xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 1ec6e1eb8a084bffae8a40236eb9925d8026dd07)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 static cl::opt<bool> UseExpensiveRangeSharpening(
230     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
231     cl::init(false),
232     cl::desc("Use more powerful methods of sharpening expression ranges. May "
233              "be costly in terms of compile time"));
234 
235 //===----------------------------------------------------------------------===//
236 //                           SCEV class definitions
237 //===----------------------------------------------------------------------===//
238 
239 //===----------------------------------------------------------------------===//
240 // Implementation of the SCEV class.
241 //
242 
243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
244 LLVM_DUMP_METHOD void SCEV::dump() const {
245   print(dbgs());
246   dbgs() << '\n';
247 }
248 #endif
249 
250 void SCEV::print(raw_ostream &OS) const {
251   switch (getSCEVType()) {
252   case scConstant:
253     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
254     return;
255   case scPtrToInt: {
256     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
257     const SCEV *Op = PtrToInt->getOperand();
258     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
259        << *PtrToInt->getType() << ")";
260     return;
261   }
262   case scTruncate: {
263     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
264     const SCEV *Op = Trunc->getOperand();
265     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
266        << *Trunc->getType() << ")";
267     return;
268   }
269   case scZeroExtend: {
270     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
271     const SCEV *Op = ZExt->getOperand();
272     OS << "(zext " << *Op->getType() << " " << *Op << " to "
273        << *ZExt->getType() << ")";
274     return;
275   }
276   case scSignExtend: {
277     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
278     const SCEV *Op = SExt->getOperand();
279     OS << "(sext " << *Op->getType() << " " << *Op << " to "
280        << *SExt->getType() << ")";
281     return;
282   }
283   case scAddRecExpr: {
284     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
285     OS << "{" << *AR->getOperand(0);
286     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
287       OS << ",+," << *AR->getOperand(i);
288     OS << "}<";
289     if (AR->hasNoUnsignedWrap())
290       OS << "nuw><";
291     if (AR->hasNoSignedWrap())
292       OS << "nsw><";
293     if (AR->hasNoSelfWrap() &&
294         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
295       OS << "nw><";
296     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
297     OS << ">";
298     return;
299   }
300   case scAddExpr:
301   case scMulExpr:
302   case scUMaxExpr:
303   case scSMaxExpr:
304   case scUMinExpr:
305   case scSMinExpr: {
306     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
307     const char *OpStr = nullptr;
308     switch (NAry->getSCEVType()) {
309     case scAddExpr: OpStr = " + "; break;
310     case scMulExpr: OpStr = " * "; break;
311     case scUMaxExpr: OpStr = " umax "; break;
312     case scSMaxExpr: OpStr = " smax "; break;
313     case scUMinExpr:
314       OpStr = " umin ";
315       break;
316     case scSMinExpr:
317       OpStr = " smin ";
318       break;
319     default:
320       llvm_unreachable("There are no other nary expression types.");
321     }
322     OS << "(";
323     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
324          I != E; ++I) {
325       OS << **I;
326       if (std::next(I) != E)
327         OS << OpStr;
328     }
329     OS << ")";
330     switch (NAry->getSCEVType()) {
331     case scAddExpr:
332     case scMulExpr:
333       if (NAry->hasNoUnsignedWrap())
334         OS << "<nuw>";
335       if (NAry->hasNoSignedWrap())
336         OS << "<nsw>";
337       break;
338     default:
339       // Nothing to print for other nary expressions.
340       break;
341     }
342     return;
343   }
344   case scUDivExpr: {
345     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
346     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
347     return;
348   }
349   case scUnknown: {
350     const SCEVUnknown *U = cast<SCEVUnknown>(this);
351     Type *AllocTy;
352     if (U->isSizeOf(AllocTy)) {
353       OS << "sizeof(" << *AllocTy << ")";
354       return;
355     }
356     if (U->isAlignOf(AllocTy)) {
357       OS << "alignof(" << *AllocTy << ")";
358       return;
359     }
360 
361     Type *CTy;
362     Constant *FieldNo;
363     if (U->isOffsetOf(CTy, FieldNo)) {
364       OS << "offsetof(" << *CTy << ", ";
365       FieldNo->printAsOperand(OS, false);
366       OS << ")";
367       return;
368     }
369 
370     // Otherwise just print it normally.
371     U->getValue()->printAsOperand(OS, false);
372     return;
373   }
374   case scCouldNotCompute:
375     OS << "***COULDNOTCOMPUTE***";
376     return;
377   }
378   llvm_unreachable("Unknown SCEV kind!");
379 }
380 
381 Type *SCEV::getType() const {
382   switch (getSCEVType()) {
383   case scConstant:
384     return cast<SCEVConstant>(this)->getType();
385   case scPtrToInt:
386   case scTruncate:
387   case scZeroExtend:
388   case scSignExtend:
389     return cast<SCEVCastExpr>(this)->getType();
390   case scAddRecExpr:
391   case scMulExpr:
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVNAryExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
537                                  ->getElementType();
538               return true;
539             }
540 
541   return false;
542 }
543 
544 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
545   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
546     if (VCE->getOpcode() == Instruction::PtrToInt)
547       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
548         if (CE->getOpcode() == Instruction::GetElementPtr &&
549             CE->getOperand(0)->isNullValue()) {
550           Type *Ty =
551             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
552           if (StructType *STy = dyn_cast<StructType>(Ty))
553             if (!STy->isPacked() &&
554                 CE->getNumOperands() == 3 &&
555                 CE->getOperand(1)->isNullValue()) {
556               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
557                 if (CI->isOne() &&
558                     STy->getNumElements() == 2 &&
559                     STy->getElementType(0)->isIntegerTy(1)) {
560                   AllocTy = STy->getElementType(1);
561                   return true;
562                 }
563             }
564         }
565 
566   return false;
567 }
568 
569 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
570   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
571     if (VCE->getOpcode() == Instruction::PtrToInt)
572       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
573         if (CE->getOpcode() == Instruction::GetElementPtr &&
574             CE->getNumOperands() == 3 &&
575             CE->getOperand(0)->isNullValue() &&
576             CE->getOperand(1)->isNullValue()) {
577           Type *Ty =
578             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
579           // Ignore vector types here so that ScalarEvolutionExpander doesn't
580           // emit getelementptrs that index into vectors.
581           if (Ty->isStructTy() || Ty->isArrayTy()) {
582             CTy = Ty;
583             FieldNo = CE->getOperand(2);
584             return true;
585           }
586         }
587 
588   return false;
589 }
590 
591 //===----------------------------------------------------------------------===//
592 //                               SCEV Utilities
593 //===----------------------------------------------------------------------===//
594 
595 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
596 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
597 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
598 /// have been previously deemed to be "equally complex" by this routine.  It is
599 /// intended to avoid exponential time complexity in cases like:
600 ///
601 ///   %a = f(%x, %y)
602 ///   %b = f(%a, %a)
603 ///   %c = f(%b, %b)
604 ///
605 ///   %d = f(%x, %y)
606 ///   %e = f(%d, %d)
607 ///   %f = f(%e, %e)
608 ///
609 ///   CompareValueComplexity(%f, %c)
610 ///
611 /// Since we do not continue running this routine on expression trees once we
612 /// have seen unequal values, there is no need to track them in the cache.
613 static int
614 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
615                        const LoopInfo *const LI, Value *LV, Value *RV,
616                        unsigned Depth) {
617   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
618     return 0;
619 
620   // Order pointer values after integer values. This helps SCEVExpander form
621   // GEPs.
622   bool LIsPointer = LV->getType()->isPointerTy(),
623        RIsPointer = RV->getType()->isPointerTy();
624   if (LIsPointer != RIsPointer)
625     return (int)LIsPointer - (int)RIsPointer;
626 
627   // Compare getValueID values.
628   unsigned LID = LV->getValueID(), RID = RV->getValueID();
629   if (LID != RID)
630     return (int)LID - (int)RID;
631 
632   // Sort arguments by their position.
633   if (const auto *LA = dyn_cast<Argument>(LV)) {
634     const auto *RA = cast<Argument>(RV);
635     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
636     return (int)LArgNo - (int)RArgNo;
637   }
638 
639   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
640     const auto *RGV = cast<GlobalValue>(RV);
641 
642     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
643       auto LT = GV->getLinkage();
644       return !(GlobalValue::isPrivateLinkage(LT) ||
645                GlobalValue::isInternalLinkage(LT));
646     };
647 
648     // Use the names to distinguish the two values, but only if the
649     // names are semantically important.
650     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
651       return LGV->getName().compare(RGV->getName());
652   }
653 
654   // For instructions, compare their loop depth, and their operand count.  This
655   // is pretty loose.
656   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
657     const auto *RInst = cast<Instruction>(RV);
658 
659     // Compare loop depths.
660     const BasicBlock *LParent = LInst->getParent(),
661                      *RParent = RInst->getParent();
662     if (LParent != RParent) {
663       unsigned LDepth = LI->getLoopDepth(LParent),
664                RDepth = LI->getLoopDepth(RParent);
665       if (LDepth != RDepth)
666         return (int)LDepth - (int)RDepth;
667     }
668 
669     // Compare the number of operands.
670     unsigned LNumOps = LInst->getNumOperands(),
671              RNumOps = RInst->getNumOperands();
672     if (LNumOps != RNumOps)
673       return (int)LNumOps - (int)RNumOps;
674 
675     for (unsigned Idx : seq(0u, LNumOps)) {
676       int Result =
677           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
678                                  RInst->getOperand(Idx), Depth + 1);
679       if (Result != 0)
680         return Result;
681     }
682   }
683 
684   EqCacheValue.unionSets(LV, RV);
685   return 0;
686 }
687 
688 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
689 // than RHS, respectively. A three-way result allows recursive comparisons to be
690 // more efficient.
691 static int CompareSCEVComplexity(
692     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
693     EquivalenceClasses<const Value *> &EqCacheValue,
694     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
695     DominatorTree &DT, unsigned Depth = 0) {
696   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
697   if (LHS == RHS)
698     return 0;
699 
700   // Primarily, sort the SCEVs by their getSCEVType().
701   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
702   if (LType != RType)
703     return (int)LType - (int)RType;
704 
705   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
706     return 0;
707   // Aside from the getSCEVType() ordering, the particular ordering
708   // isn't very important except that it's beneficial to be consistent,
709   // so that (a + b) and (b + a) don't end up as different expressions.
710   switch (LType) {
711   case scUnknown: {
712     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
713     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
714 
715     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
716                                    RU->getValue(), Depth + 1);
717     if (X == 0)
718       EqCacheSCEV.unionSets(LHS, RHS);
719     return X;
720   }
721 
722   case scConstant: {
723     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
724     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
725 
726     // Compare constant values.
727     const APInt &LA = LC->getAPInt();
728     const APInt &RA = RC->getAPInt();
729     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
730     if (LBitWidth != RBitWidth)
731       return (int)LBitWidth - (int)RBitWidth;
732     return LA.ult(RA) ? -1 : 1;
733   }
734 
735   case scAddRecExpr: {
736     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
737     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
738 
739     // There is always a dominance between two recs that are used by one SCEV,
740     // so we can safely sort recs by loop header dominance. We require such
741     // order in getAddExpr.
742     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
743     if (LLoop != RLoop) {
744       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
745       assert(LHead != RHead && "Two loops share the same header?");
746       if (DT.dominates(LHead, RHead))
747         return 1;
748       else
749         assert(DT.dominates(RHead, LHead) &&
750                "No dominance between recurrences used by one SCEV?");
751       return -1;
752     }
753 
754     // Addrec complexity grows with operand count.
755     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
756     if (LNumOps != RNumOps)
757       return (int)LNumOps - (int)RNumOps;
758 
759     // Lexicographically compare.
760     for (unsigned i = 0; i != LNumOps; ++i) {
761       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
762                                     LA->getOperand(i), RA->getOperand(i), DT,
763                                     Depth + 1);
764       if (X != 0)
765         return X;
766     }
767     EqCacheSCEV.unionSets(LHS, RHS);
768     return 0;
769   }
770 
771   case scAddExpr:
772   case scMulExpr:
773   case scSMaxExpr:
774   case scUMaxExpr:
775   case scSMinExpr:
776   case scUMinExpr: {
777     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
778     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
779 
780     // Lexicographically compare n-ary expressions.
781     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
782     if (LNumOps != RNumOps)
783       return (int)LNumOps - (int)RNumOps;
784 
785     for (unsigned i = 0; i != LNumOps; ++i) {
786       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787                                     LC->getOperand(i), RC->getOperand(i), DT,
788                                     Depth + 1);
789       if (X != 0)
790         return X;
791     }
792     EqCacheSCEV.unionSets(LHS, RHS);
793     return 0;
794   }
795 
796   case scUDivExpr: {
797     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
798     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
799 
800     // Lexicographically compare udiv expressions.
801     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
802                                   RC->getLHS(), DT, Depth + 1);
803     if (X != 0)
804       return X;
805     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
806                               RC->getRHS(), DT, Depth + 1);
807     if (X == 0)
808       EqCacheSCEV.unionSets(LHS, RHS);
809     return X;
810   }
811 
812   case scPtrToInt:
813   case scTruncate:
814   case scZeroExtend:
815   case scSignExtend: {
816     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
817     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
818 
819     // Compare cast expressions by operand.
820     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
821                                   LC->getOperand(), RC->getOperand(), DT,
822                                   Depth + 1);
823     if (X == 0)
824       EqCacheSCEV.unionSets(LHS, RHS);
825     return X;
826   }
827 
828   case scCouldNotCompute:
829     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
830   }
831   llvm_unreachable("Unknown SCEV kind!");
832 }
833 
834 /// Given a list of SCEV objects, order them by their complexity, and group
835 /// objects of the same complexity together by value.  When this routine is
836 /// finished, we know that any duplicates in the vector are consecutive and that
837 /// complexity is monotonically increasing.
838 ///
839 /// Note that we go take special precautions to ensure that we get deterministic
840 /// results from this routine.  In other words, we don't want the results of
841 /// this to depend on where the addresses of various SCEV objects happened to
842 /// land in memory.
843 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
844                               LoopInfo *LI, DominatorTree &DT) {
845   if (Ops.size() < 2) return;  // Noop
846 
847   EquivalenceClasses<const SCEV *> EqCacheSCEV;
848   EquivalenceClasses<const Value *> EqCacheValue;
849   if (Ops.size() == 2) {
850     // This is the common case, which also happens to be trivially simple.
851     // Special case it.
852     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
853     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
854       std::swap(LHS, RHS);
855     return;
856   }
857 
858   // Do the rough sort by complexity.
859   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
860     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
861            0;
862   });
863 
864   // Now that we are sorted by complexity, group elements of the same
865   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
866   // be extremely short in practice.  Note that we take this approach because we
867   // do not want to depend on the addresses of the objects we are grouping.
868   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
869     const SCEV *S = Ops[i];
870     unsigned Complexity = S->getSCEVType();
871 
872     // If there are any objects of the same complexity and same value as this
873     // one, group them.
874     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
875       if (Ops[j] == S) { // Found a duplicate.
876         // Move it to immediately after i'th element.
877         std::swap(Ops[i+1], Ops[j]);
878         ++i;   // no need to rescan it.
879         if (i == e-2) return;  // Done!
880       }
881     }
882   }
883 }
884 
885 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
886 /// least HugeExprThreshold nodes).
887 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
888   return any_of(Ops, [](const SCEV *S) {
889     return S->getExpressionSize() >= HugeExprThreshold;
890   });
891 }
892 
893 //===----------------------------------------------------------------------===//
894 //                      Simple SCEV method implementations
895 //===----------------------------------------------------------------------===//
896 
897 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
898 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
899                                        ScalarEvolution &SE,
900                                        Type *ResultTy) {
901   // Handle the simplest case efficiently.
902   if (K == 1)
903     return SE.getTruncateOrZeroExtend(It, ResultTy);
904 
905   // We are using the following formula for BC(It, K):
906   //
907   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
908   //
909   // Suppose, W is the bitwidth of the return value.  We must be prepared for
910   // overflow.  Hence, we must assure that the result of our computation is
911   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
912   // safe in modular arithmetic.
913   //
914   // However, this code doesn't use exactly that formula; the formula it uses
915   // is something like the following, where T is the number of factors of 2 in
916   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
917   // exponentiation:
918   //
919   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
920   //
921   // This formula is trivially equivalent to the previous formula.  However,
922   // this formula can be implemented much more efficiently.  The trick is that
923   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
924   // arithmetic.  To do exact division in modular arithmetic, all we have
925   // to do is multiply by the inverse.  Therefore, this step can be done at
926   // width W.
927   //
928   // The next issue is how to safely do the division by 2^T.  The way this
929   // is done is by doing the multiplication step at a width of at least W + T
930   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
931   // when we perform the division by 2^T (which is equivalent to a right shift
932   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
933   // truncated out after the division by 2^T.
934   //
935   // In comparison to just directly using the first formula, this technique
936   // is much more efficient; using the first formula requires W * K bits,
937   // but this formula less than W + K bits. Also, the first formula requires
938   // a division step, whereas this formula only requires multiplies and shifts.
939   //
940   // It doesn't matter whether the subtraction step is done in the calculation
941   // width or the input iteration count's width; if the subtraction overflows,
942   // the result must be zero anyway.  We prefer here to do it in the width of
943   // the induction variable because it helps a lot for certain cases; CodeGen
944   // isn't smart enough to ignore the overflow, which leads to much less
945   // efficient code if the width of the subtraction is wider than the native
946   // register width.
947   //
948   // (It's possible to not widen at all by pulling out factors of 2 before
949   // the multiplication; for example, K=2 can be calculated as
950   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
951   // extra arithmetic, so it's not an obvious win, and it gets
952   // much more complicated for K > 3.)
953 
954   // Protection from insane SCEVs; this bound is conservative,
955   // but it probably doesn't matter.
956   if (K > 1000)
957     return SE.getCouldNotCompute();
958 
959   unsigned W = SE.getTypeSizeInBits(ResultTy);
960 
961   // Calculate K! / 2^T and T; we divide out the factors of two before
962   // multiplying for calculating K! / 2^T to avoid overflow.
963   // Other overflow doesn't matter because we only care about the bottom
964   // W bits of the result.
965   APInt OddFactorial(W, 1);
966   unsigned T = 1;
967   for (unsigned i = 3; i <= K; ++i) {
968     APInt Mult(W, i);
969     unsigned TwoFactors = Mult.countTrailingZeros();
970     T += TwoFactors;
971     Mult.lshrInPlace(TwoFactors);
972     OddFactorial *= Mult;
973   }
974 
975   // We need at least W + T bits for the multiplication step
976   unsigned CalculationBits = W + T;
977 
978   // Calculate 2^T, at width T+W.
979   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
980 
981   // Calculate the multiplicative inverse of K! / 2^T;
982   // this multiplication factor will perform the exact division by
983   // K! / 2^T.
984   APInt Mod = APInt::getSignedMinValue(W+1);
985   APInt MultiplyFactor = OddFactorial.zext(W+1);
986   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
987   MultiplyFactor = MultiplyFactor.trunc(W);
988 
989   // Calculate the product, at width T+W
990   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
991                                                       CalculationBits);
992   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
993   for (unsigned i = 1; i != K; ++i) {
994     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
995     Dividend = SE.getMulExpr(Dividend,
996                              SE.getTruncateOrZeroExtend(S, CalculationTy));
997   }
998 
999   // Divide by 2^T
1000   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1001 
1002   // Truncate the result, and divide by K! / 2^T.
1003 
1004   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1005                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1006 }
1007 
1008 /// Return the value of this chain of recurrences at the specified iteration
1009 /// number.  We can evaluate this recurrence by multiplying each element in the
1010 /// chain by the binomial coefficient corresponding to it.  In other words, we
1011 /// can evaluate {A,+,B,+,C,+,D} as:
1012 ///
1013 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1014 ///
1015 /// where BC(It, k) stands for binomial coefficient.
1016 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1017                                                 ScalarEvolution &SE) const {
1018   const SCEV *Result = getStart();
1019   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1020     // The computation is correct in the face of overflow provided that the
1021     // multiplication is performed _after_ the evaluation of the binomial
1022     // coefficient.
1023     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1024     if (isa<SCEVCouldNotCompute>(Coeff))
1025       return Coeff;
1026 
1027     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1028   }
1029   return Result;
1030 }
1031 
1032 //===----------------------------------------------------------------------===//
1033 //                    SCEV Expression folder implementations
1034 //===----------------------------------------------------------------------===//
1035 
1036 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
1037                                              unsigned Depth) {
1038   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1039   assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
1040 
1041   // We could be called with an integer-typed operands during SCEV rewrites.
1042   // Since the operand is an integer already, just perform zext/trunc/self cast.
1043   if (!Op->getType()->isPointerTy())
1044     return getTruncateOrZeroExtend(Op, Ty);
1045 
1046   // What would be an ID for such a SCEV cast expression?
1047   FoldingSetNodeID ID;
1048   ID.AddInteger(scPtrToInt);
1049   ID.AddPointer(Op);
1050 
1051   void *IP = nullptr;
1052 
1053   // Is there already an expression for such a cast?
1054   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1055     return getTruncateOrZeroExtend(S, Ty);
1056 
1057   // If not, is this expression something we can't reduce any further?
1058   if (isa<SCEVUnknown>(Op)) {
1059     // Create an explicit cast node.
1060     // We can reuse the existing insert position since if we get here,
1061     // we won't have made any changes which would invalidate it.
1062     Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1063     assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
1064                Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
1065            "We can only model ptrtoint if SCEV's effective (integer) type is "
1066            "sufficiently wide to represent all possible pointer values.");
1067     SCEV *S = new (SCEVAllocator)
1068         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1069     UniqueSCEVs.InsertNode(S, IP);
1070     addToLoopUseLists(S);
1071     return getTruncateOrZeroExtend(S, Ty);
1072   }
1073 
1074   assert(Depth == 0 &&
1075          "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
1076 
1077   // Otherwise, we've got some expression that is more complex than just a
1078   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1079   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1080   // only, and the expressions must otherwise be integer-typed.
1081   // So sink the cast down to the SCEVUnknown's.
1082 
1083   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1084   /// which computes a pointer-typed value, and rewrites the whole expression
1085   /// tree so that *all* the computations are done on integers, and the only
1086   /// pointer-typed operands in the expression are SCEVUnknown.
1087   class SCEVPtrToIntSinkingRewriter
1088       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1089     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1090 
1091   public:
1092     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1093 
1094     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1095       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1096       return Rewriter.visit(Scev);
1097     }
1098 
1099     const SCEV *visit(const SCEV *S) {
1100       Type *STy = S->getType();
1101       // If the expression is not pointer-typed, just keep it as-is.
1102       if (!STy->isPointerTy())
1103         return S;
1104       // Else, recursively sink the cast down into it.
1105       return Base::visit(S);
1106     }
1107 
1108     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1109       SmallVector<const SCEV *, 2> Operands;
1110       bool Changed = false;
1111       for (auto *Op : Expr->operands()) {
1112         Operands.push_back(visit(Op));
1113         Changed |= Op != Operands.back();
1114       }
1115       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1116     }
1117 
1118     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1119       SmallVector<const SCEV *, 2> Operands;
1120       bool Changed = false;
1121       for (auto *Op : Expr->operands()) {
1122         Operands.push_back(visit(Op));
1123         Changed |= Op != Operands.back();
1124       }
1125       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1126     }
1127 
1128     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1129       Type *ExprPtrTy = Expr->getType();
1130       assert(ExprPtrTy->isPointerTy() &&
1131              "Should only reach pointer-typed SCEVUnknown's.");
1132       Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
1133       return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
1134     }
1135   };
1136 
1137   // And actually perform the cast sinking.
1138   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1139   assert(IntOp->getType()->isIntegerTy() &&
1140          "We must have succeeded in sinking the cast, "
1141          "and ending up with an integer-typed expression!");
1142   return getTruncateOrZeroExtend(IntOp, Ty);
1143 }
1144 
1145 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1146                                              unsigned Depth) {
1147   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1148          "This is not a truncating conversion!");
1149   assert(isSCEVable(Ty) &&
1150          "This is not a conversion to a SCEVable type!");
1151   Ty = getEffectiveSCEVType(Ty);
1152 
1153   FoldingSetNodeID ID;
1154   ID.AddInteger(scTruncate);
1155   ID.AddPointer(Op);
1156   ID.AddPointer(Ty);
1157   void *IP = nullptr;
1158   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1159 
1160   // Fold if the operand is constant.
1161   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1162     return getConstant(
1163       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1164 
1165   // trunc(trunc(x)) --> trunc(x)
1166   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1167     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1168 
1169   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1170   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1171     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1172 
1173   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1174   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1175     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1176 
1177   if (Depth > MaxCastDepth) {
1178     SCEV *S =
1179         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1180     UniqueSCEVs.InsertNode(S, IP);
1181     addToLoopUseLists(S);
1182     return S;
1183   }
1184 
1185   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1186   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1187   // if after transforming we have at most one truncate, not counting truncates
1188   // that replace other casts.
1189   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1190     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1191     SmallVector<const SCEV *, 4> Operands;
1192     unsigned numTruncs = 0;
1193     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1194          ++i) {
1195       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1196       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1197           isa<SCEVTruncateExpr>(S))
1198         numTruncs++;
1199       Operands.push_back(S);
1200     }
1201     if (numTruncs < 2) {
1202       if (isa<SCEVAddExpr>(Op))
1203         return getAddExpr(Operands);
1204       else if (isa<SCEVMulExpr>(Op))
1205         return getMulExpr(Operands);
1206       else
1207         llvm_unreachable("Unexpected SCEV type for Op.");
1208     }
1209     // Although we checked in the beginning that ID is not in the cache, it is
1210     // possible that during recursion and different modification ID was inserted
1211     // into the cache. So if we find it, just return it.
1212     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1213       return S;
1214   }
1215 
1216   // If the input value is a chrec scev, truncate the chrec's operands.
1217   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1218     SmallVector<const SCEV *, 4> Operands;
1219     for (const SCEV *Op : AddRec->operands())
1220       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1221     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1222   }
1223 
1224   // The cast wasn't folded; create an explicit cast node. We can reuse
1225   // the existing insert position since if we get here, we won't have
1226   // made any changes which would invalidate it.
1227   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1228                                                  Op, Ty);
1229   UniqueSCEVs.InsertNode(S, IP);
1230   addToLoopUseLists(S);
1231   return S;
1232 }
1233 
1234 // Get the limit of a recurrence such that incrementing by Step cannot cause
1235 // signed overflow as long as the value of the recurrence within the
1236 // loop does not exceed this limit before incrementing.
1237 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1238                                                  ICmpInst::Predicate *Pred,
1239                                                  ScalarEvolution *SE) {
1240   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1241   if (SE->isKnownPositive(Step)) {
1242     *Pred = ICmpInst::ICMP_SLT;
1243     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1244                            SE->getSignedRangeMax(Step));
1245   }
1246   if (SE->isKnownNegative(Step)) {
1247     *Pred = ICmpInst::ICMP_SGT;
1248     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1249                            SE->getSignedRangeMin(Step));
1250   }
1251   return nullptr;
1252 }
1253 
1254 // Get the limit of a recurrence such that incrementing by Step cannot cause
1255 // unsigned overflow as long as the value of the recurrence within the loop does
1256 // not exceed this limit before incrementing.
1257 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1258                                                    ICmpInst::Predicate *Pred,
1259                                                    ScalarEvolution *SE) {
1260   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1261   *Pred = ICmpInst::ICMP_ULT;
1262 
1263   return SE->getConstant(APInt::getMinValue(BitWidth) -
1264                          SE->getUnsignedRangeMax(Step));
1265 }
1266 
1267 namespace {
1268 
1269 struct ExtendOpTraitsBase {
1270   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1271                                                           unsigned);
1272 };
1273 
1274 // Used to make code generic over signed and unsigned overflow.
1275 template <typename ExtendOp> struct ExtendOpTraits {
1276   // Members present:
1277   //
1278   // static const SCEV::NoWrapFlags WrapType;
1279   //
1280   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1281   //
1282   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1283   //                                           ICmpInst::Predicate *Pred,
1284   //                                           ScalarEvolution *SE);
1285 };
1286 
1287 template <>
1288 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1289   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1290 
1291   static const GetExtendExprTy GetExtendExpr;
1292 
1293   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1294                                              ICmpInst::Predicate *Pred,
1295                                              ScalarEvolution *SE) {
1296     return getSignedOverflowLimitForStep(Step, Pred, SE);
1297   }
1298 };
1299 
1300 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1301     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1302 
1303 template <>
1304 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1305   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1306 
1307   static const GetExtendExprTy GetExtendExpr;
1308 
1309   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1310                                              ICmpInst::Predicate *Pred,
1311                                              ScalarEvolution *SE) {
1312     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1313   }
1314 };
1315 
1316 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1317     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1318 
1319 } // end anonymous namespace
1320 
1321 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1322 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1323 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1324 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1325 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1326 // expression "Step + sext/zext(PreIncAR)" is congruent with
1327 // "sext/zext(PostIncAR)"
1328 template <typename ExtendOpTy>
1329 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1330                                         ScalarEvolution *SE, unsigned Depth) {
1331   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1332   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1333 
1334   const Loop *L = AR->getLoop();
1335   const SCEV *Start = AR->getStart();
1336   const SCEV *Step = AR->getStepRecurrence(*SE);
1337 
1338   // Check for a simple looking step prior to loop entry.
1339   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1340   if (!SA)
1341     return nullptr;
1342 
1343   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1344   // subtraction is expensive. For this purpose, perform a quick and dirty
1345   // difference, by checking for Step in the operand list.
1346   SmallVector<const SCEV *, 4> DiffOps;
1347   for (const SCEV *Op : SA->operands())
1348     if (Op != Step)
1349       DiffOps.push_back(Op);
1350 
1351   if (DiffOps.size() == SA->getNumOperands())
1352     return nullptr;
1353 
1354   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1355   // `Step`:
1356 
1357   // 1. NSW/NUW flags on the step increment.
1358   auto PreStartFlags =
1359     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1360   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1361   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1362       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1363 
1364   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1365   // "S+X does not sign/unsign-overflow".
1366   //
1367 
1368   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1369   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1370       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1371     return PreStart;
1372 
1373   // 2. Direct overflow check on the step operation's expression.
1374   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1375   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1376   const SCEV *OperandExtendedStart =
1377       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1378                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1379   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1380     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1381       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1382       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1383       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1384       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1385     }
1386     return PreStart;
1387   }
1388 
1389   // 3. Loop precondition.
1390   ICmpInst::Predicate Pred;
1391   const SCEV *OverflowLimit =
1392       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1393 
1394   if (OverflowLimit &&
1395       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1396     return PreStart;
1397 
1398   return nullptr;
1399 }
1400 
1401 // Get the normalized zero or sign extended expression for this AddRec's Start.
1402 template <typename ExtendOpTy>
1403 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1404                                         ScalarEvolution *SE,
1405                                         unsigned Depth) {
1406   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1407 
1408   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1409   if (!PreStart)
1410     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1411 
1412   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1413                                              Depth),
1414                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1415 }
1416 
1417 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1418 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1419 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1420 //
1421 // Formally:
1422 //
1423 //     {S,+,X} == {S-T,+,X} + T
1424 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1425 //
1426 // If ({S-T,+,X} + T) does not overflow  ... (1)
1427 //
1428 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1429 //
1430 // If {S-T,+,X} does not overflow  ... (2)
1431 //
1432 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1433 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1434 //
1435 // If (S-T)+T does not overflow  ... (3)
1436 //
1437 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1438 //      == {Ext(S),+,Ext(X)} == LHS
1439 //
1440 // Thus, if (1), (2) and (3) are true for some T, then
1441 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1442 //
1443 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1444 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1445 // to check for (1) and (2).
1446 //
1447 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1448 // is `Delta` (defined below).
1449 template <typename ExtendOpTy>
1450 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1451                                                 const SCEV *Step,
1452                                                 const Loop *L) {
1453   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1454 
1455   // We restrict `Start` to a constant to prevent SCEV from spending too much
1456   // time here.  It is correct (but more expensive) to continue with a
1457   // non-constant `Start` and do a general SCEV subtraction to compute
1458   // `PreStart` below.
1459   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1460   if (!StartC)
1461     return false;
1462 
1463   APInt StartAI = StartC->getAPInt();
1464 
1465   for (unsigned Delta : {-2, -1, 1, 2}) {
1466     const SCEV *PreStart = getConstant(StartAI - Delta);
1467 
1468     FoldingSetNodeID ID;
1469     ID.AddInteger(scAddRecExpr);
1470     ID.AddPointer(PreStart);
1471     ID.AddPointer(Step);
1472     ID.AddPointer(L);
1473     void *IP = nullptr;
1474     const auto *PreAR =
1475       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1476 
1477     // Give up if we don't already have the add recurrence we need because
1478     // actually constructing an add recurrence is relatively expensive.
1479     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1480       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1481       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1482       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1483           DeltaS, &Pred, this);
1484       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1485         return true;
1486     }
1487   }
1488 
1489   return false;
1490 }
1491 
1492 // Finds an integer D for an expression (C + x + y + ...) such that the top
1493 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1494 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1495 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1496 // the (C + x + y + ...) expression is \p WholeAddExpr.
1497 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1498                                             const SCEVConstant *ConstantTerm,
1499                                             const SCEVAddExpr *WholeAddExpr) {
1500   const APInt &C = ConstantTerm->getAPInt();
1501   const unsigned BitWidth = C.getBitWidth();
1502   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1503   uint32_t TZ = BitWidth;
1504   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1505     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1506   if (TZ) {
1507     // Set D to be as many least significant bits of C as possible while still
1508     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1509     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1510   }
1511   return APInt(BitWidth, 0);
1512 }
1513 
1514 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1515 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1516 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1517 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1518 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1519                                             const APInt &ConstantStart,
1520                                             const SCEV *Step) {
1521   const unsigned BitWidth = ConstantStart.getBitWidth();
1522   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1523   if (TZ)
1524     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1525                          : ConstantStart;
1526   return APInt(BitWidth, 0);
1527 }
1528 
1529 const SCEV *
1530 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1531   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1532          "This is not an extending conversion!");
1533   assert(isSCEVable(Ty) &&
1534          "This is not a conversion to a SCEVable type!");
1535   Ty = getEffectiveSCEVType(Ty);
1536 
1537   // Fold if the operand is constant.
1538   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1539     return getConstant(
1540       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1541 
1542   // zext(zext(x)) --> zext(x)
1543   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1544     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1545 
1546   // Before doing any expensive analysis, check to see if we've already
1547   // computed a SCEV for this Op and Ty.
1548   FoldingSetNodeID ID;
1549   ID.AddInteger(scZeroExtend);
1550   ID.AddPointer(Op);
1551   ID.AddPointer(Ty);
1552   void *IP = nullptr;
1553   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1554   if (Depth > MaxCastDepth) {
1555     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1556                                                      Op, Ty);
1557     UniqueSCEVs.InsertNode(S, IP);
1558     addToLoopUseLists(S);
1559     return S;
1560   }
1561 
1562   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1563   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1564     // It's possible the bits taken off by the truncate were all zero bits. If
1565     // so, we should be able to simplify this further.
1566     const SCEV *X = ST->getOperand();
1567     ConstantRange CR = getUnsignedRange(X);
1568     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1569     unsigned NewBits = getTypeSizeInBits(Ty);
1570     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1571             CR.zextOrTrunc(NewBits)))
1572       return getTruncateOrZeroExtend(X, Ty, Depth);
1573   }
1574 
1575   // If the input value is a chrec scev, and we can prove that the value
1576   // did not overflow the old, smaller, value, we can zero extend all of the
1577   // operands (often constants).  This allows analysis of something like
1578   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1579   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1580     if (AR->isAffine()) {
1581       const SCEV *Start = AR->getStart();
1582       const SCEV *Step = AR->getStepRecurrence(*this);
1583       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1584       const Loop *L = AR->getLoop();
1585 
1586       if (!AR->hasNoUnsignedWrap()) {
1587         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1588         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1589       }
1590 
1591       if (!AR->hasNoUnsignedWrap()) {
1592         auto NewFlags = proveNoWrapViaInduction(AR);
1593         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1594       }
1595 
1596       // If we have special knowledge that this addrec won't overflow,
1597       // we don't need to do any further analysis.
1598       if (AR->hasNoUnsignedWrap())
1599         return getAddRecExpr(
1600             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1601             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1602 
1603       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1604       // Note that this serves two purposes: It filters out loops that are
1605       // simply not analyzable, and it covers the case where this code is
1606       // being called from within backedge-taken count analysis, such that
1607       // attempting to ask for the backedge-taken count would likely result
1608       // in infinite recursion. In the later case, the analysis code will
1609       // cope with a conservative value, and it will take care to purge
1610       // that value once it has finished.
1611       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1612       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1613         // Manually compute the final value for AR, checking for
1614         // overflow.
1615 
1616         // Check whether the backedge-taken count can be losslessly casted to
1617         // the addrec's type. The count is always unsigned.
1618         const SCEV *CastedMaxBECount =
1619             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1620         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1621             CastedMaxBECount, MaxBECount->getType(), Depth);
1622         if (MaxBECount == RecastedMaxBECount) {
1623           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1624           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1625           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1626                                         SCEV::FlagAnyWrap, Depth + 1);
1627           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1628                                                           SCEV::FlagAnyWrap,
1629                                                           Depth + 1),
1630                                                WideTy, Depth + 1);
1631           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1632           const SCEV *WideMaxBECount =
1633             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1634           const SCEV *OperandExtendedAdd =
1635             getAddExpr(WideStart,
1636                        getMulExpr(WideMaxBECount,
1637                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1638                                   SCEV::FlagAnyWrap, Depth + 1),
1639                        SCEV::FlagAnyWrap, Depth + 1);
1640           if (ZAdd == OperandExtendedAdd) {
1641             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1642             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1643             // Return the expression with the addrec on the outside.
1644             return getAddRecExpr(
1645                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1646                                                          Depth + 1),
1647                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1648                 AR->getNoWrapFlags());
1649           }
1650           // Similar to above, only this time treat the step value as signed.
1651           // This covers loops that count down.
1652           OperandExtendedAdd =
1653             getAddExpr(WideStart,
1654                        getMulExpr(WideMaxBECount,
1655                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1656                                   SCEV::FlagAnyWrap, Depth + 1),
1657                        SCEV::FlagAnyWrap, Depth + 1);
1658           if (ZAdd == OperandExtendedAdd) {
1659             // Cache knowledge of AR NW, which is propagated to this AddRec.
1660             // Negative step causes unsigned wrap, but it still can't self-wrap.
1661             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1662             // Return the expression with the addrec on the outside.
1663             return getAddRecExpr(
1664                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1665                                                          Depth + 1),
1666                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1667                 AR->getNoWrapFlags());
1668           }
1669         }
1670       }
1671 
1672       // Normally, in the cases we can prove no-overflow via a
1673       // backedge guarding condition, we can also compute a backedge
1674       // taken count for the loop.  The exceptions are assumptions and
1675       // guards present in the loop -- SCEV is not great at exploiting
1676       // these to compute max backedge taken counts, but can still use
1677       // these to prove lack of overflow.  Use this fact to avoid
1678       // doing extra work that may not pay off.
1679       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1680           !AC.assumptions().empty()) {
1681         // For a negative step, we can extend the operands iff doing so only
1682         // traverses values in the range zext([0,UINT_MAX]).
1683         if (isKnownNegative(Step)) {
1684           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1685                                       getSignedRangeMin(Step));
1686           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1687               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1688             // Note: We've proven NW here, but that's already done above too.
1689             // Return the expression with the addrec on the outside.
1690             return getAddRecExpr(
1691                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1692                                                          Depth + 1),
1693                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1694                 AR->getNoWrapFlags());
1695           }
1696         }
1697       }
1698 
1699       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1700       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1701       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1702       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1703         const APInt &C = SC->getAPInt();
1704         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1705         if (D != 0) {
1706           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1707           const SCEV *SResidual =
1708               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1709           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1710           return getAddExpr(SZExtD, SZExtR,
1711                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1712                             Depth + 1);
1713         }
1714       }
1715 
1716       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1717         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1718         return getAddRecExpr(
1719             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1720             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1721       }
1722     }
1723 
1724   // zext(A % B) --> zext(A) % zext(B)
1725   {
1726     const SCEV *LHS;
1727     const SCEV *RHS;
1728     if (matchURem(Op, LHS, RHS))
1729       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1730                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1731   }
1732 
1733   // zext(A / B) --> zext(A) / zext(B).
1734   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1735     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1736                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1737 
1738   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1739     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1740     if (SA->hasNoUnsignedWrap()) {
1741       // If the addition does not unsign overflow then we can, by definition,
1742       // commute the zero extension with the addition operation.
1743       SmallVector<const SCEV *, 4> Ops;
1744       for (const auto *Op : SA->operands())
1745         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1746       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1747     }
1748 
1749     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1750     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1751     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1752     //
1753     // Often address arithmetics contain expressions like
1754     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1755     // This transformation is useful while proving that such expressions are
1756     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1757     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1758       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1759       if (D != 0) {
1760         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1761         const SCEV *SResidual =
1762             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1763         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1764         return getAddExpr(SZExtD, SZExtR,
1765                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1766                           Depth + 1);
1767       }
1768     }
1769   }
1770 
1771   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1772     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1773     if (SM->hasNoUnsignedWrap()) {
1774       // If the multiply does not unsign overflow then we can, by definition,
1775       // commute the zero extension with the multiply operation.
1776       SmallVector<const SCEV *, 4> Ops;
1777       for (const auto *Op : SM->operands())
1778         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1779       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1780     }
1781 
1782     // zext(2^K * (trunc X to iN)) to iM ->
1783     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1784     //
1785     // Proof:
1786     //
1787     //     zext(2^K * (trunc X to iN)) to iM
1788     //   = zext((trunc X to iN) << K) to iM
1789     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1790     //     (because shl removes the top K bits)
1791     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1792     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1793     //
1794     if (SM->getNumOperands() == 2)
1795       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1796         if (MulLHS->getAPInt().isPowerOf2())
1797           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1798             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1799                                MulLHS->getAPInt().logBase2();
1800             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1801             return getMulExpr(
1802                 getZeroExtendExpr(MulLHS, Ty),
1803                 getZeroExtendExpr(
1804                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1805                 SCEV::FlagNUW, Depth + 1);
1806           }
1807   }
1808 
1809   // The cast wasn't folded; create an explicit cast node.
1810   // Recompute the insert position, as it may have been invalidated.
1811   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1812   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1813                                                    Op, Ty);
1814   UniqueSCEVs.InsertNode(S, IP);
1815   addToLoopUseLists(S);
1816   return S;
1817 }
1818 
1819 const SCEV *
1820 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1821   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1822          "This is not an extending conversion!");
1823   assert(isSCEVable(Ty) &&
1824          "This is not a conversion to a SCEVable type!");
1825   Ty = getEffectiveSCEVType(Ty);
1826 
1827   // Fold if the operand is constant.
1828   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1829     return getConstant(
1830       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1831 
1832   // sext(sext(x)) --> sext(x)
1833   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1834     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1835 
1836   // sext(zext(x)) --> zext(x)
1837   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1838     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1839 
1840   // Before doing any expensive analysis, check to see if we've already
1841   // computed a SCEV for this Op and Ty.
1842   FoldingSetNodeID ID;
1843   ID.AddInteger(scSignExtend);
1844   ID.AddPointer(Op);
1845   ID.AddPointer(Ty);
1846   void *IP = nullptr;
1847   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1848   // Limit recursion depth.
1849   if (Depth > MaxCastDepth) {
1850     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1851                                                      Op, Ty);
1852     UniqueSCEVs.InsertNode(S, IP);
1853     addToLoopUseLists(S);
1854     return S;
1855   }
1856 
1857   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1858   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1859     // It's possible the bits taken off by the truncate were all sign bits. If
1860     // so, we should be able to simplify this further.
1861     const SCEV *X = ST->getOperand();
1862     ConstantRange CR = getSignedRange(X);
1863     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1864     unsigned NewBits = getTypeSizeInBits(Ty);
1865     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1866             CR.sextOrTrunc(NewBits)))
1867       return getTruncateOrSignExtend(X, Ty, Depth);
1868   }
1869 
1870   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1871     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1872     if (SA->hasNoSignedWrap()) {
1873       // If the addition does not sign overflow then we can, by definition,
1874       // commute the sign extension with the addition operation.
1875       SmallVector<const SCEV *, 4> Ops;
1876       for (const auto *Op : SA->operands())
1877         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1878       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1879     }
1880 
1881     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1882     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1883     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1884     //
1885     // For instance, this will bring two seemingly different expressions:
1886     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1887     //         sext(6 + 20 * %x + 24 * %y)
1888     // to the same form:
1889     //     2 + sext(4 + 20 * %x + 24 * %y)
1890     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1891       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1892       if (D != 0) {
1893         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1894         const SCEV *SResidual =
1895             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1896         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1897         return getAddExpr(SSExtD, SSExtR,
1898                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1899                           Depth + 1);
1900       }
1901     }
1902   }
1903   // If the input value is a chrec scev, and we can prove that the value
1904   // did not overflow the old, smaller, value, we can sign extend all of the
1905   // operands (often constants).  This allows analysis of something like
1906   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1907   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1908     if (AR->isAffine()) {
1909       const SCEV *Start = AR->getStart();
1910       const SCEV *Step = AR->getStepRecurrence(*this);
1911       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1912       const Loop *L = AR->getLoop();
1913 
1914       if (!AR->hasNoSignedWrap()) {
1915         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1916         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1917       }
1918 
1919       if (!AR->hasNoSignedWrap()) {
1920         auto NewFlags = proveNoWrapViaInduction(AR);
1921         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1922       }
1923 
1924       // If we have special knowledge that this addrec won't overflow,
1925       // we don't need to do any further analysis.
1926       if (AR->hasNoSignedWrap())
1927         return getAddRecExpr(
1928             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1929             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1930 
1931       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1932       // Note that this serves two purposes: It filters out loops that are
1933       // simply not analyzable, and it covers the case where this code is
1934       // being called from within backedge-taken count analysis, such that
1935       // attempting to ask for the backedge-taken count would likely result
1936       // in infinite recursion. In the later case, the analysis code will
1937       // cope with a conservative value, and it will take care to purge
1938       // that value once it has finished.
1939       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1940       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1941         // Manually compute the final value for AR, checking for
1942         // overflow.
1943 
1944         // Check whether the backedge-taken count can be losslessly casted to
1945         // the addrec's type. The count is always unsigned.
1946         const SCEV *CastedMaxBECount =
1947             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1948         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1949             CastedMaxBECount, MaxBECount->getType(), Depth);
1950         if (MaxBECount == RecastedMaxBECount) {
1951           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1952           // Check whether Start+Step*MaxBECount has no signed overflow.
1953           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1954                                         SCEV::FlagAnyWrap, Depth + 1);
1955           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1956                                                           SCEV::FlagAnyWrap,
1957                                                           Depth + 1),
1958                                                WideTy, Depth + 1);
1959           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1960           const SCEV *WideMaxBECount =
1961             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1962           const SCEV *OperandExtendedAdd =
1963             getAddExpr(WideStart,
1964                        getMulExpr(WideMaxBECount,
1965                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1966                                   SCEV::FlagAnyWrap, Depth + 1),
1967                        SCEV::FlagAnyWrap, Depth + 1);
1968           if (SAdd == OperandExtendedAdd) {
1969             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1970             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
1971             // Return the expression with the addrec on the outside.
1972             return getAddRecExpr(
1973                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1974                                                          Depth + 1),
1975                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1976                 AR->getNoWrapFlags());
1977           }
1978           // Similar to above, only this time treat the step value as unsigned.
1979           // This covers loops that count up with an unsigned step.
1980           OperandExtendedAdd =
1981             getAddExpr(WideStart,
1982                        getMulExpr(WideMaxBECount,
1983                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1984                                   SCEV::FlagAnyWrap, Depth + 1),
1985                        SCEV::FlagAnyWrap, Depth + 1);
1986           if (SAdd == OperandExtendedAdd) {
1987             // If AR wraps around then
1988             //
1989             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1990             // => SAdd != OperandExtendedAdd
1991             //
1992             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1993             // (SAdd == OperandExtendedAdd => AR is NW)
1994 
1995             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1996 
1997             // Return the expression with the addrec on the outside.
1998             return getAddRecExpr(
1999                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2000                                                          Depth + 1),
2001                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2002                 AR->getNoWrapFlags());
2003           }
2004         }
2005       }
2006 
2007       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2008       // if D + (C - D + Step * n) could be proven to not signed wrap
2009       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2010       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2011         const APInt &C = SC->getAPInt();
2012         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2013         if (D != 0) {
2014           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2015           const SCEV *SResidual =
2016               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2017           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2018           return getAddExpr(SSExtD, SSExtR,
2019                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2020                             Depth + 1);
2021         }
2022       }
2023 
2024       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2025         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2026         return getAddRecExpr(
2027             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2028             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2029       }
2030     }
2031 
2032   // If the input value is provably positive and we could not simplify
2033   // away the sext build a zext instead.
2034   if (isKnownNonNegative(Op))
2035     return getZeroExtendExpr(Op, Ty, Depth + 1);
2036 
2037   // The cast wasn't folded; create an explicit cast node.
2038   // Recompute the insert position, as it may have been invalidated.
2039   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2040   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2041                                                    Op, Ty);
2042   UniqueSCEVs.InsertNode(S, IP);
2043   addToLoopUseLists(S);
2044   return S;
2045 }
2046 
2047 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2048 /// unspecified bits out to the given type.
2049 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2050                                               Type *Ty) {
2051   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2052          "This is not an extending conversion!");
2053   assert(isSCEVable(Ty) &&
2054          "This is not a conversion to a SCEVable type!");
2055   Ty = getEffectiveSCEVType(Ty);
2056 
2057   // Sign-extend negative constants.
2058   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2059     if (SC->getAPInt().isNegative())
2060       return getSignExtendExpr(Op, Ty);
2061 
2062   // Peel off a truncate cast.
2063   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2064     const SCEV *NewOp = T->getOperand();
2065     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2066       return getAnyExtendExpr(NewOp, Ty);
2067     return getTruncateOrNoop(NewOp, Ty);
2068   }
2069 
2070   // Next try a zext cast. If the cast is folded, use it.
2071   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2072   if (!isa<SCEVZeroExtendExpr>(ZExt))
2073     return ZExt;
2074 
2075   // Next try a sext cast. If the cast is folded, use it.
2076   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2077   if (!isa<SCEVSignExtendExpr>(SExt))
2078     return SExt;
2079 
2080   // Force the cast to be folded into the operands of an addrec.
2081   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2082     SmallVector<const SCEV *, 4> Ops;
2083     for (const SCEV *Op : AR->operands())
2084       Ops.push_back(getAnyExtendExpr(Op, Ty));
2085     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2086   }
2087 
2088   // If the expression is obviously signed, use the sext cast value.
2089   if (isa<SCEVSMaxExpr>(Op))
2090     return SExt;
2091 
2092   // Absent any other information, use the zext cast value.
2093   return ZExt;
2094 }
2095 
2096 /// Process the given Ops list, which is a list of operands to be added under
2097 /// the given scale, update the given map. This is a helper function for
2098 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2099 /// that would form an add expression like this:
2100 ///
2101 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2102 ///
2103 /// where A and B are constants, update the map with these values:
2104 ///
2105 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2106 ///
2107 /// and add 13 + A*B*29 to AccumulatedConstant.
2108 /// This will allow getAddRecExpr to produce this:
2109 ///
2110 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2111 ///
2112 /// This form often exposes folding opportunities that are hidden in
2113 /// the original operand list.
2114 ///
2115 /// Return true iff it appears that any interesting folding opportunities
2116 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2117 /// the common case where no interesting opportunities are present, and
2118 /// is also used as a check to avoid infinite recursion.
2119 static bool
2120 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2121                              SmallVectorImpl<const SCEV *> &NewOps,
2122                              APInt &AccumulatedConstant,
2123                              const SCEV *const *Ops, size_t NumOperands,
2124                              const APInt &Scale,
2125                              ScalarEvolution &SE) {
2126   bool Interesting = false;
2127 
2128   // Iterate over the add operands. They are sorted, with constants first.
2129   unsigned i = 0;
2130   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2131     ++i;
2132     // Pull a buried constant out to the outside.
2133     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2134       Interesting = true;
2135     AccumulatedConstant += Scale * C->getAPInt();
2136   }
2137 
2138   // Next comes everything else. We're especially interested in multiplies
2139   // here, but they're in the middle, so just visit the rest with one loop.
2140   for (; i != NumOperands; ++i) {
2141     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2142     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2143       APInt NewScale =
2144           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2145       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2146         // A multiplication of a constant with another add; recurse.
2147         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2148         Interesting |=
2149           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2150                                        Add->op_begin(), Add->getNumOperands(),
2151                                        NewScale, SE);
2152       } else {
2153         // A multiplication of a constant with some other value. Update
2154         // the map.
2155         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2156         const SCEV *Key = SE.getMulExpr(MulOps);
2157         auto Pair = M.insert({Key, NewScale});
2158         if (Pair.second) {
2159           NewOps.push_back(Pair.first->first);
2160         } else {
2161           Pair.first->second += NewScale;
2162           // The map already had an entry for this value, which may indicate
2163           // a folding opportunity.
2164           Interesting = true;
2165         }
2166       }
2167     } else {
2168       // An ordinary operand. Update the map.
2169       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2170           M.insert({Ops[i], Scale});
2171       if (Pair.second) {
2172         NewOps.push_back(Pair.first->first);
2173       } else {
2174         Pair.first->second += Scale;
2175         // The map already had an entry for this value, which may indicate
2176         // a folding opportunity.
2177         Interesting = true;
2178       }
2179     }
2180   }
2181 
2182   return Interesting;
2183 }
2184 
2185 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2186 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2187 // can't-overflow flags for the operation if possible.
2188 static SCEV::NoWrapFlags
2189 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2190                       const ArrayRef<const SCEV *> Ops,
2191                       SCEV::NoWrapFlags Flags) {
2192   using namespace std::placeholders;
2193 
2194   using OBO = OverflowingBinaryOperator;
2195 
2196   bool CanAnalyze =
2197       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2198   (void)CanAnalyze;
2199   assert(CanAnalyze && "don't call from other places!");
2200 
2201   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2202   SCEV::NoWrapFlags SignOrUnsignWrap =
2203       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2204 
2205   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2206   auto IsKnownNonNegative = [&](const SCEV *S) {
2207     return SE->isKnownNonNegative(S);
2208   };
2209 
2210   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2211     Flags =
2212         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2213 
2214   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2215 
2216   if (SignOrUnsignWrap != SignOrUnsignMask &&
2217       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2218       isa<SCEVConstant>(Ops[0])) {
2219 
2220     auto Opcode = [&] {
2221       switch (Type) {
2222       case scAddExpr:
2223         return Instruction::Add;
2224       case scMulExpr:
2225         return Instruction::Mul;
2226       default:
2227         llvm_unreachable("Unexpected SCEV op.");
2228       }
2229     }();
2230 
2231     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2232 
2233     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2234     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2235       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2236           Opcode, C, OBO::NoSignedWrap);
2237       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2238         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2239     }
2240 
2241     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2242     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2243       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2244           Opcode, C, OBO::NoUnsignedWrap);
2245       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2246         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2247     }
2248   }
2249 
2250   return Flags;
2251 }
2252 
2253 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2254   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2255 }
2256 
2257 /// Get a canonical add expression, or something simpler if possible.
2258 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2259                                         SCEV::NoWrapFlags OrigFlags,
2260                                         unsigned Depth) {
2261   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2262          "only nuw or nsw allowed");
2263   assert(!Ops.empty() && "Cannot get empty add!");
2264   if (Ops.size() == 1) return Ops[0];
2265 #ifndef NDEBUG
2266   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2267   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2268     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2269            "SCEVAddExpr operand types don't match!");
2270 #endif
2271 
2272   // Sort by complexity, this groups all similar expression types together.
2273   GroupByComplexity(Ops, &LI, DT);
2274 
2275   // If there are any constants, fold them together.
2276   unsigned Idx = 0;
2277   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2278     ++Idx;
2279     assert(Idx < Ops.size());
2280     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2281       // We found two constants, fold them together!
2282       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2283       if (Ops.size() == 2) return Ops[0];
2284       Ops.erase(Ops.begin()+1);  // Erase the folded element
2285       LHSC = cast<SCEVConstant>(Ops[0]);
2286     }
2287 
2288     // If we are left with a constant zero being added, strip it off.
2289     if (LHSC->getValue()->isZero()) {
2290       Ops.erase(Ops.begin());
2291       --Idx;
2292     }
2293 
2294     if (Ops.size() == 1) return Ops[0];
2295   }
2296 
2297   // Delay expensive flag strengthening until necessary.
2298   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2299     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2300   };
2301 
2302   // Limit recursion calls depth.
2303   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2304     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2305 
2306   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2307     // Don't strengthen flags if we have no new information.
2308     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2309     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2310       Add->setNoWrapFlags(ComputeFlags(Ops));
2311     return S;
2312   }
2313 
2314   // Okay, check to see if the same value occurs in the operand list more than
2315   // once.  If so, merge them together into an multiply expression.  Since we
2316   // sorted the list, these values are required to be adjacent.
2317   Type *Ty = Ops[0]->getType();
2318   bool FoundMatch = false;
2319   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2320     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2321       // Scan ahead to count how many equal operands there are.
2322       unsigned Count = 2;
2323       while (i+Count != e && Ops[i+Count] == Ops[i])
2324         ++Count;
2325       // Merge the values into a multiply.
2326       const SCEV *Scale = getConstant(Ty, Count);
2327       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2328       if (Ops.size() == Count)
2329         return Mul;
2330       Ops[i] = Mul;
2331       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2332       --i; e -= Count - 1;
2333       FoundMatch = true;
2334     }
2335   if (FoundMatch)
2336     return getAddExpr(Ops, OrigFlags, Depth + 1);
2337 
2338   // Check for truncates. If all the operands are truncated from the same
2339   // type, see if factoring out the truncate would permit the result to be
2340   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2341   // if the contents of the resulting outer trunc fold to something simple.
2342   auto FindTruncSrcType = [&]() -> Type * {
2343     // We're ultimately looking to fold an addrec of truncs and muls of only
2344     // constants and truncs, so if we find any other types of SCEV
2345     // as operands of the addrec then we bail and return nullptr here.
2346     // Otherwise, we return the type of the operand of a trunc that we find.
2347     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2348       return T->getOperand()->getType();
2349     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2350       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2351       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2352         return T->getOperand()->getType();
2353     }
2354     return nullptr;
2355   };
2356   if (auto *SrcType = FindTruncSrcType()) {
2357     SmallVector<const SCEV *, 8> LargeOps;
2358     bool Ok = true;
2359     // Check all the operands to see if they can be represented in the
2360     // source type of the truncate.
2361     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2362       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2363         if (T->getOperand()->getType() != SrcType) {
2364           Ok = false;
2365           break;
2366         }
2367         LargeOps.push_back(T->getOperand());
2368       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2369         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2370       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2371         SmallVector<const SCEV *, 8> LargeMulOps;
2372         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2373           if (const SCEVTruncateExpr *T =
2374                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2375             if (T->getOperand()->getType() != SrcType) {
2376               Ok = false;
2377               break;
2378             }
2379             LargeMulOps.push_back(T->getOperand());
2380           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2381             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2382           } else {
2383             Ok = false;
2384             break;
2385           }
2386         }
2387         if (Ok)
2388           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2389       } else {
2390         Ok = false;
2391         break;
2392       }
2393     }
2394     if (Ok) {
2395       // Evaluate the expression in the larger type.
2396       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2397       // If it folds to something simple, use it. Otherwise, don't.
2398       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2399         return getTruncateExpr(Fold, Ty);
2400     }
2401   }
2402 
2403   // Skip past any other cast SCEVs.
2404   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2405     ++Idx;
2406 
2407   // If there are add operands they would be next.
2408   if (Idx < Ops.size()) {
2409     bool DeletedAdd = false;
2410     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2411       if (Ops.size() > AddOpsInlineThreshold ||
2412           Add->getNumOperands() > AddOpsInlineThreshold)
2413         break;
2414       // If we have an add, expand the add operands onto the end of the operands
2415       // list.
2416       Ops.erase(Ops.begin()+Idx);
2417       Ops.append(Add->op_begin(), Add->op_end());
2418       DeletedAdd = true;
2419     }
2420 
2421     // If we deleted at least one add, we added operands to the end of the list,
2422     // and they are not necessarily sorted.  Recurse to resort and resimplify
2423     // any operands we just acquired.
2424     if (DeletedAdd)
2425       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2426   }
2427 
2428   // Skip over the add expression until we get to a multiply.
2429   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2430     ++Idx;
2431 
2432   // Check to see if there are any folding opportunities present with
2433   // operands multiplied by constant values.
2434   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2435     uint64_t BitWidth = getTypeSizeInBits(Ty);
2436     DenseMap<const SCEV *, APInt> M;
2437     SmallVector<const SCEV *, 8> NewOps;
2438     APInt AccumulatedConstant(BitWidth, 0);
2439     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2440                                      Ops.data(), Ops.size(),
2441                                      APInt(BitWidth, 1), *this)) {
2442       struct APIntCompare {
2443         bool operator()(const APInt &LHS, const APInt &RHS) const {
2444           return LHS.ult(RHS);
2445         }
2446       };
2447 
2448       // Some interesting folding opportunity is present, so its worthwhile to
2449       // re-generate the operands list. Group the operands by constant scale,
2450       // to avoid multiplying by the same constant scale multiple times.
2451       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2452       for (const SCEV *NewOp : NewOps)
2453         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2454       // Re-generate the operands list.
2455       Ops.clear();
2456       if (AccumulatedConstant != 0)
2457         Ops.push_back(getConstant(AccumulatedConstant));
2458       for (auto &MulOp : MulOpLists)
2459         if (MulOp.first != 0)
2460           Ops.push_back(getMulExpr(
2461               getConstant(MulOp.first),
2462               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2463               SCEV::FlagAnyWrap, Depth + 1));
2464       if (Ops.empty())
2465         return getZero(Ty);
2466       if (Ops.size() == 1)
2467         return Ops[0];
2468       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2469     }
2470   }
2471 
2472   // If we are adding something to a multiply expression, make sure the
2473   // something is not already an operand of the multiply.  If so, merge it into
2474   // the multiply.
2475   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2476     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2477     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2478       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2479       if (isa<SCEVConstant>(MulOpSCEV))
2480         continue;
2481       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2482         if (MulOpSCEV == Ops[AddOp]) {
2483           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2484           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2485           if (Mul->getNumOperands() != 2) {
2486             // If the multiply has more than two operands, we must get the
2487             // Y*Z term.
2488             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2489                                                 Mul->op_begin()+MulOp);
2490             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2491             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2492           }
2493           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2494           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2495           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2496                                             SCEV::FlagAnyWrap, Depth + 1);
2497           if (Ops.size() == 2) return OuterMul;
2498           if (AddOp < Idx) {
2499             Ops.erase(Ops.begin()+AddOp);
2500             Ops.erase(Ops.begin()+Idx-1);
2501           } else {
2502             Ops.erase(Ops.begin()+Idx);
2503             Ops.erase(Ops.begin()+AddOp-1);
2504           }
2505           Ops.push_back(OuterMul);
2506           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2507         }
2508 
2509       // Check this multiply against other multiplies being added together.
2510       for (unsigned OtherMulIdx = Idx+1;
2511            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2512            ++OtherMulIdx) {
2513         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2514         // If MulOp occurs in OtherMul, we can fold the two multiplies
2515         // together.
2516         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2517              OMulOp != e; ++OMulOp)
2518           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2519             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2520             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2521             if (Mul->getNumOperands() != 2) {
2522               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2523                                                   Mul->op_begin()+MulOp);
2524               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2525               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2526             }
2527             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2528             if (OtherMul->getNumOperands() != 2) {
2529               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2530                                                   OtherMul->op_begin()+OMulOp);
2531               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2532               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2533             }
2534             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2535             const SCEV *InnerMulSum =
2536                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2537             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2538                                               SCEV::FlagAnyWrap, Depth + 1);
2539             if (Ops.size() == 2) return OuterMul;
2540             Ops.erase(Ops.begin()+Idx);
2541             Ops.erase(Ops.begin()+OtherMulIdx-1);
2542             Ops.push_back(OuterMul);
2543             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2544           }
2545       }
2546     }
2547   }
2548 
2549   // If there are any add recurrences in the operands list, see if any other
2550   // added values are loop invariant.  If so, we can fold them into the
2551   // recurrence.
2552   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2553     ++Idx;
2554 
2555   // Scan over all recurrences, trying to fold loop invariants into them.
2556   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2557     // Scan all of the other operands to this add and add them to the vector if
2558     // they are loop invariant w.r.t. the recurrence.
2559     SmallVector<const SCEV *, 8> LIOps;
2560     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2561     const Loop *AddRecLoop = AddRec->getLoop();
2562     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2563       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2564         LIOps.push_back(Ops[i]);
2565         Ops.erase(Ops.begin()+i);
2566         --i; --e;
2567       }
2568 
2569     // If we found some loop invariants, fold them into the recurrence.
2570     if (!LIOps.empty()) {
2571       // Compute nowrap flags for the addition of the loop-invariant ops and
2572       // the addrec. Temporarily push it as an operand for that purpose.
2573       LIOps.push_back(AddRec);
2574       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2575       LIOps.pop_back();
2576 
2577       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2578       LIOps.push_back(AddRec->getStart());
2579 
2580       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2581                                              AddRec->op_end());
2582       // This follows from the fact that the no-wrap flags on the outer add
2583       // expression are applicable on the 0th iteration, when the add recurrence
2584       // will be equal to its start value.
2585       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2586 
2587       // Build the new addrec. Propagate the NUW and NSW flags if both the
2588       // outer add and the inner addrec are guaranteed to have no overflow.
2589       // Always propagate NW.
2590       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2591       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2592 
2593       // If all of the other operands were loop invariant, we are done.
2594       if (Ops.size() == 1) return NewRec;
2595 
2596       // Otherwise, add the folded AddRec by the non-invariant parts.
2597       for (unsigned i = 0;; ++i)
2598         if (Ops[i] == AddRec) {
2599           Ops[i] = NewRec;
2600           break;
2601         }
2602       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2603     }
2604 
2605     // Okay, if there weren't any loop invariants to be folded, check to see if
2606     // there are multiple AddRec's with the same loop induction variable being
2607     // added together.  If so, we can fold them.
2608     for (unsigned OtherIdx = Idx+1;
2609          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2610          ++OtherIdx) {
2611       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2612       // so that the 1st found AddRecExpr is dominated by all others.
2613       assert(DT.dominates(
2614            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2615            AddRec->getLoop()->getHeader()) &&
2616         "AddRecExprs are not sorted in reverse dominance order?");
2617       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2618         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2619         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2620                                                AddRec->op_end());
2621         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2622              ++OtherIdx) {
2623           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2624           if (OtherAddRec->getLoop() == AddRecLoop) {
2625             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2626                  i != e; ++i) {
2627               if (i >= AddRecOps.size()) {
2628                 AddRecOps.append(OtherAddRec->op_begin()+i,
2629                                  OtherAddRec->op_end());
2630                 break;
2631               }
2632               SmallVector<const SCEV *, 2> TwoOps = {
2633                   AddRecOps[i], OtherAddRec->getOperand(i)};
2634               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2635             }
2636             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2637           }
2638         }
2639         // Step size has changed, so we cannot guarantee no self-wraparound.
2640         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2641         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2642       }
2643     }
2644 
2645     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2646     // next one.
2647   }
2648 
2649   // Okay, it looks like we really DO need an add expr.  Check to see if we
2650   // already have one, otherwise create a new one.
2651   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2652 }
2653 
2654 const SCEV *
2655 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2656                                     SCEV::NoWrapFlags Flags) {
2657   FoldingSetNodeID ID;
2658   ID.AddInteger(scAddExpr);
2659   for (const SCEV *Op : Ops)
2660     ID.AddPointer(Op);
2661   void *IP = nullptr;
2662   SCEVAddExpr *S =
2663       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2664   if (!S) {
2665     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2666     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2667     S = new (SCEVAllocator)
2668         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2669     UniqueSCEVs.InsertNode(S, IP);
2670     addToLoopUseLists(S);
2671   }
2672   S->setNoWrapFlags(Flags);
2673   return S;
2674 }
2675 
2676 const SCEV *
2677 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2678                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2679   FoldingSetNodeID ID;
2680   ID.AddInteger(scAddRecExpr);
2681   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2682     ID.AddPointer(Ops[i]);
2683   ID.AddPointer(L);
2684   void *IP = nullptr;
2685   SCEVAddRecExpr *S =
2686       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2687   if (!S) {
2688     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2689     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2690     S = new (SCEVAllocator)
2691         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2692     UniqueSCEVs.InsertNode(S, IP);
2693     addToLoopUseLists(S);
2694   }
2695   setNoWrapFlags(S, Flags);
2696   return S;
2697 }
2698 
2699 const SCEV *
2700 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2701                                     SCEV::NoWrapFlags Flags) {
2702   FoldingSetNodeID ID;
2703   ID.AddInteger(scMulExpr);
2704   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2705     ID.AddPointer(Ops[i]);
2706   void *IP = nullptr;
2707   SCEVMulExpr *S =
2708     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2709   if (!S) {
2710     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2711     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2712     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2713                                         O, Ops.size());
2714     UniqueSCEVs.InsertNode(S, IP);
2715     addToLoopUseLists(S);
2716   }
2717   S->setNoWrapFlags(Flags);
2718   return S;
2719 }
2720 
2721 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2722   uint64_t k = i*j;
2723   if (j > 1 && k / j != i) Overflow = true;
2724   return k;
2725 }
2726 
2727 /// Compute the result of "n choose k", the binomial coefficient.  If an
2728 /// intermediate computation overflows, Overflow will be set and the return will
2729 /// be garbage. Overflow is not cleared on absence of overflow.
2730 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2731   // We use the multiplicative formula:
2732   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2733   // At each iteration, we take the n-th term of the numeral and divide by the
2734   // (k-n)th term of the denominator.  This division will always produce an
2735   // integral result, and helps reduce the chance of overflow in the
2736   // intermediate computations. However, we can still overflow even when the
2737   // final result would fit.
2738 
2739   if (n == 0 || n == k) return 1;
2740   if (k > n) return 0;
2741 
2742   if (k > n/2)
2743     k = n-k;
2744 
2745   uint64_t r = 1;
2746   for (uint64_t i = 1; i <= k; ++i) {
2747     r = umul_ov(r, n-(i-1), Overflow);
2748     r /= i;
2749   }
2750   return r;
2751 }
2752 
2753 /// Determine if any of the operands in this SCEV are a constant or if
2754 /// any of the add or multiply expressions in this SCEV contain a constant.
2755 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2756   struct FindConstantInAddMulChain {
2757     bool FoundConstant = false;
2758 
2759     bool follow(const SCEV *S) {
2760       FoundConstant |= isa<SCEVConstant>(S);
2761       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2762     }
2763 
2764     bool isDone() const {
2765       return FoundConstant;
2766     }
2767   };
2768 
2769   FindConstantInAddMulChain F;
2770   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2771   ST.visitAll(StartExpr);
2772   return F.FoundConstant;
2773 }
2774 
2775 /// Get a canonical multiply expression, or something simpler if possible.
2776 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2777                                         SCEV::NoWrapFlags OrigFlags,
2778                                         unsigned Depth) {
2779   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2780          "only nuw or nsw allowed");
2781   assert(!Ops.empty() && "Cannot get empty mul!");
2782   if (Ops.size() == 1) return Ops[0];
2783 #ifndef NDEBUG
2784   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2785   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2786     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2787            "SCEVMulExpr operand types don't match!");
2788 #endif
2789 
2790   // Sort by complexity, this groups all similar expression types together.
2791   GroupByComplexity(Ops, &LI, DT);
2792 
2793   // If there are any constants, fold them together.
2794   unsigned Idx = 0;
2795   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2796     ++Idx;
2797     assert(Idx < Ops.size());
2798     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2799       // We found two constants, fold them together!
2800       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2801       if (Ops.size() == 2) return Ops[0];
2802       Ops.erase(Ops.begin()+1);  // Erase the folded element
2803       LHSC = cast<SCEVConstant>(Ops[0]);
2804     }
2805 
2806     // If we have a multiply of zero, it will always be zero.
2807     if (LHSC->getValue()->isZero())
2808       return LHSC;
2809 
2810     // If we are left with a constant one being multiplied, strip it off.
2811     if (LHSC->getValue()->isOne()) {
2812       Ops.erase(Ops.begin());
2813       --Idx;
2814     }
2815 
2816     if (Ops.size() == 1)
2817       return Ops[0];
2818   }
2819 
2820   // Delay expensive flag strengthening until necessary.
2821   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2822     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2823   };
2824 
2825   // Limit recursion calls depth.
2826   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2827     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2828 
2829   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2830     // Don't strengthen flags if we have no new information.
2831     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2832     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2833       Mul->setNoWrapFlags(ComputeFlags(Ops));
2834     return S;
2835   }
2836 
2837   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2838     if (Ops.size() == 2) {
2839       // C1*(C2+V) -> C1*C2 + C1*V
2840       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2841         // If any of Add's ops are Adds or Muls with a constant, apply this
2842         // transformation as well.
2843         //
2844         // TODO: There are some cases where this transformation is not
2845         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2846         // this transformation should be narrowed down.
2847         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2848           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2849                                        SCEV::FlagAnyWrap, Depth + 1),
2850                             getMulExpr(LHSC, Add->getOperand(1),
2851                                        SCEV::FlagAnyWrap, Depth + 1),
2852                             SCEV::FlagAnyWrap, Depth + 1);
2853 
2854       if (Ops[0]->isAllOnesValue()) {
2855         // If we have a mul by -1 of an add, try distributing the -1 among the
2856         // add operands.
2857         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2858           SmallVector<const SCEV *, 4> NewOps;
2859           bool AnyFolded = false;
2860           for (const SCEV *AddOp : Add->operands()) {
2861             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2862                                          Depth + 1);
2863             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2864             NewOps.push_back(Mul);
2865           }
2866           if (AnyFolded)
2867             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2868         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2869           // Negation preserves a recurrence's no self-wrap property.
2870           SmallVector<const SCEV *, 4> Operands;
2871           for (const SCEV *AddRecOp : AddRec->operands())
2872             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2873                                           Depth + 1));
2874 
2875           return getAddRecExpr(Operands, AddRec->getLoop(),
2876                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2877         }
2878       }
2879     }
2880   }
2881 
2882   // Skip over the add expression until we get to a multiply.
2883   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2884     ++Idx;
2885 
2886   // If there are mul operands inline them all into this expression.
2887   if (Idx < Ops.size()) {
2888     bool DeletedMul = false;
2889     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2890       if (Ops.size() > MulOpsInlineThreshold)
2891         break;
2892       // If we have an mul, expand the mul operands onto the end of the
2893       // operands list.
2894       Ops.erase(Ops.begin()+Idx);
2895       Ops.append(Mul->op_begin(), Mul->op_end());
2896       DeletedMul = true;
2897     }
2898 
2899     // If we deleted at least one mul, we added operands to the end of the
2900     // list, and they are not necessarily sorted.  Recurse to resort and
2901     // resimplify any operands we just acquired.
2902     if (DeletedMul)
2903       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2904   }
2905 
2906   // If there are any add recurrences in the operands list, see if any other
2907   // added values are loop invariant.  If so, we can fold them into the
2908   // recurrence.
2909   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2910     ++Idx;
2911 
2912   // Scan over all recurrences, trying to fold loop invariants into them.
2913   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2914     // Scan all of the other operands to this mul and add them to the vector
2915     // if they are loop invariant w.r.t. the recurrence.
2916     SmallVector<const SCEV *, 8> LIOps;
2917     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2918     const Loop *AddRecLoop = AddRec->getLoop();
2919     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2920       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2921         LIOps.push_back(Ops[i]);
2922         Ops.erase(Ops.begin()+i);
2923         --i; --e;
2924       }
2925 
2926     // If we found some loop invariants, fold them into the recurrence.
2927     if (!LIOps.empty()) {
2928       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2929       SmallVector<const SCEV *, 4> NewOps;
2930       NewOps.reserve(AddRec->getNumOperands());
2931       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2932       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2933         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2934                                     SCEV::FlagAnyWrap, Depth + 1));
2935 
2936       // Build the new addrec. Propagate the NUW and NSW flags if both the
2937       // outer mul and the inner addrec are guaranteed to have no overflow.
2938       //
2939       // No self-wrap cannot be guaranteed after changing the step size, but
2940       // will be inferred if either NUW or NSW is true.
2941       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2942       const SCEV *NewRec = getAddRecExpr(
2943           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2944 
2945       // If all of the other operands were loop invariant, we are done.
2946       if (Ops.size() == 1) return NewRec;
2947 
2948       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2949       for (unsigned i = 0;; ++i)
2950         if (Ops[i] == AddRec) {
2951           Ops[i] = NewRec;
2952           break;
2953         }
2954       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2955     }
2956 
2957     // Okay, if there weren't any loop invariants to be folded, check to see
2958     // if there are multiple AddRec's with the same loop induction variable
2959     // being multiplied together.  If so, we can fold them.
2960 
2961     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2962     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2963     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2964     //   ]]],+,...up to x=2n}.
2965     // Note that the arguments to choose() are always integers with values
2966     // known at compile time, never SCEV objects.
2967     //
2968     // The implementation avoids pointless extra computations when the two
2969     // addrec's are of different length (mathematically, it's equivalent to
2970     // an infinite stream of zeros on the right).
2971     bool OpsModified = false;
2972     for (unsigned OtherIdx = Idx+1;
2973          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2974          ++OtherIdx) {
2975       const SCEVAddRecExpr *OtherAddRec =
2976         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2977       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2978         continue;
2979 
2980       // Limit max number of arguments to avoid creation of unreasonably big
2981       // SCEVAddRecs with very complex operands.
2982       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2983           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
2984         continue;
2985 
2986       bool Overflow = false;
2987       Type *Ty = AddRec->getType();
2988       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2989       SmallVector<const SCEV*, 7> AddRecOps;
2990       for (int x = 0, xe = AddRec->getNumOperands() +
2991              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2992         SmallVector <const SCEV *, 7> SumOps;
2993         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2994           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2995           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2996                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2997                z < ze && !Overflow; ++z) {
2998             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2999             uint64_t Coeff;
3000             if (LargerThan64Bits)
3001               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3002             else
3003               Coeff = Coeff1*Coeff2;
3004             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3005             const SCEV *Term1 = AddRec->getOperand(y-z);
3006             const SCEV *Term2 = OtherAddRec->getOperand(z);
3007             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3008                                         SCEV::FlagAnyWrap, Depth + 1));
3009           }
3010         }
3011         if (SumOps.empty())
3012           SumOps.push_back(getZero(Ty));
3013         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3014       }
3015       if (!Overflow) {
3016         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3017                                               SCEV::FlagAnyWrap);
3018         if (Ops.size() == 2) return NewAddRec;
3019         Ops[Idx] = NewAddRec;
3020         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3021         OpsModified = true;
3022         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3023         if (!AddRec)
3024           break;
3025       }
3026     }
3027     if (OpsModified)
3028       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3029 
3030     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3031     // next one.
3032   }
3033 
3034   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3035   // already have one, otherwise create a new one.
3036   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3037 }
3038 
3039 /// Represents an unsigned remainder expression based on unsigned division.
3040 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3041                                          const SCEV *RHS) {
3042   assert(getEffectiveSCEVType(LHS->getType()) ==
3043          getEffectiveSCEVType(RHS->getType()) &&
3044          "SCEVURemExpr operand types don't match!");
3045 
3046   // Short-circuit easy cases
3047   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3048     // If constant is one, the result is trivial
3049     if (RHSC->getValue()->isOne())
3050       return getZero(LHS->getType()); // X urem 1 --> 0
3051 
3052     // If constant is a power of two, fold into a zext(trunc(LHS)).
3053     if (RHSC->getAPInt().isPowerOf2()) {
3054       Type *FullTy = LHS->getType();
3055       Type *TruncTy =
3056           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3057       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3058     }
3059   }
3060 
3061   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3062   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3063   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3064   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3065 }
3066 
3067 /// Get a canonical unsigned division expression, or something simpler if
3068 /// possible.
3069 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3070                                          const SCEV *RHS) {
3071   assert(getEffectiveSCEVType(LHS->getType()) ==
3072          getEffectiveSCEVType(RHS->getType()) &&
3073          "SCEVUDivExpr operand types don't match!");
3074 
3075   FoldingSetNodeID ID;
3076   ID.AddInteger(scUDivExpr);
3077   ID.AddPointer(LHS);
3078   ID.AddPointer(RHS);
3079   void *IP = nullptr;
3080   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3081     return S;
3082 
3083   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3084     if (RHSC->getValue()->isOne())
3085       return LHS;                               // X udiv 1 --> x
3086     // If the denominator is zero, the result of the udiv is undefined. Don't
3087     // try to analyze it, because the resolution chosen here may differ from
3088     // the resolution chosen in other parts of the compiler.
3089     if (!RHSC->getValue()->isZero()) {
3090       // Determine if the division can be folded into the operands of
3091       // its operands.
3092       // TODO: Generalize this to non-constants by using known-bits information.
3093       Type *Ty = LHS->getType();
3094       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3095       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3096       // For non-power-of-two values, effectively round the value up to the
3097       // nearest power of two.
3098       if (!RHSC->getAPInt().isPowerOf2())
3099         ++MaxShiftAmt;
3100       IntegerType *ExtTy =
3101         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3102       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3103         if (const SCEVConstant *Step =
3104             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3105           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3106           const APInt &StepInt = Step->getAPInt();
3107           const APInt &DivInt = RHSC->getAPInt();
3108           if (!StepInt.urem(DivInt) &&
3109               getZeroExtendExpr(AR, ExtTy) ==
3110               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3111                             getZeroExtendExpr(Step, ExtTy),
3112                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3113             SmallVector<const SCEV *, 4> Operands;
3114             for (const SCEV *Op : AR->operands())
3115               Operands.push_back(getUDivExpr(Op, RHS));
3116             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3117           }
3118           /// Get a canonical UDivExpr for a recurrence.
3119           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3120           // We can currently only fold X%N if X is constant.
3121           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3122           if (StartC && !DivInt.urem(StepInt) &&
3123               getZeroExtendExpr(AR, ExtTy) ==
3124               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3125                             getZeroExtendExpr(Step, ExtTy),
3126                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3127             const APInt &StartInt = StartC->getAPInt();
3128             const APInt &StartRem = StartInt.urem(StepInt);
3129             if (StartRem != 0) {
3130               const SCEV *NewLHS =
3131                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3132                                 AR->getLoop(), SCEV::FlagNW);
3133               if (LHS != NewLHS) {
3134                 LHS = NewLHS;
3135 
3136                 // Reset the ID to include the new LHS, and check if it is
3137                 // already cached.
3138                 ID.clear();
3139                 ID.AddInteger(scUDivExpr);
3140                 ID.AddPointer(LHS);
3141                 ID.AddPointer(RHS);
3142                 IP = nullptr;
3143                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3144                   return S;
3145               }
3146             }
3147           }
3148         }
3149       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3150       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3151         SmallVector<const SCEV *, 4> Operands;
3152         for (const SCEV *Op : M->operands())
3153           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3154         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3155           // Find an operand that's safely divisible.
3156           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3157             const SCEV *Op = M->getOperand(i);
3158             const SCEV *Div = getUDivExpr(Op, RHSC);
3159             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3160               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3161                                                       M->op_end());
3162               Operands[i] = Div;
3163               return getMulExpr(Operands);
3164             }
3165           }
3166       }
3167 
3168       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3169       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3170         if (auto *DivisorConstant =
3171                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3172           bool Overflow = false;
3173           APInt NewRHS =
3174               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3175           if (Overflow) {
3176             return getConstant(RHSC->getType(), 0, false);
3177           }
3178           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3179         }
3180       }
3181 
3182       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3183       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3184         SmallVector<const SCEV *, 4> Operands;
3185         for (const SCEV *Op : A->operands())
3186           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3187         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3188           Operands.clear();
3189           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3190             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3191             if (isa<SCEVUDivExpr>(Op) ||
3192                 getMulExpr(Op, RHS) != A->getOperand(i))
3193               break;
3194             Operands.push_back(Op);
3195           }
3196           if (Operands.size() == A->getNumOperands())
3197             return getAddExpr(Operands);
3198         }
3199       }
3200 
3201       // Fold if both operands are constant.
3202       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3203         Constant *LHSCV = LHSC->getValue();
3204         Constant *RHSCV = RHSC->getValue();
3205         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3206                                                                    RHSCV)));
3207       }
3208     }
3209   }
3210 
3211   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3212   // changes). Make sure we get a new one.
3213   IP = nullptr;
3214   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3215   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3216                                              LHS, RHS);
3217   UniqueSCEVs.InsertNode(S, IP);
3218   addToLoopUseLists(S);
3219   return S;
3220 }
3221 
3222 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3223   APInt A = C1->getAPInt().abs();
3224   APInt B = C2->getAPInt().abs();
3225   uint32_t ABW = A.getBitWidth();
3226   uint32_t BBW = B.getBitWidth();
3227 
3228   if (ABW > BBW)
3229     B = B.zext(ABW);
3230   else if (ABW < BBW)
3231     A = A.zext(BBW);
3232 
3233   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3234 }
3235 
3236 /// Get a canonical unsigned division expression, or something simpler if
3237 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3238 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3239 /// it's not exact because the udiv may be clearing bits.
3240 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3241                                               const SCEV *RHS) {
3242   // TODO: we could try to find factors in all sorts of things, but for now we
3243   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3244   // end of this file for inspiration.
3245 
3246   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3247   if (!Mul || !Mul->hasNoUnsignedWrap())
3248     return getUDivExpr(LHS, RHS);
3249 
3250   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3251     // If the mulexpr multiplies by a constant, then that constant must be the
3252     // first element of the mulexpr.
3253     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3254       if (LHSCst == RHSCst) {
3255         SmallVector<const SCEV *, 2> Operands;
3256         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3257         return getMulExpr(Operands);
3258       }
3259 
3260       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3261       // that there's a factor provided by one of the other terms. We need to
3262       // check.
3263       APInt Factor = gcd(LHSCst, RHSCst);
3264       if (!Factor.isIntN(1)) {
3265         LHSCst =
3266             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3267         RHSCst =
3268             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3269         SmallVector<const SCEV *, 2> Operands;
3270         Operands.push_back(LHSCst);
3271         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3272         LHS = getMulExpr(Operands);
3273         RHS = RHSCst;
3274         Mul = dyn_cast<SCEVMulExpr>(LHS);
3275         if (!Mul)
3276           return getUDivExactExpr(LHS, RHS);
3277       }
3278     }
3279   }
3280 
3281   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3282     if (Mul->getOperand(i) == RHS) {
3283       SmallVector<const SCEV *, 2> Operands;
3284       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3285       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3286       return getMulExpr(Operands);
3287     }
3288   }
3289 
3290   return getUDivExpr(LHS, RHS);
3291 }
3292 
3293 /// Get an add recurrence expression for the specified loop.  Simplify the
3294 /// expression as much as possible.
3295 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3296                                            const Loop *L,
3297                                            SCEV::NoWrapFlags Flags) {
3298   SmallVector<const SCEV *, 4> Operands;
3299   Operands.push_back(Start);
3300   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3301     if (StepChrec->getLoop() == L) {
3302       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3303       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3304     }
3305 
3306   Operands.push_back(Step);
3307   return getAddRecExpr(Operands, L, Flags);
3308 }
3309 
3310 /// Get an add recurrence expression for the specified loop.  Simplify the
3311 /// expression as much as possible.
3312 const SCEV *
3313 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3314                                const Loop *L, SCEV::NoWrapFlags Flags) {
3315   if (Operands.size() == 1) return Operands[0];
3316 #ifndef NDEBUG
3317   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3318   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3319     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3320            "SCEVAddRecExpr operand types don't match!");
3321   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3322     assert(isLoopInvariant(Operands[i], L) &&
3323            "SCEVAddRecExpr operand is not loop-invariant!");
3324 #endif
3325 
3326   if (Operands.back()->isZero()) {
3327     Operands.pop_back();
3328     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3329   }
3330 
3331   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3332   // use that information to infer NUW and NSW flags. However, computing a
3333   // BE count requires calling getAddRecExpr, so we may not yet have a
3334   // meaningful BE count at this point (and if we don't, we'd be stuck
3335   // with a SCEVCouldNotCompute as the cached BE count).
3336 
3337   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3338 
3339   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3340   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3341     const Loop *NestedLoop = NestedAR->getLoop();
3342     if (L->contains(NestedLoop)
3343             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3344             : (!NestedLoop->contains(L) &&
3345                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3346       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3347                                                   NestedAR->op_end());
3348       Operands[0] = NestedAR->getStart();
3349       // AddRecs require their operands be loop-invariant with respect to their
3350       // loops. Don't perform this transformation if it would break this
3351       // requirement.
3352       bool AllInvariant = all_of(
3353           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3354 
3355       if (AllInvariant) {
3356         // Create a recurrence for the outer loop with the same step size.
3357         //
3358         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3359         // inner recurrence has the same property.
3360         SCEV::NoWrapFlags OuterFlags =
3361           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3362 
3363         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3364         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3365           return isLoopInvariant(Op, NestedLoop);
3366         });
3367 
3368         if (AllInvariant) {
3369           // Ok, both add recurrences are valid after the transformation.
3370           //
3371           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3372           // the outer recurrence has the same property.
3373           SCEV::NoWrapFlags InnerFlags =
3374             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3375           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3376         }
3377       }
3378       // Reset Operands to its original state.
3379       Operands[0] = NestedAR;
3380     }
3381   }
3382 
3383   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3384   // already have one, otherwise create a new one.
3385   return getOrCreateAddRecExpr(Operands, L, Flags);
3386 }
3387 
3388 const SCEV *
3389 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3390                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3391   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3392   // getSCEV(Base)->getType() has the same address space as Base->getType()
3393   // because SCEV::getType() preserves the address space.
3394   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3395   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3396   // instruction to its SCEV, because the Instruction may be guarded by control
3397   // flow and the no-overflow bits may not be valid for the expression in any
3398   // context. This can be fixed similarly to how these flags are handled for
3399   // adds.
3400   SCEV::NoWrapFlags OffsetWrap =
3401       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3402 
3403   Type *CurTy = GEP->getType();
3404   bool FirstIter = true;
3405   SmallVector<const SCEV *, 4> Offsets;
3406   for (const SCEV *IndexExpr : IndexExprs) {
3407     // Compute the (potentially symbolic) offset in bytes for this index.
3408     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3409       // For a struct, add the member offset.
3410       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3411       unsigned FieldNo = Index->getZExtValue();
3412       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3413       Offsets.push_back(FieldOffset);
3414 
3415       // Update CurTy to the type of the field at Index.
3416       CurTy = STy->getTypeAtIndex(Index);
3417     } else {
3418       // Update CurTy to its element type.
3419       if (FirstIter) {
3420         assert(isa<PointerType>(CurTy) &&
3421                "The first index of a GEP indexes a pointer");
3422         CurTy = GEP->getSourceElementType();
3423         FirstIter = false;
3424       } else {
3425         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3426       }
3427       // For an array, add the element offset, explicitly scaled.
3428       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3429       // Getelementptr indices are signed.
3430       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3431 
3432       // Multiply the index by the element size to compute the element offset.
3433       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3434       Offsets.push_back(LocalOffset);
3435     }
3436   }
3437 
3438   // Handle degenerate case of GEP without offsets.
3439   if (Offsets.empty())
3440     return BaseExpr;
3441 
3442   // Add the offsets together, assuming nsw if inbounds.
3443   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3444   // Add the base address and the offset. We cannot use the nsw flag, as the
3445   // base address is unsigned. However, if we know that the offset is
3446   // non-negative, we can use nuw.
3447   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3448                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3449   return getAddExpr(BaseExpr, Offset, BaseWrap);
3450 }
3451 
3452 std::tuple<SCEV *, FoldingSetNodeID, void *>
3453 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3454                                          ArrayRef<const SCEV *> Ops) {
3455   FoldingSetNodeID ID;
3456   void *IP = nullptr;
3457   ID.AddInteger(SCEVType);
3458   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3459     ID.AddPointer(Ops[i]);
3460   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3461       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3462 }
3463 
3464 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3465   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3466   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3467 }
3468 
3469 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
3470   Type *Ty = Op->getType();
3471   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
3472 }
3473 
3474 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3475                                            SmallVectorImpl<const SCEV *> &Ops) {
3476   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3477   if (Ops.size() == 1) return Ops[0];
3478 #ifndef NDEBUG
3479   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3480   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3481     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3482            "Operand types don't match!");
3483 #endif
3484 
3485   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3486   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3487 
3488   // Sort by complexity, this groups all similar expression types together.
3489   GroupByComplexity(Ops, &LI, DT);
3490 
3491   // Check if we have created the same expression before.
3492   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3493     return S;
3494   }
3495 
3496   // If there are any constants, fold them together.
3497   unsigned Idx = 0;
3498   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3499     ++Idx;
3500     assert(Idx < Ops.size());
3501     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3502       if (Kind == scSMaxExpr)
3503         return APIntOps::smax(LHS, RHS);
3504       else if (Kind == scSMinExpr)
3505         return APIntOps::smin(LHS, RHS);
3506       else if (Kind == scUMaxExpr)
3507         return APIntOps::umax(LHS, RHS);
3508       else if (Kind == scUMinExpr)
3509         return APIntOps::umin(LHS, RHS);
3510       llvm_unreachable("Unknown SCEV min/max opcode");
3511     };
3512 
3513     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3514       // We found two constants, fold them together!
3515       ConstantInt *Fold = ConstantInt::get(
3516           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3517       Ops[0] = getConstant(Fold);
3518       Ops.erase(Ops.begin()+1);  // Erase the folded element
3519       if (Ops.size() == 1) return Ops[0];
3520       LHSC = cast<SCEVConstant>(Ops[0]);
3521     }
3522 
3523     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3524     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3525 
3526     if (IsMax ? IsMinV : IsMaxV) {
3527       // If we are left with a constant minimum(/maximum)-int, strip it off.
3528       Ops.erase(Ops.begin());
3529       --Idx;
3530     } else if (IsMax ? IsMaxV : IsMinV) {
3531       // If we have a max(/min) with a constant maximum(/minimum)-int,
3532       // it will always be the extremum.
3533       return LHSC;
3534     }
3535 
3536     if (Ops.size() == 1) return Ops[0];
3537   }
3538 
3539   // Find the first operation of the same kind
3540   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3541     ++Idx;
3542 
3543   // Check to see if one of the operands is of the same kind. If so, expand its
3544   // operands onto our operand list, and recurse to simplify.
3545   if (Idx < Ops.size()) {
3546     bool DeletedAny = false;
3547     while (Ops[Idx]->getSCEVType() == Kind) {
3548       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3549       Ops.erase(Ops.begin()+Idx);
3550       Ops.append(SMME->op_begin(), SMME->op_end());
3551       DeletedAny = true;
3552     }
3553 
3554     if (DeletedAny)
3555       return getMinMaxExpr(Kind, Ops);
3556   }
3557 
3558   // Okay, check to see if the same value occurs in the operand list twice.  If
3559   // so, delete one.  Since we sorted the list, these values are required to
3560   // be adjacent.
3561   llvm::CmpInst::Predicate GEPred =
3562       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3563   llvm::CmpInst::Predicate LEPred =
3564       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3565   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3566   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3567   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3568     if (Ops[i] == Ops[i + 1] ||
3569         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3570       //  X op Y op Y  -->  X op Y
3571       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3572       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3573       --i;
3574       --e;
3575     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3576                                                Ops[i + 1])) {
3577       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3578       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3579       --i;
3580       --e;
3581     }
3582   }
3583 
3584   if (Ops.size() == 1) return Ops[0];
3585 
3586   assert(!Ops.empty() && "Reduced smax down to nothing!");
3587 
3588   // Okay, it looks like we really DO need an expr.  Check to see if we
3589   // already have one, otherwise create a new one.
3590   const SCEV *ExistingSCEV;
3591   FoldingSetNodeID ID;
3592   void *IP;
3593   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3594   if (ExistingSCEV)
3595     return ExistingSCEV;
3596   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3597   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3598   SCEV *S = new (SCEVAllocator)
3599       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3600 
3601   UniqueSCEVs.InsertNode(S, IP);
3602   addToLoopUseLists(S);
3603   return S;
3604 }
3605 
3606 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3607   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3608   return getSMaxExpr(Ops);
3609 }
3610 
3611 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3612   return getMinMaxExpr(scSMaxExpr, Ops);
3613 }
3614 
3615 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3616   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3617   return getUMaxExpr(Ops);
3618 }
3619 
3620 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3621   return getMinMaxExpr(scUMaxExpr, Ops);
3622 }
3623 
3624 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3625                                          const SCEV *RHS) {
3626   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3627   return getSMinExpr(Ops);
3628 }
3629 
3630 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3631   return getMinMaxExpr(scSMinExpr, Ops);
3632 }
3633 
3634 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3635                                          const SCEV *RHS) {
3636   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3637   return getUMinExpr(Ops);
3638 }
3639 
3640 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3641   return getMinMaxExpr(scUMinExpr, Ops);
3642 }
3643 
3644 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3645   if (isa<ScalableVectorType>(AllocTy)) {
3646     Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3647     Constant *One = ConstantInt::get(IntTy, 1);
3648     Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3649     // Note that the expression we created is the final expression, we don't
3650     // want to simplify it any further Also, if we call a normal getSCEV(),
3651     // we'll end up in an endless recursion. So just create an SCEVUnknown.
3652     return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3653   }
3654   // We can bypass creating a target-independent
3655   // constant expression and then folding it back into a ConstantInt.
3656   // This is just a compile-time optimization.
3657   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3658 }
3659 
3660 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3661                                              StructType *STy,
3662                                              unsigned FieldNo) {
3663   // We can bypass creating a target-independent
3664   // constant expression and then folding it back into a ConstantInt.
3665   // This is just a compile-time optimization.
3666   return getConstant(
3667       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3668 }
3669 
3670 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3671   // Don't attempt to do anything other than create a SCEVUnknown object
3672   // here.  createSCEV only calls getUnknown after checking for all other
3673   // interesting possibilities, and any other code that calls getUnknown
3674   // is doing so in order to hide a value from SCEV canonicalization.
3675 
3676   FoldingSetNodeID ID;
3677   ID.AddInteger(scUnknown);
3678   ID.AddPointer(V);
3679   void *IP = nullptr;
3680   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3681     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3682            "Stale SCEVUnknown in uniquing map!");
3683     return S;
3684   }
3685   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3686                                             FirstUnknown);
3687   FirstUnknown = cast<SCEVUnknown>(S);
3688   UniqueSCEVs.InsertNode(S, IP);
3689   return S;
3690 }
3691 
3692 //===----------------------------------------------------------------------===//
3693 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3694 //
3695 
3696 /// Test if values of the given type are analyzable within the SCEV
3697 /// framework. This primarily includes integer types, and it can optionally
3698 /// include pointer types if the ScalarEvolution class has access to
3699 /// target-specific information.
3700 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3701   // Integers and pointers are always SCEVable.
3702   return Ty->isIntOrPtrTy();
3703 }
3704 
3705 /// Return the size in bits of the specified type, for which isSCEVable must
3706 /// return true.
3707 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3708   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3709   if (Ty->isPointerTy())
3710     return getDataLayout().getIndexTypeSizeInBits(Ty);
3711   return getDataLayout().getTypeSizeInBits(Ty);
3712 }
3713 
3714 /// Return a type with the same bitwidth as the given type and which represents
3715 /// how SCEV will treat the given type, for which isSCEVable must return
3716 /// true. For pointer types, this is the pointer index sized integer type.
3717 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3718   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3719 
3720   if (Ty->isIntegerTy())
3721     return Ty;
3722 
3723   // The only other support type is pointer.
3724   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3725   return getDataLayout().getIndexType(Ty);
3726 }
3727 
3728 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3729   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3730 }
3731 
3732 const SCEV *ScalarEvolution::getCouldNotCompute() {
3733   return CouldNotCompute.get();
3734 }
3735 
3736 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3737   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3738     auto *SU = dyn_cast<SCEVUnknown>(S);
3739     return SU && SU->getValue() == nullptr;
3740   });
3741 
3742   return !ContainsNulls;
3743 }
3744 
3745 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3746   HasRecMapType::iterator I = HasRecMap.find(S);
3747   if (I != HasRecMap.end())
3748     return I->second;
3749 
3750   bool FoundAddRec =
3751       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3752   HasRecMap.insert({S, FoundAddRec});
3753   return FoundAddRec;
3754 }
3755 
3756 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3757 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3758 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3759 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3760   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3761   if (!Add)
3762     return {S, nullptr};
3763 
3764   if (Add->getNumOperands() != 2)
3765     return {S, nullptr};
3766 
3767   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3768   if (!ConstOp)
3769     return {S, nullptr};
3770 
3771   return {Add->getOperand(1), ConstOp->getValue()};
3772 }
3773 
3774 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3775 /// by the value and offset from any ValueOffsetPair in the set.
3776 SetVector<ScalarEvolution::ValueOffsetPair> *
3777 ScalarEvolution::getSCEVValues(const SCEV *S) {
3778   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3779   if (SI == ExprValueMap.end())
3780     return nullptr;
3781 #ifndef NDEBUG
3782   if (VerifySCEVMap) {
3783     // Check there is no dangling Value in the set returned.
3784     for (const auto &VE : SI->second)
3785       assert(ValueExprMap.count(VE.first));
3786   }
3787 #endif
3788   return &SI->second;
3789 }
3790 
3791 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3792 /// cannot be used separately. eraseValueFromMap should be used to remove
3793 /// V from ValueExprMap and ExprValueMap at the same time.
3794 void ScalarEvolution::eraseValueFromMap(Value *V) {
3795   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3796   if (I != ValueExprMap.end()) {
3797     const SCEV *S = I->second;
3798     // Remove {V, 0} from the set of ExprValueMap[S]
3799     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3800       SV->remove({V, nullptr});
3801 
3802     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3803     const SCEV *Stripped;
3804     ConstantInt *Offset;
3805     std::tie(Stripped, Offset) = splitAddExpr(S);
3806     if (Offset != nullptr) {
3807       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3808         SV->remove({V, Offset});
3809     }
3810     ValueExprMap.erase(V);
3811   }
3812 }
3813 
3814 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3815 /// TODO: In reality it is better to check the poison recursively
3816 /// but this is better than nothing.
3817 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3818   if (auto *I = dyn_cast<Instruction>(V)) {
3819     if (isa<OverflowingBinaryOperator>(I)) {
3820       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3821         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3822           return true;
3823         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3824           return true;
3825       }
3826     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3827       return true;
3828   }
3829   return false;
3830 }
3831 
3832 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3833 /// create a new one.
3834 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3835   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3836 
3837   const SCEV *S = getExistingSCEV(V);
3838   if (S == nullptr) {
3839     S = createSCEV(V);
3840     // During PHI resolution, it is possible to create two SCEVs for the same
3841     // V, so it is needed to double check whether V->S is inserted into
3842     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3843     std::pair<ValueExprMapType::iterator, bool> Pair =
3844         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3845     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3846       ExprValueMap[S].insert({V, nullptr});
3847 
3848       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3849       // ExprValueMap.
3850       const SCEV *Stripped = S;
3851       ConstantInt *Offset = nullptr;
3852       std::tie(Stripped, Offset) = splitAddExpr(S);
3853       // If stripped is SCEVUnknown, don't bother to save
3854       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3855       // increase the complexity of the expansion code.
3856       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3857       // because it may generate add/sub instead of GEP in SCEV expansion.
3858       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3859           !isa<GetElementPtrInst>(V))
3860         ExprValueMap[Stripped].insert({V, Offset});
3861     }
3862   }
3863   return S;
3864 }
3865 
3866 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3867   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3868 
3869   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3870   if (I != ValueExprMap.end()) {
3871     const SCEV *S = I->second;
3872     if (checkValidity(S))
3873       return S;
3874     eraseValueFromMap(V);
3875     forgetMemoizedResults(S);
3876   }
3877   return nullptr;
3878 }
3879 
3880 /// Return a SCEV corresponding to -V = -1*V
3881 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3882                                              SCEV::NoWrapFlags Flags) {
3883   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3884     return getConstant(
3885                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3886 
3887   Type *Ty = V->getType();
3888   Ty = getEffectiveSCEVType(Ty);
3889   return getMulExpr(V, getMinusOne(Ty), Flags);
3890 }
3891 
3892 /// If Expr computes ~A, return A else return nullptr
3893 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3894   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3895   if (!Add || Add->getNumOperands() != 2 ||
3896       !Add->getOperand(0)->isAllOnesValue())
3897     return nullptr;
3898 
3899   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3900   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3901       !AddRHS->getOperand(0)->isAllOnesValue())
3902     return nullptr;
3903 
3904   return AddRHS->getOperand(1);
3905 }
3906 
3907 /// Return a SCEV corresponding to ~V = -1-V
3908 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3909   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3910     return getConstant(
3911                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3912 
3913   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3914   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3915     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3916       SmallVector<const SCEV *, 2> MatchedOperands;
3917       for (const SCEV *Operand : MME->operands()) {
3918         const SCEV *Matched = MatchNotExpr(Operand);
3919         if (!Matched)
3920           return (const SCEV *)nullptr;
3921         MatchedOperands.push_back(Matched);
3922       }
3923       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3924                            MatchedOperands);
3925     };
3926     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3927       return Replaced;
3928   }
3929 
3930   Type *Ty = V->getType();
3931   Ty = getEffectiveSCEVType(Ty);
3932   return getMinusSCEV(getMinusOne(Ty), V);
3933 }
3934 
3935 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3936                                           SCEV::NoWrapFlags Flags,
3937                                           unsigned Depth) {
3938   // Fast path: X - X --> 0.
3939   if (LHS == RHS)
3940     return getZero(LHS->getType());
3941 
3942   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3943   // makes it so that we cannot make much use of NUW.
3944   auto AddFlags = SCEV::FlagAnyWrap;
3945   const bool RHSIsNotMinSigned =
3946       !getSignedRangeMin(RHS).isMinSignedValue();
3947   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3948     // Let M be the minimum representable signed value. Then (-1)*RHS
3949     // signed-wraps if and only if RHS is M. That can happen even for
3950     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3951     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3952     // (-1)*RHS, we need to prove that RHS != M.
3953     //
3954     // If LHS is non-negative and we know that LHS - RHS does not
3955     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3956     // either by proving that RHS > M or that LHS >= 0.
3957     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3958       AddFlags = SCEV::FlagNSW;
3959     }
3960   }
3961 
3962   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3963   // RHS is NSW and LHS >= 0.
3964   //
3965   // The difficulty here is that the NSW flag may have been proven
3966   // relative to a loop that is to be found in a recurrence in LHS and
3967   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3968   // larger scope than intended.
3969   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3970 
3971   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3972 }
3973 
3974 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
3975                                                      unsigned Depth) {
3976   Type *SrcTy = V->getType();
3977   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3978          "Cannot truncate or zero extend with non-integer arguments!");
3979   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3980     return V;  // No conversion
3981   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3982     return getTruncateExpr(V, Ty, Depth);
3983   return getZeroExtendExpr(V, Ty, Depth);
3984 }
3985 
3986 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
3987                                                      unsigned Depth) {
3988   Type *SrcTy = V->getType();
3989   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3990          "Cannot truncate or zero extend with non-integer arguments!");
3991   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3992     return V;  // No conversion
3993   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3994     return getTruncateExpr(V, Ty, Depth);
3995   return getSignExtendExpr(V, Ty, Depth);
3996 }
3997 
3998 const SCEV *
3999 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4000   Type *SrcTy = V->getType();
4001   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4002          "Cannot noop or zero extend with non-integer arguments!");
4003   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4004          "getNoopOrZeroExtend cannot truncate!");
4005   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4006     return V;  // No conversion
4007   return getZeroExtendExpr(V, Ty);
4008 }
4009 
4010 const SCEV *
4011 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4012   Type *SrcTy = V->getType();
4013   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4014          "Cannot noop or sign extend with non-integer arguments!");
4015   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4016          "getNoopOrSignExtend cannot truncate!");
4017   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4018     return V;  // No conversion
4019   return getSignExtendExpr(V, Ty);
4020 }
4021 
4022 const SCEV *
4023 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4024   Type *SrcTy = V->getType();
4025   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4026          "Cannot noop or any extend with non-integer arguments!");
4027   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4028          "getNoopOrAnyExtend cannot truncate!");
4029   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4030     return V;  // No conversion
4031   return getAnyExtendExpr(V, Ty);
4032 }
4033 
4034 const SCEV *
4035 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4036   Type *SrcTy = V->getType();
4037   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4038          "Cannot truncate or noop with non-integer arguments!");
4039   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4040          "getTruncateOrNoop cannot extend!");
4041   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4042     return V;  // No conversion
4043   return getTruncateExpr(V, Ty);
4044 }
4045 
4046 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4047                                                         const SCEV *RHS) {
4048   const SCEV *PromotedLHS = LHS;
4049   const SCEV *PromotedRHS = RHS;
4050 
4051   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4052     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4053   else
4054     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4055 
4056   return getUMaxExpr(PromotedLHS, PromotedRHS);
4057 }
4058 
4059 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4060                                                         const SCEV *RHS) {
4061   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4062   return getUMinFromMismatchedTypes(Ops);
4063 }
4064 
4065 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4066     SmallVectorImpl<const SCEV *> &Ops) {
4067   assert(!Ops.empty() && "At least one operand must be!");
4068   // Trivial case.
4069   if (Ops.size() == 1)
4070     return Ops[0];
4071 
4072   // Find the max type first.
4073   Type *MaxType = nullptr;
4074   for (auto *S : Ops)
4075     if (MaxType)
4076       MaxType = getWiderType(MaxType, S->getType());
4077     else
4078       MaxType = S->getType();
4079   assert(MaxType && "Failed to find maximum type!");
4080 
4081   // Extend all ops to max type.
4082   SmallVector<const SCEV *, 2> PromotedOps;
4083   for (auto *S : Ops)
4084     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4085 
4086   // Generate umin.
4087   return getUMinExpr(PromotedOps);
4088 }
4089 
4090 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4091   // A pointer operand may evaluate to a nonpointer expression, such as null.
4092   if (!V->getType()->isPointerTy())
4093     return V;
4094 
4095   while (true) {
4096     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4097       V = Cast->getOperand();
4098     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4099       const SCEV *PtrOp = nullptr;
4100       for (const SCEV *NAryOp : NAry->operands()) {
4101         if (NAryOp->getType()->isPointerTy()) {
4102           // Cannot find the base of an expression with multiple pointer ops.
4103           if (PtrOp)
4104             return V;
4105           PtrOp = NAryOp;
4106         }
4107       }
4108       if (!PtrOp) // All operands were non-pointer.
4109         return V;
4110       V = PtrOp;
4111     } else // Not something we can look further into.
4112       return V;
4113   }
4114 }
4115 
4116 /// Push users of the given Instruction onto the given Worklist.
4117 static void
4118 PushDefUseChildren(Instruction *I,
4119                    SmallVectorImpl<Instruction *> &Worklist) {
4120   // Push the def-use children onto the Worklist stack.
4121   for (User *U : I->users())
4122     Worklist.push_back(cast<Instruction>(U));
4123 }
4124 
4125 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4126   SmallVector<Instruction *, 16> Worklist;
4127   PushDefUseChildren(PN, Worklist);
4128 
4129   SmallPtrSet<Instruction *, 8> Visited;
4130   Visited.insert(PN);
4131   while (!Worklist.empty()) {
4132     Instruction *I = Worklist.pop_back_val();
4133     if (!Visited.insert(I).second)
4134       continue;
4135 
4136     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4137     if (It != ValueExprMap.end()) {
4138       const SCEV *Old = It->second;
4139 
4140       // Short-circuit the def-use traversal if the symbolic name
4141       // ceases to appear in expressions.
4142       if (Old != SymName && !hasOperand(Old, SymName))
4143         continue;
4144 
4145       // SCEVUnknown for a PHI either means that it has an unrecognized
4146       // structure, it's a PHI that's in the progress of being computed
4147       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4148       // additional loop trip count information isn't going to change anything.
4149       // In the second case, createNodeForPHI will perform the necessary
4150       // updates on its own when it gets to that point. In the third, we do
4151       // want to forget the SCEVUnknown.
4152       if (!isa<PHINode>(I) ||
4153           !isa<SCEVUnknown>(Old) ||
4154           (I != PN && Old == SymName)) {
4155         eraseValueFromMap(It->first);
4156         forgetMemoizedResults(Old);
4157       }
4158     }
4159 
4160     PushDefUseChildren(I, Worklist);
4161   }
4162 }
4163 
4164 namespace {
4165 
4166 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4167 /// expression in case its Loop is L. If it is not L then
4168 /// if IgnoreOtherLoops is true then use AddRec itself
4169 /// otherwise rewrite cannot be done.
4170 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4171 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4172 public:
4173   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4174                              bool IgnoreOtherLoops = true) {
4175     SCEVInitRewriter Rewriter(L, SE);
4176     const SCEV *Result = Rewriter.visit(S);
4177     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4178       return SE.getCouldNotCompute();
4179     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4180                ? SE.getCouldNotCompute()
4181                : Result;
4182   }
4183 
4184   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4185     if (!SE.isLoopInvariant(Expr, L))
4186       SeenLoopVariantSCEVUnknown = true;
4187     return Expr;
4188   }
4189 
4190   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4191     // Only re-write AddRecExprs for this loop.
4192     if (Expr->getLoop() == L)
4193       return Expr->getStart();
4194     SeenOtherLoops = true;
4195     return Expr;
4196   }
4197 
4198   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4199 
4200   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4201 
4202 private:
4203   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4204       : SCEVRewriteVisitor(SE), L(L) {}
4205 
4206   const Loop *L;
4207   bool SeenLoopVariantSCEVUnknown = false;
4208   bool SeenOtherLoops = false;
4209 };
4210 
4211 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4212 /// increment expression in case its Loop is L. If it is not L then
4213 /// use AddRec itself.
4214 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4215 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4216 public:
4217   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4218     SCEVPostIncRewriter Rewriter(L, SE);
4219     const SCEV *Result = Rewriter.visit(S);
4220     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4221         ? SE.getCouldNotCompute()
4222         : Result;
4223   }
4224 
4225   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4226     if (!SE.isLoopInvariant(Expr, L))
4227       SeenLoopVariantSCEVUnknown = true;
4228     return Expr;
4229   }
4230 
4231   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4232     // Only re-write AddRecExprs for this loop.
4233     if (Expr->getLoop() == L)
4234       return Expr->getPostIncExpr(SE);
4235     SeenOtherLoops = true;
4236     return Expr;
4237   }
4238 
4239   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4240 
4241   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4242 
4243 private:
4244   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4245       : SCEVRewriteVisitor(SE), L(L) {}
4246 
4247   const Loop *L;
4248   bool SeenLoopVariantSCEVUnknown = false;
4249   bool SeenOtherLoops = false;
4250 };
4251 
4252 /// This class evaluates the compare condition by matching it against the
4253 /// condition of loop latch. If there is a match we assume a true value
4254 /// for the condition while building SCEV nodes.
4255 class SCEVBackedgeConditionFolder
4256     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4257 public:
4258   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4259                              ScalarEvolution &SE) {
4260     bool IsPosBECond = false;
4261     Value *BECond = nullptr;
4262     if (BasicBlock *Latch = L->getLoopLatch()) {
4263       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4264       if (BI && BI->isConditional()) {
4265         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4266                "Both outgoing branches should not target same header!");
4267         BECond = BI->getCondition();
4268         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4269       } else {
4270         return S;
4271       }
4272     }
4273     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4274     return Rewriter.visit(S);
4275   }
4276 
4277   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4278     const SCEV *Result = Expr;
4279     bool InvariantF = SE.isLoopInvariant(Expr, L);
4280 
4281     if (!InvariantF) {
4282       Instruction *I = cast<Instruction>(Expr->getValue());
4283       switch (I->getOpcode()) {
4284       case Instruction::Select: {
4285         SelectInst *SI = cast<SelectInst>(I);
4286         Optional<const SCEV *> Res =
4287             compareWithBackedgeCondition(SI->getCondition());
4288         if (Res.hasValue()) {
4289           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4290           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4291         }
4292         break;
4293       }
4294       default: {
4295         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4296         if (Res.hasValue())
4297           Result = Res.getValue();
4298         break;
4299       }
4300       }
4301     }
4302     return Result;
4303   }
4304 
4305 private:
4306   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4307                                        bool IsPosBECond, ScalarEvolution &SE)
4308       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4309         IsPositiveBECond(IsPosBECond) {}
4310 
4311   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4312 
4313   const Loop *L;
4314   /// Loop back condition.
4315   Value *BackedgeCond = nullptr;
4316   /// Set to true if loop back is on positive branch condition.
4317   bool IsPositiveBECond;
4318 };
4319 
4320 Optional<const SCEV *>
4321 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4322 
4323   // If value matches the backedge condition for loop latch,
4324   // then return a constant evolution node based on loopback
4325   // branch taken.
4326   if (BackedgeCond == IC)
4327     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4328                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4329   return None;
4330 }
4331 
4332 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4333 public:
4334   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4335                              ScalarEvolution &SE) {
4336     SCEVShiftRewriter Rewriter(L, SE);
4337     const SCEV *Result = Rewriter.visit(S);
4338     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4339   }
4340 
4341   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4342     // Only allow AddRecExprs for this loop.
4343     if (!SE.isLoopInvariant(Expr, L))
4344       Valid = false;
4345     return Expr;
4346   }
4347 
4348   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4349     if (Expr->getLoop() == L && Expr->isAffine())
4350       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4351     Valid = false;
4352     return Expr;
4353   }
4354 
4355   bool isValid() { return Valid; }
4356 
4357 private:
4358   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4359       : SCEVRewriteVisitor(SE), L(L) {}
4360 
4361   const Loop *L;
4362   bool Valid = true;
4363 };
4364 
4365 } // end anonymous namespace
4366 
4367 SCEV::NoWrapFlags
4368 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4369   if (!AR->isAffine())
4370     return SCEV::FlagAnyWrap;
4371 
4372   using OBO = OverflowingBinaryOperator;
4373 
4374   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4375 
4376   if (!AR->hasNoSignedWrap()) {
4377     ConstantRange AddRecRange = getSignedRange(AR);
4378     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4379 
4380     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4381         Instruction::Add, IncRange, OBO::NoSignedWrap);
4382     if (NSWRegion.contains(AddRecRange))
4383       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4384   }
4385 
4386   if (!AR->hasNoUnsignedWrap()) {
4387     ConstantRange AddRecRange = getUnsignedRange(AR);
4388     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4389 
4390     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4391         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4392     if (NUWRegion.contains(AddRecRange))
4393       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4394   }
4395 
4396   return Result;
4397 }
4398 
4399 SCEV::NoWrapFlags
4400 ScalarEvolution::proveNoWrapViaInduction(const SCEVAddRecExpr *AR) {
4401   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4402   if (!AR->isAffine())
4403     return Result;
4404 
4405   const SCEV *Step = AR->getStepRecurrence(*this);
4406   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4407   const Loop *L = AR->getLoop();
4408 
4409   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4410   // Note that this serves two purposes: It filters out loops that are
4411   // simply not analyzable, and it covers the case where this code is
4412   // being called from within backedge-taken count analysis, such that
4413   // attempting to ask for the backedge-taken count would likely result
4414   // in infinite recursion. In the later case, the analysis code will
4415   // cope with a conservative value, and it will take care to purge
4416   // that value once it has finished.
4417   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4418 
4419   // Normally, in the cases we can prove no-overflow via a
4420   // backedge guarding condition, we can also compute a backedge
4421   // taken count for the loop.  The exceptions are assumptions and
4422   // guards present in the loop -- SCEV is not great at exploiting
4423   // these to compute max backedge taken counts, but can still use
4424   // these to prove lack of overflow.  Use this fact to avoid
4425   // doing extra work that may not pay off.
4426 
4427   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4428       AC.assumptions().empty())
4429     return Result;
4430 
4431   if (!AR->hasNoSignedWrap()) {
4432     // If the backedge is guarded by a comparison with the pre-inc
4433     // value the addrec is safe. Also, if the entry is guarded by
4434     // a comparison with the start value and the backedge is
4435     // guarded by a comparison with the post-inc value, the addrec
4436     // is safe.
4437     ICmpInst::Predicate Pred;
4438     const SCEV *OverflowLimit =
4439       getSignedOverflowLimitForStep(Step, &Pred, this);
4440     if (OverflowLimit &&
4441         (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4442          isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4443       Result = setFlags(Result, SCEV::FlagNSW);
4444     }
4445   }
4446 
4447   if (!AR->hasNoUnsignedWrap()) {
4448     // If the backedge is guarded by a comparison with the pre-inc
4449     // value the addrec is safe. Also, if the entry is guarded by
4450     // a comparison with the start value and the backedge is
4451     // guarded by a comparison with the post-inc value, the addrec
4452     // is safe.
4453     if (isKnownPositive(Step)) {
4454       const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4455                                   getUnsignedRangeMax(Step));
4456       if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4457           isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4458         Result = setFlags(Result, SCEV::FlagNUW);
4459       }
4460     }
4461   }
4462 
4463   if (!AR->hasNoSelfWrap()) {
4464     if (isKnownNegative(Step)) {
4465       // TODO: We can generalize this condition by proving (ugt AR, AR.start)
4466       // for the two clauses below.
4467       const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
4468                                   getSignedRangeMin(Step));
4469       if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
4470           isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
4471         // Negative step causes unsigned wrap, but it still can't self-wrap.
4472         Result = setFlags(Result, SCEV::FlagNW);
4473       }
4474     }
4475   }
4476 
4477   return Result;
4478 }
4479 
4480 namespace {
4481 
4482 /// Represents an abstract binary operation.  This may exist as a
4483 /// normal instruction or constant expression, or may have been
4484 /// derived from an expression tree.
4485 struct BinaryOp {
4486   unsigned Opcode;
4487   Value *LHS;
4488   Value *RHS;
4489   bool IsNSW = false;
4490   bool IsNUW = false;
4491   bool IsExact = false;
4492 
4493   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4494   /// constant expression.
4495   Operator *Op = nullptr;
4496 
4497   explicit BinaryOp(Operator *Op)
4498       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4499         Op(Op) {
4500     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4501       IsNSW = OBO->hasNoSignedWrap();
4502       IsNUW = OBO->hasNoUnsignedWrap();
4503     }
4504     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
4505       IsExact = PEO->isExact();
4506   }
4507 
4508   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4509                     bool IsNUW = false, bool IsExact = false)
4510       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
4511         IsExact(IsExact) {}
4512 };
4513 
4514 } // end anonymous namespace
4515 
4516 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4517 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4518   auto *Op = dyn_cast<Operator>(V);
4519   if (!Op)
4520     return None;
4521 
4522   // Implementation detail: all the cleverness here should happen without
4523   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4524   // SCEV expressions when possible, and we should not break that.
4525 
4526   switch (Op->getOpcode()) {
4527   case Instruction::Add:
4528   case Instruction::Sub:
4529   case Instruction::Mul:
4530   case Instruction::UDiv:
4531   case Instruction::URem:
4532   case Instruction::And:
4533   case Instruction::Or:
4534   case Instruction::AShr:
4535   case Instruction::Shl:
4536     return BinaryOp(Op);
4537 
4538   case Instruction::Xor:
4539     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4540       // If the RHS of the xor is a signmask, then this is just an add.
4541       // Instcombine turns add of signmask into xor as a strength reduction step.
4542       if (RHSC->getValue().isSignMask())
4543         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4544     return BinaryOp(Op);
4545 
4546   case Instruction::LShr:
4547     // Turn logical shift right of a constant into a unsigned divide.
4548     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4549       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4550 
4551       // If the shift count is not less than the bitwidth, the result of
4552       // the shift is undefined. Don't try to analyze it, because the
4553       // resolution chosen here may differ from the resolution chosen in
4554       // other parts of the compiler.
4555       if (SA->getValue().ult(BitWidth)) {
4556         Constant *X =
4557             ConstantInt::get(SA->getContext(),
4558                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4559         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4560       }
4561     }
4562     return BinaryOp(Op);
4563 
4564   case Instruction::ExtractValue: {
4565     auto *EVI = cast<ExtractValueInst>(Op);
4566     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4567       break;
4568 
4569     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4570     if (!WO)
4571       break;
4572 
4573     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4574     bool Signed = WO->isSigned();
4575     // TODO: Should add nuw/nsw flags for mul as well.
4576     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4577       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4578 
4579     // Now that we know that all uses of the arithmetic-result component of
4580     // CI are guarded by the overflow check, we can go ahead and pretend
4581     // that the arithmetic is non-overflowing.
4582     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4583                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4584   }
4585 
4586   default:
4587     break;
4588   }
4589 
4590   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4591   // semantics as a Sub, return a binary sub expression.
4592   if (auto *II = dyn_cast<IntrinsicInst>(V))
4593     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4594       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4595 
4596   return None;
4597 }
4598 
4599 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4600 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4601 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4602 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4603 /// follows one of the following patterns:
4604 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4605 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4606 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4607 /// we return the type of the truncation operation, and indicate whether the
4608 /// truncated type should be treated as signed/unsigned by setting
4609 /// \p Signed to true/false, respectively.
4610 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4611                                bool &Signed, ScalarEvolution &SE) {
4612   // The case where Op == SymbolicPHI (that is, with no type conversions on
4613   // the way) is handled by the regular add recurrence creating logic and
4614   // would have already been triggered in createAddRecForPHI. Reaching it here
4615   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4616   // because one of the other operands of the SCEVAddExpr updating this PHI is
4617   // not invariant).
4618   //
4619   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4620   // this case predicates that allow us to prove that Op == SymbolicPHI will
4621   // be added.
4622   if (Op == SymbolicPHI)
4623     return nullptr;
4624 
4625   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4626   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4627   if (SourceBits != NewBits)
4628     return nullptr;
4629 
4630   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4631   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4632   if (!SExt && !ZExt)
4633     return nullptr;
4634   const SCEVTruncateExpr *Trunc =
4635       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4636            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4637   if (!Trunc)
4638     return nullptr;
4639   const SCEV *X = Trunc->getOperand();
4640   if (X != SymbolicPHI)
4641     return nullptr;
4642   Signed = SExt != nullptr;
4643   return Trunc->getType();
4644 }
4645 
4646 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4647   if (!PN->getType()->isIntegerTy())
4648     return nullptr;
4649   const Loop *L = LI.getLoopFor(PN->getParent());
4650   if (!L || L->getHeader() != PN->getParent())
4651     return nullptr;
4652   return L;
4653 }
4654 
4655 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4656 // computation that updates the phi follows the following pattern:
4657 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4658 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4659 // If so, try to see if it can be rewritten as an AddRecExpr under some
4660 // Predicates. If successful, return them as a pair. Also cache the results
4661 // of the analysis.
4662 //
4663 // Example usage scenario:
4664 //    Say the Rewriter is called for the following SCEV:
4665 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4666 //    where:
4667 //         %X = phi i64 (%Start, %BEValue)
4668 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4669 //    and call this function with %SymbolicPHI = %X.
4670 //
4671 //    The analysis will find that the value coming around the backedge has
4672 //    the following SCEV:
4673 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4674 //    Upon concluding that this matches the desired pattern, the function
4675 //    will return the pair {NewAddRec, SmallPredsVec} where:
4676 //         NewAddRec = {%Start,+,%Step}
4677 //         SmallPredsVec = {P1, P2, P3} as follows:
4678 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4679 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4680 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4681 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4682 //    under the predicates {P1,P2,P3}.
4683 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4684 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4685 //
4686 // TODO's:
4687 //
4688 // 1) Extend the Induction descriptor to also support inductions that involve
4689 //    casts: When needed (namely, when we are called in the context of the
4690 //    vectorizer induction analysis), a Set of cast instructions will be
4691 //    populated by this method, and provided back to isInductionPHI. This is
4692 //    needed to allow the vectorizer to properly record them to be ignored by
4693 //    the cost model and to avoid vectorizing them (otherwise these casts,
4694 //    which are redundant under the runtime overflow checks, will be
4695 //    vectorized, which can be costly).
4696 //
4697 // 2) Support additional induction/PHISCEV patterns: We also want to support
4698 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4699 //    after the induction update operation (the induction increment):
4700 //
4701 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4702 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4703 //
4704 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4705 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4706 //
4707 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4708 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4709 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4710   SmallVector<const SCEVPredicate *, 3> Predicates;
4711 
4712   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4713   // return an AddRec expression under some predicate.
4714 
4715   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4716   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4717   assert(L && "Expecting an integer loop header phi");
4718 
4719   // The loop may have multiple entrances or multiple exits; we can analyze
4720   // this phi as an addrec if it has a unique entry value and a unique
4721   // backedge value.
4722   Value *BEValueV = nullptr, *StartValueV = nullptr;
4723   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4724     Value *V = PN->getIncomingValue(i);
4725     if (L->contains(PN->getIncomingBlock(i))) {
4726       if (!BEValueV) {
4727         BEValueV = V;
4728       } else if (BEValueV != V) {
4729         BEValueV = nullptr;
4730         break;
4731       }
4732     } else if (!StartValueV) {
4733       StartValueV = V;
4734     } else if (StartValueV != V) {
4735       StartValueV = nullptr;
4736       break;
4737     }
4738   }
4739   if (!BEValueV || !StartValueV)
4740     return None;
4741 
4742   const SCEV *BEValue = getSCEV(BEValueV);
4743 
4744   // If the value coming around the backedge is an add with the symbolic
4745   // value we just inserted, possibly with casts that we can ignore under
4746   // an appropriate runtime guard, then we found a simple induction variable!
4747   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4748   if (!Add)
4749     return None;
4750 
4751   // If there is a single occurrence of the symbolic value, possibly
4752   // casted, replace it with a recurrence.
4753   unsigned FoundIndex = Add->getNumOperands();
4754   Type *TruncTy = nullptr;
4755   bool Signed;
4756   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4757     if ((TruncTy =
4758              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4759       if (FoundIndex == e) {
4760         FoundIndex = i;
4761         break;
4762       }
4763 
4764   if (FoundIndex == Add->getNumOperands())
4765     return None;
4766 
4767   // Create an add with everything but the specified operand.
4768   SmallVector<const SCEV *, 8> Ops;
4769   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4770     if (i != FoundIndex)
4771       Ops.push_back(Add->getOperand(i));
4772   const SCEV *Accum = getAddExpr(Ops);
4773 
4774   // The runtime checks will not be valid if the step amount is
4775   // varying inside the loop.
4776   if (!isLoopInvariant(Accum, L))
4777     return None;
4778 
4779   // *** Part2: Create the predicates
4780 
4781   // Analysis was successful: we have a phi-with-cast pattern for which we
4782   // can return an AddRec expression under the following predicates:
4783   //
4784   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4785   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4786   // P2: An Equal predicate that guarantees that
4787   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4788   // P3: An Equal predicate that guarantees that
4789   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4790   //
4791   // As we next prove, the above predicates guarantee that:
4792   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4793   //
4794   //
4795   // More formally, we want to prove that:
4796   //     Expr(i+1) = Start + (i+1) * Accum
4797   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4798   //
4799   // Given that:
4800   // 1) Expr(0) = Start
4801   // 2) Expr(1) = Start + Accum
4802   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4803   // 3) Induction hypothesis (step i):
4804   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4805   //
4806   // Proof:
4807   //  Expr(i+1) =
4808   //   = Start + (i+1)*Accum
4809   //   = (Start + i*Accum) + Accum
4810   //   = Expr(i) + Accum
4811   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4812   //                                                             :: from step i
4813   //
4814   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4815   //
4816   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4817   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4818   //     + Accum                                                     :: from P3
4819   //
4820   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4821   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4822   //
4823   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4824   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4825   //
4826   // By induction, the same applies to all iterations 1<=i<n:
4827   //
4828 
4829   // Create a truncated addrec for which we will add a no overflow check (P1).
4830   const SCEV *StartVal = getSCEV(StartValueV);
4831   const SCEV *PHISCEV =
4832       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4833                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4834 
4835   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4836   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4837   // will be constant.
4838   //
4839   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4840   // add P1.
4841   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4842     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4843         Signed ? SCEVWrapPredicate::IncrementNSSW
4844                : SCEVWrapPredicate::IncrementNUSW;
4845     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4846     Predicates.push_back(AddRecPred);
4847   }
4848 
4849   // Create the Equal Predicates P2,P3:
4850 
4851   // It is possible that the predicates P2 and/or P3 are computable at
4852   // compile time due to StartVal and/or Accum being constants.
4853   // If either one is, then we can check that now and escape if either P2
4854   // or P3 is false.
4855 
4856   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4857   // for each of StartVal and Accum
4858   auto getExtendedExpr = [&](const SCEV *Expr,
4859                              bool CreateSignExtend) -> const SCEV * {
4860     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4861     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4862     const SCEV *ExtendedExpr =
4863         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4864                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4865     return ExtendedExpr;
4866   };
4867 
4868   // Given:
4869   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4870   //               = getExtendedExpr(Expr)
4871   // Determine whether the predicate P: Expr == ExtendedExpr
4872   // is known to be false at compile time
4873   auto PredIsKnownFalse = [&](const SCEV *Expr,
4874                               const SCEV *ExtendedExpr) -> bool {
4875     return Expr != ExtendedExpr &&
4876            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4877   };
4878 
4879   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4880   if (PredIsKnownFalse(StartVal, StartExtended)) {
4881     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4882     return None;
4883   }
4884 
4885   // The Step is always Signed (because the overflow checks are either
4886   // NSSW or NUSW)
4887   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4888   if (PredIsKnownFalse(Accum, AccumExtended)) {
4889     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4890     return None;
4891   }
4892 
4893   auto AppendPredicate = [&](const SCEV *Expr,
4894                              const SCEV *ExtendedExpr) -> void {
4895     if (Expr != ExtendedExpr &&
4896         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4897       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4898       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4899       Predicates.push_back(Pred);
4900     }
4901   };
4902 
4903   AppendPredicate(StartVal, StartExtended);
4904   AppendPredicate(Accum, AccumExtended);
4905 
4906   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4907   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4908   // into NewAR if it will also add the runtime overflow checks specified in
4909   // Predicates.
4910   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4911 
4912   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4913       std::make_pair(NewAR, Predicates);
4914   // Remember the result of the analysis for this SCEV at this locayyytion.
4915   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4916   return PredRewrite;
4917 }
4918 
4919 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4920 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4921   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4922   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4923   if (!L)
4924     return None;
4925 
4926   // Check to see if we already analyzed this PHI.
4927   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4928   if (I != PredicatedSCEVRewrites.end()) {
4929     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4930         I->second;
4931     // Analysis was done before and failed to create an AddRec:
4932     if (Rewrite.first == SymbolicPHI)
4933       return None;
4934     // Analysis was done before and succeeded to create an AddRec under
4935     // a predicate:
4936     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4937     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4938     return Rewrite;
4939   }
4940 
4941   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4942     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4943 
4944   // Record in the cache that the analysis failed
4945   if (!Rewrite) {
4946     SmallVector<const SCEVPredicate *, 3> Predicates;
4947     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4948     return None;
4949   }
4950 
4951   return Rewrite;
4952 }
4953 
4954 // FIXME: This utility is currently required because the Rewriter currently
4955 // does not rewrite this expression:
4956 // {0, +, (sext ix (trunc iy to ix) to iy)}
4957 // into {0, +, %step},
4958 // even when the following Equal predicate exists:
4959 // "%step == (sext ix (trunc iy to ix) to iy)".
4960 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4961     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4962   if (AR1 == AR2)
4963     return true;
4964 
4965   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4966     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4967         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4968       return false;
4969     return true;
4970   };
4971 
4972   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4973       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4974     return false;
4975   return true;
4976 }
4977 
4978 /// A helper function for createAddRecFromPHI to handle simple cases.
4979 ///
4980 /// This function tries to find an AddRec expression for the simplest (yet most
4981 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4982 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4983 /// technique for finding the AddRec expression.
4984 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4985                                                       Value *BEValueV,
4986                                                       Value *StartValueV) {
4987   const Loop *L = LI.getLoopFor(PN->getParent());
4988   assert(L && L->getHeader() == PN->getParent());
4989   assert(BEValueV && StartValueV);
4990 
4991   auto BO = MatchBinaryOp(BEValueV, DT);
4992   if (!BO)
4993     return nullptr;
4994 
4995   if (BO->Opcode != Instruction::Add)
4996     return nullptr;
4997 
4998   const SCEV *Accum = nullptr;
4999   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5000     Accum = getSCEV(BO->RHS);
5001   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5002     Accum = getSCEV(BO->LHS);
5003 
5004   if (!Accum)
5005     return nullptr;
5006 
5007   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5008   if (BO->IsNUW)
5009     Flags = setFlags(Flags, SCEV::FlagNUW);
5010   if (BO->IsNSW)
5011     Flags = setFlags(Flags, SCEV::FlagNSW);
5012 
5013   const SCEV *StartVal = getSCEV(StartValueV);
5014   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5015 
5016   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5017 
5018   // We can add Flags to the post-inc expression only if we
5019   // know that it is *undefined behavior* for BEValueV to
5020   // overflow.
5021   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5022     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5023       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5024 
5025   return PHISCEV;
5026 }
5027 
5028 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5029   const Loop *L = LI.getLoopFor(PN->getParent());
5030   if (!L || L->getHeader() != PN->getParent())
5031     return nullptr;
5032 
5033   // The loop may have multiple entrances or multiple exits; we can analyze
5034   // this phi as an addrec if it has a unique entry value and a unique
5035   // backedge value.
5036   Value *BEValueV = nullptr, *StartValueV = nullptr;
5037   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5038     Value *V = PN->getIncomingValue(i);
5039     if (L->contains(PN->getIncomingBlock(i))) {
5040       if (!BEValueV) {
5041         BEValueV = V;
5042       } else if (BEValueV != V) {
5043         BEValueV = nullptr;
5044         break;
5045       }
5046     } else if (!StartValueV) {
5047       StartValueV = V;
5048     } else if (StartValueV != V) {
5049       StartValueV = nullptr;
5050       break;
5051     }
5052   }
5053   if (!BEValueV || !StartValueV)
5054     return nullptr;
5055 
5056   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5057          "PHI node already processed?");
5058 
5059   // First, try to find AddRec expression without creating a fictituos symbolic
5060   // value for PN.
5061   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5062     return S;
5063 
5064   // Handle PHI node value symbolically.
5065   const SCEV *SymbolicName = getUnknown(PN);
5066   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5067 
5068   // Using this symbolic name for the PHI, analyze the value coming around
5069   // the back-edge.
5070   const SCEV *BEValue = getSCEV(BEValueV);
5071 
5072   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5073   // has a special value for the first iteration of the loop.
5074 
5075   // If the value coming around the backedge is an add with the symbolic
5076   // value we just inserted, then we found a simple induction variable!
5077   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5078     // If there is a single occurrence of the symbolic value, replace it
5079     // with a recurrence.
5080     unsigned FoundIndex = Add->getNumOperands();
5081     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5082       if (Add->getOperand(i) == SymbolicName)
5083         if (FoundIndex == e) {
5084           FoundIndex = i;
5085           break;
5086         }
5087 
5088     if (FoundIndex != Add->getNumOperands()) {
5089       // Create an add with everything but the specified operand.
5090       SmallVector<const SCEV *, 8> Ops;
5091       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5092         if (i != FoundIndex)
5093           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5094                                                              L, *this));
5095       const SCEV *Accum = getAddExpr(Ops);
5096 
5097       // This is not a valid addrec if the step amount is varying each
5098       // loop iteration, but is not itself an addrec in this loop.
5099       if (isLoopInvariant(Accum, L) ||
5100           (isa<SCEVAddRecExpr>(Accum) &&
5101            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5102         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5103 
5104         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5105           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5106             if (BO->IsNUW)
5107               Flags = setFlags(Flags, SCEV::FlagNUW);
5108             if (BO->IsNSW)
5109               Flags = setFlags(Flags, SCEV::FlagNSW);
5110           }
5111         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5112           // If the increment is an inbounds GEP, then we know the address
5113           // space cannot be wrapped around. We cannot make any guarantee
5114           // about signed or unsigned overflow because pointers are
5115           // unsigned but we may have a negative index from the base
5116           // pointer. We can guarantee that no unsigned wrap occurs if the
5117           // indices form a positive value.
5118           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5119             Flags = setFlags(Flags, SCEV::FlagNW);
5120 
5121             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5122             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5123               Flags = setFlags(Flags, SCEV::FlagNUW);
5124           }
5125 
5126           // We cannot transfer nuw and nsw flags from subtraction
5127           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5128           // for instance.
5129         }
5130 
5131         const SCEV *StartVal = getSCEV(StartValueV);
5132         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5133 
5134         // Okay, for the entire analysis of this edge we assumed the PHI
5135         // to be symbolic.  We now need to go back and purge all of the
5136         // entries for the scalars that use the symbolic expression.
5137         forgetSymbolicName(PN, SymbolicName);
5138         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5139 
5140         // We can add Flags to the post-inc expression only if we
5141         // know that it is *undefined behavior* for BEValueV to
5142         // overflow.
5143         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5144           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5145             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5146 
5147         return PHISCEV;
5148       }
5149     }
5150   } else {
5151     // Otherwise, this could be a loop like this:
5152     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5153     // In this case, j = {1,+,1}  and BEValue is j.
5154     // Because the other in-value of i (0) fits the evolution of BEValue
5155     // i really is an addrec evolution.
5156     //
5157     // We can generalize this saying that i is the shifted value of BEValue
5158     // by one iteration:
5159     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5160     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5161     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5162     if (Shifted != getCouldNotCompute() &&
5163         Start != getCouldNotCompute()) {
5164       const SCEV *StartVal = getSCEV(StartValueV);
5165       if (Start == StartVal) {
5166         // Okay, for the entire analysis of this edge we assumed the PHI
5167         // to be symbolic.  We now need to go back and purge all of the
5168         // entries for the scalars that use the symbolic expression.
5169         forgetSymbolicName(PN, SymbolicName);
5170         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5171         return Shifted;
5172       }
5173     }
5174   }
5175 
5176   // Remove the temporary PHI node SCEV that has been inserted while intending
5177   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5178   // as it will prevent later (possibly simpler) SCEV expressions to be added
5179   // to the ValueExprMap.
5180   eraseValueFromMap(PN);
5181 
5182   return nullptr;
5183 }
5184 
5185 // Checks if the SCEV S is available at BB.  S is considered available at BB
5186 // if S can be materialized at BB without introducing a fault.
5187 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5188                                BasicBlock *BB) {
5189   struct CheckAvailable {
5190     bool TraversalDone = false;
5191     bool Available = true;
5192 
5193     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5194     BasicBlock *BB = nullptr;
5195     DominatorTree &DT;
5196 
5197     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5198       : L(L), BB(BB), DT(DT) {}
5199 
5200     bool setUnavailable() {
5201       TraversalDone = true;
5202       Available = false;
5203       return false;
5204     }
5205 
5206     bool follow(const SCEV *S) {
5207       switch (S->getSCEVType()) {
5208       case scConstant:
5209       case scPtrToInt:
5210       case scTruncate:
5211       case scZeroExtend:
5212       case scSignExtend:
5213       case scAddExpr:
5214       case scMulExpr:
5215       case scUMaxExpr:
5216       case scSMaxExpr:
5217       case scUMinExpr:
5218       case scSMinExpr:
5219         // These expressions are available if their operand(s) is/are.
5220         return true;
5221 
5222       case scAddRecExpr: {
5223         // We allow add recurrences that are on the loop BB is in, or some
5224         // outer loop.  This guarantees availability because the value of the
5225         // add recurrence at BB is simply the "current" value of the induction
5226         // variable.  We can relax this in the future; for instance an add
5227         // recurrence on a sibling dominating loop is also available at BB.
5228         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5229         if (L && (ARLoop == L || ARLoop->contains(L)))
5230           return true;
5231 
5232         return setUnavailable();
5233       }
5234 
5235       case scUnknown: {
5236         // For SCEVUnknown, we check for simple dominance.
5237         const auto *SU = cast<SCEVUnknown>(S);
5238         Value *V = SU->getValue();
5239 
5240         if (isa<Argument>(V))
5241           return false;
5242 
5243         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5244           return false;
5245 
5246         return setUnavailable();
5247       }
5248 
5249       case scUDivExpr:
5250       case scCouldNotCompute:
5251         // We do not try to smart about these at all.
5252         return setUnavailable();
5253       }
5254       llvm_unreachable("Unknown SCEV kind!");
5255     }
5256 
5257     bool isDone() { return TraversalDone; }
5258   };
5259 
5260   CheckAvailable CA(L, BB, DT);
5261   SCEVTraversal<CheckAvailable> ST(CA);
5262 
5263   ST.visitAll(S);
5264   return CA.Available;
5265 }
5266 
5267 // Try to match a control flow sequence that branches out at BI and merges back
5268 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5269 // match.
5270 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5271                           Value *&C, Value *&LHS, Value *&RHS) {
5272   C = BI->getCondition();
5273 
5274   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5275   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5276 
5277   if (!LeftEdge.isSingleEdge())
5278     return false;
5279 
5280   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5281 
5282   Use &LeftUse = Merge->getOperandUse(0);
5283   Use &RightUse = Merge->getOperandUse(1);
5284 
5285   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5286     LHS = LeftUse;
5287     RHS = RightUse;
5288     return true;
5289   }
5290 
5291   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5292     LHS = RightUse;
5293     RHS = LeftUse;
5294     return true;
5295   }
5296 
5297   return false;
5298 }
5299 
5300 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5301   auto IsReachable =
5302       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5303   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5304     const Loop *L = LI.getLoopFor(PN->getParent());
5305 
5306     // We don't want to break LCSSA, even in a SCEV expression tree.
5307     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5308       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5309         return nullptr;
5310 
5311     // Try to match
5312     //
5313     //  br %cond, label %left, label %right
5314     // left:
5315     //  br label %merge
5316     // right:
5317     //  br label %merge
5318     // merge:
5319     //  V = phi [ %x, %left ], [ %y, %right ]
5320     //
5321     // as "select %cond, %x, %y"
5322 
5323     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5324     assert(IDom && "At least the entry block should dominate PN");
5325 
5326     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5327     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5328 
5329     if (BI && BI->isConditional() &&
5330         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5331         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5332         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5333       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5334   }
5335 
5336   return nullptr;
5337 }
5338 
5339 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5340   if (const SCEV *S = createAddRecFromPHI(PN))
5341     return S;
5342 
5343   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5344     return S;
5345 
5346   // If the PHI has a single incoming value, follow that value, unless the
5347   // PHI's incoming blocks are in a different loop, in which case doing so
5348   // risks breaking LCSSA form. Instcombine would normally zap these, but
5349   // it doesn't have DominatorTree information, so it may miss cases.
5350   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5351     if (LI.replacementPreservesLCSSAForm(PN, V))
5352       return getSCEV(V);
5353 
5354   // If it's not a loop phi, we can't handle it yet.
5355   return getUnknown(PN);
5356 }
5357 
5358 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5359                                                       Value *Cond,
5360                                                       Value *TrueVal,
5361                                                       Value *FalseVal) {
5362   // Handle "constant" branch or select. This can occur for instance when a
5363   // loop pass transforms an inner loop and moves on to process the outer loop.
5364   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5365     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5366 
5367   // Try to match some simple smax or umax patterns.
5368   auto *ICI = dyn_cast<ICmpInst>(Cond);
5369   if (!ICI)
5370     return getUnknown(I);
5371 
5372   Value *LHS = ICI->getOperand(0);
5373   Value *RHS = ICI->getOperand(1);
5374 
5375   switch (ICI->getPredicate()) {
5376   case ICmpInst::ICMP_SLT:
5377   case ICmpInst::ICMP_SLE:
5378     std::swap(LHS, RHS);
5379     LLVM_FALLTHROUGH;
5380   case ICmpInst::ICMP_SGT:
5381   case ICmpInst::ICMP_SGE:
5382     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5383     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5384     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5385       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5386       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5387       const SCEV *LA = getSCEV(TrueVal);
5388       const SCEV *RA = getSCEV(FalseVal);
5389       const SCEV *LDiff = getMinusSCEV(LA, LS);
5390       const SCEV *RDiff = getMinusSCEV(RA, RS);
5391       if (LDiff == RDiff)
5392         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5393       LDiff = getMinusSCEV(LA, RS);
5394       RDiff = getMinusSCEV(RA, LS);
5395       if (LDiff == RDiff)
5396         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5397     }
5398     break;
5399   case ICmpInst::ICMP_ULT:
5400   case ICmpInst::ICMP_ULE:
5401     std::swap(LHS, RHS);
5402     LLVM_FALLTHROUGH;
5403   case ICmpInst::ICMP_UGT:
5404   case ICmpInst::ICMP_UGE:
5405     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5406     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5407     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5408       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5409       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5410       const SCEV *LA = getSCEV(TrueVal);
5411       const SCEV *RA = getSCEV(FalseVal);
5412       const SCEV *LDiff = getMinusSCEV(LA, LS);
5413       const SCEV *RDiff = getMinusSCEV(RA, RS);
5414       if (LDiff == RDiff)
5415         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5416       LDiff = getMinusSCEV(LA, RS);
5417       RDiff = getMinusSCEV(RA, LS);
5418       if (LDiff == RDiff)
5419         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5420     }
5421     break;
5422   case ICmpInst::ICMP_NE:
5423     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5424     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5425         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5426       const SCEV *One = getOne(I->getType());
5427       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5428       const SCEV *LA = getSCEV(TrueVal);
5429       const SCEV *RA = getSCEV(FalseVal);
5430       const SCEV *LDiff = getMinusSCEV(LA, LS);
5431       const SCEV *RDiff = getMinusSCEV(RA, One);
5432       if (LDiff == RDiff)
5433         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5434     }
5435     break;
5436   case ICmpInst::ICMP_EQ:
5437     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5438     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5439         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5440       const SCEV *One = getOne(I->getType());
5441       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5442       const SCEV *LA = getSCEV(TrueVal);
5443       const SCEV *RA = getSCEV(FalseVal);
5444       const SCEV *LDiff = getMinusSCEV(LA, One);
5445       const SCEV *RDiff = getMinusSCEV(RA, LS);
5446       if (LDiff == RDiff)
5447         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5448     }
5449     break;
5450   default:
5451     break;
5452   }
5453 
5454   return getUnknown(I);
5455 }
5456 
5457 /// Expand GEP instructions into add and multiply operations. This allows them
5458 /// to be analyzed by regular SCEV code.
5459 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5460   // Don't attempt to analyze GEPs over unsized objects.
5461   if (!GEP->getSourceElementType()->isSized())
5462     return getUnknown(GEP);
5463 
5464   SmallVector<const SCEV *, 4> IndexExprs;
5465   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5466     IndexExprs.push_back(getSCEV(*Index));
5467   return getGEPExpr(GEP, IndexExprs);
5468 }
5469 
5470 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5471   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5472     return C->getAPInt().countTrailingZeros();
5473 
5474   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5475     return GetMinTrailingZeros(I->getOperand());
5476 
5477   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5478     return std::min(GetMinTrailingZeros(T->getOperand()),
5479                     (uint32_t)getTypeSizeInBits(T->getType()));
5480 
5481   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5482     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5483     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5484                ? getTypeSizeInBits(E->getType())
5485                : OpRes;
5486   }
5487 
5488   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5489     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5490     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5491                ? getTypeSizeInBits(E->getType())
5492                : OpRes;
5493   }
5494 
5495   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5496     // The result is the min of all operands results.
5497     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5498     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5499       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5500     return MinOpRes;
5501   }
5502 
5503   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5504     // The result is the sum of all operands results.
5505     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5506     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5507     for (unsigned i = 1, e = M->getNumOperands();
5508          SumOpRes != BitWidth && i != e; ++i)
5509       SumOpRes =
5510           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5511     return SumOpRes;
5512   }
5513 
5514   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5515     // The result is the min of all operands results.
5516     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5517     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5518       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5519     return MinOpRes;
5520   }
5521 
5522   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5523     // The result is the min of all operands results.
5524     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5525     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5526       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5527     return MinOpRes;
5528   }
5529 
5530   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5531     // The result is the min of all operands results.
5532     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5533     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5534       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5535     return MinOpRes;
5536   }
5537 
5538   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5539     // For a SCEVUnknown, ask ValueTracking.
5540     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5541     return Known.countMinTrailingZeros();
5542   }
5543 
5544   // SCEVUDivExpr
5545   return 0;
5546 }
5547 
5548 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5549   auto I = MinTrailingZerosCache.find(S);
5550   if (I != MinTrailingZerosCache.end())
5551     return I->second;
5552 
5553   uint32_t Result = GetMinTrailingZerosImpl(S);
5554   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5555   assert(InsertPair.second && "Should insert a new key");
5556   return InsertPair.first->second;
5557 }
5558 
5559 /// Helper method to assign a range to V from metadata present in the IR.
5560 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5561   if (Instruction *I = dyn_cast<Instruction>(V))
5562     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5563       return getConstantRangeFromMetadata(*MD);
5564 
5565   return None;
5566 }
5567 
5568 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5569                                      SCEV::NoWrapFlags Flags) {
5570   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5571     AddRec->setNoWrapFlags(Flags);
5572     UnsignedRanges.erase(AddRec);
5573     SignedRanges.erase(AddRec);
5574   }
5575 }
5576 
5577 /// Determine the range for a particular SCEV.  If SignHint is
5578 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5579 /// with a "cleaner" unsigned (resp. signed) representation.
5580 const ConstantRange &
5581 ScalarEvolution::getRangeRef(const SCEV *S,
5582                              ScalarEvolution::RangeSignHint SignHint) {
5583   DenseMap<const SCEV *, ConstantRange> &Cache =
5584       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5585                                                        : SignedRanges;
5586   ConstantRange::PreferredRangeType RangeType =
5587       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5588           ? ConstantRange::Unsigned : ConstantRange::Signed;
5589 
5590   // See if we've computed this range already.
5591   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5592   if (I != Cache.end())
5593     return I->second;
5594 
5595   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5596     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5597 
5598   unsigned BitWidth = getTypeSizeInBits(S->getType());
5599   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5600   using OBO = OverflowingBinaryOperator;
5601 
5602   // If the value has known zeros, the maximum value will have those known zeros
5603   // as well.
5604   uint32_t TZ = GetMinTrailingZeros(S);
5605   if (TZ != 0) {
5606     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5607       ConservativeResult =
5608           ConstantRange(APInt::getMinValue(BitWidth),
5609                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5610     else
5611       ConservativeResult = ConstantRange(
5612           APInt::getSignedMinValue(BitWidth),
5613           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5614   }
5615 
5616   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5617     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5618     unsigned WrapType = OBO::AnyWrap;
5619     if (Add->hasNoSignedWrap())
5620       WrapType |= OBO::NoSignedWrap;
5621     if (Add->hasNoUnsignedWrap())
5622       WrapType |= OBO::NoUnsignedWrap;
5623     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5624       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5625                           WrapType, RangeType);
5626     return setRange(Add, SignHint,
5627                     ConservativeResult.intersectWith(X, RangeType));
5628   }
5629 
5630   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5631     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5632     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5633       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5634     return setRange(Mul, SignHint,
5635                     ConservativeResult.intersectWith(X, RangeType));
5636   }
5637 
5638   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5639     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5640     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5641       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5642     return setRange(SMax, SignHint,
5643                     ConservativeResult.intersectWith(X, RangeType));
5644   }
5645 
5646   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5647     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5648     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5649       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5650     return setRange(UMax, SignHint,
5651                     ConservativeResult.intersectWith(X, RangeType));
5652   }
5653 
5654   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5655     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5656     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5657       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5658     return setRange(SMin, SignHint,
5659                     ConservativeResult.intersectWith(X, RangeType));
5660   }
5661 
5662   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5663     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5664     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5665       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5666     return setRange(UMin, SignHint,
5667                     ConservativeResult.intersectWith(X, RangeType));
5668   }
5669 
5670   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5671     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5672     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5673     return setRange(UDiv, SignHint,
5674                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5675   }
5676 
5677   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5678     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5679     return setRange(ZExt, SignHint,
5680                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5681                                                      RangeType));
5682   }
5683 
5684   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5685     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5686     return setRange(SExt, SignHint,
5687                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5688                                                      RangeType));
5689   }
5690 
5691   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5692     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5693     return setRange(PtrToInt, SignHint, X);
5694   }
5695 
5696   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5697     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5698     return setRange(Trunc, SignHint,
5699                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5700                                                      RangeType));
5701   }
5702 
5703   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5704     // If there's no unsigned wrap, the value will never be less than its
5705     // initial value.
5706     if (AddRec->hasNoUnsignedWrap()) {
5707       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5708       if (!UnsignedMinValue.isNullValue())
5709         ConservativeResult = ConservativeResult.intersectWith(
5710             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5711     }
5712 
5713     // If there's no signed wrap, and all the operands except initial value have
5714     // the same sign or zero, the value won't ever be:
5715     // 1: smaller than initial value if operands are non negative,
5716     // 2: bigger than initial value if operands are non positive.
5717     // For both cases, value can not cross signed min/max boundary.
5718     if (AddRec->hasNoSignedWrap()) {
5719       bool AllNonNeg = true;
5720       bool AllNonPos = true;
5721       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5722         if (!isKnownNonNegative(AddRec->getOperand(i)))
5723           AllNonNeg = false;
5724         if (!isKnownNonPositive(AddRec->getOperand(i)))
5725           AllNonPos = false;
5726       }
5727       if (AllNonNeg)
5728         ConservativeResult = ConservativeResult.intersectWith(
5729             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5730                                        APInt::getSignedMinValue(BitWidth)),
5731             RangeType);
5732       else if (AllNonPos)
5733         ConservativeResult = ConservativeResult.intersectWith(
5734             ConstantRange::getNonEmpty(
5735                 APInt::getSignedMinValue(BitWidth),
5736                 getSignedRangeMax(AddRec->getStart()) + 1),
5737             RangeType);
5738     }
5739 
5740     // TODO: non-affine addrec
5741     if (AddRec->isAffine()) {
5742       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5743       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5744           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5745         auto RangeFromAffine = getRangeForAffineAR(
5746             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5747             BitWidth);
5748         ConservativeResult =
5749             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5750 
5751         auto RangeFromFactoring = getRangeViaFactoring(
5752             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5753             BitWidth);
5754         ConservativeResult =
5755             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5756       }
5757 
5758       // Now try symbolic BE count and more powerful methods.
5759       if (UseExpensiveRangeSharpening) {
5760         const SCEV *SymbolicMaxBECount =
5761             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5762         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5763             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5764             AddRec->hasNoSelfWrap()) {
5765           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5766               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5767           ConservativeResult =
5768               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5769         }
5770       }
5771     }
5772 
5773     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5774   }
5775 
5776   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5777     // Check if the IR explicitly contains !range metadata.
5778     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5779     if (MDRange.hasValue())
5780       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5781                                                             RangeType);
5782 
5783     // Split here to avoid paying the compile-time cost of calling both
5784     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5785     // if needed.
5786     const DataLayout &DL = getDataLayout();
5787     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5788       // For a SCEVUnknown, ask ValueTracking.
5789       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5790       if (Known.getBitWidth() != BitWidth)
5791         Known = Known.zextOrTrunc(BitWidth);
5792       // If Known does not result in full-set, intersect with it.
5793       if (Known.getMinValue() != Known.getMaxValue() + 1)
5794         ConservativeResult = ConservativeResult.intersectWith(
5795             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5796             RangeType);
5797     } else {
5798       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5799              "generalize as needed!");
5800       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5801       // If the pointer size is larger than the index size type, this can cause
5802       // NS to be larger than BitWidth. So compensate for this.
5803       if (U->getType()->isPointerTy()) {
5804         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5805         int ptrIdxDiff = ptrSize - BitWidth;
5806         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5807           NS -= ptrIdxDiff;
5808       }
5809 
5810       if (NS > 1)
5811         ConservativeResult = ConservativeResult.intersectWith(
5812             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5813                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5814             RangeType);
5815     }
5816 
5817     // A range of Phi is a subset of union of all ranges of its input.
5818     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5819       // Make sure that we do not run over cycled Phis.
5820       if (PendingPhiRanges.insert(Phi).second) {
5821         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5822         for (auto &Op : Phi->operands()) {
5823           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5824           RangeFromOps = RangeFromOps.unionWith(OpRange);
5825           // No point to continue if we already have a full set.
5826           if (RangeFromOps.isFullSet())
5827             break;
5828         }
5829         ConservativeResult =
5830             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5831         bool Erased = PendingPhiRanges.erase(Phi);
5832         assert(Erased && "Failed to erase Phi properly?");
5833         (void) Erased;
5834       }
5835     }
5836 
5837     return setRange(U, SignHint, std::move(ConservativeResult));
5838   }
5839 
5840   return setRange(S, SignHint, std::move(ConservativeResult));
5841 }
5842 
5843 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5844 // values that the expression can take. Initially, the expression has a value
5845 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5846 // argument defines if we treat Step as signed or unsigned.
5847 static ConstantRange getRangeForAffineARHelper(APInt Step,
5848                                                const ConstantRange &StartRange,
5849                                                const APInt &MaxBECount,
5850                                                unsigned BitWidth, bool Signed) {
5851   // If either Step or MaxBECount is 0, then the expression won't change, and we
5852   // just need to return the initial range.
5853   if (Step == 0 || MaxBECount == 0)
5854     return StartRange;
5855 
5856   // If we don't know anything about the initial value (i.e. StartRange is
5857   // FullRange), then we don't know anything about the final range either.
5858   // Return FullRange.
5859   if (StartRange.isFullSet())
5860     return ConstantRange::getFull(BitWidth);
5861 
5862   // If Step is signed and negative, then we use its absolute value, but we also
5863   // note that we're moving in the opposite direction.
5864   bool Descending = Signed && Step.isNegative();
5865 
5866   if (Signed)
5867     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5868     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5869     // This equations hold true due to the well-defined wrap-around behavior of
5870     // APInt.
5871     Step = Step.abs();
5872 
5873   // Check if Offset is more than full span of BitWidth. If it is, the
5874   // expression is guaranteed to overflow.
5875   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5876     return ConstantRange::getFull(BitWidth);
5877 
5878   // Offset is by how much the expression can change. Checks above guarantee no
5879   // overflow here.
5880   APInt Offset = Step * MaxBECount;
5881 
5882   // Minimum value of the final range will match the minimal value of StartRange
5883   // if the expression is increasing and will be decreased by Offset otherwise.
5884   // Maximum value of the final range will match the maximal value of StartRange
5885   // if the expression is decreasing and will be increased by Offset otherwise.
5886   APInt StartLower = StartRange.getLower();
5887   APInt StartUpper = StartRange.getUpper() - 1;
5888   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5889                                    : (StartUpper + std::move(Offset));
5890 
5891   // It's possible that the new minimum/maximum value will fall into the initial
5892   // range (due to wrap around). This means that the expression can take any
5893   // value in this bitwidth, and we have to return full range.
5894   if (StartRange.contains(MovedBoundary))
5895     return ConstantRange::getFull(BitWidth);
5896 
5897   APInt NewLower =
5898       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5899   APInt NewUpper =
5900       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5901   NewUpper += 1;
5902 
5903   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5904   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5905 }
5906 
5907 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5908                                                    const SCEV *Step,
5909                                                    const SCEV *MaxBECount,
5910                                                    unsigned BitWidth) {
5911   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5912          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5913          "Precondition!");
5914 
5915   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5916   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5917 
5918   // First, consider step signed.
5919   ConstantRange StartSRange = getSignedRange(Start);
5920   ConstantRange StepSRange = getSignedRange(Step);
5921 
5922   // If Step can be both positive and negative, we need to find ranges for the
5923   // maximum absolute step values in both directions and union them.
5924   ConstantRange SR =
5925       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5926                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5927   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5928                                               StartSRange, MaxBECountValue,
5929                                               BitWidth, /* Signed = */ true));
5930 
5931   // Next, consider step unsigned.
5932   ConstantRange UR = getRangeForAffineARHelper(
5933       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5934       MaxBECountValue, BitWidth, /* Signed = */ false);
5935 
5936   // Finally, intersect signed and unsigned ranges.
5937   return SR.intersectWith(UR, ConstantRange::Smallest);
5938 }
5939 
5940 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
5941     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
5942     ScalarEvolution::RangeSignHint SignHint) {
5943   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
5944   assert(AddRec->hasNoSelfWrap() &&
5945          "This only works for non-self-wrapping AddRecs!");
5946   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
5947   const SCEV *Step = AddRec->getStepRecurrence(*this);
5948   // Only deal with constant step to save compile time.
5949   if (!isa<SCEVConstant>(Step))
5950     return ConstantRange::getFull(BitWidth);
5951   // Let's make sure that we can prove that we do not self-wrap during
5952   // MaxBECount iterations. We need this because MaxBECount is a maximum
5953   // iteration count estimate, and we might infer nw from some exit for which we
5954   // do not know max exit count (or any other side reasoning).
5955   // TODO: Turn into assert at some point.
5956   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
5957   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
5958   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
5959   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
5960   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
5961                                          MaxItersWithoutWrap))
5962     return ConstantRange::getFull(BitWidth);
5963 
5964   ICmpInst::Predicate LEPred =
5965       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
5966   ICmpInst::Predicate GEPred =
5967       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
5968   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
5969 
5970   // We know that there is no self-wrap. Let's take Start and End values and
5971   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
5972   // the iteration. They either lie inside the range [Min(Start, End),
5973   // Max(Start, End)] or outside it:
5974   //
5975   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
5976   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
5977   //
5978   // No self wrap flag guarantees that the intermediate values cannot be BOTH
5979   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
5980   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
5981   // Start <= End and step is positive, or Start >= End and step is negative.
5982   const SCEV *Start = AddRec->getStart();
5983   ConstantRange StartRange = getRangeRef(Start, SignHint);
5984   ConstantRange EndRange = getRangeRef(End, SignHint);
5985   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
5986   // If they already cover full iteration space, we will know nothing useful
5987   // even if we prove what we want to prove.
5988   if (RangeBetween.isFullSet())
5989     return RangeBetween;
5990   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
5991   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
5992                                : RangeBetween.isWrappedSet();
5993   if (IsWrappedSet)
5994     return ConstantRange::getFull(BitWidth);
5995 
5996   if (isKnownPositive(Step) &&
5997       isKnownPredicateViaConstantRanges(LEPred, Start, End))
5998     return RangeBetween;
5999   else if (isKnownNegative(Step) &&
6000            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6001     return RangeBetween;
6002   return ConstantRange::getFull(BitWidth);
6003 }
6004 
6005 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6006                                                     const SCEV *Step,
6007                                                     const SCEV *MaxBECount,
6008                                                     unsigned BitWidth) {
6009   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6010   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6011 
6012   struct SelectPattern {
6013     Value *Condition = nullptr;
6014     APInt TrueValue;
6015     APInt FalseValue;
6016 
6017     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6018                            const SCEV *S) {
6019       Optional<unsigned> CastOp;
6020       APInt Offset(BitWidth, 0);
6021 
6022       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6023              "Should be!");
6024 
6025       // Peel off a constant offset:
6026       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6027         // In the future we could consider being smarter here and handle
6028         // {Start+Step,+,Step} too.
6029         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6030           return;
6031 
6032         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6033         S = SA->getOperand(1);
6034       }
6035 
6036       // Peel off a cast operation
6037       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6038         CastOp = SCast->getSCEVType();
6039         S = SCast->getOperand();
6040       }
6041 
6042       using namespace llvm::PatternMatch;
6043 
6044       auto *SU = dyn_cast<SCEVUnknown>(S);
6045       const APInt *TrueVal, *FalseVal;
6046       if (!SU ||
6047           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6048                                           m_APInt(FalseVal)))) {
6049         Condition = nullptr;
6050         return;
6051       }
6052 
6053       TrueValue = *TrueVal;
6054       FalseValue = *FalseVal;
6055 
6056       // Re-apply the cast we peeled off earlier
6057       if (CastOp.hasValue())
6058         switch (*CastOp) {
6059         default:
6060           llvm_unreachable("Unknown SCEV cast type!");
6061 
6062         case scTruncate:
6063           TrueValue = TrueValue.trunc(BitWidth);
6064           FalseValue = FalseValue.trunc(BitWidth);
6065           break;
6066         case scZeroExtend:
6067           TrueValue = TrueValue.zext(BitWidth);
6068           FalseValue = FalseValue.zext(BitWidth);
6069           break;
6070         case scSignExtend:
6071           TrueValue = TrueValue.sext(BitWidth);
6072           FalseValue = FalseValue.sext(BitWidth);
6073           break;
6074         }
6075 
6076       // Re-apply the constant offset we peeled off earlier
6077       TrueValue += Offset;
6078       FalseValue += Offset;
6079     }
6080 
6081     bool isRecognized() { return Condition != nullptr; }
6082   };
6083 
6084   SelectPattern StartPattern(*this, BitWidth, Start);
6085   if (!StartPattern.isRecognized())
6086     return ConstantRange::getFull(BitWidth);
6087 
6088   SelectPattern StepPattern(*this, BitWidth, Step);
6089   if (!StepPattern.isRecognized())
6090     return ConstantRange::getFull(BitWidth);
6091 
6092   if (StartPattern.Condition != StepPattern.Condition) {
6093     // We don't handle this case today; but we could, by considering four
6094     // possibilities below instead of two. I'm not sure if there are cases where
6095     // that will help over what getRange already does, though.
6096     return ConstantRange::getFull(BitWidth);
6097   }
6098 
6099   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6100   // construct arbitrary general SCEV expressions here.  This function is called
6101   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6102   // say) can end up caching a suboptimal value.
6103 
6104   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6105   // C2352 and C2512 (otherwise it isn't needed).
6106 
6107   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6108   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6109   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6110   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6111 
6112   ConstantRange TrueRange =
6113       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6114   ConstantRange FalseRange =
6115       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6116 
6117   return TrueRange.unionWith(FalseRange);
6118 }
6119 
6120 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6121   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6122   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6123 
6124   // Return early if there are no flags to propagate to the SCEV.
6125   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6126   if (BinOp->hasNoUnsignedWrap())
6127     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6128   if (BinOp->hasNoSignedWrap())
6129     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6130   if (Flags == SCEV::FlagAnyWrap)
6131     return SCEV::FlagAnyWrap;
6132 
6133   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6134 }
6135 
6136 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6137   // Here we check that I is in the header of the innermost loop containing I,
6138   // since we only deal with instructions in the loop header. The actual loop we
6139   // need to check later will come from an add recurrence, but getting that
6140   // requires computing the SCEV of the operands, which can be expensive. This
6141   // check we can do cheaply to rule out some cases early.
6142   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6143   if (InnermostContainingLoop == nullptr ||
6144       InnermostContainingLoop->getHeader() != I->getParent())
6145     return false;
6146 
6147   // Only proceed if we can prove that I does not yield poison.
6148   if (!programUndefinedIfPoison(I))
6149     return false;
6150 
6151   // At this point we know that if I is executed, then it does not wrap
6152   // according to at least one of NSW or NUW. If I is not executed, then we do
6153   // not know if the calculation that I represents would wrap. Multiple
6154   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6155   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6156   // derived from other instructions that map to the same SCEV. We cannot make
6157   // that guarantee for cases where I is not executed. So we need to find the
6158   // loop that I is considered in relation to and prove that I is executed for
6159   // every iteration of that loop. That implies that the value that I
6160   // calculates does not wrap anywhere in the loop, so then we can apply the
6161   // flags to the SCEV.
6162   //
6163   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6164   // from different loops, so that we know which loop to prove that I is
6165   // executed in.
6166   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6167     // I could be an extractvalue from a call to an overflow intrinsic.
6168     // TODO: We can do better here in some cases.
6169     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6170       return false;
6171     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6172     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6173       bool AllOtherOpsLoopInvariant = true;
6174       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6175            ++OtherOpIndex) {
6176         if (OtherOpIndex != OpIndex) {
6177           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6178           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6179             AllOtherOpsLoopInvariant = false;
6180             break;
6181           }
6182         }
6183       }
6184       if (AllOtherOpsLoopInvariant &&
6185           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6186         return true;
6187     }
6188   }
6189   return false;
6190 }
6191 
6192 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6193   // If we know that \c I can never be poison period, then that's enough.
6194   if (isSCEVExprNeverPoison(I))
6195     return true;
6196 
6197   // For an add recurrence specifically, we assume that infinite loops without
6198   // side effects are undefined behavior, and then reason as follows:
6199   //
6200   // If the add recurrence is poison in any iteration, it is poison on all
6201   // future iterations (since incrementing poison yields poison). If the result
6202   // of the add recurrence is fed into the loop latch condition and the loop
6203   // does not contain any throws or exiting blocks other than the latch, we now
6204   // have the ability to "choose" whether the backedge is taken or not (by
6205   // choosing a sufficiently evil value for the poison feeding into the branch)
6206   // for every iteration including and after the one in which \p I first became
6207   // poison.  There are two possibilities (let's call the iteration in which \p
6208   // I first became poison as K):
6209   //
6210   //  1. In the set of iterations including and after K, the loop body executes
6211   //     no side effects.  In this case executing the backege an infinte number
6212   //     of times will yield undefined behavior.
6213   //
6214   //  2. In the set of iterations including and after K, the loop body executes
6215   //     at least one side effect.  In this case, that specific instance of side
6216   //     effect is control dependent on poison, which also yields undefined
6217   //     behavior.
6218 
6219   auto *ExitingBB = L->getExitingBlock();
6220   auto *LatchBB = L->getLoopLatch();
6221   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6222     return false;
6223 
6224   SmallPtrSet<const Instruction *, 16> Pushed;
6225   SmallVector<const Instruction *, 8> PoisonStack;
6226 
6227   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6228   // things that are known to be poison under that assumption go on the
6229   // PoisonStack.
6230   Pushed.insert(I);
6231   PoisonStack.push_back(I);
6232 
6233   bool LatchControlDependentOnPoison = false;
6234   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6235     const Instruction *Poison = PoisonStack.pop_back_val();
6236 
6237     for (auto *PoisonUser : Poison->users()) {
6238       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6239         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6240           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6241       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6242         assert(BI->isConditional() && "Only possibility!");
6243         if (BI->getParent() == LatchBB) {
6244           LatchControlDependentOnPoison = true;
6245           break;
6246         }
6247       }
6248     }
6249   }
6250 
6251   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6252 }
6253 
6254 ScalarEvolution::LoopProperties
6255 ScalarEvolution::getLoopProperties(const Loop *L) {
6256   using LoopProperties = ScalarEvolution::LoopProperties;
6257 
6258   auto Itr = LoopPropertiesCache.find(L);
6259   if (Itr == LoopPropertiesCache.end()) {
6260     auto HasSideEffects = [](Instruction *I) {
6261       if (auto *SI = dyn_cast<StoreInst>(I))
6262         return !SI->isSimple();
6263 
6264       return I->mayHaveSideEffects();
6265     };
6266 
6267     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6268                          /*HasNoSideEffects*/ true};
6269 
6270     for (auto *BB : L->getBlocks())
6271       for (auto &I : *BB) {
6272         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6273           LP.HasNoAbnormalExits = false;
6274         if (HasSideEffects(&I))
6275           LP.HasNoSideEffects = false;
6276         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6277           break; // We're already as pessimistic as we can get.
6278       }
6279 
6280     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6281     assert(InsertPair.second && "We just checked!");
6282     Itr = InsertPair.first;
6283   }
6284 
6285   return Itr->second;
6286 }
6287 
6288 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6289   if (!isSCEVable(V->getType()))
6290     return getUnknown(V);
6291 
6292   if (Instruction *I = dyn_cast<Instruction>(V)) {
6293     // Don't attempt to analyze instructions in blocks that aren't
6294     // reachable. Such instructions don't matter, and they aren't required
6295     // to obey basic rules for definitions dominating uses which this
6296     // analysis depends on.
6297     if (!DT.isReachableFromEntry(I->getParent()))
6298       return getUnknown(UndefValue::get(V->getType()));
6299   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6300     return getConstant(CI);
6301   else if (isa<ConstantPointerNull>(V))
6302     // FIXME: we shouldn't special-case null pointer constant.
6303     return getZero(V->getType());
6304   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6305     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6306   else if (!isa<ConstantExpr>(V))
6307     return getUnknown(V);
6308 
6309   Operator *U = cast<Operator>(V);
6310   if (auto BO = MatchBinaryOp(U, DT)) {
6311     switch (BO->Opcode) {
6312     case Instruction::Add: {
6313       // The simple thing to do would be to just call getSCEV on both operands
6314       // and call getAddExpr with the result. However if we're looking at a
6315       // bunch of things all added together, this can be quite inefficient,
6316       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6317       // Instead, gather up all the operands and make a single getAddExpr call.
6318       // LLVM IR canonical form means we need only traverse the left operands.
6319       SmallVector<const SCEV *, 4> AddOps;
6320       do {
6321         if (BO->Op) {
6322           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6323             AddOps.push_back(OpSCEV);
6324             break;
6325           }
6326 
6327           // If a NUW or NSW flag can be applied to the SCEV for this
6328           // addition, then compute the SCEV for this addition by itself
6329           // with a separate call to getAddExpr. We need to do that
6330           // instead of pushing the operands of the addition onto AddOps,
6331           // since the flags are only known to apply to this particular
6332           // addition - they may not apply to other additions that can be
6333           // formed with operands from AddOps.
6334           const SCEV *RHS = getSCEV(BO->RHS);
6335           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6336           if (Flags != SCEV::FlagAnyWrap) {
6337             const SCEV *LHS = getSCEV(BO->LHS);
6338             if (BO->Opcode == Instruction::Sub)
6339               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6340             else
6341               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6342             break;
6343           }
6344         }
6345 
6346         if (BO->Opcode == Instruction::Sub)
6347           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6348         else
6349           AddOps.push_back(getSCEV(BO->RHS));
6350 
6351         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6352         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6353                        NewBO->Opcode != Instruction::Sub)) {
6354           AddOps.push_back(getSCEV(BO->LHS));
6355           break;
6356         }
6357         BO = NewBO;
6358       } while (true);
6359 
6360       return getAddExpr(AddOps);
6361     }
6362 
6363     case Instruction::Mul: {
6364       SmallVector<const SCEV *, 4> MulOps;
6365       do {
6366         if (BO->Op) {
6367           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6368             MulOps.push_back(OpSCEV);
6369             break;
6370           }
6371 
6372           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6373           if (Flags != SCEV::FlagAnyWrap) {
6374             MulOps.push_back(
6375                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6376             break;
6377           }
6378         }
6379 
6380         MulOps.push_back(getSCEV(BO->RHS));
6381         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6382         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6383           MulOps.push_back(getSCEV(BO->LHS));
6384           break;
6385         }
6386         BO = NewBO;
6387       } while (true);
6388 
6389       return getMulExpr(MulOps);
6390     }
6391     case Instruction::UDiv:
6392       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6393     case Instruction::URem:
6394       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6395     case Instruction::Sub: {
6396       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6397       if (BO->Op)
6398         Flags = getNoWrapFlagsFromUB(BO->Op);
6399       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6400     }
6401     case Instruction::And:
6402       // For an expression like x&255 that merely masks off the high bits,
6403       // use zext(trunc(x)) as the SCEV expression.
6404       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6405         if (CI->isZero())
6406           return getSCEV(BO->RHS);
6407         if (CI->isMinusOne())
6408           return getSCEV(BO->LHS);
6409         const APInt &A = CI->getValue();
6410 
6411         // Instcombine's ShrinkDemandedConstant may strip bits out of
6412         // constants, obscuring what would otherwise be a low-bits mask.
6413         // Use computeKnownBits to compute what ShrinkDemandedConstant
6414         // knew about to reconstruct a low-bits mask value.
6415         unsigned LZ = A.countLeadingZeros();
6416         unsigned TZ = A.countTrailingZeros();
6417         unsigned BitWidth = A.getBitWidth();
6418         KnownBits Known(BitWidth);
6419         computeKnownBits(BO->LHS, Known, getDataLayout(),
6420                          0, &AC, nullptr, &DT);
6421 
6422         APInt EffectiveMask =
6423             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6424         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6425           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6426           const SCEV *LHS = getSCEV(BO->LHS);
6427           const SCEV *ShiftedLHS = nullptr;
6428           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6429             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6430               // For an expression like (x * 8) & 8, simplify the multiply.
6431               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6432               unsigned GCD = std::min(MulZeros, TZ);
6433               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6434               SmallVector<const SCEV*, 4> MulOps;
6435               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6436               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6437               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6438               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6439             }
6440           }
6441           if (!ShiftedLHS)
6442             ShiftedLHS = getUDivExpr(LHS, MulCount);
6443           return getMulExpr(
6444               getZeroExtendExpr(
6445                   getTruncateExpr(ShiftedLHS,
6446                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6447                   BO->LHS->getType()),
6448               MulCount);
6449         }
6450       }
6451       break;
6452 
6453     case Instruction::Or:
6454       // If the RHS of the Or is a constant, we may have something like:
6455       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6456       // optimizations will transparently handle this case.
6457       //
6458       // In order for this transformation to be safe, the LHS must be of the
6459       // form X*(2^n) and the Or constant must be less than 2^n.
6460       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6461         const SCEV *LHS = getSCEV(BO->LHS);
6462         const APInt &CIVal = CI->getValue();
6463         if (GetMinTrailingZeros(LHS) >=
6464             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6465           // Build a plain add SCEV.
6466           return getAddExpr(LHS, getSCEV(CI),
6467                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6468         }
6469       }
6470       break;
6471 
6472     case Instruction::Xor:
6473       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6474         // If the RHS of xor is -1, then this is a not operation.
6475         if (CI->isMinusOne())
6476           return getNotSCEV(getSCEV(BO->LHS));
6477 
6478         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6479         // This is a variant of the check for xor with -1, and it handles
6480         // the case where instcombine has trimmed non-demanded bits out
6481         // of an xor with -1.
6482         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6483           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6484             if (LBO->getOpcode() == Instruction::And &&
6485                 LCI->getValue() == CI->getValue())
6486               if (const SCEVZeroExtendExpr *Z =
6487                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6488                 Type *UTy = BO->LHS->getType();
6489                 const SCEV *Z0 = Z->getOperand();
6490                 Type *Z0Ty = Z0->getType();
6491                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6492 
6493                 // If C is a low-bits mask, the zero extend is serving to
6494                 // mask off the high bits. Complement the operand and
6495                 // re-apply the zext.
6496                 if (CI->getValue().isMask(Z0TySize))
6497                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6498 
6499                 // If C is a single bit, it may be in the sign-bit position
6500                 // before the zero-extend. In this case, represent the xor
6501                 // using an add, which is equivalent, and re-apply the zext.
6502                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6503                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6504                     Trunc.isSignMask())
6505                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6506                                            UTy);
6507               }
6508       }
6509       break;
6510 
6511     case Instruction::Shl:
6512       // Turn shift left of a constant amount into a multiply.
6513       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6514         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6515 
6516         // If the shift count is not less than the bitwidth, the result of
6517         // the shift is undefined. Don't try to analyze it, because the
6518         // resolution chosen here may differ from the resolution chosen in
6519         // other parts of the compiler.
6520         if (SA->getValue().uge(BitWidth))
6521           break;
6522 
6523         // We can safely preserve the nuw flag in all cases. It's also safe to
6524         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6525         // requires special handling. It can be preserved as long as we're not
6526         // left shifting by bitwidth - 1.
6527         auto Flags = SCEV::FlagAnyWrap;
6528         if (BO->Op) {
6529           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6530           if ((MulFlags & SCEV::FlagNSW) &&
6531               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6532             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6533           if (MulFlags & SCEV::FlagNUW)
6534             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6535         }
6536 
6537         Constant *X = ConstantInt::get(
6538             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6539         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6540       }
6541       break;
6542 
6543     case Instruction::AShr: {
6544       // AShr X, C, where C is a constant.
6545       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6546       if (!CI)
6547         break;
6548 
6549       Type *OuterTy = BO->LHS->getType();
6550       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6551       // If the shift count is not less than the bitwidth, the result of
6552       // the shift is undefined. Don't try to analyze it, because the
6553       // resolution chosen here may differ from the resolution chosen in
6554       // other parts of the compiler.
6555       if (CI->getValue().uge(BitWidth))
6556         break;
6557 
6558       if (CI->isZero())
6559         return getSCEV(BO->LHS); // shift by zero --> noop
6560 
6561       uint64_t AShrAmt = CI->getZExtValue();
6562       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6563 
6564       Operator *L = dyn_cast<Operator>(BO->LHS);
6565       if (L && L->getOpcode() == Instruction::Shl) {
6566         // X = Shl A, n
6567         // Y = AShr X, m
6568         // Both n and m are constant.
6569 
6570         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6571         if (L->getOperand(1) == BO->RHS)
6572           // For a two-shift sext-inreg, i.e. n = m,
6573           // use sext(trunc(x)) as the SCEV expression.
6574           return getSignExtendExpr(
6575               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6576 
6577         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6578         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6579           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6580           if (ShlAmt > AShrAmt) {
6581             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6582             // expression. We already checked that ShlAmt < BitWidth, so
6583             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6584             // ShlAmt - AShrAmt < Amt.
6585             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6586                                             ShlAmt - AShrAmt);
6587             return getSignExtendExpr(
6588                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6589                 getConstant(Mul)), OuterTy);
6590           }
6591         }
6592       }
6593       if (BO->IsExact) {
6594         // Given exact arithmetic in-bounds right-shift by a constant,
6595         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
6596         const SCEV *X = getSCEV(BO->LHS);
6597         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
6598         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
6599         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
6600         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
6601       }
6602       break;
6603     }
6604     }
6605   }
6606 
6607   switch (U->getOpcode()) {
6608   case Instruction::Trunc:
6609     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6610 
6611   case Instruction::ZExt:
6612     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6613 
6614   case Instruction::SExt:
6615     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6616       // The NSW flag of a subtract does not always survive the conversion to
6617       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6618       // more likely to preserve NSW and allow later AddRec optimisations.
6619       //
6620       // NOTE: This is effectively duplicating this logic from getSignExtend:
6621       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6622       // but by that point the NSW information has potentially been lost.
6623       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6624         Type *Ty = U->getType();
6625         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6626         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6627         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6628       }
6629     }
6630     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6631 
6632   case Instruction::BitCast:
6633     // BitCasts are no-op casts so we just eliminate the cast.
6634     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6635       return getSCEV(U->getOperand(0));
6636     break;
6637 
6638   case Instruction::PtrToInt: {
6639     // Pointer to integer cast is straight-forward, so do model it.
6640     Value *Ptr = U->getOperand(0);
6641     const SCEV *Op = getSCEV(Ptr);
6642     Type *DstIntTy = U->getType();
6643     // SCEV doesn't have constant pointer expression type, but it supports
6644     // nullptr constant (and only that one), which is modelled in SCEV as a
6645     // zero integer constant. So just skip the ptrtoint cast for constants.
6646     if (isa<SCEVConstant>(Op))
6647       return getTruncateOrZeroExtend(Op, DstIntTy);
6648     Type *PtrTy = Ptr->getType();
6649     Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
6650     // But only if effective SCEV (integer) type is wide enough to represent
6651     // all possible pointer values.
6652     if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
6653         getDataLayout().getTypeSizeInBits(IntPtrTy))
6654       return getUnknown(V);
6655     return getPtrToIntExpr(Op, DstIntTy);
6656   }
6657   case Instruction::IntToPtr:
6658     // Just don't deal with inttoptr casts.
6659     return getUnknown(V);
6660 
6661   case Instruction::SDiv:
6662     // If both operands are non-negative, this is just an udiv.
6663     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6664         isKnownNonNegative(getSCEV(U->getOperand(1))))
6665       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6666     break;
6667 
6668   case Instruction::SRem:
6669     // If both operands are non-negative, this is just an urem.
6670     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6671         isKnownNonNegative(getSCEV(U->getOperand(1))))
6672       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6673     break;
6674 
6675   case Instruction::GetElementPtr:
6676     return createNodeForGEP(cast<GEPOperator>(U));
6677 
6678   case Instruction::PHI:
6679     return createNodeForPHI(cast<PHINode>(U));
6680 
6681   case Instruction::Select:
6682     // U can also be a select constant expr, which let fall through.  Since
6683     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6684     // constant expressions cannot have instructions as operands, we'd have
6685     // returned getUnknown for a select constant expressions anyway.
6686     if (isa<Instruction>(U))
6687       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6688                                       U->getOperand(1), U->getOperand(2));
6689     break;
6690 
6691   case Instruction::Call:
6692   case Instruction::Invoke:
6693     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6694       return getSCEV(RV);
6695 
6696     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6697       switch (II->getIntrinsicID()) {
6698       case Intrinsic::abs:
6699         return getAbsExpr(
6700             getSCEV(II->getArgOperand(0)),
6701             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6702       case Intrinsic::umax:
6703         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6704                            getSCEV(II->getArgOperand(1)));
6705       case Intrinsic::umin:
6706         return getUMinExpr(getSCEV(II->getArgOperand(0)),
6707                            getSCEV(II->getArgOperand(1)));
6708       case Intrinsic::smax:
6709         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6710                            getSCEV(II->getArgOperand(1)));
6711       case Intrinsic::smin:
6712         return getSMinExpr(getSCEV(II->getArgOperand(0)),
6713                            getSCEV(II->getArgOperand(1)));
6714       case Intrinsic::usub_sat: {
6715         const SCEV *X = getSCEV(II->getArgOperand(0));
6716         const SCEV *Y = getSCEV(II->getArgOperand(1));
6717         const SCEV *ClampedY = getUMinExpr(X, Y);
6718         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6719       }
6720       case Intrinsic::uadd_sat: {
6721         const SCEV *X = getSCEV(II->getArgOperand(0));
6722         const SCEV *Y = getSCEV(II->getArgOperand(1));
6723         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6724         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6725       }
6726       case Intrinsic::start_loop_iterations:
6727         // A start_loop_iterations is just equivalent to the first operand for
6728         // SCEV purposes.
6729         return getSCEV(II->getArgOperand(0));
6730       default:
6731         break;
6732       }
6733     }
6734     break;
6735   }
6736 
6737   return getUnknown(V);
6738 }
6739 
6740 //===----------------------------------------------------------------------===//
6741 //                   Iteration Count Computation Code
6742 //
6743 
6744 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6745   if (!ExitCount)
6746     return 0;
6747 
6748   ConstantInt *ExitConst = ExitCount->getValue();
6749 
6750   // Guard against huge trip counts.
6751   if (ExitConst->getValue().getActiveBits() > 32)
6752     return 0;
6753 
6754   // In case of integer overflow, this returns 0, which is correct.
6755   return ((unsigned)ExitConst->getZExtValue()) + 1;
6756 }
6757 
6758 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6759   if (BasicBlock *ExitingBB = L->getExitingBlock())
6760     return getSmallConstantTripCount(L, ExitingBB);
6761 
6762   // No trip count information for multiple exits.
6763   return 0;
6764 }
6765 
6766 unsigned
6767 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6768                                            const BasicBlock *ExitingBlock) {
6769   assert(ExitingBlock && "Must pass a non-null exiting block!");
6770   assert(L->isLoopExiting(ExitingBlock) &&
6771          "Exiting block must actually branch out of the loop!");
6772   const SCEVConstant *ExitCount =
6773       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6774   return getConstantTripCount(ExitCount);
6775 }
6776 
6777 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6778   const auto *MaxExitCount =
6779       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6780   return getConstantTripCount(MaxExitCount);
6781 }
6782 
6783 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6784   if (BasicBlock *ExitingBB = L->getExitingBlock())
6785     return getSmallConstantTripMultiple(L, ExitingBB);
6786 
6787   // No trip multiple information for multiple exits.
6788   return 0;
6789 }
6790 
6791 /// Returns the largest constant divisor of the trip count of this loop as a
6792 /// normal unsigned value, if possible. This means that the actual trip count is
6793 /// always a multiple of the returned value (don't forget the trip count could
6794 /// very well be zero as well!).
6795 ///
6796 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6797 /// multiple of a constant (which is also the case if the trip count is simply
6798 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6799 /// if the trip count is very large (>= 2^32).
6800 ///
6801 /// As explained in the comments for getSmallConstantTripCount, this assumes
6802 /// that control exits the loop via ExitingBlock.
6803 unsigned
6804 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6805                                               const BasicBlock *ExitingBlock) {
6806   assert(ExitingBlock && "Must pass a non-null exiting block!");
6807   assert(L->isLoopExiting(ExitingBlock) &&
6808          "Exiting block must actually branch out of the loop!");
6809   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6810   if (ExitCount == getCouldNotCompute())
6811     return 1;
6812 
6813   // Get the trip count from the BE count by adding 1.
6814   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6815 
6816   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6817   if (!TC)
6818     // Attempt to factor more general cases. Returns the greatest power of
6819     // two divisor. If overflow happens, the trip count expression is still
6820     // divisible by the greatest power of 2 divisor returned.
6821     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6822 
6823   ConstantInt *Result = TC->getValue();
6824 
6825   // Guard against huge trip counts (this requires checking
6826   // for zero to handle the case where the trip count == -1 and the
6827   // addition wraps).
6828   if (!Result || Result->getValue().getActiveBits() > 32 ||
6829       Result->getValue().getActiveBits() == 0)
6830     return 1;
6831 
6832   return (unsigned)Result->getZExtValue();
6833 }
6834 
6835 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6836                                           const BasicBlock *ExitingBlock,
6837                                           ExitCountKind Kind) {
6838   switch (Kind) {
6839   case Exact:
6840   case SymbolicMaximum:
6841     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6842   case ConstantMaximum:
6843     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
6844   };
6845   llvm_unreachable("Invalid ExitCountKind!");
6846 }
6847 
6848 const SCEV *
6849 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6850                                                  SCEVUnionPredicate &Preds) {
6851   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6852 }
6853 
6854 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6855                                                    ExitCountKind Kind) {
6856   switch (Kind) {
6857   case Exact:
6858     return getBackedgeTakenInfo(L).getExact(L, this);
6859   case ConstantMaximum:
6860     return getBackedgeTakenInfo(L).getConstantMax(this);
6861   case SymbolicMaximum:
6862     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
6863   };
6864   llvm_unreachable("Invalid ExitCountKind!");
6865 }
6866 
6867 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6868   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
6869 }
6870 
6871 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6872 static void
6873 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6874   BasicBlock *Header = L->getHeader();
6875 
6876   // Push all Loop-header PHIs onto the Worklist stack.
6877   for (PHINode &PN : Header->phis())
6878     Worklist.push_back(&PN);
6879 }
6880 
6881 const ScalarEvolution::BackedgeTakenInfo &
6882 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6883   auto &BTI = getBackedgeTakenInfo(L);
6884   if (BTI.hasFullInfo())
6885     return BTI;
6886 
6887   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6888 
6889   if (!Pair.second)
6890     return Pair.first->second;
6891 
6892   BackedgeTakenInfo Result =
6893       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6894 
6895   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6896 }
6897 
6898 ScalarEvolution::BackedgeTakenInfo &
6899 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6900   // Initially insert an invalid entry for this loop. If the insertion
6901   // succeeds, proceed to actually compute a backedge-taken count and
6902   // update the value. The temporary CouldNotCompute value tells SCEV
6903   // code elsewhere that it shouldn't attempt to request a new
6904   // backedge-taken count, which could result in infinite recursion.
6905   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6906       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6907   if (!Pair.second)
6908     return Pair.first->second;
6909 
6910   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6911   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6912   // must be cleared in this scope.
6913   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6914 
6915   // In product build, there are no usage of statistic.
6916   (void)NumTripCountsComputed;
6917   (void)NumTripCountsNotComputed;
6918 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6919   const SCEV *BEExact = Result.getExact(L, this);
6920   if (BEExact != getCouldNotCompute()) {
6921     assert(isLoopInvariant(BEExact, L) &&
6922            isLoopInvariant(Result.getConstantMax(this), L) &&
6923            "Computed backedge-taken count isn't loop invariant for loop!");
6924     ++NumTripCountsComputed;
6925   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
6926              isa<PHINode>(L->getHeader()->begin())) {
6927     // Only count loops that have phi nodes as not being computable.
6928     ++NumTripCountsNotComputed;
6929   }
6930 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6931 
6932   // Now that we know more about the trip count for this loop, forget any
6933   // existing SCEV values for PHI nodes in this loop since they are only
6934   // conservative estimates made without the benefit of trip count
6935   // information. This is similar to the code in forgetLoop, except that
6936   // it handles SCEVUnknown PHI nodes specially.
6937   if (Result.hasAnyInfo()) {
6938     SmallVector<Instruction *, 16> Worklist;
6939     PushLoopPHIs(L, Worklist);
6940 
6941     SmallPtrSet<Instruction *, 8> Discovered;
6942     while (!Worklist.empty()) {
6943       Instruction *I = Worklist.pop_back_val();
6944 
6945       ValueExprMapType::iterator It =
6946         ValueExprMap.find_as(static_cast<Value *>(I));
6947       if (It != ValueExprMap.end()) {
6948         const SCEV *Old = It->second;
6949 
6950         // SCEVUnknown for a PHI either means that it has an unrecognized
6951         // structure, or it's a PHI that's in the progress of being computed
6952         // by createNodeForPHI.  In the former case, additional loop trip
6953         // count information isn't going to change anything. In the later
6954         // case, createNodeForPHI will perform the necessary updates on its
6955         // own when it gets to that point.
6956         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6957           eraseValueFromMap(It->first);
6958           forgetMemoizedResults(Old);
6959         }
6960         if (PHINode *PN = dyn_cast<PHINode>(I))
6961           ConstantEvolutionLoopExitValue.erase(PN);
6962       }
6963 
6964       // Since we don't need to invalidate anything for correctness and we're
6965       // only invalidating to make SCEV's results more precise, we get to stop
6966       // early to avoid invalidating too much.  This is especially important in
6967       // cases like:
6968       //
6969       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6970       // loop0:
6971       //   %pn0 = phi
6972       //   ...
6973       // loop1:
6974       //   %pn1 = phi
6975       //   ...
6976       //
6977       // where both loop0 and loop1's backedge taken count uses the SCEV
6978       // expression for %v.  If we don't have the early stop below then in cases
6979       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6980       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6981       // count for loop1, effectively nullifying SCEV's trip count cache.
6982       for (auto *U : I->users())
6983         if (auto *I = dyn_cast<Instruction>(U)) {
6984           auto *LoopForUser = LI.getLoopFor(I->getParent());
6985           if (LoopForUser && L->contains(LoopForUser) &&
6986               Discovered.insert(I).second)
6987             Worklist.push_back(I);
6988         }
6989     }
6990   }
6991 
6992   // Re-lookup the insert position, since the call to
6993   // computeBackedgeTakenCount above could result in a
6994   // recusive call to getBackedgeTakenInfo (on a different
6995   // loop), which would invalidate the iterator computed
6996   // earlier.
6997   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6998 }
6999 
7000 void ScalarEvolution::forgetAllLoops() {
7001   // This method is intended to forget all info about loops. It should
7002   // invalidate caches as if the following happened:
7003   // - The trip counts of all loops have changed arbitrarily
7004   // - Every llvm::Value has been updated in place to produce a different
7005   // result.
7006   BackedgeTakenCounts.clear();
7007   PredicatedBackedgeTakenCounts.clear();
7008   LoopPropertiesCache.clear();
7009   ConstantEvolutionLoopExitValue.clear();
7010   ValueExprMap.clear();
7011   ValuesAtScopes.clear();
7012   LoopDispositions.clear();
7013   BlockDispositions.clear();
7014   UnsignedRanges.clear();
7015   SignedRanges.clear();
7016   ExprValueMap.clear();
7017   HasRecMap.clear();
7018   MinTrailingZerosCache.clear();
7019   PredicatedSCEVRewrites.clear();
7020 }
7021 
7022 void ScalarEvolution::forgetLoop(const Loop *L) {
7023   // Drop any stored trip count value.
7024   auto RemoveLoopFromBackedgeMap =
7025       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
7026         auto BTCPos = Map.find(L);
7027         if (BTCPos != Map.end()) {
7028           BTCPos->second.clear();
7029           Map.erase(BTCPos);
7030         }
7031       };
7032 
7033   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7034   SmallVector<Instruction *, 32> Worklist;
7035   SmallPtrSet<Instruction *, 16> Visited;
7036 
7037   // Iterate over all the loops and sub-loops to drop SCEV information.
7038   while (!LoopWorklist.empty()) {
7039     auto *CurrL = LoopWorklist.pop_back_val();
7040 
7041     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
7042     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
7043 
7044     // Drop information about predicated SCEV rewrites for this loop.
7045     for (auto I = PredicatedSCEVRewrites.begin();
7046          I != PredicatedSCEVRewrites.end();) {
7047       std::pair<const SCEV *, const Loop *> Entry = I->first;
7048       if (Entry.second == CurrL)
7049         PredicatedSCEVRewrites.erase(I++);
7050       else
7051         ++I;
7052     }
7053 
7054     auto LoopUsersItr = LoopUsers.find(CurrL);
7055     if (LoopUsersItr != LoopUsers.end()) {
7056       for (auto *S : LoopUsersItr->second)
7057         forgetMemoizedResults(S);
7058       LoopUsers.erase(LoopUsersItr);
7059     }
7060 
7061     // Drop information about expressions based on loop-header PHIs.
7062     PushLoopPHIs(CurrL, Worklist);
7063 
7064     while (!Worklist.empty()) {
7065       Instruction *I = Worklist.pop_back_val();
7066       if (!Visited.insert(I).second)
7067         continue;
7068 
7069       ValueExprMapType::iterator It =
7070           ValueExprMap.find_as(static_cast<Value *>(I));
7071       if (It != ValueExprMap.end()) {
7072         eraseValueFromMap(It->first);
7073         forgetMemoizedResults(It->second);
7074         if (PHINode *PN = dyn_cast<PHINode>(I))
7075           ConstantEvolutionLoopExitValue.erase(PN);
7076       }
7077 
7078       PushDefUseChildren(I, Worklist);
7079     }
7080 
7081     LoopPropertiesCache.erase(CurrL);
7082     // Forget all contained loops too, to avoid dangling entries in the
7083     // ValuesAtScopes map.
7084     LoopWorklist.append(CurrL->begin(), CurrL->end());
7085   }
7086 }
7087 
7088 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7089   while (Loop *Parent = L->getParentLoop())
7090     L = Parent;
7091   forgetLoop(L);
7092 }
7093 
7094 void ScalarEvolution::forgetValue(Value *V) {
7095   Instruction *I = dyn_cast<Instruction>(V);
7096   if (!I) return;
7097 
7098   // Drop information about expressions based on loop-header PHIs.
7099   SmallVector<Instruction *, 16> Worklist;
7100   Worklist.push_back(I);
7101 
7102   SmallPtrSet<Instruction *, 8> Visited;
7103   while (!Worklist.empty()) {
7104     I = Worklist.pop_back_val();
7105     if (!Visited.insert(I).second)
7106       continue;
7107 
7108     ValueExprMapType::iterator It =
7109       ValueExprMap.find_as(static_cast<Value *>(I));
7110     if (It != ValueExprMap.end()) {
7111       eraseValueFromMap(It->first);
7112       forgetMemoizedResults(It->second);
7113       if (PHINode *PN = dyn_cast<PHINode>(I))
7114         ConstantEvolutionLoopExitValue.erase(PN);
7115     }
7116 
7117     PushDefUseChildren(I, Worklist);
7118   }
7119 }
7120 
7121 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7122   LoopDispositions.clear();
7123 }
7124 
7125 /// Get the exact loop backedge taken count considering all loop exits. A
7126 /// computable result can only be returned for loops with all exiting blocks
7127 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7128 /// is never skipped. This is a valid assumption as long as the loop exits via
7129 /// that test. For precise results, it is the caller's responsibility to specify
7130 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7131 const SCEV *
7132 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7133                                              SCEVUnionPredicate *Preds) const {
7134   // If any exits were not computable, the loop is not computable.
7135   if (!isComplete() || ExitNotTaken.empty())
7136     return SE->getCouldNotCompute();
7137 
7138   const BasicBlock *Latch = L->getLoopLatch();
7139   // All exiting blocks we have collected must dominate the only backedge.
7140   if (!Latch)
7141     return SE->getCouldNotCompute();
7142 
7143   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7144   // count is simply a minimum out of all these calculated exit counts.
7145   SmallVector<const SCEV *, 2> Ops;
7146   for (auto &ENT : ExitNotTaken) {
7147     const SCEV *BECount = ENT.ExactNotTaken;
7148     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7149     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7150            "We should only have known counts for exiting blocks that dominate "
7151            "latch!");
7152 
7153     Ops.push_back(BECount);
7154 
7155     if (Preds && !ENT.hasAlwaysTruePredicate())
7156       Preds->add(ENT.Predicate.get());
7157 
7158     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7159            "Predicate should be always true!");
7160   }
7161 
7162   return SE->getUMinFromMismatchedTypes(Ops);
7163 }
7164 
7165 /// Get the exact not taken count for this loop exit.
7166 const SCEV *
7167 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7168                                              ScalarEvolution *SE) const {
7169   for (auto &ENT : ExitNotTaken)
7170     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7171       return ENT.ExactNotTaken;
7172 
7173   return SE->getCouldNotCompute();
7174 }
7175 
7176 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7177     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7178   for (auto &ENT : ExitNotTaken)
7179     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7180       return ENT.MaxNotTaken;
7181 
7182   return SE->getCouldNotCompute();
7183 }
7184 
7185 /// getConstantMax - Get the constant max backedge taken count for the loop.
7186 const SCEV *
7187 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7188   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7189     return !ENT.hasAlwaysTruePredicate();
7190   };
7191 
7192   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7193     return SE->getCouldNotCompute();
7194 
7195   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7196           isa<SCEVConstant>(getConstantMax())) &&
7197          "No point in having a non-constant max backedge taken count!");
7198   return getConstantMax();
7199 }
7200 
7201 const SCEV *
7202 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7203                                                    ScalarEvolution *SE) {
7204   if (!SymbolicMax)
7205     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7206   return SymbolicMax;
7207 }
7208 
7209 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7210     ScalarEvolution *SE) const {
7211   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7212     return !ENT.hasAlwaysTruePredicate();
7213   };
7214   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7215 }
7216 
7217 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7218                                                     ScalarEvolution *SE) const {
7219   if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7220       SE->hasOperand(getConstantMax(), S))
7221     return true;
7222 
7223   for (auto &ENT : ExitNotTaken)
7224     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7225         SE->hasOperand(ENT.ExactNotTaken, S))
7226       return true;
7227 
7228   return false;
7229 }
7230 
7231 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7232     : ExactNotTaken(E), MaxNotTaken(E) {
7233   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7234           isa<SCEVConstant>(MaxNotTaken)) &&
7235          "No point in having a non-constant max backedge taken count!");
7236 }
7237 
7238 ScalarEvolution::ExitLimit::ExitLimit(
7239     const SCEV *E, const SCEV *M, bool MaxOrZero,
7240     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7241     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7242   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7243           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7244          "Exact is not allowed to be less precise than Max");
7245   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7246           isa<SCEVConstant>(MaxNotTaken)) &&
7247          "No point in having a non-constant max backedge taken count!");
7248   for (auto *PredSet : PredSetList)
7249     for (auto *P : *PredSet)
7250       addPredicate(P);
7251 }
7252 
7253 ScalarEvolution::ExitLimit::ExitLimit(
7254     const SCEV *E, const SCEV *M, bool MaxOrZero,
7255     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7256     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7257   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7258           isa<SCEVConstant>(MaxNotTaken)) &&
7259          "No point in having a non-constant max backedge taken count!");
7260 }
7261 
7262 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7263                                       bool MaxOrZero)
7264     : ExitLimit(E, M, MaxOrZero, None) {
7265   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7266           isa<SCEVConstant>(MaxNotTaken)) &&
7267          "No point in having a non-constant max backedge taken count!");
7268 }
7269 
7270 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7271 /// computable exit into a persistent ExitNotTakenInfo array.
7272 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7273     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7274     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7275     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7276   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7277 
7278   ExitNotTaken.reserve(ExitCounts.size());
7279   std::transform(
7280       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7281       [&](const EdgeExitInfo &EEI) {
7282         BasicBlock *ExitBB = EEI.first;
7283         const ExitLimit &EL = EEI.second;
7284         if (EL.Predicates.empty())
7285           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7286                                   nullptr);
7287 
7288         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7289         for (auto *Pred : EL.Predicates)
7290           Predicate->add(Pred);
7291 
7292         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7293                                 std::move(Predicate));
7294       });
7295   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7296           isa<SCEVConstant>(ConstantMax)) &&
7297          "No point in having a non-constant max backedge taken count!");
7298 }
7299 
7300 /// Invalidate this result and free the ExitNotTakenInfo array.
7301 void ScalarEvolution::BackedgeTakenInfo::clear() {
7302   ExitNotTaken.clear();
7303 }
7304 
7305 /// Compute the number of times the backedge of the specified loop will execute.
7306 ScalarEvolution::BackedgeTakenInfo
7307 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7308                                            bool AllowPredicates) {
7309   SmallVector<BasicBlock *, 8> ExitingBlocks;
7310   L->getExitingBlocks(ExitingBlocks);
7311 
7312   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7313 
7314   SmallVector<EdgeExitInfo, 4> ExitCounts;
7315   bool CouldComputeBECount = true;
7316   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7317   const SCEV *MustExitMaxBECount = nullptr;
7318   const SCEV *MayExitMaxBECount = nullptr;
7319   bool MustExitMaxOrZero = false;
7320 
7321   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7322   // and compute maxBECount.
7323   // Do a union of all the predicates here.
7324   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7325     BasicBlock *ExitBB = ExitingBlocks[i];
7326 
7327     // We canonicalize untaken exits to br (constant), ignore them so that
7328     // proving an exit untaken doesn't negatively impact our ability to reason
7329     // about the loop as whole.
7330     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7331       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7332         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7333         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7334           continue;
7335       }
7336 
7337     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7338 
7339     assert((AllowPredicates || EL.Predicates.empty()) &&
7340            "Predicated exit limit when predicates are not allowed!");
7341 
7342     // 1. For each exit that can be computed, add an entry to ExitCounts.
7343     // CouldComputeBECount is true only if all exits can be computed.
7344     if (EL.ExactNotTaken == getCouldNotCompute())
7345       // We couldn't compute an exact value for this exit, so
7346       // we won't be able to compute an exact value for the loop.
7347       CouldComputeBECount = false;
7348     else
7349       ExitCounts.emplace_back(ExitBB, EL);
7350 
7351     // 2. Derive the loop's MaxBECount from each exit's max number of
7352     // non-exiting iterations. Partition the loop exits into two kinds:
7353     // LoopMustExits and LoopMayExits.
7354     //
7355     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7356     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7357     // MaxBECount is the minimum EL.MaxNotTaken of computable
7358     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7359     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7360     // computable EL.MaxNotTaken.
7361     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7362         DT.dominates(ExitBB, Latch)) {
7363       if (!MustExitMaxBECount) {
7364         MustExitMaxBECount = EL.MaxNotTaken;
7365         MustExitMaxOrZero = EL.MaxOrZero;
7366       } else {
7367         MustExitMaxBECount =
7368             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7369       }
7370     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7371       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7372         MayExitMaxBECount = EL.MaxNotTaken;
7373       else {
7374         MayExitMaxBECount =
7375             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7376       }
7377     }
7378   }
7379   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7380     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7381   // The loop backedge will be taken the maximum or zero times if there's
7382   // a single exit that must be taken the maximum or zero times.
7383   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7384   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7385                            MaxBECount, MaxOrZero);
7386 }
7387 
7388 ScalarEvolution::ExitLimit
7389 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7390                                       bool AllowPredicates) {
7391   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7392   // If our exiting block does not dominate the latch, then its connection with
7393   // loop's exit limit may be far from trivial.
7394   const BasicBlock *Latch = L->getLoopLatch();
7395   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7396     return getCouldNotCompute();
7397 
7398   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7399   Instruction *Term = ExitingBlock->getTerminator();
7400   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7401     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7402     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7403     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7404            "It should have one successor in loop and one exit block!");
7405     // Proceed to the next level to examine the exit condition expression.
7406     return computeExitLimitFromCond(
7407         L, BI->getCondition(), ExitIfTrue,
7408         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7409   }
7410 
7411   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7412     // For switch, make sure that there is a single exit from the loop.
7413     BasicBlock *Exit = nullptr;
7414     for (auto *SBB : successors(ExitingBlock))
7415       if (!L->contains(SBB)) {
7416         if (Exit) // Multiple exit successors.
7417           return getCouldNotCompute();
7418         Exit = SBB;
7419       }
7420     assert(Exit && "Exiting block must have at least one exit");
7421     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7422                                                 /*ControlsExit=*/IsOnlyExit);
7423   }
7424 
7425   return getCouldNotCompute();
7426 }
7427 
7428 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7429     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7430     bool ControlsExit, bool AllowPredicates) {
7431   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7432   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7433                                         ControlsExit, AllowPredicates);
7434 }
7435 
7436 Optional<ScalarEvolution::ExitLimit>
7437 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7438                                       bool ExitIfTrue, bool ControlsExit,
7439                                       bool AllowPredicates) {
7440   (void)this->L;
7441   (void)this->ExitIfTrue;
7442   (void)this->AllowPredicates;
7443 
7444   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7445          this->AllowPredicates == AllowPredicates &&
7446          "Variance in assumed invariant key components!");
7447   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7448   if (Itr == TripCountMap.end())
7449     return None;
7450   return Itr->second;
7451 }
7452 
7453 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7454                                              bool ExitIfTrue,
7455                                              bool ControlsExit,
7456                                              bool AllowPredicates,
7457                                              const ExitLimit &EL) {
7458   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7459          this->AllowPredicates == AllowPredicates &&
7460          "Variance in assumed invariant key components!");
7461 
7462   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7463   assert(InsertResult.second && "Expected successful insertion!");
7464   (void)InsertResult;
7465   (void)ExitIfTrue;
7466 }
7467 
7468 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7469     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7470     bool ControlsExit, bool AllowPredicates) {
7471 
7472   if (auto MaybeEL =
7473           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7474     return *MaybeEL;
7475 
7476   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7477                                               ControlsExit, AllowPredicates);
7478   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7479   return EL;
7480 }
7481 
7482 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7483     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7484     bool ControlsExit, bool AllowPredicates) {
7485   // Check if the controlling expression for this loop is an And or Or.
7486   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7487     if (BO->getOpcode() == Instruction::And) {
7488       // Recurse on the operands of the and.
7489       bool EitherMayExit = !ExitIfTrue;
7490       ExitLimit EL0 = computeExitLimitFromCondCached(
7491           Cache, L, BO->getOperand(0), ExitIfTrue,
7492           ControlsExit && !EitherMayExit, AllowPredicates);
7493       ExitLimit EL1 = computeExitLimitFromCondCached(
7494           Cache, L, BO->getOperand(1), ExitIfTrue,
7495           ControlsExit && !EitherMayExit, AllowPredicates);
7496       // Be robust against unsimplified IR for the form "and i1 X, true"
7497       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7498         return CI->isOne() ? EL0 : EL1;
7499       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7500         return CI->isOne() ? EL1 : EL0;
7501       const SCEV *BECount = getCouldNotCompute();
7502       const SCEV *MaxBECount = getCouldNotCompute();
7503       if (EitherMayExit) {
7504         // Both conditions must be true for the loop to continue executing.
7505         // Choose the less conservative count.
7506         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7507             EL1.ExactNotTaken == getCouldNotCompute())
7508           BECount = getCouldNotCompute();
7509         else
7510           BECount =
7511               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7512         if (EL0.MaxNotTaken == getCouldNotCompute())
7513           MaxBECount = EL1.MaxNotTaken;
7514         else if (EL1.MaxNotTaken == getCouldNotCompute())
7515           MaxBECount = EL0.MaxNotTaken;
7516         else
7517           MaxBECount =
7518               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7519       } else {
7520         // Both conditions must be true at the same time for the loop to exit.
7521         // For now, be conservative.
7522         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7523           MaxBECount = EL0.MaxNotTaken;
7524         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7525           BECount = EL0.ExactNotTaken;
7526       }
7527 
7528       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7529       // to be more aggressive when computing BECount than when computing
7530       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7531       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7532       // to not.
7533       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7534           !isa<SCEVCouldNotCompute>(BECount))
7535         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7536 
7537       return ExitLimit(BECount, MaxBECount, false,
7538                        {&EL0.Predicates, &EL1.Predicates});
7539     }
7540     if (BO->getOpcode() == Instruction::Or) {
7541       // Recurse on the operands of the or.
7542       bool EitherMayExit = ExitIfTrue;
7543       ExitLimit EL0 = computeExitLimitFromCondCached(
7544           Cache, L, BO->getOperand(0), ExitIfTrue,
7545           ControlsExit && !EitherMayExit, AllowPredicates);
7546       ExitLimit EL1 = computeExitLimitFromCondCached(
7547           Cache, L, BO->getOperand(1), ExitIfTrue,
7548           ControlsExit && !EitherMayExit, AllowPredicates);
7549       // Be robust against unsimplified IR for the form "or i1 X, true"
7550       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7551         return CI->isZero() ? EL0 : EL1;
7552       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7553         return CI->isZero() ? EL1 : EL0;
7554       const SCEV *BECount = getCouldNotCompute();
7555       const SCEV *MaxBECount = getCouldNotCompute();
7556       if (EitherMayExit) {
7557         // Both conditions must be false for the loop to continue executing.
7558         // Choose the less conservative count.
7559         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7560             EL1.ExactNotTaken == getCouldNotCompute())
7561           BECount = getCouldNotCompute();
7562         else
7563           BECount =
7564               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7565         if (EL0.MaxNotTaken == getCouldNotCompute())
7566           MaxBECount = EL1.MaxNotTaken;
7567         else if (EL1.MaxNotTaken == getCouldNotCompute())
7568           MaxBECount = EL0.MaxNotTaken;
7569         else
7570           MaxBECount =
7571               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7572       } else {
7573         // Both conditions must be false at the same time for the loop to exit.
7574         // For now, be conservative.
7575         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7576           MaxBECount = EL0.MaxNotTaken;
7577         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7578           BECount = EL0.ExactNotTaken;
7579       }
7580       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7581       // to be more aggressive when computing BECount than when computing
7582       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7583       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7584       // to not.
7585       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7586           !isa<SCEVCouldNotCompute>(BECount))
7587         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7588 
7589       return ExitLimit(BECount, MaxBECount, false,
7590                        {&EL0.Predicates, &EL1.Predicates});
7591     }
7592   }
7593 
7594   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7595   // Proceed to the next level to examine the icmp.
7596   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7597     ExitLimit EL =
7598         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7599     if (EL.hasFullInfo() || !AllowPredicates)
7600       return EL;
7601 
7602     // Try again, but use SCEV predicates this time.
7603     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7604                                     /*AllowPredicates=*/true);
7605   }
7606 
7607   // Check for a constant condition. These are normally stripped out by
7608   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7609   // preserve the CFG and is temporarily leaving constant conditions
7610   // in place.
7611   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7612     if (ExitIfTrue == !CI->getZExtValue())
7613       // The backedge is always taken.
7614       return getCouldNotCompute();
7615     else
7616       // The backedge is never taken.
7617       return getZero(CI->getType());
7618   }
7619 
7620   // If it's not an integer or pointer comparison then compute it the hard way.
7621   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7622 }
7623 
7624 ScalarEvolution::ExitLimit
7625 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7626                                           ICmpInst *ExitCond,
7627                                           bool ExitIfTrue,
7628                                           bool ControlsExit,
7629                                           bool AllowPredicates) {
7630   // If the condition was exit on true, convert the condition to exit on false
7631   ICmpInst::Predicate Pred;
7632   if (!ExitIfTrue)
7633     Pred = ExitCond->getPredicate();
7634   else
7635     Pred = ExitCond->getInversePredicate();
7636   const ICmpInst::Predicate OriginalPred = Pred;
7637 
7638   // Handle common loops like: for (X = "string"; *X; ++X)
7639   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7640     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7641       ExitLimit ItCnt =
7642         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7643       if (ItCnt.hasAnyInfo())
7644         return ItCnt;
7645     }
7646 
7647   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7648   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7649 
7650   // Try to evaluate any dependencies out of the loop.
7651   LHS = getSCEVAtScope(LHS, L);
7652   RHS = getSCEVAtScope(RHS, L);
7653 
7654   // At this point, we would like to compute how many iterations of the
7655   // loop the predicate will return true for these inputs.
7656   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7657     // If there is a loop-invariant, force it into the RHS.
7658     std::swap(LHS, RHS);
7659     Pred = ICmpInst::getSwappedPredicate(Pred);
7660   }
7661 
7662   // Simplify the operands before analyzing them.
7663   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7664 
7665   // If we have a comparison of a chrec against a constant, try to use value
7666   // ranges to answer this query.
7667   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7668     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7669       if (AddRec->getLoop() == L) {
7670         // Form the constant range.
7671         ConstantRange CompRange =
7672             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7673 
7674         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7675         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7676       }
7677 
7678   switch (Pred) {
7679   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7680     // Convert to: while (X-Y != 0)
7681     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7682                                 AllowPredicates);
7683     if (EL.hasAnyInfo()) return EL;
7684     break;
7685   }
7686   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7687     // Convert to: while (X-Y == 0)
7688     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7689     if (EL.hasAnyInfo()) return EL;
7690     break;
7691   }
7692   case ICmpInst::ICMP_SLT:
7693   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7694     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7695     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7696                                     AllowPredicates);
7697     if (EL.hasAnyInfo()) return EL;
7698     break;
7699   }
7700   case ICmpInst::ICMP_SGT:
7701   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7702     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7703     ExitLimit EL =
7704         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7705                             AllowPredicates);
7706     if (EL.hasAnyInfo()) return EL;
7707     break;
7708   }
7709   default:
7710     break;
7711   }
7712 
7713   auto *ExhaustiveCount =
7714       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7715 
7716   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7717     return ExhaustiveCount;
7718 
7719   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7720                                       ExitCond->getOperand(1), L, OriginalPred);
7721 }
7722 
7723 ScalarEvolution::ExitLimit
7724 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7725                                                       SwitchInst *Switch,
7726                                                       BasicBlock *ExitingBlock,
7727                                                       bool ControlsExit) {
7728   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7729 
7730   // Give up if the exit is the default dest of a switch.
7731   if (Switch->getDefaultDest() == ExitingBlock)
7732     return getCouldNotCompute();
7733 
7734   assert(L->contains(Switch->getDefaultDest()) &&
7735          "Default case must not exit the loop!");
7736   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7737   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7738 
7739   // while (X != Y) --> while (X-Y != 0)
7740   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7741   if (EL.hasAnyInfo())
7742     return EL;
7743 
7744   return getCouldNotCompute();
7745 }
7746 
7747 static ConstantInt *
7748 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7749                                 ScalarEvolution &SE) {
7750   const SCEV *InVal = SE.getConstant(C);
7751   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7752   assert(isa<SCEVConstant>(Val) &&
7753          "Evaluation of SCEV at constant didn't fold correctly?");
7754   return cast<SCEVConstant>(Val)->getValue();
7755 }
7756 
7757 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7758 /// compute the backedge execution count.
7759 ScalarEvolution::ExitLimit
7760 ScalarEvolution::computeLoadConstantCompareExitLimit(
7761   LoadInst *LI,
7762   Constant *RHS,
7763   const Loop *L,
7764   ICmpInst::Predicate predicate) {
7765   if (LI->isVolatile()) return getCouldNotCompute();
7766 
7767   // Check to see if the loaded pointer is a getelementptr of a global.
7768   // TODO: Use SCEV instead of manually grubbing with GEPs.
7769   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7770   if (!GEP) return getCouldNotCompute();
7771 
7772   // Make sure that it is really a constant global we are gepping, with an
7773   // initializer, and make sure the first IDX is really 0.
7774   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7775   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7776       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7777       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7778     return getCouldNotCompute();
7779 
7780   // Okay, we allow one non-constant index into the GEP instruction.
7781   Value *VarIdx = nullptr;
7782   std::vector<Constant*> Indexes;
7783   unsigned VarIdxNum = 0;
7784   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7785     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7786       Indexes.push_back(CI);
7787     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7788       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7789       VarIdx = GEP->getOperand(i);
7790       VarIdxNum = i-2;
7791       Indexes.push_back(nullptr);
7792     }
7793 
7794   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7795   if (!VarIdx)
7796     return getCouldNotCompute();
7797 
7798   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7799   // Check to see if X is a loop variant variable value now.
7800   const SCEV *Idx = getSCEV(VarIdx);
7801   Idx = getSCEVAtScope(Idx, L);
7802 
7803   // We can only recognize very limited forms of loop index expressions, in
7804   // particular, only affine AddRec's like {C1,+,C2}.
7805   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7806   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7807       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7808       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7809     return getCouldNotCompute();
7810 
7811   unsigned MaxSteps = MaxBruteForceIterations;
7812   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7813     ConstantInt *ItCst = ConstantInt::get(
7814                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7815     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7816 
7817     // Form the GEP offset.
7818     Indexes[VarIdxNum] = Val;
7819 
7820     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7821                                                          Indexes);
7822     if (!Result) break;  // Cannot compute!
7823 
7824     // Evaluate the condition for this iteration.
7825     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7826     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7827     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7828       ++NumArrayLenItCounts;
7829       return getConstant(ItCst);   // Found terminating iteration!
7830     }
7831   }
7832   return getCouldNotCompute();
7833 }
7834 
7835 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7836     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7837   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7838   if (!RHS)
7839     return getCouldNotCompute();
7840 
7841   const BasicBlock *Latch = L->getLoopLatch();
7842   if (!Latch)
7843     return getCouldNotCompute();
7844 
7845   const BasicBlock *Predecessor = L->getLoopPredecessor();
7846   if (!Predecessor)
7847     return getCouldNotCompute();
7848 
7849   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7850   // Return LHS in OutLHS and shift_opt in OutOpCode.
7851   auto MatchPositiveShift =
7852       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7853 
7854     using namespace PatternMatch;
7855 
7856     ConstantInt *ShiftAmt;
7857     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7858       OutOpCode = Instruction::LShr;
7859     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7860       OutOpCode = Instruction::AShr;
7861     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7862       OutOpCode = Instruction::Shl;
7863     else
7864       return false;
7865 
7866     return ShiftAmt->getValue().isStrictlyPositive();
7867   };
7868 
7869   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7870   //
7871   // loop:
7872   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7873   //   %iv.shifted = lshr i32 %iv, <positive constant>
7874   //
7875   // Return true on a successful match.  Return the corresponding PHI node (%iv
7876   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7877   auto MatchShiftRecurrence =
7878       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7879     Optional<Instruction::BinaryOps> PostShiftOpCode;
7880 
7881     {
7882       Instruction::BinaryOps OpC;
7883       Value *V;
7884 
7885       // If we encounter a shift instruction, "peel off" the shift operation,
7886       // and remember that we did so.  Later when we inspect %iv's backedge
7887       // value, we will make sure that the backedge value uses the same
7888       // operation.
7889       //
7890       // Note: the peeled shift operation does not have to be the same
7891       // instruction as the one feeding into the PHI's backedge value.  We only
7892       // really care about it being the same *kind* of shift instruction --
7893       // that's all that is required for our later inferences to hold.
7894       if (MatchPositiveShift(LHS, V, OpC)) {
7895         PostShiftOpCode = OpC;
7896         LHS = V;
7897       }
7898     }
7899 
7900     PNOut = dyn_cast<PHINode>(LHS);
7901     if (!PNOut || PNOut->getParent() != L->getHeader())
7902       return false;
7903 
7904     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7905     Value *OpLHS;
7906 
7907     return
7908         // The backedge value for the PHI node must be a shift by a positive
7909         // amount
7910         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7911 
7912         // of the PHI node itself
7913         OpLHS == PNOut &&
7914 
7915         // and the kind of shift should be match the kind of shift we peeled
7916         // off, if any.
7917         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7918   };
7919 
7920   PHINode *PN;
7921   Instruction::BinaryOps OpCode;
7922   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7923     return getCouldNotCompute();
7924 
7925   const DataLayout &DL = getDataLayout();
7926 
7927   // The key rationale for this optimization is that for some kinds of shift
7928   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7929   // within a finite number of iterations.  If the condition guarding the
7930   // backedge (in the sense that the backedge is taken if the condition is true)
7931   // is false for the value the shift recurrence stabilizes to, then we know
7932   // that the backedge is taken only a finite number of times.
7933 
7934   ConstantInt *StableValue = nullptr;
7935   switch (OpCode) {
7936   default:
7937     llvm_unreachable("Impossible case!");
7938 
7939   case Instruction::AShr: {
7940     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7941     // bitwidth(K) iterations.
7942     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7943     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7944                                        Predecessor->getTerminator(), &DT);
7945     auto *Ty = cast<IntegerType>(RHS->getType());
7946     if (Known.isNonNegative())
7947       StableValue = ConstantInt::get(Ty, 0);
7948     else if (Known.isNegative())
7949       StableValue = ConstantInt::get(Ty, -1, true);
7950     else
7951       return getCouldNotCompute();
7952 
7953     break;
7954   }
7955   case Instruction::LShr:
7956   case Instruction::Shl:
7957     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7958     // stabilize to 0 in at most bitwidth(K) iterations.
7959     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7960     break;
7961   }
7962 
7963   auto *Result =
7964       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7965   assert(Result->getType()->isIntegerTy(1) &&
7966          "Otherwise cannot be an operand to a branch instruction");
7967 
7968   if (Result->isZeroValue()) {
7969     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7970     const SCEV *UpperBound =
7971         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7972     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7973   }
7974 
7975   return getCouldNotCompute();
7976 }
7977 
7978 /// Return true if we can constant fold an instruction of the specified type,
7979 /// assuming that all operands were constants.
7980 static bool CanConstantFold(const Instruction *I) {
7981   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7982       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7983       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7984     return true;
7985 
7986   if (const CallInst *CI = dyn_cast<CallInst>(I))
7987     if (const Function *F = CI->getCalledFunction())
7988       return canConstantFoldCallTo(CI, F);
7989   return false;
7990 }
7991 
7992 /// Determine whether this instruction can constant evolve within this loop
7993 /// assuming its operands can all constant evolve.
7994 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7995   // An instruction outside of the loop can't be derived from a loop PHI.
7996   if (!L->contains(I)) return false;
7997 
7998   if (isa<PHINode>(I)) {
7999     // We don't currently keep track of the control flow needed to evaluate
8000     // PHIs, so we cannot handle PHIs inside of loops.
8001     return L->getHeader() == I->getParent();
8002   }
8003 
8004   // If we won't be able to constant fold this expression even if the operands
8005   // are constants, bail early.
8006   return CanConstantFold(I);
8007 }
8008 
8009 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8010 /// recursing through each instruction operand until reaching a loop header phi.
8011 static PHINode *
8012 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8013                                DenseMap<Instruction *, PHINode *> &PHIMap,
8014                                unsigned Depth) {
8015   if (Depth > MaxConstantEvolvingDepth)
8016     return nullptr;
8017 
8018   // Otherwise, we can evaluate this instruction if all of its operands are
8019   // constant or derived from a PHI node themselves.
8020   PHINode *PHI = nullptr;
8021   for (Value *Op : UseInst->operands()) {
8022     if (isa<Constant>(Op)) continue;
8023 
8024     Instruction *OpInst = dyn_cast<Instruction>(Op);
8025     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8026 
8027     PHINode *P = dyn_cast<PHINode>(OpInst);
8028     if (!P)
8029       // If this operand is already visited, reuse the prior result.
8030       // We may have P != PHI if this is the deepest point at which the
8031       // inconsistent paths meet.
8032       P = PHIMap.lookup(OpInst);
8033     if (!P) {
8034       // Recurse and memoize the results, whether a phi is found or not.
8035       // This recursive call invalidates pointers into PHIMap.
8036       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8037       PHIMap[OpInst] = P;
8038     }
8039     if (!P)
8040       return nullptr;  // Not evolving from PHI
8041     if (PHI && PHI != P)
8042       return nullptr;  // Evolving from multiple different PHIs.
8043     PHI = P;
8044   }
8045   // This is a expression evolving from a constant PHI!
8046   return PHI;
8047 }
8048 
8049 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8050 /// in the loop that V is derived from.  We allow arbitrary operations along the
8051 /// way, but the operands of an operation must either be constants or a value
8052 /// derived from a constant PHI.  If this expression does not fit with these
8053 /// constraints, return null.
8054 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8055   Instruction *I = dyn_cast<Instruction>(V);
8056   if (!I || !canConstantEvolve(I, L)) return nullptr;
8057 
8058   if (PHINode *PN = dyn_cast<PHINode>(I))
8059     return PN;
8060 
8061   // Record non-constant instructions contained by the loop.
8062   DenseMap<Instruction *, PHINode *> PHIMap;
8063   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8064 }
8065 
8066 /// EvaluateExpression - Given an expression that passes the
8067 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8068 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8069 /// reason, return null.
8070 static Constant *EvaluateExpression(Value *V, const Loop *L,
8071                                     DenseMap<Instruction *, Constant *> &Vals,
8072                                     const DataLayout &DL,
8073                                     const TargetLibraryInfo *TLI) {
8074   // Convenient constant check, but redundant for recursive calls.
8075   if (Constant *C = dyn_cast<Constant>(V)) return C;
8076   Instruction *I = dyn_cast<Instruction>(V);
8077   if (!I) return nullptr;
8078 
8079   if (Constant *C = Vals.lookup(I)) return C;
8080 
8081   // An instruction inside the loop depends on a value outside the loop that we
8082   // weren't given a mapping for, or a value such as a call inside the loop.
8083   if (!canConstantEvolve(I, L)) return nullptr;
8084 
8085   // An unmapped PHI can be due to a branch or another loop inside this loop,
8086   // or due to this not being the initial iteration through a loop where we
8087   // couldn't compute the evolution of this particular PHI last time.
8088   if (isa<PHINode>(I)) return nullptr;
8089 
8090   std::vector<Constant*> Operands(I->getNumOperands());
8091 
8092   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8093     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8094     if (!Operand) {
8095       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8096       if (!Operands[i]) return nullptr;
8097       continue;
8098     }
8099     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8100     Vals[Operand] = C;
8101     if (!C) return nullptr;
8102     Operands[i] = C;
8103   }
8104 
8105   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8106     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8107                                            Operands[1], DL, TLI);
8108   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8109     if (!LI->isVolatile())
8110       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8111   }
8112   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8113 }
8114 
8115 
8116 // If every incoming value to PN except the one for BB is a specific Constant,
8117 // return that, else return nullptr.
8118 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8119   Constant *IncomingVal = nullptr;
8120 
8121   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8122     if (PN->getIncomingBlock(i) == BB)
8123       continue;
8124 
8125     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8126     if (!CurrentVal)
8127       return nullptr;
8128 
8129     if (IncomingVal != CurrentVal) {
8130       if (IncomingVal)
8131         return nullptr;
8132       IncomingVal = CurrentVal;
8133     }
8134   }
8135 
8136   return IncomingVal;
8137 }
8138 
8139 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8140 /// in the header of its containing loop, we know the loop executes a
8141 /// constant number of times, and the PHI node is just a recurrence
8142 /// involving constants, fold it.
8143 Constant *
8144 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8145                                                    const APInt &BEs,
8146                                                    const Loop *L) {
8147   auto I = ConstantEvolutionLoopExitValue.find(PN);
8148   if (I != ConstantEvolutionLoopExitValue.end())
8149     return I->second;
8150 
8151   if (BEs.ugt(MaxBruteForceIterations))
8152     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8153 
8154   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8155 
8156   DenseMap<Instruction *, Constant *> CurrentIterVals;
8157   BasicBlock *Header = L->getHeader();
8158   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8159 
8160   BasicBlock *Latch = L->getLoopLatch();
8161   if (!Latch)
8162     return nullptr;
8163 
8164   for (PHINode &PHI : Header->phis()) {
8165     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8166       CurrentIterVals[&PHI] = StartCST;
8167   }
8168   if (!CurrentIterVals.count(PN))
8169     return RetVal = nullptr;
8170 
8171   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8172 
8173   // Execute the loop symbolically to determine the exit value.
8174   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8175          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8176 
8177   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8178   unsigned IterationNum = 0;
8179   const DataLayout &DL = getDataLayout();
8180   for (; ; ++IterationNum) {
8181     if (IterationNum == NumIterations)
8182       return RetVal = CurrentIterVals[PN];  // Got exit value!
8183 
8184     // Compute the value of the PHIs for the next iteration.
8185     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8186     DenseMap<Instruction *, Constant *> NextIterVals;
8187     Constant *NextPHI =
8188         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8189     if (!NextPHI)
8190       return nullptr;        // Couldn't evaluate!
8191     NextIterVals[PN] = NextPHI;
8192 
8193     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8194 
8195     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8196     // cease to be able to evaluate one of them or if they stop evolving,
8197     // because that doesn't necessarily prevent us from computing PN.
8198     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8199     for (const auto &I : CurrentIterVals) {
8200       PHINode *PHI = dyn_cast<PHINode>(I.first);
8201       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8202       PHIsToCompute.emplace_back(PHI, I.second);
8203     }
8204     // We use two distinct loops because EvaluateExpression may invalidate any
8205     // iterators into CurrentIterVals.
8206     for (const auto &I : PHIsToCompute) {
8207       PHINode *PHI = I.first;
8208       Constant *&NextPHI = NextIterVals[PHI];
8209       if (!NextPHI) {   // Not already computed.
8210         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8211         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8212       }
8213       if (NextPHI != I.second)
8214         StoppedEvolving = false;
8215     }
8216 
8217     // If all entries in CurrentIterVals == NextIterVals then we can stop
8218     // iterating, the loop can't continue to change.
8219     if (StoppedEvolving)
8220       return RetVal = CurrentIterVals[PN];
8221 
8222     CurrentIterVals.swap(NextIterVals);
8223   }
8224 }
8225 
8226 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8227                                                           Value *Cond,
8228                                                           bool ExitWhen) {
8229   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8230   if (!PN) return getCouldNotCompute();
8231 
8232   // If the loop is canonicalized, the PHI will have exactly two entries.
8233   // That's the only form we support here.
8234   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8235 
8236   DenseMap<Instruction *, Constant *> CurrentIterVals;
8237   BasicBlock *Header = L->getHeader();
8238   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8239 
8240   BasicBlock *Latch = L->getLoopLatch();
8241   assert(Latch && "Should follow from NumIncomingValues == 2!");
8242 
8243   for (PHINode &PHI : Header->phis()) {
8244     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8245       CurrentIterVals[&PHI] = StartCST;
8246   }
8247   if (!CurrentIterVals.count(PN))
8248     return getCouldNotCompute();
8249 
8250   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8251   // the loop symbolically to determine when the condition gets a value of
8252   // "ExitWhen".
8253   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8254   const DataLayout &DL = getDataLayout();
8255   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8256     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8257         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8258 
8259     // Couldn't symbolically evaluate.
8260     if (!CondVal) return getCouldNotCompute();
8261 
8262     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8263       ++NumBruteForceTripCountsComputed;
8264       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8265     }
8266 
8267     // Update all the PHI nodes for the next iteration.
8268     DenseMap<Instruction *, Constant *> NextIterVals;
8269 
8270     // Create a list of which PHIs we need to compute. We want to do this before
8271     // calling EvaluateExpression on them because that may invalidate iterators
8272     // into CurrentIterVals.
8273     SmallVector<PHINode *, 8> PHIsToCompute;
8274     for (const auto &I : CurrentIterVals) {
8275       PHINode *PHI = dyn_cast<PHINode>(I.first);
8276       if (!PHI || PHI->getParent() != Header) continue;
8277       PHIsToCompute.push_back(PHI);
8278     }
8279     for (PHINode *PHI : PHIsToCompute) {
8280       Constant *&NextPHI = NextIterVals[PHI];
8281       if (NextPHI) continue;    // Already computed!
8282 
8283       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8284       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8285     }
8286     CurrentIterVals.swap(NextIterVals);
8287   }
8288 
8289   // Too many iterations were needed to evaluate.
8290   return getCouldNotCompute();
8291 }
8292 
8293 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8294   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8295       ValuesAtScopes[V];
8296   // Check to see if we've folded this expression at this loop before.
8297   for (auto &LS : Values)
8298     if (LS.first == L)
8299       return LS.second ? LS.second : V;
8300 
8301   Values.emplace_back(L, nullptr);
8302 
8303   // Otherwise compute it.
8304   const SCEV *C = computeSCEVAtScope(V, L);
8305   for (auto &LS : reverse(ValuesAtScopes[V]))
8306     if (LS.first == L) {
8307       LS.second = C;
8308       break;
8309     }
8310   return C;
8311 }
8312 
8313 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8314 /// will return Constants for objects which aren't represented by a
8315 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8316 /// Returns NULL if the SCEV isn't representable as a Constant.
8317 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8318   switch (V->getSCEVType()) {
8319   case scCouldNotCompute:
8320   case scAddRecExpr:
8321     return nullptr;
8322   case scConstant:
8323     return cast<SCEVConstant>(V)->getValue();
8324   case scUnknown:
8325     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8326   case scSignExtend: {
8327     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8328     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8329       return ConstantExpr::getSExt(CastOp, SS->getType());
8330     return nullptr;
8331   }
8332   case scZeroExtend: {
8333     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8334     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8335       return ConstantExpr::getZExt(CastOp, SZ->getType());
8336     return nullptr;
8337   }
8338   case scPtrToInt: {
8339     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8340     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8341       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8342 
8343     return nullptr;
8344   }
8345   case scTruncate: {
8346     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8347     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8348       return ConstantExpr::getTrunc(CastOp, ST->getType());
8349     return nullptr;
8350   }
8351   case scAddExpr: {
8352     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8353     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8354       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8355         unsigned AS = PTy->getAddressSpace();
8356         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8357         C = ConstantExpr::getBitCast(C, DestPtrTy);
8358       }
8359       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8360         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8361         if (!C2)
8362           return nullptr;
8363 
8364         // First pointer!
8365         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8366           unsigned AS = C2->getType()->getPointerAddressSpace();
8367           std::swap(C, C2);
8368           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8369           // The offsets have been converted to bytes.  We can add bytes to an
8370           // i8* by GEP with the byte count in the first index.
8371           C = ConstantExpr::getBitCast(C, DestPtrTy);
8372         }
8373 
8374         // Don't bother trying to sum two pointers. We probably can't
8375         // statically compute a load that results from it anyway.
8376         if (C2->getType()->isPointerTy())
8377           return nullptr;
8378 
8379         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8380           if (PTy->getElementType()->isStructTy())
8381             C2 = ConstantExpr::getIntegerCast(
8382                 C2, Type::getInt32Ty(C->getContext()), true);
8383           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8384         } else
8385           C = ConstantExpr::getAdd(C, C2);
8386       }
8387       return C;
8388     }
8389     return nullptr;
8390   }
8391   case scMulExpr: {
8392     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8393     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8394       // Don't bother with pointers at all.
8395       if (C->getType()->isPointerTy())
8396         return nullptr;
8397       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8398         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8399         if (!C2 || C2->getType()->isPointerTy())
8400           return nullptr;
8401         C = ConstantExpr::getMul(C, C2);
8402       }
8403       return C;
8404     }
8405     return nullptr;
8406   }
8407   case scUDivExpr: {
8408     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8409     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8410       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8411         if (LHS->getType() == RHS->getType())
8412           return ConstantExpr::getUDiv(LHS, RHS);
8413     return nullptr;
8414   }
8415   case scSMaxExpr:
8416   case scUMaxExpr:
8417   case scSMinExpr:
8418   case scUMinExpr:
8419     return nullptr; // TODO: smax, umax, smin, umax.
8420   }
8421   llvm_unreachable("Unknown SCEV kind!");
8422 }
8423 
8424 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8425   if (isa<SCEVConstant>(V)) return V;
8426 
8427   // If this instruction is evolved from a constant-evolving PHI, compute the
8428   // exit value from the loop without using SCEVs.
8429   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8430     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8431       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8432         const Loop *CurrLoop = this->LI[I->getParent()];
8433         // Looking for loop exit value.
8434         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8435             PN->getParent() == CurrLoop->getHeader()) {
8436           // Okay, there is no closed form solution for the PHI node.  Check
8437           // to see if the loop that contains it has a known backedge-taken
8438           // count.  If so, we may be able to force computation of the exit
8439           // value.
8440           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8441           // This trivial case can show up in some degenerate cases where
8442           // the incoming IR has not yet been fully simplified.
8443           if (BackedgeTakenCount->isZero()) {
8444             Value *InitValue = nullptr;
8445             bool MultipleInitValues = false;
8446             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8447               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8448                 if (!InitValue)
8449                   InitValue = PN->getIncomingValue(i);
8450                 else if (InitValue != PN->getIncomingValue(i)) {
8451                   MultipleInitValues = true;
8452                   break;
8453                 }
8454               }
8455             }
8456             if (!MultipleInitValues && InitValue)
8457               return getSCEV(InitValue);
8458           }
8459           // Do we have a loop invariant value flowing around the backedge
8460           // for a loop which must execute the backedge?
8461           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8462               isKnownPositive(BackedgeTakenCount) &&
8463               PN->getNumIncomingValues() == 2) {
8464 
8465             unsigned InLoopPred =
8466                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8467             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8468             if (CurrLoop->isLoopInvariant(BackedgeVal))
8469               return getSCEV(BackedgeVal);
8470           }
8471           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8472             // Okay, we know how many times the containing loop executes.  If
8473             // this is a constant evolving PHI node, get the final value at
8474             // the specified iteration number.
8475             Constant *RV = getConstantEvolutionLoopExitValue(
8476                 PN, BTCC->getAPInt(), CurrLoop);
8477             if (RV) return getSCEV(RV);
8478           }
8479         }
8480 
8481         // If there is a single-input Phi, evaluate it at our scope. If we can
8482         // prove that this replacement does not break LCSSA form, use new value.
8483         if (PN->getNumOperands() == 1) {
8484           const SCEV *Input = getSCEV(PN->getOperand(0));
8485           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8486           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8487           // for the simplest case just support constants.
8488           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8489         }
8490       }
8491 
8492       // Okay, this is an expression that we cannot symbolically evaluate
8493       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8494       // the arguments into constants, and if so, try to constant propagate the
8495       // result.  This is particularly useful for computing loop exit values.
8496       if (CanConstantFold(I)) {
8497         SmallVector<Constant *, 4> Operands;
8498         bool MadeImprovement = false;
8499         for (Value *Op : I->operands()) {
8500           if (Constant *C = dyn_cast<Constant>(Op)) {
8501             Operands.push_back(C);
8502             continue;
8503           }
8504 
8505           // If any of the operands is non-constant and if they are
8506           // non-integer and non-pointer, don't even try to analyze them
8507           // with scev techniques.
8508           if (!isSCEVable(Op->getType()))
8509             return V;
8510 
8511           const SCEV *OrigV = getSCEV(Op);
8512           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8513           MadeImprovement |= OrigV != OpV;
8514 
8515           Constant *C = BuildConstantFromSCEV(OpV);
8516           if (!C) return V;
8517           if (C->getType() != Op->getType())
8518             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8519                                                               Op->getType(),
8520                                                               false),
8521                                       C, Op->getType());
8522           Operands.push_back(C);
8523         }
8524 
8525         // Check to see if getSCEVAtScope actually made an improvement.
8526         if (MadeImprovement) {
8527           Constant *C = nullptr;
8528           const DataLayout &DL = getDataLayout();
8529           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8530             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8531                                                 Operands[1], DL, &TLI);
8532           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8533             if (!Load->isVolatile())
8534               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8535                                                DL);
8536           } else
8537             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8538           if (!C) return V;
8539           return getSCEV(C);
8540         }
8541       }
8542     }
8543 
8544     // This is some other type of SCEVUnknown, just return it.
8545     return V;
8546   }
8547 
8548   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8549     // Avoid performing the look-up in the common case where the specified
8550     // expression has no loop-variant portions.
8551     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8552       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8553       if (OpAtScope != Comm->getOperand(i)) {
8554         // Okay, at least one of these operands is loop variant but might be
8555         // foldable.  Build a new instance of the folded commutative expression.
8556         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8557                                             Comm->op_begin()+i);
8558         NewOps.push_back(OpAtScope);
8559 
8560         for (++i; i != e; ++i) {
8561           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8562           NewOps.push_back(OpAtScope);
8563         }
8564         if (isa<SCEVAddExpr>(Comm))
8565           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8566         if (isa<SCEVMulExpr>(Comm))
8567           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8568         if (isa<SCEVMinMaxExpr>(Comm))
8569           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8570         llvm_unreachable("Unknown commutative SCEV type!");
8571       }
8572     }
8573     // If we got here, all operands are loop invariant.
8574     return Comm;
8575   }
8576 
8577   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8578     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8579     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8580     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8581       return Div;   // must be loop invariant
8582     return getUDivExpr(LHS, RHS);
8583   }
8584 
8585   // If this is a loop recurrence for a loop that does not contain L, then we
8586   // are dealing with the final value computed by the loop.
8587   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8588     // First, attempt to evaluate each operand.
8589     // Avoid performing the look-up in the common case where the specified
8590     // expression has no loop-variant portions.
8591     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8592       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8593       if (OpAtScope == AddRec->getOperand(i))
8594         continue;
8595 
8596       // Okay, at least one of these operands is loop variant but might be
8597       // foldable.  Build a new instance of the folded commutative expression.
8598       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8599                                           AddRec->op_begin()+i);
8600       NewOps.push_back(OpAtScope);
8601       for (++i; i != e; ++i)
8602         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8603 
8604       const SCEV *FoldedRec =
8605         getAddRecExpr(NewOps, AddRec->getLoop(),
8606                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8607       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8608       // The addrec may be folded to a nonrecurrence, for example, if the
8609       // induction variable is multiplied by zero after constant folding. Go
8610       // ahead and return the folded value.
8611       if (!AddRec)
8612         return FoldedRec;
8613       break;
8614     }
8615 
8616     // If the scope is outside the addrec's loop, evaluate it by using the
8617     // loop exit value of the addrec.
8618     if (!AddRec->getLoop()->contains(L)) {
8619       // To evaluate this recurrence, we need to know how many times the AddRec
8620       // loop iterates.  Compute this now.
8621       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8622       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8623 
8624       // Then, evaluate the AddRec.
8625       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8626     }
8627 
8628     return AddRec;
8629   }
8630 
8631   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8632     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8633     if (Op == Cast->getOperand())
8634       return Cast;  // must be loop invariant
8635     return getZeroExtendExpr(Op, Cast->getType());
8636   }
8637 
8638   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8639     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8640     if (Op == Cast->getOperand())
8641       return Cast;  // must be loop invariant
8642     return getSignExtendExpr(Op, Cast->getType());
8643   }
8644 
8645   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8646     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8647     if (Op == Cast->getOperand())
8648       return Cast;  // must be loop invariant
8649     return getTruncateExpr(Op, Cast->getType());
8650   }
8651 
8652   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8653     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8654     if (Op == Cast->getOperand())
8655       return Cast; // must be loop invariant
8656     return getPtrToIntExpr(Op, Cast->getType());
8657   }
8658 
8659   llvm_unreachable("Unknown SCEV type!");
8660 }
8661 
8662 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8663   return getSCEVAtScope(getSCEV(V), L);
8664 }
8665 
8666 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8667   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8668     return stripInjectiveFunctions(ZExt->getOperand());
8669   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8670     return stripInjectiveFunctions(SExt->getOperand());
8671   return S;
8672 }
8673 
8674 /// Finds the minimum unsigned root of the following equation:
8675 ///
8676 ///     A * X = B (mod N)
8677 ///
8678 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8679 /// A and B isn't important.
8680 ///
8681 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8682 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8683                                                ScalarEvolution &SE) {
8684   uint32_t BW = A.getBitWidth();
8685   assert(BW == SE.getTypeSizeInBits(B->getType()));
8686   assert(A != 0 && "A must be non-zero.");
8687 
8688   // 1. D = gcd(A, N)
8689   //
8690   // The gcd of A and N may have only one prime factor: 2. The number of
8691   // trailing zeros in A is its multiplicity
8692   uint32_t Mult2 = A.countTrailingZeros();
8693   // D = 2^Mult2
8694 
8695   // 2. Check if B is divisible by D.
8696   //
8697   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8698   // is not less than multiplicity of this prime factor for D.
8699   if (SE.GetMinTrailingZeros(B) < Mult2)
8700     return SE.getCouldNotCompute();
8701 
8702   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8703   // modulo (N / D).
8704   //
8705   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8706   // (N / D) in general. The inverse itself always fits into BW bits, though,
8707   // so we immediately truncate it.
8708   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8709   APInt Mod(BW + 1, 0);
8710   Mod.setBit(BW - Mult2);  // Mod = N / D
8711   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8712 
8713   // 4. Compute the minimum unsigned root of the equation:
8714   // I * (B / D) mod (N / D)
8715   // To simplify the computation, we factor out the divide by D:
8716   // (I * B mod N) / D
8717   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8718   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8719 }
8720 
8721 /// For a given quadratic addrec, generate coefficients of the corresponding
8722 /// quadratic equation, multiplied by a common value to ensure that they are
8723 /// integers.
8724 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8725 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8726 /// were multiplied by, and BitWidth is the bit width of the original addrec
8727 /// coefficients.
8728 /// This function returns None if the addrec coefficients are not compile-
8729 /// time constants.
8730 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8731 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8732   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8733   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8734   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8735   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8736   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8737                     << *AddRec << '\n');
8738 
8739   // We currently can only solve this if the coefficients are constants.
8740   if (!LC || !MC || !NC) {
8741     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8742     return None;
8743   }
8744 
8745   APInt L = LC->getAPInt();
8746   APInt M = MC->getAPInt();
8747   APInt N = NC->getAPInt();
8748   assert(!N.isNullValue() && "This is not a quadratic addrec");
8749 
8750   unsigned BitWidth = LC->getAPInt().getBitWidth();
8751   unsigned NewWidth = BitWidth + 1;
8752   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8753                     << BitWidth << '\n');
8754   // The sign-extension (as opposed to a zero-extension) here matches the
8755   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8756   N = N.sext(NewWidth);
8757   M = M.sext(NewWidth);
8758   L = L.sext(NewWidth);
8759 
8760   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8761   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8762   //   L+M, L+2M+N, L+3M+3N, ...
8763   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8764   //
8765   // The equation Acc = 0 is then
8766   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8767   // In a quadratic form it becomes:
8768   //   N n^2 + (2M-N) n + 2L = 0.
8769 
8770   APInt A = N;
8771   APInt B = 2 * M - A;
8772   APInt C = 2 * L;
8773   APInt T = APInt(NewWidth, 2);
8774   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8775                     << "x + " << C << ", coeff bw: " << NewWidth
8776                     << ", multiplied by " << T << '\n');
8777   return std::make_tuple(A, B, C, T, BitWidth);
8778 }
8779 
8780 /// Helper function to compare optional APInts:
8781 /// (a) if X and Y both exist, return min(X, Y),
8782 /// (b) if neither X nor Y exist, return None,
8783 /// (c) if exactly one of X and Y exists, return that value.
8784 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8785   if (X.hasValue() && Y.hasValue()) {
8786     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8787     APInt XW = X->sextOrSelf(W);
8788     APInt YW = Y->sextOrSelf(W);
8789     return XW.slt(YW) ? *X : *Y;
8790   }
8791   if (!X.hasValue() && !Y.hasValue())
8792     return None;
8793   return X.hasValue() ? *X : *Y;
8794 }
8795 
8796 /// Helper function to truncate an optional APInt to a given BitWidth.
8797 /// When solving addrec-related equations, it is preferable to return a value
8798 /// that has the same bit width as the original addrec's coefficients. If the
8799 /// solution fits in the original bit width, truncate it (except for i1).
8800 /// Returning a value of a different bit width may inhibit some optimizations.
8801 ///
8802 /// In general, a solution to a quadratic equation generated from an addrec
8803 /// may require BW+1 bits, where BW is the bit width of the addrec's
8804 /// coefficients. The reason is that the coefficients of the quadratic
8805 /// equation are BW+1 bits wide (to avoid truncation when converting from
8806 /// the addrec to the equation).
8807 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8808   if (!X.hasValue())
8809     return None;
8810   unsigned W = X->getBitWidth();
8811   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8812     return X->trunc(BitWidth);
8813   return X;
8814 }
8815 
8816 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8817 /// iterations. The values L, M, N are assumed to be signed, and they
8818 /// should all have the same bit widths.
8819 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8820 /// where BW is the bit width of the addrec's coefficients.
8821 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8822 /// returned as such, otherwise the bit width of the returned value may
8823 /// be greater than BW.
8824 ///
8825 /// This function returns None if
8826 /// (a) the addrec coefficients are not constant, or
8827 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8828 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8829 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8830 static Optional<APInt>
8831 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8832   APInt A, B, C, M;
8833   unsigned BitWidth;
8834   auto T = GetQuadraticEquation(AddRec);
8835   if (!T.hasValue())
8836     return None;
8837 
8838   std::tie(A, B, C, M, BitWidth) = *T;
8839   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8840   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8841   if (!X.hasValue())
8842     return None;
8843 
8844   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8845   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8846   if (!V->isZero())
8847     return None;
8848 
8849   return TruncIfPossible(X, BitWidth);
8850 }
8851 
8852 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8853 /// iterations. The values M, N are assumed to be signed, and they
8854 /// should all have the same bit widths.
8855 /// Find the least n such that c(n) does not belong to the given range,
8856 /// while c(n-1) does.
8857 ///
8858 /// This function returns None if
8859 /// (a) the addrec coefficients are not constant, or
8860 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8861 ///     bounds of the range.
8862 static Optional<APInt>
8863 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8864                           const ConstantRange &Range, ScalarEvolution &SE) {
8865   assert(AddRec->getOperand(0)->isZero() &&
8866          "Starting value of addrec should be 0");
8867   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8868                     << Range << ", addrec " << *AddRec << '\n');
8869   // This case is handled in getNumIterationsInRange. Here we can assume that
8870   // we start in the range.
8871   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8872          "Addrec's initial value should be in range");
8873 
8874   APInt A, B, C, M;
8875   unsigned BitWidth;
8876   auto T = GetQuadraticEquation(AddRec);
8877   if (!T.hasValue())
8878     return None;
8879 
8880   // Be careful about the return value: there can be two reasons for not
8881   // returning an actual number. First, if no solutions to the equations
8882   // were found, and second, if the solutions don't leave the given range.
8883   // The first case means that the actual solution is "unknown", the second
8884   // means that it's known, but not valid. If the solution is unknown, we
8885   // cannot make any conclusions.
8886   // Return a pair: the optional solution and a flag indicating if the
8887   // solution was found.
8888   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8889     // Solve for signed overflow and unsigned overflow, pick the lower
8890     // solution.
8891     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8892                       << Bound << " (before multiplying by " << M << ")\n");
8893     Bound *= M; // The quadratic equation multiplier.
8894 
8895     Optional<APInt> SO = None;
8896     if (BitWidth > 1) {
8897       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8898                            "signed overflow\n");
8899       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8900     }
8901     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8902                          "unsigned overflow\n");
8903     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8904                                                               BitWidth+1);
8905 
8906     auto LeavesRange = [&] (const APInt &X) {
8907       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8908       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8909       if (Range.contains(V0->getValue()))
8910         return false;
8911       // X should be at least 1, so X-1 is non-negative.
8912       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8913       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8914       if (Range.contains(V1->getValue()))
8915         return true;
8916       return false;
8917     };
8918 
8919     // If SolveQuadraticEquationWrap returns None, it means that there can
8920     // be a solution, but the function failed to find it. We cannot treat it
8921     // as "no solution".
8922     if (!SO.hasValue() || !UO.hasValue())
8923       return { None, false };
8924 
8925     // Check the smaller value first to see if it leaves the range.
8926     // At this point, both SO and UO must have values.
8927     Optional<APInt> Min = MinOptional(SO, UO);
8928     if (LeavesRange(*Min))
8929       return { Min, true };
8930     Optional<APInt> Max = Min == SO ? UO : SO;
8931     if (LeavesRange(*Max))
8932       return { Max, true };
8933 
8934     // Solutions were found, but were eliminated, hence the "true".
8935     return { None, true };
8936   };
8937 
8938   std::tie(A, B, C, M, BitWidth) = *T;
8939   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8940   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8941   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8942   auto SL = SolveForBoundary(Lower);
8943   auto SU = SolveForBoundary(Upper);
8944   // If any of the solutions was unknown, no meaninigful conclusions can
8945   // be made.
8946   if (!SL.second || !SU.second)
8947     return None;
8948 
8949   // Claim: The correct solution is not some value between Min and Max.
8950   //
8951   // Justification: Assuming that Min and Max are different values, one of
8952   // them is when the first signed overflow happens, the other is when the
8953   // first unsigned overflow happens. Crossing the range boundary is only
8954   // possible via an overflow (treating 0 as a special case of it, modeling
8955   // an overflow as crossing k*2^W for some k).
8956   //
8957   // The interesting case here is when Min was eliminated as an invalid
8958   // solution, but Max was not. The argument is that if there was another
8959   // overflow between Min and Max, it would also have been eliminated if
8960   // it was considered.
8961   //
8962   // For a given boundary, it is possible to have two overflows of the same
8963   // type (signed/unsigned) without having the other type in between: this
8964   // can happen when the vertex of the parabola is between the iterations
8965   // corresponding to the overflows. This is only possible when the two
8966   // overflows cross k*2^W for the same k. In such case, if the second one
8967   // left the range (and was the first one to do so), the first overflow
8968   // would have to enter the range, which would mean that either we had left
8969   // the range before or that we started outside of it. Both of these cases
8970   // are contradictions.
8971   //
8972   // Claim: In the case where SolveForBoundary returns None, the correct
8973   // solution is not some value between the Max for this boundary and the
8974   // Min of the other boundary.
8975   //
8976   // Justification: Assume that we had such Max_A and Min_B corresponding
8977   // to range boundaries A and B and such that Max_A < Min_B. If there was
8978   // a solution between Max_A and Min_B, it would have to be caused by an
8979   // overflow corresponding to either A or B. It cannot correspond to B,
8980   // since Min_B is the first occurrence of such an overflow. If it
8981   // corresponded to A, it would have to be either a signed or an unsigned
8982   // overflow that is larger than both eliminated overflows for A. But
8983   // between the eliminated overflows and this overflow, the values would
8984   // cover the entire value space, thus crossing the other boundary, which
8985   // is a contradiction.
8986 
8987   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8988 }
8989 
8990 ScalarEvolution::ExitLimit
8991 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8992                               bool AllowPredicates) {
8993 
8994   // This is only used for loops with a "x != y" exit test. The exit condition
8995   // is now expressed as a single expression, V = x-y. So the exit test is
8996   // effectively V != 0.  We know and take advantage of the fact that this
8997   // expression only being used in a comparison by zero context.
8998 
8999   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9000   // If the value is a constant
9001   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9002     // If the value is already zero, the branch will execute zero times.
9003     if (C->getValue()->isZero()) return C;
9004     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9005   }
9006 
9007   const SCEVAddRecExpr *AddRec =
9008       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9009 
9010   if (!AddRec && AllowPredicates)
9011     // Try to make this an AddRec using runtime tests, in the first X
9012     // iterations of this loop, where X is the SCEV expression found by the
9013     // algorithm below.
9014     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9015 
9016   if (!AddRec || AddRec->getLoop() != L)
9017     return getCouldNotCompute();
9018 
9019   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9020   // the quadratic equation to solve it.
9021   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9022     // We can only use this value if the chrec ends up with an exact zero
9023     // value at this index.  When solving for "X*X != 5", for example, we
9024     // should not accept a root of 2.
9025     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9026       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9027       return ExitLimit(R, R, false, Predicates);
9028     }
9029     return getCouldNotCompute();
9030   }
9031 
9032   // Otherwise we can only handle this if it is affine.
9033   if (!AddRec->isAffine())
9034     return getCouldNotCompute();
9035 
9036   // If this is an affine expression, the execution count of this branch is
9037   // the minimum unsigned root of the following equation:
9038   //
9039   //     Start + Step*N = 0 (mod 2^BW)
9040   //
9041   // equivalent to:
9042   //
9043   //             Step*N = -Start (mod 2^BW)
9044   //
9045   // where BW is the common bit width of Start and Step.
9046 
9047   // Get the initial value for the loop.
9048   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9049   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9050 
9051   // For now we handle only constant steps.
9052   //
9053   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9054   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9055   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9056   // We have not yet seen any such cases.
9057   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9058   if (!StepC || StepC->getValue()->isZero())
9059     return getCouldNotCompute();
9060 
9061   // For positive steps (counting up until unsigned overflow):
9062   //   N = -Start/Step (as unsigned)
9063   // For negative steps (counting down to zero):
9064   //   N = Start/-Step
9065   // First compute the unsigned distance from zero in the direction of Step.
9066   bool CountDown = StepC->getAPInt().isNegative();
9067   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9068 
9069   // Handle unitary steps, which cannot wraparound.
9070   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9071   //   N = Distance (as unsigned)
9072   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9073     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9074     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9075     if (MaxBECountBase.ult(MaxBECount))
9076       MaxBECount = MaxBECountBase;
9077 
9078     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9079     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9080     // case, and see if we can improve the bound.
9081     //
9082     // Explicitly handling this here is necessary because getUnsignedRange
9083     // isn't context-sensitive; it doesn't know that we only care about the
9084     // range inside the loop.
9085     const SCEV *Zero = getZero(Distance->getType());
9086     const SCEV *One = getOne(Distance->getType());
9087     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9088     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9089       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9090       // as "unsigned_max(Distance + 1) - 1".
9091       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9092       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9093     }
9094     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9095   }
9096 
9097   // If the condition controls loop exit (the loop exits only if the expression
9098   // is true) and the addition is no-wrap we can use unsigned divide to
9099   // compute the backedge count.  In this case, the step may not divide the
9100   // distance, but we don't care because if the condition is "missed" the loop
9101   // will have undefined behavior due to wrapping.
9102   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9103       loopHasNoAbnormalExits(AddRec->getLoop())) {
9104     const SCEV *Exact =
9105         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9106     const SCEV *Max =
9107         Exact == getCouldNotCompute()
9108             ? Exact
9109             : getConstant(getUnsignedRangeMax(Exact));
9110     return ExitLimit(Exact, Max, false, Predicates);
9111   }
9112 
9113   // Solve the general equation.
9114   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9115                                                getNegativeSCEV(Start), *this);
9116   const SCEV *M = E == getCouldNotCompute()
9117                       ? E
9118                       : getConstant(getUnsignedRangeMax(E));
9119   return ExitLimit(E, M, false, Predicates);
9120 }
9121 
9122 ScalarEvolution::ExitLimit
9123 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9124   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9125   // handle them yet except for the trivial case.  This could be expanded in the
9126   // future as needed.
9127 
9128   // If the value is a constant, check to see if it is known to be non-zero
9129   // already.  If so, the backedge will execute zero times.
9130   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9131     if (!C->getValue()->isZero())
9132       return getZero(C->getType());
9133     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9134   }
9135 
9136   // We could implement others, but I really doubt anyone writes loops like
9137   // this, and if they did, they would already be constant folded.
9138   return getCouldNotCompute();
9139 }
9140 
9141 std::pair<const BasicBlock *, const BasicBlock *>
9142 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9143     const {
9144   // If the block has a unique predecessor, then there is no path from the
9145   // predecessor to the block that does not go through the direct edge
9146   // from the predecessor to the block.
9147   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9148     return {Pred, BB};
9149 
9150   // A loop's header is defined to be a block that dominates the loop.
9151   // If the header has a unique predecessor outside the loop, it must be
9152   // a block that has exactly one successor that can reach the loop.
9153   if (const Loop *L = LI.getLoopFor(BB))
9154     return {L->getLoopPredecessor(), L->getHeader()};
9155 
9156   return {nullptr, nullptr};
9157 }
9158 
9159 /// SCEV structural equivalence is usually sufficient for testing whether two
9160 /// expressions are equal, however for the purposes of looking for a condition
9161 /// guarding a loop, it can be useful to be a little more general, since a
9162 /// front-end may have replicated the controlling expression.
9163 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9164   // Quick check to see if they are the same SCEV.
9165   if (A == B) return true;
9166 
9167   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9168     // Not all instructions that are "identical" compute the same value.  For
9169     // instance, two distinct alloca instructions allocating the same type are
9170     // identical and do not read memory; but compute distinct values.
9171     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9172   };
9173 
9174   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9175   // two different instructions with the same value. Check for this case.
9176   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9177     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9178       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9179         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9180           if (ComputesEqualValues(AI, BI))
9181             return true;
9182 
9183   // Otherwise assume they may have a different value.
9184   return false;
9185 }
9186 
9187 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9188                                            const SCEV *&LHS, const SCEV *&RHS,
9189                                            unsigned Depth) {
9190   bool Changed = false;
9191   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9192   // '0 != 0'.
9193   auto TrivialCase = [&](bool TriviallyTrue) {
9194     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9195     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9196     return true;
9197   };
9198   // If we hit the max recursion limit bail out.
9199   if (Depth >= 3)
9200     return false;
9201 
9202   // Canonicalize a constant to the right side.
9203   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9204     // Check for both operands constant.
9205     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9206       if (ConstantExpr::getICmp(Pred,
9207                                 LHSC->getValue(),
9208                                 RHSC->getValue())->isNullValue())
9209         return TrivialCase(false);
9210       else
9211         return TrivialCase(true);
9212     }
9213     // Otherwise swap the operands to put the constant on the right.
9214     std::swap(LHS, RHS);
9215     Pred = ICmpInst::getSwappedPredicate(Pred);
9216     Changed = true;
9217   }
9218 
9219   // If we're comparing an addrec with a value which is loop-invariant in the
9220   // addrec's loop, put the addrec on the left. Also make a dominance check,
9221   // as both operands could be addrecs loop-invariant in each other's loop.
9222   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9223     const Loop *L = AR->getLoop();
9224     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9225       std::swap(LHS, RHS);
9226       Pred = ICmpInst::getSwappedPredicate(Pred);
9227       Changed = true;
9228     }
9229   }
9230 
9231   // If there's a constant operand, canonicalize comparisons with boundary
9232   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9233   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9234     const APInt &RA = RC->getAPInt();
9235 
9236     bool SimplifiedByConstantRange = false;
9237 
9238     if (!ICmpInst::isEquality(Pred)) {
9239       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9240       if (ExactCR.isFullSet())
9241         return TrivialCase(true);
9242       else if (ExactCR.isEmptySet())
9243         return TrivialCase(false);
9244 
9245       APInt NewRHS;
9246       CmpInst::Predicate NewPred;
9247       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9248           ICmpInst::isEquality(NewPred)) {
9249         // We were able to convert an inequality to an equality.
9250         Pred = NewPred;
9251         RHS = getConstant(NewRHS);
9252         Changed = SimplifiedByConstantRange = true;
9253       }
9254     }
9255 
9256     if (!SimplifiedByConstantRange) {
9257       switch (Pred) {
9258       default:
9259         break;
9260       case ICmpInst::ICMP_EQ:
9261       case ICmpInst::ICMP_NE:
9262         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9263         if (!RA)
9264           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9265             if (const SCEVMulExpr *ME =
9266                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9267               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9268                   ME->getOperand(0)->isAllOnesValue()) {
9269                 RHS = AE->getOperand(1);
9270                 LHS = ME->getOperand(1);
9271                 Changed = true;
9272               }
9273         break;
9274 
9275 
9276         // The "Should have been caught earlier!" messages refer to the fact
9277         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9278         // should have fired on the corresponding cases, and canonicalized the
9279         // check to trivial case.
9280 
9281       case ICmpInst::ICMP_UGE:
9282         assert(!RA.isMinValue() && "Should have been caught earlier!");
9283         Pred = ICmpInst::ICMP_UGT;
9284         RHS = getConstant(RA - 1);
9285         Changed = true;
9286         break;
9287       case ICmpInst::ICMP_ULE:
9288         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9289         Pred = ICmpInst::ICMP_ULT;
9290         RHS = getConstant(RA + 1);
9291         Changed = true;
9292         break;
9293       case ICmpInst::ICMP_SGE:
9294         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9295         Pred = ICmpInst::ICMP_SGT;
9296         RHS = getConstant(RA - 1);
9297         Changed = true;
9298         break;
9299       case ICmpInst::ICMP_SLE:
9300         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9301         Pred = ICmpInst::ICMP_SLT;
9302         RHS = getConstant(RA + 1);
9303         Changed = true;
9304         break;
9305       }
9306     }
9307   }
9308 
9309   // Check for obvious equality.
9310   if (HasSameValue(LHS, RHS)) {
9311     if (ICmpInst::isTrueWhenEqual(Pred))
9312       return TrivialCase(true);
9313     if (ICmpInst::isFalseWhenEqual(Pred))
9314       return TrivialCase(false);
9315   }
9316 
9317   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9318   // adding or subtracting 1 from one of the operands.
9319   switch (Pred) {
9320   case ICmpInst::ICMP_SLE:
9321     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9322       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9323                        SCEV::FlagNSW);
9324       Pred = ICmpInst::ICMP_SLT;
9325       Changed = true;
9326     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9327       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9328                        SCEV::FlagNSW);
9329       Pred = ICmpInst::ICMP_SLT;
9330       Changed = true;
9331     }
9332     break;
9333   case ICmpInst::ICMP_SGE:
9334     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9335       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9336                        SCEV::FlagNSW);
9337       Pred = ICmpInst::ICMP_SGT;
9338       Changed = true;
9339     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9340       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9341                        SCEV::FlagNSW);
9342       Pred = ICmpInst::ICMP_SGT;
9343       Changed = true;
9344     }
9345     break;
9346   case ICmpInst::ICMP_ULE:
9347     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9348       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9349                        SCEV::FlagNUW);
9350       Pred = ICmpInst::ICMP_ULT;
9351       Changed = true;
9352     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9353       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9354       Pred = ICmpInst::ICMP_ULT;
9355       Changed = true;
9356     }
9357     break;
9358   case ICmpInst::ICMP_UGE:
9359     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9360       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9361       Pred = ICmpInst::ICMP_UGT;
9362       Changed = true;
9363     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9364       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9365                        SCEV::FlagNUW);
9366       Pred = ICmpInst::ICMP_UGT;
9367       Changed = true;
9368     }
9369     break;
9370   default:
9371     break;
9372   }
9373 
9374   // TODO: More simplifications are possible here.
9375 
9376   // Recursively simplify until we either hit a recursion limit or nothing
9377   // changes.
9378   if (Changed)
9379     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9380 
9381   return Changed;
9382 }
9383 
9384 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9385   return getSignedRangeMax(S).isNegative();
9386 }
9387 
9388 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9389   return getSignedRangeMin(S).isStrictlyPositive();
9390 }
9391 
9392 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9393   return !getSignedRangeMin(S).isNegative();
9394 }
9395 
9396 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9397   return !getSignedRangeMax(S).isStrictlyPositive();
9398 }
9399 
9400 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9401   return isKnownNegative(S) || isKnownPositive(S);
9402 }
9403 
9404 std::pair<const SCEV *, const SCEV *>
9405 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9406   // Compute SCEV on entry of loop L.
9407   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9408   if (Start == getCouldNotCompute())
9409     return { Start, Start };
9410   // Compute post increment SCEV for loop L.
9411   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9412   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9413   return { Start, PostInc };
9414 }
9415 
9416 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9417                                           const SCEV *LHS, const SCEV *RHS) {
9418   // First collect all loops.
9419   SmallPtrSet<const Loop *, 8> LoopsUsed;
9420   getUsedLoops(LHS, LoopsUsed);
9421   getUsedLoops(RHS, LoopsUsed);
9422 
9423   if (LoopsUsed.empty())
9424     return false;
9425 
9426   // Domination relationship must be a linear order on collected loops.
9427 #ifndef NDEBUG
9428   for (auto *L1 : LoopsUsed)
9429     for (auto *L2 : LoopsUsed)
9430       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9431               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9432              "Domination relationship is not a linear order");
9433 #endif
9434 
9435   const Loop *MDL =
9436       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9437                         [&](const Loop *L1, const Loop *L2) {
9438          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9439        });
9440 
9441   // Get init and post increment value for LHS.
9442   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9443   // if LHS contains unknown non-invariant SCEV then bail out.
9444   if (SplitLHS.first == getCouldNotCompute())
9445     return false;
9446   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9447   // Get init and post increment value for RHS.
9448   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9449   // if RHS contains unknown non-invariant SCEV then bail out.
9450   if (SplitRHS.first == getCouldNotCompute())
9451     return false;
9452   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9453   // It is possible that init SCEV contains an invariant load but it does
9454   // not dominate MDL and is not available at MDL loop entry, so we should
9455   // check it here.
9456   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9457       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9458     return false;
9459 
9460   // It seems backedge guard check is faster than entry one so in some cases
9461   // it can speed up whole estimation by short circuit
9462   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9463                                      SplitRHS.second) &&
9464          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9465 }
9466 
9467 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9468                                        const SCEV *LHS, const SCEV *RHS) {
9469   // Canonicalize the inputs first.
9470   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9471 
9472   if (isKnownViaInduction(Pred, LHS, RHS))
9473     return true;
9474 
9475   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9476     return true;
9477 
9478   // Otherwise see what can be done with some simple reasoning.
9479   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9480 }
9481 
9482 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9483                                          const SCEV *LHS, const SCEV *RHS,
9484                                          const Instruction *Context) {
9485   // TODO: Analyze guards and assumes from Context's block.
9486   return isKnownPredicate(Pred, LHS, RHS) ||
9487          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9488 }
9489 
9490 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9491                                               const SCEVAddRecExpr *LHS,
9492                                               const SCEV *RHS) {
9493   const Loop *L = LHS->getLoop();
9494   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9495          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9496 }
9497 
9498 Optional<ScalarEvolution::MonotonicPredicateType>
9499 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9500                                            ICmpInst::Predicate Pred,
9501                                            Optional<const SCEV *> NumIter,
9502                                            const Instruction *Context) {
9503   assert((!NumIter || !isa<SCEVCouldNotCompute>(*NumIter)) &&
9504          "provided number of iterations must be computable!");
9505   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred, NumIter, Context);
9506 
9507 #ifndef NDEBUG
9508   // Verify an invariant: inverting the predicate should turn a monotonically
9509   // increasing change to a monotonically decreasing one, and vice versa.
9510   if (Result) {
9511     auto ResultSwapped = getMonotonicPredicateTypeImpl(
9512         LHS, ICmpInst::getSwappedPredicate(Pred), NumIter, Context);
9513 
9514     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9515     assert(ResultSwapped.getValue() != Result.getValue() &&
9516            "monotonicity should flip as we flip the predicate");
9517   }
9518 #endif
9519 
9520   return Result;
9521 }
9522 
9523 Optional<ScalarEvolution::MonotonicPredicateType>
9524 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9525                                                ICmpInst::Predicate Pred,
9526                                                Optional<const SCEV *> NumIter,
9527                                                const Instruction *Context) {
9528   // A zero step value for LHS means the induction variable is essentially a
9529   // loop invariant value. We don't really depend on the predicate actually
9530   // flipping from false to true (for increasing predicates, and the other way
9531   // around for decreasing predicates), all we care about is that *if* the
9532   // predicate changes then it only changes from false to true.
9533   //
9534   // A zero step value in itself is not very useful, but there may be places
9535   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9536   // as general as possible.
9537 
9538   // Only handle LE/LT/GE/GT predicates.
9539   if (!ICmpInst::isRelational(Pred))
9540     return None;
9541 
9542   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9543   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9544          "Should be greater or less!");
9545 
9546   bool IsUnsigned = ICmpInst::isUnsigned(Pred);
9547   assert((IsUnsigned || ICmpInst::isSigned(Pred)) &&
9548          "Should be either signed or unsigned!");
9549   // Check if we can prove no-wrap in the relevant range.
9550 
9551   const SCEV *Step = LHS->getStepRecurrence(*this);
9552   bool IsStepNonNegative = isKnownNonNegative(Step);
9553   bool IsStepNonPositive = isKnownNonPositive(Step);
9554   // We need to know which direction the iteration is going.
9555   if (!IsStepNonNegative && !IsStepNonPositive)
9556     return None;
9557 
9558   auto ProvedNoWrap = [&]() {
9559     // If the AddRec already has the flag, we are done.
9560     if (IsUnsigned ? LHS->hasNoUnsignedWrap() : LHS->hasNoSignedWrap())
9561       return true;
9562 
9563     if (!NumIter)
9564       return false;
9565     // We could not prove no-wrap on all iteration space. Can we prove it for
9566     // first iterations? In order to achieve it, check that:
9567     // 1. The addrec does not self-wrap;
9568     // 2. start <= end for non-negative step and start >= end for non-positive
9569     // step.
9570     bool HasNoSelfWrap = LHS->hasNoSelfWrap();
9571     if (!HasNoSelfWrap)
9572       // If num iter has same type as the AddRec, and step is +/- 1, even max
9573       // possible number of iterations is not enough to self-wrap.
9574       if (NumIter.getValue()->getType() == LHS->getType())
9575         if (Step == getOne(LHS->getType()) ||
9576             Step == getMinusOne(LHS->getType()))
9577           HasNoSelfWrap = true;
9578     if (!HasNoSelfWrap)
9579       return false;
9580     const SCEV *Start = LHS->getStart();
9581     const SCEV *End = LHS->evaluateAtIteration(*NumIter, *this);
9582     ICmpInst::Predicate NoOverflowPred =
9583         IsStepNonNegative ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SGE;
9584     if (IsUnsigned)
9585       NoOverflowPred = ICmpInst::getUnsignedPredicate(NoOverflowPred);
9586     return isKnownPredicateAt(NoOverflowPred, Start, End, Context);
9587   };
9588 
9589   // If nothing worked, bail.
9590   if (!ProvedNoWrap())
9591     return None;
9592 
9593   if (IsUnsigned)
9594     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9595   else {
9596     if (IsStepNonNegative)
9597       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9598 
9599     if (IsStepNonPositive)
9600       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9601 
9602     return None;
9603   }
9604 }
9605 
9606 Optional<ScalarEvolution::LoopInvariantPredicate>
9607 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9608                                            const SCEV *LHS, const SCEV *RHS,
9609                                            const Loop *L) {
9610 
9611   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9612   if (!isLoopInvariant(RHS, L)) {
9613     if (!isLoopInvariant(LHS, L))
9614       return None;
9615 
9616     std::swap(LHS, RHS);
9617     Pred = ICmpInst::getSwappedPredicate(Pred);
9618   }
9619 
9620   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9621   if (!ArLHS || ArLHS->getLoop() != L)
9622     return None;
9623 
9624   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9625   if (!MonotonicType)
9626     return None;
9627   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9628   // true as the loop iterates, and the backedge is control dependent on
9629   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9630   //
9631   //   * if the predicate was false in the first iteration then the predicate
9632   //     is never evaluated again, since the loop exits without taking the
9633   //     backedge.
9634   //   * if the predicate was true in the first iteration then it will
9635   //     continue to be true for all future iterations since it is
9636   //     monotonically increasing.
9637   //
9638   // For both the above possibilities, we can replace the loop varying
9639   // predicate with its value on the first iteration of the loop (which is
9640   // loop invariant).
9641   //
9642   // A similar reasoning applies for a monotonically decreasing predicate, by
9643   // replacing true with false and false with true in the above two bullets.
9644   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9645   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9646 
9647   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9648     return None;
9649 
9650   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9651 }
9652 
9653 Optional<ScalarEvolution::LoopInvariantPredicate>
9654 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9655     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9656     const Instruction *Context, const SCEV *MaxIter) {
9657   // Try to prove the following set of facts:
9658   // - The predicate is monotonic in the iteration space.
9659   // - If the check does not fail on the 1st iteration:
9660   //   - It will not fail on the MaxIter'th iteration.
9661   // If the check does fail on the 1st iteration, we leave the loop and no
9662   // other checks matter.
9663 
9664   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9665   if (!isLoopInvariant(RHS, L)) {
9666     if (!isLoopInvariant(LHS, L))
9667       return None;
9668 
9669     std::swap(LHS, RHS);
9670     Pred = ICmpInst::getSwappedPredicate(Pred);
9671   }
9672 
9673   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9674   if (!AR || AR->getLoop() != L)
9675     return None;
9676 
9677   if (!getMonotonicPredicateType(AR, Pred, MaxIter, Context))
9678     return None;
9679 
9680   // Value of IV on suggested last iteration.
9681   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9682   // Does it still meet the requirement?
9683   if (!isKnownPredicateAt(Pred, Last, RHS, Context))
9684     return None;
9685 
9686   // Everything is fine.
9687   return ScalarEvolution::LoopInvariantPredicate(Pred, AR->getStart(), RHS);
9688 }
9689 
9690 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9691     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9692   if (HasSameValue(LHS, RHS))
9693     return ICmpInst::isTrueWhenEqual(Pred);
9694 
9695   // This code is split out from isKnownPredicate because it is called from
9696   // within isLoopEntryGuardedByCond.
9697 
9698   auto CheckRanges =
9699       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9700     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9701         .contains(RangeLHS);
9702   };
9703 
9704   // The check at the top of the function catches the case where the values are
9705   // known to be equal.
9706   if (Pred == CmpInst::ICMP_EQ)
9707     return false;
9708 
9709   if (Pred == CmpInst::ICMP_NE)
9710     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9711            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9712            isKnownNonZero(getMinusSCEV(LHS, RHS));
9713 
9714   if (CmpInst::isSigned(Pred))
9715     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9716 
9717   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9718 }
9719 
9720 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9721                                                     const SCEV *LHS,
9722                                                     const SCEV *RHS) {
9723   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9724   // Return Y via OutY.
9725   auto MatchBinaryAddToConst =
9726       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9727              SCEV::NoWrapFlags ExpectedFlags) {
9728     const SCEV *NonConstOp, *ConstOp;
9729     SCEV::NoWrapFlags FlagsPresent;
9730 
9731     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9732         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9733       return false;
9734 
9735     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9736     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9737   };
9738 
9739   APInt C;
9740 
9741   switch (Pred) {
9742   default:
9743     break;
9744 
9745   case ICmpInst::ICMP_SGE:
9746     std::swap(LHS, RHS);
9747     LLVM_FALLTHROUGH;
9748   case ICmpInst::ICMP_SLE:
9749     // X s<= (X + C)<nsw> if C >= 0
9750     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9751       return true;
9752 
9753     // (X + C)<nsw> s<= X if C <= 0
9754     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9755         !C.isStrictlyPositive())
9756       return true;
9757     break;
9758 
9759   case ICmpInst::ICMP_SGT:
9760     std::swap(LHS, RHS);
9761     LLVM_FALLTHROUGH;
9762   case ICmpInst::ICMP_SLT:
9763     // X s< (X + C)<nsw> if C > 0
9764     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9765         C.isStrictlyPositive())
9766       return true;
9767 
9768     // (X + C)<nsw> s< X if C < 0
9769     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9770       return true;
9771     break;
9772 
9773   case ICmpInst::ICMP_UGE:
9774     std::swap(LHS, RHS);
9775     LLVM_FALLTHROUGH;
9776   case ICmpInst::ICMP_ULE:
9777     // X u<= (X + C)<nuw> for any C
9778     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9779       return true;
9780     break;
9781 
9782   case ICmpInst::ICMP_UGT:
9783     std::swap(LHS, RHS);
9784     LLVM_FALLTHROUGH;
9785   case ICmpInst::ICMP_ULT:
9786     // X u< (X + C)<nuw> if C != 0
9787     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9788       return true;
9789     break;
9790   }
9791 
9792   return false;
9793 }
9794 
9795 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9796                                                    const SCEV *LHS,
9797                                                    const SCEV *RHS) {
9798   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9799     return false;
9800 
9801   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9802   // the stack can result in exponential time complexity.
9803   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9804 
9805   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9806   //
9807   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9808   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9809   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9810   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9811   // use isKnownPredicate later if needed.
9812   return isKnownNonNegative(RHS) &&
9813          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9814          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9815 }
9816 
9817 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9818                                         ICmpInst::Predicate Pred,
9819                                         const SCEV *LHS, const SCEV *RHS) {
9820   // No need to even try if we know the module has no guards.
9821   if (!HasGuards)
9822     return false;
9823 
9824   return any_of(*BB, [&](const Instruction &I) {
9825     using namespace llvm::PatternMatch;
9826 
9827     Value *Condition;
9828     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9829                          m_Value(Condition))) &&
9830            isImpliedCond(Pred, LHS, RHS, Condition, false);
9831   });
9832 }
9833 
9834 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9835 /// protected by a conditional between LHS and RHS.  This is used to
9836 /// to eliminate casts.
9837 bool
9838 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9839                                              ICmpInst::Predicate Pred,
9840                                              const SCEV *LHS, const SCEV *RHS) {
9841   // Interpret a null as meaning no loop, where there is obviously no guard
9842   // (interprocedural conditions notwithstanding).
9843   if (!L) return true;
9844 
9845   if (VerifyIR)
9846     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9847            "This cannot be done on broken IR!");
9848 
9849 
9850   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9851     return true;
9852 
9853   BasicBlock *Latch = L->getLoopLatch();
9854   if (!Latch)
9855     return false;
9856 
9857   BranchInst *LoopContinuePredicate =
9858     dyn_cast<BranchInst>(Latch->getTerminator());
9859   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9860       isImpliedCond(Pred, LHS, RHS,
9861                     LoopContinuePredicate->getCondition(),
9862                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9863     return true;
9864 
9865   // We don't want more than one activation of the following loops on the stack
9866   // -- that can lead to O(n!) time complexity.
9867   if (WalkingBEDominatingConds)
9868     return false;
9869 
9870   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9871 
9872   // See if we can exploit a trip count to prove the predicate.
9873   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9874   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9875   if (LatchBECount != getCouldNotCompute()) {
9876     // We know that Latch branches back to the loop header exactly
9877     // LatchBECount times.  This means the backdege condition at Latch is
9878     // equivalent to  "{0,+,1} u< LatchBECount".
9879     Type *Ty = LatchBECount->getType();
9880     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9881     const SCEV *LoopCounter =
9882       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9883     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9884                       LatchBECount))
9885       return true;
9886   }
9887 
9888   // Check conditions due to any @llvm.assume intrinsics.
9889   for (auto &AssumeVH : AC.assumptions()) {
9890     if (!AssumeVH)
9891       continue;
9892     auto *CI = cast<CallInst>(AssumeVH);
9893     if (!DT.dominates(CI, Latch->getTerminator()))
9894       continue;
9895 
9896     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9897       return true;
9898   }
9899 
9900   // If the loop is not reachable from the entry block, we risk running into an
9901   // infinite loop as we walk up into the dom tree.  These loops do not matter
9902   // anyway, so we just return a conservative answer when we see them.
9903   if (!DT.isReachableFromEntry(L->getHeader()))
9904     return false;
9905 
9906   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9907     return true;
9908 
9909   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9910        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9911     assert(DTN && "should reach the loop header before reaching the root!");
9912 
9913     BasicBlock *BB = DTN->getBlock();
9914     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9915       return true;
9916 
9917     BasicBlock *PBB = BB->getSinglePredecessor();
9918     if (!PBB)
9919       continue;
9920 
9921     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9922     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9923       continue;
9924 
9925     Value *Condition = ContinuePredicate->getCondition();
9926 
9927     // If we have an edge `E` within the loop body that dominates the only
9928     // latch, the condition guarding `E` also guards the backedge.  This
9929     // reasoning works only for loops with a single latch.
9930 
9931     BasicBlockEdge DominatingEdge(PBB, BB);
9932     if (DominatingEdge.isSingleEdge()) {
9933       // We're constructively (and conservatively) enumerating edges within the
9934       // loop body that dominate the latch.  The dominator tree better agree
9935       // with us on this:
9936       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9937 
9938       if (isImpliedCond(Pred, LHS, RHS, Condition,
9939                         BB != ContinuePredicate->getSuccessor(0)))
9940         return true;
9941     }
9942   }
9943 
9944   return false;
9945 }
9946 
9947 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
9948                                                      ICmpInst::Predicate Pred,
9949                                                      const SCEV *LHS,
9950                                                      const SCEV *RHS) {
9951   if (VerifyIR)
9952     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
9953            "This cannot be done on broken IR!");
9954 
9955   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9956     return true;
9957 
9958   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9959   // the facts (a >= b && a != b) separately. A typical situation is when the
9960   // non-strict comparison is known from ranges and non-equality is known from
9961   // dominating predicates. If we are proving strict comparison, we always try
9962   // to prove non-equality and non-strict comparison separately.
9963   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9964   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9965   bool ProvedNonStrictComparison = false;
9966   bool ProvedNonEquality = false;
9967 
9968   if (ProvingStrictComparison) {
9969     ProvedNonStrictComparison =
9970         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9971     ProvedNonEquality =
9972         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9973     if (ProvedNonStrictComparison && ProvedNonEquality)
9974       return true;
9975   }
9976 
9977   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9978   auto ProveViaGuard = [&](const BasicBlock *Block) {
9979     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9980       return true;
9981     if (ProvingStrictComparison) {
9982       if (!ProvedNonStrictComparison)
9983         ProvedNonStrictComparison =
9984             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9985       if (!ProvedNonEquality)
9986         ProvedNonEquality =
9987             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9988       if (ProvedNonStrictComparison && ProvedNonEquality)
9989         return true;
9990     }
9991     return false;
9992   };
9993 
9994   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9995   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
9996     const Instruction *Context = &BB->front();
9997     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
9998       return true;
9999     if (ProvingStrictComparison) {
10000       if (!ProvedNonStrictComparison)
10001         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
10002                                                   Condition, Inverse, Context);
10003       if (!ProvedNonEquality)
10004         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
10005                                           Condition, Inverse, Context);
10006       if (ProvedNonStrictComparison && ProvedNonEquality)
10007         return true;
10008     }
10009     return false;
10010   };
10011 
10012   // Starting at the block's predecessor, climb up the predecessor chain, as long
10013   // as there are predecessors that can be found that have unique successors
10014   // leading to the original block.
10015   const Loop *ContainingLoop = LI.getLoopFor(BB);
10016   const BasicBlock *PredBB;
10017   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10018     PredBB = ContainingLoop->getLoopPredecessor();
10019   else
10020     PredBB = BB->getSinglePredecessor();
10021   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10022        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10023     if (ProveViaGuard(Pair.first))
10024       return true;
10025 
10026     const BranchInst *LoopEntryPredicate =
10027         dyn_cast<BranchInst>(Pair.first->getTerminator());
10028     if (!LoopEntryPredicate ||
10029         LoopEntryPredicate->isUnconditional())
10030       continue;
10031 
10032     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10033                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10034       return true;
10035   }
10036 
10037   // Check conditions due to any @llvm.assume intrinsics.
10038   for (auto &AssumeVH : AC.assumptions()) {
10039     if (!AssumeVH)
10040       continue;
10041     auto *CI = cast<CallInst>(AssumeVH);
10042     if (!DT.dominates(CI, BB))
10043       continue;
10044 
10045     if (ProveViaCond(CI->getArgOperand(0), false))
10046       return true;
10047   }
10048 
10049   return false;
10050 }
10051 
10052 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10053                                                ICmpInst::Predicate Pred,
10054                                                const SCEV *LHS,
10055                                                const SCEV *RHS) {
10056   // Interpret a null as meaning no loop, where there is obviously no guard
10057   // (interprocedural conditions notwithstanding).
10058   if (!L)
10059     return false;
10060 
10061   // Both LHS and RHS must be available at loop entry.
10062   assert(isAvailableAtLoopEntry(LHS, L) &&
10063          "LHS is not available at Loop Entry");
10064   assert(isAvailableAtLoopEntry(RHS, L) &&
10065          "RHS is not available at Loop Entry");
10066   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10067 }
10068 
10069 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10070                                     const SCEV *RHS,
10071                                     const Value *FoundCondValue, bool Inverse,
10072                                     const Instruction *Context) {
10073   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10074     return false;
10075 
10076   auto ClearOnExit =
10077       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10078 
10079   // Recursively handle And and Or conditions.
10080   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
10081     if (BO->getOpcode() == Instruction::And) {
10082       if (!Inverse)
10083         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10084                              Context) ||
10085                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10086                              Context);
10087     } else if (BO->getOpcode() == Instruction::Or) {
10088       if (Inverse)
10089         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
10090                              Context) ||
10091                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
10092                              Context);
10093     }
10094   }
10095 
10096   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10097   if (!ICI) return false;
10098 
10099   // Now that we found a conditional branch that dominates the loop or controls
10100   // the loop latch. Check to see if it is the comparison we are looking for.
10101   ICmpInst::Predicate FoundPred;
10102   if (Inverse)
10103     FoundPred = ICI->getInversePredicate();
10104   else
10105     FoundPred = ICI->getPredicate();
10106 
10107   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10108   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10109 
10110   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10111 }
10112 
10113 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10114                                     const SCEV *RHS,
10115                                     ICmpInst::Predicate FoundPred,
10116                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10117                                     const Instruction *Context) {
10118   // Balance the types.
10119   if (getTypeSizeInBits(LHS->getType()) <
10120       getTypeSizeInBits(FoundLHS->getType())) {
10121     // For unsigned and equality predicates, try to prove that both found
10122     // operands fit into narrow unsigned range. If so, try to prove facts in
10123     // narrow types.
10124     if (!CmpInst::isSigned(FoundPred)) {
10125       auto *NarrowType = LHS->getType();
10126       auto *WideType = FoundLHS->getType();
10127       auto BitWidth = getTypeSizeInBits(NarrowType);
10128       const SCEV *MaxValue = getZeroExtendExpr(
10129           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10130       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10131           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10132         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10133         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10134         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10135                                        TruncFoundRHS, Context))
10136           return true;
10137       }
10138     }
10139 
10140     if (CmpInst::isSigned(Pred)) {
10141       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10142       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10143     } else {
10144       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10145       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10146     }
10147   } else if (getTypeSizeInBits(LHS->getType()) >
10148       getTypeSizeInBits(FoundLHS->getType())) {
10149     if (CmpInst::isSigned(FoundPred)) {
10150       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10151       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10152     } else {
10153       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10154       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10155     }
10156   }
10157   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10158                                     FoundRHS, Context);
10159 }
10160 
10161 bool ScalarEvolution::isImpliedCondBalancedTypes(
10162     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10163     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10164     const Instruction *Context) {
10165   assert(getTypeSizeInBits(LHS->getType()) ==
10166              getTypeSizeInBits(FoundLHS->getType()) &&
10167          "Types should be balanced!");
10168   // Canonicalize the query to match the way instcombine will have
10169   // canonicalized the comparison.
10170   if (SimplifyICmpOperands(Pred, LHS, RHS))
10171     if (LHS == RHS)
10172       return CmpInst::isTrueWhenEqual(Pred);
10173   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10174     if (FoundLHS == FoundRHS)
10175       return CmpInst::isFalseWhenEqual(FoundPred);
10176 
10177   // Check to see if we can make the LHS or RHS match.
10178   if (LHS == FoundRHS || RHS == FoundLHS) {
10179     if (isa<SCEVConstant>(RHS)) {
10180       std::swap(FoundLHS, FoundRHS);
10181       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10182     } else {
10183       std::swap(LHS, RHS);
10184       Pred = ICmpInst::getSwappedPredicate(Pred);
10185     }
10186   }
10187 
10188   // Check whether the found predicate is the same as the desired predicate.
10189   if (FoundPred == Pred)
10190     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10191 
10192   // Check whether swapping the found predicate makes it the same as the
10193   // desired predicate.
10194   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10195     if (isa<SCEVConstant>(RHS))
10196       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10197     else
10198       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
10199                                    LHS, FoundLHS, FoundRHS, Context);
10200   }
10201 
10202   // Unsigned comparison is the same as signed comparison when both the operands
10203   // are non-negative.
10204   if (CmpInst::isUnsigned(FoundPred) &&
10205       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10206       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10207     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10208 
10209   // Check if we can make progress by sharpening ranges.
10210   if (FoundPred == ICmpInst::ICMP_NE &&
10211       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10212 
10213     const SCEVConstant *C = nullptr;
10214     const SCEV *V = nullptr;
10215 
10216     if (isa<SCEVConstant>(FoundLHS)) {
10217       C = cast<SCEVConstant>(FoundLHS);
10218       V = FoundRHS;
10219     } else {
10220       C = cast<SCEVConstant>(FoundRHS);
10221       V = FoundLHS;
10222     }
10223 
10224     // The guarding predicate tells us that C != V. If the known range
10225     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10226     // range we consider has to correspond to same signedness as the
10227     // predicate we're interested in folding.
10228 
10229     APInt Min = ICmpInst::isSigned(Pred) ?
10230         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10231 
10232     if (Min == C->getAPInt()) {
10233       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10234       // This is true even if (Min + 1) wraps around -- in case of
10235       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10236 
10237       APInt SharperMin = Min + 1;
10238 
10239       switch (Pred) {
10240         case ICmpInst::ICMP_SGE:
10241         case ICmpInst::ICMP_UGE:
10242           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10243           // RHS, we're done.
10244           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10245                                     Context))
10246             return true;
10247           LLVM_FALLTHROUGH;
10248 
10249         case ICmpInst::ICMP_SGT:
10250         case ICmpInst::ICMP_UGT:
10251           // We know from the range information that (V `Pred` Min ||
10252           // V == Min).  We know from the guarding condition that !(V
10253           // == Min).  This gives us
10254           //
10255           //       V `Pred` Min || V == Min && !(V == Min)
10256           //   =>  V `Pred` Min
10257           //
10258           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10259 
10260           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10261                                     Context))
10262             return true;
10263           break;
10264 
10265         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10266         case ICmpInst::ICMP_SLE:
10267         case ICmpInst::ICMP_ULE:
10268           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10269                                     LHS, V, getConstant(SharperMin), Context))
10270             return true;
10271           LLVM_FALLTHROUGH;
10272 
10273         case ICmpInst::ICMP_SLT:
10274         case ICmpInst::ICMP_ULT:
10275           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10276                                     LHS, V, getConstant(Min), Context))
10277             return true;
10278           break;
10279 
10280         default:
10281           // No change
10282           break;
10283       }
10284     }
10285   }
10286 
10287   // Check whether the actual condition is beyond sufficient.
10288   if (FoundPred == ICmpInst::ICMP_EQ)
10289     if (ICmpInst::isTrueWhenEqual(Pred))
10290       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10291         return true;
10292   if (Pred == ICmpInst::ICMP_NE)
10293     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10294       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10295                                 Context))
10296         return true;
10297 
10298   // Otherwise assume the worst.
10299   return false;
10300 }
10301 
10302 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10303                                      const SCEV *&L, const SCEV *&R,
10304                                      SCEV::NoWrapFlags &Flags) {
10305   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10306   if (!AE || AE->getNumOperands() != 2)
10307     return false;
10308 
10309   L = AE->getOperand(0);
10310   R = AE->getOperand(1);
10311   Flags = AE->getNoWrapFlags();
10312   return true;
10313 }
10314 
10315 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10316                                                            const SCEV *Less) {
10317   // We avoid subtracting expressions here because this function is usually
10318   // fairly deep in the call stack (i.e. is called many times).
10319 
10320   // X - X = 0.
10321   if (More == Less)
10322     return APInt(getTypeSizeInBits(More->getType()), 0);
10323 
10324   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10325     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10326     const auto *MAR = cast<SCEVAddRecExpr>(More);
10327 
10328     if (LAR->getLoop() != MAR->getLoop())
10329       return None;
10330 
10331     // We look at affine expressions only; not for correctness but to keep
10332     // getStepRecurrence cheap.
10333     if (!LAR->isAffine() || !MAR->isAffine())
10334       return None;
10335 
10336     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10337       return None;
10338 
10339     Less = LAR->getStart();
10340     More = MAR->getStart();
10341 
10342     // fall through
10343   }
10344 
10345   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10346     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10347     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10348     return M - L;
10349   }
10350 
10351   SCEV::NoWrapFlags Flags;
10352   const SCEV *LLess = nullptr, *RLess = nullptr;
10353   const SCEV *LMore = nullptr, *RMore = nullptr;
10354   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10355   // Compare (X + C1) vs X.
10356   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10357     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10358       if (RLess == More)
10359         return -(C1->getAPInt());
10360 
10361   // Compare X vs (X + C2).
10362   if (splitBinaryAdd(More, LMore, RMore, Flags))
10363     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10364       if (RMore == Less)
10365         return C2->getAPInt();
10366 
10367   // Compare (X + C1) vs (X + C2).
10368   if (C1 && C2 && RLess == RMore)
10369     return C2->getAPInt() - C1->getAPInt();
10370 
10371   return None;
10372 }
10373 
10374 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10375     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10376     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10377   // Try to recognize the following pattern:
10378   //
10379   //   FoundRHS = ...
10380   // ...
10381   // loop:
10382   //   FoundLHS = {Start,+,W}
10383   // context_bb: // Basic block from the same loop
10384   //   known(Pred, FoundLHS, FoundRHS)
10385   //
10386   // If some predicate is known in the context of a loop, it is also known on
10387   // each iteration of this loop, including the first iteration. Therefore, in
10388   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10389   // prove the original pred using this fact.
10390   if (!Context)
10391     return false;
10392   const BasicBlock *ContextBB = Context->getParent();
10393   // Make sure AR varies in the context block.
10394   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10395     const Loop *L = AR->getLoop();
10396     // Make sure that context belongs to the loop and executes on 1st iteration
10397     // (if it ever executes at all).
10398     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10399       return false;
10400     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10401       return false;
10402     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10403   }
10404 
10405   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10406     const Loop *L = AR->getLoop();
10407     // Make sure that context belongs to the loop and executes on 1st iteration
10408     // (if it ever executes at all).
10409     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10410       return false;
10411     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10412       return false;
10413     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10414   }
10415 
10416   return false;
10417 }
10418 
10419 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10420     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10421     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10422   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10423     return false;
10424 
10425   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10426   if (!AddRecLHS)
10427     return false;
10428 
10429   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10430   if (!AddRecFoundLHS)
10431     return false;
10432 
10433   // We'd like to let SCEV reason about control dependencies, so we constrain
10434   // both the inequalities to be about add recurrences on the same loop.  This
10435   // way we can use isLoopEntryGuardedByCond later.
10436 
10437   const Loop *L = AddRecFoundLHS->getLoop();
10438   if (L != AddRecLHS->getLoop())
10439     return false;
10440 
10441   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10442   //
10443   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10444   //                                                                  ... (2)
10445   //
10446   // Informal proof for (2), assuming (1) [*]:
10447   //
10448   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10449   //
10450   // Then
10451   //
10452   //       FoundLHS s< FoundRHS s< INT_MIN - C
10453   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10454   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10455   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10456   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10457   // <=>  FoundLHS + C s< FoundRHS + C
10458   //
10459   // [*]: (1) can be proved by ruling out overflow.
10460   //
10461   // [**]: This can be proved by analyzing all the four possibilities:
10462   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10463   //    (A s>= 0, B s>= 0).
10464   //
10465   // Note:
10466   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10467   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10468   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10469   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10470   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10471   // C)".
10472 
10473   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10474   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10475   if (!LDiff || !RDiff || *LDiff != *RDiff)
10476     return false;
10477 
10478   if (LDiff->isMinValue())
10479     return true;
10480 
10481   APInt FoundRHSLimit;
10482 
10483   if (Pred == CmpInst::ICMP_ULT) {
10484     FoundRHSLimit = -(*RDiff);
10485   } else {
10486     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10487     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10488   }
10489 
10490   // Try to prove (1) or (2), as needed.
10491   return isAvailableAtLoopEntry(FoundRHS, L) &&
10492          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10493                                   getConstant(FoundRHSLimit));
10494 }
10495 
10496 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10497                                         const SCEV *LHS, const SCEV *RHS,
10498                                         const SCEV *FoundLHS,
10499                                         const SCEV *FoundRHS, unsigned Depth) {
10500   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10501 
10502   auto ClearOnExit = make_scope_exit([&]() {
10503     if (LPhi) {
10504       bool Erased = PendingMerges.erase(LPhi);
10505       assert(Erased && "Failed to erase LPhi!");
10506       (void)Erased;
10507     }
10508     if (RPhi) {
10509       bool Erased = PendingMerges.erase(RPhi);
10510       assert(Erased && "Failed to erase RPhi!");
10511       (void)Erased;
10512     }
10513   });
10514 
10515   // Find respective Phis and check that they are not being pending.
10516   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10517     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10518       if (!PendingMerges.insert(Phi).second)
10519         return false;
10520       LPhi = Phi;
10521     }
10522   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10523     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10524       // If we detect a loop of Phi nodes being processed by this method, for
10525       // example:
10526       //
10527       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10528       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10529       //
10530       // we don't want to deal with a case that complex, so return conservative
10531       // answer false.
10532       if (!PendingMerges.insert(Phi).second)
10533         return false;
10534       RPhi = Phi;
10535     }
10536 
10537   // If none of LHS, RHS is a Phi, nothing to do here.
10538   if (!LPhi && !RPhi)
10539     return false;
10540 
10541   // If there is a SCEVUnknown Phi we are interested in, make it left.
10542   if (!LPhi) {
10543     std::swap(LHS, RHS);
10544     std::swap(FoundLHS, FoundRHS);
10545     std::swap(LPhi, RPhi);
10546     Pred = ICmpInst::getSwappedPredicate(Pred);
10547   }
10548 
10549   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10550   const BasicBlock *LBB = LPhi->getParent();
10551   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10552 
10553   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10554     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10555            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10556            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10557   };
10558 
10559   if (RPhi && RPhi->getParent() == LBB) {
10560     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10561     // If we compare two Phis from the same block, and for each entry block
10562     // the predicate is true for incoming values from this block, then the
10563     // predicate is also true for the Phis.
10564     for (const BasicBlock *IncBB : predecessors(LBB)) {
10565       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10566       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10567       if (!ProvedEasily(L, R))
10568         return false;
10569     }
10570   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10571     // Case two: RHS is also a Phi from the same basic block, and it is an
10572     // AddRec. It means that there is a loop which has both AddRec and Unknown
10573     // PHIs, for it we can compare incoming values of AddRec from above the loop
10574     // and latch with their respective incoming values of LPhi.
10575     // TODO: Generalize to handle loops with many inputs in a header.
10576     if (LPhi->getNumIncomingValues() != 2) return false;
10577 
10578     auto *RLoop = RAR->getLoop();
10579     auto *Predecessor = RLoop->getLoopPredecessor();
10580     assert(Predecessor && "Loop with AddRec with no predecessor?");
10581     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10582     if (!ProvedEasily(L1, RAR->getStart()))
10583       return false;
10584     auto *Latch = RLoop->getLoopLatch();
10585     assert(Latch && "Loop with AddRec with no latch?");
10586     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10587     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10588       return false;
10589   } else {
10590     // In all other cases go over inputs of LHS and compare each of them to RHS,
10591     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10592     // At this point RHS is either a non-Phi, or it is a Phi from some block
10593     // different from LBB.
10594     for (const BasicBlock *IncBB : predecessors(LBB)) {
10595       // Check that RHS is available in this block.
10596       if (!dominates(RHS, IncBB))
10597         return false;
10598       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10599       if (!ProvedEasily(L, RHS))
10600         return false;
10601     }
10602   }
10603   return true;
10604 }
10605 
10606 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10607                                             const SCEV *LHS, const SCEV *RHS,
10608                                             const SCEV *FoundLHS,
10609                                             const SCEV *FoundRHS,
10610                                             const Instruction *Context) {
10611   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10612     return true;
10613 
10614   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10615     return true;
10616 
10617   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10618                                           Context))
10619     return true;
10620 
10621   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10622                                      FoundLHS, FoundRHS) ||
10623          // ~x < ~y --> x > y
10624          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10625                                      getNotSCEV(FoundRHS),
10626                                      getNotSCEV(FoundLHS));
10627 }
10628 
10629 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10630 template <typename MinMaxExprType>
10631 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10632                                  const SCEV *Candidate) {
10633   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10634   if (!MinMaxExpr)
10635     return false;
10636 
10637   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10638 }
10639 
10640 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10641                                            ICmpInst::Predicate Pred,
10642                                            const SCEV *LHS, const SCEV *RHS) {
10643   // If both sides are affine addrecs for the same loop, with equal
10644   // steps, and we know the recurrences don't wrap, then we only
10645   // need to check the predicate on the starting values.
10646 
10647   if (!ICmpInst::isRelational(Pred))
10648     return false;
10649 
10650   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10651   if (!LAR)
10652     return false;
10653   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10654   if (!RAR)
10655     return false;
10656   if (LAR->getLoop() != RAR->getLoop())
10657     return false;
10658   if (!LAR->isAffine() || !RAR->isAffine())
10659     return false;
10660 
10661   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10662     return false;
10663 
10664   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10665                          SCEV::FlagNSW : SCEV::FlagNUW;
10666   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10667     return false;
10668 
10669   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10670 }
10671 
10672 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10673 /// expression?
10674 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10675                                         ICmpInst::Predicate Pred,
10676                                         const SCEV *LHS, const SCEV *RHS) {
10677   switch (Pred) {
10678   default:
10679     return false;
10680 
10681   case ICmpInst::ICMP_SGE:
10682     std::swap(LHS, RHS);
10683     LLVM_FALLTHROUGH;
10684   case ICmpInst::ICMP_SLE:
10685     return
10686         // min(A, ...) <= A
10687         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10688         // A <= max(A, ...)
10689         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10690 
10691   case ICmpInst::ICMP_UGE:
10692     std::swap(LHS, RHS);
10693     LLVM_FALLTHROUGH;
10694   case ICmpInst::ICMP_ULE:
10695     return
10696         // min(A, ...) <= A
10697         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10698         // A <= max(A, ...)
10699         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10700   }
10701 
10702   llvm_unreachable("covered switch fell through?!");
10703 }
10704 
10705 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10706                                              const SCEV *LHS, const SCEV *RHS,
10707                                              const SCEV *FoundLHS,
10708                                              const SCEV *FoundRHS,
10709                                              unsigned Depth) {
10710   assert(getTypeSizeInBits(LHS->getType()) ==
10711              getTypeSizeInBits(RHS->getType()) &&
10712          "LHS and RHS have different sizes?");
10713   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10714              getTypeSizeInBits(FoundRHS->getType()) &&
10715          "FoundLHS and FoundRHS have different sizes?");
10716   // We want to avoid hurting the compile time with analysis of too big trees.
10717   if (Depth > MaxSCEVOperationsImplicationDepth)
10718     return false;
10719 
10720   // We only want to work with GT comparison so far.
10721   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10722     Pred = CmpInst::getSwappedPredicate(Pred);
10723     std::swap(LHS, RHS);
10724     std::swap(FoundLHS, FoundRHS);
10725   }
10726 
10727   // For unsigned, try to reduce it to corresponding signed comparison.
10728   if (Pred == ICmpInst::ICMP_UGT)
10729     // We can replace unsigned predicate with its signed counterpart if all
10730     // involved values are non-negative.
10731     // TODO: We could have better support for unsigned.
10732     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10733       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10734       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10735       // use this fact to prove that LHS and RHS are non-negative.
10736       const SCEV *MinusOne = getMinusOne(LHS->getType());
10737       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10738                                 FoundRHS) &&
10739           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10740                                 FoundRHS))
10741         Pred = ICmpInst::ICMP_SGT;
10742     }
10743 
10744   if (Pred != ICmpInst::ICMP_SGT)
10745     return false;
10746 
10747   auto GetOpFromSExt = [&](const SCEV *S) {
10748     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10749       return Ext->getOperand();
10750     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10751     // the constant in some cases.
10752     return S;
10753   };
10754 
10755   // Acquire values from extensions.
10756   auto *OrigLHS = LHS;
10757   auto *OrigFoundLHS = FoundLHS;
10758   LHS = GetOpFromSExt(LHS);
10759   FoundLHS = GetOpFromSExt(FoundLHS);
10760 
10761   // Is the SGT predicate can be proved trivially or using the found context.
10762   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10763     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10764            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10765                                   FoundRHS, Depth + 1);
10766   };
10767 
10768   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10769     // We want to avoid creation of any new non-constant SCEV. Since we are
10770     // going to compare the operands to RHS, we should be certain that we don't
10771     // need any size extensions for this. So let's decline all cases when the
10772     // sizes of types of LHS and RHS do not match.
10773     // TODO: Maybe try to get RHS from sext to catch more cases?
10774     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10775       return false;
10776 
10777     // Should not overflow.
10778     if (!LHSAddExpr->hasNoSignedWrap())
10779       return false;
10780 
10781     auto *LL = LHSAddExpr->getOperand(0);
10782     auto *LR = LHSAddExpr->getOperand(1);
10783     auto *MinusOne = getMinusOne(RHS->getType());
10784 
10785     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10786     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10787       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10788     };
10789     // Try to prove the following rule:
10790     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10791     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10792     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10793       return true;
10794   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10795     Value *LL, *LR;
10796     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10797 
10798     using namespace llvm::PatternMatch;
10799 
10800     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10801       // Rules for division.
10802       // We are going to perform some comparisons with Denominator and its
10803       // derivative expressions. In general case, creating a SCEV for it may
10804       // lead to a complex analysis of the entire graph, and in particular it
10805       // can request trip count recalculation for the same loop. This would
10806       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10807       // this, we only want to create SCEVs that are constants in this section.
10808       // So we bail if Denominator is not a constant.
10809       if (!isa<ConstantInt>(LR))
10810         return false;
10811 
10812       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10813 
10814       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10815       // then a SCEV for the numerator already exists and matches with FoundLHS.
10816       auto *Numerator = getExistingSCEV(LL);
10817       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10818         return false;
10819 
10820       // Make sure that the numerator matches with FoundLHS and the denominator
10821       // is positive.
10822       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10823         return false;
10824 
10825       auto *DTy = Denominator->getType();
10826       auto *FRHSTy = FoundRHS->getType();
10827       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10828         // One of types is a pointer and another one is not. We cannot extend
10829         // them properly to a wider type, so let us just reject this case.
10830         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10831         // to avoid this check.
10832         return false;
10833 
10834       // Given that:
10835       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10836       auto *WTy = getWiderType(DTy, FRHSTy);
10837       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10838       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10839 
10840       // Try to prove the following rule:
10841       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10842       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10843       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10844       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10845       if (isKnownNonPositive(RHS) &&
10846           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10847         return true;
10848 
10849       // Try to prove the following rule:
10850       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10851       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10852       // If we divide it by Denominator > 2, then:
10853       // 1. If FoundLHS is negative, then the result is 0.
10854       // 2. If FoundLHS is non-negative, then the result is non-negative.
10855       // Anyways, the result is non-negative.
10856       auto *MinusOne = getMinusOne(WTy);
10857       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10858       if (isKnownNegative(RHS) &&
10859           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10860         return true;
10861     }
10862   }
10863 
10864   // If our expression contained SCEVUnknown Phis, and we split it down and now
10865   // need to prove something for them, try to prove the predicate for every
10866   // possible incoming values of those Phis.
10867   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10868     return true;
10869 
10870   return false;
10871 }
10872 
10873 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10874                                         const SCEV *LHS, const SCEV *RHS) {
10875   // zext x u<= sext x, sext x s<= zext x
10876   switch (Pred) {
10877   case ICmpInst::ICMP_SGE:
10878     std::swap(LHS, RHS);
10879     LLVM_FALLTHROUGH;
10880   case ICmpInst::ICMP_SLE: {
10881     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10882     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10883     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10884     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10885       return true;
10886     break;
10887   }
10888   case ICmpInst::ICMP_UGE:
10889     std::swap(LHS, RHS);
10890     LLVM_FALLTHROUGH;
10891   case ICmpInst::ICMP_ULE: {
10892     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10893     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10894     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10895     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10896       return true;
10897     break;
10898   }
10899   default:
10900     break;
10901   };
10902   return false;
10903 }
10904 
10905 bool
10906 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10907                                            const SCEV *LHS, const SCEV *RHS) {
10908   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10909          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10910          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10911          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10912          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10913 }
10914 
10915 bool
10916 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10917                                              const SCEV *LHS, const SCEV *RHS,
10918                                              const SCEV *FoundLHS,
10919                                              const SCEV *FoundRHS) {
10920   switch (Pred) {
10921   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10922   case ICmpInst::ICMP_EQ:
10923   case ICmpInst::ICMP_NE:
10924     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10925       return true;
10926     break;
10927   case ICmpInst::ICMP_SLT:
10928   case ICmpInst::ICMP_SLE:
10929     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10930         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10931       return true;
10932     break;
10933   case ICmpInst::ICMP_SGT:
10934   case ICmpInst::ICMP_SGE:
10935     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10936         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10937       return true;
10938     break;
10939   case ICmpInst::ICMP_ULT:
10940   case ICmpInst::ICMP_ULE:
10941     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10942         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10943       return true;
10944     break;
10945   case ICmpInst::ICMP_UGT:
10946   case ICmpInst::ICMP_UGE:
10947     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10948         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10949       return true;
10950     break;
10951   }
10952 
10953   // Maybe it can be proved via operations?
10954   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10955     return true;
10956 
10957   return false;
10958 }
10959 
10960 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10961                                                      const SCEV *LHS,
10962                                                      const SCEV *RHS,
10963                                                      const SCEV *FoundLHS,
10964                                                      const SCEV *FoundRHS) {
10965   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10966     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10967     // reduce the compile time impact of this optimization.
10968     return false;
10969 
10970   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10971   if (!Addend)
10972     return false;
10973 
10974   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10975 
10976   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10977   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10978   ConstantRange FoundLHSRange =
10979       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10980 
10981   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10982   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10983 
10984   // We can also compute the range of values for `LHS` that satisfy the
10985   // consequent, "`LHS` `Pred` `RHS`":
10986   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10987   ConstantRange SatisfyingLHSRange =
10988       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10989 
10990   // The antecedent implies the consequent if every value of `LHS` that
10991   // satisfies the antecedent also satisfies the consequent.
10992   return SatisfyingLHSRange.contains(LHSRange);
10993 }
10994 
10995 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10996                                          bool IsSigned, bool NoWrap) {
10997   assert(isKnownPositive(Stride) && "Positive stride expected!");
10998 
10999   if (NoWrap) return false;
11000 
11001   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11002   const SCEV *One = getOne(Stride->getType());
11003 
11004   if (IsSigned) {
11005     APInt MaxRHS = getSignedRangeMax(RHS);
11006     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11007     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11008 
11009     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11010     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11011   }
11012 
11013   APInt MaxRHS = getUnsignedRangeMax(RHS);
11014   APInt MaxValue = APInt::getMaxValue(BitWidth);
11015   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11016 
11017   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11018   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11019 }
11020 
11021 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11022                                          bool IsSigned, bool NoWrap) {
11023   if (NoWrap) return false;
11024 
11025   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11026   const SCEV *One = getOne(Stride->getType());
11027 
11028   if (IsSigned) {
11029     APInt MinRHS = getSignedRangeMin(RHS);
11030     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11031     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11032 
11033     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11034     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11035   }
11036 
11037   APInt MinRHS = getUnsignedRangeMin(RHS);
11038   APInt MinValue = APInt::getMinValue(BitWidth);
11039   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11040 
11041   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11042   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11043 }
11044 
11045 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
11046                                             bool Equality) {
11047   const SCEV *One = getOne(Step->getType());
11048   Delta = Equality ? getAddExpr(Delta, Step)
11049                    : getAddExpr(Delta, getMinusSCEV(Step, One));
11050   return getUDivExpr(Delta, Step);
11051 }
11052 
11053 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11054                                                     const SCEV *Stride,
11055                                                     const SCEV *End,
11056                                                     unsigned BitWidth,
11057                                                     bool IsSigned) {
11058 
11059   assert(!isKnownNonPositive(Stride) &&
11060          "Stride is expected strictly positive!");
11061   // Calculate the maximum backedge count based on the range of values
11062   // permitted by Start, End, and Stride.
11063   const SCEV *MaxBECount;
11064   APInt MinStart =
11065       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11066 
11067   APInt StrideForMaxBECount =
11068       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11069 
11070   // We already know that the stride is positive, so we paper over conservatism
11071   // in our range computation by forcing StrideForMaxBECount to be at least one.
11072   // In theory this is unnecessary, but we expect MaxBECount to be a
11073   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11074   // is nothing to constant fold it to).
11075   APInt One(BitWidth, 1, IsSigned);
11076   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11077 
11078   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11079                             : APInt::getMaxValue(BitWidth);
11080   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11081 
11082   // Although End can be a MAX expression we estimate MaxEnd considering only
11083   // the case End = RHS of the loop termination condition. This is safe because
11084   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11085   // taken count.
11086   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11087                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11088 
11089   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11090                               getConstant(StrideForMaxBECount) /* Step */,
11091                               false /* Equality */);
11092 
11093   return MaxBECount;
11094 }
11095 
11096 ScalarEvolution::ExitLimit
11097 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11098                                   const Loop *L, bool IsSigned,
11099                                   bool ControlsExit, bool AllowPredicates) {
11100   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11101 
11102   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11103   bool PredicatedIV = false;
11104 
11105   if (!IV && AllowPredicates) {
11106     // Try to make this an AddRec using runtime tests, in the first X
11107     // iterations of this loop, where X is the SCEV expression found by the
11108     // algorithm below.
11109     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11110     PredicatedIV = true;
11111   }
11112 
11113   // Avoid weird loops
11114   if (!IV || IV->getLoop() != L || !IV->isAffine())
11115     return getCouldNotCompute();
11116 
11117   bool NoWrap = ControlsExit &&
11118                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11119 
11120   const SCEV *Stride = IV->getStepRecurrence(*this);
11121 
11122   bool PositiveStride = isKnownPositive(Stride);
11123 
11124   // Avoid negative or zero stride values.
11125   if (!PositiveStride) {
11126     // We can compute the correct backedge taken count for loops with unknown
11127     // strides if we can prove that the loop is not an infinite loop with side
11128     // effects. Here's the loop structure we are trying to handle -
11129     //
11130     // i = start
11131     // do {
11132     //   A[i] = i;
11133     //   i += s;
11134     // } while (i < end);
11135     //
11136     // The backedge taken count for such loops is evaluated as -
11137     // (max(end, start + stride) - start - 1) /u stride
11138     //
11139     // The additional preconditions that we need to check to prove correctness
11140     // of the above formula is as follows -
11141     //
11142     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11143     //    NoWrap flag).
11144     // b) loop is single exit with no side effects.
11145     //
11146     //
11147     // Precondition a) implies that if the stride is negative, this is a single
11148     // trip loop. The backedge taken count formula reduces to zero in this case.
11149     //
11150     // Precondition b) implies that the unknown stride cannot be zero otherwise
11151     // we have UB.
11152     //
11153     // The positive stride case is the same as isKnownPositive(Stride) returning
11154     // true (original behavior of the function).
11155     //
11156     // We want to make sure that the stride is truly unknown as there are edge
11157     // cases where ScalarEvolution propagates no wrap flags to the
11158     // post-increment/decrement IV even though the increment/decrement operation
11159     // itself is wrapping. The computed backedge taken count may be wrong in
11160     // such cases. This is prevented by checking that the stride is not known to
11161     // be either positive or non-positive. For example, no wrap flags are
11162     // propagated to the post-increment IV of this loop with a trip count of 2 -
11163     //
11164     // unsigned char i;
11165     // for(i=127; i<128; i+=129)
11166     //   A[i] = i;
11167     //
11168     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11169         !loopHasNoSideEffects(L))
11170       return getCouldNotCompute();
11171   } else if (!Stride->isOne() &&
11172              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11173     // Avoid proven overflow cases: this will ensure that the backedge taken
11174     // count will not generate any unsigned overflow. Relaxed no-overflow
11175     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11176     // undefined behaviors like the case of C language.
11177     return getCouldNotCompute();
11178 
11179   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11180                                       : ICmpInst::ICMP_ULT;
11181   const SCEV *Start = IV->getStart();
11182   const SCEV *End = RHS;
11183   // When the RHS is not invariant, we do not know the end bound of the loop and
11184   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11185   // calculate the MaxBECount, given the start, stride and max value for the end
11186   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11187   // checked above).
11188   if (!isLoopInvariant(RHS, L)) {
11189     const SCEV *MaxBECount = computeMaxBECountForLT(
11190         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11191     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11192                      false /*MaxOrZero*/, Predicates);
11193   }
11194   // If the backedge is taken at least once, then it will be taken
11195   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11196   // is the LHS value of the less-than comparison the first time it is evaluated
11197   // and End is the RHS.
11198   const SCEV *BECountIfBackedgeTaken =
11199     computeBECount(getMinusSCEV(End, Start), Stride, false);
11200   // If the loop entry is guarded by the result of the backedge test of the
11201   // first loop iteration, then we know the backedge will be taken at least
11202   // once and so the backedge taken count is as above. If not then we use the
11203   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11204   // as if the backedge is taken at least once max(End,Start) is End and so the
11205   // result is as above, and if not max(End,Start) is Start so we get a backedge
11206   // count of zero.
11207   const SCEV *BECount;
11208   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11209     BECount = BECountIfBackedgeTaken;
11210   else {
11211     // If we know that RHS >= Start in the context of loop, then we know that
11212     // max(RHS, Start) = RHS at this point.
11213     if (isLoopEntryGuardedByCond(
11214             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11215       End = RHS;
11216     else
11217       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11218     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11219   }
11220 
11221   const SCEV *MaxBECount;
11222   bool MaxOrZero = false;
11223   if (isa<SCEVConstant>(BECount))
11224     MaxBECount = BECount;
11225   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11226     // If we know exactly how many times the backedge will be taken if it's
11227     // taken at least once, then the backedge count will either be that or
11228     // zero.
11229     MaxBECount = BECountIfBackedgeTaken;
11230     MaxOrZero = true;
11231   } else {
11232     MaxBECount = computeMaxBECountForLT(
11233         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11234   }
11235 
11236   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11237       !isa<SCEVCouldNotCompute>(BECount))
11238     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11239 
11240   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11241 }
11242 
11243 ScalarEvolution::ExitLimit
11244 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11245                                      const Loop *L, bool IsSigned,
11246                                      bool ControlsExit, bool AllowPredicates) {
11247   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11248   // We handle only IV > Invariant
11249   if (!isLoopInvariant(RHS, L))
11250     return getCouldNotCompute();
11251 
11252   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11253   if (!IV && AllowPredicates)
11254     // Try to make this an AddRec using runtime tests, in the first X
11255     // iterations of this loop, where X is the SCEV expression found by the
11256     // algorithm below.
11257     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11258 
11259   // Avoid weird loops
11260   if (!IV || IV->getLoop() != L || !IV->isAffine())
11261     return getCouldNotCompute();
11262 
11263   bool NoWrap = ControlsExit &&
11264                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11265 
11266   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11267 
11268   // Avoid negative or zero stride values
11269   if (!isKnownPositive(Stride))
11270     return getCouldNotCompute();
11271 
11272   // Avoid proven overflow cases: this will ensure that the backedge taken count
11273   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11274   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11275   // behaviors like the case of C language.
11276   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11277     return getCouldNotCompute();
11278 
11279   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11280                                       : ICmpInst::ICMP_UGT;
11281 
11282   const SCEV *Start = IV->getStart();
11283   const SCEV *End = RHS;
11284   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11285     // If we know that Start >= RHS in the context of loop, then we know that
11286     // min(RHS, Start) = RHS at this point.
11287     if (isLoopEntryGuardedByCond(
11288             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11289       End = RHS;
11290     else
11291       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11292   }
11293 
11294   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11295 
11296   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11297                             : getUnsignedRangeMax(Start);
11298 
11299   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11300                              : getUnsignedRangeMin(Stride);
11301 
11302   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11303   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11304                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
11305 
11306   // Although End can be a MIN expression we estimate MinEnd considering only
11307   // the case End = RHS. This is safe because in the other case (Start - End)
11308   // is zero, leading to a zero maximum backedge taken count.
11309   APInt MinEnd =
11310     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11311              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11312 
11313   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11314                                ? BECount
11315                                : computeBECount(getConstant(MaxStart - MinEnd),
11316                                                 getConstant(MinStride), false);
11317 
11318   if (isa<SCEVCouldNotCompute>(MaxBECount))
11319     MaxBECount = BECount;
11320 
11321   return ExitLimit(BECount, MaxBECount, false, Predicates);
11322 }
11323 
11324 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11325                                                     ScalarEvolution &SE) const {
11326   if (Range.isFullSet())  // Infinite loop.
11327     return SE.getCouldNotCompute();
11328 
11329   // If the start is a non-zero constant, shift the range to simplify things.
11330   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11331     if (!SC->getValue()->isZero()) {
11332       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
11333       Operands[0] = SE.getZero(SC->getType());
11334       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11335                                              getNoWrapFlags(FlagNW));
11336       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11337         return ShiftedAddRec->getNumIterationsInRange(
11338             Range.subtract(SC->getAPInt()), SE);
11339       // This is strange and shouldn't happen.
11340       return SE.getCouldNotCompute();
11341     }
11342 
11343   // The only time we can solve this is when we have all constant indices.
11344   // Otherwise, we cannot determine the overflow conditions.
11345   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11346     return SE.getCouldNotCompute();
11347 
11348   // Okay at this point we know that all elements of the chrec are constants and
11349   // that the start element is zero.
11350 
11351   // First check to see if the range contains zero.  If not, the first
11352   // iteration exits.
11353   unsigned BitWidth = SE.getTypeSizeInBits(getType());
11354   if (!Range.contains(APInt(BitWidth, 0)))
11355     return SE.getZero(getType());
11356 
11357   if (isAffine()) {
11358     // If this is an affine expression then we have this situation:
11359     //   Solve {0,+,A} in Range  ===  Ax in Range
11360 
11361     // We know that zero is in the range.  If A is positive then we know that
11362     // the upper value of the range must be the first possible exit value.
11363     // If A is negative then the lower of the range is the last possible loop
11364     // value.  Also note that we already checked for a full range.
11365     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11366     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11367 
11368     // The exit value should be (End+A)/A.
11369     APInt ExitVal = (End + A).udiv(A);
11370     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11371 
11372     // Evaluate at the exit value.  If we really did fall out of the valid
11373     // range, then we computed our trip count, otherwise wrap around or other
11374     // things must have happened.
11375     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11376     if (Range.contains(Val->getValue()))
11377       return SE.getCouldNotCompute();  // Something strange happened
11378 
11379     // Ensure that the previous value is in the range.  This is a sanity check.
11380     assert(Range.contains(
11381            EvaluateConstantChrecAtConstant(this,
11382            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11383            "Linear scev computation is off in a bad way!");
11384     return SE.getConstant(ExitValue);
11385   }
11386 
11387   if (isQuadratic()) {
11388     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11389       return SE.getConstant(S.getValue());
11390   }
11391 
11392   return SE.getCouldNotCompute();
11393 }
11394 
11395 const SCEVAddRecExpr *
11396 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11397   assert(getNumOperands() > 1 && "AddRec with zero step?");
11398   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11399   // but in this case we cannot guarantee that the value returned will be an
11400   // AddRec because SCEV does not have a fixed point where it stops
11401   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11402   // may happen if we reach arithmetic depth limit while simplifying. So we
11403   // construct the returned value explicitly.
11404   SmallVector<const SCEV *, 3> Ops;
11405   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11406   // (this + Step) is {A+B,+,B+C,+...,+,N}.
11407   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11408     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11409   // We know that the last operand is not a constant zero (otherwise it would
11410   // have been popped out earlier). This guarantees us that if the result has
11411   // the same last operand, then it will also not be popped out, meaning that
11412   // the returned value will be an AddRec.
11413   const SCEV *Last = getOperand(getNumOperands() - 1);
11414   assert(!Last->isZero() && "Recurrency with zero step?");
11415   Ops.push_back(Last);
11416   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11417                                                SCEV::FlagAnyWrap));
11418 }
11419 
11420 // Return true when S contains at least an undef value.
11421 static inline bool containsUndefs(const SCEV *S) {
11422   return SCEVExprContains(S, [](const SCEV *S) {
11423     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11424       return isa<UndefValue>(SU->getValue());
11425     return false;
11426   });
11427 }
11428 
11429 namespace {
11430 
11431 // Collect all steps of SCEV expressions.
11432 struct SCEVCollectStrides {
11433   ScalarEvolution &SE;
11434   SmallVectorImpl<const SCEV *> &Strides;
11435 
11436   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11437       : SE(SE), Strides(S) {}
11438 
11439   bool follow(const SCEV *S) {
11440     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11441       Strides.push_back(AR->getStepRecurrence(SE));
11442     return true;
11443   }
11444 
11445   bool isDone() const { return false; }
11446 };
11447 
11448 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11449 struct SCEVCollectTerms {
11450   SmallVectorImpl<const SCEV *> &Terms;
11451 
11452   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11453 
11454   bool follow(const SCEV *S) {
11455     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11456         isa<SCEVSignExtendExpr>(S)) {
11457       if (!containsUndefs(S))
11458         Terms.push_back(S);
11459 
11460       // Stop recursion: once we collected a term, do not walk its operands.
11461       return false;
11462     }
11463 
11464     // Keep looking.
11465     return true;
11466   }
11467 
11468   bool isDone() const { return false; }
11469 };
11470 
11471 // Check if a SCEV contains an AddRecExpr.
11472 struct SCEVHasAddRec {
11473   bool &ContainsAddRec;
11474 
11475   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11476     ContainsAddRec = false;
11477   }
11478 
11479   bool follow(const SCEV *S) {
11480     if (isa<SCEVAddRecExpr>(S)) {
11481       ContainsAddRec = true;
11482 
11483       // Stop recursion: once we collected a term, do not walk its operands.
11484       return false;
11485     }
11486 
11487     // Keep looking.
11488     return true;
11489   }
11490 
11491   bool isDone() const { return false; }
11492 };
11493 
11494 // Find factors that are multiplied with an expression that (possibly as a
11495 // subexpression) contains an AddRecExpr. In the expression:
11496 //
11497 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11498 //
11499 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11500 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11501 // parameters as they form a product with an induction variable.
11502 //
11503 // This collector expects all array size parameters to be in the same MulExpr.
11504 // It might be necessary to later add support for collecting parameters that are
11505 // spread over different nested MulExpr.
11506 struct SCEVCollectAddRecMultiplies {
11507   SmallVectorImpl<const SCEV *> &Terms;
11508   ScalarEvolution &SE;
11509 
11510   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11511       : Terms(T), SE(SE) {}
11512 
11513   bool follow(const SCEV *S) {
11514     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11515       bool HasAddRec = false;
11516       SmallVector<const SCEV *, 0> Operands;
11517       for (auto Op : Mul->operands()) {
11518         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11519         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11520           Operands.push_back(Op);
11521         } else if (Unknown) {
11522           HasAddRec = true;
11523         } else {
11524           bool ContainsAddRec = false;
11525           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11526           visitAll(Op, ContiansAddRec);
11527           HasAddRec |= ContainsAddRec;
11528         }
11529       }
11530       if (Operands.size() == 0)
11531         return true;
11532 
11533       if (!HasAddRec)
11534         return false;
11535 
11536       Terms.push_back(SE.getMulExpr(Operands));
11537       // Stop recursion: once we collected a term, do not walk its operands.
11538       return false;
11539     }
11540 
11541     // Keep looking.
11542     return true;
11543   }
11544 
11545   bool isDone() const { return false; }
11546 };
11547 
11548 } // end anonymous namespace
11549 
11550 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11551 /// two places:
11552 ///   1) The strides of AddRec expressions.
11553 ///   2) Unknowns that are multiplied with AddRec expressions.
11554 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11555     SmallVectorImpl<const SCEV *> &Terms) {
11556   SmallVector<const SCEV *, 4> Strides;
11557   SCEVCollectStrides StrideCollector(*this, Strides);
11558   visitAll(Expr, StrideCollector);
11559 
11560   LLVM_DEBUG({
11561     dbgs() << "Strides:\n";
11562     for (const SCEV *S : Strides)
11563       dbgs() << *S << "\n";
11564   });
11565 
11566   for (const SCEV *S : Strides) {
11567     SCEVCollectTerms TermCollector(Terms);
11568     visitAll(S, TermCollector);
11569   }
11570 
11571   LLVM_DEBUG({
11572     dbgs() << "Terms:\n";
11573     for (const SCEV *T : Terms)
11574       dbgs() << *T << "\n";
11575   });
11576 
11577   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11578   visitAll(Expr, MulCollector);
11579 }
11580 
11581 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11582                                    SmallVectorImpl<const SCEV *> &Terms,
11583                                    SmallVectorImpl<const SCEV *> &Sizes) {
11584   int Last = Terms.size() - 1;
11585   const SCEV *Step = Terms[Last];
11586 
11587   // End of recursion.
11588   if (Last == 0) {
11589     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11590       SmallVector<const SCEV *, 2> Qs;
11591       for (const SCEV *Op : M->operands())
11592         if (!isa<SCEVConstant>(Op))
11593           Qs.push_back(Op);
11594 
11595       Step = SE.getMulExpr(Qs);
11596     }
11597 
11598     Sizes.push_back(Step);
11599     return true;
11600   }
11601 
11602   for (const SCEV *&Term : Terms) {
11603     // Normalize the terms before the next call to findArrayDimensionsRec.
11604     const SCEV *Q, *R;
11605     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11606 
11607     // Bail out when GCD does not evenly divide one of the terms.
11608     if (!R->isZero())
11609       return false;
11610 
11611     Term = Q;
11612   }
11613 
11614   // Remove all SCEVConstants.
11615   Terms.erase(
11616       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11617       Terms.end());
11618 
11619   if (Terms.size() > 0)
11620     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11621       return false;
11622 
11623   Sizes.push_back(Step);
11624   return true;
11625 }
11626 
11627 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11628 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11629   for (const SCEV *T : Terms)
11630     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11631       return true;
11632 
11633   return false;
11634 }
11635 
11636 // Return the number of product terms in S.
11637 static inline int numberOfTerms(const SCEV *S) {
11638   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11639     return Expr->getNumOperands();
11640   return 1;
11641 }
11642 
11643 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11644   if (isa<SCEVConstant>(T))
11645     return nullptr;
11646 
11647   if (isa<SCEVUnknown>(T))
11648     return T;
11649 
11650   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11651     SmallVector<const SCEV *, 2> Factors;
11652     for (const SCEV *Op : M->operands())
11653       if (!isa<SCEVConstant>(Op))
11654         Factors.push_back(Op);
11655 
11656     return SE.getMulExpr(Factors);
11657   }
11658 
11659   return T;
11660 }
11661 
11662 /// Return the size of an element read or written by Inst.
11663 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11664   Type *Ty;
11665   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11666     Ty = Store->getValueOperand()->getType();
11667   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11668     Ty = Load->getType();
11669   else
11670     return nullptr;
11671 
11672   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11673   return getSizeOfExpr(ETy, Ty);
11674 }
11675 
11676 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11677                                           SmallVectorImpl<const SCEV *> &Sizes,
11678                                           const SCEV *ElementSize) {
11679   if (Terms.size() < 1 || !ElementSize)
11680     return;
11681 
11682   // Early return when Terms do not contain parameters: we do not delinearize
11683   // non parametric SCEVs.
11684   if (!containsParameters(Terms))
11685     return;
11686 
11687   LLVM_DEBUG({
11688     dbgs() << "Terms:\n";
11689     for (const SCEV *T : Terms)
11690       dbgs() << *T << "\n";
11691   });
11692 
11693   // Remove duplicates.
11694   array_pod_sort(Terms.begin(), Terms.end());
11695   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11696 
11697   // Put larger terms first.
11698   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11699     return numberOfTerms(LHS) > numberOfTerms(RHS);
11700   });
11701 
11702   // Try to divide all terms by the element size. If term is not divisible by
11703   // element size, proceed with the original term.
11704   for (const SCEV *&Term : Terms) {
11705     const SCEV *Q, *R;
11706     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11707     if (!Q->isZero())
11708       Term = Q;
11709   }
11710 
11711   SmallVector<const SCEV *, 4> NewTerms;
11712 
11713   // Remove constant factors.
11714   for (const SCEV *T : Terms)
11715     if (const SCEV *NewT = removeConstantFactors(*this, T))
11716       NewTerms.push_back(NewT);
11717 
11718   LLVM_DEBUG({
11719     dbgs() << "Terms after sorting:\n";
11720     for (const SCEV *T : NewTerms)
11721       dbgs() << *T << "\n";
11722   });
11723 
11724   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11725     Sizes.clear();
11726     return;
11727   }
11728 
11729   // The last element to be pushed into Sizes is the size of an element.
11730   Sizes.push_back(ElementSize);
11731 
11732   LLVM_DEBUG({
11733     dbgs() << "Sizes:\n";
11734     for (const SCEV *S : Sizes)
11735       dbgs() << *S << "\n";
11736   });
11737 }
11738 
11739 void ScalarEvolution::computeAccessFunctions(
11740     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11741     SmallVectorImpl<const SCEV *> &Sizes) {
11742   // Early exit in case this SCEV is not an affine multivariate function.
11743   if (Sizes.empty())
11744     return;
11745 
11746   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11747     if (!AR->isAffine())
11748       return;
11749 
11750   const SCEV *Res = Expr;
11751   int Last = Sizes.size() - 1;
11752   for (int i = Last; i >= 0; i--) {
11753     const SCEV *Q, *R;
11754     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11755 
11756     LLVM_DEBUG({
11757       dbgs() << "Res: " << *Res << "\n";
11758       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11759       dbgs() << "Res divided by Sizes[i]:\n";
11760       dbgs() << "Quotient: " << *Q << "\n";
11761       dbgs() << "Remainder: " << *R << "\n";
11762     });
11763 
11764     Res = Q;
11765 
11766     // Do not record the last subscript corresponding to the size of elements in
11767     // the array.
11768     if (i == Last) {
11769 
11770       // Bail out if the remainder is too complex.
11771       if (isa<SCEVAddRecExpr>(R)) {
11772         Subscripts.clear();
11773         Sizes.clear();
11774         return;
11775       }
11776 
11777       continue;
11778     }
11779 
11780     // Record the access function for the current subscript.
11781     Subscripts.push_back(R);
11782   }
11783 
11784   // Also push in last position the remainder of the last division: it will be
11785   // the access function of the innermost dimension.
11786   Subscripts.push_back(Res);
11787 
11788   std::reverse(Subscripts.begin(), Subscripts.end());
11789 
11790   LLVM_DEBUG({
11791     dbgs() << "Subscripts:\n";
11792     for (const SCEV *S : Subscripts)
11793       dbgs() << *S << "\n";
11794   });
11795 }
11796 
11797 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11798 /// sizes of an array access. Returns the remainder of the delinearization that
11799 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11800 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11801 /// expressions in the stride and base of a SCEV corresponding to the
11802 /// computation of a GCD (greatest common divisor) of base and stride.  When
11803 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11804 ///
11805 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11806 ///
11807 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11808 ///
11809 ///    for (long i = 0; i < n; i++)
11810 ///      for (long j = 0; j < m; j++)
11811 ///        for (long k = 0; k < o; k++)
11812 ///          A[i][j][k] = 1.0;
11813 ///  }
11814 ///
11815 /// the delinearization input is the following AddRec SCEV:
11816 ///
11817 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11818 ///
11819 /// From this SCEV, we are able to say that the base offset of the access is %A
11820 /// because it appears as an offset that does not divide any of the strides in
11821 /// the loops:
11822 ///
11823 ///  CHECK: Base offset: %A
11824 ///
11825 /// and then SCEV->delinearize determines the size of some of the dimensions of
11826 /// the array as these are the multiples by which the strides are happening:
11827 ///
11828 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11829 ///
11830 /// Note that the outermost dimension remains of UnknownSize because there are
11831 /// no strides that would help identifying the size of the last dimension: when
11832 /// the array has been statically allocated, one could compute the size of that
11833 /// dimension by dividing the overall size of the array by the size of the known
11834 /// dimensions: %m * %o * 8.
11835 ///
11836 /// Finally delinearize provides the access functions for the array reference
11837 /// that does correspond to A[i][j][k] of the above C testcase:
11838 ///
11839 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11840 ///
11841 /// The testcases are checking the output of a function pass:
11842 /// DelinearizationPass that walks through all loads and stores of a function
11843 /// asking for the SCEV of the memory access with respect to all enclosing
11844 /// loops, calling SCEV->delinearize on that and printing the results.
11845 void ScalarEvolution::delinearize(const SCEV *Expr,
11846                                  SmallVectorImpl<const SCEV *> &Subscripts,
11847                                  SmallVectorImpl<const SCEV *> &Sizes,
11848                                  const SCEV *ElementSize) {
11849   // First step: collect parametric terms.
11850   SmallVector<const SCEV *, 4> Terms;
11851   collectParametricTerms(Expr, Terms);
11852 
11853   if (Terms.empty())
11854     return;
11855 
11856   // Second step: find subscript sizes.
11857   findArrayDimensions(Terms, Sizes, ElementSize);
11858 
11859   if (Sizes.empty())
11860     return;
11861 
11862   // Third step: compute the access functions for each subscript.
11863   computeAccessFunctions(Expr, Subscripts, Sizes);
11864 
11865   if (Subscripts.empty())
11866     return;
11867 
11868   LLVM_DEBUG({
11869     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11870     dbgs() << "ArrayDecl[UnknownSize]";
11871     for (const SCEV *S : Sizes)
11872       dbgs() << "[" << *S << "]";
11873 
11874     dbgs() << "\nArrayRef";
11875     for (const SCEV *S : Subscripts)
11876       dbgs() << "[" << *S << "]";
11877     dbgs() << "\n";
11878   });
11879 }
11880 
11881 bool ScalarEvolution::getIndexExpressionsFromGEP(
11882     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11883     SmallVectorImpl<int> &Sizes) {
11884   assert(Subscripts.empty() && Sizes.empty() &&
11885          "Expected output lists to be empty on entry to this function.");
11886   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11887   Type *Ty = GEP->getPointerOperandType();
11888   bool DroppedFirstDim = false;
11889   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11890     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11891     if (i == 1) {
11892       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11893         Ty = PtrTy->getElementType();
11894       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11895         Ty = ArrayTy->getElementType();
11896       } else {
11897         Subscripts.clear();
11898         Sizes.clear();
11899         return false;
11900       }
11901       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11902         if (Const->getValue()->isZero()) {
11903           DroppedFirstDim = true;
11904           continue;
11905         }
11906       Subscripts.push_back(Expr);
11907       continue;
11908     }
11909 
11910     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11911     if (!ArrayTy) {
11912       Subscripts.clear();
11913       Sizes.clear();
11914       return false;
11915     }
11916 
11917     Subscripts.push_back(Expr);
11918     if (!(DroppedFirstDim && i == 2))
11919       Sizes.push_back(ArrayTy->getNumElements());
11920 
11921     Ty = ArrayTy->getElementType();
11922   }
11923   return !Subscripts.empty();
11924 }
11925 
11926 //===----------------------------------------------------------------------===//
11927 //                   SCEVCallbackVH Class Implementation
11928 //===----------------------------------------------------------------------===//
11929 
11930 void ScalarEvolution::SCEVCallbackVH::deleted() {
11931   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11932   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11933     SE->ConstantEvolutionLoopExitValue.erase(PN);
11934   SE->eraseValueFromMap(getValPtr());
11935   // this now dangles!
11936 }
11937 
11938 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11939   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11940 
11941   // Forget all the expressions associated with users of the old value,
11942   // so that future queries will recompute the expressions using the new
11943   // value.
11944   Value *Old = getValPtr();
11945   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11946   SmallPtrSet<User *, 8> Visited;
11947   while (!Worklist.empty()) {
11948     User *U = Worklist.pop_back_val();
11949     // Deleting the Old value will cause this to dangle. Postpone
11950     // that until everything else is done.
11951     if (U == Old)
11952       continue;
11953     if (!Visited.insert(U).second)
11954       continue;
11955     if (PHINode *PN = dyn_cast<PHINode>(U))
11956       SE->ConstantEvolutionLoopExitValue.erase(PN);
11957     SE->eraseValueFromMap(U);
11958     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11959   }
11960   // Delete the Old value.
11961   if (PHINode *PN = dyn_cast<PHINode>(Old))
11962     SE->ConstantEvolutionLoopExitValue.erase(PN);
11963   SE->eraseValueFromMap(Old);
11964   // this now dangles!
11965 }
11966 
11967 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11968   : CallbackVH(V), SE(se) {}
11969 
11970 //===----------------------------------------------------------------------===//
11971 //                   ScalarEvolution Class Implementation
11972 //===----------------------------------------------------------------------===//
11973 
11974 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11975                                  AssumptionCache &AC, DominatorTree &DT,
11976                                  LoopInfo &LI)
11977     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11978       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11979       LoopDispositions(64), BlockDispositions(64) {
11980   // To use guards for proving predicates, we need to scan every instruction in
11981   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11982   // time if the IR does not actually contain any calls to
11983   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11984   //
11985   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11986   // to _add_ guards to the module when there weren't any before, and wants
11987   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11988   // efficient in lieu of being smart in that rather obscure case.
11989 
11990   auto *GuardDecl = F.getParent()->getFunction(
11991       Intrinsic::getName(Intrinsic::experimental_guard));
11992   HasGuards = GuardDecl && !GuardDecl->use_empty();
11993 }
11994 
11995 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11996     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11997       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11998       ValueExprMap(std::move(Arg.ValueExprMap)),
11999       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12000       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12001       PendingMerges(std::move(Arg.PendingMerges)),
12002       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12003       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12004       PredicatedBackedgeTakenCounts(
12005           std::move(Arg.PredicatedBackedgeTakenCounts)),
12006       ConstantEvolutionLoopExitValue(
12007           std::move(Arg.ConstantEvolutionLoopExitValue)),
12008       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12009       LoopDispositions(std::move(Arg.LoopDispositions)),
12010       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12011       BlockDispositions(std::move(Arg.BlockDispositions)),
12012       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12013       SignedRanges(std::move(Arg.SignedRanges)),
12014       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12015       UniquePreds(std::move(Arg.UniquePreds)),
12016       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12017       LoopUsers(std::move(Arg.LoopUsers)),
12018       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12019       FirstUnknown(Arg.FirstUnknown) {
12020   Arg.FirstUnknown = nullptr;
12021 }
12022 
12023 ScalarEvolution::~ScalarEvolution() {
12024   // Iterate through all the SCEVUnknown instances and call their
12025   // destructors, so that they release their references to their values.
12026   for (SCEVUnknown *U = FirstUnknown; U;) {
12027     SCEVUnknown *Tmp = U;
12028     U = U->Next;
12029     Tmp->~SCEVUnknown();
12030   }
12031   FirstUnknown = nullptr;
12032 
12033   ExprValueMap.clear();
12034   ValueExprMap.clear();
12035   HasRecMap.clear();
12036 
12037   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
12038   // that a loop had multiple computable exits.
12039   for (auto &BTCI : BackedgeTakenCounts)
12040     BTCI.second.clear();
12041   for (auto &BTCI : PredicatedBackedgeTakenCounts)
12042     BTCI.second.clear();
12043 
12044   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12045   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12046   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12047   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12048   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12049 }
12050 
12051 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12052   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12053 }
12054 
12055 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12056                           const Loop *L) {
12057   // Print all inner loops first
12058   for (Loop *I : *L)
12059     PrintLoopInfo(OS, SE, I);
12060 
12061   OS << "Loop ";
12062   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12063   OS << ": ";
12064 
12065   SmallVector<BasicBlock *, 8> ExitingBlocks;
12066   L->getExitingBlocks(ExitingBlocks);
12067   if (ExitingBlocks.size() != 1)
12068     OS << "<multiple exits> ";
12069 
12070   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12071     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12072   else
12073     OS << "Unpredictable backedge-taken count.\n";
12074 
12075   if (ExitingBlocks.size() > 1)
12076     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12077       OS << "  exit count for " << ExitingBlock->getName() << ": "
12078          << *SE->getExitCount(L, ExitingBlock) << "\n";
12079     }
12080 
12081   OS << "Loop ";
12082   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12083   OS << ": ";
12084 
12085   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12086     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12087     if (SE->isBackedgeTakenCountMaxOrZero(L))
12088       OS << ", actual taken count either this or zero.";
12089   } else {
12090     OS << "Unpredictable max backedge-taken count. ";
12091   }
12092 
12093   OS << "\n"
12094         "Loop ";
12095   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12096   OS << ": ";
12097 
12098   SCEVUnionPredicate Pred;
12099   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12100   if (!isa<SCEVCouldNotCompute>(PBT)) {
12101     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12102     OS << " Predicates:\n";
12103     Pred.print(OS, 4);
12104   } else {
12105     OS << "Unpredictable predicated backedge-taken count. ";
12106   }
12107   OS << "\n";
12108 
12109   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12110     OS << "Loop ";
12111     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12112     OS << ": ";
12113     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12114   }
12115 }
12116 
12117 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12118   switch (LD) {
12119   case ScalarEvolution::LoopVariant:
12120     return "Variant";
12121   case ScalarEvolution::LoopInvariant:
12122     return "Invariant";
12123   case ScalarEvolution::LoopComputable:
12124     return "Computable";
12125   }
12126   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12127 }
12128 
12129 void ScalarEvolution::print(raw_ostream &OS) const {
12130   // ScalarEvolution's implementation of the print method is to print
12131   // out SCEV values of all instructions that are interesting. Doing
12132   // this potentially causes it to create new SCEV objects though,
12133   // which technically conflicts with the const qualifier. This isn't
12134   // observable from outside the class though, so casting away the
12135   // const isn't dangerous.
12136   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12137 
12138   if (ClassifyExpressions) {
12139     OS << "Classifying expressions for: ";
12140     F.printAsOperand(OS, /*PrintType=*/false);
12141     OS << "\n";
12142     for (Instruction &I : instructions(F))
12143       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12144         OS << I << '\n';
12145         OS << "  -->  ";
12146         const SCEV *SV = SE.getSCEV(&I);
12147         SV->print(OS);
12148         if (!isa<SCEVCouldNotCompute>(SV)) {
12149           OS << " U: ";
12150           SE.getUnsignedRange(SV).print(OS);
12151           OS << " S: ";
12152           SE.getSignedRange(SV).print(OS);
12153         }
12154 
12155         const Loop *L = LI.getLoopFor(I.getParent());
12156 
12157         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12158         if (AtUse != SV) {
12159           OS << "  -->  ";
12160           AtUse->print(OS);
12161           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12162             OS << " U: ";
12163             SE.getUnsignedRange(AtUse).print(OS);
12164             OS << " S: ";
12165             SE.getSignedRange(AtUse).print(OS);
12166           }
12167         }
12168 
12169         if (L) {
12170           OS << "\t\t" "Exits: ";
12171           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12172           if (!SE.isLoopInvariant(ExitValue, L)) {
12173             OS << "<<Unknown>>";
12174           } else {
12175             OS << *ExitValue;
12176           }
12177 
12178           bool First = true;
12179           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12180             if (First) {
12181               OS << "\t\t" "LoopDispositions: { ";
12182               First = false;
12183             } else {
12184               OS << ", ";
12185             }
12186 
12187             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12188             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12189           }
12190 
12191           for (auto *InnerL : depth_first(L)) {
12192             if (InnerL == L)
12193               continue;
12194             if (First) {
12195               OS << "\t\t" "LoopDispositions: { ";
12196               First = false;
12197             } else {
12198               OS << ", ";
12199             }
12200 
12201             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12202             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12203           }
12204 
12205           OS << " }";
12206         }
12207 
12208         OS << "\n";
12209       }
12210   }
12211 
12212   OS << "Determining loop execution counts for: ";
12213   F.printAsOperand(OS, /*PrintType=*/false);
12214   OS << "\n";
12215   for (Loop *I : LI)
12216     PrintLoopInfo(OS, &SE, I);
12217 }
12218 
12219 ScalarEvolution::LoopDisposition
12220 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12221   auto &Values = LoopDispositions[S];
12222   for (auto &V : Values) {
12223     if (V.getPointer() == L)
12224       return V.getInt();
12225   }
12226   Values.emplace_back(L, LoopVariant);
12227   LoopDisposition D = computeLoopDisposition(S, L);
12228   auto &Values2 = LoopDispositions[S];
12229   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12230     if (V.getPointer() == L) {
12231       V.setInt(D);
12232       break;
12233     }
12234   }
12235   return D;
12236 }
12237 
12238 ScalarEvolution::LoopDisposition
12239 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12240   switch (S->getSCEVType()) {
12241   case scConstant:
12242     return LoopInvariant;
12243   case scPtrToInt:
12244   case scTruncate:
12245   case scZeroExtend:
12246   case scSignExtend:
12247     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12248   case scAddRecExpr: {
12249     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12250 
12251     // If L is the addrec's loop, it's computable.
12252     if (AR->getLoop() == L)
12253       return LoopComputable;
12254 
12255     // Add recurrences are never invariant in the function-body (null loop).
12256     if (!L)
12257       return LoopVariant;
12258 
12259     // Everything that is not defined at loop entry is variant.
12260     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12261       return LoopVariant;
12262     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12263            " dominate the contained loop's header?");
12264 
12265     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12266     if (AR->getLoop()->contains(L))
12267       return LoopInvariant;
12268 
12269     // This recurrence is variant w.r.t. L if any of its operands
12270     // are variant.
12271     for (auto *Op : AR->operands())
12272       if (!isLoopInvariant(Op, L))
12273         return LoopVariant;
12274 
12275     // Otherwise it's loop-invariant.
12276     return LoopInvariant;
12277   }
12278   case scAddExpr:
12279   case scMulExpr:
12280   case scUMaxExpr:
12281   case scSMaxExpr:
12282   case scUMinExpr:
12283   case scSMinExpr: {
12284     bool HasVarying = false;
12285     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12286       LoopDisposition D = getLoopDisposition(Op, L);
12287       if (D == LoopVariant)
12288         return LoopVariant;
12289       if (D == LoopComputable)
12290         HasVarying = true;
12291     }
12292     return HasVarying ? LoopComputable : LoopInvariant;
12293   }
12294   case scUDivExpr: {
12295     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12296     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12297     if (LD == LoopVariant)
12298       return LoopVariant;
12299     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12300     if (RD == LoopVariant)
12301       return LoopVariant;
12302     return (LD == LoopInvariant && RD == LoopInvariant) ?
12303            LoopInvariant : LoopComputable;
12304   }
12305   case scUnknown:
12306     // All non-instruction values are loop invariant.  All instructions are loop
12307     // invariant if they are not contained in the specified loop.
12308     // Instructions are never considered invariant in the function body
12309     // (null loop) because they are defined within the "loop".
12310     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12311       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12312     return LoopInvariant;
12313   case scCouldNotCompute:
12314     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12315   }
12316   llvm_unreachable("Unknown SCEV kind!");
12317 }
12318 
12319 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12320   return getLoopDisposition(S, L) == LoopInvariant;
12321 }
12322 
12323 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12324   return getLoopDisposition(S, L) == LoopComputable;
12325 }
12326 
12327 ScalarEvolution::BlockDisposition
12328 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12329   auto &Values = BlockDispositions[S];
12330   for (auto &V : Values) {
12331     if (V.getPointer() == BB)
12332       return V.getInt();
12333   }
12334   Values.emplace_back(BB, DoesNotDominateBlock);
12335   BlockDisposition D = computeBlockDisposition(S, BB);
12336   auto &Values2 = BlockDispositions[S];
12337   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12338     if (V.getPointer() == BB) {
12339       V.setInt(D);
12340       break;
12341     }
12342   }
12343   return D;
12344 }
12345 
12346 ScalarEvolution::BlockDisposition
12347 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12348   switch (S->getSCEVType()) {
12349   case scConstant:
12350     return ProperlyDominatesBlock;
12351   case scPtrToInt:
12352   case scTruncate:
12353   case scZeroExtend:
12354   case scSignExtend:
12355     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12356   case scAddRecExpr: {
12357     // This uses a "dominates" query instead of "properly dominates" query
12358     // to test for proper dominance too, because the instruction which
12359     // produces the addrec's value is a PHI, and a PHI effectively properly
12360     // dominates its entire containing block.
12361     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12362     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12363       return DoesNotDominateBlock;
12364 
12365     // Fall through into SCEVNAryExpr handling.
12366     LLVM_FALLTHROUGH;
12367   }
12368   case scAddExpr:
12369   case scMulExpr:
12370   case scUMaxExpr:
12371   case scSMaxExpr:
12372   case scUMinExpr:
12373   case scSMinExpr: {
12374     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12375     bool Proper = true;
12376     for (const SCEV *NAryOp : NAry->operands()) {
12377       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12378       if (D == DoesNotDominateBlock)
12379         return DoesNotDominateBlock;
12380       if (D == DominatesBlock)
12381         Proper = false;
12382     }
12383     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12384   }
12385   case scUDivExpr: {
12386     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12387     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12388     BlockDisposition LD = getBlockDisposition(LHS, BB);
12389     if (LD == DoesNotDominateBlock)
12390       return DoesNotDominateBlock;
12391     BlockDisposition RD = getBlockDisposition(RHS, BB);
12392     if (RD == DoesNotDominateBlock)
12393       return DoesNotDominateBlock;
12394     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12395       ProperlyDominatesBlock : DominatesBlock;
12396   }
12397   case scUnknown:
12398     if (Instruction *I =
12399           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12400       if (I->getParent() == BB)
12401         return DominatesBlock;
12402       if (DT.properlyDominates(I->getParent(), BB))
12403         return ProperlyDominatesBlock;
12404       return DoesNotDominateBlock;
12405     }
12406     return ProperlyDominatesBlock;
12407   case scCouldNotCompute:
12408     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12409   }
12410   llvm_unreachable("Unknown SCEV kind!");
12411 }
12412 
12413 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12414   return getBlockDisposition(S, BB) >= DominatesBlock;
12415 }
12416 
12417 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12418   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12419 }
12420 
12421 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12422   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12423 }
12424 
12425 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12426   auto IsS = [&](const SCEV *X) { return S == X; };
12427   auto ContainsS = [&](const SCEV *X) {
12428     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12429   };
12430   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12431 }
12432 
12433 void
12434 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12435   ValuesAtScopes.erase(S);
12436   LoopDispositions.erase(S);
12437   BlockDispositions.erase(S);
12438   UnsignedRanges.erase(S);
12439   SignedRanges.erase(S);
12440   ExprValueMap.erase(S);
12441   HasRecMap.erase(S);
12442   MinTrailingZerosCache.erase(S);
12443 
12444   for (auto I = PredicatedSCEVRewrites.begin();
12445        I != PredicatedSCEVRewrites.end();) {
12446     std::pair<const SCEV *, const Loop *> Entry = I->first;
12447     if (Entry.first == S)
12448       PredicatedSCEVRewrites.erase(I++);
12449     else
12450       ++I;
12451   }
12452 
12453   auto RemoveSCEVFromBackedgeMap =
12454       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12455         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12456           BackedgeTakenInfo &BEInfo = I->second;
12457           if (BEInfo.hasOperand(S, this)) {
12458             BEInfo.clear();
12459             Map.erase(I++);
12460           } else
12461             ++I;
12462         }
12463       };
12464 
12465   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12466   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12467 }
12468 
12469 void
12470 ScalarEvolution::getUsedLoops(const SCEV *S,
12471                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12472   struct FindUsedLoops {
12473     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12474         : LoopsUsed(LoopsUsed) {}
12475     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12476     bool follow(const SCEV *S) {
12477       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12478         LoopsUsed.insert(AR->getLoop());
12479       return true;
12480     }
12481 
12482     bool isDone() const { return false; }
12483   };
12484 
12485   FindUsedLoops F(LoopsUsed);
12486   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12487 }
12488 
12489 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12490   SmallPtrSet<const Loop *, 8> LoopsUsed;
12491   getUsedLoops(S, LoopsUsed);
12492   for (auto *L : LoopsUsed)
12493     LoopUsers[L].push_back(S);
12494 }
12495 
12496 void ScalarEvolution::verify() const {
12497   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12498   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12499 
12500   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12501 
12502   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12503   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12504     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12505 
12506     const SCEV *visitConstant(const SCEVConstant *Constant) {
12507       return SE.getConstant(Constant->getAPInt());
12508     }
12509 
12510     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12511       return SE.getUnknown(Expr->getValue());
12512     }
12513 
12514     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12515       return SE.getCouldNotCompute();
12516     }
12517   };
12518 
12519   SCEVMapper SCM(SE2);
12520 
12521   while (!LoopStack.empty()) {
12522     auto *L = LoopStack.pop_back_val();
12523     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12524 
12525     auto *CurBECount = SCM.visit(
12526         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12527     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12528 
12529     if (CurBECount == SE2.getCouldNotCompute() ||
12530         NewBECount == SE2.getCouldNotCompute()) {
12531       // NB! This situation is legal, but is very suspicious -- whatever pass
12532       // change the loop to make a trip count go from could not compute to
12533       // computable or vice-versa *should have* invalidated SCEV.  However, we
12534       // choose not to assert here (for now) since we don't want false
12535       // positives.
12536       continue;
12537     }
12538 
12539     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12540       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12541       // not propagate undef aggressively).  This means we can (and do) fail
12542       // verification in cases where a transform makes the trip count of a loop
12543       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12544       // both cases the loop iterates "undef" times, but SCEV thinks we
12545       // increased the trip count of the loop by 1 incorrectly.
12546       continue;
12547     }
12548 
12549     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12550         SE.getTypeSizeInBits(NewBECount->getType()))
12551       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12552     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12553              SE.getTypeSizeInBits(NewBECount->getType()))
12554       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12555 
12556     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12557 
12558     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12559     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12560       dbgs() << "Trip Count for " << *L << " Changed!\n";
12561       dbgs() << "Old: " << *CurBECount << "\n";
12562       dbgs() << "New: " << *NewBECount << "\n";
12563       dbgs() << "Delta: " << *Delta << "\n";
12564       std::abort();
12565     }
12566   }
12567 
12568   // Collect all valid loops currently in LoopInfo.
12569   SmallPtrSet<Loop *, 32> ValidLoops;
12570   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12571   while (!Worklist.empty()) {
12572     Loop *L = Worklist.pop_back_val();
12573     if (ValidLoops.contains(L))
12574       continue;
12575     ValidLoops.insert(L);
12576     Worklist.append(L->begin(), L->end());
12577   }
12578   // Check for SCEV expressions referencing invalid/deleted loops.
12579   for (auto &KV : ValueExprMap) {
12580     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12581     if (!AR)
12582       continue;
12583     assert(ValidLoops.contains(AR->getLoop()) &&
12584            "AddRec references invalid loop");
12585   }
12586 }
12587 
12588 bool ScalarEvolution::invalidate(
12589     Function &F, const PreservedAnalyses &PA,
12590     FunctionAnalysisManager::Invalidator &Inv) {
12591   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12592   // of its dependencies is invalidated.
12593   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12594   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12595          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12596          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12597          Inv.invalidate<LoopAnalysis>(F, PA);
12598 }
12599 
12600 AnalysisKey ScalarEvolutionAnalysis::Key;
12601 
12602 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12603                                              FunctionAnalysisManager &AM) {
12604   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12605                          AM.getResult<AssumptionAnalysis>(F),
12606                          AM.getResult<DominatorTreeAnalysis>(F),
12607                          AM.getResult<LoopAnalysis>(F));
12608 }
12609 
12610 PreservedAnalyses
12611 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12612   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12613   return PreservedAnalyses::all();
12614 }
12615 
12616 PreservedAnalyses
12617 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12618   // For compatibility with opt's -analyze feature under legacy pass manager
12619   // which was not ported to NPM. This keeps tests using
12620   // update_analyze_test_checks.py working.
12621   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12622      << F.getName() << "':\n";
12623   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12624   return PreservedAnalyses::all();
12625 }
12626 
12627 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12628                       "Scalar Evolution Analysis", false, true)
12629 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12630 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12631 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12632 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12633 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12634                     "Scalar Evolution Analysis", false, true)
12635 
12636 char ScalarEvolutionWrapperPass::ID = 0;
12637 
12638 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12639   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12640 }
12641 
12642 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12643   SE.reset(new ScalarEvolution(
12644       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12645       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12646       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12647       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12648   return false;
12649 }
12650 
12651 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12652 
12653 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12654   SE->print(OS);
12655 }
12656 
12657 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12658   if (!VerifySCEV)
12659     return;
12660 
12661   SE->verify();
12662 }
12663 
12664 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12665   AU.setPreservesAll();
12666   AU.addRequiredTransitive<AssumptionCacheTracker>();
12667   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12668   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12669   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12670 }
12671 
12672 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12673                                                         const SCEV *RHS) {
12674   FoldingSetNodeID ID;
12675   assert(LHS->getType() == RHS->getType() &&
12676          "Type mismatch between LHS and RHS");
12677   // Unique this node based on the arguments
12678   ID.AddInteger(SCEVPredicate::P_Equal);
12679   ID.AddPointer(LHS);
12680   ID.AddPointer(RHS);
12681   void *IP = nullptr;
12682   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12683     return S;
12684   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12685       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12686   UniquePreds.InsertNode(Eq, IP);
12687   return Eq;
12688 }
12689 
12690 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12691     const SCEVAddRecExpr *AR,
12692     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12693   FoldingSetNodeID ID;
12694   // Unique this node based on the arguments
12695   ID.AddInteger(SCEVPredicate::P_Wrap);
12696   ID.AddPointer(AR);
12697   ID.AddInteger(AddedFlags);
12698   void *IP = nullptr;
12699   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12700     return S;
12701   auto *OF = new (SCEVAllocator)
12702       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12703   UniquePreds.InsertNode(OF, IP);
12704   return OF;
12705 }
12706 
12707 namespace {
12708 
12709 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12710 public:
12711 
12712   /// Rewrites \p S in the context of a loop L and the SCEV predication
12713   /// infrastructure.
12714   ///
12715   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12716   /// equivalences present in \p Pred.
12717   ///
12718   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12719   /// \p NewPreds such that the result will be an AddRecExpr.
12720   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12721                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12722                              SCEVUnionPredicate *Pred) {
12723     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12724     return Rewriter.visit(S);
12725   }
12726 
12727   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12728     if (Pred) {
12729       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12730       for (auto *Pred : ExprPreds)
12731         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12732           if (IPred->getLHS() == Expr)
12733             return IPred->getRHS();
12734     }
12735     return convertToAddRecWithPreds(Expr);
12736   }
12737 
12738   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12739     const SCEV *Operand = visit(Expr->getOperand());
12740     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12741     if (AR && AR->getLoop() == L && AR->isAffine()) {
12742       // This couldn't be folded because the operand didn't have the nuw
12743       // flag. Add the nusw flag as an assumption that we could make.
12744       const SCEV *Step = AR->getStepRecurrence(SE);
12745       Type *Ty = Expr->getType();
12746       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12747         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12748                                 SE.getSignExtendExpr(Step, Ty), L,
12749                                 AR->getNoWrapFlags());
12750     }
12751     return SE.getZeroExtendExpr(Operand, Expr->getType());
12752   }
12753 
12754   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12755     const SCEV *Operand = visit(Expr->getOperand());
12756     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12757     if (AR && AR->getLoop() == L && AR->isAffine()) {
12758       // This couldn't be folded because the operand didn't have the nsw
12759       // flag. Add the nssw flag as an assumption that we could make.
12760       const SCEV *Step = AR->getStepRecurrence(SE);
12761       Type *Ty = Expr->getType();
12762       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12763         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12764                                 SE.getSignExtendExpr(Step, Ty), L,
12765                                 AR->getNoWrapFlags());
12766     }
12767     return SE.getSignExtendExpr(Operand, Expr->getType());
12768   }
12769 
12770 private:
12771   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12772                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12773                         SCEVUnionPredicate *Pred)
12774       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12775 
12776   bool addOverflowAssumption(const SCEVPredicate *P) {
12777     if (!NewPreds) {
12778       // Check if we've already made this assumption.
12779       return Pred && Pred->implies(P);
12780     }
12781     NewPreds->insert(P);
12782     return true;
12783   }
12784 
12785   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12786                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12787     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12788     return addOverflowAssumption(A);
12789   }
12790 
12791   // If \p Expr represents a PHINode, we try to see if it can be represented
12792   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12793   // to add this predicate as a runtime overflow check, we return the AddRec.
12794   // If \p Expr does not meet these conditions (is not a PHI node, or we
12795   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12796   // return \p Expr.
12797   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12798     if (!isa<PHINode>(Expr->getValue()))
12799       return Expr;
12800     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12801     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12802     if (!PredicatedRewrite)
12803       return Expr;
12804     for (auto *P : PredicatedRewrite->second){
12805       // Wrap predicates from outer loops are not supported.
12806       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12807         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12808         if (L != AR->getLoop())
12809           return Expr;
12810       }
12811       if (!addOverflowAssumption(P))
12812         return Expr;
12813     }
12814     return PredicatedRewrite->first;
12815   }
12816 
12817   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12818   SCEVUnionPredicate *Pred;
12819   const Loop *L;
12820 };
12821 
12822 } // end anonymous namespace
12823 
12824 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12825                                                    SCEVUnionPredicate &Preds) {
12826   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12827 }
12828 
12829 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12830     const SCEV *S, const Loop *L,
12831     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12832   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12833   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12834   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12835 
12836   if (!AddRec)
12837     return nullptr;
12838 
12839   // Since the transformation was successful, we can now transfer the SCEV
12840   // predicates.
12841   for (auto *P : TransformPreds)
12842     Preds.insert(P);
12843 
12844   return AddRec;
12845 }
12846 
12847 /// SCEV predicates
12848 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12849                              SCEVPredicateKind Kind)
12850     : FastID(ID), Kind(Kind) {}
12851 
12852 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12853                                        const SCEV *LHS, const SCEV *RHS)
12854     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12855   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12856   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12857 }
12858 
12859 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12860   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12861 
12862   if (!Op)
12863     return false;
12864 
12865   return Op->LHS == LHS && Op->RHS == RHS;
12866 }
12867 
12868 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12869 
12870 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12871 
12872 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12873   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12874 }
12875 
12876 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12877                                      const SCEVAddRecExpr *AR,
12878                                      IncrementWrapFlags Flags)
12879     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12880 
12881 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12882 
12883 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12884   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12885 
12886   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12887 }
12888 
12889 bool SCEVWrapPredicate::isAlwaysTrue() const {
12890   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12891   IncrementWrapFlags IFlags = Flags;
12892 
12893   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12894     IFlags = clearFlags(IFlags, IncrementNSSW);
12895 
12896   return IFlags == IncrementAnyWrap;
12897 }
12898 
12899 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12900   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12901   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12902     OS << "<nusw>";
12903   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12904     OS << "<nssw>";
12905   OS << "\n";
12906 }
12907 
12908 SCEVWrapPredicate::IncrementWrapFlags
12909 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12910                                    ScalarEvolution &SE) {
12911   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12912   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12913 
12914   // We can safely transfer the NSW flag as NSSW.
12915   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12916     ImpliedFlags = IncrementNSSW;
12917 
12918   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12919     // If the increment is positive, the SCEV NUW flag will also imply the
12920     // WrapPredicate NUSW flag.
12921     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12922       if (Step->getValue()->getValue().isNonNegative())
12923         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12924   }
12925 
12926   return ImpliedFlags;
12927 }
12928 
12929 /// Union predicates don't get cached so create a dummy set ID for it.
12930 SCEVUnionPredicate::SCEVUnionPredicate()
12931     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12932 
12933 bool SCEVUnionPredicate::isAlwaysTrue() const {
12934   return all_of(Preds,
12935                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12936 }
12937 
12938 ArrayRef<const SCEVPredicate *>
12939 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12940   auto I = SCEVToPreds.find(Expr);
12941   if (I == SCEVToPreds.end())
12942     return ArrayRef<const SCEVPredicate *>();
12943   return I->second;
12944 }
12945 
12946 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12947   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12948     return all_of(Set->Preds,
12949                   [this](const SCEVPredicate *I) { return this->implies(I); });
12950 
12951   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12952   if (ScevPredsIt == SCEVToPreds.end())
12953     return false;
12954   auto &SCEVPreds = ScevPredsIt->second;
12955 
12956   return any_of(SCEVPreds,
12957                 [N](const SCEVPredicate *I) { return I->implies(N); });
12958 }
12959 
12960 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12961 
12962 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12963   for (auto Pred : Preds)
12964     Pred->print(OS, Depth);
12965 }
12966 
12967 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12968   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12969     for (auto Pred : Set->Preds)
12970       add(Pred);
12971     return;
12972   }
12973 
12974   if (implies(N))
12975     return;
12976 
12977   const SCEV *Key = N->getExpr();
12978   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12979                 " associated expression!");
12980 
12981   SCEVToPreds[Key].push_back(N);
12982   Preds.push_back(N);
12983 }
12984 
12985 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12986                                                      Loop &L)
12987     : SE(SE), L(L) {}
12988 
12989 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12990   const SCEV *Expr = SE.getSCEV(V);
12991   RewriteEntry &Entry = RewriteMap[Expr];
12992 
12993   // If we already have an entry and the version matches, return it.
12994   if (Entry.second && Generation == Entry.first)
12995     return Entry.second;
12996 
12997   // We found an entry but it's stale. Rewrite the stale entry
12998   // according to the current predicate.
12999   if (Entry.second)
13000     Expr = Entry.second;
13001 
13002   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13003   Entry = {Generation, NewSCEV};
13004 
13005   return NewSCEV;
13006 }
13007 
13008 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13009   if (!BackedgeCount) {
13010     SCEVUnionPredicate BackedgePred;
13011     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13012     addPredicate(BackedgePred);
13013   }
13014   return BackedgeCount;
13015 }
13016 
13017 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13018   if (Preds.implies(&Pred))
13019     return;
13020   Preds.add(&Pred);
13021   updateGeneration();
13022 }
13023 
13024 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13025   return Preds;
13026 }
13027 
13028 void PredicatedScalarEvolution::updateGeneration() {
13029   // If the generation number wrapped recompute everything.
13030   if (++Generation == 0) {
13031     for (auto &II : RewriteMap) {
13032       const SCEV *Rewritten = II.second.second;
13033       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13034     }
13035   }
13036 }
13037 
13038 void PredicatedScalarEvolution::setNoOverflow(
13039     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13040   const SCEV *Expr = getSCEV(V);
13041   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13042 
13043   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13044 
13045   // Clear the statically implied flags.
13046   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13047   addPredicate(*SE.getWrapPredicate(AR, Flags));
13048 
13049   auto II = FlagsMap.insert({V, Flags});
13050   if (!II.second)
13051     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13052 }
13053 
13054 bool PredicatedScalarEvolution::hasNoOverflow(
13055     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13056   const SCEV *Expr = getSCEV(V);
13057   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13058 
13059   Flags = SCEVWrapPredicate::clearFlags(
13060       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13061 
13062   auto II = FlagsMap.find(V);
13063 
13064   if (II != FlagsMap.end())
13065     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13066 
13067   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13068 }
13069 
13070 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13071   const SCEV *Expr = this->getSCEV(V);
13072   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13073   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13074 
13075   if (!New)
13076     return nullptr;
13077 
13078   for (auto *P : NewPreds)
13079     Preds.add(P);
13080 
13081   updateGeneration();
13082   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13083   return New;
13084 }
13085 
13086 PredicatedScalarEvolution::PredicatedScalarEvolution(
13087     const PredicatedScalarEvolution &Init)
13088     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13089       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13090   for (auto I : Init.FlagsMap)
13091     FlagsMap.insert(I);
13092 }
13093 
13094 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13095   // For each block.
13096   for (auto *BB : L.getBlocks())
13097     for (auto &I : *BB) {
13098       if (!SE.isSCEVable(I.getType()))
13099         continue;
13100 
13101       auto *Expr = SE.getSCEV(&I);
13102       auto II = RewriteMap.find(Expr);
13103 
13104       if (II == RewriteMap.end())
13105         continue;
13106 
13107       // Don't print things that are not interesting.
13108       if (II->second.second == Expr)
13109         continue;
13110 
13111       OS.indent(Depth) << "[PSE]" << I << ":\n";
13112       OS.indent(Depth + 2) << *Expr << "\n";
13113       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13114     }
13115 }
13116 
13117 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13118 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13119 // for URem with constant power-of-2 second operands.
13120 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13121 // 4, A / B becomes X / 8).
13122 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13123                                 const SCEV *&RHS) {
13124   // Try to match 'zext (trunc A to iB) to iY', which is used
13125   // for URem with constant power-of-2 second operands. Make sure the size of
13126   // the operand A matches the size of the whole expressions.
13127   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13128     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13129       LHS = Trunc->getOperand();
13130       if (LHS->getType() != Expr->getType())
13131         LHS = getZeroExtendExpr(LHS, Expr->getType());
13132       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13133                         << getTypeSizeInBits(Trunc->getType()));
13134       return true;
13135     }
13136   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13137   if (Add == nullptr || Add->getNumOperands() != 2)
13138     return false;
13139 
13140   const SCEV *A = Add->getOperand(1);
13141   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13142 
13143   if (Mul == nullptr)
13144     return false;
13145 
13146   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13147     // (SomeExpr + (-(SomeExpr / B) * B)).
13148     if (Expr == getURemExpr(A, B)) {
13149       LHS = A;
13150       RHS = B;
13151       return true;
13152     }
13153     return false;
13154   };
13155 
13156   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13157   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13158     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13159            MatchURemWithDivisor(Mul->getOperand(2));
13160 
13161   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13162   if (Mul->getNumOperands() == 2)
13163     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13164            MatchURemWithDivisor(Mul->getOperand(0)) ||
13165            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13166            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13167   return false;
13168 }
13169 
13170 const SCEV *
13171 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13172   SmallVector<BasicBlock*, 16> ExitingBlocks;
13173   L->getExitingBlocks(ExitingBlocks);
13174 
13175   // Form an expression for the maximum exit count possible for this loop. We
13176   // merge the max and exact information to approximate a version of
13177   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13178   SmallVector<const SCEV*, 4> ExitCounts;
13179   for (BasicBlock *ExitingBB : ExitingBlocks) {
13180     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13181     if (isa<SCEVCouldNotCompute>(ExitCount))
13182       ExitCount = getExitCount(L, ExitingBB,
13183                                   ScalarEvolution::ConstantMaximum);
13184     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13185       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13186              "We should only have known counts for exiting blocks that "
13187              "dominate latch!");
13188       ExitCounts.push_back(ExitCount);
13189     }
13190   }
13191   if (ExitCounts.empty())
13192     return getCouldNotCompute();
13193   return getUMinFromMismatchedTypes(ExitCounts);
13194 }
13195 
13196 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13197 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13198 /// we cannot guarantee that the replacement is loop invariant in the loop of
13199 /// the AddRec.
13200 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13201   ValueToSCEVMapTy &Map;
13202 
13203 public:
13204   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13205       : SCEVRewriteVisitor(SE), Map(M) {}
13206 
13207   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13208 
13209   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13210     auto I = Map.find(Expr->getValue());
13211     if (I == Map.end())
13212       return Expr;
13213     return I->second;
13214   }
13215 };
13216 
13217 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13218   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13219                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13220     if (!isa<SCEVUnknown>(LHS)) {
13221       std::swap(LHS, RHS);
13222       Predicate = CmpInst::getSwappedPredicate(Predicate);
13223     }
13224 
13225     // For now, limit to conditions that provide information about unknown
13226     // expressions.
13227     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13228     if (!LHSUnknown)
13229       return;
13230 
13231     // TODO: use information from more predicates.
13232     switch (Predicate) {
13233     case CmpInst::ICMP_ULT: {
13234       if (!containsAddRecurrence(RHS)) {
13235         const SCEV *Base = LHS;
13236         auto I = RewriteMap.find(LHSUnknown->getValue());
13237         if (I != RewriteMap.end())
13238           Base = I->second;
13239 
13240         RewriteMap[LHSUnknown->getValue()] =
13241             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
13242       }
13243       break;
13244     }
13245     case CmpInst::ICMP_ULE: {
13246       if (!containsAddRecurrence(RHS)) {
13247         const SCEV *Base = LHS;
13248         auto I = RewriteMap.find(LHSUnknown->getValue());
13249         if (I != RewriteMap.end())
13250           Base = I->second;
13251         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
13252       }
13253       break;
13254     }
13255     case CmpInst::ICMP_EQ:
13256       if (isa<SCEVConstant>(RHS))
13257         RewriteMap[LHSUnknown->getValue()] = RHS;
13258       break;
13259     case CmpInst::ICMP_NE:
13260       if (isa<SCEVConstant>(RHS) &&
13261           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13262         RewriteMap[LHSUnknown->getValue()] =
13263             getUMaxExpr(LHS, getOne(RHS->getType()));
13264       break;
13265     default:
13266       break;
13267     }
13268   };
13269   // Starting at the loop predecessor, climb up the predecessor chain, as long
13270   // as there are predecessors that can be found that have unique successors
13271   // leading to the original header.
13272   // TODO: share this logic with isLoopEntryGuardedByCond.
13273   ValueToSCEVMapTy RewriteMap;
13274   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13275            L->getLoopPredecessor(), L->getHeader());
13276        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13277 
13278     const BranchInst *LoopEntryPredicate =
13279         dyn_cast<BranchInst>(Pair.first->getTerminator());
13280     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13281       continue;
13282 
13283     // TODO: use information from more complex conditions, e.g. AND expressions.
13284     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
13285     if (!Cmp)
13286       continue;
13287 
13288     auto Predicate = Cmp->getPredicate();
13289     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
13290       Predicate = CmpInst::getInversePredicate(Predicate);
13291     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13292                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13293   }
13294 
13295   // Also collect information from assumptions dominating the loop.
13296   for (auto &AssumeVH : AC.assumptions()) {
13297     if (!AssumeVH)
13298       continue;
13299     auto *AssumeI = cast<CallInst>(AssumeVH);
13300     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13301     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13302       continue;
13303     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13304                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13305   }
13306 
13307   if (RewriteMap.empty())
13308     return Expr;
13309   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13310   return Rewriter.visit(Expr);
13311 }
13312