101 
4102 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4103                                                      unsigned Depth) {
4104   Type *SrcTy = V->getType();
4105   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4106          "Cannot truncate or zero extend with non-integer arguments!");
4107   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4108     return V;  // No conversion
4109   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4110     return getTruncateExpr(V, Ty, Depth);
4111   return getSignExtendExpr(V, Ty, Depth);
4112 }
4113 
4114 const SCEV *
4115 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4116   Type *SrcTy = V->getType();
4117   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4118          "Cannot noop or zero extend with non-integer arguments!");
4119   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4120          "getNoopOrZeroExtend cannot truncate!");
4121   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4122     return V;  // No conversion
4123   return getZeroExtendExpr(V, Ty);
4124 }
4125 
4126 const SCEV *
4127 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4128   Type *SrcTy = V->getType();
4129   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4130          "Cannot noop or sign extend with non-integer arguments!");
4131   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4132          "getNoopOrSignExtend cannot truncate!");
4133   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4134     return V;  // No conversion
4135   return getSignExtendExpr(V, Ty);
4136 }
4137 
4138 const SCEV *
4139 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4140   Type *SrcTy = V->getType();
4141   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4142          "Cannot noop or any extend with non-integer arguments!");
4143   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4144          "getNoopOrAnyExtend cannot truncate!");
4145   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4146     return V;  // No conversion
4147   return getAnyExtendExpr(V, Ty);
4148 }
4149 
4150 const SCEV *
4151 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4152   Type *SrcTy = V->getType();
4153   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4154          "Cannot truncate or noop with non-integer arguments!");
4155   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4156          "getTruncateOrNoop cannot extend!");
4157   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4158     return V;  // No conversion
4159   return getTruncateExpr(V, Ty);
4160 }
4161 
4162 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4163                                                         const SCEV *RHS) {
4164   const SCEV *PromotedLHS = LHS;
4165   const SCEV *PromotedRHS = RHS;
4166 
4167   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4168     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4169   else
4170     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4171 
4172   return getUMaxExpr(PromotedLHS, PromotedRHS);
4173 }
4174 
4175 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4176                                                         const SCEV *RHS) {
4177   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4178   return getUMinFromMismatchedTypes(Ops);
4179 }
4180 
4181 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4182     SmallVectorImpl<const SCEV *> &Ops) {
4183   assert(!Ops.empty() && "At least one operand must be!");
4184   // Trivial case.
4185   if (Ops.size() == 1)
4186     return Ops[0];
4187 
4188   // Find the max type first.
4189   Type *MaxType = nullptr;
4190   for (auto *S : Ops)
4191     if (MaxType)
4192       MaxType = getWiderType(MaxType, S->getType());
4193     else
4194       MaxType = S->getType();
4195 
4196   // Extend all ops to max type.
4197   SmallVector<const SCEV *, 2> PromotedOps;
4198   for (auto *S : Ops)
4199     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4200 
4201   // Generate umin.
4202   return getUMinExpr(PromotedOps);
4203 }
4204 
4205 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4206   // A pointer operand may evaluate to a nonpointer expression, such as null.
4207   if (!V->getType()->isPointerTy())
4208     return V;
4209 
4210   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4211     return getPointerBase(Cast->getOperand());
4212   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4213     const SCEV *PtrOp = nullptr;
4214     for (const SCEV *NAryOp : NAry->operands()) {
4215       if (NAryOp->getType()->isPointerTy()) {
4216         // Cannot find the base of an expression with multiple pointer operands.
4217         if (PtrOp)
4218           return V;
4219         PtrOp = NAryOp;
4220       }
4221     }
4222     if (!PtrOp)
4223       return V;
4224     return getPointerBase(PtrOp);
4225   }
4226   return V;
4227 }
4228 
4229 /// Push users of the given Instruction onto the given Worklist.
4230 static void
4231 PushDefUseChildren(Instruction *I,
4232                    SmallVectorImpl<Instruction *> &Worklist) {
4233   // Push the def-use children onto the Worklist stack.
4234   for (User *U : I->users())
4235     Worklist.push_back(cast<Instruction>(U));
4236 }
4237 
4238 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4239   SmallVector<Instruction *, 16> Worklist;
4240   PushDefUseChildren(PN, Worklist);
4241 
4242   SmallPtrSet<Instruction *, 8> Visited;
4243   Visited.insert(PN);
4244   while (!Worklist.empty()) {
4245     Instruction *I = Worklist.pop_back_val();
4246     if (!Visited.insert(I).second)
4247       continue;
4248 
4249     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4250     if (It != ValueExprMap.end()) {
4251       const SCEV *Old = It->second;
4252 
4253       // Short-circuit the def-use traversal if the symbolic name
4254       // ceases to appear in expressions.
4255       if (Old != SymName && !hasOperand(Old, SymName))
4256         continue;
4257 
4258       // SCEVUnknown for a PHI either means that it has an unrecognized
4259       // structure, it's a PHI that's in the progress of being computed
4260       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4261       // additional loop trip count information isn't going to change anything.
4262       // In the second case, createNodeForPHI will perform the necessary
4263       // updates on its own when it gets to that point. In the third, we do
4264       // want to forget the SCEVUnknown.
4265       if (!isa<PHINode>(I) ||
4266           !isa<SCEVUnknown>(Old) ||
4267           (I != PN && Old == SymName)) {
4268         eraseValueFromMap(It->first);
4269         forgetMemoizedResults(Old);
4270       }
4271     }
4272 
4273     PushDefUseChildren(I, Worklist);
4274   }
4275 }
4276 
4277 namespace {
4278 
4279 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4280 /// expression in case its Loop is L. If it is not L then
4281 /// if IgnoreOtherLoops is true then use AddRec itself
4282 /// otherwise rewrite cannot be done.
4283 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4284 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4285 public:
4286   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4287                              bool IgnoreOtherLoops = true) {
4288     SCEVInitRewriter Rewriter(L, SE);
4289     const SCEV *Result = Rewriter.visit(S);
4290     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4291       return SE.getCouldNotCompute();
4292     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4293                ? SE.getCouldNotCompute()
4294                : Result;
4295   }
4296 
4297   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4298     if (!SE.isLoopInvariant(Expr, L))
4299       SeenLoopVariantSCEVUnknown = true;
4300     return Expr;
4301   }
4302 
4303   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4304     // Only re-write AddRecExprs for this loop.
4305     if (Expr->getLoop() == L)
4306       return Expr->getStart();
4307     SeenOtherLoops = true;
4308     return Expr;
4309   }
4310 
4311   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4312 
4313   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4314 
4315 private:
4316   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4317       : SCEVRewriteVisitor(SE), L(L) {}
4318 
4319   const Loop *L;
4320   bool SeenLoopVariantSCEVUnknown = false;
4321   bool SeenOtherLoops = false;
4322 };
4323 
4324 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4325 /// increment expression in case its Loop is L. If it is not L then
4326 /// use AddRec itself.
4327 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4328 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4329 public:
4330   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4331     SCEVPostIncRewriter Rewriter(L, SE);
4332     const SCEV *Result = Rewriter.visit(S);
4333     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4334         ? SE.getCouldNotCompute()
4335         : Result;
4336   }
4337 
4338   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4339     if (!SE.isLoopInvariant(Expr, L))
4340       SeenLoopVariantSCEVUnknown = true;
4341     return Expr;
4342   }
4343 
4344   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4345     // Only re-write AddRecExprs for this loop.
4346     if (Expr->getLoop() == L)
4347       return Expr->getPostIncExpr(SE);
4348     SeenOtherLoops = true;
4349     return Expr;
4350   }
4351 
4352   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4353 
4354   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4355 
4356 private:
4357   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4358       : SCEVRewriteVisitor(SE), L(L) {}
4359 
4360   const Loop *L;
4361   bool SeenLoopVariantSCEVUnknown = false;
4362   bool SeenOtherLoops = false;
4363 };
4364 
4365 /// This class evaluates the compare condition by matching it against the
4366 /// condition of loop latch. If there is a match we assume a true value
4367 /// for the condition while building SCEV nodes.
4368 class SCEVBackedgeConditionFolder
4369     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4370 public:
4371   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4372                              ScalarEvolution &SE) {
4373     bool IsPosBECond = false;
4374     Value *BECond = nullptr;
4375     if (BasicBlock *Latch = L->getLoopLatch()) {
4376       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4377       if (BI && BI->isConditional()) {
4378         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4379                "Both outgoing branches should not target same header!");
4380         BECond = BI->getCondition();
4381         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4382       } else {
4383         return S;
4384       }
4385     }
4386     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4387     return Rewriter.visit(S);
4388   }
4389 
4390   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4391     const SCEV *Result = Expr;
4392     bool InvariantF = SE.isLoopInvariant(Expr, L);
4393 
4394     if (!InvariantF) {
4395       Instruction *I = cast<Instruction>(Expr->getValue());
4396       switch (I->getOpcode()) {
4397       case Instruction::Select: {
4398         SelectInst *SI = cast<SelectInst>(I);
4399         Optional<const SCEV *> Res =
4400             compareWithBackedgeCondition(SI->getCondition());
4401         if (Res.hasValue()) {
4402           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4403           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4404         }
4405         break;
4406       }
4407       default: {
4408         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4409         if (Res.hasValue())
4410           Result = Res.getValue();
4411         break;
4412       }
4413       }
4414     }
4415     return Result;
4416   }
4417 
4418 private:
4419   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4420                                        bool IsPosBECond, ScalarEvolution &SE)
4421       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4422         IsPositiveBECond(IsPosBECond) {}
4423 
4424   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4425 
4426   const Loop *L;
4427   /// Loop back condition.
4428   Value *BackedgeCond = nullptr;
4429   /// Set to true if loop back is on positive branch condition.
4430   bool IsPositiveBECond;
4431 };
4432 
4433 Optional<const SCEV *>
4434 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4435 
4436   // If value matches the backedge condition for loop latch,
4437   // then return a constant evolution node based on loopback
4438   // branch taken.
4439   if (BackedgeCond == IC)
4440     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4441                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4442   return None;
4443 }
4444 
4445 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4446 public:
4447   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4448                              ScalarEvolution &SE) {
4449     SCEVShiftRewriter Rewriter(L, SE);
4450     const SCEV *Result = Rewriter.visit(S);
4451     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4452   }
4453 
4454   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4455     // Only allow AddRecExprs for this loop.
4456     if (!SE.isLoopInvariant(Expr, L))
4457       Valid = false;
4458     return Expr;
4459   }
4460 
4461   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4462     if (Expr->getLoop() == L && Expr->isAffine())
4463       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4464     Valid = false;
4465     return Expr;
4466   }
4467 
4468   bool isValid() { return Valid; }
4469 
4470 private:
4471   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4472       : SCEVRewriteVisitor(SE), L(L) {}
4473 
4474   const Loop *L;
4475   bool Valid = true;
4476 };
4477 
4478 } // end anonymous namespace
4479 
4480 SCEV::NoWrapFlags
4481 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4482   if (!AR->isAffine())
4483     return SCEV::FlagAnyWrap;
4484 
4485   using OBO = OverflowingBinaryOperator;
4486 
4487   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4488 
4489   if (!AR->hasNoSignedWrap()) {
4490     ConstantRange AddRecRange = getSignedRange(AR);
4491     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4492 
4493     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4494         Instruction::Add, IncRange, OBO::NoSignedWrap);
4495     if (NSWRegion.contains(AddRecRange))
4496       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4497   }
4498 
4499   if (!AR->hasNoUnsignedWrap()) {
4500     ConstantRange AddRecRange = getUnsignedRange(AR);
4501     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4502 
4503     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4504         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4505     if (NUWRegion.contains(AddRecRange))
4506       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4507   }
4508 
4509   return Result;
4510 }
4511 
4512 namespace {
4513 
4514 /// Represents an abstract binary operation.  This may exist as a
4515 /// normal instruction or constant expression, or may have been
4516 /// derived from an expression tree.
4517 struct BinaryOp {
4518   unsigned Opcode;
4519   Value *LHS;
4520   Value *RHS;
4521   bool IsNSW = false;
4522   bool IsNUW = false;
4523 
4524   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4525   /// constant expression.
4526   Operator *Op = nullptr;
4527 
4528   explicit BinaryOp(Operator *Op)
4529       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4530         Op(Op) {
4531     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4532       IsNSW = OBO->hasNoSignedWrap();
4533       IsNUW = OBO->hasNoUnsignedWrap();
4534     }
4535   }
4536 
4537   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4538                     bool IsNUW = false)
4539       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4540 };
4541 
4542 } // end anonymous namespace
4543 
4544 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4545 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4546   auto *Op = dyn_cast<Operator>(V);
4547   if (!Op)
4548     return None;
4549 
4550   // Implementation detail: all the cleverness here should happen without
4551   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4552   // SCEV expressions when possible, and we should not break that.
4553 
4554   switch (Op->getOpcode()) {
4555   case Instruction::Add:
4556   case Instruction::Sub:
4557   case Instruction::Mul:
4558   case Instruction::UDiv:
4559   case Instruction::URem:
4560   case Instruction::And:
4561   case Instruction::Or:
4562   case Instruction::AShr:
4563   case Instruction::Shl:
4564     return BinaryOp(Op);
4565 
4566   case Instruction::Xor:
4567     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4568       // If the RHS of the xor is a signmask, then this is just an add.
4569       // Instcombine turns add of signmask into xor as a strength reduction step.
4570       if (RHSC->getValue().isSignMask())
4571         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4572     return BinaryOp(Op);
4573 
4574   case Instruction::LShr:
4575     // Turn logical shift right of a constant into a unsigned divide.
4576     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4577       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4578 
4579       // If the shift count is not less than the bitwidth, the result of
4580       // the shift is undefined. Don't try to analyze it, because the
4581       // resolution chosen here may differ from the resolution chosen in
4582       // other parts of the compiler.
4583       if (SA->getValue().ult(BitWidth)) {
4584         Constant *X =
4585             ConstantInt::get(SA->getContext(),
4586                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4587         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4588       }
4589     }
4590     return BinaryOp(Op);
4591 
4592   case Instruction::ExtractValue: {
4593     auto *EVI = cast<ExtractValueInst>(Op);
4594     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4595       break;
4596 
4597     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4598     if (!WO)
4599       break;
4600 
4601     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4602     bool Signed = WO->isSigned();
4603     // TODO: Should add nuw/nsw flags for mul as well.
4604     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4605       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4606 
4607     // Now that we know that all uses of the arithmetic-result component of
4608     // CI are guarded by the overflow check, we can go ahead and pretend
4609     // that the arithmetic is non-overflowing.
4610     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4611                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4612   }
4613 
4614   default:
4615     break;
4616   }
4617 
4618   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4619   // semantics as a Sub, return a binary sub expression.
4620   if (auto *II = dyn_cast<IntrinsicInst>(V))
4621     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4622       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4623 
4624   return None;
4625 }
4626 
4627 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4628 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4629 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4630 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4631 /// follows one of the following patterns:
4632 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4633 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4634 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4635 /// we return the type of the truncation operation, and indicate whether the
4636 /// truncated type should be treated as signed/unsigned by setting
4637 /// \p Signed to true/false, respectively.
4638 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4639                                bool &Signed, ScalarEvolution &SE) {
4640   // The case where Op == SymbolicPHI (that is, with no type conversions on
4641   // the way) is handled by the regular add recurrence creating logic and
4642   // would have already been triggered in createAddRecForPHI. Reaching it here
4643   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4644   // because one of the other operands of the SCEVAddExpr updating this PHI is
4645   // not invariant).
4646   //
4647   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4648   // this case predicates that allow us to prove that Op == SymbolicPHI will
4649   // be added.
4650   if (Op == SymbolicPHI)
4651     return nullptr;
4652 
4653   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4654   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4655   if (SourceBits != NewBits)
4656     return nullptr;
4657 
4658   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4659   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4660   if (!SExt && !ZExt)
4661     return nullptr;
4662   const SCEVTruncateExpr *Trunc =
4663       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4664            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4665   if (!Trunc)
4666     return nullptr;
4667   const SCEV *X = Trunc->getOperand();
4668   if (X != SymbolicPHI)
4669     return nullptr;
4670   Signed = SExt != nullptr;
4671   return Trunc->getType();
4672 }
4673 
4674 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4675   if (!PN->getType()->isIntegerTy())
4676     return nullptr;
4677   const Loop *L = LI.getLoopFor(PN->getParent());
4678   if (!L || L->getHeader() != PN->getParent())
4679     return nullptr;
4680   return L;
4681 }
4682 
4683 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4684 // computation that updates the phi follows the following pattern:
4685 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4686 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4687 // If so, try to see if it can be rewritten as an AddRecExpr under some
4688 // Predicates. If successful, return them as a pair. Also cache the results
4689 // of the analysis.
4690 //
4691 // Example usage scenario:
4692 //    Say the Rewriter is called for the following SCEV:
4693 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4694 //    where:
4695 //         %X = phi i64 (%Start, %BEValue)
4696 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4697 //    and call this function with %SymbolicPHI = %X.
4698 //
4699 //    The analysis will find that the value coming around the backedge has
4700 //    the following SCEV:
4701 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4702 //    Upon concluding that this matches the desired pattern, the function
4703 //    will return the pair {NewAddRec, SmallPredsVec} where:
4704 //         NewAddRec = {%Start,+,%Step}
4705 //         SmallPredsVec = {P1, P2, P3} as follows:
4706 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4707 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4708 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4709 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4710 //    under the predicates {P1,P2,P3}.
4711 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4712 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4713 //
4714 // TODO's:
4715 //
4716 // 1) Extend the Induction descriptor to also support inductions that involve
4717 //    casts: When needed (namely, when we are called in the context of the
4718 //    vectorizer induction analysis), a Set of cast instructions will be
4719 //    populated by this method, and provided back to isInductionPHI. This is
4720 //    needed to allow the vectorizer to properly record them to be ignored by
4721 //    the cost model and to avoid vectorizing them (otherwise these casts,
4722 //    which are redundant under the runtime overflow checks, will be
4723 //    vectorized, which can be costly).
4724 //
4725 // 2) Support additional induction/PHISCEV patterns: We also want to support
4726 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4727 //    after the induction update operation (the induction increment):
4728 //
4729 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4730 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4731 //
4732 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4733 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4734 //
4735 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4736 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4737 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4738   SmallVector<const SCEVPredicate *, 3> Predicates;
4739 
4740   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4741   // return an AddRec expression under some predicate.
4742 
4743   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4744   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4745   assert(L && "Expecting an integer loop header phi");
4746 
4747   // The loop may have multiple entrances or multiple exits; we can analyze
4748   // this phi as an addrec if it has a unique entry value and a unique
4749   // backedge value.
4750   Value *BEValueV = nullptr, *StartValueV = nullptr;
4751   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4752     Value *V = PN->getIncomingValue(i);
4753     if (L->contains(PN->getIncomingBlock(i))) {
4754       if (!BEValueV) {
4755         BEValueV = V;
4756       } else if (BEValueV != V) {
4757         BEValueV = nullptr;
4758         break;
4759       }
4760     } else if (!StartValueV) {
4761       StartValueV = V;
4762     } else if (StartValueV != V) {
4763       StartValueV = nullptr;
4764       break;
4765     }
4766   }
4767   if (!BEValueV || !StartValueV)
4768     return None;
4769 
4770   const SCEV *BEValue = getSCEV(BEValueV);
4771 
4772   // If the value coming around the backedge is an add with the symbolic
4773   // value we just inserted, possibly with casts that we can ignore under
4774   // an appropriate runtime guard, then we found a simple induction variable!
4775   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4776   if (!Add)
4777     return None;
4778 
4779   // If there is a single occurrence of the symbolic value, possibly
4780   // casted, replace it with a recurrence.
4781   unsigned FoundIndex = Add->getNumOperands();
4782   Type *TruncTy = nullptr;
4783   bool Signed;
4784   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4785     if ((TruncTy =
4786              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4787       if (FoundIndex == e) {
4788         FoundIndex = i;
4789         break;
4790       }
4791 
4792   if (FoundIndex == Add->getNumOperands())
4793     return None;
4794 
4795   // Create an add with everything but the specified operand.
4796   SmallVector<const SCEV *, 8> Ops;
4797   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4798     if (i != FoundIndex)
4799       Ops.push_back(Add->getOperand(i));
4800   const SCEV *Accum = getAddExpr(Ops);
4801 
4802   // The runtime checks will not be valid if the step amount is
4803   // varying inside the loop.
4804   if (!isLoopInvariant(Accum, L))
4805     return None;
4806 
4807   // *** Part2: Create the predicates
4808 
4809   // Analysis was successful: we have a phi-with-cast pattern for which we
4810   // can return an AddRec expression under the following predicates:
4811   //
4812   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4813   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4814   // P2: An Equal predicate that guarantees that
4815   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4816   // P3: An Equal predicate that guarantees that
4817   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4818   //
4819   // As we next prove, the above predicates guarantee that:
4820   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4821   //
4822   //
4823   // More formally, we want to prove that:
4824   //     Expr(i+1) = Start + (i+1) * Accum
4825   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4826   //
4827   // Given that:
4828   // 1) Expr(0) = Start
4829   // 2) Expr(1) = Start + Accum
4830   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4831   // 3) Induction hypothesis (step i):
4832   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4833   //
4834   // Proof:
4835   //  Expr(i+1) =
4836   //   = Start + (i+1)*Accum
4837   //   = (Start + i*Accum) + Accum
4838   //   = Expr(i) + Accum
4839   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4840   //                                                             :: from step i
4841   //
4842   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4843   //
4844   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4845   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4846   //     + Accum                                                     :: from P3
4847   //
4848   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4849   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4850   //
4851   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4852   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4853   //
4854   // By induction, the same applies to all iterations 1<=i<n:
4855   //
4856 
4857   // Create a truncated addrec for which we will add a no overflow check (P1).
4858   const SCEV *StartVal = getSCEV(StartValueV);
4859   const SCEV *PHISCEV =
4860       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4861                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4862 
4863   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4864   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4865   // will be constant.
4866   //
4867   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4868   // add P1.
4869   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4870     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4871         Signed ? SCEVWrapPredicate::IncrementNSSW
4872                : SCEVWrapPredicate::IncrementNUSW;
4873     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4874     Predicates.push_back(AddRecPred);
4875   }
4876 
4877   // Create the Equal Predicates P2,P3:
4878 
4879   // It is possible that the predicates P2 and/or P3 are computable at
4880   // compile time due to StartVal and/or Accum being constants.
4881   // If either one is, then we can check that now and escape if either P2
4882   // or P3 is false.
4883 
4884   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4885   // for each of StartVal and Accum
4886   auto getExtendedExpr = [&](const SCEV *Expr,
4887                              bool CreateSignExtend) -> const SCEV * {
4888     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4889     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4890     const SCEV *ExtendedExpr =
4891         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4892                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4893     return ExtendedExpr;
4894   };
4895 
4896   // Given:
4897   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4898   //               = getExtendedExpr(Expr)
4899   // Determine whether the predicate P: Expr == ExtendedExpr
4900   // is known to be false at compile time
4901   auto PredIsKnownFalse = [&](const SCEV *Expr,
4902                               const SCEV *ExtendedExpr) -> bool {
4903     return Expr != ExtendedExpr &&
4904            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4905   };
4906 
4907   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4908   if (PredIsKnownFalse(StartVal, StartExtended)) {
4909     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4910     return None;
4911   }
4912 
4913   // The Step is always Signed (because the overflow checks are either
4914   // NSSW or NUSW)
4915   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4916   if (PredIsKnownFalse(Accum, AccumExtended)) {
4917     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4918     return None;
4919   }
4920 
4921   auto AppendPredicate = [&](const SCEV *Expr,
4922                              const SCEV *ExtendedExpr) -> void {
4923     if (Expr != ExtendedExpr &&
4924         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4925       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4926       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4927       Predicates.push_back(Pred);
4928     }
4929   };
4930 
4931   AppendPredicate(StartVal, StartExtended);
4932   AppendPredicate(Accum, AccumExtended);
4933 
4934   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4935   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4936   // into NewAR if it will also add the runtime overflow checks specified in
4937   // Predicates.
4938   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4939 
4940   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4941       std::make_pair(NewAR, Predicates);
4942   // Remember the result of the analysis for this SCEV at this locayyytion.
4943   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4944   return PredRewrite;
4945 }
4946 
4947 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4948 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4949   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4950   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4951   if (!L)
4952     return None;
4953 
4954   // Check to see if we already analyzed this PHI.
4955   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4956   if (I != PredicatedSCEVRewrites.end()) {
4957     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4958         I->second;
4959     // Analysis was done before and failed to create an AddRec:
4960     if (Rewrite.first == SymbolicPHI)
4961       return None;
4962     // Analysis was done before and succeeded to create an AddRec under
4963     // a predicate:
4964     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4965     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4966     return Rewrite;
4967   }
4968 
4969   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4970     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4971 
4972   // Record in the cache that the analysis failed
4973   if (!Rewrite) {
4974     SmallVector<const SCEVPredicate *, 3> Predicates;
4975     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4976     return None;
4977   }
4978 
4979   return Rewrite;
4980 }
4981 
4982 // FIXME: This utility is currently required because the Rewriter currently
4983 // does not rewrite this expression:
4984 // {0, +, (sext ix (trunc iy to ix) to iy)}
4985 // into {0, +, %step},
4986 // even when the following Equal predicate exists:
4987 // "%step == (sext ix (trunc iy to ix) to iy)".
4988 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4989     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4990   if (AR1 == AR2)
4991     return true;
4992 
4993   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4994     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4995         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4996       return false;
4997     return true;
4998   };
4999 
5000   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5001       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5002     return false;
5003   return true;
5004 }
5005 
5006 /// A helper function for createAddRecFromPHI to handle simple cases.
5007 ///
5008 /// This function tries to find an AddRec expression for the simplest (yet most
5009 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5010 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5011 /// technique for finding the AddRec expression.
5012 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5013                                                       Value *BEValueV,
5014                                                       Value *StartValueV) {
5015   const Loop *L = LI.getLoopFor(PN->getParent());
5016   assert(L && L->getHeader() == PN->getParent());
5017   assert(BEValueV && StartValueV);
5018 
5019   auto BO = MatchBinaryOp(BEValueV, DT);
5020   if (!BO)
5021     return nullptr;
5022 
5023   if (BO->Opcode != Instruction::Add)
5024     return nullptr;
5025 
5026   const SCEV *Accum = nullptr;
5027   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5028     Accum = getSCEV(BO->RHS);
5029   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5030     Accum = getSCEV(BO->LHS);
5031 
5032   if (!Accum)
5033     return nullptr;
5034 
5035   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5036   if (BO->IsNUW)
5037     Flags = setFlags(Flags, SCEV::FlagNUW);
5038   if (BO->IsNSW)
5039     Flags = setFlags(Flags, SCEV::FlagNSW);
5040 
5041   const SCEV *StartVal = getSCEV(StartValueV);
5042   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5043 
5044   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5045 
5046   // We can add Flags to the post-inc expression only if we
5047   // know that it is *undefined behavior* for BEValueV to
5048   // overflow.
5049   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5050     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5051       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5052 
5053   return PHISCEV;
5054 }
5055 
5056 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5057   const Loop *L = LI.getLoopFor(PN->getParent());
5058   if (!L || L->getHeader() != PN->getParent())
5059     return nullptr;
5060 
5061   // The loop may have multiple entrances or multiple exits; we can analyze
5062   // this phi as an addrec if it has a unique entry value and a unique
5063   // backedge value.
5064   Value *BEValueV = nullptr, *StartValueV = nullptr;
5065   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5066     Value *V = PN->getIncomingValue(i);
5067     if (L->contains(PN->getIncomingBlock(i))) {
5068       if (!BEValueV) {
5069         BEValueV = V;
5070       } else if (BEValueV != V) {
5071         BEValueV = nullptr;
5072         break;
5073       }
5074     } else if (!StartValueV) {
5075       StartValueV = V;
5076     } else if (StartValueV != V) {
5077       StartValueV = nullptr;
5078       break;
5079     }
5080   }
5081   if (!BEValueV || !StartValueV)
5082     return nullptr;
5083 
5084   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5085          "PHI node already processed?");
5086 
5087   // First, try to find AddRec expression without creating a fictituos symbolic
5088   // value for PN.
5089   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5090     return S;
5091 
5092   // Handle PHI node value symbolically.
5093   const SCEV *SymbolicName = getUnknown(PN);
5094   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5095 
5096   // Using this symbolic name for the PHI, analyze the value coming around
5097   // the back-edge.
5098   const SCEV *BEValue = getSCEV(BEValueV);
5099 
5100   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5101   // has a special value for the first iteration of the loop.
5102 
5103   // If the value coming around the backedge is an add with the symbolic
5104   // value we just inserted, then we found a simple induction variable!
5105   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5106     // If there is a single occurrence of the symbolic value, replace it
5107     // with a recurrence.
5108     unsigned FoundIndex = Add->getNumOperands();
5109     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5110       if (Add->getOperand(i) == SymbolicName)
5111         if (FoundIndex == e) {
5112           FoundIndex = i;
5113           break;
5114         }
5115 
5116     if (FoundIndex != Add->getNumOperands()) {
5117       // Create an add with everything but the specified operand.
5118       SmallVector<const SCEV *, 8> Ops;
5119       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5120         if (i != FoundIndex)
5121           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5122                                                              L, *this));
5123       const SCEV *Accum = getAddExpr(Ops);
5124 
5125       // This is not a valid addrec if the step amount is varying each
5126       // loop iteration, but is not itself an addrec in this loop.
5127       if (isLoopInvariant(Accum, L) ||
5128           (isa<SCEVAddRecExpr>(Accum) &&
5129            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5130         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5131 
5132         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5133           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5134             if (BO->IsNUW)
5135               Flags = setFlags(Flags, SCEV::FlagNUW);
5136             if (BO->IsNSW)
5137               Flags = setFlags(Flags, SCEV::FlagNSW);
5138           }
5139         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5140           // If the increment is an inbounds GEP, then we know the address
5141           // space cannot be wrapped around. We cannot make any guarantee
5142           // about signed or unsigned overflow because pointers are
5143           // unsigned but we may have a negative index from the base
5144           // pointer. We can guarantee that no unsigned wrap occurs if the
5145           // indices form a positive value.
5146           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5147             Flags = setFlags(Flags, SCEV::FlagNW);
5148 
5149             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5150             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5151               Flags = setFlags(Flags, SCEV::FlagNUW);
5152           }
5153 
5154           // We cannot transfer nuw and nsw flags from subtraction
5155           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5156           // for instance.
5157         }
5158 
5159         const SCEV *StartVal = getSCEV(StartValueV);
5160         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5161 
5162         // Okay, for the entire analysis of this edge we assumed the PHI
5163         // to be symbolic.  We now need to go back and purge all of the
5164         // entries for the scalars that use the symbolic expression.
5165         forgetSymbolicName(PN, SymbolicName);
5166         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5167 
5168         // We can add Flags to the post-inc expression only if we
5169         // know that it is *undefined behavior* for BEValueV to
5170         // overflow.
5171         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5172           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5173             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5174 
5175         return PHISCEV;
5176       }
5177     }
5178   } else {
5179     // Otherwise, this could be a loop like this:
5180     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5181     // In this case, j = {1,+,1}  and BEValue is j.
5182     // Because the other in-value of i (0) fits the evolution of BEValue
5183     // i really is an addrec evolution.
5184     //
5185     // We can generalize this saying that i is the shifted value of BEValue
5186     // by one iteration:
5187     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5188     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5189     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5190     if (Shifted != getCouldNotCompute() &&
5191         Start != getCouldNotCompute()) {
5192       const SCEV *StartVal = getSCEV(StartValueV);
5193       if (Start == StartVal) {
5194         // Okay, for the entire analysis of this edge we assumed the PHI
5195         // to be symbolic.  We now need to go back and purge all of the
5196         // entries for the scalars that use the symbolic expression.
5197         forgetSymbolicName(PN, SymbolicName);
5198         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5199         return Shifted;
5200       }
5201     }
5202   }
5203 
5204   // Remove the temporary PHI node SCEV that has been inserted while intending
5205   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5206   // as it will prevent later (possibly simpler) SCEV expressions to be added
5207   // to the ValueExprMap.
5208   eraseValueFromMap(PN);
5209 
5210   return nullptr;
5211 }
5212 
5213 // Checks if the SCEV S is available at BB.  S is considered available at BB
5214 // if S can be materialized at BB without introducing a fault.
5215 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5216                                BasicBlock *BB) {
5217   struct CheckAvailable {
5218     bool TraversalDone = false;
5219     bool Available = true;
5220 
5221     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5222     BasicBlock *BB = nullptr;
5223     DominatorTree &DT;
5224 
5225     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5226       : L(L), BB(BB), DT(DT) {}
5227 
5228     bool setUnavailable() {
5229       TraversalDone = true;
5230       Available = false;
5231       return false;
5232     }
5233 
5234     bool follow(const SCEV *S) {
5235       switch (S->getSCEVType()) {
5236       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5237       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5238       case scUMinExpr:
5239       case scSMinExpr:
5240         // These expressions are available if their operand(s) is/are.
5241         return true;
5242 
5243       case scAddRecExpr: {
5244         // We allow add recurrences that are on the loop BB is in, or some
5245         // outer loop.  This guarantees availability because the value of the
5246         // add recurrence at BB is simply the "current" value of the induction
5247         // variable.  We can relax this in the future; for instance an add
5248         // recurrence on a sibling dominating loop is also available at BB.
5249         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5250         if (L && (ARLoop == L || ARLoop->contains(L)))
5251           return true;
5252 
5253         return setUnavailable();
5254       }
5255 
5256       case scUnknown: {
5257         // For SCEVUnknown, we check for simple dominance.
5258         const auto *SU = cast<SCEVUnknown>(S);
5259         Value *V = SU->getValue();
5260 
5261         if (isa<Argument>(V))
5262           return false;
5263 
5264         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5265           return false;
5266 
5267         return setUnavailable();
5268       }
5269 
5270       case scUDivExpr:
5271       case scCouldNotCompute:
5272         // We do not try to smart about these at all.
5273         return setUnavailable();
5274       }
5275       llvm_unreachable("switch should be fully covered!");
5276     }
5277 
5278     bool isDone() { return TraversalDone; }
5279   };
5280 
5281   CheckAvailable CA(L, BB, DT);
5282   SCEVTraversal<CheckAvailable> ST(CA);
5283 
5284   ST.visitAll(S);
5285   return CA.Available;
5286 }
5287 
5288 // Try to match a control flow sequence that branches out at BI and merges back
5289 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5290 // match.
5291 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5292                           Value *&C, Value *&LHS, Value *&RHS) {
5293   C = BI->getCondition();
5294 
5295   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5296   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5297 
5298   if (!LeftEdge.isSingleEdge())
5299     return false;
5300 
5301   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5302 
5303   Use &LeftUse = Merge->getOperandUse(0);
5304   Use &RightUse = Merge->getOperandUse(1);
5305 
5306   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5307     LHS = LeftUse;
5308     RHS = RightUse;
5309     return true;
5310   }
5311 
5312   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5313     LHS = RightUse;
5314     RHS = LeftUse;
5315     return true;
5316   }
5317 
5318   return false;
5319 }
5320 
5321 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5322   auto IsReachable =
5323       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5324   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5325     const Loop *L = LI.getLoopFor(PN->getParent());
5326 
5327     // We don't want to break LCSSA, even in a SCEV expression tree.
5328     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5329       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5330         return nullptr;
5331 
5332     // Try to match
5333     //
5334     //  br %cond, label %left, label %right
5335     // left:
5336     //  br label %merge
5337     // right:
5338     //  br label %merge
5339     // merge:
5340     //  V = phi [ %x, %left ], [ %y, %right ]
5341     //
5342     // as "select %cond, %x, %y"
5343 
5344     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5345     assert(IDom && "At least the entry block should dominate PN");
5346 
5347     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5348     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5349 
5350     if (BI && BI->isConditional() &&
5351         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5352         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5353         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5354       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5355   }
5356 
5357   return nullptr;
5358 }
5359 
5360 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5361   if (const SCEV *S = createAddRecFromPHI(PN))
5362     return S;
5363 
5364   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5365     return S;
5366 
5367   // If the PHI has a single incoming value, follow that value, unless the
5368   // PHI's incoming blocks are in a different loop, in which case doing so
5369   // risks breaking LCSSA form. Instcombine would normally zap these, but
5370   // it doesn't have DominatorTree information, so it may miss cases.
5371   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5372     if (LI.replacementPreservesLCSSAForm(PN, V))
5373       return getSCEV(V);
5374 
5375   // If it's not a loop phi, we can't handle it yet.
5376   return getUnknown(PN);
5377 }
5378 
5379 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5380                                                       Value *Cond,
5381                                                       Value *TrueVal,
5382                                                       Value *FalseVal) {
5383   // Handle "constant" branch or select. This can occur for instance when a
5384   // loop pass transforms an inner loop and moves on to process the outer loop.
5385   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5386     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5387 
5388   // Try to match some simple smax or umax patterns.
5389   auto *ICI = dyn_cast<ICmpInst>(Cond);
5390   if (!ICI)
5391     return getUnknown(I);
5392 
5393   Value *LHS = ICI->getOperand(0);
5394   Value *RHS = ICI->getOperand(1);
5395 
5396   switch (ICI->getPredicate()) {
5397   case ICmpInst::ICMP_SLT:
5398   case ICmpInst::ICMP_SLE:
5399     std::swap(LHS, RHS);
5400     LLVM_FALLTHROUGH;
5401   case ICmpInst::ICMP_SGT:
5402   case ICmpInst::ICMP_SGE:
5403     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5404     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5405     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5406       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5407       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5408       const SCEV *LA = getSCEV(TrueVal);
5409       const SCEV *RA = getSCEV(FalseVal);
5410       const SCEV *LDiff = getMinusSCEV(LA, LS);
5411       const SCEV *RDiff = getMinusSCEV(RA, RS);
5412       if (LDiff == RDiff)
5413         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5414       LDiff = getMinusSCEV(LA, RS);
5415       RDiff = getMinusSCEV(RA, LS);
5416       if (LDiff == RDiff)
5417         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5418     }
5419     break;
5420   case ICmpInst::ICMP_ULT:
5421   case ICmpInst::ICMP_ULE:
5422     std::swap(LHS, RHS);
5423     LLVM_FALLTHROUGH;
5424   case ICmpInst::ICMP_UGT:
5425   case ICmpInst::ICMP_UGE:
5426     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5427     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5428     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5429       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5430       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5431       const SCEV *LA = getSCEV(TrueVal);
5432       const SCEV *RA = getSCEV(FalseVal);
5433       const SCEV *LDiff = getMinusSCEV(LA, LS);
5434       const SCEV *RDiff = getMinusSCEV(RA, RS);
5435       if (LDiff == RDiff)
5436         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5437       LDiff = getMinusSCEV(LA, RS);
5438       RDiff = getMinusSCEV(RA, LS);
5439       if (LDiff == RDiff)
5440         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5441     }
5442     break;
5443   case ICmpInst::ICMP_NE:
5444     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5445     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5446         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5447       const SCEV *One = getOne(I->getType());
5448       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5449       const SCEV *LA = getSCEV(TrueVal);
5450       const SCEV *RA = getSCEV(FalseVal);
5451       const SCEV *LDiff = getMinusSCEV(LA, LS);
5452       const SCEV *RDiff = getMinusSCEV(RA, One);
5453       if (LDiff == RDiff)
5454         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5455     }
5456     break;
5457   case ICmpInst::ICMP_EQ:
5458     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5459     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5460         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5461       const SCEV *One = getOne(I->getType());
5462       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5463       const SCEV *LA = getSCEV(TrueVal);
5464       const SCEV *RA = getSCEV(FalseVal);
5465       const SCEV *LDiff = getMinusSCEV(LA, One);
5466       const SCEV *RDiff = getMinusSCEV(RA, LS);
5467       if (LDiff == RDiff)
5468         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5469     }
5470     break;
5471   default:
5472     break;
5473   }
5474 
5475   return getUnknown(I);
5476 }
5477 
5478 /// Expand GEP instructions into add and multiply operations. This allows them
5479 /// to be analyzed by regular SCEV code.
5480 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5481   // Don't attempt to analyze GEPs over unsized objects.
5482   if (!GEP->getSourceElementType()->isSized())
5483     return getUnknown(GEP);
5484 
5485   SmallVector<const SCEV *, 4> IndexExprs;
5486   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5487     IndexExprs.push_back(getSCEV(*Index));
5488   return getGEPExpr(GEP, IndexExprs);
5489 }
5490 
5491 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5492   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5493     return C->getAPInt().countTrailingZeros();
5494 
5495   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5496     return std::min(GetMinTrailingZeros(T->getOperand()),
5497                     (uint32_t)getTypeSizeInBits(T->getType()));
5498 
5499   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5500     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5501     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5502                ? getTypeSizeInBits(E->getType())
5503                : OpRes;
5504   }
5505 
5506   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5507     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5508     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5509                ? getTypeSizeInBits(E->getType())
5510                : OpRes;
5511   }
5512 
5513   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5514     // The result is the min of all operands results.
5515     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5516     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5517       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5518     return MinOpRes;
5519   }
5520 
5521   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5522     // The result is the sum of all operands results.
5523     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5524     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5525     for (unsigned i = 1, e = M->getNumOperands();
5526          SumOpRes != BitWidth && i != e; ++i)
5527       SumOpRes =
5528           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5529     return SumOpRes;
5530   }
5531 
5532   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5533     // The result is the min of all operands results.
5534     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5535     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5536       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5537     return MinOpRes;
5538   }
5539 
5540   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5541     // The result is the min of all operands results.
5542     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5543     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5544       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5545     return MinOpRes;
5546   }
5547 
5548   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5549     // The result is the min of all operands results.
5550     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5551     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5552       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5553     return MinOpRes;
5554   }
5555 
5556   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5557     // For a SCEVUnknown, ask ValueTracking.
5558     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5559     return Known.countMinTrailingZeros();
5560   }
5561 
5562   // SCEVUDivExpr
5563   return 0;
5564 }
5565 
5566 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5567   auto I = MinTrailingZerosCache.find(S);
5568   if (I != MinTrailingZerosCache.end())
5569     return I->second;
5570 
5571   uint32_t Result = GetMinTrailingZerosImpl(S);
5572   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5573   assert(InsertPair.second && "Should insert a new key");
5574   return InsertPair.first->second;
5575 }
5576 
5577 /// Helper method to assign a range to V from metadata present in the IR.
5578 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5579   if (Instruction *I = dyn_cast<Instruction>(V))
5580     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5581       return getConstantRangeFromMetadata(*MD);
5582 
5583   return None;
5584 }
5585 
5586 /// Determine the range for a particular SCEV.  If SignHint is
5587 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5588 /// with a "cleaner" unsigned (resp. signed) representation.
5589 const ConstantRange &
5590 ScalarEvolution::getRangeRef(const SCEV *S,
5591                              ScalarEvolution::RangeSignHint SignHint) {
5592   DenseMap<const SCEV *, ConstantRange> &Cache =
5593       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5594                                                        : SignedRanges;
5595   ConstantRange::PreferredRangeType RangeType =
5596       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5597           ? ConstantRange::Unsigned : ConstantRange::Signed;
5598 
5599   // See if we've computed this range already.
5600   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5601   if (I != Cache.end())
5602     return I->second;
5603 
5604   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5605     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5606 
5607   unsigned BitWidth = getTypeSizeInBits(S->getType());
5608   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5609   using OBO = OverflowingBinaryOperator;
5610 
5611   // If the value has known zeros, the maximum value will have those known zeros
5612   // as well.
5613   uint32_t TZ = GetMinTrailingZeros(S);
5614   if (TZ != 0) {
5615     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5616       ConservativeResult =
5617           ConstantRange(APInt::getMinValue(BitWidth),
5618                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5619     else
5620       ConservativeResult = ConstantRange(
5621           APInt::getSignedMinValue(BitWidth),
5622           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5623   }
5624 
5625   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5626     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5627     unsigned WrapType = OBO::AnyWrap;
5628     if (Add->hasNoSignedWrap())
5629       WrapType |= OBO::NoSignedWrap;
5630     if (Add->hasNoUnsignedWrap())
5631       WrapType |= OBO::NoUnsignedWrap;
5632     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5633       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5634                           WrapType, RangeType);
5635     return setRange(Add, SignHint,
5636                     ConservativeResult.intersectWith(X, RangeType));
5637   }
5638 
5639   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5640     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5641     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5642       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5643     return setRange(Mul, SignHint,
5644                     ConservativeResult.intersectWith(X, RangeType));
5645   }
5646 
5647   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5648     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5649     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5650       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5651     return setRange(SMax, SignHint,
5652                     ConservativeResult.intersectWith(X, RangeType));
5653   }
5654 
5655   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5656     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5657     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5658       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5659     return setRange(UMax, SignHint,
5660                     ConservativeResult.intersectWith(X, RangeType));
5661   }
5662 
5663   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5664     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5665     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5666       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5667     return setRange(SMin, SignHint,
5668                     ConservativeResult.intersectWith(X, RangeType));
5669   }
5670 
5671   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5672     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5673     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5674       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5675     return setRange(UMin, SignHint,
5676                     ConservativeResult.intersectWith(X, RangeType));
5677   }
5678 
5679   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5680     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5681     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5682     return setRange(UDiv, SignHint,
5683                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5684   }
5685 
5686   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5687     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5688     return setRange(ZExt, SignHint,
5689                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5690                                                      RangeType));
5691   }
5692 
5693   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5694     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5695     return setRange(SExt, SignHint,
5696                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5697                                                      RangeType));
5698   }
5699 
5700   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5701     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5702     return setRange(Trunc, SignHint,
5703                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5704                                                      RangeType));
5705   }
5706 
5707   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5708     // If there's no unsigned wrap, the value will never be less than its
5709     // initial value.
5710     if (AddRec->hasNoUnsignedWrap()) {
5711       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5712       if (!UnsignedMinValue.isNullValue())
5713         ConservativeResult = ConservativeResult.intersectWith(
5714             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5715     }
5716 
5717     // If there's no signed wrap, and all the operands except initial value have
5718     // the same sign or zero, the value won't ever be:
5719     // 1: smaller than initial value if operands are non negative,
5720     // 2: bigger than initial value if operands are non positive.
5721     // For both cases, value can not cross signed min/max boundary.
5722     if (AddRec->hasNoSignedWrap()) {
5723       bool AllNonNeg = true;
5724       bool AllNonPos = true;
5725       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5726         if (!isKnownNonNegative(AddRec->getOperand(i)))
5727           AllNonNeg = false;
5728         if (!isKnownNonPositive(AddRec->getOperand(i)))
5729           AllNonPos = false;
5730       }
5731       if (AllNonNeg)
5732         ConservativeResult = ConservativeResult.intersectWith(
5733             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5734                                        APInt::getSignedMinValue(BitWidth)),
5735             RangeType);
5736       else if (AllNonPos)
5737         ConservativeResult = ConservativeResult.intersectWith(
5738             ConstantRange::getNonEmpty(
5739                 APInt::getSignedMinValue(BitWidth),
5740                 getSignedRangeMax(AddRec->getStart()) + 1),
5741             RangeType);
5742     }
5743 
5744     // TODO: non-affine addrec
5745     if (AddRec->isAffine()) {
5746       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5747       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5748           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5749         auto RangeFromAffine = getRangeForAffineAR(
5750             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5751             BitWidth);
5752         if (!RangeFromAffine.isFullSet())
5753           ConservativeResult =
5754               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5755 
5756         auto RangeFromFactoring = getRangeViaFactoring(
5757             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5758             BitWidth);
5759         if (!RangeFromFactoring.isFullSet())
5760           ConservativeResult =
5761               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5762       }
5763     }
5764 
5765     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5766   }
5767 
5768   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5769     // Check if the IR explicitly contains !range metadata.
5770     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5771     if (MDRange.hasValue())
5772       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5773                                                             RangeType);
5774 
5775     // Split here to avoid paying the compile-time cost of calling both
5776     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5777     // if needed.
5778     const DataLayout &DL = getDataLayout();
5779     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5780       // For a SCEVUnknown, ask ValueTracking.
5781       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5782       if (Known.getBitWidth() != BitWidth)
5783         Known = Known.zextOrTrunc(BitWidth);
5784       // If Known does not result in full-set, intersect with it.
5785       if (Known.getMinValue() != Known.getMaxValue() + 1)
5786         ConservativeResult = ConservativeResult.intersectWith(
5787             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5788             RangeType);
5789     } else {
5790       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5791              "generalize as needed!");
5792       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5793       // If the pointer size is larger than the index size type, this can cause
5794       // NS to be larger than BitWidth. So compensate for this.
5795       if (U->getType()->isPointerTy()) {
5796         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5797         int ptrIdxDiff = ptrSize - BitWidth;
5798         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5799           NS -= ptrIdxDiff;
5800       }
5801 
5802       if (NS > 1)
5803         ConservativeResult = ConservativeResult.intersectWith(
5804             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5805                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5806             RangeType);
5807     }
5808 
5809     // A range of Phi is a subset of union of all ranges of its input.
5810     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5811       // Make sure that we do not run over cycled Phis.
5812       if (PendingPhiRanges.insert(Phi).second) {
5813         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5814         for (auto &Op : Phi->operands()) {
5815           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5816           RangeFromOps = RangeFromOps.unionWith(OpRange);
5817           // No point to continue if we already have a full set.
5818           if (RangeFromOps.isFullSet())
5819             break;
5820         }
5821         ConservativeResult =
5822             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5823         bool Erased = PendingPhiRanges.erase(Phi);
5824         assert(Erased && "Failed to erase Phi properly?");
5825         (void) Erased;
5826       }
5827     }
5828 
5829     return setRange(U, SignHint, std::move(ConservativeResult));
5830   }
5831 
5832   return setRange(S, SignHint, std::move(ConservativeResult));
5833 }
5834 
5835 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5836 // values that the expression can take. Initially, the expression has a value
5837 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5838 // argument defines if we treat Step as signed or unsigned.
5839 static ConstantRange getRangeForAffineARHelper(APInt Step,
5840                                                const ConstantRange &StartRange,
5841                                                const APInt &MaxBECount,
5842                                                unsigned BitWidth, bool Signed) {
5843   // If either Step or MaxBECount is 0, then the expression won't change, and we
5844   // just need to return the initial range.
5845   if (Step == 0 || MaxBECount == 0)
5846     return StartRange;
5847 
5848   // If we don't know anything about the initial value (i.e. StartRange is
5849   // FullRange), then we don't know anything about the final range either.
5850   // Return FullRange.
5851   if (StartRange.isFullSet())
5852     return ConstantRange::getFull(BitWidth);
5853 
5854   // If Step is signed and negative, then we use its absolute value, but we also
5855   // note that we're moving in the opposite direction.
5856   bool Descending = Signed && Step.isNegative();
5857 
5858   if (Signed)
5859     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5860     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5861     // This equations hold true due to the well-defined wrap-around behavior of
5862     // APInt.
5863     Step = Step.abs();
5864 
5865   // Check if Offset is more than full span of BitWidth. If it is, the
5866   // expression is guaranteed to overflow.
5867   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5868     return ConstantRange::getFull(BitWidth);
5869 
5870   // Offset is by how much the expression can change. Checks above guarantee no
5871   // overflow here.
5872   APInt Offset = Step * MaxBECount;
5873 
5874   // Minimum value of the final range will match the minimal value of StartRange
5875   // if the expression is increasing and will be decreased by Offset otherwise.
5876   // Maximum value of the final range will match the maximal value of StartRange
5877   // if the expression is decreasing and will be increased by Offset otherwise.
5878   APInt StartLower = StartRange.getLower();
5879   APInt StartUpper = StartRange.getUpper() - 1;
5880   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5881                                    : (StartUpper + std::move(Offset));
5882 
5883   // It's possible that the new minimum/maximum value will fall into the initial
5884   // range (due to wrap around). This means that the expression can take any
5885   // value in this bitwidth, and we have to return full range.
5886   if (StartRange.contains(MovedBoundary))
5887     return ConstantRange::getFull(BitWidth);
5888 
5889   APInt NewLower =
5890       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5891   APInt NewUpper =
5892       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5893   NewUpper += 1;
5894 
5895   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5896   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5897 }
5898 
5899 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5900                                                    const SCEV *Step,
5901                                                    const SCEV *MaxBECount,
5902                                                    unsigned BitWidth) {
5903   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5904          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5905          "Precondition!");
5906 
5907   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5908   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5909 
5910   // First, consider step signed.
5911   ConstantRange StartSRange = getSignedRange(Start);
5912   ConstantRange StepSRange = getSignedRange(Step);
5913 
5914   // If Step can be both positive and negative, we need to find ranges for the
5915   // maximum absolute step values in both directions and union them.
5916   ConstantRange SR =
5917       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5918                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5919   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5920                                               StartSRange, MaxBECountValue,
5921                                               BitWidth, /* Signed = */ true));
5922 
5923   // Next, consider step unsigned.
5924   ConstantRange UR = getRangeForAffineARHelper(
5925       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5926       MaxBECountValue, BitWidth, /* Signed = */ false);
5927 
5928   // Finally, intersect signed and unsigned ranges.
5929   return SR.intersectWith(UR, ConstantRange::Smallest);
5930 }
5931 
5932 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5933                                                     const SCEV *Step,
5934                                                     const SCEV *MaxBECount,
5935                                                     unsigned BitWidth) {
5936   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5937   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5938 
5939   struct SelectPattern {
5940     Value *Condition = nullptr;
5941     APInt TrueValue;
5942     APInt FalseValue;
5943 
5944     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5945                            const SCEV *S) {
5946       Optional<unsigned> CastOp;
5947       APInt Offset(BitWidth, 0);
5948 
5949       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5950              "Should be!");
5951 
5952       // Peel off a constant offset:
5953       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5954         // In the future we could consider being smarter here and handle
5955         // {Start+Step,+,Step} too.
5956         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5957           return;
5958 
5959         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5960         S = SA->getOperand(1);
5961       }
5962 
5963       // Peel off a cast operation
5964       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5965         CastOp = SCast->getSCEVType();
5966         S = SCast->getOperand();
5967       }
5968 
5969       using namespace llvm::PatternMatch;
5970 
5971       auto *SU = dyn_cast<SCEVUnknown>(S);
5972       const APInt *TrueVal, *FalseVal;
5973       if (!SU ||
5974           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5975                                           m_APInt(FalseVal)))) {
5976         Condition = nullptr;
5977         return;
5978       }
5979 
5980       TrueValue = *TrueVal;
5981       FalseValue = *FalseVal;
5982 
5983       // Re-apply the cast we peeled off earlier
5984       if (CastOp.hasValue())
5985         switch (*CastOp) {
5986         default:
5987           llvm_unreachable("Unknown SCEV cast type!");
5988 
5989         case scTruncate:
5990           TrueValue = TrueValue.trunc(BitWidth);
5991           FalseValue = FalseValue.trunc(BitWidth);
5992           break;
5993         case scZeroExtend:
5994           TrueValue = TrueValue.zext(BitWidth);
5995           FalseValue = FalseValue.zext(BitWidth);
5996           break;
5997         case scSignExtend:
5998           TrueValue = TrueValue.sext(BitWidth);
5999           FalseValue = FalseValue.sext(BitWidth);
6000           break;
6001         }
6002 
6003       // Re-apply the constant offset we peeled off earlier
6004       TrueValue += Offset;
6005       FalseValue += Offset;
6006     }
6007 
6008     bool isRecognized() { return Condition != nullptr; }
6009   };
6010 
6011   SelectPattern StartPattern(*this, BitWidth, Start);
6012   if (!StartPattern.isRecognized())
6013     return ConstantRange::getFull(BitWidth);
6014 
6015   SelectPattern StepPattern(*this, BitWidth, Step);
6016   if (!StepPattern.isRecognized())
6017     return ConstantRange::getFull(BitWidth);
6018 
6019   if (StartPattern.Condition != StepPattern.Condition) {
6020     // We don't handle this case today; but we could, by considering four
6021     // possibilities below instead of two. I'm not sure if there are cases where
6022     // that will help over what getRange already does, though.
6023     return ConstantRange::getFull(BitWidth);
6024   }
6025 
6026   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6027   // construct arbitrary general SCEV expressions here.  This function is called
6028   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6029   // say) can end up caching a suboptimal value.
6030 
6031   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6032   // C2352 and C2512 (otherwise it isn't needed).
6033 
6034   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6035   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6036   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6037   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6038 
6039   ConstantRange TrueRange =
6040       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6041   ConstantRange FalseRange =
6042       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6043 
6044   return TrueRange.unionWith(FalseRange);
6045 }
6046 
6047 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6048   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6049   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6050 
6051   // Return early if there are no flags to propagate to the SCEV.
6052   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6053   if (BinOp->hasNoUnsignedWrap())
6054     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6055   if (BinOp->hasNoSignedWrap())
6056     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6057   if (Flags == SCEV::FlagAnyWrap)
6058     return SCEV::FlagAnyWrap;
6059 
6060   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6061 }
6062 
6063 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6064   // Here we check that I is in the header of the innermost loop containing I,
6065   // since we only deal with instructions in the loop header. The actual loop we
6066   // need to check later will come from an add recurrence, but getting that
6067   // requires computing the SCEV of the operands, which can be expensive. This
6068   // check we can do cheaply to rule out some cases early.
6069   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6070   if (InnermostContainingLoop == nullptr ||
6071       InnermostContainingLoop->getHeader() != I->getParent())
6072     return false;
6073 
6074   // Only proceed if we can prove that I does not yield poison.
6075   if (!programUndefinedIfPoison(I))
6076     return false;
6077 
6078   // At this point we know that if I is executed, then it does not wrap
6079   // according to at least one of NSW or NUW. If I is not executed, then we do
6080   // not know if the calculation that I represents would wrap. Multiple
6081   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6082   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6083   // derived from other instructions that map to the same SCEV. We cannot make
6084   // that guarantee for cases where I is not executed. So we need to find the
6085   // loop that I is considered in relation to and prove that I is executed for
6086   // every iteration of that loop. That implies that the value that I
6087   // calculates does not wrap anywhere in the loop, so then we can apply the
6088   // flags to the SCEV.
6089   //
6090   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6091   // from different loops, so that we know which loop to prove that I is
6092   // executed in.
6093   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6094     // I could be an extractvalue from a call to an overflow intrinsic.
6095     // TODO: We can do better here in some cases.
6096     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6097       return false;
6098     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6099     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6100       bool AllOtherOpsLoopInvariant = true;
6101       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6102            ++OtherOpIndex) {
6103         if (OtherOpIndex != OpIndex) {
6104           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6105           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6106             AllOtherOpsLoopInvariant = false;
6107             break;
6108           }
6109         }
6110       }
6111       if (AllOtherOpsLoopInvariant &&
6112           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6113         return true;
6114     }
6115   }
6116   return false;
6117 }
6118 
6119 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6120   // If we know that \c I can never be poison period, then that's enough.
6121   if (isSCEVExprNeverPoison(I))
6122     return true;
6123 
6124   // For an add recurrence specifically, we assume that infinite loops without
6125   // side effects are undefined behavior, and then reason as follows:
6126   //
6127   // If the add recurrence is poison in any iteration, it is poison on all
6128   // future iterations (since incrementing poison yields poison). If the result
6129   // of the add recurrence is fed into the loop latch condition and the loop
6130   // does not contain any throws or exiting blocks other than the latch, we now
6131   // have the ability to "choose" whether the backedge is taken or not (by
6132   // choosing a sufficiently evil value for the poison feeding into the branch)
6133   // for every iteration including and after the one in which \p I first became
6134   // poison.  There are two possibilities (let's call the iteration in which \p
6135   // I first became poison as K):
6136   //
6137   //  1. In the set of iterations including and after K, the loop body executes
6138   //     no side effects.  In this case executing the backege an infinte number
6139   //     of times will yield undefined behavior.
6140   //
6141   //  2. In the set of iterations including and after K, the loop body executes
6142   //     at least one side effect.  In this case, that specific instance of side
6143   //     effect is control dependent on poison, which also yields undefined
6144   //     behavior.
6145 
6146   auto *ExitingBB = L->getExitingBlock();
6147   auto *LatchBB = L->getLoopLatch();
6148   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6149     return false;
6150 
6151   SmallPtrSet<const Instruction *, 16> Pushed;
6152   SmallVector<const Instruction *, 8> PoisonStack;
6153 
6154   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6155   // things that are known to be poison under that assumption go on the
6156   // PoisonStack.
6157   Pushed.insert(I);
6158   PoisonStack.push_back(I);
6159 
6160   bool LatchControlDependentOnPoison = false;
6161   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6162     const Instruction *Poison = PoisonStack.pop_back_val();
6163 
6164     for (auto *PoisonUser : Poison->users()) {
6165       if (propagatesPoison(cast<Instruction>(PoisonUser))) {
6166         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6167           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6168       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6169         assert(BI->isConditional() && "Only possibility!");
6170         if (BI->getParent() == LatchBB) {
6171           LatchControlDependentOnPoison = true;
6172           break;
6173         }
6174       }
6175     }
6176   }
6177 
6178   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6179 }
6180 
6181 ScalarEvolution::LoopProperties
6182 ScalarEvolution::getLoopProperties(const Loop *L) {
6183   using LoopProperties = ScalarEvolution::LoopProperties;
6184 
6185   auto Itr = LoopPropertiesCache.find(L);
6186   if (Itr == LoopPropertiesCache.end()) {
6187     auto HasSideEffects = [](Instruction *I) {
6188       if (auto *SI = dyn_cast<StoreInst>(I))
6189         return !SI->isSimple();
6190 
6191       return I->mayHaveSideEffects();
6192     };
6193 
6194     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6195                          /*HasNoSideEffects*/ true};
6196 
6197     for (auto *BB : L->getBlocks())
6198       for (auto &I : *BB) {
6199         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6200           LP.HasNoAbnormalExits = false;
6201         if (HasSideEffects(&I))
6202           LP.HasNoSideEffects = false;
6203         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6204           break; // We're already as pessimistic as we can get.
6205       }
6206 
6207     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6208     assert(InsertPair.second && "We just checked!");
6209     Itr = InsertPair.first;
6210   }
6211 
6212   return Itr->second;
6213 }
6214 
6215 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6216   if (!isSCEVable(V->getType()))
6217     return getUnknown(V);
6218 
6219   if (Instruction *I = dyn_cast<Instruction>(V)) {
6220     // Don't attempt to analyze instructions in blocks that aren't
6221     // reachable. Such instructions don't matter, and they aren't required
6222     // to obey basic rules for definitions dominating uses which this
6223     // analysis depends on.
6224     if (!DT.isReachableFromEntry(I->getParent()))
6225       return getUnknown(UndefValue::get(V->getType()));
6226   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6227     return getConstant(CI);
6228   else if (isa<ConstantPointerNull>(V))
6229     return getZero(V->getType());
6230   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6231     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6232   else if (!isa<ConstantExpr>(V))
6233     return getUnknown(V);
6234 
6235   Operator *U = cast<Operator>(V);
6236   if (auto BO = MatchBinaryOp(U, DT)) {
6237     switch (BO->Opcode) {
6238     case Instruction::Add: {
6239       // The simple thing to do would be to just call getSCEV on both operands
6240       // and call getAddExpr with the result. However if we're looking at a
6241       // bunch of things all added together, this can be quite inefficient,
6242       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6243       // Instead, gather up all the operands and make a single getAddExpr call.
6244       // LLVM IR canonical form means we need only traverse the left operands.
6245       SmallVector<const SCEV *, 4> AddOps;
6246       do {
6247         if (BO->Op) {
6248           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6249             AddOps.push_back(OpSCEV);
6250             break;
6251           }
6252 
6253           // If a NUW or NSW flag can be applied to the SCEV for this
6254           // addition, then compute the SCEV for this addition by itself
6255           // with a separate call to getAddExpr. We need to do that
6256           // instead of pushing the operands of the addition onto AddOps,
6257           // since the flags are only known to apply to this particular
6258           // addition - they may not apply to other additions that can be
6259           // formed with operands from AddOps.
6260           const SCEV *RHS = getSCEV(BO->RHS);
6261           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6262           if (Flags != SCEV::FlagAnyWrap) {
6263             const SCEV *LHS = getSCEV(BO->LHS);
6264             if (BO->Opcode == Instruction::Sub)
6265               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6266             else
6267               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6268             break;
6269           }
6270         }
6271 
6272         if (BO->Opcode == Instruction::Sub)
6273           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6274         else
6275           AddOps.push_back(getSCEV(BO->RHS));
6276 
6277         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6278         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6279                        NewBO->Opcode != Instruction::Sub)) {
6280           AddOps.push_back(getSCEV(BO->LHS));
6281           break;
6282         }
6283         BO = NewBO;
6284       } while (true);
6285 
6286       return getAddExpr(AddOps);
6287     }
6288 
6289     case Instruction::Mul: {
6290       SmallVector<const SCEV *, 4> MulOps;
6291       do {
6292         if (BO->Op) {
6293           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6294             MulOps.push_back(OpSCEV);
6295             break;
6296           }
6297 
6298           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6299           if (Flags != SCEV::FlagAnyWrap) {
6300             MulOps.push_back(
6301                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6302             break;
6303           }
6304         }
6305 
6306         MulOps.push_back(getSCEV(BO->RHS));
6307         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6308         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6309           MulOps.push_back(getSCEV(BO->LHS));
6310           break;
6311         }
6312         BO = NewBO;
6313       } while (true);
6314 
6315       return getMulExpr(MulOps);
6316     }
6317     case Instruction::UDiv:
6318       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6319     case Instruction::URem:
6320       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6321     case Instruction::Sub: {
6322       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6323       if (BO->Op)
6324         Flags = getNoWrapFlagsFromUB(BO->Op);
6325       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6326     }
6327     case Instruction::And:
6328       // For an expression like x&255 that merely masks off the high bits,
6329       // use zext(trunc(x)) as the SCEV expression.
6330       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6331         if (CI->isZero())
6332           return getSCEV(BO->RHS);
6333         if (CI->isMinusOne())
6334           return getSCEV(BO->LHS);
6335         const APInt &A = CI->getValue();
6336 
6337         // Instcombine's ShrinkDemandedConstant may strip bits out of
6338         // constants, obscuring what would otherwise be a low-bits mask.
6339         // Use computeKnownBits to compute what ShrinkDemandedConstant
6340         // knew about to reconstruct a low-bits mask value.
6341         unsigned LZ = A.countLeadingZeros();
6342         unsigned TZ = A.countTrailingZeros();
6343         unsigned BitWidth = A.getBitWidth();
6344         KnownBits Known(BitWidth);
6345         computeKnownBits(BO->LHS, Known, getDataLayout(),
6346                          0, &AC, nullptr, &DT);
6347 
6348         APInt EffectiveMask =
6349             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6350         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6351           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6352           const SCEV *LHS = getSCEV(BO->LHS);
6353           const SCEV *ShiftedLHS = nullptr;
6354           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6355             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6356               // For an expression like (x * 8) & 8, simplify the multiply.
6357               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6358               unsigned GCD = std::min(MulZeros, TZ);
6359               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6360               SmallVector<const SCEV*, 4> MulOps;
6361               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6362               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6363               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6364               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6365             }
6366           }
6367           if (!ShiftedLHS)
6368             ShiftedLHS = getUDivExpr(LHS, MulCount);
6369           return getMulExpr(
6370               getZeroExtendExpr(
6371                   getTruncateExpr(ShiftedLHS,
6372                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6373                   BO->LHS->getType()),
6374               MulCount);
6375         }
6376       }
6377       break;
6378 
6379     case Instruction::Or:
6380       // If the RHS of the Or is a constant, we may have something like:
6381       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6382       // optimizations will transparently handle this case.
6383       //
6384       // In order for this transformation to be safe, the LHS must be of the
6385       // form X*(2^n) and the Or constant must be less than 2^n.
6386       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6387         const SCEV *LHS = getSCEV(BO->LHS);
6388         const APInt &CIVal = CI->getValue();
6389         if (GetMinTrailingZeros(LHS) >=
6390             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6391           // Build a plain add SCEV.
6392           return getAddExpr(LHS, getSCEV(CI),
6393                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6394         }
6395       }
6396       break;
6397 
6398     case Instruction::Xor:
6399       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6400         // If the RHS of xor is -1, then this is a not operation.
6401         if (CI->isMinusOne())
6402           return getNotSCEV(getSCEV(BO->LHS));
6403 
6404         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6405         // This is a variant of the check for xor with -1, and it handles
6406         // the case where instcombine has trimmed non-demanded bits out
6407         // of an xor with -1.
6408         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6409           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6410             if (LBO->getOpcode() == Instruction::And &&
6411                 LCI->getValue() == CI->getValue())
6412               if (const SCEVZeroExtendExpr *Z =
6413                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6414                 Type *UTy = BO->LHS->getType();
6415                 const SCEV *Z0 = Z->getOperand();
6416                 Type *Z0Ty = Z0->getType();
6417                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6418 
6419                 // If C is a low-bits mask, the zero extend is serving to
6420                 // mask off the high bits. Complement the operand and
6421                 // re-apply the zext.
6422                 if (CI->getValue().isMask(Z0TySize))
6423                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6424 
6425                 // If C is a single bit, it may be in the sign-bit position
6426                 // before the zero-extend. In this case, represent the xor
6427                 // using an add, which is equivalent, and re-apply the zext.
6428                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6429                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6430                     Trunc.isSignMask())
6431                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6432                                            UTy);
6433               }
6434       }
6435       break;
6436 
6437     case Instruction::Shl:
6438       // Turn shift left of a constant amount into a multiply.
6439       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6440         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6441 
6442         // If the shift count is not less than the bitwidth, the result of
6443         // the shift is undefined. Don't try to analyze it, because the
6444         // resolution chosen here may differ from the resolution chosen in
6445         // other parts of the compiler.
6446         if (SA->getValue().uge(BitWidth))
6447           break;
6448 
6449         // We can safely preserve the nuw flag in all cases. It's also safe to
6450         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6451         // requires special handling. It can be preserved as long as we're not
6452         // left shifting by bitwidth - 1.
6453         auto Flags = SCEV::FlagAnyWrap;
6454         if (BO->Op) {
6455           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6456           if ((MulFlags & SCEV::FlagNSW) &&
6457               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6458             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6459           if (MulFlags & SCEV::FlagNUW)
6460             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6461         }
6462 
6463         Constant *X = ConstantInt::get(
6464             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6465         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6466       }
6467       break;
6468 
6469     case Instruction::AShr: {
6470       // AShr X, C, where C is a constant.
6471       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6472       if (!CI)
6473         break;
6474 
6475       Type *OuterTy = BO->LHS->getType();
6476       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6477       // If the shift count is not less than the bitwidth, the result of
6478       // the shift is undefined. Don't try to analyze it, because the
6479       // resolution chosen here may differ from the resolution chosen in
6480       // other parts of the compiler.
6481       if (CI->getValue().uge(BitWidth))
6482         break;
6483 
6484       if (CI->isZero())
6485         return getSCEV(BO->LHS); // shift by zero --> noop
6486 
6487       uint64_t AShrAmt = CI->getZExtValue();
6488       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6489 
6490       Operator *L = dyn_cast<Operator>(BO->LHS);
6491       if (L && L->getOpcode() == Instruction::Shl) {
6492         // X = Shl A, n
6493         // Y = AShr X, m
6494         // Both n and m are constant.
6495 
6496         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6497         if (L->getOperand(1) == BO->RHS)
6498           // For a two-shift sext-inreg, i.e. n = m,
6499           // use sext(trunc(x)) as the SCEV expression.
6500           return getSignExtendExpr(
6501               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6502 
6503         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6504         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6505           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6506           if (ShlAmt > AShrAmt) {
6507             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6508             // expression. We already checked that ShlAmt < BitWidth, so
6509             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6510             // ShlAmt - AShrAmt < Amt.
6511             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6512                                             ShlAmt - AShrAmt);
6513             return getSignExtendExpr(
6514                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6515                 getConstant(Mul)), OuterTy);
6516           }
6517         }
6518       }
6519       break;
6520     }
6521     }
6522   }
6523 
6524   switch (U->getOpcode()) {
6525   case Instruction::Trunc:
6526     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6527 
6528   case Instruction::ZExt:
6529     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6530 
6531   case Instruction::SExt:
6532     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6533       // The NSW flag of a subtract does not always survive the conversion to
6534       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6535       // more likely to preserve NSW and allow later AddRec optimisations.
6536       //
6537       // NOTE: This is effectively duplicating this logic from getSignExtend:
6538       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6539       // but by that point the NSW information has potentially been lost.
6540       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6541         Type *Ty = U->getType();
6542         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6543         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6544         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6545       }
6546     }
6547     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6548 
6549   case Instruction::BitCast:
6550     // BitCasts are no-op casts so we just eliminate the cast.
6551     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6552       return getSCEV(U->getOperand(0));
6553     break;
6554 
6555   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6556   // lead to pointer expressions which cannot safely be expanded to GEPs,
6557   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6558   // simplifying integer expressions.
6559 
6560   case Instruction::GetElementPtr:
6561     return createNodeForGEP(cast<GEPOperator>(U));
6562 
6563   case Instruction::PHI:
6564     return createNodeForPHI(cast<PHINode>(U));
6565 
6566   case Instruction::Select:
6567     // U can also be a select constant expr, which let fall through.  Since
6568     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6569     // constant expressions cannot have instructions as operands, we'd have
6570     // returned getUnknown for a select constant expressions anyway.
6571     if (isa<Instruction>(U))
6572       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6573                                       U->getOperand(1), U->getOperand(2));
6574     break;
6575 
6576   case Instruction::Call:
6577   case Instruction::Invoke:
6578     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6579       return getSCEV(RV);
6580     break;
6581   }
6582 
6583   return getUnknown(V);
6584 }
6585 
6586 //===----------------------------------------------------------------------===//
6587 //                   Iteration Count Computation Code
6588 //
6589 
6590 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6591   if (!ExitCount)
6592     return 0;
6593 
6594   ConstantInt *ExitConst = ExitCount->getValue();
6595 
6596   // Guard against huge trip counts.
6597   if (ExitConst->getValue().getActiveBits() > 32)
6598     return 0;
6599 
6600   // In case of integer overflow, this returns 0, which is correct.
6601   return ((unsigned)ExitConst->getZExtValue()) + 1;
6602 }
6603 
6604 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6605   if (BasicBlock *ExitingBB = L->getExitingBlock())
6606     return getSmallConstantTripCount(L, ExitingBB);
6607 
6608   // No trip count information for multiple exits.
6609   return 0;
6610 }
6611 
6612 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6613                                                     BasicBlock *ExitingBlock) {
6614   assert(ExitingBlock && "Must pass a non-null exiting block!");
6615   assert(L->isLoopExiting(ExitingBlock) &&
6616          "Exiting block must actually branch out of the loop!");
6617   const SCEVConstant *ExitCount =
6618       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6619   return getConstantTripCount(ExitCount);
6620 }
6621 
6622 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6623   const auto *MaxExitCount =
6624       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6625   return getConstantTripCount(MaxExitCount);
6626 }
6627 
6628 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6629   if (BasicBlock *ExitingBB = L->getExitingBlock())
6630     return getSmallConstantTripMultiple(L, ExitingBB);
6631 
6632   // No trip multiple information for multiple exits.
6633   return 0;
6634 }
6635 
6636 /// Returns the largest constant divisor of the trip count of this loop as a
6637 /// normal unsigned value, if possible. This means that the actual trip count is
6638 /// always a multiple of the returned value (don't forget the trip count could
6639 /// very well be zero as well!).
6640 ///
6641 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6642 /// multiple of a constant (which is also the case if the trip count is simply
6643 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6644 /// if the trip count is very large (>= 2^32).
6645 ///
6646 /// As explained in the comments for getSmallConstantTripCount, this assumes
6647 /// that control exits the loop via ExitingBlock.
6648 unsigned
6649 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6650                                               BasicBlock *ExitingBlock) {
6651   assert(ExitingBlock && "Must pass a non-null exiting block!");
6652   assert(L->isLoopExiting(ExitingBlock) &&
6653          "Exiting block must actually branch out of the loop!");
6654   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6655   if (ExitCount == getCouldNotCompute())
6656     return 1;
6657 
6658   // Get the trip count from the BE count by adding 1.
6659   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6660 
6661   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6662   if (!TC)
6663     // Attempt to factor more general cases. Returns the greatest power of
6664     // two divisor. If overflow happens, the trip count expression is still
6665     // divisible by the greatest power of 2 divisor returned.
6666     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6667 
6668   ConstantInt *Result = TC->getValue();
6669 
6670   // Guard against huge trip counts (this requires checking
6671   // for zero to handle the case where the trip count == -1 and the
6672   // addition wraps).
6673   if (!Result || Result->getValue().getActiveBits() > 32 ||
6674       Result->getValue().getActiveBits() == 0)
6675     return 1;
6676 
6677   return (unsigned)Result->getZExtValue();
6678 }
6679 
6680 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6681                                           BasicBlock *ExitingBlock,
6682                                           ExitCountKind Kind) {
6683   switch (Kind) {
6684   case Exact:
6685     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6686   case ConstantMaximum:
6687     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6688   };
6689   llvm_unreachable("Invalid ExitCountKind!");
6690 }
6691 
6692 const SCEV *
6693 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6694                                                  SCEVUnionPredicate &Preds) {
6695   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6696 }
6697 
6698 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6699                                                    ExitCountKind Kind) {
6700   switch (Kind) {
6701   case Exact:
6702     return getBackedgeTakenInfo(L).getExact(L, this);
6703   case ConstantMaximum:
6704     return getBackedgeTakenInfo(L).getMax(this);
6705   };
6706   llvm_unreachable("Invalid ExitCountKind!");
6707 }
6708 
6709 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6710   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6711 }
6712 
6713 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6714 static void
6715 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6716   BasicBlock *Header = L->getHeader();
6717 
6718   // Push all Loop-header PHIs onto the Worklist stack.
6719   for (PHINode &PN : Header->phis())
6720     Worklist.push_back(&PN);
6721 }
6722 
6723 const ScalarEvolution::BackedgeTakenInfo &
6724 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6725   auto &BTI = getBackedgeTakenInfo(L);
6726   if (BTI.hasFullInfo())
6727     return BTI;
6728 
6729   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6730 
6731   if (!Pair.second)
6732     return Pair.first->second;
6733 
6734   BackedgeTakenInfo Result =
6735       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6736 
6737   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6738 }
6739 
6740 const ScalarEvolution::BackedgeTakenInfo &
6741 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6742   // Initially insert an invalid entry for this loop. If the insertion
6743   // succeeds, proceed to actually compute a backedge-taken count and
6744   // update the value. The temporary CouldNotCompute value tells SCEV
6745   // code elsewhere that it shouldn't attempt to request a new
6746   // backedge-taken count, which could result in infinite recursion.
6747   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6748       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6749   if (!Pair.second)
6750     return Pair.first->second;
6751 
6752   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6753   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6754   // must be cleared in this scope.
6755   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6756 
6757   // In product build, there are no usage of statistic.
6758   (void)NumTripCountsComputed;
6759   (void)NumTripCountsNotComputed;
6760 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6761   const SCEV *BEExact = Result.getExact(L, this);
6762   if (BEExact != getCouldNotCompute()) {
6763     assert(isLoopInvariant(BEExact, L) &&
6764            isLoopInvariant(Result.getMax(this), L) &&
6765            "Computed backedge-taken count isn't loop invariant for loop!");
6766     ++NumTripCountsComputed;
6767   }
6768   else if (Result.getMax(this) == getCouldNotCompute() &&
6769            isa<PHINode>(L->getHeader()->begin())) {
6770     // Only count loops that have phi nodes as not being computable.
6771     ++NumTripCountsNotComputed;
6772   }
6773 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6774 
6775   // Now that we know more about the trip count for this loop, forget any
6776   // existing SCEV values for PHI nodes in this loop since they are only
6777   // conservative estimates made without the benefit of trip count
6778   // information. This is similar to the code in forgetLoop, except that
6779   // it handles SCEVUnknown PHI nodes specially.
6780   if (Result.hasAnyInfo()) {
6781     SmallVector<Instruction *, 16> Worklist;
6782     PushLoopPHIs(L, Worklist);
6783 
6784     SmallPtrSet<Instruction *, 8> Discovered;
6785     while (!Worklist.empty()) {
6786       Instruction *I = Worklist.pop_back_val();
6787 
6788       ValueExprMapType::iterator It =
6789         ValueExprMap.find_as(static_cast<Value *>(I));
6790       if (It != ValueExprMap.end()) {
6791         const SCEV *Old = It->second;
6792 
6793         // SCEVUnknown for a PHI either means that it has an unrecognized
6794         // structure, or it's a PHI that's in the progress of being computed
6795         // by createNodeForPHI.  In the former case, additional loop trip
6796         // count information isn't going to change anything. In the later
6797         // case, createNodeForPHI will perform the necessary updates on its
6798         // own when it gets to that point.
6799         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6800           eraseValueFromMap(It->first);
6801           forgetMemoizedResults(Old);
6802         }
6803         if (PHINode *PN = dyn_cast<PHINode>(I))
6804           ConstantEvolutionLoopExitValue.erase(PN);
6805       }
6806 
6807       // Since we don't need to invalidate anything for correctness and we're
6808       // only invalidating to make SCEV's results more precise, we get to stop
6809       // early to avoid invalidating too much.  This is especially important in
6810       // cases like:
6811       //
6812       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6813       // loop0:
6814       //   %pn0 = phi
6815       //   ...
6816       // loop1:
6817       //   %pn1 = phi
6818       //   ...
6819       //
6820       // where both loop0 and loop1's backedge taken count uses the SCEV
6821       // expression for %v.  If we don't have the early stop below then in cases
6822       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6823       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6824       // count for loop1, effectively nullifying SCEV's trip count cache.
6825       for (auto *U : I->users())
6826         if (auto *I = dyn_cast<Instruction>(U)) {
6827           auto *LoopForUser = LI.getLoopFor(I->getParent());
6828           if (LoopForUser && L->contains(LoopForUser) &&
6829               Discovered.insert(I).second)
6830             Worklist.push_back(I);
6831         }
6832     }
6833   }
6834 
6835   // Re-lookup the insert position, since the call to
6836   // computeBackedgeTakenCount above could result in a
6837   // recusive call to getBackedgeTakenInfo (on a different
6838   // loop), which would invalidate the iterator computed
6839   // earlier.
6840   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6841 }
6842 
6843 void ScalarEvolution::forgetAllLoops() {
6844   // This method is intended to forget all info about loops. It should
6845   // invalidate caches as if the following happened:
6846   // - The trip counts of all loops have changed arbitrarily
6847   // - Every llvm::Value has been updated in place to produce a different
6848   // result.
6849   BackedgeTakenCounts.clear();
6850   PredicatedBackedgeTakenCounts.clear();
6851   LoopPropertiesCache.clear();
6852   ConstantEvolutionLoopExitValue.clear();
6853   ValueExprMap.clear();
6854   ValuesAtScopes.clear();
6855   LoopDispositions.clear();
6856   BlockDispositions.clear();
6857   UnsignedRanges.clear();
6858   SignedRanges.clear();
6859   ExprValueMap.clear();
6860   HasRecMap.clear();
6861   MinTrailingZerosCache.clear();
6862   PredicatedSCEVRewrites.clear();
6863 }
6864 
6865 void ScalarEvolution::forgetLoop(const Loop *L) {
6866   // Drop any stored trip count value.
6867   auto RemoveLoopFromBackedgeMap =
6868       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6869         auto BTCPos = Map.find(L);
6870         if (BTCPos != Map.end()) {
6871           BTCPos->second.clear();
6872           Map.erase(BTCPos);
6873         }
6874       };
6875 
6876   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6877   SmallVector<Instruction *, 32> Worklist;
6878   SmallPtrSet<Instruction *, 16> Visited;
6879 
6880   // Iterate over all the loops and sub-loops to drop SCEV information.
6881   while (!LoopWorklist.empty()) {
6882     auto *CurrL = LoopWorklist.pop_back_val();
6883 
6884     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6885     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6886 
6887     // Drop information about predicated SCEV rewrites for this loop.
6888     for (auto I = PredicatedSCEVRewrites.begin();
6889          I != PredicatedSCEVRewrites.end();) {
6890       std::pair<const SCEV *, const Loop *> Entry = I->first;
6891       if (Entry.second == CurrL)
6892         PredicatedSCEVRewrites.erase(I++);
6893       else
6894         ++I;
6895     }
6896 
6897     auto LoopUsersItr = LoopUsers.find(CurrL);
6898     if (LoopUsersItr != LoopUsers.end()) {
6899       for (auto *S : LoopUsersItr->second)
6900         forgetMemoizedResults(S);
6901       LoopUsers.erase(LoopUsersItr);
6902     }
6903 
6904     // Drop information about expressions based on loop-header PHIs.
6905     PushLoopPHIs(CurrL, Worklist);
6906 
6907     while (!Worklist.empty()) {
6908       Instruction *I = Worklist.pop_back_val();
6909       if (!Visited.insert(I).second)
6910         continue;
6911 
6912       ValueExprMapType::iterator It =
6913           ValueExprMap.find_as(static_cast<Value *>(I));
6914       if (It != ValueExprMap.end()) {
6915         eraseValueFromMap(It->first);
6916         forgetMemoizedResults(It->second);
6917         if (PHINode *PN = dyn_cast<PHINode>(I))
6918           ConstantEvolutionLoopExitValue.erase(PN);
6919       }
6920 
6921       PushDefUseChildren(I, Worklist);
6922     }
6923 
6924     LoopPropertiesCache.erase(CurrL);
6925     // Forget all contained loops too, to avoid dangling entries in the
6926     // ValuesAtScopes map.
6927     LoopWorklist.append(CurrL->begin(), CurrL->end());
6928   }
6929 }
6930 
6931 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6932   while (Loop *Parent = L->getParentLoop())
6933     L = Parent;
6934   forgetLoop(L);
6935 }
6936 
6937 void ScalarEvolution::forgetValue(Value *V) {
6938   Instruction *I = dyn_cast<Instruction>(V);
6939   if (!I) return;
6940 
6941   // Drop information about expressions based on loop-header PHIs.
6942   SmallVector<Instruction *, 16> Worklist;
6943   Worklist.push_back(I);
6944 
6945   SmallPtrSet<Instruction *, 8> Visited;
6946   while (!Worklist.empty()) {
6947     I = Worklist.pop_back_val();
6948     if (!Visited.insert(I).second)
6949       continue;
6950 
6951     ValueExprMapType::iterator It =
6952       ValueExprMap.find_as(static_cast<Value *>(I));
6953     if (It != ValueExprMap.end()) {
6954       eraseValueFromMap(It->first);
6955       forgetMemoizedResults(It->second);
6956       if (PHINode *PN = dyn_cast<PHINode>(I))
6957         ConstantEvolutionLoopExitValue.erase(PN);
6958     }
6959 
6960     PushDefUseChildren(I, Worklist);
6961   }
6962 }
6963 
6964 /// Get the exact loop backedge taken count considering all loop exits. A
6965 /// computable result can only be returned for loops with all exiting blocks
6966 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6967 /// is never skipped. This is a valid assumption as long as the loop exits via
6968 /// that test. For precise results, it is the caller's responsibility to specify
6969 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6970 const SCEV *
6971 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6972                                              SCEVUnionPredicate *Preds) const {
6973   // If any exits were not computable, the loop is not computable.
6974   if (!isComplete() || ExitNotTaken.empty())
6975     return SE->getCouldNotCompute();
6976 
6977   const BasicBlock *Latch = L->getLoopLatch();
6978   // All exiting blocks we have collected must dominate the only backedge.
6979   if (!Latch)
6980     return SE->getCouldNotCompute();
6981 
6982   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6983   // count is simply a minimum out of all these calculated exit counts.
6984   SmallVector<const SCEV *, 2> Ops;
6985   for (auto &ENT : ExitNotTaken) {
6986     const SCEV *BECount = ENT.ExactNotTaken;
6987     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6988     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6989            "We should only have known counts for exiting blocks that dominate "
6990            "latch!");
6991 
6992     Ops.push_back(BECount);
6993 
6994     if (Preds && !ENT.hasAlwaysTruePredicate())
6995       Preds->add(ENT.Predicate.get());
6996 
6997     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6998            "Predicate should be always true!");
6999   }
7000 
7001   return SE->getUMinFromMismatchedTypes(Ops);
7002 }
7003 
7004 /// Get the exact not taken count for this loop exit.
7005 const SCEV *
7006 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
7007                                              ScalarEvolution *SE) const {
7008   for (auto &ENT : ExitNotTaken)
7009     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7010       return ENT.ExactNotTaken;
7011 
7012   return SE->getCouldNotCompute();
7013 }
7014 
7015 const SCEV *
7016 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
7017                                            ScalarEvolution *SE) const {
7018   for (auto &ENT : ExitNotTaken)
7019     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7020       return ENT.MaxNotTaken;
7021 
7022   return SE->getCouldNotCompute();
7023 }
7024 
7025 /// getMax - Get the max backedge taken count for the loop.
7026 const SCEV *
7027 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
7028   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7029     return !ENT.hasAlwaysTruePredicate();
7030   };
7031 
7032   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
7033     return SE->getCouldNotCompute();
7034 
7035   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
7036          "No point in having a non-constant max backedge taken count!");
7037   return getMax();
7038 }
7039 
7040 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
7041   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7042     return !ENT.hasAlwaysTruePredicate();
7043   };
7044   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7045 }
7046 
7047 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7048                                                     ScalarEvolution *SE) const {
7049   if (getMax() && getMax() != SE->getCouldNotCompute() &&
7050       SE->hasOperand(getMax(), S))
7051     return true;
7052 
7053   for (auto &ENT : ExitNotTaken)
7054     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7055         SE->hasOperand(ENT.ExactNotTaken, S))
7056       return true;
7057 
7058   return false;
7059 }
7060 
7061 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7062     : ExactNotTaken(E), MaxNotTaken(E) {
7063   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7064           isa<SCEVConstant>(MaxNotTaken)) &&
7065          "No point in having a non-constant max backedge taken count!");
7066 }
7067 
7068 ScalarEvolution::ExitLimit::ExitLimit(
7069     const SCEV *E, const SCEV *M, bool MaxOrZero,
7070     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7071     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7072   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7073           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7074          "Exact is not allowed to be less precise than Max");
7075   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7076           isa<SCEVConstant>(MaxNotTaken)) &&
7077          "No point in having a non-constant max backedge taken count!");
7078   for (auto *PredSet : PredSetList)
7079     for (auto *P : *PredSet)
7080       addPredicate(P);
7081 }
7082 
7083 ScalarEvolution::ExitLimit::ExitLimit(
7084     const SCEV *E, const SCEV *M, bool MaxOrZero,
7085     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7086     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7087   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7088           isa<SCEVConstant>(MaxNotTaken)) &&
7089          "No point in having a non-constant max backedge taken count!");
7090 }
7091 
7092 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7093                                       bool MaxOrZero)
7094     : ExitLimit(E, M, MaxOrZero, None) {
7095   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7096           isa<SCEVConstant>(MaxNotTaken)) &&
7097          "No point in having a non-constant max backedge taken count!");
7098 }
7099 
7100 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7101 /// computable exit into a persistent ExitNotTakenInfo array.
7102 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7103     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
7104         ExitCounts,
7105     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7106     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7107   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7108 
7109   ExitNotTaken.reserve(ExitCounts.size());
7110   std::transform(
7111       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7112       [&](const EdgeExitInfo &EEI) {
7113         BasicBlock *ExitBB = EEI.first;
7114         const ExitLimit &EL = EEI.second;
7115         if (EL.Predicates.empty())
7116           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7117                                   nullptr);
7118 
7119         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7120         for (auto *Pred : EL.Predicates)
7121           Predicate->add(Pred);
7122 
7123         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7124                                 std::move(Predicate));
7125       });
7126   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7127          "No point in having a non-constant max backedge taken count!");
7128 }
7129 
7130 /// Invalidate this result and free the ExitNotTakenInfo array.
7131 void ScalarEvolution::BackedgeTakenInfo::clear() {
7132   ExitNotTaken.clear();
7133 }
7134 
7135 /// Compute the number of times the backedge of the specified loop will execute.
7136 ScalarEvolution::BackedgeTakenInfo
7137 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7138                                            bool AllowPredicates) {
7139   SmallVector<BasicBlock *, 8> ExitingBlocks;
7140   L->getExitingBlocks(ExitingBlocks);
7141 
7142   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7143 
7144   SmallVector<EdgeExitInfo, 4> ExitCounts;
7145   bool CouldComputeBECount = true;
7146   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7147   const SCEV *MustExitMaxBECount = nullptr;
7148   const SCEV *MayExitMaxBECount = nullptr;
7149   bool MustExitMaxOrZero = false;
7150 
7151   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7152   // and compute maxBECount.
7153   // Do a union of all the predicates here.
7154   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7155     BasicBlock *ExitBB = ExitingBlocks[i];
7156 
7157     // We canonicalize untaken exits to br (constant), ignore them so that
7158     // proving an exit untaken doesn't negatively impact our ability to reason
7159     // about the loop as whole.
7160     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7161       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7162         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7163         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7164           continue;
7165       }
7166 
7167     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7168 
7169     assert((AllowPredicates || EL.Predicates.empty()) &&
7170            "Predicated exit limit when predicates are not allowed!");
7171 
7172     // 1. For each exit that can be computed, add an entry to ExitCounts.
7173     // CouldComputeBECount is true only if all exits can be computed.
7174     if (EL.ExactNotTaken == getCouldNotCompute())
7175       // We couldn't compute an exact value for this exit, so
7176       // we won't be able to compute an exact value for the loop.
7177       CouldComputeBECount = false;
7178     else
7179       ExitCounts.emplace_back(ExitBB, EL);
7180 
7181     // 2. Derive the loop's MaxBECount from each exit's max number of
7182     // non-exiting iterations. Partition the loop exits into two kinds:
7183     // LoopMustExits and LoopMayExits.
7184     //
7185     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7186     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7187     // MaxBECount is the minimum EL.MaxNotTaken of computable
7188     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7189     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7190     // computable EL.MaxNotTaken.
7191     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7192         DT.dominates(ExitBB, Latch)) {
7193       if (!MustExitMaxBECount) {
7194         MustExitMaxBECount = EL.MaxNotTaken;
7195         MustExitMaxOrZero = EL.MaxOrZero;
7196       } else {
7197         MustExitMaxBECount =
7198             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7199       }
7200     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7201       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7202         MayExitMaxBECount = EL.MaxNotTaken;
7203       else {
7204         MayExitMaxBECount =
7205             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7206       }
7207     }
7208   }
7209   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7210     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7211   // The loop backedge will be taken the maximum or zero times if there's
7212   // a single exit that must be taken the maximum or zero times.
7213   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7214   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7215                            MaxBECount, MaxOrZero);
7216 }
7217 
7218 ScalarEvolution::ExitLimit
7219 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7220                                       bool AllowPredicates) {
7221   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7222   // If our exiting block does not dominate the latch, then its connection with
7223   // loop's exit limit may be far from trivial.
7224   const BasicBlock *Latch = L->getLoopLatch();
7225   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7226     return getCouldNotCompute();
7227 
7228   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7229   Instruction *Term = ExitingBlock->getTerminator();
7230   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7231     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7232     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7233     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7234            "It should have one successor in loop and one exit block!");
7235     // Proceed to the next level to examine the exit condition expression.
7236     return computeExitLimitFromCond(
7237         L, BI->getCondition(), ExitIfTrue,
7238         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7239   }
7240 
7241   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7242     // For switch, make sure that there is a single exit from the loop.
7243     BasicBlock *Exit = nullptr;
7244     for (auto *SBB : successors(ExitingBlock))
7245       if (!L->contains(SBB)) {
7246         if (Exit) // Multiple exit successors.
7247           return getCouldNotCompute();
7248         Exit = SBB;
7249       }
7250     assert(Exit && "Exiting block must have at least one exit");
7251     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7252                                                 /*ControlsExit=*/IsOnlyExit);
7253   }
7254 
7255   return getCouldNotCompute();
7256 }
7257 
7258 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7259     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7260     bool ControlsExit, bool AllowPredicates) {
7261   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7262   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7263                                         ControlsExit, AllowPredicates);
7264 }
7265 
7266 Optional<ScalarEvolution::ExitLimit>
7267 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7268                                       bool ExitIfTrue, bool ControlsExit,
7269                                       bool AllowPredicates) {
7270   (void)this->L;
7271   (void)this->ExitIfTrue;
7272   (void)this->AllowPredicates;
7273 
7274   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7275          this->AllowPredicates == AllowPredicates &&
7276          "Variance in assumed invariant key components!");
7277   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7278   if (Itr == TripCountMap.end())
7279     return None;
7280   return Itr->second;
7281 }
7282 
7283 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7284                                              bool ExitIfTrue,
7285                                              bool ControlsExit,
7286                                              bool AllowPredicates,
7287                                              const ExitLimit &EL) {
7288   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7289          this->AllowPredicates == AllowPredicates &&
7290          "Variance in assumed invariant key components!");
7291 
7292   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7293   assert(InsertResult.second && "Expected successful insertion!");
7294   (void)InsertResult;
7295   (void)ExitIfTrue;
7296 }
7297 
7298 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7299     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7300     bool ControlsExit, bool AllowPredicates) {
7301 
7302   if (auto MaybeEL =
7303           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7304     return *MaybeEL;
7305 
7306   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7307                                               ControlsExit, AllowPredicates);
7308   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7309   return EL;
7310 }
7311 
7312 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7313     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7314     bool ControlsExit, bool AllowPredicates) {
7315   // Check if the controlling expression for this loop is an And or Or.
7316   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7317     if (BO->getOpcode() == Instruction::And) {
7318       // Recurse on the operands of the and.
7319       bool EitherMayExit = !ExitIfTrue;
7320       ExitLimit EL0 = computeExitLimitFromCondCached(
7321           Cache, L, BO->getOperand(0), ExitIfTrue,
7322           ControlsExit && !EitherMayExit, AllowPredicates);
7323       ExitLimit EL1 = computeExitLimitFromCondCached(
7324           Cache, L, BO->getOperand(1), ExitIfTrue,
7325           ControlsExit && !EitherMayExit, AllowPredicates);
7326       // Be robust against unsimplified IR for the form "and i1 X, true"
7327       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7328         return CI->isOne() ? EL0 : EL1;
7329       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7330         return CI->isOne() ? EL1 : EL0;
7331       const SCEV *BECount = getCouldNotCompute();
7332       const SCEV *MaxBECount = getCouldNotCompute();
7333       if (EitherMayExit) {
7334         // Both conditions must be true for the loop to continue executing.
7335         // Choose the less conservative count.
7336         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7337             EL1.ExactNotTaken == getCouldNotCompute())
7338           BECount = getCouldNotCompute();
7339         else
7340           BECount =
7341               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7342         if (EL0.MaxNotTaken == getCouldNotCompute())
7343           MaxBECount = EL1.MaxNotTaken;
7344         else if (EL1.MaxNotTaken == getCouldNotCompute())
7345           MaxBECount = EL0.MaxNotTaken;
7346         else
7347           MaxBECount =
7348               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7349       } else {
7350         // Both conditions must be true at the same time for the loop to exit.
7351         // For now, be conservative.
7352         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7353           MaxBECount = EL0.MaxNotTaken;
7354         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7355           BECount = EL0.ExactNotTaken;
7356       }
7357 
7358       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7359       // to be more aggressive when computing BECount than when computing
7360       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7361       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7362       // to not.
7363       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7364           !isa<SCEVCouldNotCompute>(BECount))
7365         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7366 
7367       return ExitLimit(BECount, MaxBECount, false,
7368                        {&EL0.Predicates, &EL1.Predicates});
7369     }
7370     if (BO->getOpcode() == Instruction::Or) {
7371       // Recurse on the operands of the or.
7372       bool EitherMayExit = ExitIfTrue;
7373       ExitLimit EL0 = computeExitLimitFromCondCached(
7374           Cache, L, BO->getOperand(0), ExitIfTrue,
7375           ControlsExit && !EitherMayExit, AllowPredicates);
7376       ExitLimit EL1 = computeExitLimitFromCondCached(
7377           Cache, L, BO->getOperand(1), ExitIfTrue,
7378           ControlsExit && !EitherMayExit, AllowPredicates);
7379       // Be robust against unsimplified IR for the form "or i1 X, true"
7380       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7381         return CI->isZero() ? EL0 : EL1;
7382       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7383         return CI->isZero() ? EL1 : EL0;
7384       const SCEV *BECount = getCouldNotCompute();
7385       const SCEV *MaxBECount = getCouldNotCompute();
7386       if (EitherMayExit) {
7387         // Both conditions must be false for the loop to continue executing.
7388         // Choose the less conservative count.
7389         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7390             EL1.ExactNotTaken == getCouldNotCompute())
7391           BECount = getCouldNotCompute();
7392         else
7393           BECount =
7394               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7395         if (EL0.MaxNotTaken == getCouldNotCompute())
7396           MaxBECount = EL1.MaxNotTaken;
7397         else if (EL1.MaxNotTaken == getCouldNotCompute())
7398           MaxBECount = EL0.MaxNotTaken;
7399         else
7400           MaxBECount =
7401               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7402       } else {
7403         // Both conditions must be false at the same time for the loop to exit.
7404         // For now, be conservative.
7405         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7406           MaxBECount = EL0.MaxNotTaken;
7407         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7408           BECount = EL0.ExactNotTaken;
7409       }
7410       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7411       // to be more aggressive when computing BECount than when computing
7412       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7413       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7414       // to not.
7415       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7416           !isa<SCEVCouldNotCompute>(BECount))
7417         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7418 
7419       return ExitLimit(BECount, MaxBECount, false,
7420                        {&EL0.Predicates, &EL1.Predicates});
7421     }
7422   }
7423 
7424   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7425   // Proceed to the next level to examine the icmp.
7426   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7427     ExitLimit EL =
7428         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7429     if (EL.hasFullInfo() || !AllowPredicates)
7430       return EL;
7431 
7432     // Try again, but use SCEV predicates this time.
7433     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7434                                     /*AllowPredicates=*/true);
7435   }
7436 
7437   // Check for a constant condition. These are normally stripped out by
7438   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7439   // preserve the CFG and is temporarily leaving constant conditions
7440   // in place.
7441   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7442     if (ExitIfTrue == !CI->getZExtValue())
7443       // The backedge is always taken.
7444       return getCouldNotCompute();
7445     else
7446       // The backedge is never taken.
7447       return getZero(CI->getType());
7448   }
7449 
7450   // If it's not an integer or pointer comparison then compute it the hard way.
7451   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7452 }
7453 
7454 ScalarEvolution::ExitLimit
7455 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7456                                           ICmpInst *ExitCond,
7457                                           bool ExitIfTrue,
7458                                           bool ControlsExit,
7459                                           bool AllowPredicates) {
7460   // If the condition was exit on true, convert the condition to exit on false
7461   ICmpInst::Predicate Pred;
7462   if (!ExitIfTrue)
7463     Pred = ExitCond->getPredicate();
7464   else
7465     Pred = ExitCond->getInversePredicate();
7466   const ICmpInst::Predicate OriginalPred = Pred;
7467 
7468   // Handle common loops like: for (X = "string"; *X; ++X)
7469   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7470     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7471       ExitLimit ItCnt =
7472         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7473       if (ItCnt.hasAnyInfo())
7474         return ItCnt;
7475     }
7476 
7477   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7478   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7479 
7480   // Try to evaluate any dependencies out of the loop.
7481   LHS = getSCEVAtScope(LHS, L);
7482   RHS = getSCEVAtScope(RHS, L);
7483 
7484   // At this point, we would like to compute how many iterations of the
7485   // loop the predicate will return true for these inputs.
7486   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7487     // If there is a loop-invariant, force it into the RHS.
7488     std::swap(LHS, RHS);
7489     Pred = ICmpInst::getSwappedPredicate(Pred);
7490   }
7491 
7492   // Simplify the operands before analyzing them.
7493   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7494 
7495   // If we have a comparison of a chrec against a constant, try to use value
7496   // ranges to answer this query.
7497   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7498     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7499       if (AddRec->getLoop() == L) {
7500         // Form the constant range.
7501         ConstantRange CompRange =
7502             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7503 
7504         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7505         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7506       }
7507 
7508   switch (Pred) {
7509   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7510     // Convert to: while (X-Y != 0)
7511     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7512                                 AllowPredicates);
7513     if (EL.hasAnyInfo()) return EL;
7514     break;
7515   }
7516   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7517     // Convert to: while (X-Y == 0)
7518     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7519     if (EL.hasAnyInfo()) return EL;
7520     break;
7521   }
7522   case ICmpInst::ICMP_SLT:
7523   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7524     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7525     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7526                                     AllowPredicates);
7527     if (EL.hasAnyInfo()) return EL;
7528     break;
7529   }
7530   case ICmpInst::ICMP_SGT:
7531   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7532     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7533     ExitLimit EL =
7534         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7535                             AllowPredicates);
7536     if (EL.hasAnyInfo()) return EL;
7537     break;
7538   }
7539   default:
7540     break;
7541   }
7542 
7543   auto *ExhaustiveCount =
7544       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7545 
7546   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7547     return ExhaustiveCount;
7548 
7549   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7550                                       ExitCond->getOperand(1), L, OriginalPred);
7551 }
7552 
7553 ScalarEvolution::ExitLimit
7554 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7555                                                       SwitchInst *Switch,
7556                                                       BasicBlock *ExitingBlock,
7557                                                       bool ControlsExit) {
7558   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7559 
7560   // Give up if the exit is the default dest of a switch.
7561   if (Switch->getDefaultDest() == ExitingBlock)
7562     return getCouldNotCompute();
7563 
7564   assert(L->contains(Switch->getDefaultDest()) &&
7565          "Default case must not exit the loop!");
7566   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7567   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7568 
7569   // while (X != Y) --> while (X-Y != 0)
7570   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7571   if (EL.hasAnyInfo())
7572     return EL;
7573 
7574   return getCouldNotCompute();
7575 }
7576 
7577 static ConstantInt *
7578 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7579                                 ScalarEvolution &SE) {
7580   const SCEV *InVal = SE.getConstant(C);
7581   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7582   assert(isa<SCEVConstant>(Val) &&
7583          "Evaluation of SCEV at constant didn't fold correctly?");
7584   return cast<SCEVConstant>(Val)->getValue();
7585 }
7586 
7587 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7588 /// compute the backedge execution count.
7589 ScalarEvolution::ExitLimit
7590 ScalarEvolution::computeLoadConstantCompareExitLimit(
7591   LoadInst *LI,
7592   Constant *RHS,
7593   const Loop *L,
7594   ICmpInst::Predicate predicate) {
7595   if (LI->isVolatile()) return getCouldNotCompute();
7596 
7597   // Check to see if the loaded pointer is a getelementptr of a global.
7598   // TODO: Use SCEV instead of manually grubbing with GEPs.
7599   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7600   if (!GEP) return getCouldNotCompute();
7601 
7602   // Make sure that it is really a constant global we are gepping, with an
7603   // initializer, and make sure the first IDX is really 0.
7604   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7605   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7606       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7607       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7608     return getCouldNotCompute();
7609 
7610   // Okay, we allow one non-constant index into the GEP instruction.
7611   Value *VarIdx = nullptr;
7612   std::vector<Constant*> Indexes;
7613   unsigned VarIdxNum = 0;
7614   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7615     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7616       Indexes.push_back(CI);
7617     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7618       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7619       VarIdx = GEP->getOperand(i);
7620       VarIdxNum = i-2;
7621       Indexes.push_back(nullptr);
7622     }
7623 
7624   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7625   if (!VarIdx)
7626     return getCouldNotCompute();
7627 
7628   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7629   // Check to see if X is a loop variant variable value now.
7630   const SCEV *Idx = getSCEV(VarIdx);
7631   Idx = getSCEVAtScope(Idx, L);
7632 
7633   // We can only recognize very limited forms of loop index expressions, in
7634   // particular, only affine AddRec's like {C1,+,C2}.
7635   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7636   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7637       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7638       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7639     return getCouldNotCompute();
7640 
7641   unsigned MaxSteps = MaxBruteForceIterations;
7642   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7643     ConstantInt *ItCst = ConstantInt::get(
7644                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7645     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7646 
7647     // Form the GEP offset.
7648     Indexes[VarIdxNum] = Val;
7649 
7650     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7651                                                          Indexes);
7652     if (!Result) break;  // Cannot compute!
7653 
7654     // Evaluate the condition for this iteration.
7655     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7656     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7657     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7658       ++NumArrayLenItCounts;
7659       return getConstant(ItCst);   // Found terminating iteration!
7660     }
7661   }
7662   return getCouldNotCompute();
7663 }
7664 
7665 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7666     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7667   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7668   if (!RHS)
7669     return getCouldNotCompute();
7670 
7671   const BasicBlock *Latch = L->getLoopLatch();
7672   if (!Latch)
7673     return getCouldNotCompute();
7674 
7675   const BasicBlock *Predecessor = L->getLoopPredecessor();
7676   if (!Predecessor)
7677     return getCouldNotCompute();
7678 
7679   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7680   // Return LHS in OutLHS and shift_opt in OutOpCode.
7681   auto MatchPositiveShift =
7682       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7683 
7684     using namespace PatternMatch;
7685 
7686     ConstantInt *ShiftAmt;
7687     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7688       OutOpCode = Instruction::LShr;
7689     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7690       OutOpCode = Instruction::AShr;
7691     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7692       OutOpCode = Instruction::Shl;
7693     else
7694       return false;
7695 
7696     return ShiftAmt->getValue().isStrictlyPositive();
7697   };
7698 
7699   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7700   //
7701   // loop:
7702   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7703   //   %iv.shifted = lshr i32 %iv, <positive constant>
7704   //
7705   // Return true on a successful match.  Return the corresponding PHI node (%iv
7706   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7707   auto MatchShiftRecurrence =
7708       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7709     Optional<Instruction::BinaryOps> PostShiftOpCode;
7710 
7711     {
7712       Instruction::BinaryOps OpC;
7713       Value *V;
7714 
7715       // If we encounter a shift instruction, "peel off" the shift operation,
7716       // and remember that we did so.  Later when we inspect %iv's backedge
7717       // value, we will make sure that the backedge value uses the same
7718       // operation.
7719       //
7720       // Note: the peeled shift operation does not have to be the same
7721       // instruction as the one feeding into the PHI's backedge value.  We only
7722       // really care about it being the same *kind* of shift instruction --
7723       // that's all that is required for our later inferences to hold.
7724       if (MatchPositiveShift(LHS, V, OpC)) {
7725         PostShiftOpCode = OpC;
7726         LHS = V;
7727       }
7728     }
7729 
7730     PNOut = dyn_cast<PHINode>(LHS);
7731     if (!PNOut || PNOut->getParent() != L->getHeader())
7732       return false;
7733 
7734     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7735     Value *OpLHS;
7736 
7737     return
7738         // The backedge value for the PHI node must be a shift by a positive
7739         // amount
7740         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7741 
7742         // of the PHI node itself
7743         OpLHS == PNOut &&
7744 
7745         // and the kind of shift should be match the kind of shift we peeled
7746         // off, if any.
7747         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7748   };
7749 
7750   PHINode *PN;
7751   Instruction::BinaryOps OpCode;
7752   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7753     return getCouldNotCompute();
7754 
7755   const DataLayout &DL = getDataLayout();
7756 
7757   // The key rationale for this optimization is that for some kinds of shift
7758   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7759   // within a finite number of iterations.  If the condition guarding the
7760   // backedge (in the sense that the backedge is taken if the condition is true)
7761   // is false for the value the shift recurrence stabilizes to, then we know
7762   // that the backedge is taken only a finite number of times.
7763 
7764   ConstantInt *StableValue = nullptr;
7765   switch (OpCode) {
7766   default:
7767     llvm_unreachable("Impossible case!");
7768 
7769   case Instruction::AShr: {
7770     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7771     // bitwidth(K) iterations.
7772     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7773     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7774                                        Predecessor->getTerminator(), &DT);
7775     auto *Ty = cast<IntegerType>(RHS->getType());
7776     if (Known.isNonNegative())
7777       StableValue = ConstantInt::get(Ty, 0);
7778     else if (Known.isNegative())
7779       StableValue = ConstantInt::get(Ty, -1, true);
7780     else
7781       return getCouldNotCompute();
7782 
7783     break;
7784   }
7785   case Instruction::LShr:
7786   case Instruction::Shl:
7787     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7788     // stabilize to 0 in at most bitwidth(K) iterations.
7789     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7790     break;
7791   }
7792 
7793   auto *Result =
7794       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7795   assert(Result->getType()->isIntegerTy(1) &&
7796          "Otherwise cannot be an operand to a branch instruction");
7797 
7798   if (Result->isZeroValue()) {
7799     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7800     const SCEV *UpperBound =
7801         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7802     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7803   }
7804 
7805   return getCouldNotCompute();
7806 }
7807 
7808 /// Return true if we can constant fold an instruction of the specified type,
7809 /// assuming that all operands were constants.
7810 static bool CanConstantFold(const Instruction *I) {
7811   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7812       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7813       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7814     return true;
7815 
7816   if (const CallInst *CI = dyn_cast<CallInst>(I))
7817     if (const Function *F = CI->getCalledFunction())
7818       return canConstantFoldCallTo(CI, F);
7819   return false;
7820 }
7821 
7822 /// Determine whether this instruction can constant evolve within this loop
7823 /// assuming its operands can all constant evolve.
7824 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7825   // An instruction outside of the loop can't be derived from a loop PHI.
7826   if (!L->contains(I)) return false;
7827 
7828   if (isa<PHINode>(I)) {
7829     // We don't currently keep track of the control flow needed to evaluate
7830     // PHIs, so we cannot handle PHIs inside of loops.
7831     return L->getHeader() == I->getParent();
7832   }
7833 
7834   // If we won't be able to constant fold this expression even if the operands
7835   // are constants, bail early.
7836   return CanConstantFold(I);
7837 }
7838 
7839 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7840 /// recursing through each instruction operand until reaching a loop header phi.
7841 static PHINode *
7842 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7843                                DenseMap<Instruction *, PHINode *> &PHIMap,
7844                                unsigned Depth) {
7845   if (Depth > MaxConstantEvolvingDepth)
7846     return nullptr;
7847 
7848   // Otherwise, we can evaluate this instruction if all of its operands are
7849   // constant or derived from a PHI node themselves.
7850   PHINode *PHI = nullptr;
7851   for (Value *Op : UseInst->operands()) {
7852     if (isa<Constant>(Op)) continue;
7853 
7854     Instruction *OpInst = dyn_cast<Instruction>(Op);
7855     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7856 
7857     PHINode *P = dyn_cast<PHINode>(OpInst);
7858     if (!P)
7859       // If this operand is already visited, reuse the prior result.
7860       // We may have P != PHI if this is the deepest point at which the
7861       // inconsistent paths meet.
7862       P = PHIMap.lookup(OpInst);
7863     if (!P) {
7864       // Recurse and memoize the results, whether a phi is found or not.
7865       // This recursive call invalidates pointers into PHIMap.
7866       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7867       PHIMap[OpInst] = P;
7868     }
7869     if (!P)
7870       return nullptr;  // Not evolving from PHI
7871     if (PHI && PHI != P)
7872       return nullptr;  // Evolving from multiple different PHIs.
7873     PHI = P;
7874   }
7875   // This is a expression evolving from a constant PHI!
7876   return PHI;
7877 }
7878 
7879 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7880 /// in the loop that V is derived from.  We allow arbitrary operations along the
7881 /// way, but the operands of an operation must either be constants or a value
7882 /// derived from a constant PHI.  If this expression does not fit with these
7883 /// constraints, return null.
7884 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7885   Instruction *I = dyn_cast<Instruction>(V);
7886   if (!I || !canConstantEvolve(I, L)) return nullptr;
7887 
7888   if (PHINode *PN = dyn_cast<PHINode>(I))
7889     return PN;
7890 
7891   // Record non-constant instructions contained by the loop.
7892   DenseMap<Instruction *, PHINode *> PHIMap;
7893   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7894 }
7895 
7896 /// EvaluateExpression - Given an expression that passes the
7897 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7898 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7899 /// reason, return null.
7900 static Constant *EvaluateExpression(Value *V, const Loop *L,
7901                                     DenseMap<Instruction *, Constant *> &Vals,
7902                                     const DataLayout &DL,
7903                                     const TargetLibraryInfo *TLI) {
7904   // Convenient constant check, but redundant for recursive calls.
7905   if (Constant *C = dyn_cast<Constant>(V)) return C;
7906   Instruction *I = dyn_cast<Instruction>(V);
7907   if (!I) return nullptr;
7908 
7909   if (Constant *C = Vals.lookup(I)) return C;
7910 
7911   // An instruction inside the loop depends on a value outside the loop that we
7912   // weren't given a mapping for, or a value such as a call inside the loop.
7913   if (!canConstantEvolve(I, L)) return nullptr;
7914 
7915   // An unmapped PHI can be due to a branch or another loop inside this loop,
7916   // or due to this not being the initial iteration through a loop where we
7917   // couldn't compute the evolution of this particular PHI last time.
7918   if (isa<PHINode>(I)) return nullptr;
7919 
7920   std::vector<Constant*> Operands(I->getNumOperands());
7921 
7922   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7923     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7924     if (!Operand) {
7925       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7926       if (!Operands[i]) return nullptr;
7927       continue;
7928     }
7929     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7930     Vals[Operand] = C;
7931     if (!C) return nullptr;
7932     Operands[i] = C;
7933   }
7934 
7935   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7936     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7937                                            Operands[1], DL, TLI);
7938   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7939     if (!LI->isVolatile())
7940       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7941   }
7942   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7943 }
7944 
7945 
7946 // If every incoming value to PN except the one for BB is a specific Constant,
7947 // return that, else return nullptr.
7948 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7949   Constant *IncomingVal = nullptr;
7950 
7951   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7952     if (PN->getIncomingBlock(i) == BB)
7953       continue;
7954 
7955     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7956     if (!CurrentVal)
7957       return nullptr;
7958 
7959     if (IncomingVal != CurrentVal) {
7960       if (IncomingVal)
7961         return nullptr;
7962       IncomingVal = CurrentVal;
7963     }
7964   }
7965 
7966   return IncomingVal;
7967 }
7968 
7969 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7970 /// in the header of its containing loop, we know the loop executes a
7971 /// constant number of times, and the PHI node is just a recurrence
7972 /// involving constants, fold it.
7973 Constant *
7974 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7975                                                    const APInt &BEs,
7976                                                    const Loop *L) {
7977   auto I = ConstantEvolutionLoopExitValue.find(PN);
7978   if (I != ConstantEvolutionLoopExitValue.end())
7979     return I->second;
7980 
7981   if (BEs.ugt(MaxBruteForceIterations))
7982     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7983 
7984   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7985 
7986   DenseMap<Instruction *, Constant *> CurrentIterVals;
7987   BasicBlock *Header = L->getHeader();
7988   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7989 
7990   BasicBlock *Latch = L->getLoopLatch();
7991   if (!Latch)
7992     return nullptr;
7993 
7994   for (PHINode &PHI : Header->phis()) {
7995     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7996       CurrentIterVals[&PHI] = StartCST;
7997   }
7998   if (!CurrentIterVals.count(PN))
7999     return RetVal = nullptr;
8000 
8001   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8002 
8003   // Execute the loop symbolically to determine the exit value.
8004   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8005          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8006 
8007   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8008   unsigned IterationNum = 0;
8009   const DataLayout &DL = getDataLayout();
8010   for (; ; ++IterationNum) {
8011     if (IterationNum == NumIterations)
8012       return RetVal = CurrentIterVals[PN];  // Got exit value!
8013 
8014     // Compute the value of the PHIs for the next iteration.
8015     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8016     DenseMap<Instruction *, Constant *> NextIterVals;
8017     Constant *NextPHI =
8018         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8019     if (!NextPHI)
8020       return nullptr;        // Couldn't evaluate!
8021     NextIterVals[PN] = NextPHI;
8022 
8023     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8024 
8025     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8026     // cease to be able to evaluate one of them or if they stop evolving,
8027     // because that doesn't necessarily prevent us from computing PN.
8028     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8029     for (const auto &I : CurrentIterVals) {
8030       PHINode *PHI = dyn_cast<PHINode>(I.first);
8031       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8032       PHIsToCompute.emplace_back(PHI, I.second);
8033     }
8034     // We use two distinct loops because EvaluateExpression may invalidate any
8035     // iterators into CurrentIterVals.
8036     for (const auto &I : PHIsToCompute) {
8037       PHINode *PHI = I.first;
8038       Constant *&NextPHI = NextIterVals[PHI];
8039       if (!NextPHI) {   // Not already computed.
8040         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8041         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8042       }
8043       if (NextPHI != I.second)
8044         StoppedEvolving = false;
8045     }
8046 
8047     // If all entries in CurrentIterVals == NextIterVals then we can stop
8048     // iterating, the loop can't continue to change.
8049     if (StoppedEvolving)
8050       return RetVal = CurrentIterVals[PN];
8051 
8052     CurrentIterVals.swap(NextIterVals);
8053   }
8054 }
8055 
8056 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8057                                                           Value *Cond,
8058                                                           bool ExitWhen) {
8059   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8060   if (!PN) return getCouldNotCompute();
8061 
8062   // If the loop is canonicalized, the PHI will have exactly two entries.
8063   // That's the only form we support here.
8064   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8065 
8066   DenseMap<Instruction *, Constant *> CurrentIterVals;
8067   BasicBlock *Header = L->getHeader();
8068   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8069 
8070   BasicBlock *Latch = L->getLoopLatch();
8071   assert(Latch && "Should follow from NumIncomingValues == 2!");
8072 
8073   for (PHINode &PHI : Header->phis()) {
8074     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8075       CurrentIterVals[&PHI] = StartCST;
8076   }
8077   if (!CurrentIterVals.count(PN))
8078     return getCouldNotCompute();
8079 
8080   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8081   // the loop symbolically to determine when the condition gets a value of
8082   // "ExitWhen".
8083   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8084   const DataLayout &DL = getDataLayout();
8085   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8086     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8087         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8088 
8089     // Couldn't symbolically evaluate.
8090     if (!CondVal) return getCouldNotCompute();
8091 
8092     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8093       ++NumBruteForceTripCountsComputed;
8094       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8095     }
8096 
8097     // Update all the PHI nodes for the next iteration.
8098     DenseMap<Instruction *, Constant *> NextIterVals;
8099 
8100     // Create a list of which PHIs we need to compute. We want to do this before
8101     // calling EvaluateExpression on them because that may invalidate iterators
8102     // into CurrentIterVals.
8103     SmallVector<PHINode *, 8> PHIsToCompute;
8104     for (const auto &I : CurrentIterVals) {
8105       PHINode *PHI = dyn_cast<PHINode>(I.first);
8106       if (!PHI || PHI->getParent() != Header) continue;
8107       PHIsToCompute.push_back(PHI);
8108     }
8109     for (PHINode *PHI : PHIsToCompute) {
8110       Constant *&NextPHI = NextIterVals[PHI];
8111       if (NextPHI) continue;    // Already computed!
8112 
8113       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8114       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8115     }
8116     CurrentIterVals.swap(NextIterVals);
8117   }
8118 
8119   // Too many iterations were needed to evaluate.
8120   return getCouldNotCompute();
8121 }
8122 
8123 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8124   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8125       ValuesAtScopes[V];
8126   // Check to see if we've folded this expression at this loop before.
8127   for (auto &LS : Values)
8128     if (LS.first == L)
8129       return LS.second ? LS.second : V;
8130 
8131   Values.emplace_back(L, nullptr);
8132 
8133   // Otherwise compute it.
8134   const SCEV *C = computeSCEVAtScope(V, L);
8135   for (auto &LS : reverse(ValuesAtScopes[V]))
8136     if (LS.first == L) {
8137       LS.second = C;
8138       break;
8139     }
8140   return C;
8141 }
8142 
8143 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8144 /// will return Constants for objects which aren't represented by a
8145 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8146 /// Returns NULL if the SCEV isn't representable as a Constant.
8147 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8148   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8149     case scCouldNotCompute:
8150     case scAddRecExpr:
8151       break;
8152     case scConstant:
8153       return cast<SCEVConstant>(V)->getValue();
8154     case scUnknown:
8155       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8156     case scSignExtend: {
8157       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8158       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8159         return ConstantExpr::getSExt(CastOp, SS->getType());
8160       break;
8161     }
8162     case scZeroExtend: {
8163       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8164       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8165         return ConstantExpr::getZExt(CastOp, SZ->getType());
8166       break;
8167     }
8168     case scTruncate: {
8169       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8170       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8171         return ConstantExpr::getTrunc(CastOp, ST->getType());
8172       break;
8173     }
8174     case scAddExpr: {
8175       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8176       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8177         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8178           unsigned AS = PTy->getAddressSpace();
8179           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8180           C = ConstantExpr::getBitCast(C, DestPtrTy);
8181         }
8182         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8183           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8184           if (!C2) return nullptr;
8185 
8186           // First pointer!
8187           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8188             unsigned AS = C2->getType()->getPointerAddressSpace();
8189             std::swap(C, C2);
8190             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8191             // The offsets have been converted to bytes.  We can add bytes to an
8192             // i8* by GEP with the byte count in the first index.
8193             C = ConstantExpr::getBitCast(C, DestPtrTy);
8194           }
8195 
8196           // Don't bother trying to sum two pointers. We probably can't
8197           // statically compute a load that results from it anyway.
8198           if (C2->getType()->isPointerTy())
8199             return nullptr;
8200 
8201           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8202             if (PTy->getElementType()->isStructTy())
8203               C2 = ConstantExpr::getIntegerCast(
8204                   C2, Type::getInt32Ty(C->getContext()), true);
8205             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8206           } else
8207             C = ConstantExpr::getAdd(C, C2);
8208         }
8209         return C;
8210       }
8211       break;
8212     }
8213     case scMulExpr: {
8214       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8215       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8216         // Don't bother with pointers at all.
8217         if (C->getType()->isPointerTy()) return nullptr;
8218         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8219           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8220           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8221           C = ConstantExpr::getMul(C, C2);
8222         }
8223         return C;
8224       }
8225       break;
8226     }
8227     case scUDivExpr: {
8228       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8229       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8230         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8231           if (LHS->getType() == RHS->getType())
8232             return ConstantExpr::getUDiv(LHS, RHS);
8233       break;
8234     }
8235     case scSMaxExpr:
8236     case scUMaxExpr:
8237     case scSMinExpr:
8238     case scUMinExpr:
8239       break; // TODO: smax, umax, smin, umax.
8240   }
8241   return nullptr;
8242 }
8243 
8244 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8245   if (isa<SCEVConstant>(V)) return V;
8246 
8247   // If this instruction is evolved from a constant-evolving PHI, compute the
8248   // exit value from the loop without using SCEVs.
8249   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8250     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8251       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8252         const Loop *LI = this->LI[I->getParent()];
8253         // Looking for loop exit value.
8254         if (LI && LI->getParentLoop() == L &&
8255             PN->getParent() == LI->getHeader()) {
8256           // Okay, there is no closed form solution for the PHI node.  Check
8257           // to see if the loop that contains it has a known backedge-taken
8258           // count.  If so, we may be able to force computation of the exit
8259           // value.
8260           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8261           // This trivial case can show up in some degenerate cases where
8262           // the incoming IR has not yet been fully simplified.
8263           if (BackedgeTakenCount->isZero()) {
8264             Value *InitValue = nullptr;
8265             bool MultipleInitValues = false;
8266             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8267               if (!LI->contains(PN->getIncomingBlock(i))) {
8268                 if (!InitValue)
8269                   InitValue = PN->getIncomingValue(i);
8270                 else if (InitValue != PN->getIncomingValue(i)) {
8271                   MultipleInitValues = true;
8272                   break;
8273                 }
8274               }
8275             }
8276             if (!MultipleInitValues && InitValue)
8277               return getSCEV(InitValue);
8278           }
8279           // Do we have a loop invariant value flowing around the backedge
8280           // for a loop which must execute the backedge?
8281           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8282               isKnownPositive(BackedgeTakenCount) &&
8283               PN->getNumIncomingValues() == 2) {
8284 
8285             unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8286             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8287             if (LI->isLoopInvariant(BackedgeVal))
8288               return getSCEV(BackedgeVal);
8289           }
8290           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8291             // Okay, we know how many times the containing loop executes.  If
8292             // this is a constant evolving PHI node, get the final value at
8293             // the specified iteration number.
8294             Constant *RV =
8295                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8296             if (RV) return getSCEV(RV);
8297           }
8298         }
8299 
8300         // If there is a single-input Phi, evaluate it at our scope. If we can
8301         // prove that this replacement does not break LCSSA form, use new value.
8302         if (PN->getNumOperands() == 1) {
8303           const SCEV *Input = getSCEV(PN->getOperand(0));
8304           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8305           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8306           // for the simplest case just support constants.
8307           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8308         }
8309       }
8310 
8311       // Okay, this is an expression that we cannot symbolically evaluate
8312       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8313       // the arguments into constants, and if so, try to constant propagate the
8314       // result.  This is particularly useful for computing loop exit values.
8315       if (CanConstantFold(I)) {
8316         SmallVector<Constant *, 4> Operands;
8317         bool MadeImprovement = false;
8318         for (Value *Op : I->operands()) {
8319           if (Constant *C = dyn_cast<Constant>(Op)) {
8320             Operands.push_back(C);
8321             continue;
8322           }
8323 
8324           // If any of the operands is non-constant and if they are
8325           // non-integer and non-pointer, don't even try to analyze them
8326           // with scev techniques.
8327           if (!isSCEVable(Op->getType()))
8328             return V;
8329 
8330           const SCEV *OrigV = getSCEV(Op);
8331           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8332           MadeImprovement |= OrigV != OpV;
8333 
8334           Constant *C = BuildConstantFromSCEV(OpV);
8335           if (!C) return V;
8336           if (C->getType() != Op->getType())
8337             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8338                                                               Op->getType(),
8339                                                               false),
8340                                       C, Op->getType());
8341           Operands.push_back(C);
8342         }
8343 
8344         // Check to see if getSCEVAtScope actually made an improvement.
8345         if (MadeImprovement) {
8346           Constant *C = nullptr;
8347           const DataLayout &DL = getDataLayout();
8348           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8349             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8350                                                 Operands[1], DL, &TLI);
8351           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8352             if (!LI->isVolatile())
8353               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8354           } else
8355             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8356           if (!C) return V;
8357           return getSCEV(C);
8358         }
8359       }
8360     }
8361 
8362     // This is some other type of SCEVUnknown, just return it.
8363     return V;
8364   }
8365 
8366   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8367     // Avoid performing the look-up in the common case where the specified
8368     // expression has no loop-variant portions.
8369     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8370       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8371       if (OpAtScope != Comm->getOperand(i)) {
8372         // Okay, at least one of these operands is loop variant but might be
8373         // foldable.  Build a new instance of the folded commutative expression.
8374         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8375                                             Comm->op_begin()+i);
8376         NewOps.push_back(OpAtScope);
8377 
8378         for (++i; i != e; ++i) {
8379           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8380           NewOps.push_back(OpAtScope);
8381         }
8382         if (isa<SCEVAddExpr>(Comm))
8383           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8384         if (isa<SCEVMulExpr>(Comm))
8385           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8386         if (isa<SCEVMinMaxExpr>(Comm))
8387           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8388         llvm_unreachable("Unknown commutative SCEV type!");
8389       }
8390     }
8391     // If we got here, all operands are loop invariant.
8392     return Comm;
8393   }
8394 
8395   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8396     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8397     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8398     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8399       return Div;   // must be loop invariant
8400     return getUDivExpr(LHS, RHS);
8401   }
8402 
8403   // If this is a loop recurrence for a loop that does not contain L, then we
8404   // are dealing with the final value computed by the loop.
8405   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8406     // First, attempt to evaluate each operand.
8407     // Avoid performing the look-up in the common case where the specified
8408     // expression has no loop-variant portions.
8409     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8410       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8411       if (OpAtScope == AddRec->getOperand(i))
8412         continue;
8413 
8414       // Okay, at least one of these operands is loop variant but might be
8415       // foldable.  Build a new instance of the folded commutative expression.
8416       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8417                                           AddRec->op_begin()+i);
8418       NewOps.push_back(OpAtScope);
8419       for (++i; i != e; ++i)
8420         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8421 
8422       const SCEV *FoldedRec =
8423         getAddRecExpr(NewOps, AddRec->getLoop(),
8424                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8425       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8426       // The addrec may be folded to a nonrecurrence, for example, if the
8427       // induction variable is multiplied by zero after constant folding. Go
8428       // ahead and return the folded value.
8429       if (!AddRec)
8430         return FoldedRec;
8431       break;
8432     }
8433 
8434     // If the scope is outside the addrec's loop, evaluate it by using the
8435     // loop exit value of the addrec.
8436     if (!AddRec->getLoop()->contains(L)) {
8437       // To evaluate this recurrence, we need to know how many times the AddRec
8438       // loop iterates.  Compute this now.
8439       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8440       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8441 
8442       // Then, evaluate the AddRec.
8443       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8444     }
8445 
8446     return AddRec;
8447   }
8448 
8449   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8450     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8451     if (Op == Cast->getOperand())
8452       return Cast;  // must be loop invariant
8453     return getZeroExtendExpr(Op, Cast->getType());
8454   }
8455 
8456   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8457     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8458     if (Op == Cast->getOperand())
8459       return Cast;  // must be loop invariant
8460     return getSignExtendExpr(Op, Cast->getType());
8461   }
8462 
8463   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8464     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8465     if (Op == Cast->getOperand())
8466       return Cast;  // must be loop invariant
8467     return getTruncateExpr(Op, Cast->getType());
8468   }
8469 
8470   llvm_unreachable("Unknown SCEV type!");
8471 }
8472 
8473 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8474   return getSCEVAtScope(getSCEV(V), L);
8475 }
8476 
8477 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8478   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8479     return stripInjectiveFunctions(ZExt->getOperand());
8480   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8481     return stripInjectiveFunctions(SExt->getOperand());
8482   return S;
8483 }
8484 
8485 /// Finds the minimum unsigned root of the following equation:
8486 ///
8487 ///     A * X = B (mod N)
8488 ///
8489 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8490 /// A and B isn't important.
8491 ///
8492 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8493 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8494                                                ScalarEvolution &SE) {
8495   uint32_t BW = A.getBitWidth();
8496   assert(BW == SE.getTypeSizeInBits(B->getType()));
8497   assert(A != 0 && "A must be non-zero.");
8498 
8499   // 1. D = gcd(A, N)
8500   //
8501   // The gcd of A and N may have only one prime factor: 2. The number of
8502   // trailing zeros in A is its multiplicity
8503   uint32_t Mult2 = A.countTrailingZeros();
8504   // D = 2^Mult2
8505 
8506   // 2. Check if B is divisible by D.
8507   //
8508   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8509   // is not less than multiplicity of this prime factor for D.
8510   if (SE.GetMinTrailingZeros(B) < Mult2)
8511     return SE.getCouldNotCompute();
8512 
8513   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8514   // modulo (N / D).
8515   //
8516   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8517   // (N / D) in general. The inverse itself always fits into BW bits, though,
8518   // so we immediately truncate it.
8519   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8520   APInt Mod(BW + 1, 0);
8521   Mod.setBit(BW - Mult2);  // Mod = N / D
8522   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8523 
8524   // 4. Compute the minimum unsigned root of the equation:
8525   // I * (B / D) mod (N / D)
8526   // To simplify the computation, we factor out the divide by D:
8527   // (I * B mod N) / D
8528   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8529   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8530 }
8531 
8532 /// For a given quadratic addrec, generate coefficients of the corresponding
8533 /// quadratic equation, multiplied by a common value to ensure that they are
8534 /// integers.
8535 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8536 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8537 /// were multiplied by, and BitWidth is the bit width of the original addrec
8538 /// coefficients.
8539 /// This function returns None if the addrec coefficients are not compile-
8540 /// time constants.
8541 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8542 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8543   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8544   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8545   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8546   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8547   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8548                     << *AddRec << '\n');
8549 
8550   // We currently can only solve this if the coefficients are constants.
8551   if (!LC || !MC || !NC) {
8552     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8553     return None;
8554   }
8555 
8556   APInt L = LC->getAPInt();
8557   APInt M = MC->getAPInt();
8558   APInt N = NC->getAPInt();
8559   assert(!N.isNullValue() && "This is not a quadratic addrec");
8560 
8561   unsigned BitWidth = LC->getAPInt().getBitWidth();
8562   unsigned NewWidth = BitWidth + 1;
8563   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8564                     << BitWidth << '\n');
8565   // The sign-extension (as opposed to a zero-extension) here matches the
8566   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8567   N = N.sext(NewWidth);
8568   M = M.sext(NewWidth);
8569   L = L.sext(NewWidth);
8570 
8571   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8572   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8573   //   L+M, L+2M+N, L+3M+3N, ...
8574   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8575   //
8576   // The equation Acc = 0 is then
8577   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8578   // In a quadratic form it becomes:
8579   //   N n^2 + (2M-N) n + 2L = 0.
8580 
8581   APInt A = N;
8582   APInt B = 2 * M - A;
8583   APInt C = 2 * L;
8584   APInt T = APInt(NewWidth, 2);
8585   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8586                     << "x + " << C << ", coeff bw: " << NewWidth
8587                     << ", multiplied by " << T << '\n');
8588   return std::make_tuple(A, B, C, T, BitWidth);
8589 }
8590 
8591 /// Helper function to compare optional APInts:
8592 /// (a) if X and Y both exist, return min(X, Y),
8593 /// (b) if neither X nor Y exist, return None,
8594 /// (c) if exactly one of X and Y exists, return that value.
8595 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8596   if (X.hasValue() && Y.hasValue()) {
8597     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8598     APInt XW = X->sextOrSelf(W);
8599     APInt YW = Y->sextOrSelf(W);
8600     return XW.slt(YW) ? *X : *Y;
8601   }
8602   if (!X.hasValue() && !Y.hasValue())
8603     return None;
8604   return X.hasValue() ? *X : *Y;
8605 }
8606 
8607 /// Helper function to truncate an optional APInt to a given BitWidth.
8608 /// When solving addrec-related equations, it is preferable to return a value
8609 /// that has the same bit width as the original addrec's coefficients. If the
8610 /// solution fits in the original bit width, truncate it (except for i1).
8611 /// Returning a value of a different bit width may inhibit some optimizations.
8612 ///
8613 /// In general, a solution to a quadratic equation generated from an addrec
8614 /// may require BW+1 bits, where BW is the bit width of the addrec's
8615 /// coefficients. The reason is that the coefficients of the quadratic
8616 /// equation are BW+1 bits wide (to avoid truncation when converting from
8617 /// the addrec to the equation).
8618 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8619   if (!X.hasValue())
8620     return None;
8621   unsigned W = X->getBitWidth();
8622   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8623     return X->trunc(BitWidth);
8624   return X;
8625 }
8626 
8627 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8628 /// iterations. The values L, M, N are assumed to be signed, and they
8629 /// should all have the same bit widths.
8630 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8631 /// where BW is the bit width of the addrec's coefficients.
8632 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8633 /// returned as such, otherwise the bit width of the returned value may
8634 /// be greater than BW.
8635 ///
8636 /// This function returns None if
8637 /// (a) the addrec coefficients are not constant, or
8638 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8639 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8640 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8641 static Optional<APInt>
8642 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8643   APInt A, B, C, M;
8644   unsigned BitWidth;
8645   auto T = GetQuadraticEquation(AddRec);
8646   if (!T.hasValue())
8647     return None;
8648 
8649   std::tie(A, B, C, M, BitWidth) = *T;
8650   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8651   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8652   if (!X.hasValue())
8653     return None;
8654 
8655   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8656   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8657   if (!V->isZero())
8658     return None;
8659 
8660   return TruncIfPossible(X, BitWidth);
8661 }
8662 
8663 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8664 /// iterations. The values M, N are assumed to be signed, and they
8665 /// should all have the same bit widths.
8666 /// Find the least n such that c(n) does not belong to the given range,
8667 /// while c(n-1) does.
8668 ///
8669 /// This function returns None if
8670 /// (a) the addrec coefficients are not constant, or
8671 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8672 ///     bounds of the range.
8673 static Optional<APInt>
8674 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8675                           const ConstantRange &Range, ScalarEvolution &SE) {
8676   assert(AddRec->getOperand(0)->isZero() &&
8677          "Starting value of addrec should be 0");
8678   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8679                     << Range << ", addrec " << *AddRec << '\n');
8680   // This case is handled in getNumIterationsInRange. Here we can assume that
8681   // we start in the range.
8682   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8683          "Addrec's initial value should be in range");
8684 
8685   APInt A, B, C, M;
8686   unsigned BitWidth;
8687   auto T = GetQuadraticEquation(AddRec);
8688   if (!T.hasValue())
8689     return None;
8690 
8691   // Be careful about the return value: there can be two reasons for not
8692   // returning an actual number. First, if no solutions to the equations
8693   // were found, and second, if the solutions don't leave the given range.
8694   // The first case means that the actual solution is "unknown", the second
8695   // means that it's known, but not valid. If the solution is unknown, we
8696   // cannot make any conclusions.
8697   // Return a pair: the optional solution and a flag indicating if the
8698   // solution was found.
8699   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8700     // Solve for signed overflow and unsigned overflow, pick the lower
8701     // solution.
8702     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8703                       << Bound << " (before multiplying by " << M << ")\n");
8704     Bound *= M; // The quadratic equation multiplier.
8705 
8706     Optional<APInt> SO = None;
8707     if (BitWidth > 1) {
8708       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8709                            "signed overflow\n");
8710       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8711     }
8712     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8713                          "unsigned overflow\n");
8714     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8715                                                               BitWidth+1);
8716 
8717     auto LeavesRange = [&] (const APInt &X) {
8718       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8719       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8720       if (Range.contains(V0->getValue()))
8721         return false;
8722       // X should be at least 1, so X-1 is non-negative.
8723       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8724       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8725       if (Range.contains(V1->getValue()))
8726         return true;
8727       return false;
8728     };
8729 
8730     // If SolveQuadraticEquationWrap returns None, it means that there can
8731     // be a solution, but the function failed to find it. We cannot treat it
8732     // as "no solution".
8733     if (!SO.hasValue() || !UO.hasValue())
8734       return { None, false };
8735 
8736     // Check the smaller value first to see if it leaves the range.
8737     // At this point, both SO and UO must have values.
8738     Optional<APInt> Min = MinOptional(SO, UO);
8739     if (LeavesRange(*Min))
8740       return { Min, true };
8741     Optional<APInt> Max = Min == SO ? UO : SO;
8742     if (LeavesRange(*Max))
8743       return { Max, true };
8744 
8745     // Solutions were found, but were eliminated, hence the "true".
8746     return { None, true };
8747   };
8748 
8749   std::tie(A, B, C, M, BitWidth) = *T;
8750   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8751   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8752   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8753   auto SL = SolveForBoundary(Lower);
8754   auto SU = SolveForBoundary(Upper);
8755   // If any of the solutions was unknown, no meaninigful conclusions can
8756   // be made.
8757   if (!SL.second || !SU.second)
8758     return None;
8759 
8760   // Claim: The correct solution is not some value between Min and Max.
8761   //
8762   // Justification: Assuming that Min and Max are different values, one of
8763   // them is when the first signed overflow happens, the other is when the
8764   // first unsigned overflow happens. Crossing the range boundary is only
8765   // possible via an overflow (treating 0 as a special case of it, modeling
8766   // an overflow as crossing k*2^W for some k).
8767   //
8768   // The interesting case here is when Min was eliminated as an invalid
8769   // solution, but Max was not. The argument is that if there was another
8770   // overflow between Min and Max, it would also have been eliminated if
8771   // it was considered.
8772   //
8773   // For a given boundary, it is possible to have two overflows of the same
8774   // type (signed/unsigned) without having the other type in between: this
8775   // can happen when the vertex of the parabola is between the iterations
8776   // corresponding to the overflows. This is only possible when the two
8777   // overflows cross k*2^W for the same k. In such case, if the second one
8778   // left the range (and was the first one to do so), the first overflow
8779   // would have to enter the range, which would mean that either we had left
8780   // the range before or that we started outside of it. Both of these cases
8781   // are contradictions.
8782   //
8783   // Claim: In the case where SolveForBoundary returns None, the correct
8784   // solution is not some value between the Max for this boundary and the
8785   // Min of the other boundary.
8786   //
8787   // Justification: Assume that we had such Max_A and Min_B corresponding
8788   // to range boundaries A and B and such that Max_A < Min_B. If there was
8789   // a solution between Max_A and Min_B, it would have to be caused by an
8790   // overflow corresponding to either A or B. It cannot correspond to B,
8791   // since Min_B is the first occurrence of such an overflow. If it
8792   // corresponded to A, it would have to be either a signed or an unsigned
8793   // overflow that is larger than both eliminated overflows for A. But
8794   // between the eliminated overflows and this overflow, the values would
8795   // cover the entire value space, thus crossing the other boundary, which
8796   // is a contradiction.
8797 
8798   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8799 }
8800 
8801 ScalarEvolution::ExitLimit
8802 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8803                               bool AllowPredicates) {
8804 
8805   // This is only used for loops with a "x != y" exit test. The exit condition
8806   // is now expressed as a single expression, V = x-y. So the exit test is
8807   // effectively V != 0.  We know and take advantage of the fact that this
8808   // expression only being used in a comparison by zero context.
8809 
8810   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8811   // If the value is a constant
8812   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8813     // If the value is already zero, the branch will execute zero times.
8814     if (C->getValue()->isZero()) return C;
8815     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8816   }
8817 
8818   const SCEVAddRecExpr *AddRec =
8819       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8820 
8821   if (!AddRec && AllowPredicates)
8822     // Try to make this an AddRec using runtime tests, in the first X
8823     // iterations of this loop, where X is the SCEV expression found by the
8824     // algorithm below.
8825     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8826 
8827   if (!AddRec || AddRec->getLoop() != L)
8828     return getCouldNotCompute();
8829 
8830   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8831   // the quadratic equation to solve it.
8832   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8833     // We can only use this value if the chrec ends up with an exact zero
8834     // value at this index.  When solving for "X*X != 5", for example, we
8835     // should not accept a root of 2.
8836     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8837       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8838       return ExitLimit(R, R, false, Predicates);
8839     }
8840     return getCouldNotCompute();
8841   }
8842 
8843   // Otherwise we can only handle this if it is affine.
8844   if (!AddRec->isAffine())
8845     return getCouldNotCompute();
8846 
8847   // If this is an affine expression, the execution count of this branch is
8848   // the minimum unsigned root of the following equation:
8849   //
8850   //     Start + Step*N = 0 (mod 2^BW)
8851   //
8852   // equivalent to:
8853   //
8854   //             Step*N = -Start (mod 2^BW)
8855   //
8856   // where BW is the common bit width of Start and Step.
8857 
8858   // Get the initial value for the loop.
8859   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8860   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8861 
8862   // For now we handle only constant steps.
8863   //
8864   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8865   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8866   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8867   // We have not yet seen any such cases.
8868   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8869   if (!StepC || StepC->getValue()->isZero())
8870     return getCouldNotCompute();
8871 
8872   // For positive steps (counting up until unsigned overflow):
8873   //   N = -Start/Step (as unsigned)
8874   // For negative steps (counting down to zero):
8875   //   N = Start/-Step
8876   // First compute the unsigned distance from zero in the direction of Step.
8877   bool CountDown = StepC->getAPInt().isNegative();
8878   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8879 
8880   // Handle unitary steps, which cannot wraparound.
8881   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8882   //   N = Distance (as unsigned)
8883   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8884     APInt MaxBECount = getUnsignedRangeMax(Distance);
8885 
8886     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8887     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8888     // case, and see if we can improve the bound.
8889     //
8890     // Explicitly handling this here is necessary because getUnsignedRange
8891     // isn't context-sensitive; it doesn't know that we only care about the
8892     // range inside the loop.
8893     const SCEV *Zero = getZero(Distance->getType());
8894     const SCEV *One = getOne(Distance->getType());
8895     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8896     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8897       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8898       // as "unsigned_max(Distance + 1) - 1".
8899       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8900       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8901     }
8902     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8903   }
8904 
8905   // If the condition controls loop exit (the loop exits only if the expression
8906   // is true) and the addition is no-wrap we can use unsigned divide to
8907   // compute the backedge count.  In this case, the step may not divide the
8908   // distance, but we don't care because if the condition is "missed" the loop
8909   // will have undefined behavior due to wrapping.
8910   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8911       loopHasNoAbnormalExits(AddRec->getLoop())) {
8912     const SCEV *Exact =
8913         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8914     const SCEV *Max =
8915         Exact == getCouldNotCompute()
8916             ? Exact
8917             : getConstant(getUnsignedRangeMax(Exact));
8918     return ExitLimit(Exact, Max, false, Predicates);
8919   }
8920 
8921   // Solve the general equation.
8922   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8923                                                getNegativeSCEV(Start), *this);
8924   const SCEV *M = E == getCouldNotCompute()
8925                       ? E
8926                       : getConstant(getUnsignedRangeMax(E));
8927   return ExitLimit(E, M, false, Predicates);
8928 }
8929 
8930 ScalarEvolution::ExitLimit
8931 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8932   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8933   // handle them yet except for the trivial case.  This could be expanded in the
8934   // future as needed.
8935 
8936   // If the value is a constant, check to see if it is known to be non-zero
8937   // already.  If so, the backedge will execute zero times.
8938   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8939     if (!C->getValue()->isZero())
8940       return getZero(C->getType());
8941     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8942   }
8943 
8944   // We could implement others, but I really doubt anyone writes loops like
8945   // this, and if they did, they would already be constant folded.
8946   return getCouldNotCompute();
8947 }
8948 
8949 std::pair<BasicBlock *, BasicBlock *>
8950 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8951   // If the block has a unique predecessor, then there is no path from the
8952   // predecessor to the block that does not go through the direct edge
8953   // from the predecessor to the block.
8954   if (BasicBlock *Pred = BB->getSinglePredecessor())
8955     return {Pred, BB};
8956 
8957   // A loop's header is defined to be a block that dominates the loop.
8958   // If the header has a unique predecessor outside the loop, it must be
8959   // a block that has exactly one successor that can reach the loop.
8960   if (Loop *L = LI.getLoopFor(BB))
8961     return {L->getLoopPredecessor(), L->getHeader()};
8962 
8963   return {nullptr, nullptr};
8964 }
8965 
8966 /// SCEV structural equivalence is usually sufficient for testing whether two
8967 /// expressions are equal, however for the purposes of looking for a condition
8968 /// guarding a loop, it can be useful to be a little more general, since a
8969 /// front-end may have replicated the controlling expression.
8970 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8971   // Quick check to see if they are the same SCEV.
8972   if (A == B) return true;
8973 
8974   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8975     // Not all instructions that are "identical" compute the same value.  For
8976     // instance, two distinct alloca instructions allocating the same type are
8977     // identical and do not read memory; but compute distinct values.
8978     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8979   };
8980 
8981   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8982   // two different instructions with the same value. Check for this case.
8983   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8984     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8985       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8986         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8987           if (ComputesEqualValues(AI, BI))
8988             return true;
8989 
8990   // Otherwise assume they may have a different value.
8991   return false;
8992 }
8993 
8994 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8995                                            const SCEV *&LHS, const SCEV *&RHS,
8996                                            unsigned Depth) {
8997   bool Changed = false;
8998   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8999   // '0 != 0'.
9000   auto TrivialCase = [&](bool TriviallyTrue) {
9001     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9002     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9003     return true;
9004   };
9005   // If we hit the max recursion limit bail out.
9006   if (Depth >= 3)
9007     return false;
9008 
9009   // Canonicalize a constant to the right side.
9010   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9011     // Check for both operands constant.
9012     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9013       if (ConstantExpr::getICmp(Pred,
9014                                 LHSC->getValue(),
9015                                 RHSC->getValue())->isNullValue())
9016         return TrivialCase(false);
9017       else
9018         return TrivialCase(true);
9019     }
9020     // Otherwise swap the operands to put the constant on the right.
9021     std::swap(LHS, RHS);
9022     Pred = ICmpInst::getSwappedPredicate(Pred);
9023     Changed = true;
9024   }
9025 
9026   // If we're comparing an addrec with a value which is loop-invariant in the
9027   // addrec's loop, put the addrec on the left. Also make a dominance check,
9028   // as both operands could be addrecs loop-invariant in each other's loop.
9029   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9030     const Loop *L = AR->getLoop();
9031     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9032       std::swap(LHS, RHS);
9033       Pred = ICmpInst::getSwappedPredicate(Pred);
9034       Changed = true;
9035     }
9036   }
9037 
9038   // If there's a constant operand, canonicalize comparisons with boundary
9039   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9040   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9041     const APInt &RA = RC->getAPInt();
9042 
9043     bool SimplifiedByConstantRange = false;
9044 
9045     if (!ICmpInst::isEquality(Pred)) {
9046       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9047       if (ExactCR.isFullSet())
9048         return TrivialCase(true);
9049       else if (ExactCR.isEmptySet())
9050         return TrivialCase(false);
9051 
9052       APInt NewRHS;
9053       CmpInst::Predicate NewPred;
9054       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9055           ICmpInst::isEquality(NewPred)) {
9056         // We were able to convert an inequality to an equality.
9057         Pred = NewPred;
9058         RHS = getConstant(NewRHS);
9059         Changed = SimplifiedByConstantRange = true;
9060       }
9061     }
9062 
9063     if (!SimplifiedByConstantRange) {
9064       switch (Pred) {
9065       default:
9066         break;
9067       case ICmpInst::ICMP_EQ:
9068       case ICmpInst::ICMP_NE:
9069         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9070         if (!RA)
9071           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9072             if (const SCEVMulExpr *ME =
9073                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9074               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9075                   ME->getOperand(0)->isAllOnesValue()) {
9076                 RHS = AE->getOperand(1);
9077                 LHS = ME->getOperand(1);
9078                 Changed = true;
9079               }
9080         break;
9081 
9082 
9083         // The "Should have been caught earlier!" messages refer to the fact
9084         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9085         // should have fired on the corresponding cases, and canonicalized the
9086         // check to trivial case.
9087 
9088       case ICmpInst::ICMP_UGE:
9089         assert(!RA.isMinValue() && "Should have been caught earlier!");
9090         Pred = ICmpInst::ICMP_UGT;
9091         RHS = getConstant(RA - 1);
9092         Changed = true;
9093         break;
9094       case ICmpInst::ICMP_ULE:
9095         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9096         Pred = ICmpInst::ICMP_ULT;
9097         RHS = getConstant(RA + 1);
9098         Changed = true;
9099         break;
9100       case ICmpInst::ICMP_SGE:
9101         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9102         Pred = ICmpInst::ICMP_SGT;
9103         RHS = getConstant(RA - 1);
9104         Changed = true;
9105         break;
9106       case ICmpInst::ICMP_SLE:
9107         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9108         Pred = ICmpInst::ICMP_SLT;
9109         RHS = getConstant(RA + 1);
9110         Changed = true;
9111         break;
9112       }
9113     }
9114   }
9115 
9116   // Check for obvious equality.
9117   if (HasSameValue(LHS, RHS)) {
9118     if (ICmpInst::isTrueWhenEqual(Pred))
9119       return TrivialCase(true);
9120     if (ICmpInst::isFalseWhenEqual(Pred))
9121       return TrivialCase(false);
9122   }
9123 
9124   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9125   // adding or subtracting 1 from one of the operands.
9126   switch (Pred) {
9127   case ICmpInst::ICMP_SLE:
9128     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9129       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9130                        SCEV::FlagNSW);
9131       Pred = ICmpInst::ICMP_SLT;
9132       Changed = true;
9133     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9134       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9135                        SCEV::FlagNSW);
9136       Pred = ICmpInst::ICMP_SLT;
9137       Changed = true;
9138     }
9139     break;
9140   case ICmpInst::ICMP_SGE:
9141     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9142       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9143                        SCEV::FlagNSW);
9144       Pred = ICmpInst::ICMP_SGT;
9145       Changed = true;
9146     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9147       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9148                        SCEV::FlagNSW);
9149       Pred = ICmpInst::ICMP_SGT;
9150       Changed = true;
9151     }
9152     break;
9153   case ICmpInst::ICMP_ULE:
9154     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9155       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9156                        SCEV::FlagNUW);
9157       Pred = ICmpInst::ICMP_ULT;
9158       Changed = true;
9159     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9160       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9161       Pred = ICmpInst::ICMP_ULT;
9162       Changed = true;
9163     }
9164     break;
9165   case ICmpInst::ICMP_UGE:
9166     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9167       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9168       Pred = ICmpInst::ICMP_UGT;
9169       Changed = true;
9170     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9171       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9172                        SCEV::FlagNUW);
9173       Pred = ICmpInst::ICMP_UGT;
9174       Changed = true;
9175     }
9176     break;
9177   default:
9178     break;
9179   }
9180 
9181   // TODO: More simplifications are possible here.
9182 
9183   // Recursively simplify until we either hit a recursion limit or nothing
9184   // changes.
9185   if (Changed)
9186     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9187 
9188   return Changed;
9189 }
9190 
9191 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9192   return getSignedRangeMax(S).isNegative();
9193 }
9194 
9195 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9196   return getSignedRangeMin(S).isStrictlyPositive();
9197 }
9198 
9199 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9200   return !getSignedRangeMin(S).isNegative();
9201 }
9202 
9203 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9204   return !getSignedRangeMax(S).isStrictlyPositive();
9205 }
9206 
9207 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9208   return isKnownNegative(S) || isKnownPositive(S);
9209 }
9210 
9211 std::pair<const SCEV *, const SCEV *>
9212 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9213   // Compute SCEV on entry of loop L.
9214   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9215   if (Start == getCouldNotCompute())
9216     return { Start, Start };
9217   // Compute post increment SCEV for loop L.
9218   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9219   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9220   return { Start, PostInc };
9221 }
9222 
9223 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9224                                           const SCEV *LHS, const SCEV *RHS) {
9225   // First collect all loops.
9226   SmallPtrSet<const Loop *, 8> LoopsUsed;
9227   getUsedLoops(LHS, LoopsUsed);
9228   getUsedLoops(RHS, LoopsUsed);
9229 
9230   if (LoopsUsed.empty())
9231     return false;
9232 
9233   // Domination relationship must be a linear order on collected loops.
9234 #ifndef NDEBUG
9235   for (auto *L1 : LoopsUsed)
9236     for (auto *L2 : LoopsUsed)
9237       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9238               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9239              "Domination relationship is not a linear order");
9240 #endif
9241 
9242   const Loop *MDL =
9243       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9244                         [&](const Loop *L1, const Loop *L2) {
9245          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9246        });
9247 
9248   // Get init and post increment value for LHS.
9249   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9250   // if LHS contains unknown non-invariant SCEV then bail out.
9251   if (SplitLHS.first == getCouldNotCompute())
9252     return false;
9253   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9254   // Get init and post increment value for RHS.
9255   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9256   // if RHS contains unknown non-invariant SCEV then bail out.
9257   if (SplitRHS.first == getCouldNotCompute())
9258     return false;
9259   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9260   // It is possible that init SCEV contains an invariant load but it does
9261   // not dominate MDL and is not available at MDL loop entry, so we should
9262   // check it here.
9263   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9264       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9265     return false;
9266 
9267   // It seems backedge guard check is faster than entry one so in some cases
9268   // it can speed up whole estimation by short circuit
9269   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9270                                      SplitRHS.second) &&
9271          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9272 }
9273 
9274 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9275                                        const SCEV *LHS, const SCEV *RHS) {
9276   // Canonicalize the inputs first.
9277   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9278 
9279   if (isKnownViaInduction(Pred, LHS, RHS))
9280     return true;
9281 
9282   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9283     return true;
9284 
9285   // Otherwise see what can be done with some simple reasoning.
9286   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9287 }
9288 
9289 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9290                                               const SCEVAddRecExpr *LHS,
9291                                               const SCEV *RHS) {
9292   const Loop *L = LHS->getLoop();
9293   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9294          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9295 }
9296 
9297 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9298                                            ICmpInst::Predicate Pred,
9299                                            bool &Increasing) {
9300   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9301 
9302 #ifndef NDEBUG
9303   // Verify an invariant: inverting the predicate should turn a monotonically
9304   // increasing change to a monotonically decreasing one, and vice versa.
9305   bool IncreasingSwapped;
9306   bool ResultSwapped = isMonotonicPredicateImpl(
9307       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9308 
9309   assert(Result == ResultSwapped && "should be able to analyze both!");
9310   if (ResultSwapped)
9311     assert(Increasing == !IncreasingSwapped &&
9312            "monotonicity should flip as we flip the predicate");
9313 #endif
9314 
9315   return Result;
9316 }
9317 
9318 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9319                                                ICmpInst::Predicate Pred,
9320                                                bool &Increasing) {
9321 
9322   // A zero step value for LHS means the induction variable is essentially a
9323   // loop invariant value. We don't really depend on the predicate actually
9324   // flipping from false to true (for increasing predicates, and the other way
9325   // around for decreasing predicates), all we care about is that *if* the
9326   // predicate changes then it only changes from false to true.
9327   //
9328   // A zero step value in itself is not very useful, but there may be places
9329   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9330   // as general as possible.
9331 
9332   switch (Pred) {
9333   default:
9334     return false; // Conservative answer
9335 
9336   case ICmpInst::ICMP_UGT:
9337   case ICmpInst::ICMP_UGE:
9338   case ICmpInst::ICMP_ULT:
9339   case ICmpInst::ICMP_ULE:
9340     if (!LHS->hasNoUnsignedWrap())
9341       return false;
9342 
9343     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9344     return true;
9345 
9346   case ICmpInst::ICMP_SGT:
9347   case ICmpInst::ICMP_SGE:
9348   case ICmpInst::ICMP_SLT:
9349   case ICmpInst::ICMP_SLE: {
9350     if (!LHS->hasNoSignedWrap())
9351       return false;
9352 
9353     const SCEV *Step = LHS->getStepRecurrence(*this);
9354 
9355     if (isKnownNonNegative(Step)) {
9356       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9357       return true;
9358     }
9359 
9360     if (isKnownNonPositive(Step)) {
9361       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9362       return true;
9363     }
9364 
9365     return false;
9366   }
9367 
9368   }
9369 
9370   llvm_unreachable("switch has default clause!");
9371 }
9372 
9373 bool ScalarEvolution::isLoopInvariantPredicate(
9374     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9375     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9376     const SCEV *&InvariantRHS) {
9377 
9378   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9379   if (!isLoopInvariant(RHS, L)) {
9380     if (!isLoopInvariant(LHS, L))
9381       return false;
9382 
9383     std::swap(LHS, RHS);
9384     Pred = ICmpInst::getSwappedPredicate(Pred);
9385   }
9386 
9387   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9388   if (!ArLHS || ArLHS->getLoop() != L)
9389     return false;
9390 
9391   bool Increasing;
9392   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9393     return false;
9394 
9395   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9396   // true as the loop iterates, and the backedge is control dependent on
9397   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9398   //
9399   //   * if the predicate was false in the first iteration then the predicate
9400   //     is never evaluated again, since the loop exits without taking the
9401   //     backedge.
9402   //   * if the predicate was true in the first iteration then it will
9403   //     continue to be true for all future iterations since it is
9404   //     monotonically increasing.
9405   //
9406   // For both the above possibilities, we can replace the loop varying
9407   // predicate with its value on the first iteration of the loop (which is
9408   // loop invariant).
9409   //
9410   // A similar reasoning applies for a monotonically decreasing predicate, by
9411   // replacing true with false and false with true in the above two bullets.
9412 
9413   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9414 
9415   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9416     return false;
9417 
9418   InvariantPred = Pred;
9419   InvariantLHS = ArLHS->getStart();
9420   InvariantRHS = RHS;
9421   return true;
9422 }
9423 
9424 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9425     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9426   if (HasSameValue(LHS, RHS))
9427     return ICmpInst::isTrueWhenEqual(Pred);
9428 
9429   // This code is split out from isKnownPredicate because it is called from
9430   // within isLoopEntryGuardedByCond.
9431 
9432   auto CheckRanges =
9433       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9434     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9435         .contains(RangeLHS);
9436   };
9437 
9438   // The check at the top of the function catches the case where the values are
9439   // known to be equal.
9440   if (Pred == CmpInst::ICMP_EQ)
9441     return false;
9442 
9443   if (Pred == CmpInst::ICMP_NE)
9444     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9445            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9446            isKnownNonZero(getMinusSCEV(LHS, RHS));
9447 
9448   if (CmpInst::isSigned(Pred))
9449     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9450 
9451   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9452 }
9453 
9454 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9455                                                     const SCEV *LHS,
9456                                                     const SCEV *RHS) {
9457   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9458   // Return Y via OutY.
9459   auto MatchBinaryAddToConst =
9460       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9461              SCEV::NoWrapFlags ExpectedFlags) {
9462     const SCEV *NonConstOp, *ConstOp;
9463     SCEV::NoWrapFlags FlagsPresent;
9464 
9465     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9466         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9467       return false;
9468 
9469     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9470     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9471   };
9472 
9473   APInt C;
9474 
9475   switch (Pred) {
9476   default:
9477     break;
9478 
9479   case ICmpInst::ICMP_SGE:
9480     std::swap(LHS, RHS);
9481     LLVM_FALLTHROUGH;
9482   case ICmpInst::ICMP_SLE:
9483     // X s<= (X + C)<nsw> if C >= 0
9484     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9485       return true;
9486 
9487     // (X + C)<nsw> s<= X if C <= 0
9488     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9489         !C.isStrictlyPositive())
9490       return true;
9491     break;
9492 
9493   case ICmpInst::ICMP_SGT:
9494     std::swap(LHS, RHS);
9495     LLVM_FALLTHROUGH;
9496   case ICmpInst::ICMP_SLT:
9497     // X s< (X + C)<nsw> if C > 0
9498     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9499         C.isStrictlyPositive())
9500       return true;
9501 
9502     // (X + C)<nsw> s< X if C < 0
9503     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9504       return true;
9505     break;
9506   }
9507 
9508   return false;
9509 }
9510 
9511 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9512                                                    const SCEV *LHS,
9513                                                    const SCEV *RHS) {
9514   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9515     return false;
9516 
9517   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9518   // the stack can result in exponential time complexity.
9519   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9520 
9521   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9522   //
9523   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9524   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9525   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9526   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9527   // use isKnownPredicate later if needed.
9528   return isKnownNonNegative(RHS) &&
9529          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9530          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9531 }
9532 
9533 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9534                                         ICmpInst::Predicate Pred,
9535                                         const SCEV *LHS, const SCEV *RHS) {
9536   // No need to even try if we know the module has no guards.
9537   if (!HasGuards)
9538     return false;
9539 
9540   return any_of(*BB, [&](Instruction &I) {
9541     using namespace llvm::PatternMatch;
9542 
9543     Value *Condition;
9544     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9545                          m_Value(Condition))) &&
9546            isImpliedCond(Pred, LHS, RHS, Condition, false);
9547   });
9548 }
9549 
9550 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9551 /// protected by a conditional between LHS and RHS.  This is used to
9552 /// to eliminate casts.
9553 bool
9554 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9555                                              ICmpInst::Predicate Pred,
9556                                              const SCEV *LHS, const SCEV *RHS) {
9557   // Interpret a null as meaning no loop, where there is obviously no guard
9558   // (interprocedural conditions notwithstanding).
9559   if (!L) return true;
9560 
9561   if (VerifyIR)
9562     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9563            "This cannot be done on broken IR!");
9564 
9565 
9566   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9567     return true;
9568 
9569   BasicBlock *Latch = L->getLoopLatch();
9570   if (!Latch)
9571     return false;
9572 
9573   BranchInst *LoopContinuePredicate =
9574     dyn_cast<BranchInst>(Latch->getTerminator());
9575   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9576       isImpliedCond(Pred, LHS, RHS,
9577                     LoopContinuePredicate->getCondition(),
9578                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9579     return true;
9580 
9581   // We don't want more than one activation of the following loops on the stack
9582   // -- that can lead to O(n!) time complexity.
9583   if (WalkingBEDominatingConds)
9584     return false;
9585 
9586   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9587 
9588   // See if we can exploit a trip count to prove the predicate.
9589   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9590   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9591   if (LatchBECount != getCouldNotCompute()) {
9592     // We know that Latch branches back to the loop header exactly
9593     // LatchBECount times.  This means the backdege condition at Latch is
9594     // equivalent to  "{0,+,1} u< LatchBECount".
9595     Type *Ty = LatchBECount->getType();
9596     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9597     const SCEV *LoopCounter =
9598       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9599     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9600                       LatchBECount))
9601       return true;
9602   }
9603 
9604   // Check conditions due to any @llvm.assume intrinsics.
9605   for (auto &AssumeVH : AC.assumptions()) {
9606     if (!AssumeVH)
9607       continue;
9608     auto *CI = cast<CallInst>(AssumeVH);
9609     if (!DT.dominates(CI, Latch->getTerminator()))
9610       continue;
9611 
9612     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9613       return true;
9614   }
9615 
9616   // If the loop is not reachable from the entry block, we risk running into an
9617   // infinite loop as we walk up into the dom tree.  These loops do not matter
9618   // anyway, so we just return a conservative answer when we see them.
9619   if (!DT.isReachableFromEntry(L->getHeader()))
9620     return false;
9621 
9622   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9623     return true;
9624 
9625   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9626        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9627     assert(DTN && "should reach the loop header before reaching the root!");
9628 
9629     BasicBlock *BB = DTN->getBlock();
9630     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9631       return true;
9632 
9633     BasicBlock *PBB = BB->getSinglePredecessor();
9634     if (!PBB)
9635       continue;
9636 
9637     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9638     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9639       continue;
9640 
9641     Value *Condition = ContinuePredicate->getCondition();
9642 
9643     // If we have an edge `E` within the loop body that dominates the only
9644     // latch, the condition guarding `E` also guards the backedge.  This
9645     // reasoning works only for loops with a single latch.
9646 
9647     BasicBlockEdge DominatingEdge(PBB, BB);
9648     if (DominatingEdge.isSingleEdge()) {
9649       // We're constructively (and conservatively) enumerating edges within the
9650       // loop body that dominate the latch.  The dominator tree better agree
9651       // with us on this:
9652       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9653 
9654       if (isImpliedCond(Pred, LHS, RHS, Condition,
9655                         BB != ContinuePredicate->getSuccessor(0)))
9656         return true;
9657     }
9658   }
9659 
9660   return false;
9661 }
9662 
9663 bool
9664 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9665                                           ICmpInst::Predicate Pred,
9666                                           const SCEV *LHS, const SCEV *RHS) {
9667   // Interpret a null as meaning no loop, where there is obviously no guard
9668   // (interprocedural conditions notwithstanding).
9669   if (!L) return false;
9670 
9671   if (VerifyIR)
9672     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9673            "This cannot be done on broken IR!");
9674 
9675   // Both LHS and RHS must be available at loop entry.
9676   assert(isAvailableAtLoopEntry(LHS, L) &&
9677          "LHS is not available at Loop Entry");
9678   assert(isAvailableAtLoopEntry(RHS, L) &&
9679          "RHS is not available at Loop Entry");
9680 
9681   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9682     return true;
9683 
9684   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9685   // the facts (a >= b && a != b) separately. A typical situation is when the
9686   // non-strict comparison is known from ranges and non-equality is known from
9687   // dominating predicates. If we are proving strict comparison, we always try
9688   // to prove non-equality and non-strict comparison separately.
9689   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9690   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9691   bool ProvedNonStrictComparison = false;
9692   bool ProvedNonEquality = false;
9693 
9694   if (ProvingStrictComparison) {
9695     ProvedNonStrictComparison =
9696         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9697     ProvedNonEquality =
9698         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9699     if (ProvedNonStrictComparison && ProvedNonEquality)
9700       return true;
9701   }
9702 
9703   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9704   auto ProveViaGuard = [&](BasicBlock *Block) {
9705     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9706       return true;
9707     if (ProvingStrictComparison) {
9708       if (!ProvedNonStrictComparison)
9709         ProvedNonStrictComparison =
9710             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9711       if (!ProvedNonEquality)
9712         ProvedNonEquality =
9713             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9714       if (ProvedNonStrictComparison && ProvedNonEquality)
9715         return true;
9716     }
9717     return false;
9718   };
9719 
9720   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9721   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9722     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9723       return true;
9724     if (ProvingStrictComparison) {
9725       if (!ProvedNonStrictComparison)
9726         ProvedNonStrictComparison =
9727             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9728       if (!ProvedNonEquality)
9729         ProvedNonEquality =
9730             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9731       if (ProvedNonStrictComparison && ProvedNonEquality)
9732         return true;
9733     }
9734     return false;
9735   };
9736 
9737   // Starting at the loop predecessor, climb up the predecessor chain, as long
9738   // as there are predecessors that can be found that have unique successors
9739   // leading to the original header.
9740   for (std::pair<BasicBlock *, BasicBlock *>
9741          Pair(L->getLoopPredecessor(), L->getHeader());
9742        Pair.first;
9743        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9744 
9745     if (ProveViaGuard(Pair.first))
9746       return true;
9747 
9748     BranchInst *LoopEntryPredicate =
9749       dyn_cast<BranchInst>(Pair.first->getTerminator());
9750     if (!LoopEntryPredicate ||
9751         LoopEntryPredicate->isUnconditional())
9752       continue;
9753 
9754     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9755                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9756       return true;
9757   }
9758 
9759   // Check conditions due to any @llvm.assume intrinsics.
9760   for (auto &AssumeVH : AC.assumptions()) {
9761     if (!AssumeVH)
9762       continue;
9763     auto *CI = cast<CallInst>(AssumeVH);
9764     if (!DT.dominates(CI, L->getHeader()))
9765       continue;
9766 
9767     if (ProveViaCond(CI->getArgOperand(0), false))
9768       return true;
9769   }
9770 
9771   return false;
9772 }
9773 
9774 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9775                                     const SCEV *LHS, const SCEV *RHS,
9776                                     Value *FoundCondValue,
9777                                     bool Inverse) {
9778   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9779     return false;
9780 
9781   auto ClearOnExit =
9782       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9783 
9784   // Recursively handle And and Or conditions.
9785   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9786     if (BO->getOpcode() == Instruction::And) {
9787       if (!Inverse)
9788         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9789                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9790     } else if (BO->getOpcode() == Instruction::Or) {
9791       if (Inverse)
9792         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9793                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9794     }
9795   }
9796 
9797   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9798   if (!ICI) return false;
9799 
9800   // Now that we found a conditional branch that dominates the loop or controls
9801   // the loop latch. Check to see if it is the comparison we are looking for.
9802   ICmpInst::Predicate FoundPred;
9803   if (Inverse)
9804     FoundPred = ICI->getInversePredicate();
9805   else
9806     FoundPred = ICI->getPredicate();
9807 
9808   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9809   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9810 
9811   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9812 }
9813 
9814 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9815                                     const SCEV *RHS,
9816                                     ICmpInst::Predicate FoundPred,
9817                                     const SCEV *FoundLHS,
9818                                     const SCEV *FoundRHS) {
9819   // Balance the types.
9820   if (getTypeSizeInBits(LHS->getType()) <
9821       getTypeSizeInBits(FoundLHS->getType())) {
9822     if (CmpInst::isSigned(Pred)) {
9823       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9824       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9825     } else {
9826       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9827       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9828     }
9829   } else if (getTypeSizeInBits(LHS->getType()) >
9830       getTypeSizeInBits(FoundLHS->getType())) {
9831     if (CmpInst::isSigned(FoundPred)) {
9832       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9833       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9834     } else {
9835       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9836       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9837     }
9838   }
9839 
9840   // Canonicalize the query to match the way instcombine will have
9841   // canonicalized the comparison.
9842   if (SimplifyICmpOperands(Pred, LHS, RHS))
9843     if (LHS == RHS)
9844       return CmpInst::isTrueWhenEqual(Pred);
9845   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9846     if (FoundLHS == FoundRHS)
9847       return CmpInst::isFalseWhenEqual(FoundPred);
9848 
9849   // Check to see if we can make the LHS or RHS match.
9850   if (LHS == FoundRHS || RHS == FoundLHS) {
9851     if (isa<SCEVConstant>(RHS)) {
9852       std::swap(FoundLHS, FoundRHS);
9853       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9854     } else {
9855       std::swap(LHS, RHS);
9856       Pred = ICmpInst::getSwappedPredicate(Pred);
9857     }
9858   }
9859 
9860   // Check whether the found predicate is the same as the desired predicate.
9861   if (FoundPred == Pred)
9862     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9863 
9864   // Check whether swapping the found predicate makes it the same as the
9865   // desired predicate.
9866   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9867     if (isa<SCEVConstant>(RHS))
9868       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9869     else
9870       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9871                                    RHS, LHS, FoundLHS, FoundRHS);
9872   }
9873 
9874   // Unsigned comparison is the same as signed comparison when both the operands
9875   // are non-negative.
9876   if (CmpInst::isUnsigned(FoundPred) &&
9877       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9878       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9879     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9880 
9881   // Check if we can make progress by sharpening ranges.
9882   if (FoundPred == ICmpInst::ICMP_NE &&
9883       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9884 
9885     const SCEVConstant *C = nullptr;
9886     const SCEV *V = nullptr;
9887 
9888     if (isa<SCEVConstant>(FoundLHS)) {
9889       C = cast<SCEVConstant>(FoundLHS);
9890       V = FoundRHS;
9891     } else {
9892       C = cast<SCEVConstant>(FoundRHS);
9893       V = FoundLHS;
9894     }
9895 
9896     // The guarding predicate tells us that C != V. If the known range
9897     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9898     // range we consider has to correspond to same signedness as the
9899     // predicate we're interested in folding.
9900 
9901     APInt Min = ICmpInst::isSigned(Pred) ?
9902         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9903 
9904     if (Min == C->getAPInt()) {
9905       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9906       // This is true even if (Min + 1) wraps around -- in case of
9907       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9908 
9909       APInt SharperMin = Min + 1;
9910 
9911       switch (Pred) {
9912         case ICmpInst::ICMP_SGE:
9913         case ICmpInst::ICMP_UGE:
9914           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9915           // RHS, we're done.
9916           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9917                                     getConstant(SharperMin)))
9918             return true;
9919           LLVM_FALLTHROUGH;
9920 
9921         case ICmpInst::ICMP_SGT:
9922         case ICmpInst::ICMP_UGT:
9923           // We know from the range information that (V `Pred` Min ||
9924           // V == Min).  We know from the guarding condition that !(V
9925           // == Min).  This gives us
9926           //
9927           //       V `Pred` Min || V == Min && !(V == Min)
9928           //   =>  V `Pred` Min
9929           //
9930           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9931 
9932           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9933             return true;
9934           LLVM_FALLTHROUGH;
9935 
9936         default:
9937           // No change
9938           break;
9939       }
9940     }
9941   }
9942 
9943   // Check whether the actual condition is beyond sufficient.
9944   if (FoundPred == ICmpInst::ICMP_EQ)
9945     if (ICmpInst::isTrueWhenEqual(Pred))
9946       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9947         return true;
9948   if (Pred == ICmpInst::ICMP_NE)
9949     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9950       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9951         return true;
9952 
9953   // Otherwise assume the worst.
9954   return false;
9955 }
9956 
9957 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9958                                      const SCEV *&L, const SCEV *&R,
9959                                      SCEV::NoWrapFlags &Flags) {
9960   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9961   if (!AE || AE->getNumOperands() != 2)
9962     return false;
9963 
9964   L = AE->getOperand(0);
9965   R = AE->getOperand(1);
9966   Flags = AE->getNoWrapFlags();
9967   return true;
9968 }
9969 
9970 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9971                                                            const SCEV *Less) {
9972   // We avoid subtracting expressions here because this function is usually
9973   // fairly deep in the call stack (i.e. is called many times).
9974 
9975   // X - X = 0.
9976   if (More == Less)
9977     return APInt(getTypeSizeInBits(More->getType()), 0);
9978 
9979   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9980     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9981     const auto *MAR = cast<SCEVAddRecExpr>(More);
9982 
9983     if (LAR->getLoop() != MAR->getLoop())
9984       return None;
9985 
9986     // We look at affine expressions only; not for correctness but to keep
9987     // getStepRecurrence cheap.
9988     if (!LAR->isAffine() || !MAR->isAffine())
9989       return None;
9990 
9991     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9992       return None;
9993 
9994     Less = LAR->getStart();
9995     More = MAR->getStart();
9996 
9997     // fall through
9998   }
9999 
10000   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10001     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10002     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10003     return M - L;
10004   }
10005 
10006   SCEV::NoWrapFlags Flags;
10007   const SCEV *LLess = nullptr, *RLess = nullptr;
10008   const SCEV *LMore = nullptr, *RMore = nullptr;
10009   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10010   // Compare (X + C1) vs X.
10011   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10012     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10013       if (RLess == More)
10014         return -(C1->getAPInt());
10015 
10016   // Compare X vs (X + C2).
10017   if (splitBinaryAdd(More, LMore, RMore, Flags))
10018     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10019       if (RMore == Less)
10020         return C2->getAPInt();
10021 
10022   // Compare (X + C1) vs (X + C2).
10023   if (C1 && C2 && RLess == RMore)
10024     return C2->getAPInt() - C1->getAPInt();
10025 
10026   return None;
10027 }
10028 
10029 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10030     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10031     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10032   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10033     return false;
10034 
10035   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10036   if (!AddRecLHS)
10037     return false;
10038 
10039   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10040   if (!AddRecFoundLHS)
10041     return false;
10042 
10043   // We'd like to let SCEV reason about control dependencies, so we constrain
10044   // both the inequalities to be about add recurrences on the same loop.  This
10045   // way we can use isLoopEntryGuardedByCond later.
10046 
10047   const Loop *L = AddRecFoundLHS->getLoop();
10048   if (L != AddRecLHS->getLoop())
10049     return false;
10050 
10051   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10052   //
10053   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10054   //                                                                  ... (2)
10055   //
10056   // Informal proof for (2), assuming (1) [*]:
10057   //
10058   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10059   //
10060   // Then
10061   //
10062   //       FoundLHS s< FoundRHS s< INT_MIN - C
10063   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10064   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10065   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10066   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10067   // <=>  FoundLHS + C s< FoundRHS + C
10068   //
10069   // [*]: (1) can be proved by ruling out overflow.
10070   //
10071   // [**]: This can be proved by analyzing all the four possibilities:
10072   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10073   //    (A s>= 0, B s>= 0).
10074   //
10075   // Note:
10076   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10077   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10078   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10079   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10080   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10081   // C)".
10082 
10083   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10084   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10085   if (!LDiff || !RDiff || *LDiff != *RDiff)
10086     return false;
10087 
10088   if (LDiff->isMinValue())
10089     return true;
10090 
10091   APInt FoundRHSLimit;
10092 
10093   if (Pred == CmpInst::ICMP_ULT) {
10094     FoundRHSLimit = -(*RDiff);
10095   } else {
10096     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10097     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10098   }
10099 
10100   // Try to prove (1) or (2), as needed.
10101   return isAvailableAtLoopEntry(FoundRHS, L) &&
10102          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10103                                   getConstant(FoundRHSLimit));
10104 }
10105 
10106 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10107                                         const SCEV *LHS, const SCEV *RHS,
10108                                         const SCEV *FoundLHS,
10109                                         const SCEV *FoundRHS, unsigned Depth) {
10110   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10111 
10112   auto ClearOnExit = make_scope_exit([&]() {
10113     if (LPhi) {
10114       bool Erased = PendingMerges.erase(LPhi);
10115       assert(Erased && "Failed to erase LPhi!");
10116       (void)Erased;
10117     }
10118     if (RPhi) {
10119       bool Erased = PendingMerges.erase(RPhi);
10120       assert(Erased && "Failed to erase RPhi!");
10121       (void)Erased;
10122     }
10123   });
10124 
10125   // Find respective Phis and check that they are not being pending.
10126   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10127     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10128       if (!PendingMerges.insert(Phi).second)
10129         return false;
10130       LPhi = Phi;
10131     }
10132   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10133     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10134       // If we detect a loop of Phi nodes being processed by this method, for
10135       // example:
10136       //
10137       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10138       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10139       //
10140       // we don't want to deal with a case that complex, so return conservative
10141       // answer false.
10142       if (!PendingMerges.insert(Phi).second)
10143         return false;
10144       RPhi = Phi;
10145     }
10146 
10147   // If none of LHS, RHS is a Phi, nothing to do here.
10148   if (!LPhi && !RPhi)
10149     return false;
10150 
10151   // If there is a SCEVUnknown Phi we are interested in, make it left.
10152   if (!LPhi) {
10153     std::swap(LHS, RHS);
10154     std::swap(FoundLHS, FoundRHS);
10155     std::swap(LPhi, RPhi);
10156     Pred = ICmpInst::getSwappedPredicate(Pred);
10157   }
10158 
10159   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10160   const BasicBlock *LBB = LPhi->getParent();
10161   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10162 
10163   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10164     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10165            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10166            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10167   };
10168 
10169   if (RPhi && RPhi->getParent() == LBB) {
10170     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10171     // If we compare two Phis from the same block, and for each entry block
10172     // the predicate is true for incoming values from this block, then the
10173     // predicate is also true for the Phis.
10174     for (const BasicBlock *IncBB : predecessors(LBB)) {
10175       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10176       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10177       if (!ProvedEasily(L, R))
10178         return false;
10179     }
10180   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10181     // Case two: RHS is also a Phi from the same basic block, and it is an
10182     // AddRec. It means that there is a loop which has both AddRec and Unknown
10183     // PHIs, for it we can compare incoming values of AddRec from above the loop
10184     // and latch with their respective incoming values of LPhi.
10185     // TODO: Generalize to handle loops with many inputs in a header.
10186     if (LPhi->getNumIncomingValues() != 2) return false;
10187 
10188     auto *RLoop = RAR->getLoop();
10189     auto *Predecessor = RLoop->getLoopPredecessor();
10190     assert(Predecessor && "Loop with AddRec with no predecessor?");
10191     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10192     if (!ProvedEasily(L1, RAR->getStart()))
10193       return false;
10194     auto *Latch = RLoop->getLoopLatch();
10195     assert(Latch && "Loop with AddRec with no latch?");
10196     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10197     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10198       return false;
10199   } else {
10200     // In all other cases go over inputs of LHS and compare each of them to RHS,
10201     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10202     // At this point RHS is either a non-Phi, or it is a Phi from some block
10203     // different from LBB.
10204     for (const BasicBlock *IncBB : predecessors(LBB)) {
10205       // Check that RHS is available in this block.
10206       if (!dominates(RHS, IncBB))
10207         return false;
10208       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10209       if (!ProvedEasily(L, RHS))
10210         return false;
10211     }
10212   }
10213   return true;
10214 }
10215 
10216 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10217                                             const SCEV *LHS, const SCEV *RHS,
10218                                             const SCEV *FoundLHS,
10219                                             const SCEV *FoundRHS) {
10220   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10221     return true;
10222 
10223   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10224     return true;
10225 
10226   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10227                                      FoundLHS, FoundRHS) ||
10228          // ~x < ~y --> x > y
10229          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10230                                      getNotSCEV(FoundRHS),
10231                                      getNotSCEV(FoundLHS));
10232 }
10233 
10234 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10235 template <typename MinMaxExprType>
10236 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10237                                  const SCEV *Candidate) {
10238   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10239   if (!MinMaxExpr)
10240     return false;
10241 
10242   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10243 }
10244 
10245 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10246                                            ICmpInst::Predicate Pred,
10247                                            const SCEV *LHS, const SCEV *RHS) {
10248   // If both sides are affine addrecs for the same loop, with equal
10249   // steps, and we know the recurrences don't wrap, then we only
10250   // need to check the predicate on the starting values.
10251 
10252   if (!ICmpInst::isRelational(Pred))
10253     return false;
10254 
10255   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10256   if (!LAR)
10257     return false;
10258   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10259   if (!RAR)
10260     return false;
10261   if (LAR->getLoop() != RAR->getLoop())
10262     return false;
10263   if (!LAR->isAffine() || !RAR->isAffine())
10264     return false;
10265 
10266   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10267     return false;
10268 
10269   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10270                          SCEV::FlagNSW : SCEV::FlagNUW;
10271   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10272     return false;
10273 
10274   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10275 }
10276 
10277 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10278 /// expression?
10279 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10280                                         ICmpInst::Predicate Pred,
10281                                         const SCEV *LHS, const SCEV *RHS) {
10282   switch (Pred) {
10283   default:
10284     return false;
10285 
10286   case ICmpInst::ICMP_SGE:
10287     std::swap(LHS, RHS);
10288     LLVM_FALLTHROUGH;
10289   case ICmpInst::ICMP_SLE:
10290     return
10291         // min(A, ...) <= A
10292         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10293         // A <= max(A, ...)
10294         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10295 
10296   case ICmpInst::ICMP_UGE:
10297     std::swap(LHS, RHS);
10298     LLVM_FALLTHROUGH;
10299   case ICmpInst::ICMP_ULE:
10300     return
10301         // min(A, ...) <= A
10302         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10303         // A <= max(A, ...)
10304         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10305   }
10306 
10307   llvm_unreachable("covered switch fell through?!");
10308 }
10309 
10310 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10311                                              const SCEV *LHS, const SCEV *RHS,
10312                                              const SCEV *FoundLHS,
10313                                              const SCEV *FoundRHS,
10314                                              unsigned Depth) {
10315   assert(getTypeSizeInBits(LHS->getType()) ==
10316              getTypeSizeInBits(RHS->getType()) &&
10317          "LHS and RHS have different sizes?");
10318   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10319              getTypeSizeInBits(FoundRHS->getType()) &&
10320          "FoundLHS and FoundRHS have different sizes?");
10321   // We want to avoid hurting the compile time with analysis of too big trees.
10322   if (Depth > MaxSCEVOperationsImplicationDepth)
10323     return false;
10324   // We only want to work with ICMP_SGT comparison so far.
10325   // TODO: Extend to ICMP_UGT?
10326   if (Pred == ICmpInst::ICMP_SLT) {
10327     Pred = ICmpInst::ICMP_SGT;
10328     std::swap(LHS, RHS);
10329     std::swap(FoundLHS, FoundRHS);
10330   }
10331   if (Pred != ICmpInst::ICMP_SGT)
10332     return false;
10333 
10334   auto GetOpFromSExt = [&](const SCEV *S) {
10335     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10336       return Ext->getOperand();
10337     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10338     // the constant in some cases.
10339     return S;
10340   };
10341 
10342   // Acquire values from extensions.
10343   auto *OrigLHS = LHS;
10344   auto *OrigFoundLHS = FoundLHS;
10345   LHS = GetOpFromSExt(LHS);
10346   FoundLHS = GetOpFromSExt(FoundLHS);
10347 
10348   // Is the SGT predicate can be proved trivially or using the found context.
10349   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10350     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10351            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10352                                   FoundRHS, Depth + 1);
10353   };
10354 
10355   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10356     // We want to avoid creation of any new non-constant SCEV. Since we are
10357     // going to compare the operands to RHS, we should be certain that we don't
10358     // need any size extensions for this. So let's decline all cases when the
10359     // sizes of types of LHS and RHS do not match.
10360     // TODO: Maybe try to get RHS from sext to catch more cases?
10361     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10362       return false;
10363 
10364     // Should not overflow.
10365     if (!LHSAddExpr->hasNoSignedWrap())
10366       return false;
10367 
10368     auto *LL = LHSAddExpr->getOperand(0);
10369     auto *LR = LHSAddExpr->getOperand(1);
10370     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10371 
10372     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10373     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10374       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10375     };
10376     // Try to prove the following rule:
10377     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10378     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10379     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10380       return true;
10381   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10382     Value *LL, *LR;
10383     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10384 
10385     using namespace llvm::PatternMatch;
10386 
10387     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10388       // Rules for division.
10389       // We are going to perform some comparisons with Denominator and its
10390       // derivative expressions. In general case, creating a SCEV for it may
10391       // lead to a complex analysis of the entire graph, and in particular it
10392       // can request trip count recalculation for the same loop. This would
10393       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10394       // this, we only want to create SCEVs that are constants in this section.
10395       // So we bail if Denominator is not a constant.
10396       if (!isa<ConstantInt>(LR))
10397         return false;
10398 
10399       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10400 
10401       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10402       // then a SCEV for the numerator already exists and matches with FoundLHS.
10403       auto *Numerator = getExistingSCEV(LL);
10404       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10405         return false;
10406 
10407       // Make sure that the numerator matches with FoundLHS and the denominator
10408       // is positive.
10409       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10410         return false;
10411 
10412       auto *DTy = Denominator->getType();
10413       auto *FRHSTy = FoundRHS->getType();
10414       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10415         // One of types is a pointer and another one is not. We cannot extend
10416         // them properly to a wider type, so let us just reject this case.
10417         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10418         // to avoid this check.
10419         return false;
10420 
10421       // Given that:
10422       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10423       auto *WTy = getWiderType(DTy, FRHSTy);
10424       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10425       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10426 
10427       // Try to prove the following rule:
10428       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10429       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10430       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10431       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10432       if (isKnownNonPositive(RHS) &&
10433           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10434         return true;
10435 
10436       // Try to prove the following rule:
10437       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10438       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10439       // If we divide it by Denominator > 2, then:
10440       // 1. If FoundLHS is negative, then the result is 0.
10441       // 2. If FoundLHS is non-negative, then the result is non-negative.
10442       // Anyways, the result is non-negative.
10443       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10444       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10445       if (isKnownNegative(RHS) &&
10446           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10447         return true;
10448     }
10449   }
10450 
10451   // If our expression contained SCEVUnknown Phis, and we split it down and now
10452   // need to prove something for them, try to prove the predicate for every
10453   // possible incoming values of those Phis.
10454   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10455     return true;
10456 
10457   return false;
10458 }
10459 
10460 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10461                                         const SCEV *LHS, const SCEV *RHS) {
10462   // zext x u<= sext x, sext x s<= zext x
10463   switch (Pred) {
10464   case ICmpInst::ICMP_SGE:
10465     std::swap(LHS, RHS);
10466     LLVM_FALLTHROUGH;
10467   case ICmpInst::ICMP_SLE: {
10468     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10469     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10470     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10471     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10472       return true;
10473     break;
10474   }
10475   case ICmpInst::ICMP_UGE:
10476     std::swap(LHS, RHS);
10477     LLVM_FALLTHROUGH;
10478   case ICmpInst::ICMP_ULE: {
10479     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10480     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10481     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10482     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10483       return true;
10484     break;
10485   }
10486   default:
10487     break;
10488   };
10489   return false;
10490 }
10491 
10492 bool
10493 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10494                                            const SCEV *LHS, const SCEV *RHS) {
10495   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10496          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10497          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10498          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10499          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10500 }
10501 
10502 bool
10503 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10504                                              const SCEV *LHS, const SCEV *RHS,
10505                                              const SCEV *FoundLHS,
10506                                              const SCEV *FoundRHS) {
10507   switch (Pred) {
10508   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10509   case ICmpInst::ICMP_EQ:
10510   case ICmpInst::ICMP_NE:
10511     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10512       return true;
10513     break;
10514   case ICmpInst::ICMP_SLT:
10515   case ICmpInst::ICMP_SLE:
10516     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10517         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10518       return true;
10519     break;
10520   case ICmpInst::ICMP_SGT:
10521   case ICmpInst::ICMP_SGE:
10522     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10523         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10524       return true;
10525     break;
10526   case ICmpInst::ICMP_ULT:
10527   case ICmpInst::ICMP_ULE:
10528     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10529         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10530       return true;
10531     break;
10532   case ICmpInst::ICMP_UGT:
10533   case ICmpInst::ICMP_UGE:
10534     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10535         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10536       return true;
10537     break;
10538   }
10539 
10540   // Maybe it can be proved via operations?
10541   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10542     return true;
10543 
10544   return false;
10545 }
10546 
10547 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10548                                                      const SCEV *LHS,
10549                                                      const SCEV *RHS,
10550                                                      const SCEV *FoundLHS,
10551                                                      const SCEV *FoundRHS) {
10552   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10553     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10554     // reduce the compile time impact of this optimization.
10555     return false;
10556 
10557   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10558   if (!Addend)
10559     return false;
10560 
10561   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10562 
10563   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10564   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10565   ConstantRange FoundLHSRange =
10566       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10567 
10568   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10569   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10570 
10571   // We can also compute the range of values for `LHS` that satisfy the
10572   // consequent, "`LHS` `Pred` `RHS`":
10573   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10574   ConstantRange SatisfyingLHSRange =
10575       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10576 
10577   // The antecedent implies the consequent if every value of `LHS` that
10578   // satisfies the antecedent also satisfies the consequent.
10579   return SatisfyingLHSRange.contains(LHSRange);
10580 }
10581 
10582 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10583                                          bool IsSigned, bool NoWrap) {
10584   assert(isKnownPositive(Stride) && "Positive stride expected!");
10585 
10586   if (NoWrap) return false;
10587 
10588   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10589   const SCEV *One = getOne(Stride->getType());
10590 
10591   if (IsSigned) {
10592     APInt MaxRHS = getSignedRangeMax(RHS);
10593     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10594     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10595 
10596     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10597     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10598   }
10599 
10600   APInt MaxRHS = getUnsignedRangeMax(RHS);
10601   APInt MaxValue = APInt::getMaxValue(BitWidth);
10602   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10603 
10604   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10605   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10606 }
10607 
10608 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10609                                          bool IsSigned, bool NoWrap) {
10610   if (NoWrap) return false;
10611 
10612   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10613   const SCEV *One = getOne(Stride->getType());
10614 
10615   if (IsSigned) {
10616     APInt MinRHS = getSignedRangeMin(RHS);
10617     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10618     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10619 
10620     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10621     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10622   }
10623 
10624   APInt MinRHS = getUnsignedRangeMin(RHS);
10625   APInt MinValue = APInt::getMinValue(BitWidth);
10626   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10627 
10628   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10629   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10630 }
10631 
10632 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10633                                             bool Equality) {
10634   const SCEV *One = getOne(Step->getType());
10635   Delta = Equality ? getAddExpr(Delta, Step)
10636                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10637   return getUDivExpr(Delta, Step);
10638 }
10639 
10640 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10641                                                     const SCEV *Stride,
10642                                                     const SCEV *End,
10643                                                     unsigned BitWidth,
10644                                                     bool IsSigned) {
10645 
10646   assert(!isKnownNonPositive(Stride) &&
10647          "Stride is expected strictly positive!");
10648   // Calculate the maximum backedge count based on the range of values
10649   // permitted by Start, End, and Stride.
10650   const SCEV *MaxBECount;
10651   APInt MinStart =
10652       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10653 
10654   APInt StrideForMaxBECount =
10655       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10656 
10657   // We already know that the stride is positive, so we paper over conservatism
10658   // in our range computation by forcing StrideForMaxBECount to be at least one.
10659   // In theory this is unnecessary, but we expect MaxBECount to be a
10660   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10661   // is nothing to constant fold it to).
10662   APInt One(BitWidth, 1, IsSigned);
10663   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10664 
10665   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10666                             : APInt::getMaxValue(BitWidth);
10667   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10668 
10669   // Although End can be a MAX expression we estimate MaxEnd considering only
10670   // the case End = RHS of the loop termination condition. This is safe because
10671   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10672   // taken count.
10673   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10674                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10675 
10676   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10677                               getConstant(StrideForMaxBECount) /* Step */,
10678                               false /* Equality */);
10679 
10680   return MaxBECount;
10681 }
10682 
10683 ScalarEvolution::ExitLimit
10684 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10685                                   const Loop *L, bool IsSigned,
10686                                   bool ControlsExit, bool AllowPredicates) {
10687   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10688 
10689   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10690   bool PredicatedIV = false;
10691 
10692   if (!IV && AllowPredicates) {
10693     // Try to make this an AddRec using runtime tests, in the first X
10694     // iterations of this loop, where X is the SCEV expression found by the
10695     // algorithm below.
10696     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10697     PredicatedIV = true;
10698   }
10699 
10700   // Avoid weird loops
10701   if (!IV || IV->getLoop() != L || !IV->isAffine())
10702     return getCouldNotCompute();
10703 
10704   bool NoWrap = ControlsExit &&
10705                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10706 
10707   const SCEV *Stride = IV->getStepRecurrence(*this);
10708 
10709   bool PositiveStride = isKnownPositive(Stride);
10710 
10711   // Avoid negative or zero stride values.
10712   if (!PositiveStride) {
10713     // We can compute the correct backedge taken count for loops with unknown
10714     // strides if we can prove that the loop is not an infinite loop with side
10715     // effects. Here's the loop structure we are trying to handle -
10716     //
10717     // i = start
10718     // do {
10719     //   A[i] = i;
10720     //   i += s;
10721     // } while (i < end);
10722     //
10723     // The backedge taken count for such loops is evaluated as -
10724     // (max(end, start + stride) - start - 1) /u stride
10725     //
10726     // The additional preconditions that we need to check to prove correctness
10727     // of the above formula is as follows -
10728     //
10729     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10730     //    NoWrap flag).
10731     // b) loop is single exit with no side effects.
10732     //
10733     //
10734     // Precondition a) implies that if the stride is negative, this is a single
10735     // trip loop. The backedge taken count formula reduces to zero in this case.
10736     //
10737     // Precondition b) implies that the unknown stride cannot be zero otherwise
10738     // we have UB.
10739     //
10740     // The positive stride case is the same as isKnownPositive(Stride) returning
10741     // true (original behavior of the function).
10742     //
10743     // We want to make sure that the stride is truly unknown as there are edge
10744     // cases where ScalarEvolution propagates no wrap flags to the
10745     // post-increment/decrement IV even though the increment/decrement operation
10746     // itself is wrapping. The computed backedge taken count may be wrong in
10747     // such cases. This is prevented by checking that the stride is not known to
10748     // be either positive or non-positive. For example, no wrap flags are
10749     // propagated to the post-increment IV of this loop with a trip count of 2 -
10750     //
10751     // unsigned char i;
10752     // for(i=127; i<128; i+=129)
10753     //   A[i] = i;
10754     //
10755     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10756         !loopHasNoSideEffects(L))
10757       return getCouldNotCompute();
10758   } else if (!Stride->isOne() &&
10759              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10760     // Avoid proven overflow cases: this will ensure that the backedge taken
10761     // count will not generate any unsigned overflow. Relaxed no-overflow
10762     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10763     // undefined behaviors like the case of C language.
10764     return getCouldNotCompute();
10765 
10766   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10767                                       : ICmpInst::ICMP_ULT;
10768   const SCEV *Start = IV->getStart();
10769   const SCEV *End = RHS;
10770   // When the RHS is not invariant, we do not know the end bound of the loop and
10771   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10772   // calculate the MaxBECount, given the start, stride and max value for the end
10773   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10774   // checked above).
10775   if (!isLoopInvariant(RHS, L)) {
10776     const SCEV *MaxBECount = computeMaxBECountForLT(
10777         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10778     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10779                      false /*MaxOrZero*/, Predicates);
10780   }
10781   // If the backedge is taken at least once, then it will be taken
10782   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10783   // is the LHS value of the less-than comparison the first time it is evaluated
10784   // and End is the RHS.
10785   const SCEV *BECountIfBackedgeTaken =
10786     computeBECount(getMinusSCEV(End, Start), Stride, false);
10787   // If the loop entry is guarded by the result of the backedge test of the
10788   // first loop iteration, then we know the backedge will be taken at least
10789   // once and so the backedge taken count is as above. If not then we use the
10790   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10791   // as if the backedge is taken at least once max(End,Start) is End and so the
10792   // result is as above, and if not max(End,Start) is Start so we get a backedge
10793   // count of zero.
10794   const SCEV *BECount;
10795   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10796     BECount = BECountIfBackedgeTaken;
10797   else {
10798     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10799     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10800   }
10801 
10802   const SCEV *MaxBECount;
10803   bool MaxOrZero = false;
10804   if (isa<SCEVConstant>(BECount))
10805     MaxBECount = BECount;
10806   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10807     // If we know exactly how many times the backedge will be taken if it's
10808     // taken at least once, then the backedge count will either be that or
10809     // zero.
10810     MaxBECount = BECountIfBackedgeTaken;
10811     MaxOrZero = true;
10812   } else {
10813     MaxBECount = computeMaxBECountForLT(
10814         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10815   }
10816 
10817   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10818       !isa<SCEVCouldNotCompute>(BECount))
10819     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10820 
10821   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10822 }
10823 
10824 ScalarEvolution::ExitLimit
10825 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10826                                      const Loop *L, bool IsSigned,
10827                                      bool ControlsExit, bool AllowPredicates) {
10828   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10829   // We handle only IV > Invariant
10830   if (!isLoopInvariant(RHS, L))
10831     return getCouldNotCompute();
10832 
10833   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10834   if (!IV && AllowPredicates)
10835     // Try to make this an AddRec using runtime tests, in the first X
10836     // iterations of this loop, where X is the SCEV expression found by the
10837     // algorithm below.
10838     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10839 
10840   // Avoid weird loops
10841   if (!IV || IV->getLoop() != L || !IV->isAffine())
10842     return getCouldNotCompute();
10843 
10844   bool NoWrap = ControlsExit &&
10845                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10846 
10847   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10848 
10849   // Avoid negative or zero stride values
10850   if (!isKnownPositive(Stride))
10851     return getCouldNotCompute();
10852 
10853   // Avoid proven overflow cases: this will ensure that the backedge taken count
10854   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10855   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10856   // behaviors like the case of C language.
10857   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10858     return getCouldNotCompute();
10859 
10860   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10861                                       : ICmpInst::ICMP_UGT;
10862 
10863   const SCEV *Start = IV->getStart();
10864   const SCEV *End = RHS;
10865   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10866     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10867 
10868   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10869 
10870   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10871                             : getUnsignedRangeMax(Start);
10872 
10873   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10874                              : getUnsignedRangeMin(Stride);
10875 
10876   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10877   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10878                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10879 
10880   // Although End can be a MIN expression we estimate MinEnd considering only
10881   // the case End = RHS. This is safe because in the other case (Start - End)
10882   // is zero, leading to a zero maximum backedge taken count.
10883   APInt MinEnd =
10884     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10885              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10886 
10887   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10888                                ? BECount
10889                                : computeBECount(getConstant(MaxStart - MinEnd),
10890                                                 getConstant(MinStride), false);
10891 
10892   if (isa<SCEVCouldNotCompute>(MaxBECount))
10893     MaxBECount = BECount;
10894 
10895   return ExitLimit(BECount, MaxBECount, false, Predicates);
10896 }
10897 
10898 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10899                                                     ScalarEvolution &SE) const {
10900   if (Range.isFullSet())  // Infinite loop.
10901     return SE.getCouldNotCompute();
10902 
10903   // If the start is a non-zero constant, shift the range to simplify things.
10904   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10905     if (!SC->getValue()->isZero()) {
10906       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10907       Operands[0] = SE.getZero(SC->getType());
10908       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10909                                              getNoWrapFlags(FlagNW));
10910       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10911         return ShiftedAddRec->getNumIterationsInRange(
10912             Range.subtract(SC->getAPInt()), SE);
10913       // This is strange and shouldn't happen.
10914       return SE.getCouldNotCompute();
10915     }
10916 
10917   // The only time we can solve this is when we have all constant indices.
10918   // Otherwise, we cannot determine the overflow conditions.
10919   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10920     return SE.getCouldNotCompute();
10921 
10922   // Okay at this point we know that all elements of the chrec are constants and
10923   // that the start element is zero.
10924 
10925   // First check to see if the range contains zero.  If not, the first
10926   // iteration exits.
10927   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10928   if (!Range.contains(APInt(BitWidth, 0)))
10929     return SE.getZero(getType());
10930 
10931   if (isAffine()) {
10932     // If this is an affine expression then we have this situation:
10933     //   Solve {0,+,A} in Range  ===  Ax in Range
10934 
10935     // We know that zero is in the range.  If A is positive then we know that
10936     // the upper value of the range must be the first possible exit value.
10937     // If A is negative then the lower of the range is the last possible loop
10938     // value.  Also note that we already checked for a full range.
10939     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10940     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10941 
10942     // The exit value should be (End+A)/A.
10943     APInt ExitVal = (End + A).udiv(A);
10944     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10945 
10946     // Evaluate at the exit value.  If we really did fall out of the valid
10947     // range, then we computed our trip count, otherwise wrap around or other
10948     // things must have happened.
10949     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10950     if (Range.contains(Val->getValue()))
10951       return SE.getCouldNotCompute();  // Something strange happened
10952 
10953     // Ensure that the previous value is in the range.  This is a sanity check.
10954     assert(Range.contains(
10955            EvaluateConstantChrecAtConstant(this,
10956            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10957            "Linear scev computation is off in a bad way!");
10958     return SE.getConstant(ExitValue);
10959   }
10960 
10961   if (isQuadratic()) {
10962     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10963       return SE.getConstant(S.getValue());
10964   }
10965 
10966   return SE.getCouldNotCompute();
10967 }
10968 
10969 const SCEVAddRecExpr *
10970 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10971   assert(getNumOperands() > 1 && "AddRec with zero step?");
10972   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10973   // but in this case we cannot guarantee that the value returned will be an
10974   // AddRec because SCEV does not have a fixed point where it stops
10975   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10976   // may happen if we reach arithmetic depth limit while simplifying. So we
10977   // construct the returned value explicitly.
10978   SmallVector<const SCEV *, 3> Ops;
10979   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10980   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10981   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10982     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10983   // We know that the last operand is not a constant zero (otherwise it would
10984   // have been popped out earlier). This guarantees us that if the result has
10985   // the same last operand, then it will also not be popped out, meaning that
10986   // the returned value will be an AddRec.
10987   const SCEV *Last = getOperand(getNumOperands() - 1);
10988   assert(!Last->isZero() && "Recurrency with zero step?");
10989   Ops.push_back(Last);
10990   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10991                                                SCEV::FlagAnyWrap));
10992 }
10993 
10994 // Return true when S contains at least an undef value.
10995 static inline bool containsUndefs(const SCEV *S) {
10996   return SCEVExprContains(S, [](const SCEV *S) {
10997     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10998       return isa<UndefValue>(SU->getValue());
10999     return false;
11000   });
11001 }
11002 
11003 namespace {
11004 
11005 // Collect all steps of SCEV expressions.
11006 struct SCEVCollectStrides {
11007   ScalarEvolution &SE;
11008   SmallVectorImpl<const SCEV *> &Strides;
11009 
11010   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11011       : SE(SE), Strides(S) {}
11012 
11013   bool follow(const SCEV *S) {
11014     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11015       Strides.push_back(AR->getStepRecurrence(SE));
11016     return true;
11017   }
11018 
11019   bool isDone() const { return false; }
11020 };
11021 
11022 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11023 struct SCEVCollectTerms {
11024   SmallVectorImpl<const SCEV *> &Terms;
11025 
11026   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11027 
11028   bool follow(const SCEV *S) {
11029     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11030         isa<SCEVSignExtendExpr>(S)) {
11031       if (!containsUndefs(S))
11032         Terms.push_back(S);
11033 
11034       // Stop recursion: once we collected a term, do not walk its operands.
11035       return false;
11036     }
11037 
11038     // Keep looking.
11039     return true;
11040   }
11041 
11042   bool isDone() const { return false; }
11043 };
11044 
11045 // Check if a SCEV contains an AddRecExpr.
11046 struct SCEVHasAddRec {
11047   bool &ContainsAddRec;
11048 
11049   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11050     ContainsAddRec = false;
11051   }
11052 
11053   bool follow(const SCEV *S) {
11054     if (isa<SCEVAddRecExpr>(S)) {
11055       ContainsAddRec = true;
11056 
11057       // Stop recursion: once we collected a term, do not walk its operands.
11058       return false;
11059     }
11060 
11061     // Keep looking.
11062     return true;
11063   }
11064 
11065   bool isDone() const { return false; }
11066 };
11067 
11068 // Find factors that are multiplied with an expression that (possibly as a
11069 // subexpression) contains an AddRecExpr. In the expression:
11070 //
11071 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11072 //
11073 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11074 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11075 // parameters as they form a product with an induction variable.
11076 //
11077 // This collector expects all array size parameters to be in the same MulExpr.
11078 // It might be necessary to later add support for collecting parameters that are
11079 // spread over different nested MulExpr.
11080 struct SCEVCollectAddRecMultiplies {
11081   SmallVectorImpl<const SCEV *> &Terms;
11082   ScalarEvolution &SE;
11083 
11084   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11085       : Terms(T), SE(SE) {}
11086 
11087   bool follow(const SCEV *S) {
11088     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11089       bool HasAddRec = false;
11090       SmallVector<const SCEV *, 0> Operands;
11091       for (auto Op : Mul->operands()) {
11092         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11093         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11094           Operands.push_back(Op);
11095         } else if (Unknown) {
11096           HasAddRec = true;
11097         } else {
11098           bool ContainsAddRec = false;
11099           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11100           visitAll(Op, ContiansAddRec);
11101           HasAddRec |= ContainsAddRec;
11102         }
11103       }
11104       if (Operands.size() == 0)
11105         return true;
11106 
11107       if (!HasAddRec)
11108         return false;
11109 
11110       Terms.push_back(SE.getMulExpr(Operands));
11111       // Stop recursion: once we collected a term, do not walk its operands.
11112       return false;
11113     }
11114 
11115     // Keep looking.
11116     return true;
11117   }
11118 
11119   bool isDone() const { return false; }
11120 };
11121 
11122 } // end anonymous namespace
11123 
11124 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11125 /// two places:
11126 ///   1) The strides of AddRec expressions.
11127 ///   2) Unknowns that are multiplied with AddRec expressions.
11128 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11129     SmallVectorImpl<const SCEV *> &Terms) {
11130   SmallVector<const SCEV *, 4> Strides;
11131   SCEVCollectStrides StrideCollector(*this, Strides);
11132   visitAll(Expr, StrideCollector);
11133 
11134   LLVM_DEBUG({
11135     dbgs() << "Strides:\n";
11136     for (const SCEV *S : Strides)
11137       dbgs() << *S << "\n";
11138   });
11139 
11140   for (const SCEV *S : Strides) {
11141     SCEVCollectTerms TermCollector(Terms);
11142     visitAll(S, TermCollector);
11143   }
11144 
11145   LLVM_DEBUG({
11146     dbgs() << "Terms:\n";
11147     for (const SCEV *T : Terms)
11148       dbgs() << *T << "\n";
11149   });
11150 
11151   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11152   visitAll(Expr, MulCollector);
11153 }
11154 
11155 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11156                                    SmallVectorImpl<const SCEV *> &Terms,
11157                                    SmallVectorImpl<const SCEV *> &Sizes) {
11158   int Last = Terms.size() - 1;
11159   const SCEV *Step = Terms[Last];
11160 
11161   // End of recursion.
11162   if (Last == 0) {
11163     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11164       SmallVector<const SCEV *, 2> Qs;
11165       for (const SCEV *Op : M->operands())
11166         if (!isa<SCEVConstant>(Op))
11167           Qs.push_back(Op);
11168 
11169       Step = SE.getMulExpr(Qs);
11170     }
11171 
11172     Sizes.push_back(Step);
11173     return true;
11174   }
11175 
11176   for (const SCEV *&Term : Terms) {
11177     // Normalize the terms before the next call to findArrayDimensionsRec.
11178     const SCEV *Q, *R;
11179     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11180 
11181     // Bail out when GCD does not evenly divide one of the terms.
11182     if (!R->isZero())
11183       return false;
11184 
11185     Term = Q;
11186   }
11187 
11188   // Remove all SCEVConstants.
11189   Terms.erase(
11190       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11191       Terms.end());
11192 
11193   if (Terms.size() > 0)
11194     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11195       return false;
11196 
11197   Sizes.push_back(Step);
11198   return true;
11199 }
11200 
11201 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11202 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11203   for (const SCEV *T : Terms)
11204     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11205       return true;
11206   return false;
11207 }
11208 
11209 // Return the number of product terms in S.
11210 static inline int numberOfTerms(const SCEV *S) {
11211   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11212     return Expr->getNumOperands();
11213   return 1;
11214 }
11215 
11216 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11217   if (isa<SCEVConstant>(T))
11218     return nullptr;
11219 
11220   if (isa<SCEVUnknown>(T))
11221     return T;
11222 
11223   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11224     SmallVector<const SCEV *, 2> Factors;
11225     for (const SCEV *Op : M->operands())
11226       if (!isa<SCEVConstant>(Op))
11227         Factors.push_back(Op);
11228 
11229     return SE.getMulExpr(Factors);
11230   }
11231 
11232   return T;
11233 }
11234 
11235 /// Return the size of an element read or written by Inst.
11236 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11237   Type *Ty;
11238   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11239     Ty = Store->getValueOperand()->getType();
11240   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11241     Ty = Load->getType();
11242   else
11243     return nullptr;
11244 
11245   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11246   return getSizeOfExpr(ETy, Ty);
11247 }
11248 
11249 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11250                                           SmallVectorImpl<const SCEV *> &Sizes,
11251                                           const SCEV *ElementSize) {
11252   if (Terms.size() < 1 || !ElementSize)
11253     return;
11254 
11255   // Early return when Terms do not contain parameters: we do not delinearize
11256   // non parametric SCEVs.
11257   if (!containsParameters(Terms))
11258     return;
11259 
11260   LLVM_DEBUG({
11261     dbgs() << "Terms:\n";
11262     for (const SCEV *T : Terms)
11263       dbgs() << *T << "\n";
11264   });
11265 
11266   // Remove duplicates.
11267   array_pod_sort(Terms.begin(), Terms.end());
11268   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11269 
11270   // Put larger terms first.
11271   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11272     return numberOfTerms(LHS) > numberOfTerms(RHS);
11273   });
11274 
11275   // Try to divide all terms by the element size. If term is not divisible by
11276   // element size, proceed with the original term.
11277   for (const SCEV *&Term : Terms) {
11278     const SCEV *Q, *R;
11279     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11280     if (!Q->isZero())
11281       Term = Q;
11282   }
11283 
11284   SmallVector<const SCEV *, 4> NewTerms;
11285 
11286   // Remove constant factors.
11287   for (const SCEV *T : Terms)
11288     if (const SCEV *NewT = removeConstantFactors(*this, T))
11289       NewTerms.push_back(NewT);
11290 
11291   LLVM_DEBUG({
11292     dbgs() << "Terms after sorting:\n";
11293     for (const SCEV *T : NewTerms)
11294       dbgs() << *T << "\n";
11295   });
11296 
11297   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11298     Sizes.clear();
11299     return;
11300   }
11301 
11302   // The last element to be pushed into Sizes is the size of an element.
11303   Sizes.push_back(ElementSize);
11304 
11305   LLVM_DEBUG({
11306     dbgs() << "Sizes:\n";
11307     for (const SCEV *S : Sizes)
11308       dbgs() << *S << "\n";
11309   });
11310 }
11311 
11312 void ScalarEvolution::computeAccessFunctions(
11313     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11314     SmallVectorImpl<const SCEV *> &Sizes) {
11315   // Early exit in case this SCEV is not an affine multivariate function.
11316   if (Sizes.empty())
11317     return;
11318 
11319   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11320     if (!AR->isAffine())
11321       return;
11322 
11323   const SCEV *Res = Expr;
11324   int Last = Sizes.size() - 1;
11325   for (int i = Last; i >= 0; i--) {
11326     const SCEV *Q, *R;
11327     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11328 
11329     LLVM_DEBUG({
11330       dbgs() << "Res: " << *Res << "\n";
11331       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11332       dbgs() << "Res divided by Sizes[i]:\n";
11333       dbgs() << "Quotient: " << *Q << "\n";
11334       dbgs() << "Remainder: " << *R << "\n";
11335     });
11336 
11337     Res = Q;
11338 
11339     // Do not record the last subscript corresponding to the size of elements in
11340     // the array.
11341     if (i == Last) {
11342 
11343       // Bail out if the remainder is too complex.
11344       if (isa<SCEVAddRecExpr>(R)) {
11345         Subscripts.clear();
11346         Sizes.clear();
11347         return;
11348       }
11349 
11350       continue;
11351     }
11352 
11353     // Record the access function for the current subscript.
11354     Subscripts.push_back(R);
11355   }
11356 
11357   // Also push in last position the remainder of the last division: it will be
11358   // the access function of the innermost dimension.
11359   Subscripts.push_back(Res);
11360 
11361   std::reverse(Subscripts.begin(), Subscripts.end());
11362 
11363   LLVM_DEBUG({
11364     dbgs() << "Subscripts:\n";
11365     for (const SCEV *S : Subscripts)
11366       dbgs() << *S << "\n";
11367   });
11368 }
11369 
11370 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11371 /// sizes of an array access. Returns the remainder of the delinearization that
11372 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11373 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11374 /// expressions in the stride and base of a SCEV corresponding to the
11375 /// computation of a GCD (greatest common divisor) of base and stride.  When
11376 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11377 ///
11378 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11379 ///
11380 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11381 ///
11382 ///    for (long i = 0; i < n; i++)
11383 ///      for (long j = 0; j < m; j++)
11384 ///        for (long k = 0; k < o; k++)
11385 ///          A[i][j][k] = 1.0;
11386 ///  }
11387 ///
11388 /// the delinearization input is the following AddRec SCEV:
11389 ///
11390 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11391 ///
11392 /// From this SCEV, we are able to say that the base offset of the access is %A
11393 /// because it appears as an offset that does not divide any of the strides in
11394 /// the loops:
11395 ///
11396 ///  CHECK: Base offset: %A
11397 ///
11398 /// and then SCEV->delinearize determines the size of some of the dimensions of
11399 /// the array as these are the multiples by which the strides are happening:
11400 ///
11401 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11402 ///
11403 /// Note that the outermost dimension remains of UnknownSize because there are
11404 /// no strides that would help identifying the size of the last dimension: when
11405 /// the array has been statically allocated, one could compute the size of that
11406 /// dimension by dividing the overall size of the array by the size of the known
11407 /// dimensions: %m * %o * 8.
11408 ///
11409 /// Finally delinearize provides the access functions for the array reference
11410 /// that does correspond to A[i][j][k] of the above C testcase:
11411 ///
11412 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11413 ///
11414 /// The testcases are checking the output of a function pass:
11415 /// DelinearizationPass that walks through all loads and stores of a function
11416 /// asking for the SCEV of the memory access with respect to all enclosing
11417 /// loops, calling SCEV->delinearize on that and printing the results.
11418 void ScalarEvolution::delinearize(const SCEV *Expr,
11419                                  SmallVectorImpl<const SCEV *> &Subscripts,
11420                                  SmallVectorImpl<const SCEV *> &Sizes,
11421                                  const SCEV *ElementSize) {
11422   // First step: collect parametric terms.
11423   SmallVector<const SCEV *, 4> Terms;
11424   collectParametricTerms(Expr, Terms);
11425 
11426   if (Terms.empty())
11427     return;
11428 
11429   // Second step: find subscript sizes.
11430   findArrayDimensions(Terms, Sizes, ElementSize);
11431 
11432   if (Sizes.empty())
11433     return;
11434 
11435   // Third step: compute the access functions for each subscript.
11436   computeAccessFunctions(Expr, Subscripts, Sizes);
11437 
11438   if (Subscripts.empty())
11439     return;
11440 
11441   LLVM_DEBUG({
11442     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11443     dbgs() << "ArrayDecl[UnknownSize]";
11444     for (const SCEV *S : Sizes)
11445       dbgs() << "[" << *S << "]";
11446 
11447     dbgs() << "\nArrayRef";
11448     for (const SCEV *S : Subscripts)
11449       dbgs() << "[" << *S << "]";
11450     dbgs() << "\n";
11451   });
11452 }
11453 
11454 bool ScalarEvolution::getIndexExpressionsFromGEP(
11455     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11456     SmallVectorImpl<int> &Sizes) {
11457   assert(Subscripts.empty() && Sizes.empty() &&
11458          "Expected output lists to be empty on entry to this function.");
11459   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11460   Type *Ty = GEP->getPointerOperandType();
11461   bool DroppedFirstDim = false;
11462   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11463     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11464     if (i == 1) {
11465       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11466         Ty = PtrTy->getElementType();
11467       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11468         Ty = ArrayTy->getElementType();
11469       } else {
11470         Subscripts.clear();
11471         Sizes.clear();
11472         return false;
11473       }
11474       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11475         if (Const->getValue()->isZero()) {
11476           DroppedFirstDim = true;
11477           continue;
11478         }
11479       Subscripts.push_back(Expr);
11480       continue;
11481     }
11482 
11483     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11484     if (!ArrayTy) {
11485       Subscripts.clear();
11486       Sizes.clear();
11487       return false;
11488     }
11489 
11490     Subscripts.push_back(Expr);
11491     if (!(DroppedFirstDim && i == 2))
11492       Sizes.push_back(ArrayTy->getNumElements());
11493 
11494     Ty = ArrayTy->getElementType();
11495   }
11496   return !Subscripts.empty();
11497 }
11498 
11499 //===----------------------------------------------------------------------===//
11500 //                   SCEVCallbackVH Class Implementation
11501 //===----------------------------------------------------------------------===//
11502 
11503 void ScalarEvolution::SCEVCallbackVH::deleted() {
11504   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11505   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11506     SE->ConstantEvolutionLoopExitValue.erase(PN);
11507   SE->eraseValueFromMap(getValPtr());
11508   // this now dangles!
11509 }
11510 
11511 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11512   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11513 
11514   // Forget all the expressions associated with users of the old value,
11515   // so that future queries will recompute the expressions using the new
11516   // value.
11517   Value *Old = getValPtr();
11518   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11519   SmallPtrSet<User *, 8> Visited;
11520   while (!Worklist.empty()) {
11521     User *U = Worklist.pop_back_val();
11522     // Deleting the Old value will cause this to dangle. Postpone
11523     // that until everything else is done.
11524     if (U == Old)
11525       continue;
11526     if (!Visited.insert(U).second)
11527       continue;
11528     if (PHINode *PN = dyn_cast<PHINode>(U))
11529       SE->ConstantEvolutionLoopExitValue.erase(PN);
11530     SE->eraseValueFromMap(U);
11531     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11532   }
11533   // Delete the Old value.
11534   if (PHINode *PN = dyn_cast<PHINode>(Old))
11535     SE->ConstantEvolutionLoopExitValue.erase(PN);
11536   SE->eraseValueFromMap(Old);
11537   // this now dangles!
11538 }
11539 
11540 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11541   : CallbackVH(V), SE(se) {}
11542 
11543 //===----------------------------------------------------------------------===//
11544 //                   ScalarEvolution Class Implementation
11545 //===----------------------------------------------------------------------===//
11546 
11547 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11548                                  AssumptionCache &AC, DominatorTree &DT,
11549                                  LoopInfo &LI)
11550     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11551       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11552       LoopDispositions(64), BlockDispositions(64) {
11553   // To use guards for proving predicates, we need to scan every instruction in
11554   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11555   // time if the IR does not actually contain any calls to
11556   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11557   //
11558   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11559   // to _add_ guards to the module when there weren't any before, and wants
11560   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11561   // efficient in lieu of being smart in that rather obscure case.
11562 
11563   auto *GuardDecl = F.getParent()->getFunction(
11564       Intrinsic::getName(Intrinsic::experimental_guard));
11565   HasGuards = GuardDecl && !GuardDecl->use_empty();
11566 }
11567 
11568 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11569     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11570       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11571       ValueExprMap(std::move(Arg.ValueExprMap)),
11572       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11573       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11574       PendingMerges(std::move(Arg.PendingMerges)),
11575       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11576       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11577       PredicatedBackedgeTakenCounts(
11578           std::move(Arg.PredicatedBackedgeTakenCounts)),
11579       ConstantEvolutionLoopExitValue(
11580           std::move(Arg.ConstantEvolutionLoopExitValue)),
11581       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11582       LoopDispositions(std::move(Arg.LoopDispositions)),
11583       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11584       BlockDispositions(std::move(Arg.BlockDispositions)),
11585       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11586       SignedRanges(std::move(Arg.SignedRanges)),
11587       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11588       UniquePreds(std::move(Arg.UniquePreds)),
11589       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11590       LoopUsers(std::move(Arg.LoopUsers)),
11591       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11592       FirstUnknown(Arg.FirstUnknown) {
11593   Arg.FirstUnknown = nullptr;
11594 }
11595 
11596 ScalarEvolution::~ScalarEvolution() {
11597   // Iterate through all the SCEVUnknown instances and call their
11598   // destructors, so that they release their references to their values.
11599   for (SCEVUnknown *U = FirstUnknown; U;) {
11600     SCEVUnknown *Tmp = U;
11601     U = U->Next;
11602     Tmp->~SCEVUnknown();
11603   }
11604   FirstUnknown = nullptr;
11605 
11606   ExprValueMap.clear();
11607   ValueExprMap.clear();
11608   HasRecMap.clear();
11609 
11610   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11611   // that a loop had multiple computable exits.
11612   for (auto &BTCI : BackedgeTakenCounts)
11613     BTCI.second.clear();
11614   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11615     BTCI.second.clear();
11616 
11617   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11618   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11619   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11620   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11621   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11622 }
11623 
11624 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11625   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11626 }
11627 
11628 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11629                           const Loop *L) {
11630   // Print all inner loops first
11631   for (Loop *I : *L)
11632     PrintLoopInfo(OS, SE, I);
11633 
11634   OS << "Loop ";
11635   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11636   OS << ": ";
11637 
11638   SmallVector<BasicBlock *, 8> ExitingBlocks;
11639   L->getExitingBlocks(ExitingBlocks);
11640   if (ExitingBlocks.size() != 1)
11641     OS << "<multiple exits> ";
11642 
11643   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11644     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11645   else
11646     OS << "Unpredictable backedge-taken count.\n";
11647 
11648   if (ExitingBlocks.size() > 1)
11649     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11650       OS << "  exit count for " << ExitingBlock->getName() << ": "
11651          << *SE->getExitCount(L, ExitingBlock) << "\n";
11652     }
11653 
11654   OS << "Loop ";
11655   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11656   OS << ": ";
11657 
11658   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11659     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11660     if (SE->isBackedgeTakenCountMaxOrZero(L))
11661       OS << ", actual taken count either this or zero.";
11662   } else {
11663     OS << "Unpredictable max backedge-taken count. ";
11664   }
11665 
11666   OS << "\n"
11667         "Loop ";
11668   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11669   OS << ": ";
11670 
11671   SCEVUnionPredicate Pred;
11672   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11673   if (!isa<SCEVCouldNotCompute>(PBT)) {
11674     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11675     OS << " Predicates:\n";
11676     Pred.print(OS, 4);
11677   } else {
11678     OS << "Unpredictable predicated backedge-taken count. ";
11679   }
11680   OS << "\n";
11681 
11682   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11683     OS << "Loop ";
11684     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11685     OS << ": ";
11686     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11687   }
11688 }
11689 
11690 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11691   switch (LD) {
11692   case ScalarEvolution::LoopVariant:
11693     return "Variant";
11694   case ScalarEvolution::LoopInvariant:
11695     return "Invariant";
11696   case ScalarEvolution::LoopComputable:
11697     return "Computable";
11698   }
11699   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11700 }
11701 
11702 void ScalarEvolution::print(raw_ostream &OS) const {
11703   // ScalarEvolution's implementation of the print method is to print
11704   // out SCEV values of all instructions that are interesting. Doing
11705   // this potentially causes it to create new SCEV objects though,
11706   // which technically conflicts with the const qualifier. This isn't
11707   // observable from outside the class though, so casting away the
11708   // const isn't dangerous.
11709   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11710 
11711   if (ClassifyExpressions) {
11712     OS << "Classifying expressions for: ";
11713     F.printAsOperand(OS, /*PrintType=*/false);
11714     OS << "\n";
11715     for (Instruction &I : instructions(F))
11716       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11717         OS << I << '\n';
11718         OS << "  -->  ";
11719         const SCEV *SV = SE.getSCEV(&I);
11720         SV->print(OS);
11721         if (!isa<SCEVCouldNotCompute>(SV)) {
11722           OS << " U: ";
11723           SE.getUnsignedRange(SV).print(OS);
11724           OS << " S: ";
11725           SE.getSignedRange(SV).print(OS);
11726         }
11727 
11728         const Loop *L = LI.getLoopFor(I.getParent());
11729 
11730         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11731         if (AtUse != SV) {
11732           OS << "  -->  ";
11733           AtUse->print(OS);
11734           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11735             OS << " U: ";
11736             SE.getUnsignedRange(AtUse).print(OS);
11737             OS << " S: ";
11738             SE.getSignedRange(AtUse).print(OS);
11739           }
11740         }
11741 
11742         if (L) {
11743           OS << "\t\t" "Exits: ";
11744           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11745           if (!SE.isLoopInvariant(ExitValue, L)) {
11746             OS << "<<Unknown>>";
11747           } else {
11748             OS << *ExitValue;
11749           }
11750 
11751           bool First = true;
11752           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11753             if (First) {
11754               OS << "\t\t" "LoopDispositions: { ";
11755               First = false;
11756             } else {
11757               OS << ", ";
11758             }
11759 
11760             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11761             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11762           }
11763 
11764           for (auto *InnerL : depth_first(L)) {
11765             if (InnerL == L)
11766               continue;
11767             if (First) {
11768               OS << "\t\t" "LoopDispositions: { ";
11769               First = false;
11770             } else {
11771               OS << ", ";
11772             }
11773 
11774             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11775             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11776           }
11777 
11778           OS << " }";
11779         }
11780 
11781         OS << "\n";
11782       }
11783   }
11784 
11785   OS << "Determining loop execution counts for: ";
11786   F.printAsOperand(OS, /*PrintType=*/false);
11787   OS << "\n";
11788   for (Loop *I : LI)
11789     PrintLoopInfo(OS, &SE, I);
11790 }
11791 
11792 ScalarEvolution::LoopDisposition
11793 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11794   auto &Values = LoopDispositions[S];
11795   for (auto &V : Values) {
11796     if (V.getPointer() == L)
11797       return V.getInt();
11798   }
11799   Values.emplace_back(L, LoopVariant);
11800   LoopDisposition D = computeLoopDisposition(S, L);
11801   auto &Values2 = LoopDispositions[S];
11802   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11803     if (V.getPointer() == L) {
11804       V.setInt(D);
11805       break;
11806     }
11807   }
11808   return D;
11809 }
11810 
11811 ScalarEvolution::LoopDisposition
11812 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11813   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11814   case scConstant:
11815     return LoopInvariant;
11816   case scTruncate:
11817   case scZeroExtend:
11818   case scSignExtend:
11819     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11820   case scAddRecExpr: {
11821     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11822 
11823     // If L is the addrec's loop, it's computable.
11824     if (AR->getLoop() == L)
11825       return LoopComputable;
11826 
11827     // Add recurrences are never invariant in the function-body (null loop).
11828     if (!L)
11829       return LoopVariant;
11830 
11831     // Everything that is not defined at loop entry is variant.
11832     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11833       return LoopVariant;
11834     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11835            " dominate the contained loop's header?");
11836 
11837     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11838     if (AR->getLoop()->contains(L))
11839       return LoopInvariant;
11840 
11841     // This recurrence is variant w.r.t. L if any of its operands
11842     // are variant.
11843     for (auto *Op : AR->operands())
11844       if (!isLoopInvariant(Op, L))
11845         return LoopVariant;
11846 
11847     // Otherwise it's loop-invariant.
11848     return LoopInvariant;
11849   }
11850   case scAddExpr:
11851   case scMulExpr:
11852   case scUMaxExpr:
11853   case scSMaxExpr:
11854   case scUMinExpr:
11855   case scSMinExpr: {
11856     bool HasVarying = false;
11857     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11858       LoopDisposition D = getLoopDisposition(Op, L);
11859       if (D == LoopVariant)
11860         return LoopVariant;
11861       if (D == LoopComputable)
11862         HasVarying = true;
11863     }
11864     return HasVarying ? LoopComputable : LoopInvariant;
11865   }
11866   case scUDivExpr: {
11867     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11868     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11869     if (LD == LoopVariant)
11870       return LoopVariant;
11871     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11872     if (RD == LoopVariant)
11873       return LoopVariant;
11874     return (LD == LoopInvariant && RD == LoopInvariant) ?
11875            LoopInvariant : LoopComputable;
11876   }
11877   case scUnknown:
11878     // All non-instruction values are loop invariant.  All instructions are loop
11879     // invariant if they are not contained in the specified loop.
11880     // Instructions are never considered invariant in the function body
11881     // (null loop) because they are defined within the "loop".
11882     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11883       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11884     return LoopInvariant;
11885   case scCouldNotCompute:
11886     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11887   }
11888   llvm_unreachable("Unknown SCEV kind!");
11889 }
11890 
11891 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11892   return getLoopDisposition(S, L) == LoopInvariant;
11893 }
11894 
11895 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11896   return getLoopDisposition(S, L) == LoopComputable;
11897 }
11898 
11899 ScalarEvolution::BlockDisposition
11900 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11901   auto &Values = BlockDispositions[S];
11902   for (auto &V : Values) {
11903     if (V.getPointer() == BB)
11904       return V.getInt();
11905   }
11906   Values.emplace_back(BB, DoesNotDominateBlock);
11907   BlockDisposition D = computeBlockDisposition(S, BB);
11908   auto &Values2 = BlockDispositions[S];
11909   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11910     if (V.getPointer() == BB) {
11911       V.setInt(D);
11912       break;
11913     }
11914   }
11915   return D;
11916 }
11917 
11918 ScalarEvolution::BlockDisposition
11919 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11920   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11921   case scConstant:
11922     return ProperlyDominatesBlock;
11923   case scTruncate:
11924   case scZeroExtend:
11925   case scSignExtend:
11926     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11927   case scAddRecExpr: {
11928     // This uses a "dominates" query instead of "properly dominates" query
11929     // to test for proper dominance too, because the instruction which
11930     // produces the addrec's value is a PHI, and a PHI effectively properly
11931     // dominates its entire containing block.
11932     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11933     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11934       return DoesNotDominateBlock;
11935 
11936     // Fall through into SCEVNAryExpr handling.
11937     LLVM_FALLTHROUGH;
11938   }
11939   case scAddExpr:
11940   case scMulExpr:
11941   case scUMaxExpr:
11942   case scSMaxExpr:
11943   case scUMinExpr:
11944   case scSMinExpr: {
11945     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11946     bool Proper = true;
11947     for (const SCEV *NAryOp : NAry->operands()) {
11948       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11949       if (D == DoesNotDominateBlock)
11950         return DoesNotDominateBlock;
11951       if (D == DominatesBlock)
11952         Proper = false;
11953     }
11954     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11955   }
11956   case scUDivExpr: {
11957     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11958     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11959     BlockDisposition LD = getBlockDisposition(LHS, BB);
11960     if (LD == DoesNotDominateBlock)
11961       return DoesNotDominateBlock;
11962     BlockDisposition RD = getBlockDisposition(RHS, BB);
11963     if (RD == DoesNotDominateBlock)
11964       return DoesNotDominateBlock;
11965     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11966       ProperlyDominatesBlock : DominatesBlock;
11967   }
11968   case scUnknown:
11969     if (Instruction *I =
11970           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11971       if (I->getParent() == BB)
11972         return DominatesBlock;
11973       if (DT.properlyDominates(I->getParent(), BB))
11974         return ProperlyDominatesBlock;
11975       return DoesNotDominateBlock;
11976     }
11977     return ProperlyDominatesBlock;
11978   case scCouldNotCompute:
11979     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11980   }
11981   llvm_unreachable("Unknown SCEV kind!");
11982 }
11983 
11984 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11985   return getBlockDisposition(S, BB) >= DominatesBlock;
11986 }
11987 
11988 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11989   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11990 }
11991 
11992 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11993   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11994 }
11995 
11996 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11997   auto IsS = [&](const SCEV *X) { return S == X; };
11998   auto ContainsS = [&](const SCEV *X) {
11999     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12000   };
12001   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12002 }
12003 
12004 void
12005 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12006   ValuesAtScopes.erase(S);
12007   LoopDispositions.erase(S);
12008   BlockDispositions.erase(S);
12009   UnsignedRanges.erase(S);
12010   SignedRanges.erase(S);
12011   ExprValueMap.erase(S);
12012   HasRecMap.erase(S);
12013   MinTrailingZerosCache.erase(S);
12014 
12015   for (auto I = PredicatedSCEVRewrites.begin();
12016        I != PredicatedSCEVRewrites.end();) {
12017     std::pair<const SCEV *, const Loop *> Entry = I->first;
12018     if (Entry.first == S)
12019       PredicatedSCEVRewrites.erase(I++);
12020     else
12021       ++I;
12022   }
12023 
12024   auto RemoveSCEVFromBackedgeMap =
12025       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12026         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12027           BackedgeTakenInfo &BEInfo = I->second;
12028           if (BEInfo.hasOperand(S, this)) {
12029             BEInfo.clear();
12030             Map.erase(I++);
12031           } else
12032             ++I;
12033         }
12034       };
12035 
12036   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12037   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12038 }
12039 
12040 void
12041 ScalarEvolution::getUsedLoops(const SCEV *S,
12042                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12043   struct FindUsedLoops {
12044     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12045         : LoopsUsed(LoopsUsed) {}
12046     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12047     bool follow(const SCEV *S) {
12048       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12049         LoopsUsed.insert(AR->getLoop());
12050       return true;
12051     }
12052 
12053     bool isDone() const { return false; }
12054   };
12055 
12056   FindUsedLoops F(LoopsUsed);
12057   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12058 }
12059 
12060 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12061   SmallPtrSet<const Loop *, 8> LoopsUsed;
12062   getUsedLoops(S, LoopsUsed);
12063   for (auto *L : LoopsUsed)
12064     LoopUsers[L].push_back(S);
12065 }
12066 
12067 void ScalarEvolution::verify() const {
12068   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12069   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12070 
12071   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12072 
12073   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12074   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12075     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12076 
12077     const SCEV *visitConstant(const SCEVConstant *Constant) {
12078       return SE.getConstant(Constant->getAPInt());
12079     }
12080 
12081     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12082       return SE.getUnknown(Expr->getValue());
12083     }
12084 
12085     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12086       return SE.getCouldNotCompute();
12087     }
12088   };
12089 
12090   SCEVMapper SCM(SE2);
12091 
12092   while (!LoopStack.empty()) {
12093     auto *L = LoopStack.pop_back_val();
12094     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12095 
12096     auto *CurBECount = SCM.visit(
12097         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12098     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12099 
12100     if (CurBECount == SE2.getCouldNotCompute() ||
12101         NewBECount == SE2.getCouldNotCompute()) {
12102       // NB! This situation is legal, but is very suspicious -- whatever pass
12103       // change the loop to make a trip count go from could not compute to
12104       // computable or vice-versa *should have* invalidated SCEV.  However, we
12105       // choose not to assert here (for now) since we don't want false
12106       // positives.
12107       continue;
12108     }
12109 
12110     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12111       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12112       // not propagate undef aggressively).  This means we can (and do) fail
12113       // verification in cases where a transform makes the trip count of a loop
12114       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12115       // both cases the loop iterates "undef" times, but SCEV thinks we
12116       // increased the trip count of the loop by 1 incorrectly.
12117       continue;
12118     }
12119 
12120     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12121         SE.getTypeSizeInBits(NewBECount->getType()))
12122       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12123     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12124              SE.getTypeSizeInBits(NewBECount->getType()))
12125       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12126 
12127     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12128 
12129     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12130     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12131       dbgs() << "Trip Count for " << *L << " Changed!\n";
12132       dbgs() << "Old: " << *CurBECount << "\n";
12133       dbgs() << "New: " << *NewBECount << "\n";
12134       dbgs() << "Delta: " << *Delta << "\n";
12135       std::abort();
12136     }
12137   }
12138 }
12139 
12140 bool ScalarEvolution::invalidate(
12141     Function &F, const PreservedAnalyses &PA,
12142     FunctionAnalysisManager::Invalidator &Inv) {
12143   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12144   // of its dependencies is invalidated.
12145   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12146   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12147          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12148          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12149          Inv.invalidate<LoopAnalysis>(F, PA);
12150 }
12151 
12152 AnalysisKey ScalarEvolutionAnalysis::Key;
12153 
12154 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12155                                              FunctionAnalysisManager &AM) {
12156   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12157                          AM.getResult<AssumptionAnalysis>(F),
12158                          AM.getResult<DominatorTreeAnalysis>(F),
12159                          AM.getResult<LoopAnalysis>(F));
12160 }
12161 
12162 PreservedAnalyses
12163 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12164   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12165   return PreservedAnalyses::all();
12166 }
12167 
12168 PreservedAnalyses
12169 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12170   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12171   return PreservedAnalyses::all();
12172 }
12173 
12174 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12175                       "Scalar Evolution Analysis", false, true)
12176 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12177 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12178 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12179 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12180 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12181                     "Scalar Evolution Analysis", false, true)
12182 
12183 char ScalarEvolutionWrapperPass::ID = 0;
12184 
12185 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12186   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12187 }
12188 
12189 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12190   SE.reset(new ScalarEvolution(
12191       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12192       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12193       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12194       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12195   return false;
12196 }
12197 
12198 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12199 
12200 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12201   SE->print(OS);
12202 }
12203 
12204 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12205   if (!VerifySCEV)
12206     return;
12207 
12208   SE->verify();
12209 }
12210 
12211 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12212   AU.setPreservesAll();
12213   AU.addRequiredTransitive<AssumptionCacheTracker>();
12214   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12215   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12216   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12217 }
12218 
12219 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12220                                                         const SCEV *RHS) {
12221   FoldingSetNodeID ID;
12222   assert(LHS->getType() == RHS->getType() &&
12223          "Type mismatch between LHS and RHS");
12224   // Unique this node based on the arguments
12225   ID.AddInteger(SCEVPredicate::P_Equal);
12226   ID.AddPointer(LHS);
12227   ID.AddPointer(RHS);
12228   void *IP = nullptr;
12229   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12230     return S;
12231   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12232       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12233   UniquePreds.InsertNode(Eq, IP);
12234   return Eq;
12235 }
12236 
12237 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12238     const SCEVAddRecExpr *AR,
12239     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12240   FoldingSetNodeID ID;
12241   // Unique this node based on the arguments
12242   ID.AddInteger(SCEVPredicate::P_Wrap);
12243   ID.AddPointer(AR);
12244   ID.AddInteger(AddedFlags);
12245   void *IP = nullptr;
12246   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12247     return S;
12248   auto *OF = new (SCEVAllocator)
12249       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12250   UniquePreds.InsertNode(OF, IP);
12251   return OF;
12252 }
12253 
12254 namespace {
12255 
12256 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12257 public:
12258 
12259   /// Rewrites \p S in the context of a loop L and the SCEV predication
12260   /// infrastructure.
12261   ///
12262   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12263   /// equivalences present in \p Pred.
12264   ///
12265   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12266   /// \p NewPreds such that the result will be an AddRecExpr.
12267   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12268                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12269                              SCEVUnionPredicate *Pred) {
12270     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12271     return Rewriter.visit(S);
12272   }
12273 
12274   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12275     if (Pred) {
12276       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12277       for (auto *Pred : ExprPreds)
12278         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12279           if (IPred->getLHS() == Expr)
12280             return IPred->getRHS();
12281     }
12282     return convertToAddRecWithPreds(Expr);
12283   }
12284 
12285   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12286     const SCEV *Operand = visit(Expr->getOperand());
12287     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12288     if (AR && AR->getLoop() == L && AR->isAffine()) {
12289       // This couldn't be folded because the operand didn't have the nuw
12290       // flag. Add the nusw flag as an assumption that we could make.
12291       const SCEV *Step = AR->getStepRecurrence(SE);
12292       Type *Ty = Expr->getType();
12293       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12294         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12295                                 SE.getSignExtendExpr(Step, Ty), L,
12296                                 AR->getNoWrapFlags());
12297     }
12298     return SE.getZeroExtendExpr(Operand, Expr->getType());
12299   }
12300 
12301   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12302     const SCEV *Operand = visit(Expr->getOperand());
12303     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12304     if (AR && AR->getLoop() == L && AR->isAffine()) {
12305       // This couldn't be folded because the operand didn't have the nsw
12306       // flag. Add the nssw flag as an assumption that we could make.
12307       const SCEV *Step = AR->getStepRecurrence(SE);
12308       Type *Ty = Expr->getType();
12309       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12310         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12311                                 SE.getSignExtendExpr(Step, Ty), L,
12312                                 AR->getNoWrapFlags());
12313     }
12314     return SE.getSignExtendExpr(Operand, Expr->getType());
12315   }
12316 
12317 private:
12318   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12319                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12320                         SCEVUnionPredicate *Pred)
12321       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12322 
12323   bool addOverflowAssumption(const SCEVPredicate *P) {
12324     if (!NewPreds) {
12325       // Check if we've already made this assumption.
12326       return Pred && Pred->implies(P);
12327     }
12328     NewPreds->insert(P);
12329     return true;
12330   }
12331 
12332   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12333                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12334     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12335     return addOverflowAssumption(A);
12336   }
12337 
12338   // If \p Expr represents a PHINode, we try to see if it can be represented
12339   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12340   // to add this predicate as a runtime overflow check, we return the AddRec.
12341   // If \p Expr does not meet these conditions (is not a PHI node, or we
12342   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12343   // return \p Expr.
12344   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12345     if (!isa<PHINode>(Expr->getValue()))
12346       return Expr;
12347     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12348     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12349     if (!PredicatedRewrite)
12350       return Expr;
12351     for (auto *P : PredicatedRewrite->second){
12352       // Wrap predicates from outer loops are not supported.
12353       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12354         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12355         if (L != AR->getLoop())
12356           return Expr;
12357       }
12358       if (!addOverflowAssumption(P))
12359         return Expr;
12360     }
12361     return PredicatedRewrite->first;
12362   }
12363 
12364   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12365   SCEVUnionPredicate *Pred;
12366   const Loop *L;
12367 };
12368 
12369 } // end anonymous namespace
12370 
12371 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12372                                                    SCEVUnionPredicate &Preds) {
12373   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12374 }
12375 
12376 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12377     const SCEV *S, const Loop *L,
12378     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12379   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12380   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12381   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12382 
12383   if (!AddRec)
12384     return nullptr;
12385 
12386   // Since the transformation was successful, we can now transfer the SCEV
12387   // predicates.
12388   for (auto *P : TransformPreds)
12389     Preds.insert(P);
12390 
12391   return AddRec;
12392 }
12393 
12394 /// SCEV predicates
12395 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12396                              SCEVPredicateKind Kind)
12397     : FastID(ID), Kind(Kind) {}
12398 
12399 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12400                                        const SCEV *LHS, const SCEV *RHS)
12401     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12402   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12403   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12404 }
12405 
12406 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12407   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12408 
12409   if (!Op)
12410     return false;
12411 
12412   return Op->LHS == LHS && Op->RHS == RHS;
12413 }
12414 
12415 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12416 
12417 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12418 
12419 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12420   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12421 }
12422 
12423 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12424                                      const SCEVAddRecExpr *AR,
12425                                      IncrementWrapFlags Flags)
12426     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12427 
12428 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12429 
12430 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12431   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12432 
12433   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12434 }
12435 
12436 bool SCEVWrapPredicate::isAlwaysTrue() const {
12437   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12438   IncrementWrapFlags IFlags = Flags;
12439 
12440   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12441     IFlags = clearFlags(IFlags, IncrementNSSW);
12442 
12443   return IFlags == IncrementAnyWrap;
12444 }
12445 
12446 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12447   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12448   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12449     OS << "<nusw>";
12450   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12451     OS << "<nssw>";
12452   OS << "\n";
12453 }
12454 
12455 SCEVWrapPredicate::IncrementWrapFlags
12456 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12457                                    ScalarEvolution &SE) {
12458   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12459   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12460 
12461   // We can safely transfer the NSW flag as NSSW.
12462   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12463     ImpliedFlags = IncrementNSSW;
12464 
12465   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12466     // If the increment is positive, the SCEV NUW flag will also imply the
12467     // WrapPredicate NUSW flag.
12468     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12469       if (Step->getValue()->getValue().isNonNegative())
12470         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12471   }
12472 
12473   return ImpliedFlags;
12474 }
12475 
12476 /// Union predicates don't get cached so create a dummy set ID for it.
12477 SCEVUnionPredicate::SCEVUnionPredicate()
12478     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12479 
12480 bool SCEVUnionPredicate::isAlwaysTrue() const {
12481   return all_of(Preds,
12482                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12483 }
12484 
12485 ArrayRef<const SCEVPredicate *>
12486 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12487   auto I = SCEVToPreds.find(Expr);
12488   if (I == SCEVToPreds.end())
12489     return ArrayRef<const SCEVPredicate *>();
12490   return I->second;
12491 }
12492 
12493 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12494   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12495     return all_of(Set->Preds,
12496                   [this](const SCEVPredicate *I) { return this->implies(I); });
12497 
12498   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12499   if (ScevPredsIt == SCEVToPreds.end())
12500     return false;
12501   auto &SCEVPreds = ScevPredsIt->second;
12502 
12503   return any_of(SCEVPreds,
12504                 [N](const SCEVPredicate *I) { return I->implies(N); });
12505 }
12506 
12507 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12508 
12509 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12510   for (auto Pred : Preds)
12511     Pred->print(OS, Depth);
12512 }
12513 
12514 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12515   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12516     for (auto Pred : Set->Preds)
12517       add(Pred);
12518     return;
12519   }
12520 
12521   if (implies(N))
12522     return;
12523 
12524   const SCEV *Key = N->getExpr();
12525   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12526                 " associated expression!");
12527 
12528   SCEVToPreds[Key].push_back(N);
12529   Preds.push_back(N);
12530 }
12531 
12532 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12533                                                      Loop &L)
12534     : SE(SE), L(L) {}
12535 
12536 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12537   const SCEV *Expr = SE.getSCEV(V);
12538   RewriteEntry &Entry = RewriteMap[Expr];
12539 
12540   // If we already have an entry and the version matches, return it.
12541   if (Entry.second && Generation == Entry.first)
12542     return Entry.second;
12543 
12544   // We found an entry but it's stale. Rewrite the stale entry
12545   // according to the current predicate.
12546   if (Entry.second)
12547     Expr = Entry.second;
12548 
12549   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12550   Entry = {Generation, NewSCEV};
12551 
12552   return NewSCEV;
12553 }
12554 
12555 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12556   if (!BackedgeCount) {
12557     SCEVUnionPredicate BackedgePred;
12558     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12559     addPredicate(BackedgePred);
12560   }
12561   return BackedgeCount;
12562 }
12563 
12564 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12565   if (Preds.implies(&Pred))
12566     return;
12567   Preds.add(&Pred);
12568   updateGeneration();
12569 }
12570 
12571 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12572   return Preds;
12573 }
12574 
12575 void PredicatedScalarEvolution::updateGeneration() {
12576   // If the generation number wrapped recompute everything.
12577   if (++Generation == 0) {
12578     for (auto &II : RewriteMap) {
12579       const SCEV *Rewritten = II.second.second;
12580       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12581     }
12582   }
12583 }
12584 
12585 void PredicatedScalarEvolution::setNoOverflow(
12586     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12587   const SCEV *Expr = getSCEV(V);
12588   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12589 
12590   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12591 
12592   // Clear the statically implied flags.
12593   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12594   addPredicate(*SE.getWrapPredicate(AR, Flags));
12595 
12596   auto II = FlagsMap.insert({V, Flags});
12597   if (!II.second)
12598     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12599 }
12600 
12601 bool PredicatedScalarEvolution::hasNoOverflow(
12602     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12603   const SCEV *Expr = getSCEV(V);
12604   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12605 
12606   Flags = SCEVWrapPredicate::clearFlags(
12607       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12608 
12609   auto II = FlagsMap.find(V);
12610 
12611   if (II != FlagsMap.end())
12612     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12613 
12614   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12615 }
12616 
12617 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12618   const SCEV *Expr = this->getSCEV(V);
12619   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12620   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12621 
12622   if (!New)
12623     return nullptr;
12624 
12625   for (auto *P : NewPreds)
12626     Preds.add(P);
12627 
12628   updateGeneration();
12629   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12630   return New;
12631 }
12632 
12633 PredicatedScalarEvolution::PredicatedScalarEvolution(
12634     const PredicatedScalarEvolution &Init)
12635     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12636       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12637   for (auto I : Init.FlagsMap)
12638     FlagsMap.insert(I);
12639 }
12640 
12641 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12642   // For each block.
12643   for (auto *BB : L.getBlocks())
12644     for (auto &I : *BB) {
12645       if (!SE.isSCEVable(I.getType()))
12646         continue;
12647 
12648       auto *Expr = SE.getSCEV(&I);
12649       auto II = RewriteMap.find(Expr);
12650 
12651       if (II == RewriteMap.end())
12652         continue;
12653 
12654       // Don't print things that are not interesting.
12655       if (II->second.second == Expr)
12656         continue;
12657 
12658       OS.indent(Depth) << "[PSE]" << I << ":\n";
12659       OS.indent(Depth + 2) << *Expr << "\n";
12660       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12661     }
12662 }
12663 
12664 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12665 // arbitrary expressions.
12666 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12667 // 4, A / B becomes X / 8).
12668 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12669                                 const SCEV *&RHS) {
12670   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12671   if (Add == nullptr || Add->getNumOperands() != 2)
12672     return false;
12673 
12674   const SCEV *A = Add->getOperand(1);
12675   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12676 
12677   if (Mul == nullptr)
12678     return false;
12679 
12680   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12681     // (SomeExpr + (-(SomeExpr / B) * B)).
12682     if (Expr == getURemExpr(A, B)) {
12683       LHS = A;
12684       RHS = B;
12685       return true;
12686     }
12687     return false;
12688   };
12689 
12690   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12691   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12692     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12693            MatchURemWithDivisor(Mul->getOperand(2));
12694 
12695   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12696   if (Mul->getNumOperands() == 2)
12697     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12698            MatchURemWithDivisor(Mul->getOperand(0)) ||
12699            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12700            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12701   return false;
12702 }
12703