1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 230 //===----------------------------------------------------------------------===// 231 // SCEV class definitions 232 //===----------------------------------------------------------------------===// 233 234 //===----------------------------------------------------------------------===// 235 // Implementation of the SCEV class. 236 // 237 238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 239 LLVM_DUMP_METHOD void SCEV::dump() const { 240 print(dbgs()); 241 dbgs() << '\n'; 242 } 243 #endif 244 245 void SCEV::print(raw_ostream &OS) const { 246 switch (static_cast<SCEVTypes>(getSCEVType())) { 247 case scConstant: 248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 249 return; 250 case scTruncate: { 251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 252 const SCEV *Op = Trunc->getOperand(); 253 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 254 << *Trunc->getType() << ")"; 255 return; 256 } 257 case scZeroExtend: { 258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 259 const SCEV *Op = ZExt->getOperand(); 260 OS << "(zext " << *Op->getType() << " " << *Op << " to " 261 << *ZExt->getType() << ")"; 262 return; 263 } 264 case scSignExtend: { 265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 266 const SCEV *Op = SExt->getOperand(); 267 OS << "(sext " << *Op->getType() << " " << *Op << " to " 268 << *SExt->getType() << ")"; 269 return; 270 } 271 case scAddRecExpr: { 272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 273 OS << "{" << *AR->getOperand(0); 274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 275 OS << ",+," << *AR->getOperand(i); 276 OS << "}<"; 277 if (AR->hasNoUnsignedWrap()) 278 OS << "nuw><"; 279 if (AR->hasNoSignedWrap()) 280 OS << "nsw><"; 281 if (AR->hasNoSelfWrap() && 282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 283 OS << "nw><"; 284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 285 OS << ">"; 286 return; 287 } 288 case scAddExpr: 289 case scMulExpr: 290 case scUMaxExpr: 291 case scSMaxExpr: 292 case scUMinExpr: 293 case scSMinExpr: { 294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 295 const char *OpStr = nullptr; 296 switch (NAry->getSCEVType()) { 297 case scAddExpr: OpStr = " + "; break; 298 case scMulExpr: OpStr = " * "; break; 299 case scUMaxExpr: OpStr = " umax "; break; 300 case scSMaxExpr: OpStr = " smax "; break; 301 case scUMinExpr: 302 OpStr = " umin "; 303 break; 304 case scSMinExpr: 305 OpStr = " smin "; 306 break; 307 } 308 OS << "("; 309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 310 I != E; ++I) { 311 OS << **I; 312 if (std::next(I) != E) 313 OS << OpStr; 314 } 315 OS << ")"; 316 switch (NAry->getSCEVType()) { 317 case scAddExpr: 318 case scMulExpr: 319 if (NAry->hasNoUnsignedWrap()) 320 OS << "<nuw>"; 321 if (NAry->hasNoSignedWrap()) 322 OS << "<nsw>"; 323 } 324 return; 325 } 326 case scUDivExpr: { 327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 329 return; 330 } 331 case scUnknown: { 332 const SCEVUnknown *U = cast<SCEVUnknown>(this); 333 Type *AllocTy; 334 if (U->isSizeOf(AllocTy)) { 335 OS << "sizeof(" << *AllocTy << ")"; 336 return; 337 } 338 if (U->isAlignOf(AllocTy)) { 339 OS << "alignof(" << *AllocTy << ")"; 340 return; 341 } 342 343 Type *CTy; 344 Constant *FieldNo; 345 if (U->isOffsetOf(CTy, FieldNo)) { 346 OS << "offsetof(" << *CTy << ", "; 347 FieldNo->printAsOperand(OS, false); 348 OS << ")"; 349 return; 350 } 351 352 // Otherwise just print it normally. 353 U->getValue()->printAsOperand(OS, false); 354 return; 355 } 356 case scCouldNotCompute: 357 OS << "***COULDNOTCOMPUTE***"; 358 return; 359 } 360 llvm_unreachable("Unknown SCEV kind!"); 361 } 362 363 Type *SCEV::getType() const { 364 switch (static_cast<SCEVTypes>(getSCEVType())) { 365 case scConstant: 366 return cast<SCEVConstant>(this)->getType(); 367 case scTruncate: 368 case scZeroExtend: 369 case scSignExtend: 370 return cast<SCEVCastExpr>(this)->getType(); 371 case scAddRecExpr: 372 case scMulExpr: 373 case scUMaxExpr: 374 case scSMaxExpr: 375 case scUMinExpr: 376 case scSMinExpr: 377 return cast<SCEVNAryExpr>(this)->getType(); 378 case scAddExpr: 379 return cast<SCEVAddExpr>(this)->getType(); 380 case scUDivExpr: 381 return cast<SCEVUDivExpr>(this)->getType(); 382 case scUnknown: 383 return cast<SCEVUnknown>(this)->getType(); 384 case scCouldNotCompute: 385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 386 } 387 llvm_unreachable("Unknown SCEV kind!"); 388 } 389 390 bool SCEV::isZero() const { 391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 392 return SC->getValue()->isZero(); 393 return false; 394 } 395 396 bool SCEV::isOne() const { 397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 398 return SC->getValue()->isOne(); 399 return false; 400 } 401 402 bool SCEV::isAllOnesValue() const { 403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 404 return SC->getValue()->isMinusOne(); 405 return false; 406 } 407 408 bool SCEV::isNonConstantNegative() const { 409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 410 if (!Mul) return false; 411 412 // If there is a constant factor, it will be first. 413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 414 if (!SC) return false; 415 416 // Return true if the value is negative, this matches things like (-42 * V). 417 return SC->getAPInt().isNegative(); 418 } 419 420 SCEVCouldNotCompute::SCEVCouldNotCompute() : 421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 422 423 bool SCEVCouldNotCompute::classof(const SCEV *S) { 424 return S->getSCEVType() == scCouldNotCompute; 425 } 426 427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 428 FoldingSetNodeID ID; 429 ID.AddInteger(scConstant); 430 ID.AddPointer(V); 431 void *IP = nullptr; 432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 434 UniqueSCEVs.InsertNode(S, IP); 435 return S; 436 } 437 438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 439 return getConstant(ConstantInt::get(getContext(), Val)); 440 } 441 442 const SCEV * 443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 445 return getConstant(ConstantInt::get(ITy, V, isSigned)); 446 } 447 448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 449 unsigned SCEVTy, const SCEV *op, Type *ty) 450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 451 Operands[0] = op; 452 } 453 454 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 455 const SCEV *op, Type *ty) 456 : SCEVCastExpr(ID, scTruncate, op, ty) { 457 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 458 "Cannot truncate non-integer value!"); 459 } 460 461 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 462 const SCEV *op, Type *ty) 463 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 464 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 465 "Cannot zero extend non-integer value!"); 466 } 467 468 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 469 const SCEV *op, Type *ty) 470 : SCEVCastExpr(ID, scSignExtend, op, ty) { 471 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 472 "Cannot sign extend non-integer value!"); 473 } 474 475 void SCEVUnknown::deleted() { 476 // Clear this SCEVUnknown from various maps. 477 SE->forgetMemoizedResults(this); 478 479 // Remove this SCEVUnknown from the uniquing map. 480 SE->UniqueSCEVs.RemoveNode(this); 481 482 // Release the value. 483 setValPtr(nullptr); 484 } 485 486 void SCEVUnknown::allUsesReplacedWith(Value *New) { 487 // Remove this SCEVUnknown from the uniquing map. 488 SE->UniqueSCEVs.RemoveNode(this); 489 490 // Update this SCEVUnknown to point to the new value. This is needed 491 // because there may still be outstanding SCEVs which still point to 492 // this SCEVUnknown. 493 setValPtr(New); 494 } 495 496 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 497 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 498 if (VCE->getOpcode() == Instruction::PtrToInt) 499 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 500 if (CE->getOpcode() == Instruction::GetElementPtr && 501 CE->getOperand(0)->isNullValue() && 502 CE->getNumOperands() == 2) 503 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 504 if (CI->isOne()) { 505 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 506 ->getElementType(); 507 return true; 508 } 509 510 return false; 511 } 512 513 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 514 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 515 if (VCE->getOpcode() == Instruction::PtrToInt) 516 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 517 if (CE->getOpcode() == Instruction::GetElementPtr && 518 CE->getOperand(0)->isNullValue()) { 519 Type *Ty = 520 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 521 if (StructType *STy = dyn_cast<StructType>(Ty)) 522 if (!STy->isPacked() && 523 CE->getNumOperands() == 3 && 524 CE->getOperand(1)->isNullValue()) { 525 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 526 if (CI->isOne() && 527 STy->getNumElements() == 2 && 528 STy->getElementType(0)->isIntegerTy(1)) { 529 AllocTy = STy->getElementType(1); 530 return true; 531 } 532 } 533 } 534 535 return false; 536 } 537 538 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 539 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 540 if (VCE->getOpcode() == Instruction::PtrToInt) 541 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 542 if (CE->getOpcode() == Instruction::GetElementPtr && 543 CE->getNumOperands() == 3 && 544 CE->getOperand(0)->isNullValue() && 545 CE->getOperand(1)->isNullValue()) { 546 Type *Ty = 547 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 548 // Ignore vector types here so that ScalarEvolutionExpander doesn't 549 // emit getelementptrs that index into vectors. 550 if (Ty->isStructTy() || Ty->isArrayTy()) { 551 CTy = Ty; 552 FieldNo = CE->getOperand(2); 553 return true; 554 } 555 } 556 557 return false; 558 } 559 560 //===----------------------------------------------------------------------===// 561 // SCEV Utilities 562 //===----------------------------------------------------------------------===// 563 564 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 565 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 566 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 567 /// have been previously deemed to be "equally complex" by this routine. It is 568 /// intended to avoid exponential time complexity in cases like: 569 /// 570 /// %a = f(%x, %y) 571 /// %b = f(%a, %a) 572 /// %c = f(%b, %b) 573 /// 574 /// %d = f(%x, %y) 575 /// %e = f(%d, %d) 576 /// %f = f(%e, %e) 577 /// 578 /// CompareValueComplexity(%f, %c) 579 /// 580 /// Since we do not continue running this routine on expression trees once we 581 /// have seen unequal values, there is no need to track them in the cache. 582 static int 583 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 584 const LoopInfo *const LI, Value *LV, Value *RV, 585 unsigned Depth) { 586 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 587 return 0; 588 589 // Order pointer values after integer values. This helps SCEVExpander form 590 // GEPs. 591 bool LIsPointer = LV->getType()->isPointerTy(), 592 RIsPointer = RV->getType()->isPointerTy(); 593 if (LIsPointer != RIsPointer) 594 return (int)LIsPointer - (int)RIsPointer; 595 596 // Compare getValueID values. 597 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 598 if (LID != RID) 599 return (int)LID - (int)RID; 600 601 // Sort arguments by their position. 602 if (const auto *LA = dyn_cast<Argument>(LV)) { 603 const auto *RA = cast<Argument>(RV); 604 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 605 return (int)LArgNo - (int)RArgNo; 606 } 607 608 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 609 const auto *RGV = cast<GlobalValue>(RV); 610 611 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 612 auto LT = GV->getLinkage(); 613 return !(GlobalValue::isPrivateLinkage(LT) || 614 GlobalValue::isInternalLinkage(LT)); 615 }; 616 617 // Use the names to distinguish the two values, but only if the 618 // names are semantically important. 619 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 620 return LGV->getName().compare(RGV->getName()); 621 } 622 623 // For instructions, compare their loop depth, and their operand count. This 624 // is pretty loose. 625 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 626 const auto *RInst = cast<Instruction>(RV); 627 628 // Compare loop depths. 629 const BasicBlock *LParent = LInst->getParent(), 630 *RParent = RInst->getParent(); 631 if (LParent != RParent) { 632 unsigned LDepth = LI->getLoopDepth(LParent), 633 RDepth = LI->getLoopDepth(RParent); 634 if (LDepth != RDepth) 635 return (int)LDepth - (int)RDepth; 636 } 637 638 // Compare the number of operands. 639 unsigned LNumOps = LInst->getNumOperands(), 640 RNumOps = RInst->getNumOperands(); 641 if (LNumOps != RNumOps) 642 return (int)LNumOps - (int)RNumOps; 643 644 for (unsigned Idx : seq(0u, LNumOps)) { 645 int Result = 646 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 647 RInst->getOperand(Idx), Depth + 1); 648 if (Result != 0) 649 return Result; 650 } 651 } 652 653 EqCacheValue.unionSets(LV, RV); 654 return 0; 655 } 656 657 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 658 // than RHS, respectively. A three-way result allows recursive comparisons to be 659 // more efficient. 660 static int CompareSCEVComplexity( 661 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 662 EquivalenceClasses<const Value *> &EqCacheValue, 663 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 664 DominatorTree &DT, unsigned Depth = 0) { 665 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 666 if (LHS == RHS) 667 return 0; 668 669 // Primarily, sort the SCEVs by their getSCEVType(). 670 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 671 if (LType != RType) 672 return (int)LType - (int)RType; 673 674 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 675 return 0; 676 // Aside from the getSCEVType() ordering, the particular ordering 677 // isn't very important except that it's beneficial to be consistent, 678 // so that (a + b) and (b + a) don't end up as different expressions. 679 switch (static_cast<SCEVTypes>(LType)) { 680 case scUnknown: { 681 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 682 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 683 684 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 685 RU->getValue(), Depth + 1); 686 if (X == 0) 687 EqCacheSCEV.unionSets(LHS, RHS); 688 return X; 689 } 690 691 case scConstant: { 692 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 693 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 694 695 // Compare constant values. 696 const APInt &LA = LC->getAPInt(); 697 const APInt &RA = RC->getAPInt(); 698 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 699 if (LBitWidth != RBitWidth) 700 return (int)LBitWidth - (int)RBitWidth; 701 return LA.ult(RA) ? -1 : 1; 702 } 703 704 case scAddRecExpr: { 705 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 706 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 707 708 // There is always a dominance between two recs that are used by one SCEV, 709 // so we can safely sort recs by loop header dominance. We require such 710 // order in getAddExpr. 711 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 712 if (LLoop != RLoop) { 713 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 714 assert(LHead != RHead && "Two loops share the same header?"); 715 if (DT.dominates(LHead, RHead)) 716 return 1; 717 else 718 assert(DT.dominates(RHead, LHead) && 719 "No dominance between recurrences used by one SCEV?"); 720 return -1; 721 } 722 723 // Addrec complexity grows with operand count. 724 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 725 if (LNumOps != RNumOps) 726 return (int)LNumOps - (int)RNumOps; 727 728 // Lexicographically compare. 729 for (unsigned i = 0; i != LNumOps; ++i) { 730 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 731 LA->getOperand(i), RA->getOperand(i), DT, 732 Depth + 1); 733 if (X != 0) 734 return X; 735 } 736 EqCacheSCEV.unionSets(LHS, RHS); 737 return 0; 738 } 739 740 case scAddExpr: 741 case scMulExpr: 742 case scSMaxExpr: 743 case scUMaxExpr: 744 case scSMinExpr: 745 case scUMinExpr: { 746 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 747 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 748 749 // Lexicographically compare n-ary expressions. 750 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 751 if (LNumOps != RNumOps) 752 return (int)LNumOps - (int)RNumOps; 753 754 for (unsigned i = 0; i != LNumOps; ++i) { 755 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 756 LC->getOperand(i), RC->getOperand(i), DT, 757 Depth + 1); 758 if (X != 0) 759 return X; 760 } 761 EqCacheSCEV.unionSets(LHS, RHS); 762 return 0; 763 } 764 765 case scUDivExpr: { 766 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 767 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 768 769 // Lexicographically compare udiv expressions. 770 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 771 RC->getLHS(), DT, Depth + 1); 772 if (X != 0) 773 return X; 774 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 775 RC->getRHS(), DT, Depth + 1); 776 if (X == 0) 777 EqCacheSCEV.unionSets(LHS, RHS); 778 return X; 779 } 780 781 case scTruncate: 782 case scZeroExtend: 783 case scSignExtend: { 784 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 785 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 786 787 // Compare cast expressions by operand. 788 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 789 LC->getOperand(), RC->getOperand(), DT, 790 Depth + 1); 791 if (X == 0) 792 EqCacheSCEV.unionSets(LHS, RHS); 793 return X; 794 } 795 796 case scCouldNotCompute: 797 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 798 } 799 llvm_unreachable("Unknown SCEV kind!"); 800 } 801 802 /// Given a list of SCEV objects, order them by their complexity, and group 803 /// objects of the same complexity together by value. When this routine is 804 /// finished, we know that any duplicates in the vector are consecutive and that 805 /// complexity is monotonically increasing. 806 /// 807 /// Note that we go take special precautions to ensure that we get deterministic 808 /// results from this routine. In other words, we don't want the results of 809 /// this to depend on where the addresses of various SCEV objects happened to 810 /// land in memory. 811 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 812 LoopInfo *LI, DominatorTree &DT) { 813 if (Ops.size() < 2) return; // Noop 814 815 EquivalenceClasses<const SCEV *> EqCacheSCEV; 816 EquivalenceClasses<const Value *> EqCacheValue; 817 if (Ops.size() == 2) { 818 // This is the common case, which also happens to be trivially simple. 819 // Special case it. 820 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 821 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 822 std::swap(LHS, RHS); 823 return; 824 } 825 826 // Do the rough sort by complexity. 827 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 828 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 829 0; 830 }); 831 832 // Now that we are sorted by complexity, group elements of the same 833 // complexity. Note that this is, at worst, N^2, but the vector is likely to 834 // be extremely short in practice. Note that we take this approach because we 835 // do not want to depend on the addresses of the objects we are grouping. 836 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 837 const SCEV *S = Ops[i]; 838 unsigned Complexity = S->getSCEVType(); 839 840 // If there are any objects of the same complexity and same value as this 841 // one, group them. 842 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 843 if (Ops[j] == S) { // Found a duplicate. 844 // Move it to immediately after i'th element. 845 std::swap(Ops[i+1], Ops[j]); 846 ++i; // no need to rescan it. 847 if (i == e-2) return; // Done! 848 } 849 } 850 } 851 } 852 853 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 854 /// least HugeExprThreshold nodes). 855 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 856 return any_of(Ops, [](const SCEV *S) { 857 return S->getExpressionSize() >= HugeExprThreshold; 858 }); 859 } 860 861 //===----------------------------------------------------------------------===// 862 // Simple SCEV method implementations 863 //===----------------------------------------------------------------------===// 864 865 /// Compute BC(It, K). The result has width W. Assume, K > 0. 866 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 867 ScalarEvolution &SE, 868 Type *ResultTy) { 869 // Handle the simplest case efficiently. 870 if (K == 1) 871 return SE.getTruncateOrZeroExtend(It, ResultTy); 872 873 // We are using the following formula for BC(It, K): 874 // 875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 876 // 877 // Suppose, W is the bitwidth of the return value. We must be prepared for 878 // overflow. Hence, we must assure that the result of our computation is 879 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 880 // safe in modular arithmetic. 881 // 882 // However, this code doesn't use exactly that formula; the formula it uses 883 // is something like the following, where T is the number of factors of 2 in 884 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 885 // exponentiation: 886 // 887 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 888 // 889 // This formula is trivially equivalent to the previous formula. However, 890 // this formula can be implemented much more efficiently. The trick is that 891 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 892 // arithmetic. To do exact division in modular arithmetic, all we have 893 // to do is multiply by the inverse. Therefore, this step can be done at 894 // width W. 895 // 896 // The next issue is how to safely do the division by 2^T. The way this 897 // is done is by doing the multiplication step at a width of at least W + T 898 // bits. This way, the bottom W+T bits of the product are accurate. Then, 899 // when we perform the division by 2^T (which is equivalent to a right shift 900 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 901 // truncated out after the division by 2^T. 902 // 903 // In comparison to just directly using the first formula, this technique 904 // is much more efficient; using the first formula requires W * K bits, 905 // but this formula less than W + K bits. Also, the first formula requires 906 // a division step, whereas this formula only requires multiplies and shifts. 907 // 908 // It doesn't matter whether the subtraction step is done in the calculation 909 // width or the input iteration count's width; if the subtraction overflows, 910 // the result must be zero anyway. We prefer here to do it in the width of 911 // the induction variable because it helps a lot for certain cases; CodeGen 912 // isn't smart enough to ignore the overflow, which leads to much less 913 // efficient code if the width of the subtraction is wider than the native 914 // register width. 915 // 916 // (It's possible to not widen at all by pulling out factors of 2 before 917 // the multiplication; for example, K=2 can be calculated as 918 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 919 // extra arithmetic, so it's not an obvious win, and it gets 920 // much more complicated for K > 3.) 921 922 // Protection from insane SCEVs; this bound is conservative, 923 // but it probably doesn't matter. 924 if (K > 1000) 925 return SE.getCouldNotCompute(); 926 927 unsigned W = SE.getTypeSizeInBits(ResultTy); 928 929 // Calculate K! / 2^T and T; we divide out the factors of two before 930 // multiplying for calculating K! / 2^T to avoid overflow. 931 // Other overflow doesn't matter because we only care about the bottom 932 // W bits of the result. 933 APInt OddFactorial(W, 1); 934 unsigned T = 1; 935 for (unsigned i = 3; i <= K; ++i) { 936 APInt Mult(W, i); 937 unsigned TwoFactors = Mult.countTrailingZeros(); 938 T += TwoFactors; 939 Mult.lshrInPlace(TwoFactors); 940 OddFactorial *= Mult; 941 } 942 943 // We need at least W + T bits for the multiplication step 944 unsigned CalculationBits = W + T; 945 946 // Calculate 2^T, at width T+W. 947 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 948 949 // Calculate the multiplicative inverse of K! / 2^T; 950 // this multiplication factor will perform the exact division by 951 // K! / 2^T. 952 APInt Mod = APInt::getSignedMinValue(W+1); 953 APInt MultiplyFactor = OddFactorial.zext(W+1); 954 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 955 MultiplyFactor = MultiplyFactor.trunc(W); 956 957 // Calculate the product, at width T+W 958 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 959 CalculationBits); 960 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 961 for (unsigned i = 1; i != K; ++i) { 962 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 963 Dividend = SE.getMulExpr(Dividend, 964 SE.getTruncateOrZeroExtend(S, CalculationTy)); 965 } 966 967 // Divide by 2^T 968 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 969 970 // Truncate the result, and divide by K! / 2^T. 971 972 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 973 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 974 } 975 976 /// Return the value of this chain of recurrences at the specified iteration 977 /// number. We can evaluate this recurrence by multiplying each element in the 978 /// chain by the binomial coefficient corresponding to it. In other words, we 979 /// can evaluate {A,+,B,+,C,+,D} as: 980 /// 981 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 982 /// 983 /// where BC(It, k) stands for binomial coefficient. 984 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 985 ScalarEvolution &SE) const { 986 const SCEV *Result = getStart(); 987 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 988 // The computation is correct in the face of overflow provided that the 989 // multiplication is performed _after_ the evaluation of the binomial 990 // coefficient. 991 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 992 if (isa<SCEVCouldNotCompute>(Coeff)) 993 return Coeff; 994 995 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 996 } 997 return Result; 998 } 999 1000 //===----------------------------------------------------------------------===// 1001 // SCEV Expression folder implementations 1002 //===----------------------------------------------------------------------===// 1003 1004 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1005 unsigned Depth) { 1006 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1007 "This is not a truncating conversion!"); 1008 assert(isSCEVable(Ty) && 1009 "This is not a conversion to a SCEVable type!"); 1010 Ty = getEffectiveSCEVType(Ty); 1011 1012 FoldingSetNodeID ID; 1013 ID.AddInteger(scTruncate); 1014 ID.AddPointer(Op); 1015 ID.AddPointer(Ty); 1016 void *IP = nullptr; 1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1018 1019 // Fold if the operand is constant. 1020 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1021 return getConstant( 1022 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1023 1024 // trunc(trunc(x)) --> trunc(x) 1025 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1026 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1027 1028 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1029 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1030 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1031 1032 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1033 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1034 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1035 1036 if (Depth > MaxCastDepth) { 1037 SCEV *S = 1038 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1039 UniqueSCEVs.InsertNode(S, IP); 1040 addToLoopUseLists(S); 1041 return S; 1042 } 1043 1044 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1045 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1046 // if after transforming we have at most one truncate, not counting truncates 1047 // that replace other casts. 1048 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1049 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1050 SmallVector<const SCEV *, 4> Operands; 1051 unsigned numTruncs = 0; 1052 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1053 ++i) { 1054 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1055 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1056 numTruncs++; 1057 Operands.push_back(S); 1058 } 1059 if (numTruncs < 2) { 1060 if (isa<SCEVAddExpr>(Op)) 1061 return getAddExpr(Operands); 1062 else if (isa<SCEVMulExpr>(Op)) 1063 return getMulExpr(Operands); 1064 else 1065 llvm_unreachable("Unexpected SCEV type for Op."); 1066 } 1067 // Although we checked in the beginning that ID is not in the cache, it is 1068 // possible that during recursion and different modification ID was inserted 1069 // into the cache. So if we find it, just return it. 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 } 1073 1074 // If the input value is a chrec scev, truncate the chrec's operands. 1075 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1076 SmallVector<const SCEV *, 4> Operands; 1077 for (const SCEV *Op : AddRec->operands()) 1078 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1079 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1080 } 1081 1082 // The cast wasn't folded; create an explicit cast node. We can reuse 1083 // the existing insert position since if we get here, we won't have 1084 // made any changes which would invalidate it. 1085 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1086 Op, Ty); 1087 UniqueSCEVs.InsertNode(S, IP); 1088 addToLoopUseLists(S); 1089 return S; 1090 } 1091 1092 // Get the limit of a recurrence such that incrementing by Step cannot cause 1093 // signed overflow as long as the value of the recurrence within the 1094 // loop does not exceed this limit before incrementing. 1095 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1096 ICmpInst::Predicate *Pred, 1097 ScalarEvolution *SE) { 1098 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1099 if (SE->isKnownPositive(Step)) { 1100 *Pred = ICmpInst::ICMP_SLT; 1101 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1102 SE->getSignedRangeMax(Step)); 1103 } 1104 if (SE->isKnownNegative(Step)) { 1105 *Pred = ICmpInst::ICMP_SGT; 1106 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1107 SE->getSignedRangeMin(Step)); 1108 } 1109 return nullptr; 1110 } 1111 1112 // Get the limit of a recurrence such that incrementing by Step cannot cause 1113 // unsigned overflow as long as the value of the recurrence within the loop does 1114 // not exceed this limit before incrementing. 1115 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1116 ICmpInst::Predicate *Pred, 1117 ScalarEvolution *SE) { 1118 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1119 *Pred = ICmpInst::ICMP_ULT; 1120 1121 return SE->getConstant(APInt::getMinValue(BitWidth) - 1122 SE->getUnsignedRangeMax(Step)); 1123 } 1124 1125 namespace { 1126 1127 struct ExtendOpTraitsBase { 1128 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1129 unsigned); 1130 }; 1131 1132 // Used to make code generic over signed and unsigned overflow. 1133 template <typename ExtendOp> struct ExtendOpTraits { 1134 // Members present: 1135 // 1136 // static const SCEV::NoWrapFlags WrapType; 1137 // 1138 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1139 // 1140 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1141 // ICmpInst::Predicate *Pred, 1142 // ScalarEvolution *SE); 1143 }; 1144 1145 template <> 1146 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1147 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1148 1149 static const GetExtendExprTy GetExtendExpr; 1150 1151 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1152 ICmpInst::Predicate *Pred, 1153 ScalarEvolution *SE) { 1154 return getSignedOverflowLimitForStep(Step, Pred, SE); 1155 } 1156 }; 1157 1158 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1159 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1160 1161 template <> 1162 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1163 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1164 1165 static const GetExtendExprTy GetExtendExpr; 1166 1167 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1168 ICmpInst::Predicate *Pred, 1169 ScalarEvolution *SE) { 1170 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1171 } 1172 }; 1173 1174 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1175 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1176 1177 } // end anonymous namespace 1178 1179 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1180 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1181 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1182 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1183 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1184 // expression "Step + sext/zext(PreIncAR)" is congruent with 1185 // "sext/zext(PostIncAR)" 1186 template <typename ExtendOpTy> 1187 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1188 ScalarEvolution *SE, unsigned Depth) { 1189 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1190 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1191 1192 const Loop *L = AR->getLoop(); 1193 const SCEV *Start = AR->getStart(); 1194 const SCEV *Step = AR->getStepRecurrence(*SE); 1195 1196 // Check for a simple looking step prior to loop entry. 1197 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1198 if (!SA) 1199 return nullptr; 1200 1201 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1202 // subtraction is expensive. For this purpose, perform a quick and dirty 1203 // difference, by checking for Step in the operand list. 1204 SmallVector<const SCEV *, 4> DiffOps; 1205 for (const SCEV *Op : SA->operands()) 1206 if (Op != Step) 1207 DiffOps.push_back(Op); 1208 1209 if (DiffOps.size() == SA->getNumOperands()) 1210 return nullptr; 1211 1212 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1213 // `Step`: 1214 1215 // 1. NSW/NUW flags on the step increment. 1216 auto PreStartFlags = 1217 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1218 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1219 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1220 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1221 1222 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1223 // "S+X does not sign/unsign-overflow". 1224 // 1225 1226 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1227 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1228 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1229 return PreStart; 1230 1231 // 2. Direct overflow check on the step operation's expression. 1232 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1233 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1234 const SCEV *OperandExtendedStart = 1235 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1236 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1237 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1238 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1239 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1240 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1241 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1242 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1243 } 1244 return PreStart; 1245 } 1246 1247 // 3. Loop precondition. 1248 ICmpInst::Predicate Pred; 1249 const SCEV *OverflowLimit = 1250 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1251 1252 if (OverflowLimit && 1253 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1254 return PreStart; 1255 1256 return nullptr; 1257 } 1258 1259 // Get the normalized zero or sign extended expression for this AddRec's Start. 1260 template <typename ExtendOpTy> 1261 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1262 ScalarEvolution *SE, 1263 unsigned Depth) { 1264 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1265 1266 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1267 if (!PreStart) 1268 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1269 1270 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1271 Depth), 1272 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1273 } 1274 1275 // Try to prove away overflow by looking at "nearby" add recurrences. A 1276 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1277 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1278 // 1279 // Formally: 1280 // 1281 // {S,+,X} == {S-T,+,X} + T 1282 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1283 // 1284 // If ({S-T,+,X} + T) does not overflow ... (1) 1285 // 1286 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1287 // 1288 // If {S-T,+,X} does not overflow ... (2) 1289 // 1290 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1291 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1292 // 1293 // If (S-T)+T does not overflow ... (3) 1294 // 1295 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1296 // == {Ext(S),+,Ext(X)} == LHS 1297 // 1298 // Thus, if (1), (2) and (3) are true for some T, then 1299 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1300 // 1301 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1302 // does not overflow" restricted to the 0th iteration. Therefore we only need 1303 // to check for (1) and (2). 1304 // 1305 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1306 // is `Delta` (defined below). 1307 template <typename ExtendOpTy> 1308 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1309 const SCEV *Step, 1310 const Loop *L) { 1311 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1312 1313 // We restrict `Start` to a constant to prevent SCEV from spending too much 1314 // time here. It is correct (but more expensive) to continue with a 1315 // non-constant `Start` and do a general SCEV subtraction to compute 1316 // `PreStart` below. 1317 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1318 if (!StartC) 1319 return false; 1320 1321 APInt StartAI = StartC->getAPInt(); 1322 1323 for (unsigned Delta : {-2, -1, 1, 2}) { 1324 const SCEV *PreStart = getConstant(StartAI - Delta); 1325 1326 FoldingSetNodeID ID; 1327 ID.AddInteger(scAddRecExpr); 1328 ID.AddPointer(PreStart); 1329 ID.AddPointer(Step); 1330 ID.AddPointer(L); 1331 void *IP = nullptr; 1332 const auto *PreAR = 1333 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1334 1335 // Give up if we don't already have the add recurrence we need because 1336 // actually constructing an add recurrence is relatively expensive. 1337 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1338 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1339 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1340 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1341 DeltaS, &Pred, this); 1342 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 // Finds an integer D for an expression (C + x + y + ...) such that the top 1351 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1352 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1353 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1354 // the (C + x + y + ...) expression is \p WholeAddExpr. 1355 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1356 const SCEVConstant *ConstantTerm, 1357 const SCEVAddExpr *WholeAddExpr) { 1358 const APInt &C = ConstantTerm->getAPInt(); 1359 const unsigned BitWidth = C.getBitWidth(); 1360 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1361 uint32_t TZ = BitWidth; 1362 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1363 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1364 if (TZ) { 1365 // Set D to be as many least significant bits of C as possible while still 1366 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1367 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1368 } 1369 return APInt(BitWidth, 0); 1370 } 1371 1372 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1373 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1374 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1375 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1376 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1377 const APInt &ConstantStart, 1378 const SCEV *Step) { 1379 const unsigned BitWidth = ConstantStart.getBitWidth(); 1380 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1381 if (TZ) 1382 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1383 : ConstantStart; 1384 return APInt(BitWidth, 0); 1385 } 1386 1387 const SCEV * 1388 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1389 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1390 "This is not an extending conversion!"); 1391 assert(isSCEVable(Ty) && 1392 "This is not a conversion to a SCEVable type!"); 1393 Ty = getEffectiveSCEVType(Ty); 1394 1395 // Fold if the operand is constant. 1396 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1397 return getConstant( 1398 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1399 1400 // zext(zext(x)) --> zext(x) 1401 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1402 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1403 1404 // Before doing any expensive analysis, check to see if we've already 1405 // computed a SCEV for this Op and Ty. 1406 FoldingSetNodeID ID; 1407 ID.AddInteger(scZeroExtend); 1408 ID.AddPointer(Op); 1409 ID.AddPointer(Ty); 1410 void *IP = nullptr; 1411 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1412 if (Depth > MaxCastDepth) { 1413 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1414 Op, Ty); 1415 UniqueSCEVs.InsertNode(S, IP); 1416 addToLoopUseLists(S); 1417 return S; 1418 } 1419 1420 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1421 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1422 // It's possible the bits taken off by the truncate were all zero bits. If 1423 // so, we should be able to simplify this further. 1424 const SCEV *X = ST->getOperand(); 1425 ConstantRange CR = getUnsignedRange(X); 1426 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1427 unsigned NewBits = getTypeSizeInBits(Ty); 1428 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1429 CR.zextOrTrunc(NewBits))) 1430 return getTruncateOrZeroExtend(X, Ty, Depth); 1431 } 1432 1433 // If the input value is a chrec scev, and we can prove that the value 1434 // did not overflow the old, smaller, value, we can zero extend all of the 1435 // operands (often constants). This allows analysis of something like 1436 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1437 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1438 if (AR->isAffine()) { 1439 const SCEV *Start = AR->getStart(); 1440 const SCEV *Step = AR->getStepRecurrence(*this); 1441 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1442 const Loop *L = AR->getLoop(); 1443 1444 if (!AR->hasNoUnsignedWrap()) { 1445 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1446 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1447 } 1448 1449 // If we have special knowledge that this addrec won't overflow, 1450 // we don't need to do any further analysis. 1451 if (AR->hasNoUnsignedWrap()) 1452 return getAddRecExpr( 1453 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1454 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1455 1456 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1457 // Note that this serves two purposes: It filters out loops that are 1458 // simply not analyzable, and it covers the case where this code is 1459 // being called from within backedge-taken count analysis, such that 1460 // attempting to ask for the backedge-taken count would likely result 1461 // in infinite recursion. In the later case, the analysis code will 1462 // cope with a conservative value, and it will take care to purge 1463 // that value once it has finished. 1464 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1465 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1466 // Manually compute the final value for AR, checking for 1467 // overflow. 1468 1469 // Check whether the backedge-taken count can be losslessly casted to 1470 // the addrec's type. The count is always unsigned. 1471 const SCEV *CastedMaxBECount = 1472 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1473 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1474 CastedMaxBECount, MaxBECount->getType(), Depth); 1475 if (MaxBECount == RecastedMaxBECount) { 1476 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1477 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1478 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1479 SCEV::FlagAnyWrap, Depth + 1); 1480 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1481 SCEV::FlagAnyWrap, 1482 Depth + 1), 1483 WideTy, Depth + 1); 1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1485 const SCEV *WideMaxBECount = 1486 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1487 const SCEV *OperandExtendedAdd = 1488 getAddExpr(WideStart, 1489 getMulExpr(WideMaxBECount, 1490 getZeroExtendExpr(Step, WideTy, Depth + 1), 1491 SCEV::FlagAnyWrap, Depth + 1), 1492 SCEV::FlagAnyWrap, Depth + 1); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1499 Depth + 1), 1500 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1501 AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy, Depth + 1), 1509 SCEV::FlagAnyWrap, Depth + 1), 1510 SCEV::FlagAnyWrap, Depth + 1); 1511 if (ZAdd == OperandExtendedAdd) { 1512 // Cache knowledge of AR NW, which is propagated to this AddRec. 1513 // Negative step causes unsigned wrap, but it still can't self-wrap. 1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1515 // Return the expression with the addrec on the outside. 1516 return getAddRecExpr( 1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1518 Depth + 1), 1519 getSignExtendExpr(Step, Ty, Depth + 1), L, 1520 AR->getNoWrapFlags()); 1521 } 1522 } 1523 } 1524 1525 // Normally, in the cases we can prove no-overflow via a 1526 // backedge guarding condition, we can also compute a backedge 1527 // taken count for the loop. The exceptions are assumptions and 1528 // guards present in the loop -- SCEV is not great at exploiting 1529 // these to compute max backedge taken counts, but can still use 1530 // these to prove lack of overflow. Use this fact to avoid 1531 // doing extra work that may not pay off. 1532 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1533 !AC.assumptions().empty()) { 1534 // If the backedge is guarded by a comparison with the pre-inc 1535 // value the addrec is safe. Also, if the entry is guarded by 1536 // a comparison with the start value and the backedge is 1537 // guarded by a comparison with the post-inc value, the addrec 1538 // is safe. 1539 if (isKnownPositive(Step)) { 1540 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1541 getUnsignedRangeMax(Step)); 1542 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1543 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1544 // Cache knowledge of AR NUW, which is propagated to this 1545 // AddRec. 1546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1547 // Return the expression with the addrec on the outside. 1548 return getAddRecExpr( 1549 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1550 Depth + 1), 1551 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1552 AR->getNoWrapFlags()); 1553 } 1554 } else if (isKnownNegative(Step)) { 1555 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1556 getSignedRangeMin(Step)); 1557 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1558 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1559 // Cache knowledge of AR NW, which is propagated to this 1560 // AddRec. Negative step causes unsigned wrap, but it 1561 // still can't self-wrap. 1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1563 // Return the expression with the addrec on the outside. 1564 return getAddRecExpr( 1565 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1566 Depth + 1), 1567 getSignExtendExpr(Step, Ty, Depth + 1), L, 1568 AR->getNoWrapFlags()); 1569 } 1570 } 1571 } 1572 1573 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1574 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1575 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1576 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1577 const APInt &C = SC->getAPInt(); 1578 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1579 if (D != 0) { 1580 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1581 const SCEV *SResidual = 1582 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1583 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1584 return getAddExpr(SZExtD, SZExtR, 1585 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1586 Depth + 1); 1587 } 1588 } 1589 1590 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1591 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1592 return getAddRecExpr( 1593 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1594 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1595 } 1596 } 1597 1598 // zext(A % B) --> zext(A) % zext(B) 1599 { 1600 const SCEV *LHS; 1601 const SCEV *RHS; 1602 if (matchURem(Op, LHS, RHS)) 1603 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1604 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1605 } 1606 1607 // zext(A / B) --> zext(A) / zext(B). 1608 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1609 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1610 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1611 1612 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1613 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1614 if (SA->hasNoUnsignedWrap()) { 1615 // If the addition does not unsign overflow then we can, by definition, 1616 // commute the zero extension with the addition operation. 1617 SmallVector<const SCEV *, 4> Ops; 1618 for (const auto *Op : SA->operands()) 1619 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1620 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1621 } 1622 1623 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1624 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1625 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1626 // 1627 // Often address arithmetics contain expressions like 1628 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1629 // This transformation is useful while proving that such expressions are 1630 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1631 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1632 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1633 if (D != 0) { 1634 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1635 const SCEV *SResidual = 1636 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1637 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1638 return getAddExpr(SZExtD, SZExtR, 1639 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1640 Depth + 1); 1641 } 1642 } 1643 } 1644 1645 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1646 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1647 if (SM->hasNoUnsignedWrap()) { 1648 // If the multiply does not unsign overflow then we can, by definition, 1649 // commute the zero extension with the multiply operation. 1650 SmallVector<const SCEV *, 4> Ops; 1651 for (const auto *Op : SM->operands()) 1652 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1653 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1654 } 1655 1656 // zext(2^K * (trunc X to iN)) to iM -> 1657 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1658 // 1659 // Proof: 1660 // 1661 // zext(2^K * (trunc X to iN)) to iM 1662 // = zext((trunc X to iN) << K) to iM 1663 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1664 // (because shl removes the top K bits) 1665 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1666 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1667 // 1668 if (SM->getNumOperands() == 2) 1669 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1670 if (MulLHS->getAPInt().isPowerOf2()) 1671 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1672 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1673 MulLHS->getAPInt().logBase2(); 1674 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1675 return getMulExpr( 1676 getZeroExtendExpr(MulLHS, Ty), 1677 getZeroExtendExpr( 1678 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1679 SCEV::FlagNUW, Depth + 1); 1680 } 1681 } 1682 1683 // The cast wasn't folded; create an explicit cast node. 1684 // Recompute the insert position, as it may have been invalidated. 1685 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1686 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1687 Op, Ty); 1688 UniqueSCEVs.InsertNode(S, IP); 1689 addToLoopUseLists(S); 1690 return S; 1691 } 1692 1693 const SCEV * 1694 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1695 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1696 "This is not an extending conversion!"); 1697 assert(isSCEVable(Ty) && 1698 "This is not a conversion to a SCEVable type!"); 1699 Ty = getEffectiveSCEVType(Ty); 1700 1701 // Fold if the operand is constant. 1702 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1703 return getConstant( 1704 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1705 1706 // sext(sext(x)) --> sext(x) 1707 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1708 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1709 1710 // sext(zext(x)) --> zext(x) 1711 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1712 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1713 1714 // Before doing any expensive analysis, check to see if we've already 1715 // computed a SCEV for this Op and Ty. 1716 FoldingSetNodeID ID; 1717 ID.AddInteger(scSignExtend); 1718 ID.AddPointer(Op); 1719 ID.AddPointer(Ty); 1720 void *IP = nullptr; 1721 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1722 // Limit recursion depth. 1723 if (Depth > MaxCastDepth) { 1724 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1725 Op, Ty); 1726 UniqueSCEVs.InsertNode(S, IP); 1727 addToLoopUseLists(S); 1728 return S; 1729 } 1730 1731 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1732 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1733 // It's possible the bits taken off by the truncate were all sign bits. If 1734 // so, we should be able to simplify this further. 1735 const SCEV *X = ST->getOperand(); 1736 ConstantRange CR = getSignedRange(X); 1737 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1738 unsigned NewBits = getTypeSizeInBits(Ty); 1739 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1740 CR.sextOrTrunc(NewBits))) 1741 return getTruncateOrSignExtend(X, Ty, Depth); 1742 } 1743 1744 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1745 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1746 if (SA->hasNoSignedWrap()) { 1747 // If the addition does not sign overflow then we can, by definition, 1748 // commute the sign extension with the addition operation. 1749 SmallVector<const SCEV *, 4> Ops; 1750 for (const auto *Op : SA->operands()) 1751 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1752 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1753 } 1754 1755 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1756 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1757 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1758 // 1759 // For instance, this will bring two seemingly different expressions: 1760 // 1 + sext(5 + 20 * %x + 24 * %y) and 1761 // sext(6 + 20 * %x + 24 * %y) 1762 // to the same form: 1763 // 2 + sext(4 + 20 * %x + 24 * %y) 1764 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1765 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1766 if (D != 0) { 1767 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1768 const SCEV *SResidual = 1769 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1770 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1771 return getAddExpr(SSExtD, SSExtR, 1772 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1773 Depth + 1); 1774 } 1775 } 1776 } 1777 // If the input value is a chrec scev, and we can prove that the value 1778 // did not overflow the old, smaller, value, we can sign extend all of the 1779 // operands (often constants). This allows analysis of something like 1780 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1781 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1782 if (AR->isAffine()) { 1783 const SCEV *Start = AR->getStart(); 1784 const SCEV *Step = AR->getStepRecurrence(*this); 1785 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1786 const Loop *L = AR->getLoop(); 1787 1788 if (!AR->hasNoSignedWrap()) { 1789 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1790 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1791 } 1792 1793 // If we have special knowledge that this addrec won't overflow, 1794 // we don't need to do any further analysis. 1795 if (AR->hasNoSignedWrap()) 1796 return getAddRecExpr( 1797 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1798 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1799 1800 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1801 // Note that this serves two purposes: It filters out loops that are 1802 // simply not analyzable, and it covers the case where this code is 1803 // being called from within backedge-taken count analysis, such that 1804 // attempting to ask for the backedge-taken count would likely result 1805 // in infinite recursion. In the later case, the analysis code will 1806 // cope with a conservative value, and it will take care to purge 1807 // that value once it has finished. 1808 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1809 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1810 // Manually compute the final value for AR, checking for 1811 // overflow. 1812 1813 // Check whether the backedge-taken count can be losslessly casted to 1814 // the addrec's type. The count is always unsigned. 1815 const SCEV *CastedMaxBECount = 1816 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1817 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1818 CastedMaxBECount, MaxBECount->getType(), Depth); 1819 if (MaxBECount == RecastedMaxBECount) { 1820 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1821 // Check whether Start+Step*MaxBECount has no signed overflow. 1822 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1823 SCEV::FlagAnyWrap, Depth + 1); 1824 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1825 SCEV::FlagAnyWrap, 1826 Depth + 1), 1827 WideTy, Depth + 1); 1828 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1829 const SCEV *WideMaxBECount = 1830 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1831 const SCEV *OperandExtendedAdd = 1832 getAddExpr(WideStart, 1833 getMulExpr(WideMaxBECount, 1834 getSignExtendExpr(Step, WideTy, Depth + 1), 1835 SCEV::FlagAnyWrap, Depth + 1), 1836 SCEV::FlagAnyWrap, Depth + 1); 1837 if (SAdd == OperandExtendedAdd) { 1838 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1839 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1840 // Return the expression with the addrec on the outside. 1841 return getAddRecExpr( 1842 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1843 Depth + 1), 1844 getSignExtendExpr(Step, Ty, Depth + 1), L, 1845 AR->getNoWrapFlags()); 1846 } 1847 // Similar to above, only this time treat the step value as unsigned. 1848 // This covers loops that count up with an unsigned step. 1849 OperandExtendedAdd = 1850 getAddExpr(WideStart, 1851 getMulExpr(WideMaxBECount, 1852 getZeroExtendExpr(Step, WideTy, Depth + 1), 1853 SCEV::FlagAnyWrap, Depth + 1), 1854 SCEV::FlagAnyWrap, Depth + 1); 1855 if (SAdd == OperandExtendedAdd) { 1856 // If AR wraps around then 1857 // 1858 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1859 // => SAdd != OperandExtendedAdd 1860 // 1861 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1862 // (SAdd == OperandExtendedAdd => AR is NW) 1863 1864 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1865 1866 // Return the expression with the addrec on the outside. 1867 return getAddRecExpr( 1868 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1869 Depth + 1), 1870 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1871 AR->getNoWrapFlags()); 1872 } 1873 } 1874 } 1875 1876 // Normally, in the cases we can prove no-overflow via a 1877 // backedge guarding condition, we can also compute a backedge 1878 // taken count for the loop. The exceptions are assumptions and 1879 // guards present in the loop -- SCEV is not great at exploiting 1880 // these to compute max backedge taken counts, but can still use 1881 // these to prove lack of overflow. Use this fact to avoid 1882 // doing extra work that may not pay off. 1883 1884 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1885 !AC.assumptions().empty()) { 1886 // If the backedge is guarded by a comparison with the pre-inc 1887 // value the addrec is safe. Also, if the entry is guarded by 1888 // a comparison with the start value and the backedge is 1889 // guarded by a comparison with the post-inc value, the addrec 1890 // is safe. 1891 ICmpInst::Predicate Pred; 1892 const SCEV *OverflowLimit = 1893 getSignedOverflowLimitForStep(Step, &Pred, this); 1894 if (OverflowLimit && 1895 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1896 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 1897 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1898 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1899 return getAddRecExpr( 1900 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1901 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1902 } 1903 } 1904 1905 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 1906 // if D + (C - D + Step * n) could be proven to not signed wrap 1907 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1908 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1909 const APInt &C = SC->getAPInt(); 1910 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1911 if (D != 0) { 1912 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1913 const SCEV *SResidual = 1914 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1915 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1916 return getAddExpr(SSExtD, SSExtR, 1917 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1918 Depth + 1); 1919 } 1920 } 1921 1922 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1923 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1924 return getAddRecExpr( 1925 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1926 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1927 } 1928 } 1929 1930 // If the input value is provably positive and we could not simplify 1931 // away the sext build a zext instead. 1932 if (isKnownNonNegative(Op)) 1933 return getZeroExtendExpr(Op, Ty, Depth + 1); 1934 1935 // The cast wasn't folded; create an explicit cast node. 1936 // Recompute the insert position, as it may have been invalidated. 1937 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1938 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1939 Op, Ty); 1940 UniqueSCEVs.InsertNode(S, IP); 1941 addToLoopUseLists(S); 1942 return S; 1943 } 1944 1945 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1946 /// unspecified bits out to the given type. 1947 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1948 Type *Ty) { 1949 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1950 "This is not an extending conversion!"); 1951 assert(isSCEVable(Ty) && 1952 "This is not a conversion to a SCEVable type!"); 1953 Ty = getEffectiveSCEVType(Ty); 1954 1955 // Sign-extend negative constants. 1956 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1957 if (SC->getAPInt().isNegative()) 1958 return getSignExtendExpr(Op, Ty); 1959 1960 // Peel off a truncate cast. 1961 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1962 const SCEV *NewOp = T->getOperand(); 1963 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1964 return getAnyExtendExpr(NewOp, Ty); 1965 return getTruncateOrNoop(NewOp, Ty); 1966 } 1967 1968 // Next try a zext cast. If the cast is folded, use it. 1969 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1970 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1971 return ZExt; 1972 1973 // Next try a sext cast. If the cast is folded, use it. 1974 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1975 if (!isa<SCEVSignExtendExpr>(SExt)) 1976 return SExt; 1977 1978 // Force the cast to be folded into the operands of an addrec. 1979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1980 SmallVector<const SCEV *, 4> Ops; 1981 for (const SCEV *Op : AR->operands()) 1982 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1983 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1984 } 1985 1986 // If the expression is obviously signed, use the sext cast value. 1987 if (isa<SCEVSMaxExpr>(Op)) 1988 return SExt; 1989 1990 // Absent any other information, use the zext cast value. 1991 return ZExt; 1992 } 1993 1994 /// Process the given Ops list, which is a list of operands to be added under 1995 /// the given scale, update the given map. This is a helper function for 1996 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1997 /// that would form an add expression like this: 1998 /// 1999 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2000 /// 2001 /// where A and B are constants, update the map with these values: 2002 /// 2003 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2004 /// 2005 /// and add 13 + A*B*29 to AccumulatedConstant. 2006 /// This will allow getAddRecExpr to produce this: 2007 /// 2008 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2009 /// 2010 /// This form often exposes folding opportunities that are hidden in 2011 /// the original operand list. 2012 /// 2013 /// Return true iff it appears that any interesting folding opportunities 2014 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2015 /// the common case where no interesting opportunities are present, and 2016 /// is also used as a check to avoid infinite recursion. 2017 static bool 2018 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2019 SmallVectorImpl<const SCEV *> &NewOps, 2020 APInt &AccumulatedConstant, 2021 const SCEV *const *Ops, size_t NumOperands, 2022 const APInt &Scale, 2023 ScalarEvolution &SE) { 2024 bool Interesting = false; 2025 2026 // Iterate over the add operands. They are sorted, with constants first. 2027 unsigned i = 0; 2028 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2029 ++i; 2030 // Pull a buried constant out to the outside. 2031 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2032 Interesting = true; 2033 AccumulatedConstant += Scale * C->getAPInt(); 2034 } 2035 2036 // Next comes everything else. We're especially interested in multiplies 2037 // here, but they're in the middle, so just visit the rest with one loop. 2038 for (; i != NumOperands; ++i) { 2039 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2040 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2041 APInt NewScale = 2042 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2043 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2044 // A multiplication of a constant with another add; recurse. 2045 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2046 Interesting |= 2047 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2048 Add->op_begin(), Add->getNumOperands(), 2049 NewScale, SE); 2050 } else { 2051 // A multiplication of a constant with some other value. Update 2052 // the map. 2053 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2054 const SCEV *Key = SE.getMulExpr(MulOps); 2055 auto Pair = M.insert({Key, NewScale}); 2056 if (Pair.second) { 2057 NewOps.push_back(Pair.first->first); 2058 } else { 2059 Pair.first->second += NewScale; 2060 // The map already had an entry for this value, which may indicate 2061 // a folding opportunity. 2062 Interesting = true; 2063 } 2064 } 2065 } else { 2066 // An ordinary operand. Update the map. 2067 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2068 M.insert({Ops[i], Scale}); 2069 if (Pair.second) { 2070 NewOps.push_back(Pair.first->first); 2071 } else { 2072 Pair.first->second += Scale; 2073 // The map already had an entry for this value, which may indicate 2074 // a folding opportunity. 2075 Interesting = true; 2076 } 2077 } 2078 } 2079 2080 return Interesting; 2081 } 2082 2083 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2084 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2085 // can't-overflow flags for the operation if possible. 2086 static SCEV::NoWrapFlags 2087 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2088 const ArrayRef<const SCEV *> Ops, 2089 SCEV::NoWrapFlags Flags) { 2090 using namespace std::placeholders; 2091 2092 using OBO = OverflowingBinaryOperator; 2093 2094 bool CanAnalyze = 2095 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2096 (void)CanAnalyze; 2097 assert(CanAnalyze && "don't call from other places!"); 2098 2099 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2100 SCEV::NoWrapFlags SignOrUnsignWrap = 2101 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2102 2103 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2104 auto IsKnownNonNegative = [&](const SCEV *S) { 2105 return SE->isKnownNonNegative(S); 2106 }; 2107 2108 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2109 Flags = 2110 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2111 2112 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2113 2114 if (SignOrUnsignWrap != SignOrUnsignMask && 2115 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2116 isa<SCEVConstant>(Ops[0])) { 2117 2118 auto Opcode = [&] { 2119 switch (Type) { 2120 case scAddExpr: 2121 return Instruction::Add; 2122 case scMulExpr: 2123 return Instruction::Mul; 2124 default: 2125 llvm_unreachable("Unexpected SCEV op."); 2126 } 2127 }(); 2128 2129 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2130 2131 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2132 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2133 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2134 Opcode, C, OBO::NoSignedWrap); 2135 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2136 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2137 } 2138 2139 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2140 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2141 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2142 Opcode, C, OBO::NoUnsignedWrap); 2143 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2144 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2145 } 2146 } 2147 2148 return Flags; 2149 } 2150 2151 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2152 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2153 } 2154 2155 /// Get a canonical add expression, or something simpler if possible. 2156 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2157 SCEV::NoWrapFlags Flags, 2158 unsigned Depth) { 2159 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2160 "only nuw or nsw allowed"); 2161 assert(!Ops.empty() && "Cannot get empty add!"); 2162 if (Ops.size() == 1) return Ops[0]; 2163 #ifndef NDEBUG 2164 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2165 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2166 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2167 "SCEVAddExpr operand types don't match!"); 2168 #endif 2169 2170 // Sort by complexity, this groups all similar expression types together. 2171 GroupByComplexity(Ops, &LI, DT); 2172 2173 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2174 2175 // If there are any constants, fold them together. 2176 unsigned Idx = 0; 2177 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2178 ++Idx; 2179 assert(Idx < Ops.size()); 2180 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2181 // We found two constants, fold them together! 2182 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2183 if (Ops.size() == 2) return Ops[0]; 2184 Ops.erase(Ops.begin()+1); // Erase the folded element 2185 LHSC = cast<SCEVConstant>(Ops[0]); 2186 } 2187 2188 // If we are left with a constant zero being added, strip it off. 2189 if (LHSC->getValue()->isZero()) { 2190 Ops.erase(Ops.begin()); 2191 --Idx; 2192 } 2193 2194 if (Ops.size() == 1) return Ops[0]; 2195 } 2196 2197 // Limit recursion calls depth. 2198 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2199 return getOrCreateAddExpr(Ops, Flags); 2200 2201 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2202 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags); 2203 return S; 2204 } 2205 2206 // Okay, check to see if the same value occurs in the operand list more than 2207 // once. If so, merge them together into an multiply expression. Since we 2208 // sorted the list, these values are required to be adjacent. 2209 Type *Ty = Ops[0]->getType(); 2210 bool FoundMatch = false; 2211 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2212 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2213 // Scan ahead to count how many equal operands there are. 2214 unsigned Count = 2; 2215 while (i+Count != e && Ops[i+Count] == Ops[i]) 2216 ++Count; 2217 // Merge the values into a multiply. 2218 const SCEV *Scale = getConstant(Ty, Count); 2219 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2220 if (Ops.size() == Count) 2221 return Mul; 2222 Ops[i] = Mul; 2223 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2224 --i; e -= Count - 1; 2225 FoundMatch = true; 2226 } 2227 if (FoundMatch) 2228 return getAddExpr(Ops, Flags, Depth + 1); 2229 2230 // Check for truncates. If all the operands are truncated from the same 2231 // type, see if factoring out the truncate would permit the result to be 2232 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2233 // if the contents of the resulting outer trunc fold to something simple. 2234 auto FindTruncSrcType = [&]() -> Type * { 2235 // We're ultimately looking to fold an addrec of truncs and muls of only 2236 // constants and truncs, so if we find any other types of SCEV 2237 // as operands of the addrec then we bail and return nullptr here. 2238 // Otherwise, we return the type of the operand of a trunc that we find. 2239 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2240 return T->getOperand()->getType(); 2241 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2242 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2243 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2244 return T->getOperand()->getType(); 2245 } 2246 return nullptr; 2247 }; 2248 if (auto *SrcType = FindTruncSrcType()) { 2249 SmallVector<const SCEV *, 8> LargeOps; 2250 bool Ok = true; 2251 // Check all the operands to see if they can be represented in the 2252 // source type of the truncate. 2253 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2254 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2255 if (T->getOperand()->getType() != SrcType) { 2256 Ok = false; 2257 break; 2258 } 2259 LargeOps.push_back(T->getOperand()); 2260 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2261 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2262 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2263 SmallVector<const SCEV *, 8> LargeMulOps; 2264 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2265 if (const SCEVTruncateExpr *T = 2266 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2267 if (T->getOperand()->getType() != SrcType) { 2268 Ok = false; 2269 break; 2270 } 2271 LargeMulOps.push_back(T->getOperand()); 2272 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2273 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2274 } else { 2275 Ok = false; 2276 break; 2277 } 2278 } 2279 if (Ok) 2280 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2281 } else { 2282 Ok = false; 2283 break; 2284 } 2285 } 2286 if (Ok) { 2287 // Evaluate the expression in the larger type. 2288 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2289 // If it folds to something simple, use it. Otherwise, don't. 2290 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2291 return getTruncateExpr(Fold, Ty); 2292 } 2293 } 2294 2295 // Skip past any other cast SCEVs. 2296 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2297 ++Idx; 2298 2299 // If there are add operands they would be next. 2300 if (Idx < Ops.size()) { 2301 bool DeletedAdd = false; 2302 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2303 if (Ops.size() > AddOpsInlineThreshold || 2304 Add->getNumOperands() > AddOpsInlineThreshold) 2305 break; 2306 // If we have an add, expand the add operands onto the end of the operands 2307 // list. 2308 Ops.erase(Ops.begin()+Idx); 2309 Ops.append(Add->op_begin(), Add->op_end()); 2310 DeletedAdd = true; 2311 } 2312 2313 // If we deleted at least one add, we added operands to the end of the list, 2314 // and they are not necessarily sorted. Recurse to resort and resimplify 2315 // any operands we just acquired. 2316 if (DeletedAdd) 2317 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2318 } 2319 2320 // Skip over the add expression until we get to a multiply. 2321 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2322 ++Idx; 2323 2324 // Check to see if there are any folding opportunities present with 2325 // operands multiplied by constant values. 2326 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2327 uint64_t BitWidth = getTypeSizeInBits(Ty); 2328 DenseMap<const SCEV *, APInt> M; 2329 SmallVector<const SCEV *, 8> NewOps; 2330 APInt AccumulatedConstant(BitWidth, 0); 2331 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2332 Ops.data(), Ops.size(), 2333 APInt(BitWidth, 1), *this)) { 2334 struct APIntCompare { 2335 bool operator()(const APInt &LHS, const APInt &RHS) const { 2336 return LHS.ult(RHS); 2337 } 2338 }; 2339 2340 // Some interesting folding opportunity is present, so its worthwhile to 2341 // re-generate the operands list. Group the operands by constant scale, 2342 // to avoid multiplying by the same constant scale multiple times. 2343 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2344 for (const SCEV *NewOp : NewOps) 2345 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2346 // Re-generate the operands list. 2347 Ops.clear(); 2348 if (AccumulatedConstant != 0) 2349 Ops.push_back(getConstant(AccumulatedConstant)); 2350 for (auto &MulOp : MulOpLists) 2351 if (MulOp.first != 0) 2352 Ops.push_back(getMulExpr( 2353 getConstant(MulOp.first), 2354 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2355 SCEV::FlagAnyWrap, Depth + 1)); 2356 if (Ops.empty()) 2357 return getZero(Ty); 2358 if (Ops.size() == 1) 2359 return Ops[0]; 2360 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2361 } 2362 } 2363 2364 // If we are adding something to a multiply expression, make sure the 2365 // something is not already an operand of the multiply. If so, merge it into 2366 // the multiply. 2367 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2368 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2369 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2370 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2371 if (isa<SCEVConstant>(MulOpSCEV)) 2372 continue; 2373 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2374 if (MulOpSCEV == Ops[AddOp]) { 2375 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2376 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2377 if (Mul->getNumOperands() != 2) { 2378 // If the multiply has more than two operands, we must get the 2379 // Y*Z term. 2380 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2381 Mul->op_begin()+MulOp); 2382 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2383 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2384 } 2385 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2386 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2387 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2388 SCEV::FlagAnyWrap, Depth + 1); 2389 if (Ops.size() == 2) return OuterMul; 2390 if (AddOp < Idx) { 2391 Ops.erase(Ops.begin()+AddOp); 2392 Ops.erase(Ops.begin()+Idx-1); 2393 } else { 2394 Ops.erase(Ops.begin()+Idx); 2395 Ops.erase(Ops.begin()+AddOp-1); 2396 } 2397 Ops.push_back(OuterMul); 2398 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2399 } 2400 2401 // Check this multiply against other multiplies being added together. 2402 for (unsigned OtherMulIdx = Idx+1; 2403 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2404 ++OtherMulIdx) { 2405 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2406 // If MulOp occurs in OtherMul, we can fold the two multiplies 2407 // together. 2408 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2409 OMulOp != e; ++OMulOp) 2410 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2411 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2412 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2413 if (Mul->getNumOperands() != 2) { 2414 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2415 Mul->op_begin()+MulOp); 2416 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2417 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2418 } 2419 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2420 if (OtherMul->getNumOperands() != 2) { 2421 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2422 OtherMul->op_begin()+OMulOp); 2423 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2424 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2425 } 2426 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2427 const SCEV *InnerMulSum = 2428 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2429 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2430 SCEV::FlagAnyWrap, Depth + 1); 2431 if (Ops.size() == 2) return OuterMul; 2432 Ops.erase(Ops.begin()+Idx); 2433 Ops.erase(Ops.begin()+OtherMulIdx-1); 2434 Ops.push_back(OuterMul); 2435 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2436 } 2437 } 2438 } 2439 } 2440 2441 // If there are any add recurrences in the operands list, see if any other 2442 // added values are loop invariant. If so, we can fold them into the 2443 // recurrence. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2445 ++Idx; 2446 2447 // Scan over all recurrences, trying to fold loop invariants into them. 2448 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2449 // Scan all of the other operands to this add and add them to the vector if 2450 // they are loop invariant w.r.t. the recurrence. 2451 SmallVector<const SCEV *, 8> LIOps; 2452 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2453 const Loop *AddRecLoop = AddRec->getLoop(); 2454 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2455 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2456 LIOps.push_back(Ops[i]); 2457 Ops.erase(Ops.begin()+i); 2458 --i; --e; 2459 } 2460 2461 // If we found some loop invariants, fold them into the recurrence. 2462 if (!LIOps.empty()) { 2463 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2464 LIOps.push_back(AddRec->getStart()); 2465 2466 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2467 AddRec->op_end()); 2468 // This follows from the fact that the no-wrap flags on the outer add 2469 // expression are applicable on the 0th iteration, when the add recurrence 2470 // will be equal to its start value. 2471 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2472 2473 // Build the new addrec. Propagate the NUW and NSW flags if both the 2474 // outer add and the inner addrec are guaranteed to have no overflow. 2475 // Always propagate NW. 2476 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2477 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2478 2479 // If all of the other operands were loop invariant, we are done. 2480 if (Ops.size() == 1) return NewRec; 2481 2482 // Otherwise, add the folded AddRec by the non-invariant parts. 2483 for (unsigned i = 0;; ++i) 2484 if (Ops[i] == AddRec) { 2485 Ops[i] = NewRec; 2486 break; 2487 } 2488 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2489 } 2490 2491 // Okay, if there weren't any loop invariants to be folded, check to see if 2492 // there are multiple AddRec's with the same loop induction variable being 2493 // added together. If so, we can fold them. 2494 for (unsigned OtherIdx = Idx+1; 2495 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2496 ++OtherIdx) { 2497 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2498 // so that the 1st found AddRecExpr is dominated by all others. 2499 assert(DT.dominates( 2500 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2501 AddRec->getLoop()->getHeader()) && 2502 "AddRecExprs are not sorted in reverse dominance order?"); 2503 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2504 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2505 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2506 AddRec->op_end()); 2507 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2508 ++OtherIdx) { 2509 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2510 if (OtherAddRec->getLoop() == AddRecLoop) { 2511 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2512 i != e; ++i) { 2513 if (i >= AddRecOps.size()) { 2514 AddRecOps.append(OtherAddRec->op_begin()+i, 2515 OtherAddRec->op_end()); 2516 break; 2517 } 2518 SmallVector<const SCEV *, 2> TwoOps = { 2519 AddRecOps[i], OtherAddRec->getOperand(i)}; 2520 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2521 } 2522 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2523 } 2524 } 2525 // Step size has changed, so we cannot guarantee no self-wraparound. 2526 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2527 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2528 } 2529 } 2530 2531 // Otherwise couldn't fold anything into this recurrence. Move onto the 2532 // next one. 2533 } 2534 2535 // Okay, it looks like we really DO need an add expr. Check to see if we 2536 // already have one, otherwise create a new one. 2537 return getOrCreateAddExpr(Ops, Flags); 2538 } 2539 2540 const SCEV * 2541 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2542 SCEV::NoWrapFlags Flags) { 2543 FoldingSetNodeID ID; 2544 ID.AddInteger(scAddExpr); 2545 for (const SCEV *Op : Ops) 2546 ID.AddPointer(Op); 2547 void *IP = nullptr; 2548 SCEVAddExpr *S = 2549 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2550 if (!S) { 2551 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2552 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2553 S = new (SCEVAllocator) 2554 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2555 UniqueSCEVs.InsertNode(S, IP); 2556 addToLoopUseLists(S); 2557 } 2558 S->setNoWrapFlags(Flags); 2559 return S; 2560 } 2561 2562 const SCEV * 2563 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2564 const Loop *L, SCEV::NoWrapFlags Flags) { 2565 FoldingSetNodeID ID; 2566 ID.AddInteger(scAddRecExpr); 2567 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2568 ID.AddPointer(Ops[i]); 2569 ID.AddPointer(L); 2570 void *IP = nullptr; 2571 SCEVAddRecExpr *S = 2572 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2573 if (!S) { 2574 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2575 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2576 S = new (SCEVAllocator) 2577 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2578 UniqueSCEVs.InsertNode(S, IP); 2579 addToLoopUseLists(S); 2580 } 2581 S->setNoWrapFlags(Flags); 2582 return S; 2583 } 2584 2585 const SCEV * 2586 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2587 SCEV::NoWrapFlags Flags) { 2588 FoldingSetNodeID ID; 2589 ID.AddInteger(scMulExpr); 2590 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2591 ID.AddPointer(Ops[i]); 2592 void *IP = nullptr; 2593 SCEVMulExpr *S = 2594 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2595 if (!S) { 2596 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2597 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2598 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2599 O, Ops.size()); 2600 UniqueSCEVs.InsertNode(S, IP); 2601 addToLoopUseLists(S); 2602 } 2603 S->setNoWrapFlags(Flags); 2604 return S; 2605 } 2606 2607 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2608 uint64_t k = i*j; 2609 if (j > 1 && k / j != i) Overflow = true; 2610 return k; 2611 } 2612 2613 /// Compute the result of "n choose k", the binomial coefficient. If an 2614 /// intermediate computation overflows, Overflow will be set and the return will 2615 /// be garbage. Overflow is not cleared on absence of overflow. 2616 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2617 // We use the multiplicative formula: 2618 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2619 // At each iteration, we take the n-th term of the numeral and divide by the 2620 // (k-n)th term of the denominator. This division will always produce an 2621 // integral result, and helps reduce the chance of overflow in the 2622 // intermediate computations. However, we can still overflow even when the 2623 // final result would fit. 2624 2625 if (n == 0 || n == k) return 1; 2626 if (k > n) return 0; 2627 2628 if (k > n/2) 2629 k = n-k; 2630 2631 uint64_t r = 1; 2632 for (uint64_t i = 1; i <= k; ++i) { 2633 r = umul_ov(r, n-(i-1), Overflow); 2634 r /= i; 2635 } 2636 return r; 2637 } 2638 2639 /// Determine if any of the operands in this SCEV are a constant or if 2640 /// any of the add or multiply expressions in this SCEV contain a constant. 2641 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2642 struct FindConstantInAddMulChain { 2643 bool FoundConstant = false; 2644 2645 bool follow(const SCEV *S) { 2646 FoundConstant |= isa<SCEVConstant>(S); 2647 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2648 } 2649 2650 bool isDone() const { 2651 return FoundConstant; 2652 } 2653 }; 2654 2655 FindConstantInAddMulChain F; 2656 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2657 ST.visitAll(StartExpr); 2658 return F.FoundConstant; 2659 } 2660 2661 /// Get a canonical multiply expression, or something simpler if possible. 2662 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2663 SCEV::NoWrapFlags Flags, 2664 unsigned Depth) { 2665 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2666 "only nuw or nsw allowed"); 2667 assert(!Ops.empty() && "Cannot get empty mul!"); 2668 if (Ops.size() == 1) return Ops[0]; 2669 #ifndef NDEBUG 2670 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2671 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2672 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2673 "SCEVMulExpr operand types don't match!"); 2674 #endif 2675 2676 // Sort by complexity, this groups all similar expression types together. 2677 GroupByComplexity(Ops, &LI, DT); 2678 2679 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2680 2681 // Limit recursion calls depth, but fold all-constant expressions. 2682 // `Ops` is sorted, so it's enough to check just last one. 2683 if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) && 2684 !isa<SCEVConstant>(Ops.back())) 2685 return getOrCreateMulExpr(Ops, Flags); 2686 2687 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2688 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags); 2689 return S; 2690 } 2691 2692 // If there are any constants, fold them together. 2693 unsigned Idx = 0; 2694 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2695 2696 if (Ops.size() == 2) 2697 // C1*(C2+V) -> C1*C2 + C1*V 2698 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2699 // If any of Add's ops are Adds or Muls with a constant, apply this 2700 // transformation as well. 2701 // 2702 // TODO: There are some cases where this transformation is not 2703 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2704 // this transformation should be narrowed down. 2705 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2706 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2707 SCEV::FlagAnyWrap, Depth + 1), 2708 getMulExpr(LHSC, Add->getOperand(1), 2709 SCEV::FlagAnyWrap, Depth + 1), 2710 SCEV::FlagAnyWrap, Depth + 1); 2711 2712 ++Idx; 2713 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2714 // We found two constants, fold them together! 2715 ConstantInt *Fold = 2716 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2717 Ops[0] = getConstant(Fold); 2718 Ops.erase(Ops.begin()+1); // Erase the folded element 2719 if (Ops.size() == 1) return Ops[0]; 2720 LHSC = cast<SCEVConstant>(Ops[0]); 2721 } 2722 2723 // If we are left with a constant one being multiplied, strip it off. 2724 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2725 Ops.erase(Ops.begin()); 2726 --Idx; 2727 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2728 // If we have a multiply of zero, it will always be zero. 2729 return Ops[0]; 2730 } else if (Ops[0]->isAllOnesValue()) { 2731 // If we have a mul by -1 of an add, try distributing the -1 among the 2732 // add operands. 2733 if (Ops.size() == 2) { 2734 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2735 SmallVector<const SCEV *, 4> NewOps; 2736 bool AnyFolded = false; 2737 for (const SCEV *AddOp : Add->operands()) { 2738 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2739 Depth + 1); 2740 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2741 NewOps.push_back(Mul); 2742 } 2743 if (AnyFolded) 2744 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2745 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2746 // Negation preserves a recurrence's no self-wrap property. 2747 SmallVector<const SCEV *, 4> Operands; 2748 for (const SCEV *AddRecOp : AddRec->operands()) 2749 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2750 Depth + 1)); 2751 2752 return getAddRecExpr(Operands, AddRec->getLoop(), 2753 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2754 } 2755 } 2756 } 2757 2758 if (Ops.size() == 1) 2759 return Ops[0]; 2760 } 2761 2762 // Skip over the add expression until we get to a multiply. 2763 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2764 ++Idx; 2765 2766 // If there are mul operands inline them all into this expression. 2767 if (Idx < Ops.size()) { 2768 bool DeletedMul = false; 2769 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2770 if (Ops.size() > MulOpsInlineThreshold) 2771 break; 2772 // If we have an mul, expand the mul operands onto the end of the 2773 // operands list. 2774 Ops.erase(Ops.begin()+Idx); 2775 Ops.append(Mul->op_begin(), Mul->op_end()); 2776 DeletedMul = true; 2777 } 2778 2779 // If we deleted at least one mul, we added operands to the end of the 2780 // list, and they are not necessarily sorted. Recurse to resort and 2781 // resimplify any operands we just acquired. 2782 if (DeletedMul) 2783 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2784 } 2785 2786 // If there are any add recurrences in the operands list, see if any other 2787 // added values are loop invariant. If so, we can fold them into the 2788 // recurrence. 2789 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2790 ++Idx; 2791 2792 // Scan over all recurrences, trying to fold loop invariants into them. 2793 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2794 // Scan all of the other operands to this mul and add them to the vector 2795 // if they are loop invariant w.r.t. the recurrence. 2796 SmallVector<const SCEV *, 8> LIOps; 2797 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2798 const Loop *AddRecLoop = AddRec->getLoop(); 2799 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2800 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2801 LIOps.push_back(Ops[i]); 2802 Ops.erase(Ops.begin()+i); 2803 --i; --e; 2804 } 2805 2806 // If we found some loop invariants, fold them into the recurrence. 2807 if (!LIOps.empty()) { 2808 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2809 SmallVector<const SCEV *, 4> NewOps; 2810 NewOps.reserve(AddRec->getNumOperands()); 2811 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2812 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2813 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2814 SCEV::FlagAnyWrap, Depth + 1)); 2815 2816 // Build the new addrec. Propagate the NUW and NSW flags if both the 2817 // outer mul and the inner addrec are guaranteed to have no overflow. 2818 // 2819 // No self-wrap cannot be guaranteed after changing the step size, but 2820 // will be inferred if either NUW or NSW is true. 2821 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2822 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2823 2824 // If all of the other operands were loop invariant, we are done. 2825 if (Ops.size() == 1) return NewRec; 2826 2827 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2828 for (unsigned i = 0;; ++i) 2829 if (Ops[i] == AddRec) { 2830 Ops[i] = NewRec; 2831 break; 2832 } 2833 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2834 } 2835 2836 // Okay, if there weren't any loop invariants to be folded, check to see 2837 // if there are multiple AddRec's with the same loop induction variable 2838 // being multiplied together. If so, we can fold them. 2839 2840 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2841 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2842 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2843 // ]]],+,...up to x=2n}. 2844 // Note that the arguments to choose() are always integers with values 2845 // known at compile time, never SCEV objects. 2846 // 2847 // The implementation avoids pointless extra computations when the two 2848 // addrec's are of different length (mathematically, it's equivalent to 2849 // an infinite stream of zeros on the right). 2850 bool OpsModified = false; 2851 for (unsigned OtherIdx = Idx+1; 2852 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2853 ++OtherIdx) { 2854 const SCEVAddRecExpr *OtherAddRec = 2855 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2856 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2857 continue; 2858 2859 // Limit max number of arguments to avoid creation of unreasonably big 2860 // SCEVAddRecs with very complex operands. 2861 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2862 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 2863 continue; 2864 2865 bool Overflow = false; 2866 Type *Ty = AddRec->getType(); 2867 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2868 SmallVector<const SCEV*, 7> AddRecOps; 2869 for (int x = 0, xe = AddRec->getNumOperands() + 2870 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2871 SmallVector <const SCEV *, 7> SumOps; 2872 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2873 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2874 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2875 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2876 z < ze && !Overflow; ++z) { 2877 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2878 uint64_t Coeff; 2879 if (LargerThan64Bits) 2880 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2881 else 2882 Coeff = Coeff1*Coeff2; 2883 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2884 const SCEV *Term1 = AddRec->getOperand(y-z); 2885 const SCEV *Term2 = OtherAddRec->getOperand(z); 2886 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 2887 SCEV::FlagAnyWrap, Depth + 1)); 2888 } 2889 } 2890 if (SumOps.empty()) 2891 SumOps.push_back(getZero(Ty)); 2892 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 2893 } 2894 if (!Overflow) { 2895 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 2896 SCEV::FlagAnyWrap); 2897 if (Ops.size() == 2) return NewAddRec; 2898 Ops[Idx] = NewAddRec; 2899 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2900 OpsModified = true; 2901 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2902 if (!AddRec) 2903 break; 2904 } 2905 } 2906 if (OpsModified) 2907 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2908 2909 // Otherwise couldn't fold anything into this recurrence. Move onto the 2910 // next one. 2911 } 2912 2913 // Okay, it looks like we really DO need an mul expr. Check to see if we 2914 // already have one, otherwise create a new one. 2915 return getOrCreateMulExpr(Ops, Flags); 2916 } 2917 2918 /// Represents an unsigned remainder expression based on unsigned division. 2919 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 2920 const SCEV *RHS) { 2921 assert(getEffectiveSCEVType(LHS->getType()) == 2922 getEffectiveSCEVType(RHS->getType()) && 2923 "SCEVURemExpr operand types don't match!"); 2924 2925 // Short-circuit easy cases 2926 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2927 // If constant is one, the result is trivial 2928 if (RHSC->getValue()->isOne()) 2929 return getZero(LHS->getType()); // X urem 1 --> 0 2930 2931 // If constant is a power of two, fold into a zext(trunc(LHS)). 2932 if (RHSC->getAPInt().isPowerOf2()) { 2933 Type *FullTy = LHS->getType(); 2934 Type *TruncTy = 2935 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 2936 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 2937 } 2938 } 2939 2940 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 2941 const SCEV *UDiv = getUDivExpr(LHS, RHS); 2942 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 2943 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 2944 } 2945 2946 /// Get a canonical unsigned division expression, or something simpler if 2947 /// possible. 2948 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2949 const SCEV *RHS) { 2950 assert(getEffectiveSCEVType(LHS->getType()) == 2951 getEffectiveSCEVType(RHS->getType()) && 2952 "SCEVUDivExpr operand types don't match!"); 2953 2954 FoldingSetNodeID ID; 2955 ID.AddInteger(scUDivExpr); 2956 ID.AddPointer(LHS); 2957 ID.AddPointer(RHS); 2958 void *IP = nullptr; 2959 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 2960 return S; 2961 2962 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2963 if (RHSC->getValue()->isOne()) 2964 return LHS; // X udiv 1 --> x 2965 // If the denominator is zero, the result of the udiv is undefined. Don't 2966 // try to analyze it, because the resolution chosen here may differ from 2967 // the resolution chosen in other parts of the compiler. 2968 if (!RHSC->getValue()->isZero()) { 2969 // Determine if the division can be folded into the operands of 2970 // its operands. 2971 // TODO: Generalize this to non-constants by using known-bits information. 2972 Type *Ty = LHS->getType(); 2973 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2974 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2975 // For non-power-of-two values, effectively round the value up to the 2976 // nearest power of two. 2977 if (!RHSC->getAPInt().isPowerOf2()) 2978 ++MaxShiftAmt; 2979 IntegerType *ExtTy = 2980 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2981 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2982 if (const SCEVConstant *Step = 2983 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2984 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2985 const APInt &StepInt = Step->getAPInt(); 2986 const APInt &DivInt = RHSC->getAPInt(); 2987 if (!StepInt.urem(DivInt) && 2988 getZeroExtendExpr(AR, ExtTy) == 2989 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2990 getZeroExtendExpr(Step, ExtTy), 2991 AR->getLoop(), SCEV::FlagAnyWrap)) { 2992 SmallVector<const SCEV *, 4> Operands; 2993 for (const SCEV *Op : AR->operands()) 2994 Operands.push_back(getUDivExpr(Op, RHS)); 2995 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2996 } 2997 /// Get a canonical UDivExpr for a recurrence. 2998 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2999 // We can currently only fold X%N if X is constant. 3000 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3001 if (StartC && !DivInt.urem(StepInt) && 3002 getZeroExtendExpr(AR, ExtTy) == 3003 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3004 getZeroExtendExpr(Step, ExtTy), 3005 AR->getLoop(), SCEV::FlagAnyWrap)) { 3006 const APInt &StartInt = StartC->getAPInt(); 3007 const APInt &StartRem = StartInt.urem(StepInt); 3008 if (StartRem != 0) { 3009 const SCEV *NewLHS = 3010 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3011 AR->getLoop(), SCEV::FlagNW); 3012 if (LHS != NewLHS) { 3013 LHS = NewLHS; 3014 3015 // Reset the ID to include the new LHS, and check if it is 3016 // already cached. 3017 ID.clear(); 3018 ID.AddInteger(scUDivExpr); 3019 ID.AddPointer(LHS); 3020 ID.AddPointer(RHS); 3021 IP = nullptr; 3022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3023 return S; 3024 } 3025 } 3026 } 3027 } 3028 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3029 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3030 SmallVector<const SCEV *, 4> Operands; 3031 for (const SCEV *Op : M->operands()) 3032 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3033 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3034 // Find an operand that's safely divisible. 3035 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3036 const SCEV *Op = M->getOperand(i); 3037 const SCEV *Div = getUDivExpr(Op, RHSC); 3038 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3039 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3040 M->op_end()); 3041 Operands[i] = Div; 3042 return getMulExpr(Operands); 3043 } 3044 } 3045 } 3046 3047 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3048 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3049 if (auto *DivisorConstant = 3050 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3051 bool Overflow = false; 3052 APInt NewRHS = 3053 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3054 if (Overflow) { 3055 return getConstant(RHSC->getType(), 0, false); 3056 } 3057 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3058 } 3059 } 3060 3061 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3062 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3063 SmallVector<const SCEV *, 4> Operands; 3064 for (const SCEV *Op : A->operands()) 3065 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3066 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3067 Operands.clear(); 3068 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3069 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3070 if (isa<SCEVUDivExpr>(Op) || 3071 getMulExpr(Op, RHS) != A->getOperand(i)) 3072 break; 3073 Operands.push_back(Op); 3074 } 3075 if (Operands.size() == A->getNumOperands()) 3076 return getAddExpr(Operands); 3077 } 3078 } 3079 3080 // Fold if both operands are constant. 3081 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3082 Constant *LHSCV = LHSC->getValue(); 3083 Constant *RHSCV = RHSC->getValue(); 3084 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3085 RHSCV))); 3086 } 3087 } 3088 } 3089 3090 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3091 // changes). Make sure we get a new one. 3092 IP = nullptr; 3093 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3094 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3095 LHS, RHS); 3096 UniqueSCEVs.InsertNode(S, IP); 3097 addToLoopUseLists(S); 3098 return S; 3099 } 3100 3101 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3102 APInt A = C1->getAPInt().abs(); 3103 APInt B = C2->getAPInt().abs(); 3104 uint32_t ABW = A.getBitWidth(); 3105 uint32_t BBW = B.getBitWidth(); 3106 3107 if (ABW > BBW) 3108 B = B.zext(ABW); 3109 else if (ABW < BBW) 3110 A = A.zext(BBW); 3111 3112 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3113 } 3114 3115 /// Get a canonical unsigned division expression, or something simpler if 3116 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3117 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3118 /// it's not exact because the udiv may be clearing bits. 3119 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3120 const SCEV *RHS) { 3121 // TODO: we could try to find factors in all sorts of things, but for now we 3122 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3123 // end of this file for inspiration. 3124 3125 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3126 if (!Mul || !Mul->hasNoUnsignedWrap()) 3127 return getUDivExpr(LHS, RHS); 3128 3129 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3130 // If the mulexpr multiplies by a constant, then that constant must be the 3131 // first element of the mulexpr. 3132 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3133 if (LHSCst == RHSCst) { 3134 SmallVector<const SCEV *, 2> Operands; 3135 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3136 return getMulExpr(Operands); 3137 } 3138 3139 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3140 // that there's a factor provided by one of the other terms. We need to 3141 // check. 3142 APInt Factor = gcd(LHSCst, RHSCst); 3143 if (!Factor.isIntN(1)) { 3144 LHSCst = 3145 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3146 RHSCst = 3147 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3148 SmallVector<const SCEV *, 2> Operands; 3149 Operands.push_back(LHSCst); 3150 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3151 LHS = getMulExpr(Operands); 3152 RHS = RHSCst; 3153 Mul = dyn_cast<SCEVMulExpr>(LHS); 3154 if (!Mul) 3155 return getUDivExactExpr(LHS, RHS); 3156 } 3157 } 3158 } 3159 3160 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3161 if (Mul->getOperand(i) == RHS) { 3162 SmallVector<const SCEV *, 2> Operands; 3163 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3164 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3165 return getMulExpr(Operands); 3166 } 3167 } 3168 3169 return getUDivExpr(LHS, RHS); 3170 } 3171 3172 /// Get an add recurrence expression for the specified loop. Simplify the 3173 /// expression as much as possible. 3174 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3175 const Loop *L, 3176 SCEV::NoWrapFlags Flags) { 3177 SmallVector<const SCEV *, 4> Operands; 3178 Operands.push_back(Start); 3179 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3180 if (StepChrec->getLoop() == L) { 3181 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3182 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3183 } 3184 3185 Operands.push_back(Step); 3186 return getAddRecExpr(Operands, L, Flags); 3187 } 3188 3189 /// Get an add recurrence expression for the specified loop. Simplify the 3190 /// expression as much as possible. 3191 const SCEV * 3192 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3193 const Loop *L, SCEV::NoWrapFlags Flags) { 3194 if (Operands.size() == 1) return Operands[0]; 3195 #ifndef NDEBUG 3196 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3197 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3198 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3199 "SCEVAddRecExpr operand types don't match!"); 3200 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3201 assert(isLoopInvariant(Operands[i], L) && 3202 "SCEVAddRecExpr operand is not loop-invariant!"); 3203 #endif 3204 3205 if (Operands.back()->isZero()) { 3206 Operands.pop_back(); 3207 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3208 } 3209 3210 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3211 // use that information to infer NUW and NSW flags. However, computing a 3212 // BE count requires calling getAddRecExpr, so we may not yet have a 3213 // meaningful BE count at this point (and if we don't, we'd be stuck 3214 // with a SCEVCouldNotCompute as the cached BE count). 3215 3216 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3217 3218 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3219 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3220 const Loop *NestedLoop = NestedAR->getLoop(); 3221 if (L->contains(NestedLoop) 3222 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3223 : (!NestedLoop->contains(L) && 3224 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3225 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3226 NestedAR->op_end()); 3227 Operands[0] = NestedAR->getStart(); 3228 // AddRecs require their operands be loop-invariant with respect to their 3229 // loops. Don't perform this transformation if it would break this 3230 // requirement. 3231 bool AllInvariant = all_of( 3232 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3233 3234 if (AllInvariant) { 3235 // Create a recurrence for the outer loop with the same step size. 3236 // 3237 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3238 // inner recurrence has the same property. 3239 SCEV::NoWrapFlags OuterFlags = 3240 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3241 3242 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3243 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3244 return isLoopInvariant(Op, NestedLoop); 3245 }); 3246 3247 if (AllInvariant) { 3248 // Ok, both add recurrences are valid after the transformation. 3249 // 3250 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3251 // the outer recurrence has the same property. 3252 SCEV::NoWrapFlags InnerFlags = 3253 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3254 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3255 } 3256 } 3257 // Reset Operands to its original state. 3258 Operands[0] = NestedAR; 3259 } 3260 } 3261 3262 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3263 // already have one, otherwise create a new one. 3264 return getOrCreateAddRecExpr(Operands, L, Flags); 3265 } 3266 3267 const SCEV * 3268 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3269 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3270 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3271 // getSCEV(Base)->getType() has the same address space as Base->getType() 3272 // because SCEV::getType() preserves the address space. 3273 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3274 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3275 // instruction to its SCEV, because the Instruction may be guarded by control 3276 // flow and the no-overflow bits may not be valid for the expression in any 3277 // context. This can be fixed similarly to how these flags are handled for 3278 // adds. 3279 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3280 : SCEV::FlagAnyWrap; 3281 3282 const SCEV *TotalOffset = getZero(IntIdxTy); 3283 Type *CurTy = GEP->getType(); 3284 bool FirstIter = true; 3285 for (const SCEV *IndexExpr : IndexExprs) { 3286 // Compute the (potentially symbolic) offset in bytes for this index. 3287 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3288 // For a struct, add the member offset. 3289 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3290 unsigned FieldNo = Index->getZExtValue(); 3291 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3292 3293 // Add the field offset to the running total offset. 3294 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3295 3296 // Update CurTy to the type of the field at Index. 3297 CurTy = STy->getTypeAtIndex(Index); 3298 } else { 3299 // Update CurTy to its element type. 3300 if (FirstIter) { 3301 assert(isa<PointerType>(CurTy) && 3302 "The first index of a GEP indexes a pointer"); 3303 CurTy = GEP->getSourceElementType(); 3304 FirstIter = false; 3305 } else { 3306 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3307 } 3308 // For an array, add the element offset, explicitly scaled. 3309 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3310 // Getelementptr indices are signed. 3311 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3312 3313 // Multiply the index by the element size to compute the element offset. 3314 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3315 3316 // Add the element offset to the running total offset. 3317 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3318 } 3319 } 3320 3321 // Add the total offset from all the GEP indices to the base. 3322 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3323 } 3324 3325 std::tuple<SCEV *, FoldingSetNodeID, void *> 3326 ScalarEvolution::findExistingSCEVInCache(int SCEVType, 3327 ArrayRef<const SCEV *> Ops) { 3328 FoldingSetNodeID ID; 3329 void *IP = nullptr; 3330 ID.AddInteger(SCEVType); 3331 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3332 ID.AddPointer(Ops[i]); 3333 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3334 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3335 } 3336 3337 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, 3338 SmallVectorImpl<const SCEV *> &Ops) { 3339 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3340 if (Ops.size() == 1) return Ops[0]; 3341 #ifndef NDEBUG 3342 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3343 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3344 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3345 "Operand types don't match!"); 3346 #endif 3347 3348 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3349 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3350 3351 // Sort by complexity, this groups all similar expression types together. 3352 GroupByComplexity(Ops, &LI, DT); 3353 3354 // Check if we have created the same expression before. 3355 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3356 return S; 3357 } 3358 3359 // If there are any constants, fold them together. 3360 unsigned Idx = 0; 3361 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3362 ++Idx; 3363 assert(Idx < Ops.size()); 3364 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3365 if (Kind == scSMaxExpr) 3366 return APIntOps::smax(LHS, RHS); 3367 else if (Kind == scSMinExpr) 3368 return APIntOps::smin(LHS, RHS); 3369 else if (Kind == scUMaxExpr) 3370 return APIntOps::umax(LHS, RHS); 3371 else if (Kind == scUMinExpr) 3372 return APIntOps::umin(LHS, RHS); 3373 llvm_unreachable("Unknown SCEV min/max opcode"); 3374 }; 3375 3376 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3377 // We found two constants, fold them together! 3378 ConstantInt *Fold = ConstantInt::get( 3379 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3380 Ops[0] = getConstant(Fold); 3381 Ops.erase(Ops.begin()+1); // Erase the folded element 3382 if (Ops.size() == 1) return Ops[0]; 3383 LHSC = cast<SCEVConstant>(Ops[0]); 3384 } 3385 3386 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3387 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3388 3389 if (IsMax ? IsMinV : IsMaxV) { 3390 // If we are left with a constant minimum(/maximum)-int, strip it off. 3391 Ops.erase(Ops.begin()); 3392 --Idx; 3393 } else if (IsMax ? IsMaxV : IsMinV) { 3394 // If we have a max(/min) with a constant maximum(/minimum)-int, 3395 // it will always be the extremum. 3396 return LHSC; 3397 } 3398 3399 if (Ops.size() == 1) return Ops[0]; 3400 } 3401 3402 // Find the first operation of the same kind 3403 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3404 ++Idx; 3405 3406 // Check to see if one of the operands is of the same kind. If so, expand its 3407 // operands onto our operand list, and recurse to simplify. 3408 if (Idx < Ops.size()) { 3409 bool DeletedAny = false; 3410 while (Ops[Idx]->getSCEVType() == Kind) { 3411 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3412 Ops.erase(Ops.begin()+Idx); 3413 Ops.append(SMME->op_begin(), SMME->op_end()); 3414 DeletedAny = true; 3415 } 3416 3417 if (DeletedAny) 3418 return getMinMaxExpr(Kind, Ops); 3419 } 3420 3421 // Okay, check to see if the same value occurs in the operand list twice. If 3422 // so, delete one. Since we sorted the list, these values are required to 3423 // be adjacent. 3424 llvm::CmpInst::Predicate GEPred = 3425 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3426 llvm::CmpInst::Predicate LEPred = 3427 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3428 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3429 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3430 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3431 if (Ops[i] == Ops[i + 1] || 3432 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3433 // X op Y op Y --> X op Y 3434 // X op Y --> X, if we know X, Y are ordered appropriately 3435 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3436 --i; 3437 --e; 3438 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3439 Ops[i + 1])) { 3440 // X op Y --> Y, if we know X, Y are ordered appropriately 3441 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3442 --i; 3443 --e; 3444 } 3445 } 3446 3447 if (Ops.size() == 1) return Ops[0]; 3448 3449 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3450 3451 // Okay, it looks like we really DO need an expr. Check to see if we 3452 // already have one, otherwise create a new one. 3453 const SCEV *ExistingSCEV; 3454 FoldingSetNodeID ID; 3455 void *IP; 3456 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3457 if (ExistingSCEV) 3458 return ExistingSCEV; 3459 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3460 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3461 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( 3462 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); 3463 3464 UniqueSCEVs.InsertNode(S, IP); 3465 addToLoopUseLists(S); 3466 return S; 3467 } 3468 3469 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3470 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3471 return getSMaxExpr(Ops); 3472 } 3473 3474 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3475 return getMinMaxExpr(scSMaxExpr, Ops); 3476 } 3477 3478 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3479 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3480 return getUMaxExpr(Ops); 3481 } 3482 3483 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3484 return getMinMaxExpr(scUMaxExpr, Ops); 3485 } 3486 3487 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3488 const SCEV *RHS) { 3489 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3490 return getSMinExpr(Ops); 3491 } 3492 3493 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3494 return getMinMaxExpr(scSMinExpr, Ops); 3495 } 3496 3497 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3498 const SCEV *RHS) { 3499 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3500 return getUMinExpr(Ops); 3501 } 3502 3503 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3504 return getMinMaxExpr(scUMinExpr, Ops); 3505 } 3506 3507 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3508 // We can bypass creating a target-independent 3509 // constant expression and then folding it back into a ConstantInt. 3510 // This is just a compile-time optimization. 3511 if (isa<ScalableVectorType>(AllocTy)) { 3512 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3513 Constant *One = ConstantInt::get(IntTy, 1); 3514 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3515 return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy)); 3516 } 3517 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3518 } 3519 3520 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3521 StructType *STy, 3522 unsigned FieldNo) { 3523 // We can bypass creating a target-independent 3524 // constant expression and then folding it back into a ConstantInt. 3525 // This is just a compile-time optimization. 3526 return getConstant( 3527 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3528 } 3529 3530 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3531 // Don't attempt to do anything other than create a SCEVUnknown object 3532 // here. createSCEV only calls getUnknown after checking for all other 3533 // interesting possibilities, and any other code that calls getUnknown 3534 // is doing so in order to hide a value from SCEV canonicalization. 3535 3536 FoldingSetNodeID ID; 3537 ID.AddInteger(scUnknown); 3538 ID.AddPointer(V); 3539 void *IP = nullptr; 3540 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3541 assert(cast<SCEVUnknown>(S)->getValue() == V && 3542 "Stale SCEVUnknown in uniquing map!"); 3543 return S; 3544 } 3545 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3546 FirstUnknown); 3547 FirstUnknown = cast<SCEVUnknown>(S); 3548 UniqueSCEVs.InsertNode(S, IP); 3549 return S; 3550 } 3551 3552 //===----------------------------------------------------------------------===// 3553 // Basic SCEV Analysis and PHI Idiom Recognition Code 3554 // 3555 3556 /// Test if values of the given type are analyzable within the SCEV 3557 /// framework. This primarily includes integer types, and it can optionally 3558 /// include pointer types if the ScalarEvolution class has access to 3559 /// target-specific information. 3560 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3561 // Integers and pointers are always SCEVable. 3562 return Ty->isIntOrPtrTy(); 3563 } 3564 3565 /// Return the size in bits of the specified type, for which isSCEVable must 3566 /// return true. 3567 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3568 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3569 if (Ty->isPointerTy()) 3570 return getDataLayout().getIndexTypeSizeInBits(Ty); 3571 return getDataLayout().getTypeSizeInBits(Ty); 3572 } 3573 3574 /// Return a type with the same bitwidth as the given type and which represents 3575 /// how SCEV will treat the given type, for which isSCEVable must return 3576 /// true. For pointer types, this is the pointer index sized integer type. 3577 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3578 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3579 3580 if (Ty->isIntegerTy()) 3581 return Ty; 3582 3583 // The only other support type is pointer. 3584 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3585 return getDataLayout().getIndexType(Ty); 3586 } 3587 3588 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3589 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3590 } 3591 3592 const SCEV *ScalarEvolution::getCouldNotCompute() { 3593 return CouldNotCompute.get(); 3594 } 3595 3596 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3597 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3598 auto *SU = dyn_cast<SCEVUnknown>(S); 3599 return SU && SU->getValue() == nullptr; 3600 }); 3601 3602 return !ContainsNulls; 3603 } 3604 3605 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3606 HasRecMapType::iterator I = HasRecMap.find(S); 3607 if (I != HasRecMap.end()) 3608 return I->second; 3609 3610 bool FoundAddRec = 3611 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3612 HasRecMap.insert({S, FoundAddRec}); 3613 return FoundAddRec; 3614 } 3615 3616 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3617 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3618 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3619 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3620 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3621 if (!Add) 3622 return {S, nullptr}; 3623 3624 if (Add->getNumOperands() != 2) 3625 return {S, nullptr}; 3626 3627 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3628 if (!ConstOp) 3629 return {S, nullptr}; 3630 3631 return {Add->getOperand(1), ConstOp->getValue()}; 3632 } 3633 3634 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3635 /// by the value and offset from any ValueOffsetPair in the set. 3636 SetVector<ScalarEvolution::ValueOffsetPair> * 3637 ScalarEvolution::getSCEVValues(const SCEV *S) { 3638 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3639 if (SI == ExprValueMap.end()) 3640 return nullptr; 3641 #ifndef NDEBUG 3642 if (VerifySCEVMap) { 3643 // Check there is no dangling Value in the set returned. 3644 for (const auto &VE : SI->second) 3645 assert(ValueExprMap.count(VE.first)); 3646 } 3647 #endif 3648 return &SI->second; 3649 } 3650 3651 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3652 /// cannot be used separately. eraseValueFromMap should be used to remove 3653 /// V from ValueExprMap and ExprValueMap at the same time. 3654 void ScalarEvolution::eraseValueFromMap(Value *V) { 3655 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3656 if (I != ValueExprMap.end()) { 3657 const SCEV *S = I->second; 3658 // Remove {V, 0} from the set of ExprValueMap[S] 3659 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3660 SV->remove({V, nullptr}); 3661 3662 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3663 const SCEV *Stripped; 3664 ConstantInt *Offset; 3665 std::tie(Stripped, Offset) = splitAddExpr(S); 3666 if (Offset != nullptr) { 3667 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3668 SV->remove({V, Offset}); 3669 } 3670 ValueExprMap.erase(V); 3671 } 3672 } 3673 3674 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3675 /// TODO: In reality it is better to check the poison recursively 3676 /// but this is better than nothing. 3677 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3678 if (auto *I = dyn_cast<Instruction>(V)) { 3679 if (isa<OverflowingBinaryOperator>(I)) { 3680 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3681 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3682 return true; 3683 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3684 return true; 3685 } 3686 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3687 return true; 3688 } 3689 return false; 3690 } 3691 3692 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3693 /// create a new one. 3694 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3695 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3696 3697 const SCEV *S = getExistingSCEV(V); 3698 if (S == nullptr) { 3699 S = createSCEV(V); 3700 // During PHI resolution, it is possible to create two SCEVs for the same 3701 // V, so it is needed to double check whether V->S is inserted into 3702 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3703 std::pair<ValueExprMapType::iterator, bool> Pair = 3704 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3705 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3706 ExprValueMap[S].insert({V, nullptr}); 3707 3708 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3709 // ExprValueMap. 3710 const SCEV *Stripped = S; 3711 ConstantInt *Offset = nullptr; 3712 std::tie(Stripped, Offset) = splitAddExpr(S); 3713 // If stripped is SCEVUnknown, don't bother to save 3714 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3715 // increase the complexity of the expansion code. 3716 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3717 // because it may generate add/sub instead of GEP in SCEV expansion. 3718 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3719 !isa<GetElementPtrInst>(V)) 3720 ExprValueMap[Stripped].insert({V, Offset}); 3721 } 3722 } 3723 return S; 3724 } 3725 3726 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3727 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3728 3729 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3730 if (I != ValueExprMap.end()) { 3731 const SCEV *S = I->second; 3732 if (checkValidity(S)) 3733 return S; 3734 eraseValueFromMap(V); 3735 forgetMemoizedResults(S); 3736 } 3737 return nullptr; 3738 } 3739 3740 /// Return a SCEV corresponding to -V = -1*V 3741 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3742 SCEV::NoWrapFlags Flags) { 3743 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3744 return getConstant( 3745 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3746 3747 Type *Ty = V->getType(); 3748 Ty = getEffectiveSCEVType(Ty); 3749 return getMulExpr( 3750 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3751 } 3752 3753 /// If Expr computes ~A, return A else return nullptr 3754 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3755 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3756 if (!Add || Add->getNumOperands() != 2 || 3757 !Add->getOperand(0)->isAllOnesValue()) 3758 return nullptr; 3759 3760 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3761 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3762 !AddRHS->getOperand(0)->isAllOnesValue()) 3763 return nullptr; 3764 3765 return AddRHS->getOperand(1); 3766 } 3767 3768 /// Return a SCEV corresponding to ~V = -1-V 3769 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3770 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3771 return getConstant( 3772 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3773 3774 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3775 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3776 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3777 SmallVector<const SCEV *, 2> MatchedOperands; 3778 for (const SCEV *Operand : MME->operands()) { 3779 const SCEV *Matched = MatchNotExpr(Operand); 3780 if (!Matched) 3781 return (const SCEV *)nullptr; 3782 MatchedOperands.push_back(Matched); 3783 } 3784 return getMinMaxExpr( 3785 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), 3786 MatchedOperands); 3787 }; 3788 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3789 return Replaced; 3790 } 3791 3792 Type *Ty = V->getType(); 3793 Ty = getEffectiveSCEVType(Ty); 3794 const SCEV *AllOnes = 3795 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3796 return getMinusSCEV(AllOnes, V); 3797 } 3798 3799 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3800 SCEV::NoWrapFlags Flags, 3801 unsigned Depth) { 3802 // Fast path: X - X --> 0. 3803 if (LHS == RHS) 3804 return getZero(LHS->getType()); 3805 3806 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3807 // makes it so that we cannot make much use of NUW. 3808 auto AddFlags = SCEV::FlagAnyWrap; 3809 const bool RHSIsNotMinSigned = 3810 !getSignedRangeMin(RHS).isMinSignedValue(); 3811 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3812 // Let M be the minimum representable signed value. Then (-1)*RHS 3813 // signed-wraps if and only if RHS is M. That can happen even for 3814 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3815 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3816 // (-1)*RHS, we need to prove that RHS != M. 3817 // 3818 // If LHS is non-negative and we know that LHS - RHS does not 3819 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3820 // either by proving that RHS > M or that LHS >= 0. 3821 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3822 AddFlags = SCEV::FlagNSW; 3823 } 3824 } 3825 3826 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3827 // RHS is NSW and LHS >= 0. 3828 // 3829 // The difficulty here is that the NSW flag may have been proven 3830 // relative to a loop that is to be found in a recurrence in LHS and 3831 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3832 // larger scope than intended. 3833 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3834 3835 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3836 } 3837 3838 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 3839 unsigned Depth) { 3840 Type *SrcTy = V->getType(); 3841 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3842 "Cannot truncate or zero extend with non-integer arguments!"); 3843 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3844 return V; // No conversion 3845 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3846 return getTruncateExpr(V, Ty, Depth); 3847 return getZeroExtendExpr(V, Ty, Depth); 3848 } 3849 3850 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 3851 unsigned Depth) { 3852 Type *SrcTy = V->getType(); 3853 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3854 "Cannot truncate or zero extend with non-integer arguments!"); 3855 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3856 return V; // No conversion 3857 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3858 return getTruncateExpr(V, Ty, Depth); 3859 return getSignExtendExpr(V, Ty, Depth); 3860 } 3861 3862 const SCEV * 3863 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3864 Type *SrcTy = V->getType(); 3865 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3866 "Cannot noop or zero extend with non-integer arguments!"); 3867 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3868 "getNoopOrZeroExtend cannot truncate!"); 3869 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3870 return V; // No conversion 3871 return getZeroExtendExpr(V, Ty); 3872 } 3873 3874 const SCEV * 3875 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3876 Type *SrcTy = V->getType(); 3877 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3878 "Cannot noop or sign extend with non-integer arguments!"); 3879 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3880 "getNoopOrSignExtend cannot truncate!"); 3881 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3882 return V; // No conversion 3883 return getSignExtendExpr(V, Ty); 3884 } 3885 3886 const SCEV * 3887 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3888 Type *SrcTy = V->getType(); 3889 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3890 "Cannot noop or any extend with non-integer arguments!"); 3891 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3892 "getNoopOrAnyExtend cannot truncate!"); 3893 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3894 return V; // No conversion 3895 return getAnyExtendExpr(V, Ty); 3896 } 3897 3898 const SCEV * 3899 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3900 Type *SrcTy = V->getType(); 3901 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3902 "Cannot truncate or noop with non-integer arguments!"); 3903 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3904 "getTruncateOrNoop cannot extend!"); 3905 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3906 return V; // No conversion 3907 return getTruncateExpr(V, Ty); 3908 } 3909 3910 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3911 const SCEV *RHS) { 3912 const SCEV *PromotedLHS = LHS; 3913 const SCEV *PromotedRHS = RHS; 3914 3915 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3916 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3917 else 3918 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3919 3920 return getUMaxExpr(PromotedLHS, PromotedRHS); 3921 } 3922 3923 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3924 const SCEV *RHS) { 3925 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3926 return getUMinFromMismatchedTypes(Ops); 3927 } 3928 3929 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 3930 SmallVectorImpl<const SCEV *> &Ops) { 3931 assert(!Ops.empty() && "At least one operand must be!"); 3932 // Trivial case. 3933 if (Ops.size() == 1) 3934 return Ops[0]; 3935 3936 // Find the max type first. 3937 Type *MaxType = nullptr; 3938 for (auto *S : Ops) 3939 if (MaxType) 3940 MaxType = getWiderType(MaxType, S->getType()); 3941 else 3942 MaxType = S->getType(); 3943 assert(MaxType && "Failed to find maximum type!"); 3944 3945 // Extend all ops to max type. 3946 SmallVector<const SCEV *, 2> PromotedOps; 3947 for (auto *S : Ops) 3948 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 3949 3950 // Generate umin. 3951 return getUMinExpr(PromotedOps); 3952 } 3953 3954 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3955 // A pointer operand may evaluate to a nonpointer expression, such as null. 3956 if (!V->getType()->isPointerTy()) 3957 return V; 3958 3959 while (true) { 3960 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3961 V = Cast->getOperand(); 3962 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3963 const SCEV *PtrOp = nullptr; 3964 for (const SCEV *NAryOp : NAry->operands()) { 3965 if (NAryOp->getType()->isPointerTy()) { 3966 // Cannot find the base of an expression with multiple pointer ops. 3967 if (PtrOp) 3968 return V; 3969 PtrOp = NAryOp; 3970 } 3971 } 3972 if (!PtrOp) // All operands were non-pointer. 3973 return V; 3974 V = PtrOp; 3975 } else // Not something we can look further into. 3976 return V; 3977 } 3978 } 3979 3980 /// Push users of the given Instruction onto the given Worklist. 3981 static void 3982 PushDefUseChildren(Instruction *I, 3983 SmallVectorImpl<Instruction *> &Worklist) { 3984 // Push the def-use children onto the Worklist stack. 3985 for (User *U : I->users()) 3986 Worklist.push_back(cast<Instruction>(U)); 3987 } 3988 3989 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3990 SmallVector<Instruction *, 16> Worklist; 3991 PushDefUseChildren(PN, Worklist); 3992 3993 SmallPtrSet<Instruction *, 8> Visited; 3994 Visited.insert(PN); 3995 while (!Worklist.empty()) { 3996 Instruction *I = Worklist.pop_back_val(); 3997 if (!Visited.insert(I).second) 3998 continue; 3999 4000 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4001 if (It != ValueExprMap.end()) { 4002 const SCEV *Old = It->second; 4003 4004 // Short-circuit the def-use traversal if the symbolic name 4005 // ceases to appear in expressions. 4006 if (Old != SymName && !hasOperand(Old, SymName)) 4007 continue; 4008 4009 // SCEVUnknown for a PHI either means that it has an unrecognized 4010 // structure, it's a PHI that's in the progress of being computed 4011 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4012 // additional loop trip count information isn't going to change anything. 4013 // In the second case, createNodeForPHI will perform the necessary 4014 // updates on its own when it gets to that point. In the third, we do 4015 // want to forget the SCEVUnknown. 4016 if (!isa<PHINode>(I) || 4017 !isa<SCEVUnknown>(Old) || 4018 (I != PN && Old == SymName)) { 4019 eraseValueFromMap(It->first); 4020 forgetMemoizedResults(Old); 4021 } 4022 } 4023 4024 PushDefUseChildren(I, Worklist); 4025 } 4026 } 4027 4028 namespace { 4029 4030 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4031 /// expression in case its Loop is L. If it is not L then 4032 /// if IgnoreOtherLoops is true then use AddRec itself 4033 /// otherwise rewrite cannot be done. 4034 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4035 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4036 public: 4037 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4038 bool IgnoreOtherLoops = true) { 4039 SCEVInitRewriter Rewriter(L, SE); 4040 const SCEV *Result = Rewriter.visit(S); 4041 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4042 return SE.getCouldNotCompute(); 4043 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4044 ? SE.getCouldNotCompute() 4045 : Result; 4046 } 4047 4048 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4049 if (!SE.isLoopInvariant(Expr, L)) 4050 SeenLoopVariantSCEVUnknown = true; 4051 return Expr; 4052 } 4053 4054 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4055 // Only re-write AddRecExprs for this loop. 4056 if (Expr->getLoop() == L) 4057 return Expr->getStart(); 4058 SeenOtherLoops = true; 4059 return Expr; 4060 } 4061 4062 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4063 4064 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4065 4066 private: 4067 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4068 : SCEVRewriteVisitor(SE), L(L) {} 4069 4070 const Loop *L; 4071 bool SeenLoopVariantSCEVUnknown = false; 4072 bool SeenOtherLoops = false; 4073 }; 4074 4075 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4076 /// increment expression in case its Loop is L. If it is not L then 4077 /// use AddRec itself. 4078 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4079 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4080 public: 4081 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4082 SCEVPostIncRewriter Rewriter(L, SE); 4083 const SCEV *Result = Rewriter.visit(S); 4084 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4085 ? SE.getCouldNotCompute() 4086 : Result; 4087 } 4088 4089 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4090 if (!SE.isLoopInvariant(Expr, L)) 4091 SeenLoopVariantSCEVUnknown = true; 4092 return Expr; 4093 } 4094 4095 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4096 // Only re-write AddRecExprs for this loop. 4097 if (Expr->getLoop() == L) 4098 return Expr->getPostIncExpr(SE); 4099 SeenOtherLoops = true; 4100 return Expr; 4101 } 4102 4103 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4104 4105 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4106 4107 private: 4108 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4109 : SCEVRewriteVisitor(SE), L(L) {} 4110 4111 const Loop *L; 4112 bool SeenLoopVariantSCEVUnknown = false; 4113 bool SeenOtherLoops = false; 4114 }; 4115 4116 /// This class evaluates the compare condition by matching it against the 4117 /// condition of loop latch. If there is a match we assume a true value 4118 /// for the condition while building SCEV nodes. 4119 class SCEVBackedgeConditionFolder 4120 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4121 public: 4122 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4123 ScalarEvolution &SE) { 4124 bool IsPosBECond = false; 4125 Value *BECond = nullptr; 4126 if (BasicBlock *Latch = L->getLoopLatch()) { 4127 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4128 if (BI && BI->isConditional()) { 4129 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4130 "Both outgoing branches should not target same header!"); 4131 BECond = BI->getCondition(); 4132 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4133 } else { 4134 return S; 4135 } 4136 } 4137 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4138 return Rewriter.visit(S); 4139 } 4140 4141 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4142 const SCEV *Result = Expr; 4143 bool InvariantF = SE.isLoopInvariant(Expr, L); 4144 4145 if (!InvariantF) { 4146 Instruction *I = cast<Instruction>(Expr->getValue()); 4147 switch (I->getOpcode()) { 4148 case Instruction::Select: { 4149 SelectInst *SI = cast<SelectInst>(I); 4150 Optional<const SCEV *> Res = 4151 compareWithBackedgeCondition(SI->getCondition()); 4152 if (Res.hasValue()) { 4153 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4154 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4155 } 4156 break; 4157 } 4158 default: { 4159 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4160 if (Res.hasValue()) 4161 Result = Res.getValue(); 4162 break; 4163 } 4164 } 4165 } 4166 return Result; 4167 } 4168 4169 private: 4170 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4171 bool IsPosBECond, ScalarEvolution &SE) 4172 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4173 IsPositiveBECond(IsPosBECond) {} 4174 4175 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4176 4177 const Loop *L; 4178 /// Loop back condition. 4179 Value *BackedgeCond = nullptr; 4180 /// Set to true if loop back is on positive branch condition. 4181 bool IsPositiveBECond; 4182 }; 4183 4184 Optional<const SCEV *> 4185 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4186 4187 // If value matches the backedge condition for loop latch, 4188 // then return a constant evolution node based on loopback 4189 // branch taken. 4190 if (BackedgeCond == IC) 4191 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4192 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4193 return None; 4194 } 4195 4196 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4197 public: 4198 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4199 ScalarEvolution &SE) { 4200 SCEVShiftRewriter Rewriter(L, SE); 4201 const SCEV *Result = Rewriter.visit(S); 4202 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4203 } 4204 4205 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4206 // Only allow AddRecExprs for this loop. 4207 if (!SE.isLoopInvariant(Expr, L)) 4208 Valid = false; 4209 return Expr; 4210 } 4211 4212 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4213 if (Expr->getLoop() == L && Expr->isAffine()) 4214 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4215 Valid = false; 4216 return Expr; 4217 } 4218 4219 bool isValid() { return Valid; } 4220 4221 private: 4222 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4223 : SCEVRewriteVisitor(SE), L(L) {} 4224 4225 const Loop *L; 4226 bool Valid = true; 4227 }; 4228 4229 } // end anonymous namespace 4230 4231 SCEV::NoWrapFlags 4232 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4233 if (!AR->isAffine()) 4234 return SCEV::FlagAnyWrap; 4235 4236 using OBO = OverflowingBinaryOperator; 4237 4238 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4239 4240 if (!AR->hasNoSignedWrap()) { 4241 ConstantRange AddRecRange = getSignedRange(AR); 4242 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4243 4244 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4245 Instruction::Add, IncRange, OBO::NoSignedWrap); 4246 if (NSWRegion.contains(AddRecRange)) 4247 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4248 } 4249 4250 if (!AR->hasNoUnsignedWrap()) { 4251 ConstantRange AddRecRange = getUnsignedRange(AR); 4252 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4253 4254 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4255 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4256 if (NUWRegion.contains(AddRecRange)) 4257 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4258 } 4259 4260 return Result; 4261 } 4262 4263 namespace { 4264 4265 /// Represents an abstract binary operation. This may exist as a 4266 /// normal instruction or constant expression, or may have been 4267 /// derived from an expression tree. 4268 struct BinaryOp { 4269 unsigned Opcode; 4270 Value *LHS; 4271 Value *RHS; 4272 bool IsNSW = false; 4273 bool IsNUW = false; 4274 4275 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4276 /// constant expression. 4277 Operator *Op = nullptr; 4278 4279 explicit BinaryOp(Operator *Op) 4280 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4281 Op(Op) { 4282 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4283 IsNSW = OBO->hasNoSignedWrap(); 4284 IsNUW = OBO->hasNoUnsignedWrap(); 4285 } 4286 } 4287 4288 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4289 bool IsNUW = false) 4290 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4291 }; 4292 4293 } // end anonymous namespace 4294 4295 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4296 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4297 auto *Op = dyn_cast<Operator>(V); 4298 if (!Op) 4299 return None; 4300 4301 // Implementation detail: all the cleverness here should happen without 4302 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4303 // SCEV expressions when possible, and we should not break that. 4304 4305 switch (Op->getOpcode()) { 4306 case Instruction::Add: 4307 case Instruction::Sub: 4308 case Instruction::Mul: 4309 case Instruction::UDiv: 4310 case Instruction::URem: 4311 case Instruction::And: 4312 case Instruction::Or: 4313 case Instruction::AShr: 4314 case Instruction::Shl: 4315 return BinaryOp(Op); 4316 4317 case Instruction::Xor: 4318 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4319 // If the RHS of the xor is a signmask, then this is just an add. 4320 // Instcombine turns add of signmask into xor as a strength reduction step. 4321 if (RHSC->getValue().isSignMask()) 4322 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4323 return BinaryOp(Op); 4324 4325 case Instruction::LShr: 4326 // Turn logical shift right of a constant into a unsigned divide. 4327 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4328 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4329 4330 // If the shift count is not less than the bitwidth, the result of 4331 // the shift is undefined. Don't try to analyze it, because the 4332 // resolution chosen here may differ from the resolution chosen in 4333 // other parts of the compiler. 4334 if (SA->getValue().ult(BitWidth)) { 4335 Constant *X = 4336 ConstantInt::get(SA->getContext(), 4337 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4338 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4339 } 4340 } 4341 return BinaryOp(Op); 4342 4343 case Instruction::ExtractValue: { 4344 auto *EVI = cast<ExtractValueInst>(Op); 4345 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4346 break; 4347 4348 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4349 if (!WO) 4350 break; 4351 4352 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4353 bool Signed = WO->isSigned(); 4354 // TODO: Should add nuw/nsw flags for mul as well. 4355 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4356 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4357 4358 // Now that we know that all uses of the arithmetic-result component of 4359 // CI are guarded by the overflow check, we can go ahead and pretend 4360 // that the arithmetic is non-overflowing. 4361 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4362 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4363 } 4364 4365 default: 4366 break; 4367 } 4368 4369 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4370 // semantics as a Sub, return a binary sub expression. 4371 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4372 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4373 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4374 4375 return None; 4376 } 4377 4378 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4379 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4380 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4381 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4382 /// follows one of the following patterns: 4383 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4384 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4385 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4386 /// we return the type of the truncation operation, and indicate whether the 4387 /// truncated type should be treated as signed/unsigned by setting 4388 /// \p Signed to true/false, respectively. 4389 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4390 bool &Signed, ScalarEvolution &SE) { 4391 // The case where Op == SymbolicPHI (that is, with no type conversions on 4392 // the way) is handled by the regular add recurrence creating logic and 4393 // would have already been triggered in createAddRecForPHI. Reaching it here 4394 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4395 // because one of the other operands of the SCEVAddExpr updating this PHI is 4396 // not invariant). 4397 // 4398 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4399 // this case predicates that allow us to prove that Op == SymbolicPHI will 4400 // be added. 4401 if (Op == SymbolicPHI) 4402 return nullptr; 4403 4404 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4405 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4406 if (SourceBits != NewBits) 4407 return nullptr; 4408 4409 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4410 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4411 if (!SExt && !ZExt) 4412 return nullptr; 4413 const SCEVTruncateExpr *Trunc = 4414 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4415 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4416 if (!Trunc) 4417 return nullptr; 4418 const SCEV *X = Trunc->getOperand(); 4419 if (X != SymbolicPHI) 4420 return nullptr; 4421 Signed = SExt != nullptr; 4422 return Trunc->getType(); 4423 } 4424 4425 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4426 if (!PN->getType()->isIntegerTy()) 4427 return nullptr; 4428 const Loop *L = LI.getLoopFor(PN->getParent()); 4429 if (!L || L->getHeader() != PN->getParent()) 4430 return nullptr; 4431 return L; 4432 } 4433 4434 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4435 // computation that updates the phi follows the following pattern: 4436 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4437 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4438 // If so, try to see if it can be rewritten as an AddRecExpr under some 4439 // Predicates. If successful, return them as a pair. Also cache the results 4440 // of the analysis. 4441 // 4442 // Example usage scenario: 4443 // Say the Rewriter is called for the following SCEV: 4444 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4445 // where: 4446 // %X = phi i64 (%Start, %BEValue) 4447 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4448 // and call this function with %SymbolicPHI = %X. 4449 // 4450 // The analysis will find that the value coming around the backedge has 4451 // the following SCEV: 4452 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4453 // Upon concluding that this matches the desired pattern, the function 4454 // will return the pair {NewAddRec, SmallPredsVec} where: 4455 // NewAddRec = {%Start,+,%Step} 4456 // SmallPredsVec = {P1, P2, P3} as follows: 4457 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4458 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4459 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4460 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4461 // under the predicates {P1,P2,P3}. 4462 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4463 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4464 // 4465 // TODO's: 4466 // 4467 // 1) Extend the Induction descriptor to also support inductions that involve 4468 // casts: When needed (namely, when we are called in the context of the 4469 // vectorizer induction analysis), a Set of cast instructions will be 4470 // populated by this method, and provided back to isInductionPHI. This is 4471 // needed to allow the vectorizer to properly record them to be ignored by 4472 // the cost model and to avoid vectorizing them (otherwise these casts, 4473 // which are redundant under the runtime overflow checks, will be 4474 // vectorized, which can be costly). 4475 // 4476 // 2) Support additional induction/PHISCEV patterns: We also want to support 4477 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4478 // after the induction update operation (the induction increment): 4479 // 4480 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4481 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4482 // 4483 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4484 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4485 // 4486 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4487 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4488 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4489 SmallVector<const SCEVPredicate *, 3> Predicates; 4490 4491 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4492 // return an AddRec expression under some predicate. 4493 4494 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4495 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4496 assert(L && "Expecting an integer loop header phi"); 4497 4498 // The loop may have multiple entrances or multiple exits; we can analyze 4499 // this phi as an addrec if it has a unique entry value and a unique 4500 // backedge value. 4501 Value *BEValueV = nullptr, *StartValueV = nullptr; 4502 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4503 Value *V = PN->getIncomingValue(i); 4504 if (L->contains(PN->getIncomingBlock(i))) { 4505 if (!BEValueV) { 4506 BEValueV = V; 4507 } else if (BEValueV != V) { 4508 BEValueV = nullptr; 4509 break; 4510 } 4511 } else if (!StartValueV) { 4512 StartValueV = V; 4513 } else if (StartValueV != V) { 4514 StartValueV = nullptr; 4515 break; 4516 } 4517 } 4518 if (!BEValueV || !StartValueV) 4519 return None; 4520 4521 const SCEV *BEValue = getSCEV(BEValueV); 4522 4523 // If the value coming around the backedge is an add with the symbolic 4524 // value we just inserted, possibly with casts that we can ignore under 4525 // an appropriate runtime guard, then we found a simple induction variable! 4526 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4527 if (!Add) 4528 return None; 4529 4530 // If there is a single occurrence of the symbolic value, possibly 4531 // casted, replace it with a recurrence. 4532 unsigned FoundIndex = Add->getNumOperands(); 4533 Type *TruncTy = nullptr; 4534 bool Signed; 4535 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4536 if ((TruncTy = 4537 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4538 if (FoundIndex == e) { 4539 FoundIndex = i; 4540 break; 4541 } 4542 4543 if (FoundIndex == Add->getNumOperands()) 4544 return None; 4545 4546 // Create an add with everything but the specified operand. 4547 SmallVector<const SCEV *, 8> Ops; 4548 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4549 if (i != FoundIndex) 4550 Ops.push_back(Add->getOperand(i)); 4551 const SCEV *Accum = getAddExpr(Ops); 4552 4553 // The runtime checks will not be valid if the step amount is 4554 // varying inside the loop. 4555 if (!isLoopInvariant(Accum, L)) 4556 return None; 4557 4558 // *** Part2: Create the predicates 4559 4560 // Analysis was successful: we have a phi-with-cast pattern for which we 4561 // can return an AddRec expression under the following predicates: 4562 // 4563 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4564 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4565 // P2: An Equal predicate that guarantees that 4566 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4567 // P3: An Equal predicate that guarantees that 4568 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4569 // 4570 // As we next prove, the above predicates guarantee that: 4571 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4572 // 4573 // 4574 // More formally, we want to prove that: 4575 // Expr(i+1) = Start + (i+1) * Accum 4576 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4577 // 4578 // Given that: 4579 // 1) Expr(0) = Start 4580 // 2) Expr(1) = Start + Accum 4581 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4582 // 3) Induction hypothesis (step i): 4583 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4584 // 4585 // Proof: 4586 // Expr(i+1) = 4587 // = Start + (i+1)*Accum 4588 // = (Start + i*Accum) + Accum 4589 // = Expr(i) + Accum 4590 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4591 // :: from step i 4592 // 4593 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4594 // 4595 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4596 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4597 // + Accum :: from P3 4598 // 4599 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4600 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4601 // 4602 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4603 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4604 // 4605 // By induction, the same applies to all iterations 1<=i<n: 4606 // 4607 4608 // Create a truncated addrec for which we will add a no overflow check (P1). 4609 const SCEV *StartVal = getSCEV(StartValueV); 4610 const SCEV *PHISCEV = 4611 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4612 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4613 4614 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4615 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4616 // will be constant. 4617 // 4618 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4619 // add P1. 4620 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4621 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4622 Signed ? SCEVWrapPredicate::IncrementNSSW 4623 : SCEVWrapPredicate::IncrementNUSW; 4624 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4625 Predicates.push_back(AddRecPred); 4626 } 4627 4628 // Create the Equal Predicates P2,P3: 4629 4630 // It is possible that the predicates P2 and/or P3 are computable at 4631 // compile time due to StartVal and/or Accum being constants. 4632 // If either one is, then we can check that now and escape if either P2 4633 // or P3 is false. 4634 4635 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4636 // for each of StartVal and Accum 4637 auto getExtendedExpr = [&](const SCEV *Expr, 4638 bool CreateSignExtend) -> const SCEV * { 4639 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4640 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4641 const SCEV *ExtendedExpr = 4642 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4643 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4644 return ExtendedExpr; 4645 }; 4646 4647 // Given: 4648 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4649 // = getExtendedExpr(Expr) 4650 // Determine whether the predicate P: Expr == ExtendedExpr 4651 // is known to be false at compile time 4652 auto PredIsKnownFalse = [&](const SCEV *Expr, 4653 const SCEV *ExtendedExpr) -> bool { 4654 return Expr != ExtendedExpr && 4655 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4656 }; 4657 4658 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4659 if (PredIsKnownFalse(StartVal, StartExtended)) { 4660 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4661 return None; 4662 } 4663 4664 // The Step is always Signed (because the overflow checks are either 4665 // NSSW or NUSW) 4666 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4667 if (PredIsKnownFalse(Accum, AccumExtended)) { 4668 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4669 return None; 4670 } 4671 4672 auto AppendPredicate = [&](const SCEV *Expr, 4673 const SCEV *ExtendedExpr) -> void { 4674 if (Expr != ExtendedExpr && 4675 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4676 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4677 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4678 Predicates.push_back(Pred); 4679 } 4680 }; 4681 4682 AppendPredicate(StartVal, StartExtended); 4683 AppendPredicate(Accum, AccumExtended); 4684 4685 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4686 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4687 // into NewAR if it will also add the runtime overflow checks specified in 4688 // Predicates. 4689 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4690 4691 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4692 std::make_pair(NewAR, Predicates); 4693 // Remember the result of the analysis for this SCEV at this locayyytion. 4694 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4695 return PredRewrite; 4696 } 4697 4698 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4699 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4700 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4701 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4702 if (!L) 4703 return None; 4704 4705 // Check to see if we already analyzed this PHI. 4706 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4707 if (I != PredicatedSCEVRewrites.end()) { 4708 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4709 I->second; 4710 // Analysis was done before and failed to create an AddRec: 4711 if (Rewrite.first == SymbolicPHI) 4712 return None; 4713 // Analysis was done before and succeeded to create an AddRec under 4714 // a predicate: 4715 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4716 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4717 return Rewrite; 4718 } 4719 4720 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4721 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4722 4723 // Record in the cache that the analysis failed 4724 if (!Rewrite) { 4725 SmallVector<const SCEVPredicate *, 3> Predicates; 4726 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4727 return None; 4728 } 4729 4730 return Rewrite; 4731 } 4732 4733 // FIXME: This utility is currently required because the Rewriter currently 4734 // does not rewrite this expression: 4735 // {0, +, (sext ix (trunc iy to ix) to iy)} 4736 // into {0, +, %step}, 4737 // even when the following Equal predicate exists: 4738 // "%step == (sext ix (trunc iy to ix) to iy)". 4739 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4740 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4741 if (AR1 == AR2) 4742 return true; 4743 4744 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4745 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4746 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4747 return false; 4748 return true; 4749 }; 4750 4751 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4752 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4753 return false; 4754 return true; 4755 } 4756 4757 /// A helper function for createAddRecFromPHI to handle simple cases. 4758 /// 4759 /// This function tries to find an AddRec expression for the simplest (yet most 4760 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4761 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4762 /// technique for finding the AddRec expression. 4763 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4764 Value *BEValueV, 4765 Value *StartValueV) { 4766 const Loop *L = LI.getLoopFor(PN->getParent()); 4767 assert(L && L->getHeader() == PN->getParent()); 4768 assert(BEValueV && StartValueV); 4769 4770 auto BO = MatchBinaryOp(BEValueV, DT); 4771 if (!BO) 4772 return nullptr; 4773 4774 if (BO->Opcode != Instruction::Add) 4775 return nullptr; 4776 4777 const SCEV *Accum = nullptr; 4778 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4779 Accum = getSCEV(BO->RHS); 4780 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4781 Accum = getSCEV(BO->LHS); 4782 4783 if (!Accum) 4784 return nullptr; 4785 4786 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4787 if (BO->IsNUW) 4788 Flags = setFlags(Flags, SCEV::FlagNUW); 4789 if (BO->IsNSW) 4790 Flags = setFlags(Flags, SCEV::FlagNSW); 4791 4792 const SCEV *StartVal = getSCEV(StartValueV); 4793 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4794 4795 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4796 4797 // We can add Flags to the post-inc expression only if we 4798 // know that it is *undefined behavior* for BEValueV to 4799 // overflow. 4800 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4801 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4802 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4803 4804 return PHISCEV; 4805 } 4806 4807 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4808 const Loop *L = LI.getLoopFor(PN->getParent()); 4809 if (!L || L->getHeader() != PN->getParent()) 4810 return nullptr; 4811 4812 // The loop may have multiple entrances or multiple exits; we can analyze 4813 // this phi as an addrec if it has a unique entry value and a unique 4814 // backedge value. 4815 Value *BEValueV = nullptr, *StartValueV = nullptr; 4816 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4817 Value *V = PN->getIncomingValue(i); 4818 if (L->contains(PN->getIncomingBlock(i))) { 4819 if (!BEValueV) { 4820 BEValueV = V; 4821 } else if (BEValueV != V) { 4822 BEValueV = nullptr; 4823 break; 4824 } 4825 } else if (!StartValueV) { 4826 StartValueV = V; 4827 } else if (StartValueV != V) { 4828 StartValueV = nullptr; 4829 break; 4830 } 4831 } 4832 if (!BEValueV || !StartValueV) 4833 return nullptr; 4834 4835 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4836 "PHI node already processed?"); 4837 4838 // First, try to find AddRec expression without creating a fictituos symbolic 4839 // value for PN. 4840 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4841 return S; 4842 4843 // Handle PHI node value symbolically. 4844 const SCEV *SymbolicName = getUnknown(PN); 4845 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4846 4847 // Using this symbolic name for the PHI, analyze the value coming around 4848 // the back-edge. 4849 const SCEV *BEValue = getSCEV(BEValueV); 4850 4851 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4852 // has a special value for the first iteration of the loop. 4853 4854 // If the value coming around the backedge is an add with the symbolic 4855 // value we just inserted, then we found a simple induction variable! 4856 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4857 // If there is a single occurrence of the symbolic value, replace it 4858 // with a recurrence. 4859 unsigned FoundIndex = Add->getNumOperands(); 4860 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4861 if (Add->getOperand(i) == SymbolicName) 4862 if (FoundIndex == e) { 4863 FoundIndex = i; 4864 break; 4865 } 4866 4867 if (FoundIndex != Add->getNumOperands()) { 4868 // Create an add with everything but the specified operand. 4869 SmallVector<const SCEV *, 8> Ops; 4870 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4871 if (i != FoundIndex) 4872 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4873 L, *this)); 4874 const SCEV *Accum = getAddExpr(Ops); 4875 4876 // This is not a valid addrec if the step amount is varying each 4877 // loop iteration, but is not itself an addrec in this loop. 4878 if (isLoopInvariant(Accum, L) || 4879 (isa<SCEVAddRecExpr>(Accum) && 4880 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4881 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4882 4883 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4884 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4885 if (BO->IsNUW) 4886 Flags = setFlags(Flags, SCEV::FlagNUW); 4887 if (BO->IsNSW) 4888 Flags = setFlags(Flags, SCEV::FlagNSW); 4889 } 4890 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4891 // If the increment is an inbounds GEP, then we know the address 4892 // space cannot be wrapped around. We cannot make any guarantee 4893 // about signed or unsigned overflow because pointers are 4894 // unsigned but we may have a negative index from the base 4895 // pointer. We can guarantee that no unsigned wrap occurs if the 4896 // indices form a positive value. 4897 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4898 Flags = setFlags(Flags, SCEV::FlagNW); 4899 4900 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4901 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4902 Flags = setFlags(Flags, SCEV::FlagNUW); 4903 } 4904 4905 // We cannot transfer nuw and nsw flags from subtraction 4906 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4907 // for instance. 4908 } 4909 4910 const SCEV *StartVal = getSCEV(StartValueV); 4911 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4912 4913 // Okay, for the entire analysis of this edge we assumed the PHI 4914 // to be symbolic. We now need to go back and purge all of the 4915 // entries for the scalars that use the symbolic expression. 4916 forgetSymbolicName(PN, SymbolicName); 4917 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4918 4919 // We can add Flags to the post-inc expression only if we 4920 // know that it is *undefined behavior* for BEValueV to 4921 // overflow. 4922 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4923 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4924 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4925 4926 return PHISCEV; 4927 } 4928 } 4929 } else { 4930 // Otherwise, this could be a loop like this: 4931 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4932 // In this case, j = {1,+,1} and BEValue is j. 4933 // Because the other in-value of i (0) fits the evolution of BEValue 4934 // i really is an addrec evolution. 4935 // 4936 // We can generalize this saying that i is the shifted value of BEValue 4937 // by one iteration: 4938 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4939 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4940 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 4941 if (Shifted != getCouldNotCompute() && 4942 Start != getCouldNotCompute()) { 4943 const SCEV *StartVal = getSCEV(StartValueV); 4944 if (Start == StartVal) { 4945 // Okay, for the entire analysis of this edge we assumed the PHI 4946 // to be symbolic. We now need to go back and purge all of the 4947 // entries for the scalars that use the symbolic expression. 4948 forgetSymbolicName(PN, SymbolicName); 4949 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4950 return Shifted; 4951 } 4952 } 4953 } 4954 4955 // Remove the temporary PHI node SCEV that has been inserted while intending 4956 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4957 // as it will prevent later (possibly simpler) SCEV expressions to be added 4958 // to the ValueExprMap. 4959 eraseValueFromMap(PN); 4960 4961 return nullptr; 4962 } 4963 4964 // Checks if the SCEV S is available at BB. S is considered available at BB 4965 // if S can be materialized at BB without introducing a fault. 4966 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4967 BasicBlock *BB) { 4968 struct CheckAvailable { 4969 bool TraversalDone = false; 4970 bool Available = true; 4971 4972 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4973 BasicBlock *BB = nullptr; 4974 DominatorTree &DT; 4975 4976 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4977 : L(L), BB(BB), DT(DT) {} 4978 4979 bool setUnavailable() { 4980 TraversalDone = true; 4981 Available = false; 4982 return false; 4983 } 4984 4985 bool follow(const SCEV *S) { 4986 switch (S->getSCEVType()) { 4987 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4988 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4989 case scUMinExpr: 4990 case scSMinExpr: 4991 // These expressions are available if their operand(s) is/are. 4992 return true; 4993 4994 case scAddRecExpr: { 4995 // We allow add recurrences that are on the loop BB is in, or some 4996 // outer loop. This guarantees availability because the value of the 4997 // add recurrence at BB is simply the "current" value of the induction 4998 // variable. We can relax this in the future; for instance an add 4999 // recurrence on a sibling dominating loop is also available at BB. 5000 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5001 if (L && (ARLoop == L || ARLoop->contains(L))) 5002 return true; 5003 5004 return setUnavailable(); 5005 } 5006 5007 case scUnknown: { 5008 // For SCEVUnknown, we check for simple dominance. 5009 const auto *SU = cast<SCEVUnknown>(S); 5010 Value *V = SU->getValue(); 5011 5012 if (isa<Argument>(V)) 5013 return false; 5014 5015 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5016 return false; 5017 5018 return setUnavailable(); 5019 } 5020 5021 case scUDivExpr: 5022 case scCouldNotCompute: 5023 // We do not try to smart about these at all. 5024 return setUnavailable(); 5025 } 5026 llvm_unreachable("switch should be fully covered!"); 5027 } 5028 5029 bool isDone() { return TraversalDone; } 5030 }; 5031 5032 CheckAvailable CA(L, BB, DT); 5033 SCEVTraversal<CheckAvailable> ST(CA); 5034 5035 ST.visitAll(S); 5036 return CA.Available; 5037 } 5038 5039 // Try to match a control flow sequence that branches out at BI and merges back 5040 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5041 // match. 5042 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5043 Value *&C, Value *&LHS, Value *&RHS) { 5044 C = BI->getCondition(); 5045 5046 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5047 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5048 5049 if (!LeftEdge.isSingleEdge()) 5050 return false; 5051 5052 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5053 5054 Use &LeftUse = Merge->getOperandUse(0); 5055 Use &RightUse = Merge->getOperandUse(1); 5056 5057 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5058 LHS = LeftUse; 5059 RHS = RightUse; 5060 return true; 5061 } 5062 5063 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5064 LHS = RightUse; 5065 RHS = LeftUse; 5066 return true; 5067 } 5068 5069 return false; 5070 } 5071 5072 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5073 auto IsReachable = 5074 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5075 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5076 const Loop *L = LI.getLoopFor(PN->getParent()); 5077 5078 // We don't want to break LCSSA, even in a SCEV expression tree. 5079 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5080 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5081 return nullptr; 5082 5083 // Try to match 5084 // 5085 // br %cond, label %left, label %right 5086 // left: 5087 // br label %merge 5088 // right: 5089 // br label %merge 5090 // merge: 5091 // V = phi [ %x, %left ], [ %y, %right ] 5092 // 5093 // as "select %cond, %x, %y" 5094 5095 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5096 assert(IDom && "At least the entry block should dominate PN"); 5097 5098 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5099 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5100 5101 if (BI && BI->isConditional() && 5102 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5103 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5104 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5105 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5106 } 5107 5108 return nullptr; 5109 } 5110 5111 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5112 if (const SCEV *S = createAddRecFromPHI(PN)) 5113 return S; 5114 5115 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5116 return S; 5117 5118 // If the PHI has a single incoming value, follow that value, unless the 5119 // PHI's incoming blocks are in a different loop, in which case doing so 5120 // risks breaking LCSSA form. Instcombine would normally zap these, but 5121 // it doesn't have DominatorTree information, so it may miss cases. 5122 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5123 if (LI.replacementPreservesLCSSAForm(PN, V)) 5124 return getSCEV(V); 5125 5126 // If it's not a loop phi, we can't handle it yet. 5127 return getUnknown(PN); 5128 } 5129 5130 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5131 Value *Cond, 5132 Value *TrueVal, 5133 Value *FalseVal) { 5134 // Handle "constant" branch or select. This can occur for instance when a 5135 // loop pass transforms an inner loop and moves on to process the outer loop. 5136 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5137 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5138 5139 // Try to match some simple smax or umax patterns. 5140 auto *ICI = dyn_cast<ICmpInst>(Cond); 5141 if (!ICI) 5142 return getUnknown(I); 5143 5144 Value *LHS = ICI->getOperand(0); 5145 Value *RHS = ICI->getOperand(1); 5146 5147 switch (ICI->getPredicate()) { 5148 case ICmpInst::ICMP_SLT: 5149 case ICmpInst::ICMP_SLE: 5150 std::swap(LHS, RHS); 5151 LLVM_FALLTHROUGH; 5152 case ICmpInst::ICMP_SGT: 5153 case ICmpInst::ICMP_SGE: 5154 // a >s b ? a+x : b+x -> smax(a, b)+x 5155 // a >s b ? b+x : a+x -> smin(a, b)+x 5156 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5157 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5158 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5159 const SCEV *LA = getSCEV(TrueVal); 5160 const SCEV *RA = getSCEV(FalseVal); 5161 const SCEV *LDiff = getMinusSCEV(LA, LS); 5162 const SCEV *RDiff = getMinusSCEV(RA, RS); 5163 if (LDiff == RDiff) 5164 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5165 LDiff = getMinusSCEV(LA, RS); 5166 RDiff = getMinusSCEV(RA, LS); 5167 if (LDiff == RDiff) 5168 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5169 } 5170 break; 5171 case ICmpInst::ICMP_ULT: 5172 case ICmpInst::ICMP_ULE: 5173 std::swap(LHS, RHS); 5174 LLVM_FALLTHROUGH; 5175 case ICmpInst::ICMP_UGT: 5176 case ICmpInst::ICMP_UGE: 5177 // a >u b ? a+x : b+x -> umax(a, b)+x 5178 // a >u b ? b+x : a+x -> umin(a, b)+x 5179 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5180 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5181 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5182 const SCEV *LA = getSCEV(TrueVal); 5183 const SCEV *RA = getSCEV(FalseVal); 5184 const SCEV *LDiff = getMinusSCEV(LA, LS); 5185 const SCEV *RDiff = getMinusSCEV(RA, RS); 5186 if (LDiff == RDiff) 5187 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5188 LDiff = getMinusSCEV(LA, RS); 5189 RDiff = getMinusSCEV(RA, LS); 5190 if (LDiff == RDiff) 5191 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5192 } 5193 break; 5194 case ICmpInst::ICMP_NE: 5195 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5196 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5197 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5198 const SCEV *One = getOne(I->getType()); 5199 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5200 const SCEV *LA = getSCEV(TrueVal); 5201 const SCEV *RA = getSCEV(FalseVal); 5202 const SCEV *LDiff = getMinusSCEV(LA, LS); 5203 const SCEV *RDiff = getMinusSCEV(RA, One); 5204 if (LDiff == RDiff) 5205 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5206 } 5207 break; 5208 case ICmpInst::ICMP_EQ: 5209 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5210 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5211 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5212 const SCEV *One = getOne(I->getType()); 5213 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5214 const SCEV *LA = getSCEV(TrueVal); 5215 const SCEV *RA = getSCEV(FalseVal); 5216 const SCEV *LDiff = getMinusSCEV(LA, One); 5217 const SCEV *RDiff = getMinusSCEV(RA, LS); 5218 if (LDiff == RDiff) 5219 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5220 } 5221 break; 5222 default: 5223 break; 5224 } 5225 5226 return getUnknown(I); 5227 } 5228 5229 /// Expand GEP instructions into add and multiply operations. This allows them 5230 /// to be analyzed by regular SCEV code. 5231 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5232 // Don't attempt to analyze GEPs over unsized objects. 5233 if (!GEP->getSourceElementType()->isSized()) 5234 return getUnknown(GEP); 5235 5236 SmallVector<const SCEV *, 4> IndexExprs; 5237 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5238 IndexExprs.push_back(getSCEV(*Index)); 5239 return getGEPExpr(GEP, IndexExprs); 5240 } 5241 5242 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5243 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5244 return C->getAPInt().countTrailingZeros(); 5245 5246 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5247 return std::min(GetMinTrailingZeros(T->getOperand()), 5248 (uint32_t)getTypeSizeInBits(T->getType())); 5249 5250 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5251 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5252 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5253 ? getTypeSizeInBits(E->getType()) 5254 : OpRes; 5255 } 5256 5257 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5258 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5259 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5260 ? getTypeSizeInBits(E->getType()) 5261 : OpRes; 5262 } 5263 5264 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5265 // The result is the min of all operands results. 5266 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5267 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5268 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5269 return MinOpRes; 5270 } 5271 5272 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5273 // The result is the sum of all operands results. 5274 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5275 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5276 for (unsigned i = 1, e = M->getNumOperands(); 5277 SumOpRes != BitWidth && i != e; ++i) 5278 SumOpRes = 5279 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5280 return SumOpRes; 5281 } 5282 5283 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5284 // The result is the min of all operands results. 5285 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5286 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5287 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5288 return MinOpRes; 5289 } 5290 5291 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5292 // The result is the min of all operands results. 5293 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5294 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5295 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5296 return MinOpRes; 5297 } 5298 5299 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5300 // The result is the min of all operands results. 5301 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5302 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5303 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5304 return MinOpRes; 5305 } 5306 5307 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5308 // For a SCEVUnknown, ask ValueTracking. 5309 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5310 return Known.countMinTrailingZeros(); 5311 } 5312 5313 // SCEVUDivExpr 5314 return 0; 5315 } 5316 5317 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5318 auto I = MinTrailingZerosCache.find(S); 5319 if (I != MinTrailingZerosCache.end()) 5320 return I->second; 5321 5322 uint32_t Result = GetMinTrailingZerosImpl(S); 5323 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5324 assert(InsertPair.second && "Should insert a new key"); 5325 return InsertPair.first->second; 5326 } 5327 5328 /// Helper method to assign a range to V from metadata present in the IR. 5329 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5330 if (Instruction *I = dyn_cast<Instruction>(V)) 5331 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5332 return getConstantRangeFromMetadata(*MD); 5333 5334 return None; 5335 } 5336 5337 /// Determine the range for a particular SCEV. If SignHint is 5338 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5339 /// with a "cleaner" unsigned (resp. signed) representation. 5340 const ConstantRange & 5341 ScalarEvolution::getRangeRef(const SCEV *S, 5342 ScalarEvolution::RangeSignHint SignHint) { 5343 DenseMap<const SCEV *, ConstantRange> &Cache = 5344 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5345 : SignedRanges; 5346 ConstantRange::PreferredRangeType RangeType = 5347 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5348 ? ConstantRange::Unsigned : ConstantRange::Signed; 5349 5350 // See if we've computed this range already. 5351 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5352 if (I != Cache.end()) 5353 return I->second; 5354 5355 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5356 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5357 5358 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5359 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5360 using OBO = OverflowingBinaryOperator; 5361 5362 // If the value has known zeros, the maximum value will have those known zeros 5363 // as well. 5364 uint32_t TZ = GetMinTrailingZeros(S); 5365 if (TZ != 0) { 5366 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5367 ConservativeResult = 5368 ConstantRange(APInt::getMinValue(BitWidth), 5369 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5370 else 5371 ConservativeResult = ConstantRange( 5372 APInt::getSignedMinValue(BitWidth), 5373 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5374 } 5375 5376 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5377 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5378 unsigned WrapType = OBO::AnyWrap; 5379 if (Add->hasNoSignedWrap()) 5380 WrapType |= OBO::NoSignedWrap; 5381 if (Add->hasNoUnsignedWrap()) 5382 WrapType |= OBO::NoUnsignedWrap; 5383 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5384 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5385 WrapType, RangeType); 5386 return setRange(Add, SignHint, 5387 ConservativeResult.intersectWith(X, RangeType)); 5388 } 5389 5390 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5391 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5392 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5393 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5394 return setRange(Mul, SignHint, 5395 ConservativeResult.intersectWith(X, RangeType)); 5396 } 5397 5398 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5399 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5400 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5401 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5402 return setRange(SMax, SignHint, 5403 ConservativeResult.intersectWith(X, RangeType)); 5404 } 5405 5406 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5407 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5408 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5409 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5410 return setRange(UMax, SignHint, 5411 ConservativeResult.intersectWith(X, RangeType)); 5412 } 5413 5414 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5415 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5416 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5417 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5418 return setRange(SMin, SignHint, 5419 ConservativeResult.intersectWith(X, RangeType)); 5420 } 5421 5422 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5423 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5424 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5425 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5426 return setRange(UMin, SignHint, 5427 ConservativeResult.intersectWith(X, RangeType)); 5428 } 5429 5430 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5431 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5432 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5433 return setRange(UDiv, SignHint, 5434 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5435 } 5436 5437 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5438 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5439 return setRange(ZExt, SignHint, 5440 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5441 RangeType)); 5442 } 5443 5444 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5445 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5446 return setRange(SExt, SignHint, 5447 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5448 RangeType)); 5449 } 5450 5451 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5452 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5453 return setRange(Trunc, SignHint, 5454 ConservativeResult.intersectWith(X.truncate(BitWidth), 5455 RangeType)); 5456 } 5457 5458 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5459 // If there's no unsigned wrap, the value will never be less than its 5460 // initial value. 5461 if (AddRec->hasNoUnsignedWrap()) { 5462 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5463 if (!UnsignedMinValue.isNullValue()) 5464 ConservativeResult = ConservativeResult.intersectWith( 5465 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5466 } 5467 5468 // If there's no signed wrap, and all the operands except initial value have 5469 // the same sign or zero, the value won't ever be: 5470 // 1: smaller than initial value if operands are non negative, 5471 // 2: bigger than initial value if operands are non positive. 5472 // For both cases, value can not cross signed min/max boundary. 5473 if (AddRec->hasNoSignedWrap()) { 5474 bool AllNonNeg = true; 5475 bool AllNonPos = true; 5476 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5477 if (!isKnownNonNegative(AddRec->getOperand(i))) 5478 AllNonNeg = false; 5479 if (!isKnownNonPositive(AddRec->getOperand(i))) 5480 AllNonPos = false; 5481 } 5482 if (AllNonNeg) 5483 ConservativeResult = ConservativeResult.intersectWith( 5484 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5485 APInt::getSignedMinValue(BitWidth)), 5486 RangeType); 5487 else if (AllNonPos) 5488 ConservativeResult = ConservativeResult.intersectWith( 5489 ConstantRange::getNonEmpty( 5490 APInt::getSignedMinValue(BitWidth), 5491 getSignedRangeMax(AddRec->getStart()) + 1), 5492 RangeType); 5493 } 5494 5495 // TODO: non-affine addrec 5496 if (AddRec->isAffine()) { 5497 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5498 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5499 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5500 auto RangeFromAffine = getRangeForAffineAR( 5501 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5502 BitWidth); 5503 ConservativeResult = 5504 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5505 5506 auto RangeFromFactoring = getRangeViaFactoring( 5507 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5508 BitWidth); 5509 ConservativeResult = 5510 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5511 } 5512 5513 // Now try symbolic BE count and more powerful methods. 5514 MaxBECount = computeMaxBackedgeTakenCount(AddRec->getLoop()); 5515 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5516 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5517 AddRec->hasNoSelfWrap()) { 5518 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5519 AddRec, MaxBECount, BitWidth, SignHint); 5520 ConservativeResult = 5521 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5522 } 5523 } 5524 5525 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5526 } 5527 5528 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5529 // Check if the IR explicitly contains !range metadata. 5530 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5531 if (MDRange.hasValue()) 5532 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5533 RangeType); 5534 5535 // Split here to avoid paying the compile-time cost of calling both 5536 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5537 // if needed. 5538 const DataLayout &DL = getDataLayout(); 5539 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5540 // For a SCEVUnknown, ask ValueTracking. 5541 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5542 if (Known.getBitWidth() != BitWidth) 5543 Known = Known.zextOrTrunc(BitWidth); 5544 // If Known does not result in full-set, intersect with it. 5545 if (Known.getMinValue() != Known.getMaxValue() + 1) 5546 ConservativeResult = ConservativeResult.intersectWith( 5547 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5548 RangeType); 5549 } else { 5550 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5551 "generalize as needed!"); 5552 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5553 // If the pointer size is larger than the index size type, this can cause 5554 // NS to be larger than BitWidth. So compensate for this. 5555 if (U->getType()->isPointerTy()) { 5556 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5557 int ptrIdxDiff = ptrSize - BitWidth; 5558 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5559 NS -= ptrIdxDiff; 5560 } 5561 5562 if (NS > 1) 5563 ConservativeResult = ConservativeResult.intersectWith( 5564 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5565 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5566 RangeType); 5567 } 5568 5569 // A range of Phi is a subset of union of all ranges of its input. 5570 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5571 // Make sure that we do not run over cycled Phis. 5572 if (PendingPhiRanges.insert(Phi).second) { 5573 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5574 for (auto &Op : Phi->operands()) { 5575 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5576 RangeFromOps = RangeFromOps.unionWith(OpRange); 5577 // No point to continue if we already have a full set. 5578 if (RangeFromOps.isFullSet()) 5579 break; 5580 } 5581 ConservativeResult = 5582 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5583 bool Erased = PendingPhiRanges.erase(Phi); 5584 assert(Erased && "Failed to erase Phi properly?"); 5585 (void) Erased; 5586 } 5587 } 5588 5589 return setRange(U, SignHint, std::move(ConservativeResult)); 5590 } 5591 5592 return setRange(S, SignHint, std::move(ConservativeResult)); 5593 } 5594 5595 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5596 // values that the expression can take. Initially, the expression has a value 5597 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5598 // argument defines if we treat Step as signed or unsigned. 5599 static ConstantRange getRangeForAffineARHelper(APInt Step, 5600 const ConstantRange &StartRange, 5601 const APInt &MaxBECount, 5602 unsigned BitWidth, bool Signed) { 5603 // If either Step or MaxBECount is 0, then the expression won't change, and we 5604 // just need to return the initial range. 5605 if (Step == 0 || MaxBECount == 0) 5606 return StartRange; 5607 5608 // If we don't know anything about the initial value (i.e. StartRange is 5609 // FullRange), then we don't know anything about the final range either. 5610 // Return FullRange. 5611 if (StartRange.isFullSet()) 5612 return ConstantRange::getFull(BitWidth); 5613 5614 // If Step is signed and negative, then we use its absolute value, but we also 5615 // note that we're moving in the opposite direction. 5616 bool Descending = Signed && Step.isNegative(); 5617 5618 if (Signed) 5619 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5620 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5621 // This equations hold true due to the well-defined wrap-around behavior of 5622 // APInt. 5623 Step = Step.abs(); 5624 5625 // Check if Offset is more than full span of BitWidth. If it is, the 5626 // expression is guaranteed to overflow. 5627 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5628 return ConstantRange::getFull(BitWidth); 5629 5630 // Offset is by how much the expression can change. Checks above guarantee no 5631 // overflow here. 5632 APInt Offset = Step * MaxBECount; 5633 5634 // Minimum value of the final range will match the minimal value of StartRange 5635 // if the expression is increasing and will be decreased by Offset otherwise. 5636 // Maximum value of the final range will match the maximal value of StartRange 5637 // if the expression is decreasing and will be increased by Offset otherwise. 5638 APInt StartLower = StartRange.getLower(); 5639 APInt StartUpper = StartRange.getUpper() - 1; 5640 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5641 : (StartUpper + std::move(Offset)); 5642 5643 // It's possible that the new minimum/maximum value will fall into the initial 5644 // range (due to wrap around). This means that the expression can take any 5645 // value in this bitwidth, and we have to return full range. 5646 if (StartRange.contains(MovedBoundary)) 5647 return ConstantRange::getFull(BitWidth); 5648 5649 APInt NewLower = 5650 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5651 APInt NewUpper = 5652 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5653 NewUpper += 1; 5654 5655 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5656 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5657 } 5658 5659 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5660 const SCEV *Step, 5661 const SCEV *MaxBECount, 5662 unsigned BitWidth) { 5663 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5664 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5665 "Precondition!"); 5666 5667 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5668 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5669 5670 // First, consider step signed. 5671 ConstantRange StartSRange = getSignedRange(Start); 5672 ConstantRange StepSRange = getSignedRange(Step); 5673 5674 // If Step can be both positive and negative, we need to find ranges for the 5675 // maximum absolute step values in both directions and union them. 5676 ConstantRange SR = 5677 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5678 MaxBECountValue, BitWidth, /* Signed = */ true); 5679 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5680 StartSRange, MaxBECountValue, 5681 BitWidth, /* Signed = */ true)); 5682 5683 // Next, consider step unsigned. 5684 ConstantRange UR = getRangeForAffineARHelper( 5685 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5686 MaxBECountValue, BitWidth, /* Signed = */ false); 5687 5688 // Finally, intersect signed and unsigned ranges. 5689 return SR.intersectWith(UR, ConstantRange::Smallest); 5690 } 5691 5692 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 5693 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 5694 ScalarEvolution::RangeSignHint SignHint) { 5695 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 5696 assert(AddRec->hasNoSelfWrap() && 5697 "This only works for non-self-wrapping AddRecs!"); 5698 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 5699 const SCEV *Step = AddRec->getStepRecurrence(*this); 5700 // Let's make sure that we can prove that we do not self-wrap during 5701 // MaxBECount iterations. We need this because MaxBECount is a maximum 5702 // iteration count estimate, and we might infer nw from some exit for which we 5703 // do not know max exit count (or any other side reasoning). 5704 // TODO: Turn into assert at some point. 5705 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 5706 const SCEV *RangeWidth = getNegativeSCEV(getOne(AddRec->getType())); 5707 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 5708 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 5709 if (!isKnownPredicate(ICmpInst::ICMP_ULE, MaxBECount, MaxItersWithoutWrap)) 5710 return ConstantRange::getFull(BitWidth); 5711 5712 ICmpInst::Predicate LEPred = 5713 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 5714 ICmpInst::Predicate GEPred = 5715 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 5716 const SCEV *Start = AddRec->getStart(); 5717 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 5718 5719 // We know that there is no self-wrap. Let's take Start and End values and 5720 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 5721 // the iteration. They either lie inside the range [Min(Start, End), 5722 // Max(Start, End)] or outside it: 5723 // 5724 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 5725 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 5726 // 5727 // No self wrap flag guarantees that the intermediate values cannot be BOTH 5728 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 5729 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 5730 // Start <= End and step is positive, or Start >= End and step is negative. 5731 ConstantRange StartRange = 5732 IsSigned ? getSignedRange(Start) : getUnsignedRange(Start); 5733 ConstantRange EndRange = 5734 IsSigned ? getSignedRange(End) : getUnsignedRange(End); 5735 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 5736 // If they already cover full iteration space, we will know nothing useful 5737 // even if we prove what we want to prove. 5738 if (RangeBetween.isFullSet()) 5739 return RangeBetween; 5740 5741 // TODO: Too big expressions here may lead to exponential explosions on 5742 // recursion. So we limit the size of operands to avoid this. Maybe in the 5743 // future we should find a better way to deal with it. 5744 const unsigned Threshold = 3; 5745 if (Start->getExpressionSize() > Threshold || 5746 Step->getExpressionSize() > Threshold) 5747 return ConstantRange::getFull(BitWidth); 5748 if (isKnownPositive(Step) && isKnownPredicate(LEPred, Start, End)) 5749 return RangeBetween; 5750 else if (isKnownNegative(Step) && isKnownPredicate(GEPred, Start, End)) 5751 return RangeBetween; 5752 else 5753 return ConstantRange::getFull(BitWidth); 5754 } 5755 5756 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5757 const SCEV *Step, 5758 const SCEV *MaxBECount, 5759 unsigned BitWidth) { 5760 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5761 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5762 5763 struct SelectPattern { 5764 Value *Condition = nullptr; 5765 APInt TrueValue; 5766 APInt FalseValue; 5767 5768 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5769 const SCEV *S) { 5770 Optional<unsigned> CastOp; 5771 APInt Offset(BitWidth, 0); 5772 5773 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5774 "Should be!"); 5775 5776 // Peel off a constant offset: 5777 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5778 // In the future we could consider being smarter here and handle 5779 // {Start+Step,+,Step} too. 5780 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5781 return; 5782 5783 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5784 S = SA->getOperand(1); 5785 } 5786 5787 // Peel off a cast operation 5788 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5789 CastOp = SCast->getSCEVType(); 5790 S = SCast->getOperand(); 5791 } 5792 5793 using namespace llvm::PatternMatch; 5794 5795 auto *SU = dyn_cast<SCEVUnknown>(S); 5796 const APInt *TrueVal, *FalseVal; 5797 if (!SU || 5798 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5799 m_APInt(FalseVal)))) { 5800 Condition = nullptr; 5801 return; 5802 } 5803 5804 TrueValue = *TrueVal; 5805 FalseValue = *FalseVal; 5806 5807 // Re-apply the cast we peeled off earlier 5808 if (CastOp.hasValue()) 5809 switch (*CastOp) { 5810 default: 5811 llvm_unreachable("Unknown SCEV cast type!"); 5812 5813 case scTruncate: 5814 TrueValue = TrueValue.trunc(BitWidth); 5815 FalseValue = FalseValue.trunc(BitWidth); 5816 break; 5817 case scZeroExtend: 5818 TrueValue = TrueValue.zext(BitWidth); 5819 FalseValue = FalseValue.zext(BitWidth); 5820 break; 5821 case scSignExtend: 5822 TrueValue = TrueValue.sext(BitWidth); 5823 FalseValue = FalseValue.sext(BitWidth); 5824 break; 5825 } 5826 5827 // Re-apply the constant offset we peeled off earlier 5828 TrueValue += Offset; 5829 FalseValue += Offset; 5830 } 5831 5832 bool isRecognized() { return Condition != nullptr; } 5833 }; 5834 5835 SelectPattern StartPattern(*this, BitWidth, Start); 5836 if (!StartPattern.isRecognized()) 5837 return ConstantRange::getFull(BitWidth); 5838 5839 SelectPattern StepPattern(*this, BitWidth, Step); 5840 if (!StepPattern.isRecognized()) 5841 return ConstantRange::getFull(BitWidth); 5842 5843 if (StartPattern.Condition != StepPattern.Condition) { 5844 // We don't handle this case today; but we could, by considering four 5845 // possibilities below instead of two. I'm not sure if there are cases where 5846 // that will help over what getRange already does, though. 5847 return ConstantRange::getFull(BitWidth); 5848 } 5849 5850 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5851 // construct arbitrary general SCEV expressions here. This function is called 5852 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5853 // say) can end up caching a suboptimal value. 5854 5855 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5856 // C2352 and C2512 (otherwise it isn't needed). 5857 5858 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5859 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5860 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5861 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5862 5863 ConstantRange TrueRange = 5864 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5865 ConstantRange FalseRange = 5866 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5867 5868 return TrueRange.unionWith(FalseRange); 5869 } 5870 5871 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5872 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5873 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5874 5875 // Return early if there are no flags to propagate to the SCEV. 5876 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5877 if (BinOp->hasNoUnsignedWrap()) 5878 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5879 if (BinOp->hasNoSignedWrap()) 5880 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5881 if (Flags == SCEV::FlagAnyWrap) 5882 return SCEV::FlagAnyWrap; 5883 5884 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5885 } 5886 5887 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5888 // Here we check that I is in the header of the innermost loop containing I, 5889 // since we only deal with instructions in the loop header. The actual loop we 5890 // need to check later will come from an add recurrence, but getting that 5891 // requires computing the SCEV of the operands, which can be expensive. This 5892 // check we can do cheaply to rule out some cases early. 5893 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5894 if (InnermostContainingLoop == nullptr || 5895 InnermostContainingLoop->getHeader() != I->getParent()) 5896 return false; 5897 5898 // Only proceed if we can prove that I does not yield poison. 5899 if (!programUndefinedIfPoison(I)) 5900 return false; 5901 5902 // At this point we know that if I is executed, then it does not wrap 5903 // according to at least one of NSW or NUW. If I is not executed, then we do 5904 // not know if the calculation that I represents would wrap. Multiple 5905 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5906 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5907 // derived from other instructions that map to the same SCEV. We cannot make 5908 // that guarantee for cases where I is not executed. So we need to find the 5909 // loop that I is considered in relation to and prove that I is executed for 5910 // every iteration of that loop. That implies that the value that I 5911 // calculates does not wrap anywhere in the loop, so then we can apply the 5912 // flags to the SCEV. 5913 // 5914 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5915 // from different loops, so that we know which loop to prove that I is 5916 // executed in. 5917 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5918 // I could be an extractvalue from a call to an overflow intrinsic. 5919 // TODO: We can do better here in some cases. 5920 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5921 return false; 5922 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5923 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5924 bool AllOtherOpsLoopInvariant = true; 5925 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5926 ++OtherOpIndex) { 5927 if (OtherOpIndex != OpIndex) { 5928 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5929 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5930 AllOtherOpsLoopInvariant = false; 5931 break; 5932 } 5933 } 5934 } 5935 if (AllOtherOpsLoopInvariant && 5936 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5937 return true; 5938 } 5939 } 5940 return false; 5941 } 5942 5943 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5944 // If we know that \c I can never be poison period, then that's enough. 5945 if (isSCEVExprNeverPoison(I)) 5946 return true; 5947 5948 // For an add recurrence specifically, we assume that infinite loops without 5949 // side effects are undefined behavior, and then reason as follows: 5950 // 5951 // If the add recurrence is poison in any iteration, it is poison on all 5952 // future iterations (since incrementing poison yields poison). If the result 5953 // of the add recurrence is fed into the loop latch condition and the loop 5954 // does not contain any throws or exiting blocks other than the latch, we now 5955 // have the ability to "choose" whether the backedge is taken or not (by 5956 // choosing a sufficiently evil value for the poison feeding into the branch) 5957 // for every iteration including and after the one in which \p I first became 5958 // poison. There are two possibilities (let's call the iteration in which \p 5959 // I first became poison as K): 5960 // 5961 // 1. In the set of iterations including and after K, the loop body executes 5962 // no side effects. In this case executing the backege an infinte number 5963 // of times will yield undefined behavior. 5964 // 5965 // 2. In the set of iterations including and after K, the loop body executes 5966 // at least one side effect. In this case, that specific instance of side 5967 // effect is control dependent on poison, which also yields undefined 5968 // behavior. 5969 5970 auto *ExitingBB = L->getExitingBlock(); 5971 auto *LatchBB = L->getLoopLatch(); 5972 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5973 return false; 5974 5975 SmallPtrSet<const Instruction *, 16> Pushed; 5976 SmallVector<const Instruction *, 8> PoisonStack; 5977 5978 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5979 // things that are known to be poison under that assumption go on the 5980 // PoisonStack. 5981 Pushed.insert(I); 5982 PoisonStack.push_back(I); 5983 5984 bool LatchControlDependentOnPoison = false; 5985 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5986 const Instruction *Poison = PoisonStack.pop_back_val(); 5987 5988 for (auto *PoisonUser : Poison->users()) { 5989 if (propagatesPoison(cast<Operator>(PoisonUser))) { 5990 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5991 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5992 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5993 assert(BI->isConditional() && "Only possibility!"); 5994 if (BI->getParent() == LatchBB) { 5995 LatchControlDependentOnPoison = true; 5996 break; 5997 } 5998 } 5999 } 6000 } 6001 6002 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6003 } 6004 6005 ScalarEvolution::LoopProperties 6006 ScalarEvolution::getLoopProperties(const Loop *L) { 6007 using LoopProperties = ScalarEvolution::LoopProperties; 6008 6009 auto Itr = LoopPropertiesCache.find(L); 6010 if (Itr == LoopPropertiesCache.end()) { 6011 auto HasSideEffects = [](Instruction *I) { 6012 if (auto *SI = dyn_cast<StoreInst>(I)) 6013 return !SI->isSimple(); 6014 6015 return I->mayHaveSideEffects(); 6016 }; 6017 6018 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6019 /*HasNoSideEffects*/ true}; 6020 6021 for (auto *BB : L->getBlocks()) 6022 for (auto &I : *BB) { 6023 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6024 LP.HasNoAbnormalExits = false; 6025 if (HasSideEffects(&I)) 6026 LP.HasNoSideEffects = false; 6027 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6028 break; // We're already as pessimistic as we can get. 6029 } 6030 6031 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6032 assert(InsertPair.second && "We just checked!"); 6033 Itr = InsertPair.first; 6034 } 6035 6036 return Itr->second; 6037 } 6038 6039 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6040 if (!isSCEVable(V->getType())) 6041 return getUnknown(V); 6042 6043 if (Instruction *I = dyn_cast<Instruction>(V)) { 6044 // Don't attempt to analyze instructions in blocks that aren't 6045 // reachable. Such instructions don't matter, and they aren't required 6046 // to obey basic rules for definitions dominating uses which this 6047 // analysis depends on. 6048 if (!DT.isReachableFromEntry(I->getParent())) 6049 return getUnknown(UndefValue::get(V->getType())); 6050 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6051 return getConstant(CI); 6052 else if (isa<ConstantPointerNull>(V)) 6053 return getZero(V->getType()); 6054 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6055 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6056 else if (!isa<ConstantExpr>(V)) 6057 return getUnknown(V); 6058 6059 Operator *U = cast<Operator>(V); 6060 if (auto BO = MatchBinaryOp(U, DT)) { 6061 switch (BO->Opcode) { 6062 case Instruction::Add: { 6063 // The simple thing to do would be to just call getSCEV on both operands 6064 // and call getAddExpr with the result. However if we're looking at a 6065 // bunch of things all added together, this can be quite inefficient, 6066 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6067 // Instead, gather up all the operands and make a single getAddExpr call. 6068 // LLVM IR canonical form means we need only traverse the left operands. 6069 SmallVector<const SCEV *, 4> AddOps; 6070 do { 6071 if (BO->Op) { 6072 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6073 AddOps.push_back(OpSCEV); 6074 break; 6075 } 6076 6077 // If a NUW or NSW flag can be applied to the SCEV for this 6078 // addition, then compute the SCEV for this addition by itself 6079 // with a separate call to getAddExpr. We need to do that 6080 // instead of pushing the operands of the addition onto AddOps, 6081 // since the flags are only known to apply to this particular 6082 // addition - they may not apply to other additions that can be 6083 // formed with operands from AddOps. 6084 const SCEV *RHS = getSCEV(BO->RHS); 6085 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6086 if (Flags != SCEV::FlagAnyWrap) { 6087 const SCEV *LHS = getSCEV(BO->LHS); 6088 if (BO->Opcode == Instruction::Sub) 6089 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6090 else 6091 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6092 break; 6093 } 6094 } 6095 6096 if (BO->Opcode == Instruction::Sub) 6097 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6098 else 6099 AddOps.push_back(getSCEV(BO->RHS)); 6100 6101 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6102 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6103 NewBO->Opcode != Instruction::Sub)) { 6104 AddOps.push_back(getSCEV(BO->LHS)); 6105 break; 6106 } 6107 BO = NewBO; 6108 } while (true); 6109 6110 return getAddExpr(AddOps); 6111 } 6112 6113 case Instruction::Mul: { 6114 SmallVector<const SCEV *, 4> MulOps; 6115 do { 6116 if (BO->Op) { 6117 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6118 MulOps.push_back(OpSCEV); 6119 break; 6120 } 6121 6122 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6123 if (Flags != SCEV::FlagAnyWrap) { 6124 MulOps.push_back( 6125 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6126 break; 6127 } 6128 } 6129 6130 MulOps.push_back(getSCEV(BO->RHS)); 6131 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6132 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6133 MulOps.push_back(getSCEV(BO->LHS)); 6134 break; 6135 } 6136 BO = NewBO; 6137 } while (true); 6138 6139 return getMulExpr(MulOps); 6140 } 6141 case Instruction::UDiv: 6142 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6143 case Instruction::URem: 6144 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6145 case Instruction::Sub: { 6146 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6147 if (BO->Op) 6148 Flags = getNoWrapFlagsFromUB(BO->Op); 6149 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6150 } 6151 case Instruction::And: 6152 // For an expression like x&255 that merely masks off the high bits, 6153 // use zext(trunc(x)) as the SCEV expression. 6154 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6155 if (CI->isZero()) 6156 return getSCEV(BO->RHS); 6157 if (CI->isMinusOne()) 6158 return getSCEV(BO->LHS); 6159 const APInt &A = CI->getValue(); 6160 6161 // Instcombine's ShrinkDemandedConstant may strip bits out of 6162 // constants, obscuring what would otherwise be a low-bits mask. 6163 // Use computeKnownBits to compute what ShrinkDemandedConstant 6164 // knew about to reconstruct a low-bits mask value. 6165 unsigned LZ = A.countLeadingZeros(); 6166 unsigned TZ = A.countTrailingZeros(); 6167 unsigned BitWidth = A.getBitWidth(); 6168 KnownBits Known(BitWidth); 6169 computeKnownBits(BO->LHS, Known, getDataLayout(), 6170 0, &AC, nullptr, &DT); 6171 6172 APInt EffectiveMask = 6173 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6174 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6175 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6176 const SCEV *LHS = getSCEV(BO->LHS); 6177 const SCEV *ShiftedLHS = nullptr; 6178 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6179 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6180 // For an expression like (x * 8) & 8, simplify the multiply. 6181 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6182 unsigned GCD = std::min(MulZeros, TZ); 6183 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6184 SmallVector<const SCEV*, 4> MulOps; 6185 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6186 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6187 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6188 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6189 } 6190 } 6191 if (!ShiftedLHS) 6192 ShiftedLHS = getUDivExpr(LHS, MulCount); 6193 return getMulExpr( 6194 getZeroExtendExpr( 6195 getTruncateExpr(ShiftedLHS, 6196 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6197 BO->LHS->getType()), 6198 MulCount); 6199 } 6200 } 6201 break; 6202 6203 case Instruction::Or: 6204 // If the RHS of the Or is a constant, we may have something like: 6205 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6206 // optimizations will transparently handle this case. 6207 // 6208 // In order for this transformation to be safe, the LHS must be of the 6209 // form X*(2^n) and the Or constant must be less than 2^n. 6210 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6211 const SCEV *LHS = getSCEV(BO->LHS); 6212 const APInt &CIVal = CI->getValue(); 6213 if (GetMinTrailingZeros(LHS) >= 6214 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6215 // Build a plain add SCEV. 6216 return getAddExpr(LHS, getSCEV(CI), 6217 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6218 } 6219 } 6220 break; 6221 6222 case Instruction::Xor: 6223 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6224 // If the RHS of xor is -1, then this is a not operation. 6225 if (CI->isMinusOne()) 6226 return getNotSCEV(getSCEV(BO->LHS)); 6227 6228 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6229 // This is a variant of the check for xor with -1, and it handles 6230 // the case where instcombine has trimmed non-demanded bits out 6231 // of an xor with -1. 6232 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6233 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6234 if (LBO->getOpcode() == Instruction::And && 6235 LCI->getValue() == CI->getValue()) 6236 if (const SCEVZeroExtendExpr *Z = 6237 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6238 Type *UTy = BO->LHS->getType(); 6239 const SCEV *Z0 = Z->getOperand(); 6240 Type *Z0Ty = Z0->getType(); 6241 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6242 6243 // If C is a low-bits mask, the zero extend is serving to 6244 // mask off the high bits. Complement the operand and 6245 // re-apply the zext. 6246 if (CI->getValue().isMask(Z0TySize)) 6247 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6248 6249 // If C is a single bit, it may be in the sign-bit position 6250 // before the zero-extend. In this case, represent the xor 6251 // using an add, which is equivalent, and re-apply the zext. 6252 APInt Trunc = CI->getValue().trunc(Z0TySize); 6253 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6254 Trunc.isSignMask()) 6255 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6256 UTy); 6257 } 6258 } 6259 break; 6260 6261 case Instruction::Shl: 6262 // Turn shift left of a constant amount into a multiply. 6263 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6264 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6265 6266 // If the shift count is not less than the bitwidth, the result of 6267 // the shift is undefined. Don't try to analyze it, because the 6268 // resolution chosen here may differ from the resolution chosen in 6269 // other parts of the compiler. 6270 if (SA->getValue().uge(BitWidth)) 6271 break; 6272 6273 // We can safely preserve the nuw flag in all cases. It's also safe to 6274 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6275 // requires special handling. It can be preserved as long as we're not 6276 // left shifting by bitwidth - 1. 6277 auto Flags = SCEV::FlagAnyWrap; 6278 if (BO->Op) { 6279 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6280 if ((MulFlags & SCEV::FlagNSW) && 6281 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6282 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6283 if (MulFlags & SCEV::FlagNUW) 6284 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6285 } 6286 6287 Constant *X = ConstantInt::get( 6288 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6289 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6290 } 6291 break; 6292 6293 case Instruction::AShr: { 6294 // AShr X, C, where C is a constant. 6295 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6296 if (!CI) 6297 break; 6298 6299 Type *OuterTy = BO->LHS->getType(); 6300 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6301 // If the shift count is not less than the bitwidth, the result of 6302 // the shift is undefined. Don't try to analyze it, because the 6303 // resolution chosen here may differ from the resolution chosen in 6304 // other parts of the compiler. 6305 if (CI->getValue().uge(BitWidth)) 6306 break; 6307 6308 if (CI->isZero()) 6309 return getSCEV(BO->LHS); // shift by zero --> noop 6310 6311 uint64_t AShrAmt = CI->getZExtValue(); 6312 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6313 6314 Operator *L = dyn_cast<Operator>(BO->LHS); 6315 if (L && L->getOpcode() == Instruction::Shl) { 6316 // X = Shl A, n 6317 // Y = AShr X, m 6318 // Both n and m are constant. 6319 6320 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6321 if (L->getOperand(1) == BO->RHS) 6322 // For a two-shift sext-inreg, i.e. n = m, 6323 // use sext(trunc(x)) as the SCEV expression. 6324 return getSignExtendExpr( 6325 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6326 6327 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6328 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6329 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6330 if (ShlAmt > AShrAmt) { 6331 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6332 // expression. We already checked that ShlAmt < BitWidth, so 6333 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6334 // ShlAmt - AShrAmt < Amt. 6335 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6336 ShlAmt - AShrAmt); 6337 return getSignExtendExpr( 6338 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6339 getConstant(Mul)), OuterTy); 6340 } 6341 } 6342 } 6343 break; 6344 } 6345 } 6346 } 6347 6348 switch (U->getOpcode()) { 6349 case Instruction::Trunc: 6350 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6351 6352 case Instruction::ZExt: 6353 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6354 6355 case Instruction::SExt: 6356 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6357 // The NSW flag of a subtract does not always survive the conversion to 6358 // A + (-1)*B. By pushing sign extension onto its operands we are much 6359 // more likely to preserve NSW and allow later AddRec optimisations. 6360 // 6361 // NOTE: This is effectively duplicating this logic from getSignExtend: 6362 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6363 // but by that point the NSW information has potentially been lost. 6364 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6365 Type *Ty = U->getType(); 6366 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6367 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6368 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6369 } 6370 } 6371 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6372 6373 case Instruction::BitCast: 6374 // BitCasts are no-op casts so we just eliminate the cast. 6375 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6376 return getSCEV(U->getOperand(0)); 6377 break; 6378 6379 case Instruction::SDiv: 6380 // If both operands are non-negative, this is just an udiv. 6381 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6382 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6383 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6384 break; 6385 6386 case Instruction::SRem: 6387 // If both operands are non-negative, this is just an urem. 6388 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6389 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6390 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6391 break; 6392 6393 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6394 // lead to pointer expressions which cannot safely be expanded to GEPs, 6395 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6396 // simplifying integer expressions. 6397 6398 case Instruction::GetElementPtr: 6399 return createNodeForGEP(cast<GEPOperator>(U)); 6400 6401 case Instruction::PHI: 6402 return createNodeForPHI(cast<PHINode>(U)); 6403 6404 case Instruction::Select: 6405 // U can also be a select constant expr, which let fall through. Since 6406 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6407 // constant expressions cannot have instructions as operands, we'd have 6408 // returned getUnknown for a select constant expressions anyway. 6409 if (isa<Instruction>(U)) 6410 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6411 U->getOperand(1), U->getOperand(2)); 6412 break; 6413 6414 case Instruction::Call: 6415 case Instruction::Invoke: 6416 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6417 return getSCEV(RV); 6418 6419 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6420 switch (II->getIntrinsicID()) { 6421 case Intrinsic::abs: { 6422 const SCEV *Op = getSCEV(II->getArgOperand(0)); 6423 SCEV::NoWrapFlags Flags = 6424 cast<ConstantInt>(II->getArgOperand(1))->isOne() 6425 ? SCEV::FlagNSW 6426 : SCEV::FlagAnyWrap; 6427 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 6428 } 6429 case Intrinsic::umax: 6430 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6431 getSCEV(II->getArgOperand(1))); 6432 case Intrinsic::umin: 6433 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6434 getSCEV(II->getArgOperand(1))); 6435 case Intrinsic::smax: 6436 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6437 getSCEV(II->getArgOperand(1))); 6438 case Intrinsic::smin: 6439 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6440 getSCEV(II->getArgOperand(1))); 6441 case Intrinsic::usub_sat: { 6442 const SCEV *X = getSCEV(II->getArgOperand(0)); 6443 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6444 const SCEV *ClampedY = getUMinExpr(X, Y); 6445 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6446 } 6447 case Intrinsic::uadd_sat: { 6448 const SCEV *X = getSCEV(II->getArgOperand(0)); 6449 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6450 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6451 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6452 } 6453 default: 6454 break; 6455 } 6456 } 6457 break; 6458 } 6459 6460 return getUnknown(V); 6461 } 6462 6463 //===----------------------------------------------------------------------===// 6464 // Iteration Count Computation Code 6465 // 6466 6467 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6468 if (!ExitCount) 6469 return 0; 6470 6471 ConstantInt *ExitConst = ExitCount->getValue(); 6472 6473 // Guard against huge trip counts. 6474 if (ExitConst->getValue().getActiveBits() > 32) 6475 return 0; 6476 6477 // In case of integer overflow, this returns 0, which is correct. 6478 return ((unsigned)ExitConst->getZExtValue()) + 1; 6479 } 6480 6481 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6482 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6483 return getSmallConstantTripCount(L, ExitingBB); 6484 6485 // No trip count information for multiple exits. 6486 return 0; 6487 } 6488 6489 unsigned 6490 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6491 const BasicBlock *ExitingBlock) { 6492 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6493 assert(L->isLoopExiting(ExitingBlock) && 6494 "Exiting block must actually branch out of the loop!"); 6495 const SCEVConstant *ExitCount = 6496 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6497 return getConstantTripCount(ExitCount); 6498 } 6499 6500 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6501 const auto *MaxExitCount = 6502 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6503 return getConstantTripCount(MaxExitCount); 6504 } 6505 6506 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6507 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6508 return getSmallConstantTripMultiple(L, ExitingBB); 6509 6510 // No trip multiple information for multiple exits. 6511 return 0; 6512 } 6513 6514 /// Returns the largest constant divisor of the trip count of this loop as a 6515 /// normal unsigned value, if possible. This means that the actual trip count is 6516 /// always a multiple of the returned value (don't forget the trip count could 6517 /// very well be zero as well!). 6518 /// 6519 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6520 /// multiple of a constant (which is also the case if the trip count is simply 6521 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6522 /// if the trip count is very large (>= 2^32). 6523 /// 6524 /// As explained in the comments for getSmallConstantTripCount, this assumes 6525 /// that control exits the loop via ExitingBlock. 6526 unsigned 6527 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6528 const BasicBlock *ExitingBlock) { 6529 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6530 assert(L->isLoopExiting(ExitingBlock) && 6531 "Exiting block must actually branch out of the loop!"); 6532 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6533 if (ExitCount == getCouldNotCompute()) 6534 return 1; 6535 6536 // Get the trip count from the BE count by adding 1. 6537 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6538 6539 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6540 if (!TC) 6541 // Attempt to factor more general cases. Returns the greatest power of 6542 // two divisor. If overflow happens, the trip count expression is still 6543 // divisible by the greatest power of 2 divisor returned. 6544 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6545 6546 ConstantInt *Result = TC->getValue(); 6547 6548 // Guard against huge trip counts (this requires checking 6549 // for zero to handle the case where the trip count == -1 and the 6550 // addition wraps). 6551 if (!Result || Result->getValue().getActiveBits() > 32 || 6552 Result->getValue().getActiveBits() == 0) 6553 return 1; 6554 6555 return (unsigned)Result->getZExtValue(); 6556 } 6557 6558 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6559 const BasicBlock *ExitingBlock, 6560 ExitCountKind Kind) { 6561 switch (Kind) { 6562 case Exact: 6563 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6564 case ConstantMaximum: 6565 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); 6566 }; 6567 llvm_unreachable("Invalid ExitCountKind!"); 6568 } 6569 6570 const SCEV * 6571 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6572 SCEVUnionPredicate &Preds) { 6573 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6574 } 6575 6576 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6577 ExitCountKind Kind) { 6578 switch (Kind) { 6579 case Exact: 6580 return getBackedgeTakenInfo(L).getExact(L, this); 6581 case ConstantMaximum: 6582 return getBackedgeTakenInfo(L).getMax(this); 6583 }; 6584 llvm_unreachable("Invalid ExitCountKind!"); 6585 } 6586 6587 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6588 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6589 } 6590 6591 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6592 static void 6593 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6594 BasicBlock *Header = L->getHeader(); 6595 6596 // Push all Loop-header PHIs onto the Worklist stack. 6597 for (PHINode &PN : Header->phis()) 6598 Worklist.push_back(&PN); 6599 } 6600 6601 const ScalarEvolution::BackedgeTakenInfo & 6602 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6603 auto &BTI = getBackedgeTakenInfo(L); 6604 if (BTI.hasFullInfo()) 6605 return BTI; 6606 6607 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6608 6609 if (!Pair.second) 6610 return Pair.first->second; 6611 6612 BackedgeTakenInfo Result = 6613 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6614 6615 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6616 } 6617 6618 const ScalarEvolution::BackedgeTakenInfo & 6619 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6620 // Initially insert an invalid entry for this loop. If the insertion 6621 // succeeds, proceed to actually compute a backedge-taken count and 6622 // update the value. The temporary CouldNotCompute value tells SCEV 6623 // code elsewhere that it shouldn't attempt to request a new 6624 // backedge-taken count, which could result in infinite recursion. 6625 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6626 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6627 if (!Pair.second) 6628 return Pair.first->second; 6629 6630 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6631 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6632 // must be cleared in this scope. 6633 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6634 6635 // In product build, there are no usage of statistic. 6636 (void)NumTripCountsComputed; 6637 (void)NumTripCountsNotComputed; 6638 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6639 const SCEV *BEExact = Result.getExact(L, this); 6640 if (BEExact != getCouldNotCompute()) { 6641 assert(isLoopInvariant(BEExact, L) && 6642 isLoopInvariant(Result.getMax(this), L) && 6643 "Computed backedge-taken count isn't loop invariant for loop!"); 6644 ++NumTripCountsComputed; 6645 } 6646 else if (Result.getMax(this) == getCouldNotCompute() && 6647 isa<PHINode>(L->getHeader()->begin())) { 6648 // Only count loops that have phi nodes as not being computable. 6649 ++NumTripCountsNotComputed; 6650 } 6651 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6652 6653 // Now that we know more about the trip count for this loop, forget any 6654 // existing SCEV values for PHI nodes in this loop since they are only 6655 // conservative estimates made without the benefit of trip count 6656 // information. This is similar to the code in forgetLoop, except that 6657 // it handles SCEVUnknown PHI nodes specially. 6658 if (Result.hasAnyInfo()) { 6659 SmallVector<Instruction *, 16> Worklist; 6660 PushLoopPHIs(L, Worklist); 6661 6662 SmallPtrSet<Instruction *, 8> Discovered; 6663 while (!Worklist.empty()) { 6664 Instruction *I = Worklist.pop_back_val(); 6665 6666 ValueExprMapType::iterator It = 6667 ValueExprMap.find_as(static_cast<Value *>(I)); 6668 if (It != ValueExprMap.end()) { 6669 const SCEV *Old = It->second; 6670 6671 // SCEVUnknown for a PHI either means that it has an unrecognized 6672 // structure, or it's a PHI that's in the progress of being computed 6673 // by createNodeForPHI. In the former case, additional loop trip 6674 // count information isn't going to change anything. In the later 6675 // case, createNodeForPHI will perform the necessary updates on its 6676 // own when it gets to that point. 6677 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6678 eraseValueFromMap(It->first); 6679 forgetMemoizedResults(Old); 6680 } 6681 if (PHINode *PN = dyn_cast<PHINode>(I)) 6682 ConstantEvolutionLoopExitValue.erase(PN); 6683 } 6684 6685 // Since we don't need to invalidate anything for correctness and we're 6686 // only invalidating to make SCEV's results more precise, we get to stop 6687 // early to avoid invalidating too much. This is especially important in 6688 // cases like: 6689 // 6690 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6691 // loop0: 6692 // %pn0 = phi 6693 // ... 6694 // loop1: 6695 // %pn1 = phi 6696 // ... 6697 // 6698 // where both loop0 and loop1's backedge taken count uses the SCEV 6699 // expression for %v. If we don't have the early stop below then in cases 6700 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6701 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6702 // count for loop1, effectively nullifying SCEV's trip count cache. 6703 for (auto *U : I->users()) 6704 if (auto *I = dyn_cast<Instruction>(U)) { 6705 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6706 if (LoopForUser && L->contains(LoopForUser) && 6707 Discovered.insert(I).second) 6708 Worklist.push_back(I); 6709 } 6710 } 6711 } 6712 6713 // Re-lookup the insert position, since the call to 6714 // computeBackedgeTakenCount above could result in a 6715 // recusive call to getBackedgeTakenInfo (on a different 6716 // loop), which would invalidate the iterator computed 6717 // earlier. 6718 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6719 } 6720 6721 void ScalarEvolution::forgetAllLoops() { 6722 // This method is intended to forget all info about loops. It should 6723 // invalidate caches as if the following happened: 6724 // - The trip counts of all loops have changed arbitrarily 6725 // - Every llvm::Value has been updated in place to produce a different 6726 // result. 6727 BackedgeTakenCounts.clear(); 6728 PredicatedBackedgeTakenCounts.clear(); 6729 LoopPropertiesCache.clear(); 6730 ConstantEvolutionLoopExitValue.clear(); 6731 ValueExprMap.clear(); 6732 ValuesAtScopes.clear(); 6733 LoopDispositions.clear(); 6734 BlockDispositions.clear(); 6735 UnsignedRanges.clear(); 6736 SignedRanges.clear(); 6737 ExprValueMap.clear(); 6738 HasRecMap.clear(); 6739 MinTrailingZerosCache.clear(); 6740 PredicatedSCEVRewrites.clear(); 6741 } 6742 6743 void ScalarEvolution::forgetLoop(const Loop *L) { 6744 // Drop any stored trip count value. 6745 auto RemoveLoopFromBackedgeMap = 6746 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6747 auto BTCPos = Map.find(L); 6748 if (BTCPos != Map.end()) { 6749 BTCPos->second.clear(); 6750 Map.erase(BTCPos); 6751 } 6752 }; 6753 6754 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6755 SmallVector<Instruction *, 32> Worklist; 6756 SmallPtrSet<Instruction *, 16> Visited; 6757 6758 // Iterate over all the loops and sub-loops to drop SCEV information. 6759 while (!LoopWorklist.empty()) { 6760 auto *CurrL = LoopWorklist.pop_back_val(); 6761 6762 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6763 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6764 6765 // Drop information about predicated SCEV rewrites for this loop. 6766 for (auto I = PredicatedSCEVRewrites.begin(); 6767 I != PredicatedSCEVRewrites.end();) { 6768 std::pair<const SCEV *, const Loop *> Entry = I->first; 6769 if (Entry.second == CurrL) 6770 PredicatedSCEVRewrites.erase(I++); 6771 else 6772 ++I; 6773 } 6774 6775 auto LoopUsersItr = LoopUsers.find(CurrL); 6776 if (LoopUsersItr != LoopUsers.end()) { 6777 for (auto *S : LoopUsersItr->second) 6778 forgetMemoizedResults(S); 6779 LoopUsers.erase(LoopUsersItr); 6780 } 6781 6782 // Drop information about expressions based on loop-header PHIs. 6783 PushLoopPHIs(CurrL, Worklist); 6784 6785 while (!Worklist.empty()) { 6786 Instruction *I = Worklist.pop_back_val(); 6787 if (!Visited.insert(I).second) 6788 continue; 6789 6790 ValueExprMapType::iterator It = 6791 ValueExprMap.find_as(static_cast<Value *>(I)); 6792 if (It != ValueExprMap.end()) { 6793 eraseValueFromMap(It->first); 6794 forgetMemoizedResults(It->second); 6795 if (PHINode *PN = dyn_cast<PHINode>(I)) 6796 ConstantEvolutionLoopExitValue.erase(PN); 6797 } 6798 6799 PushDefUseChildren(I, Worklist); 6800 } 6801 6802 LoopPropertiesCache.erase(CurrL); 6803 // Forget all contained loops too, to avoid dangling entries in the 6804 // ValuesAtScopes map. 6805 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6806 } 6807 } 6808 6809 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6810 while (Loop *Parent = L->getParentLoop()) 6811 L = Parent; 6812 forgetLoop(L); 6813 } 6814 6815 void ScalarEvolution::forgetValue(Value *V) { 6816 Instruction *I = dyn_cast<Instruction>(V); 6817 if (!I) return; 6818 6819 // Drop information about expressions based on loop-header PHIs. 6820 SmallVector<Instruction *, 16> Worklist; 6821 Worklist.push_back(I); 6822 6823 SmallPtrSet<Instruction *, 8> Visited; 6824 while (!Worklist.empty()) { 6825 I = Worklist.pop_back_val(); 6826 if (!Visited.insert(I).second) 6827 continue; 6828 6829 ValueExprMapType::iterator It = 6830 ValueExprMap.find_as(static_cast<Value *>(I)); 6831 if (It != ValueExprMap.end()) { 6832 eraseValueFromMap(It->first); 6833 forgetMemoizedResults(It->second); 6834 if (PHINode *PN = dyn_cast<PHINode>(I)) 6835 ConstantEvolutionLoopExitValue.erase(PN); 6836 } 6837 6838 PushDefUseChildren(I, Worklist); 6839 } 6840 } 6841 6842 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 6843 LoopDispositions.clear(); 6844 } 6845 6846 /// Get the exact loop backedge taken count considering all loop exits. A 6847 /// computable result can only be returned for loops with all exiting blocks 6848 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6849 /// is never skipped. This is a valid assumption as long as the loop exits via 6850 /// that test. For precise results, it is the caller's responsibility to specify 6851 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6852 const SCEV * 6853 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6854 SCEVUnionPredicate *Preds) const { 6855 // If any exits were not computable, the loop is not computable. 6856 if (!isComplete() || ExitNotTaken.empty()) 6857 return SE->getCouldNotCompute(); 6858 6859 const BasicBlock *Latch = L->getLoopLatch(); 6860 // All exiting blocks we have collected must dominate the only backedge. 6861 if (!Latch) 6862 return SE->getCouldNotCompute(); 6863 6864 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6865 // count is simply a minimum out of all these calculated exit counts. 6866 SmallVector<const SCEV *, 2> Ops; 6867 for (auto &ENT : ExitNotTaken) { 6868 const SCEV *BECount = ENT.ExactNotTaken; 6869 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6870 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6871 "We should only have known counts for exiting blocks that dominate " 6872 "latch!"); 6873 6874 Ops.push_back(BECount); 6875 6876 if (Preds && !ENT.hasAlwaysTruePredicate()) 6877 Preds->add(ENT.Predicate.get()); 6878 6879 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6880 "Predicate should be always true!"); 6881 } 6882 6883 return SE->getUMinFromMismatchedTypes(Ops); 6884 } 6885 6886 /// Get the exact not taken count for this loop exit. 6887 const SCEV * 6888 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 6889 ScalarEvolution *SE) const { 6890 for (auto &ENT : ExitNotTaken) 6891 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6892 return ENT.ExactNotTaken; 6893 6894 return SE->getCouldNotCompute(); 6895 } 6896 6897 const SCEV * 6898 ScalarEvolution::BackedgeTakenInfo::getMax(const BasicBlock *ExitingBlock, 6899 ScalarEvolution *SE) const { 6900 for (auto &ENT : ExitNotTaken) 6901 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6902 return ENT.MaxNotTaken; 6903 6904 return SE->getCouldNotCompute(); 6905 } 6906 6907 /// getMax - Get the max backedge taken count for the loop. 6908 const SCEV * 6909 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6910 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6911 return !ENT.hasAlwaysTruePredicate(); 6912 }; 6913 6914 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6915 return SE->getCouldNotCompute(); 6916 6917 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6918 "No point in having a non-constant max backedge taken count!"); 6919 return getMax(); 6920 } 6921 6922 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6923 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6924 return !ENT.hasAlwaysTruePredicate(); 6925 }; 6926 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6927 } 6928 6929 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6930 ScalarEvolution *SE) const { 6931 if (getMax() && getMax() != SE->getCouldNotCompute() && 6932 SE->hasOperand(getMax(), S)) 6933 return true; 6934 6935 for (auto &ENT : ExitNotTaken) 6936 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6937 SE->hasOperand(ENT.ExactNotTaken, S)) 6938 return true; 6939 6940 return false; 6941 } 6942 6943 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6944 : ExactNotTaken(E), MaxNotTaken(E) { 6945 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6946 isa<SCEVConstant>(MaxNotTaken)) && 6947 "No point in having a non-constant max backedge taken count!"); 6948 } 6949 6950 ScalarEvolution::ExitLimit::ExitLimit( 6951 const SCEV *E, const SCEV *M, bool MaxOrZero, 6952 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6953 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6954 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6955 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6956 "Exact is not allowed to be less precise than Max"); 6957 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6958 isa<SCEVConstant>(MaxNotTaken)) && 6959 "No point in having a non-constant max backedge taken count!"); 6960 for (auto *PredSet : PredSetList) 6961 for (auto *P : *PredSet) 6962 addPredicate(P); 6963 } 6964 6965 ScalarEvolution::ExitLimit::ExitLimit( 6966 const SCEV *E, const SCEV *M, bool MaxOrZero, 6967 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6968 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6969 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6970 isa<SCEVConstant>(MaxNotTaken)) && 6971 "No point in having a non-constant max backedge taken count!"); 6972 } 6973 6974 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6975 bool MaxOrZero) 6976 : ExitLimit(E, M, MaxOrZero, None) { 6977 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6978 isa<SCEVConstant>(MaxNotTaken)) && 6979 "No point in having a non-constant max backedge taken count!"); 6980 } 6981 6982 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6983 /// computable exit into a persistent ExitNotTakenInfo array. 6984 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6985 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6986 ExitCounts, 6987 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6988 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6989 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6990 6991 ExitNotTaken.reserve(ExitCounts.size()); 6992 std::transform( 6993 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6994 [&](const EdgeExitInfo &EEI) { 6995 BasicBlock *ExitBB = EEI.first; 6996 const ExitLimit &EL = EEI.second; 6997 if (EL.Predicates.empty()) 6998 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6999 nullptr); 7000 7001 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7002 for (auto *Pred : EL.Predicates) 7003 Predicate->add(Pred); 7004 7005 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7006 std::move(Predicate)); 7007 }); 7008 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 7009 "No point in having a non-constant max backedge taken count!"); 7010 } 7011 7012 /// Invalidate this result and free the ExitNotTakenInfo array. 7013 void ScalarEvolution::BackedgeTakenInfo::clear() { 7014 ExitNotTaken.clear(); 7015 } 7016 7017 /// Compute the number of times the backedge of the specified loop will execute. 7018 ScalarEvolution::BackedgeTakenInfo 7019 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7020 bool AllowPredicates) { 7021 SmallVector<BasicBlock *, 8> ExitingBlocks; 7022 L->getExitingBlocks(ExitingBlocks); 7023 7024 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7025 7026 SmallVector<EdgeExitInfo, 4> ExitCounts; 7027 bool CouldComputeBECount = true; 7028 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7029 const SCEV *MustExitMaxBECount = nullptr; 7030 const SCEV *MayExitMaxBECount = nullptr; 7031 bool MustExitMaxOrZero = false; 7032 7033 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7034 // and compute maxBECount. 7035 // Do a union of all the predicates here. 7036 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7037 BasicBlock *ExitBB = ExitingBlocks[i]; 7038 7039 // We canonicalize untaken exits to br (constant), ignore them so that 7040 // proving an exit untaken doesn't negatively impact our ability to reason 7041 // about the loop as whole. 7042 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7043 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7044 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7045 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7046 continue; 7047 } 7048 7049 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7050 7051 assert((AllowPredicates || EL.Predicates.empty()) && 7052 "Predicated exit limit when predicates are not allowed!"); 7053 7054 // 1. For each exit that can be computed, add an entry to ExitCounts. 7055 // CouldComputeBECount is true only if all exits can be computed. 7056 if (EL.ExactNotTaken == getCouldNotCompute()) 7057 // We couldn't compute an exact value for this exit, so 7058 // we won't be able to compute an exact value for the loop. 7059 CouldComputeBECount = false; 7060 else 7061 ExitCounts.emplace_back(ExitBB, EL); 7062 7063 // 2. Derive the loop's MaxBECount from each exit's max number of 7064 // non-exiting iterations. Partition the loop exits into two kinds: 7065 // LoopMustExits and LoopMayExits. 7066 // 7067 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7068 // is a LoopMayExit. If any computable LoopMustExit is found, then 7069 // MaxBECount is the minimum EL.MaxNotTaken of computable 7070 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7071 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7072 // computable EL.MaxNotTaken. 7073 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7074 DT.dominates(ExitBB, Latch)) { 7075 if (!MustExitMaxBECount) { 7076 MustExitMaxBECount = EL.MaxNotTaken; 7077 MustExitMaxOrZero = EL.MaxOrZero; 7078 } else { 7079 MustExitMaxBECount = 7080 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7081 } 7082 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7083 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7084 MayExitMaxBECount = EL.MaxNotTaken; 7085 else { 7086 MayExitMaxBECount = 7087 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7088 } 7089 } 7090 } 7091 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7092 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7093 // The loop backedge will be taken the maximum or zero times if there's 7094 // a single exit that must be taken the maximum or zero times. 7095 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7096 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7097 MaxBECount, MaxOrZero); 7098 } 7099 7100 ScalarEvolution::ExitLimit 7101 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7102 bool AllowPredicates) { 7103 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7104 // If our exiting block does not dominate the latch, then its connection with 7105 // loop's exit limit may be far from trivial. 7106 const BasicBlock *Latch = L->getLoopLatch(); 7107 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7108 return getCouldNotCompute(); 7109 7110 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7111 Instruction *Term = ExitingBlock->getTerminator(); 7112 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7113 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7114 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7115 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7116 "It should have one successor in loop and one exit block!"); 7117 // Proceed to the next level to examine the exit condition expression. 7118 return computeExitLimitFromCond( 7119 L, BI->getCondition(), ExitIfTrue, 7120 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7121 } 7122 7123 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7124 // For switch, make sure that there is a single exit from the loop. 7125 BasicBlock *Exit = nullptr; 7126 for (auto *SBB : successors(ExitingBlock)) 7127 if (!L->contains(SBB)) { 7128 if (Exit) // Multiple exit successors. 7129 return getCouldNotCompute(); 7130 Exit = SBB; 7131 } 7132 assert(Exit && "Exiting block must have at least one exit"); 7133 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7134 /*ControlsExit=*/IsOnlyExit); 7135 } 7136 7137 return getCouldNotCompute(); 7138 } 7139 7140 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7141 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7142 bool ControlsExit, bool AllowPredicates) { 7143 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7144 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7145 ControlsExit, AllowPredicates); 7146 } 7147 7148 Optional<ScalarEvolution::ExitLimit> 7149 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7150 bool ExitIfTrue, bool ControlsExit, 7151 bool AllowPredicates) { 7152 (void)this->L; 7153 (void)this->ExitIfTrue; 7154 (void)this->AllowPredicates; 7155 7156 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7157 this->AllowPredicates == AllowPredicates && 7158 "Variance in assumed invariant key components!"); 7159 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7160 if (Itr == TripCountMap.end()) 7161 return None; 7162 return Itr->second; 7163 } 7164 7165 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7166 bool ExitIfTrue, 7167 bool ControlsExit, 7168 bool AllowPredicates, 7169 const ExitLimit &EL) { 7170 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7171 this->AllowPredicates == AllowPredicates && 7172 "Variance in assumed invariant key components!"); 7173 7174 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7175 assert(InsertResult.second && "Expected successful insertion!"); 7176 (void)InsertResult; 7177 (void)ExitIfTrue; 7178 } 7179 7180 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7181 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7182 bool ControlsExit, bool AllowPredicates) { 7183 7184 if (auto MaybeEL = 7185 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7186 return *MaybeEL; 7187 7188 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7189 ControlsExit, AllowPredicates); 7190 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7191 return EL; 7192 } 7193 7194 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7195 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7196 bool ControlsExit, bool AllowPredicates) { 7197 // Check if the controlling expression for this loop is an And or Or. 7198 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7199 if (BO->getOpcode() == Instruction::And) { 7200 // Recurse on the operands of the and. 7201 bool EitherMayExit = !ExitIfTrue; 7202 ExitLimit EL0 = computeExitLimitFromCondCached( 7203 Cache, L, BO->getOperand(0), ExitIfTrue, 7204 ControlsExit && !EitherMayExit, AllowPredicates); 7205 ExitLimit EL1 = computeExitLimitFromCondCached( 7206 Cache, L, BO->getOperand(1), ExitIfTrue, 7207 ControlsExit && !EitherMayExit, AllowPredicates); 7208 // Be robust against unsimplified IR for the form "and i1 X, true" 7209 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7210 return CI->isOne() ? EL0 : EL1; 7211 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7212 return CI->isOne() ? EL1 : EL0; 7213 const SCEV *BECount = getCouldNotCompute(); 7214 const SCEV *MaxBECount = getCouldNotCompute(); 7215 if (EitherMayExit) { 7216 // Both conditions must be true for the loop to continue executing. 7217 // Choose the less conservative count. 7218 if (EL0.ExactNotTaken == getCouldNotCompute() || 7219 EL1.ExactNotTaken == getCouldNotCompute()) 7220 BECount = getCouldNotCompute(); 7221 else 7222 BECount = 7223 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7224 if (EL0.MaxNotTaken == getCouldNotCompute()) 7225 MaxBECount = EL1.MaxNotTaken; 7226 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7227 MaxBECount = EL0.MaxNotTaken; 7228 else 7229 MaxBECount = 7230 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7231 } else { 7232 // Both conditions must be true at the same time for the loop to exit. 7233 // For now, be conservative. 7234 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7235 MaxBECount = EL0.MaxNotTaken; 7236 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7237 BECount = EL0.ExactNotTaken; 7238 } 7239 7240 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7241 // to be more aggressive when computing BECount than when computing 7242 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7243 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7244 // to not. 7245 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7246 !isa<SCEVCouldNotCompute>(BECount)) 7247 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7248 7249 return ExitLimit(BECount, MaxBECount, false, 7250 {&EL0.Predicates, &EL1.Predicates}); 7251 } 7252 if (BO->getOpcode() == Instruction::Or) { 7253 // Recurse on the operands of the or. 7254 bool EitherMayExit = ExitIfTrue; 7255 ExitLimit EL0 = computeExitLimitFromCondCached( 7256 Cache, L, BO->getOperand(0), ExitIfTrue, 7257 ControlsExit && !EitherMayExit, AllowPredicates); 7258 ExitLimit EL1 = computeExitLimitFromCondCached( 7259 Cache, L, BO->getOperand(1), ExitIfTrue, 7260 ControlsExit && !EitherMayExit, AllowPredicates); 7261 // Be robust against unsimplified IR for the form "or i1 X, true" 7262 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7263 return CI->isZero() ? EL0 : EL1; 7264 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7265 return CI->isZero() ? EL1 : EL0; 7266 const SCEV *BECount = getCouldNotCompute(); 7267 const SCEV *MaxBECount = getCouldNotCompute(); 7268 if (EitherMayExit) { 7269 // Both conditions must be false for the loop to continue executing. 7270 // Choose the less conservative count. 7271 if (EL0.ExactNotTaken == getCouldNotCompute() || 7272 EL1.ExactNotTaken == getCouldNotCompute()) 7273 BECount = getCouldNotCompute(); 7274 else 7275 BECount = 7276 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7277 if (EL0.MaxNotTaken == getCouldNotCompute()) 7278 MaxBECount = EL1.MaxNotTaken; 7279 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7280 MaxBECount = EL0.MaxNotTaken; 7281 else 7282 MaxBECount = 7283 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7284 } else { 7285 // Both conditions must be false at the same time for the loop to exit. 7286 // For now, be conservative. 7287 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7288 MaxBECount = EL0.MaxNotTaken; 7289 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7290 BECount = EL0.ExactNotTaken; 7291 } 7292 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7293 // to be more aggressive when computing BECount than when computing 7294 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7295 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7296 // to not. 7297 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7298 !isa<SCEVCouldNotCompute>(BECount)) 7299 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7300 7301 return ExitLimit(BECount, MaxBECount, false, 7302 {&EL0.Predicates, &EL1.Predicates}); 7303 } 7304 } 7305 7306 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7307 // Proceed to the next level to examine the icmp. 7308 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7309 ExitLimit EL = 7310 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7311 if (EL.hasFullInfo() || !AllowPredicates) 7312 return EL; 7313 7314 // Try again, but use SCEV predicates this time. 7315 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7316 /*AllowPredicates=*/true); 7317 } 7318 7319 // Check for a constant condition. These are normally stripped out by 7320 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7321 // preserve the CFG and is temporarily leaving constant conditions 7322 // in place. 7323 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7324 if (ExitIfTrue == !CI->getZExtValue()) 7325 // The backedge is always taken. 7326 return getCouldNotCompute(); 7327 else 7328 // The backedge is never taken. 7329 return getZero(CI->getType()); 7330 } 7331 7332 // If it's not an integer or pointer comparison then compute it the hard way. 7333 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7334 } 7335 7336 ScalarEvolution::ExitLimit 7337 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7338 ICmpInst *ExitCond, 7339 bool ExitIfTrue, 7340 bool ControlsExit, 7341 bool AllowPredicates) { 7342 // If the condition was exit on true, convert the condition to exit on false 7343 ICmpInst::Predicate Pred; 7344 if (!ExitIfTrue) 7345 Pred = ExitCond->getPredicate(); 7346 else 7347 Pred = ExitCond->getInversePredicate(); 7348 const ICmpInst::Predicate OriginalPred = Pred; 7349 7350 // Handle common loops like: for (X = "string"; *X; ++X) 7351 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7352 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7353 ExitLimit ItCnt = 7354 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7355 if (ItCnt.hasAnyInfo()) 7356 return ItCnt; 7357 } 7358 7359 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7360 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7361 7362 // Try to evaluate any dependencies out of the loop. 7363 LHS = getSCEVAtScope(LHS, L); 7364 RHS = getSCEVAtScope(RHS, L); 7365 7366 // At this point, we would like to compute how many iterations of the 7367 // loop the predicate will return true for these inputs. 7368 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7369 // If there is a loop-invariant, force it into the RHS. 7370 std::swap(LHS, RHS); 7371 Pred = ICmpInst::getSwappedPredicate(Pred); 7372 } 7373 7374 // Simplify the operands before analyzing them. 7375 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7376 7377 // If we have a comparison of a chrec against a constant, try to use value 7378 // ranges to answer this query. 7379 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7380 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7381 if (AddRec->getLoop() == L) { 7382 // Form the constant range. 7383 ConstantRange CompRange = 7384 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7385 7386 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7387 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7388 } 7389 7390 switch (Pred) { 7391 case ICmpInst::ICMP_NE: { // while (X != Y) 7392 // Convert to: while (X-Y != 0) 7393 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7394 AllowPredicates); 7395 if (EL.hasAnyInfo()) return EL; 7396 break; 7397 } 7398 case ICmpInst::ICMP_EQ: { // while (X == Y) 7399 // Convert to: while (X-Y == 0) 7400 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7401 if (EL.hasAnyInfo()) return EL; 7402 break; 7403 } 7404 case ICmpInst::ICMP_SLT: 7405 case ICmpInst::ICMP_ULT: { // while (X < Y) 7406 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7407 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7408 AllowPredicates); 7409 if (EL.hasAnyInfo()) return EL; 7410 break; 7411 } 7412 case ICmpInst::ICMP_SGT: 7413 case ICmpInst::ICMP_UGT: { // while (X > Y) 7414 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7415 ExitLimit EL = 7416 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7417 AllowPredicates); 7418 if (EL.hasAnyInfo()) return EL; 7419 break; 7420 } 7421 default: 7422 break; 7423 } 7424 7425 auto *ExhaustiveCount = 7426 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7427 7428 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7429 return ExhaustiveCount; 7430 7431 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7432 ExitCond->getOperand(1), L, OriginalPred); 7433 } 7434 7435 ScalarEvolution::ExitLimit 7436 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7437 SwitchInst *Switch, 7438 BasicBlock *ExitingBlock, 7439 bool ControlsExit) { 7440 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7441 7442 // Give up if the exit is the default dest of a switch. 7443 if (Switch->getDefaultDest() == ExitingBlock) 7444 return getCouldNotCompute(); 7445 7446 assert(L->contains(Switch->getDefaultDest()) && 7447 "Default case must not exit the loop!"); 7448 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7449 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7450 7451 // while (X != Y) --> while (X-Y != 0) 7452 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7453 if (EL.hasAnyInfo()) 7454 return EL; 7455 7456 return getCouldNotCompute(); 7457 } 7458 7459 static ConstantInt * 7460 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7461 ScalarEvolution &SE) { 7462 const SCEV *InVal = SE.getConstant(C); 7463 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7464 assert(isa<SCEVConstant>(Val) && 7465 "Evaluation of SCEV at constant didn't fold correctly?"); 7466 return cast<SCEVConstant>(Val)->getValue(); 7467 } 7468 7469 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7470 /// compute the backedge execution count. 7471 ScalarEvolution::ExitLimit 7472 ScalarEvolution::computeLoadConstantCompareExitLimit( 7473 LoadInst *LI, 7474 Constant *RHS, 7475 const Loop *L, 7476 ICmpInst::Predicate predicate) { 7477 if (LI->isVolatile()) return getCouldNotCompute(); 7478 7479 // Check to see if the loaded pointer is a getelementptr of a global. 7480 // TODO: Use SCEV instead of manually grubbing with GEPs. 7481 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7482 if (!GEP) return getCouldNotCompute(); 7483 7484 // Make sure that it is really a constant global we are gepping, with an 7485 // initializer, and make sure the first IDX is really 0. 7486 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7487 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7488 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7489 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7490 return getCouldNotCompute(); 7491 7492 // Okay, we allow one non-constant index into the GEP instruction. 7493 Value *VarIdx = nullptr; 7494 std::vector<Constant*> Indexes; 7495 unsigned VarIdxNum = 0; 7496 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7497 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7498 Indexes.push_back(CI); 7499 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7500 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7501 VarIdx = GEP->getOperand(i); 7502 VarIdxNum = i-2; 7503 Indexes.push_back(nullptr); 7504 } 7505 7506 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7507 if (!VarIdx) 7508 return getCouldNotCompute(); 7509 7510 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7511 // Check to see if X is a loop variant variable value now. 7512 const SCEV *Idx = getSCEV(VarIdx); 7513 Idx = getSCEVAtScope(Idx, L); 7514 7515 // We can only recognize very limited forms of loop index expressions, in 7516 // particular, only affine AddRec's like {C1,+,C2}. 7517 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7518 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7519 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7520 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7521 return getCouldNotCompute(); 7522 7523 unsigned MaxSteps = MaxBruteForceIterations; 7524 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7525 ConstantInt *ItCst = ConstantInt::get( 7526 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7527 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7528 7529 // Form the GEP offset. 7530 Indexes[VarIdxNum] = Val; 7531 7532 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7533 Indexes); 7534 if (!Result) break; // Cannot compute! 7535 7536 // Evaluate the condition for this iteration. 7537 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7538 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7539 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7540 ++NumArrayLenItCounts; 7541 return getConstant(ItCst); // Found terminating iteration! 7542 } 7543 } 7544 return getCouldNotCompute(); 7545 } 7546 7547 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7548 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7549 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7550 if (!RHS) 7551 return getCouldNotCompute(); 7552 7553 const BasicBlock *Latch = L->getLoopLatch(); 7554 if (!Latch) 7555 return getCouldNotCompute(); 7556 7557 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7558 if (!Predecessor) 7559 return getCouldNotCompute(); 7560 7561 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7562 // Return LHS in OutLHS and shift_opt in OutOpCode. 7563 auto MatchPositiveShift = 7564 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7565 7566 using namespace PatternMatch; 7567 7568 ConstantInt *ShiftAmt; 7569 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7570 OutOpCode = Instruction::LShr; 7571 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7572 OutOpCode = Instruction::AShr; 7573 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7574 OutOpCode = Instruction::Shl; 7575 else 7576 return false; 7577 7578 return ShiftAmt->getValue().isStrictlyPositive(); 7579 }; 7580 7581 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7582 // 7583 // loop: 7584 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7585 // %iv.shifted = lshr i32 %iv, <positive constant> 7586 // 7587 // Return true on a successful match. Return the corresponding PHI node (%iv 7588 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7589 auto MatchShiftRecurrence = 7590 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7591 Optional<Instruction::BinaryOps> PostShiftOpCode; 7592 7593 { 7594 Instruction::BinaryOps OpC; 7595 Value *V; 7596 7597 // If we encounter a shift instruction, "peel off" the shift operation, 7598 // and remember that we did so. Later when we inspect %iv's backedge 7599 // value, we will make sure that the backedge value uses the same 7600 // operation. 7601 // 7602 // Note: the peeled shift operation does not have to be the same 7603 // instruction as the one feeding into the PHI's backedge value. We only 7604 // really care about it being the same *kind* of shift instruction -- 7605 // that's all that is required for our later inferences to hold. 7606 if (MatchPositiveShift(LHS, V, OpC)) { 7607 PostShiftOpCode = OpC; 7608 LHS = V; 7609 } 7610 } 7611 7612 PNOut = dyn_cast<PHINode>(LHS); 7613 if (!PNOut || PNOut->getParent() != L->getHeader()) 7614 return false; 7615 7616 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7617 Value *OpLHS; 7618 7619 return 7620 // The backedge value for the PHI node must be a shift by a positive 7621 // amount 7622 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7623 7624 // of the PHI node itself 7625 OpLHS == PNOut && 7626 7627 // and the kind of shift should be match the kind of shift we peeled 7628 // off, if any. 7629 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7630 }; 7631 7632 PHINode *PN; 7633 Instruction::BinaryOps OpCode; 7634 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7635 return getCouldNotCompute(); 7636 7637 const DataLayout &DL = getDataLayout(); 7638 7639 // The key rationale for this optimization is that for some kinds of shift 7640 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7641 // within a finite number of iterations. If the condition guarding the 7642 // backedge (in the sense that the backedge is taken if the condition is true) 7643 // is false for the value the shift recurrence stabilizes to, then we know 7644 // that the backedge is taken only a finite number of times. 7645 7646 ConstantInt *StableValue = nullptr; 7647 switch (OpCode) { 7648 default: 7649 llvm_unreachable("Impossible case!"); 7650 7651 case Instruction::AShr: { 7652 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7653 // bitwidth(K) iterations. 7654 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7655 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7656 Predecessor->getTerminator(), &DT); 7657 auto *Ty = cast<IntegerType>(RHS->getType()); 7658 if (Known.isNonNegative()) 7659 StableValue = ConstantInt::get(Ty, 0); 7660 else if (Known.isNegative()) 7661 StableValue = ConstantInt::get(Ty, -1, true); 7662 else 7663 return getCouldNotCompute(); 7664 7665 break; 7666 } 7667 case Instruction::LShr: 7668 case Instruction::Shl: 7669 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7670 // stabilize to 0 in at most bitwidth(K) iterations. 7671 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7672 break; 7673 } 7674 7675 auto *Result = 7676 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7677 assert(Result->getType()->isIntegerTy(1) && 7678 "Otherwise cannot be an operand to a branch instruction"); 7679 7680 if (Result->isZeroValue()) { 7681 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7682 const SCEV *UpperBound = 7683 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7684 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7685 } 7686 7687 return getCouldNotCompute(); 7688 } 7689 7690 /// Return true if we can constant fold an instruction of the specified type, 7691 /// assuming that all operands were constants. 7692 static bool CanConstantFold(const Instruction *I) { 7693 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7694 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7695 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7696 return true; 7697 7698 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7699 if (const Function *F = CI->getCalledFunction()) 7700 return canConstantFoldCallTo(CI, F); 7701 return false; 7702 } 7703 7704 /// Determine whether this instruction can constant evolve within this loop 7705 /// assuming its operands can all constant evolve. 7706 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7707 // An instruction outside of the loop can't be derived from a loop PHI. 7708 if (!L->contains(I)) return false; 7709 7710 if (isa<PHINode>(I)) { 7711 // We don't currently keep track of the control flow needed to evaluate 7712 // PHIs, so we cannot handle PHIs inside of loops. 7713 return L->getHeader() == I->getParent(); 7714 } 7715 7716 // If we won't be able to constant fold this expression even if the operands 7717 // are constants, bail early. 7718 return CanConstantFold(I); 7719 } 7720 7721 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7722 /// recursing through each instruction operand until reaching a loop header phi. 7723 static PHINode * 7724 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7725 DenseMap<Instruction *, PHINode *> &PHIMap, 7726 unsigned Depth) { 7727 if (Depth > MaxConstantEvolvingDepth) 7728 return nullptr; 7729 7730 // Otherwise, we can evaluate this instruction if all of its operands are 7731 // constant or derived from a PHI node themselves. 7732 PHINode *PHI = nullptr; 7733 for (Value *Op : UseInst->operands()) { 7734 if (isa<Constant>(Op)) continue; 7735 7736 Instruction *OpInst = dyn_cast<Instruction>(Op); 7737 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7738 7739 PHINode *P = dyn_cast<PHINode>(OpInst); 7740 if (!P) 7741 // If this operand is already visited, reuse the prior result. 7742 // We may have P != PHI if this is the deepest point at which the 7743 // inconsistent paths meet. 7744 P = PHIMap.lookup(OpInst); 7745 if (!P) { 7746 // Recurse and memoize the results, whether a phi is found or not. 7747 // This recursive call invalidates pointers into PHIMap. 7748 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7749 PHIMap[OpInst] = P; 7750 } 7751 if (!P) 7752 return nullptr; // Not evolving from PHI 7753 if (PHI && PHI != P) 7754 return nullptr; // Evolving from multiple different PHIs. 7755 PHI = P; 7756 } 7757 // This is a expression evolving from a constant PHI! 7758 return PHI; 7759 } 7760 7761 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7762 /// in the loop that V is derived from. We allow arbitrary operations along the 7763 /// way, but the operands of an operation must either be constants or a value 7764 /// derived from a constant PHI. If this expression does not fit with these 7765 /// constraints, return null. 7766 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7767 Instruction *I = dyn_cast<Instruction>(V); 7768 if (!I || !canConstantEvolve(I, L)) return nullptr; 7769 7770 if (PHINode *PN = dyn_cast<PHINode>(I)) 7771 return PN; 7772 7773 // Record non-constant instructions contained by the loop. 7774 DenseMap<Instruction *, PHINode *> PHIMap; 7775 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7776 } 7777 7778 /// EvaluateExpression - Given an expression that passes the 7779 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7780 /// in the loop has the value PHIVal. If we can't fold this expression for some 7781 /// reason, return null. 7782 static Constant *EvaluateExpression(Value *V, const Loop *L, 7783 DenseMap<Instruction *, Constant *> &Vals, 7784 const DataLayout &DL, 7785 const TargetLibraryInfo *TLI) { 7786 // Convenient constant check, but redundant for recursive calls. 7787 if (Constant *C = dyn_cast<Constant>(V)) return C; 7788 Instruction *I = dyn_cast<Instruction>(V); 7789 if (!I) return nullptr; 7790 7791 if (Constant *C = Vals.lookup(I)) return C; 7792 7793 // An instruction inside the loop depends on a value outside the loop that we 7794 // weren't given a mapping for, or a value such as a call inside the loop. 7795 if (!canConstantEvolve(I, L)) return nullptr; 7796 7797 // An unmapped PHI can be due to a branch or another loop inside this loop, 7798 // or due to this not being the initial iteration through a loop where we 7799 // couldn't compute the evolution of this particular PHI last time. 7800 if (isa<PHINode>(I)) return nullptr; 7801 7802 std::vector<Constant*> Operands(I->getNumOperands()); 7803 7804 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7805 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7806 if (!Operand) { 7807 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7808 if (!Operands[i]) return nullptr; 7809 continue; 7810 } 7811 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7812 Vals[Operand] = C; 7813 if (!C) return nullptr; 7814 Operands[i] = C; 7815 } 7816 7817 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7818 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7819 Operands[1], DL, TLI); 7820 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7821 if (!LI->isVolatile()) 7822 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7823 } 7824 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7825 } 7826 7827 7828 // If every incoming value to PN except the one for BB is a specific Constant, 7829 // return that, else return nullptr. 7830 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7831 Constant *IncomingVal = nullptr; 7832 7833 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7834 if (PN->getIncomingBlock(i) == BB) 7835 continue; 7836 7837 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7838 if (!CurrentVal) 7839 return nullptr; 7840 7841 if (IncomingVal != CurrentVal) { 7842 if (IncomingVal) 7843 return nullptr; 7844 IncomingVal = CurrentVal; 7845 } 7846 } 7847 7848 return IncomingVal; 7849 } 7850 7851 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7852 /// in the header of its containing loop, we know the loop executes a 7853 /// constant number of times, and the PHI node is just a recurrence 7854 /// involving constants, fold it. 7855 Constant * 7856 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7857 const APInt &BEs, 7858 const Loop *L) { 7859 auto I = ConstantEvolutionLoopExitValue.find(PN); 7860 if (I != ConstantEvolutionLoopExitValue.end()) 7861 return I->second; 7862 7863 if (BEs.ugt(MaxBruteForceIterations)) 7864 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7865 7866 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7867 7868 DenseMap<Instruction *, Constant *> CurrentIterVals; 7869 BasicBlock *Header = L->getHeader(); 7870 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7871 7872 BasicBlock *Latch = L->getLoopLatch(); 7873 if (!Latch) 7874 return nullptr; 7875 7876 for (PHINode &PHI : Header->phis()) { 7877 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7878 CurrentIterVals[&PHI] = StartCST; 7879 } 7880 if (!CurrentIterVals.count(PN)) 7881 return RetVal = nullptr; 7882 7883 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7884 7885 // Execute the loop symbolically to determine the exit value. 7886 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7887 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7888 7889 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7890 unsigned IterationNum = 0; 7891 const DataLayout &DL = getDataLayout(); 7892 for (; ; ++IterationNum) { 7893 if (IterationNum == NumIterations) 7894 return RetVal = CurrentIterVals[PN]; // Got exit value! 7895 7896 // Compute the value of the PHIs for the next iteration. 7897 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7898 DenseMap<Instruction *, Constant *> NextIterVals; 7899 Constant *NextPHI = 7900 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7901 if (!NextPHI) 7902 return nullptr; // Couldn't evaluate! 7903 NextIterVals[PN] = NextPHI; 7904 7905 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7906 7907 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7908 // cease to be able to evaluate one of them or if they stop evolving, 7909 // because that doesn't necessarily prevent us from computing PN. 7910 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7911 for (const auto &I : CurrentIterVals) { 7912 PHINode *PHI = dyn_cast<PHINode>(I.first); 7913 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7914 PHIsToCompute.emplace_back(PHI, I.second); 7915 } 7916 // We use two distinct loops because EvaluateExpression may invalidate any 7917 // iterators into CurrentIterVals. 7918 for (const auto &I : PHIsToCompute) { 7919 PHINode *PHI = I.first; 7920 Constant *&NextPHI = NextIterVals[PHI]; 7921 if (!NextPHI) { // Not already computed. 7922 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7923 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7924 } 7925 if (NextPHI != I.second) 7926 StoppedEvolving = false; 7927 } 7928 7929 // If all entries in CurrentIterVals == NextIterVals then we can stop 7930 // iterating, the loop can't continue to change. 7931 if (StoppedEvolving) 7932 return RetVal = CurrentIterVals[PN]; 7933 7934 CurrentIterVals.swap(NextIterVals); 7935 } 7936 } 7937 7938 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7939 Value *Cond, 7940 bool ExitWhen) { 7941 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7942 if (!PN) return getCouldNotCompute(); 7943 7944 // If the loop is canonicalized, the PHI will have exactly two entries. 7945 // That's the only form we support here. 7946 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7947 7948 DenseMap<Instruction *, Constant *> CurrentIterVals; 7949 BasicBlock *Header = L->getHeader(); 7950 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7951 7952 BasicBlock *Latch = L->getLoopLatch(); 7953 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7954 7955 for (PHINode &PHI : Header->phis()) { 7956 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7957 CurrentIterVals[&PHI] = StartCST; 7958 } 7959 if (!CurrentIterVals.count(PN)) 7960 return getCouldNotCompute(); 7961 7962 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7963 // the loop symbolically to determine when the condition gets a value of 7964 // "ExitWhen". 7965 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7966 const DataLayout &DL = getDataLayout(); 7967 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7968 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7969 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7970 7971 // Couldn't symbolically evaluate. 7972 if (!CondVal) return getCouldNotCompute(); 7973 7974 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7975 ++NumBruteForceTripCountsComputed; 7976 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7977 } 7978 7979 // Update all the PHI nodes for the next iteration. 7980 DenseMap<Instruction *, Constant *> NextIterVals; 7981 7982 // Create a list of which PHIs we need to compute. We want to do this before 7983 // calling EvaluateExpression on them because that may invalidate iterators 7984 // into CurrentIterVals. 7985 SmallVector<PHINode *, 8> PHIsToCompute; 7986 for (const auto &I : CurrentIterVals) { 7987 PHINode *PHI = dyn_cast<PHINode>(I.first); 7988 if (!PHI || PHI->getParent() != Header) continue; 7989 PHIsToCompute.push_back(PHI); 7990 } 7991 for (PHINode *PHI : PHIsToCompute) { 7992 Constant *&NextPHI = NextIterVals[PHI]; 7993 if (NextPHI) continue; // Already computed! 7994 7995 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7996 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7997 } 7998 CurrentIterVals.swap(NextIterVals); 7999 } 8000 8001 // Too many iterations were needed to evaluate. 8002 return getCouldNotCompute(); 8003 } 8004 8005 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8006 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8007 ValuesAtScopes[V]; 8008 // Check to see if we've folded this expression at this loop before. 8009 for (auto &LS : Values) 8010 if (LS.first == L) 8011 return LS.second ? LS.second : V; 8012 8013 Values.emplace_back(L, nullptr); 8014 8015 // Otherwise compute it. 8016 const SCEV *C = computeSCEVAtScope(V, L); 8017 for (auto &LS : reverse(ValuesAtScopes[V])) 8018 if (LS.first == L) { 8019 LS.second = C; 8020 break; 8021 } 8022 return C; 8023 } 8024 8025 /// This builds up a Constant using the ConstantExpr interface. That way, we 8026 /// will return Constants for objects which aren't represented by a 8027 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8028 /// Returns NULL if the SCEV isn't representable as a Constant. 8029 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8030 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 8031 case scCouldNotCompute: 8032 case scAddRecExpr: 8033 break; 8034 case scConstant: 8035 return cast<SCEVConstant>(V)->getValue(); 8036 case scUnknown: 8037 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8038 case scSignExtend: { 8039 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8040 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8041 return ConstantExpr::getSExt(CastOp, SS->getType()); 8042 break; 8043 } 8044 case scZeroExtend: { 8045 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8046 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8047 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8048 break; 8049 } 8050 case scTruncate: { 8051 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8052 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8053 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8054 break; 8055 } 8056 case scAddExpr: { 8057 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8058 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8059 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8060 unsigned AS = PTy->getAddressSpace(); 8061 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8062 C = ConstantExpr::getBitCast(C, DestPtrTy); 8063 } 8064 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8065 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8066 if (!C2) return nullptr; 8067 8068 // First pointer! 8069 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8070 unsigned AS = C2->getType()->getPointerAddressSpace(); 8071 std::swap(C, C2); 8072 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8073 // The offsets have been converted to bytes. We can add bytes to an 8074 // i8* by GEP with the byte count in the first index. 8075 C = ConstantExpr::getBitCast(C, DestPtrTy); 8076 } 8077 8078 // Don't bother trying to sum two pointers. We probably can't 8079 // statically compute a load that results from it anyway. 8080 if (C2->getType()->isPointerTy()) 8081 return nullptr; 8082 8083 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8084 if (PTy->getElementType()->isStructTy()) 8085 C2 = ConstantExpr::getIntegerCast( 8086 C2, Type::getInt32Ty(C->getContext()), true); 8087 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8088 } else 8089 C = ConstantExpr::getAdd(C, C2); 8090 } 8091 return C; 8092 } 8093 break; 8094 } 8095 case scMulExpr: { 8096 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8097 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8098 // Don't bother with pointers at all. 8099 if (C->getType()->isPointerTy()) return nullptr; 8100 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8101 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8102 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 8103 C = ConstantExpr::getMul(C, C2); 8104 } 8105 return C; 8106 } 8107 break; 8108 } 8109 case scUDivExpr: { 8110 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8111 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8112 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8113 if (LHS->getType() == RHS->getType()) 8114 return ConstantExpr::getUDiv(LHS, RHS); 8115 break; 8116 } 8117 case scSMaxExpr: 8118 case scUMaxExpr: 8119 case scSMinExpr: 8120 case scUMinExpr: 8121 break; // TODO: smax, umax, smin, umax. 8122 } 8123 return nullptr; 8124 } 8125 8126 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8127 if (isa<SCEVConstant>(V)) return V; 8128 8129 // If this instruction is evolved from a constant-evolving PHI, compute the 8130 // exit value from the loop without using SCEVs. 8131 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8132 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8133 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8134 const Loop *CurrLoop = this->LI[I->getParent()]; 8135 // Looking for loop exit value. 8136 if (CurrLoop && CurrLoop->getParentLoop() == L && 8137 PN->getParent() == CurrLoop->getHeader()) { 8138 // Okay, there is no closed form solution for the PHI node. Check 8139 // to see if the loop that contains it has a known backedge-taken 8140 // count. If so, we may be able to force computation of the exit 8141 // value. 8142 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8143 // This trivial case can show up in some degenerate cases where 8144 // the incoming IR has not yet been fully simplified. 8145 if (BackedgeTakenCount->isZero()) { 8146 Value *InitValue = nullptr; 8147 bool MultipleInitValues = false; 8148 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8149 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8150 if (!InitValue) 8151 InitValue = PN->getIncomingValue(i); 8152 else if (InitValue != PN->getIncomingValue(i)) { 8153 MultipleInitValues = true; 8154 break; 8155 } 8156 } 8157 } 8158 if (!MultipleInitValues && InitValue) 8159 return getSCEV(InitValue); 8160 } 8161 // Do we have a loop invariant value flowing around the backedge 8162 // for a loop which must execute the backedge? 8163 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8164 isKnownPositive(BackedgeTakenCount) && 8165 PN->getNumIncomingValues() == 2) { 8166 8167 unsigned InLoopPred = 8168 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8169 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8170 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8171 return getSCEV(BackedgeVal); 8172 } 8173 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8174 // Okay, we know how many times the containing loop executes. If 8175 // this is a constant evolving PHI node, get the final value at 8176 // the specified iteration number. 8177 Constant *RV = getConstantEvolutionLoopExitValue( 8178 PN, BTCC->getAPInt(), CurrLoop); 8179 if (RV) return getSCEV(RV); 8180 } 8181 } 8182 8183 // If there is a single-input Phi, evaluate it at our scope. If we can 8184 // prove that this replacement does not break LCSSA form, use new value. 8185 if (PN->getNumOperands() == 1) { 8186 const SCEV *Input = getSCEV(PN->getOperand(0)); 8187 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8188 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8189 // for the simplest case just support constants. 8190 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8191 } 8192 } 8193 8194 // Okay, this is an expression that we cannot symbolically evaluate 8195 // into a SCEV. Check to see if it's possible to symbolically evaluate 8196 // the arguments into constants, and if so, try to constant propagate the 8197 // result. This is particularly useful for computing loop exit values. 8198 if (CanConstantFold(I)) { 8199 SmallVector<Constant *, 4> Operands; 8200 bool MadeImprovement = false; 8201 for (Value *Op : I->operands()) { 8202 if (Constant *C = dyn_cast<Constant>(Op)) { 8203 Operands.push_back(C); 8204 continue; 8205 } 8206 8207 // If any of the operands is non-constant and if they are 8208 // non-integer and non-pointer, don't even try to analyze them 8209 // with scev techniques. 8210 if (!isSCEVable(Op->getType())) 8211 return V; 8212 8213 const SCEV *OrigV = getSCEV(Op); 8214 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8215 MadeImprovement |= OrigV != OpV; 8216 8217 Constant *C = BuildConstantFromSCEV(OpV); 8218 if (!C) return V; 8219 if (C->getType() != Op->getType()) 8220 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8221 Op->getType(), 8222 false), 8223 C, Op->getType()); 8224 Operands.push_back(C); 8225 } 8226 8227 // Check to see if getSCEVAtScope actually made an improvement. 8228 if (MadeImprovement) { 8229 Constant *C = nullptr; 8230 const DataLayout &DL = getDataLayout(); 8231 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8232 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8233 Operands[1], DL, &TLI); 8234 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8235 if (!Load->isVolatile()) 8236 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8237 DL); 8238 } else 8239 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8240 if (!C) return V; 8241 return getSCEV(C); 8242 } 8243 } 8244 } 8245 8246 // This is some other type of SCEVUnknown, just return it. 8247 return V; 8248 } 8249 8250 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8251 // Avoid performing the look-up in the common case where the specified 8252 // expression has no loop-variant portions. 8253 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8254 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8255 if (OpAtScope != Comm->getOperand(i)) { 8256 // Okay, at least one of these operands is loop variant but might be 8257 // foldable. Build a new instance of the folded commutative expression. 8258 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8259 Comm->op_begin()+i); 8260 NewOps.push_back(OpAtScope); 8261 8262 for (++i; i != e; ++i) { 8263 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8264 NewOps.push_back(OpAtScope); 8265 } 8266 if (isa<SCEVAddExpr>(Comm)) 8267 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8268 if (isa<SCEVMulExpr>(Comm)) 8269 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8270 if (isa<SCEVMinMaxExpr>(Comm)) 8271 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8272 llvm_unreachable("Unknown commutative SCEV type!"); 8273 } 8274 } 8275 // If we got here, all operands are loop invariant. 8276 return Comm; 8277 } 8278 8279 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8280 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8281 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8282 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8283 return Div; // must be loop invariant 8284 return getUDivExpr(LHS, RHS); 8285 } 8286 8287 // If this is a loop recurrence for a loop that does not contain L, then we 8288 // are dealing with the final value computed by the loop. 8289 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8290 // First, attempt to evaluate each operand. 8291 // Avoid performing the look-up in the common case where the specified 8292 // expression has no loop-variant portions. 8293 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8294 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8295 if (OpAtScope == AddRec->getOperand(i)) 8296 continue; 8297 8298 // Okay, at least one of these operands is loop variant but might be 8299 // foldable. Build a new instance of the folded commutative expression. 8300 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8301 AddRec->op_begin()+i); 8302 NewOps.push_back(OpAtScope); 8303 for (++i; i != e; ++i) 8304 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8305 8306 const SCEV *FoldedRec = 8307 getAddRecExpr(NewOps, AddRec->getLoop(), 8308 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8309 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8310 // The addrec may be folded to a nonrecurrence, for example, if the 8311 // induction variable is multiplied by zero after constant folding. Go 8312 // ahead and return the folded value. 8313 if (!AddRec) 8314 return FoldedRec; 8315 break; 8316 } 8317 8318 // If the scope is outside the addrec's loop, evaluate it by using the 8319 // loop exit value of the addrec. 8320 if (!AddRec->getLoop()->contains(L)) { 8321 // To evaluate this recurrence, we need to know how many times the AddRec 8322 // loop iterates. Compute this now. 8323 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8324 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8325 8326 // Then, evaluate the AddRec. 8327 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8328 } 8329 8330 return AddRec; 8331 } 8332 8333 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8334 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8335 if (Op == Cast->getOperand()) 8336 return Cast; // must be loop invariant 8337 return getZeroExtendExpr(Op, Cast->getType()); 8338 } 8339 8340 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8341 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8342 if (Op == Cast->getOperand()) 8343 return Cast; // must be loop invariant 8344 return getSignExtendExpr(Op, Cast->getType()); 8345 } 8346 8347 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8348 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8349 if (Op == Cast->getOperand()) 8350 return Cast; // must be loop invariant 8351 return getTruncateExpr(Op, Cast->getType()); 8352 } 8353 8354 llvm_unreachable("Unknown SCEV type!"); 8355 } 8356 8357 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8358 return getSCEVAtScope(getSCEV(V), L); 8359 } 8360 8361 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8362 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8363 return stripInjectiveFunctions(ZExt->getOperand()); 8364 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8365 return stripInjectiveFunctions(SExt->getOperand()); 8366 return S; 8367 } 8368 8369 /// Finds the minimum unsigned root of the following equation: 8370 /// 8371 /// A * X = B (mod N) 8372 /// 8373 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8374 /// A and B isn't important. 8375 /// 8376 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8377 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8378 ScalarEvolution &SE) { 8379 uint32_t BW = A.getBitWidth(); 8380 assert(BW == SE.getTypeSizeInBits(B->getType())); 8381 assert(A != 0 && "A must be non-zero."); 8382 8383 // 1. D = gcd(A, N) 8384 // 8385 // The gcd of A and N may have only one prime factor: 2. The number of 8386 // trailing zeros in A is its multiplicity 8387 uint32_t Mult2 = A.countTrailingZeros(); 8388 // D = 2^Mult2 8389 8390 // 2. Check if B is divisible by D. 8391 // 8392 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8393 // is not less than multiplicity of this prime factor for D. 8394 if (SE.GetMinTrailingZeros(B) < Mult2) 8395 return SE.getCouldNotCompute(); 8396 8397 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8398 // modulo (N / D). 8399 // 8400 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8401 // (N / D) in general. The inverse itself always fits into BW bits, though, 8402 // so we immediately truncate it. 8403 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8404 APInt Mod(BW + 1, 0); 8405 Mod.setBit(BW - Mult2); // Mod = N / D 8406 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8407 8408 // 4. Compute the minimum unsigned root of the equation: 8409 // I * (B / D) mod (N / D) 8410 // To simplify the computation, we factor out the divide by D: 8411 // (I * B mod N) / D 8412 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8413 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8414 } 8415 8416 /// For a given quadratic addrec, generate coefficients of the corresponding 8417 /// quadratic equation, multiplied by a common value to ensure that they are 8418 /// integers. 8419 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8420 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8421 /// were multiplied by, and BitWidth is the bit width of the original addrec 8422 /// coefficients. 8423 /// This function returns None if the addrec coefficients are not compile- 8424 /// time constants. 8425 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8426 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8427 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8428 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8429 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8430 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8431 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8432 << *AddRec << '\n'); 8433 8434 // We currently can only solve this if the coefficients are constants. 8435 if (!LC || !MC || !NC) { 8436 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8437 return None; 8438 } 8439 8440 APInt L = LC->getAPInt(); 8441 APInt M = MC->getAPInt(); 8442 APInt N = NC->getAPInt(); 8443 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8444 8445 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8446 unsigned NewWidth = BitWidth + 1; 8447 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8448 << BitWidth << '\n'); 8449 // The sign-extension (as opposed to a zero-extension) here matches the 8450 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8451 N = N.sext(NewWidth); 8452 M = M.sext(NewWidth); 8453 L = L.sext(NewWidth); 8454 8455 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8456 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8457 // L+M, L+2M+N, L+3M+3N, ... 8458 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8459 // 8460 // The equation Acc = 0 is then 8461 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8462 // In a quadratic form it becomes: 8463 // N n^2 + (2M-N) n + 2L = 0. 8464 8465 APInt A = N; 8466 APInt B = 2 * M - A; 8467 APInt C = 2 * L; 8468 APInt T = APInt(NewWidth, 2); 8469 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8470 << "x + " << C << ", coeff bw: " << NewWidth 8471 << ", multiplied by " << T << '\n'); 8472 return std::make_tuple(A, B, C, T, BitWidth); 8473 } 8474 8475 /// Helper function to compare optional APInts: 8476 /// (a) if X and Y both exist, return min(X, Y), 8477 /// (b) if neither X nor Y exist, return None, 8478 /// (c) if exactly one of X and Y exists, return that value. 8479 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8480 if (X.hasValue() && Y.hasValue()) { 8481 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8482 APInt XW = X->sextOrSelf(W); 8483 APInt YW = Y->sextOrSelf(W); 8484 return XW.slt(YW) ? *X : *Y; 8485 } 8486 if (!X.hasValue() && !Y.hasValue()) 8487 return None; 8488 return X.hasValue() ? *X : *Y; 8489 } 8490 8491 /// Helper function to truncate an optional APInt to a given BitWidth. 8492 /// When solving addrec-related equations, it is preferable to return a value 8493 /// that has the same bit width as the original addrec's coefficients. If the 8494 /// solution fits in the original bit width, truncate it (except for i1). 8495 /// Returning a value of a different bit width may inhibit some optimizations. 8496 /// 8497 /// In general, a solution to a quadratic equation generated from an addrec 8498 /// may require BW+1 bits, where BW is the bit width of the addrec's 8499 /// coefficients. The reason is that the coefficients of the quadratic 8500 /// equation are BW+1 bits wide (to avoid truncation when converting from 8501 /// the addrec to the equation). 8502 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8503 if (!X.hasValue()) 8504 return None; 8505 unsigned W = X->getBitWidth(); 8506 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8507 return X->trunc(BitWidth); 8508 return X; 8509 } 8510 8511 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8512 /// iterations. The values L, M, N are assumed to be signed, and they 8513 /// should all have the same bit widths. 8514 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8515 /// where BW is the bit width of the addrec's coefficients. 8516 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8517 /// returned as such, otherwise the bit width of the returned value may 8518 /// be greater than BW. 8519 /// 8520 /// This function returns None if 8521 /// (a) the addrec coefficients are not constant, or 8522 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8523 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8524 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8525 static Optional<APInt> 8526 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8527 APInt A, B, C, M; 8528 unsigned BitWidth; 8529 auto T = GetQuadraticEquation(AddRec); 8530 if (!T.hasValue()) 8531 return None; 8532 8533 std::tie(A, B, C, M, BitWidth) = *T; 8534 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8535 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8536 if (!X.hasValue()) 8537 return None; 8538 8539 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8540 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8541 if (!V->isZero()) 8542 return None; 8543 8544 return TruncIfPossible(X, BitWidth); 8545 } 8546 8547 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8548 /// iterations. The values M, N are assumed to be signed, and they 8549 /// should all have the same bit widths. 8550 /// Find the least n such that c(n) does not belong to the given range, 8551 /// while c(n-1) does. 8552 /// 8553 /// This function returns None if 8554 /// (a) the addrec coefficients are not constant, or 8555 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8556 /// bounds of the range. 8557 static Optional<APInt> 8558 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8559 const ConstantRange &Range, ScalarEvolution &SE) { 8560 assert(AddRec->getOperand(0)->isZero() && 8561 "Starting value of addrec should be 0"); 8562 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8563 << Range << ", addrec " << *AddRec << '\n'); 8564 // This case is handled in getNumIterationsInRange. Here we can assume that 8565 // we start in the range. 8566 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8567 "Addrec's initial value should be in range"); 8568 8569 APInt A, B, C, M; 8570 unsigned BitWidth; 8571 auto T = GetQuadraticEquation(AddRec); 8572 if (!T.hasValue()) 8573 return None; 8574 8575 // Be careful about the return value: there can be two reasons for not 8576 // returning an actual number. First, if no solutions to the equations 8577 // were found, and second, if the solutions don't leave the given range. 8578 // The first case means that the actual solution is "unknown", the second 8579 // means that it's known, but not valid. If the solution is unknown, we 8580 // cannot make any conclusions. 8581 // Return a pair: the optional solution and a flag indicating if the 8582 // solution was found. 8583 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8584 // Solve for signed overflow and unsigned overflow, pick the lower 8585 // solution. 8586 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8587 << Bound << " (before multiplying by " << M << ")\n"); 8588 Bound *= M; // The quadratic equation multiplier. 8589 8590 Optional<APInt> SO = None; 8591 if (BitWidth > 1) { 8592 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8593 "signed overflow\n"); 8594 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8595 } 8596 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8597 "unsigned overflow\n"); 8598 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8599 BitWidth+1); 8600 8601 auto LeavesRange = [&] (const APInt &X) { 8602 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8603 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8604 if (Range.contains(V0->getValue())) 8605 return false; 8606 // X should be at least 1, so X-1 is non-negative. 8607 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8608 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8609 if (Range.contains(V1->getValue())) 8610 return true; 8611 return false; 8612 }; 8613 8614 // If SolveQuadraticEquationWrap returns None, it means that there can 8615 // be a solution, but the function failed to find it. We cannot treat it 8616 // as "no solution". 8617 if (!SO.hasValue() || !UO.hasValue()) 8618 return { None, false }; 8619 8620 // Check the smaller value first to see if it leaves the range. 8621 // At this point, both SO and UO must have values. 8622 Optional<APInt> Min = MinOptional(SO, UO); 8623 if (LeavesRange(*Min)) 8624 return { Min, true }; 8625 Optional<APInt> Max = Min == SO ? UO : SO; 8626 if (LeavesRange(*Max)) 8627 return { Max, true }; 8628 8629 // Solutions were found, but were eliminated, hence the "true". 8630 return { None, true }; 8631 }; 8632 8633 std::tie(A, B, C, M, BitWidth) = *T; 8634 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8635 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8636 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8637 auto SL = SolveForBoundary(Lower); 8638 auto SU = SolveForBoundary(Upper); 8639 // If any of the solutions was unknown, no meaninigful conclusions can 8640 // be made. 8641 if (!SL.second || !SU.second) 8642 return None; 8643 8644 // Claim: The correct solution is not some value between Min and Max. 8645 // 8646 // Justification: Assuming that Min and Max are different values, one of 8647 // them is when the first signed overflow happens, the other is when the 8648 // first unsigned overflow happens. Crossing the range boundary is only 8649 // possible via an overflow (treating 0 as a special case of it, modeling 8650 // an overflow as crossing k*2^W for some k). 8651 // 8652 // The interesting case here is when Min was eliminated as an invalid 8653 // solution, but Max was not. The argument is that if there was another 8654 // overflow between Min and Max, it would also have been eliminated if 8655 // it was considered. 8656 // 8657 // For a given boundary, it is possible to have two overflows of the same 8658 // type (signed/unsigned) without having the other type in between: this 8659 // can happen when the vertex of the parabola is between the iterations 8660 // corresponding to the overflows. This is only possible when the two 8661 // overflows cross k*2^W for the same k. In such case, if the second one 8662 // left the range (and was the first one to do so), the first overflow 8663 // would have to enter the range, which would mean that either we had left 8664 // the range before or that we started outside of it. Both of these cases 8665 // are contradictions. 8666 // 8667 // Claim: In the case where SolveForBoundary returns None, the correct 8668 // solution is not some value between the Max for this boundary and the 8669 // Min of the other boundary. 8670 // 8671 // Justification: Assume that we had such Max_A and Min_B corresponding 8672 // to range boundaries A and B and such that Max_A < Min_B. If there was 8673 // a solution between Max_A and Min_B, it would have to be caused by an 8674 // overflow corresponding to either A or B. It cannot correspond to B, 8675 // since Min_B is the first occurrence of such an overflow. If it 8676 // corresponded to A, it would have to be either a signed or an unsigned 8677 // overflow that is larger than both eliminated overflows for A. But 8678 // between the eliminated overflows and this overflow, the values would 8679 // cover the entire value space, thus crossing the other boundary, which 8680 // is a contradiction. 8681 8682 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8683 } 8684 8685 ScalarEvolution::ExitLimit 8686 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8687 bool AllowPredicates) { 8688 8689 // This is only used for loops with a "x != y" exit test. The exit condition 8690 // is now expressed as a single expression, V = x-y. So the exit test is 8691 // effectively V != 0. We know and take advantage of the fact that this 8692 // expression only being used in a comparison by zero context. 8693 8694 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8695 // If the value is a constant 8696 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8697 // If the value is already zero, the branch will execute zero times. 8698 if (C->getValue()->isZero()) return C; 8699 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8700 } 8701 8702 const SCEVAddRecExpr *AddRec = 8703 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8704 8705 if (!AddRec && AllowPredicates) 8706 // Try to make this an AddRec using runtime tests, in the first X 8707 // iterations of this loop, where X is the SCEV expression found by the 8708 // algorithm below. 8709 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8710 8711 if (!AddRec || AddRec->getLoop() != L) 8712 return getCouldNotCompute(); 8713 8714 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8715 // the quadratic equation to solve it. 8716 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8717 // We can only use this value if the chrec ends up with an exact zero 8718 // value at this index. When solving for "X*X != 5", for example, we 8719 // should not accept a root of 2. 8720 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8721 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8722 return ExitLimit(R, R, false, Predicates); 8723 } 8724 return getCouldNotCompute(); 8725 } 8726 8727 // Otherwise we can only handle this if it is affine. 8728 if (!AddRec->isAffine()) 8729 return getCouldNotCompute(); 8730 8731 // If this is an affine expression, the execution count of this branch is 8732 // the minimum unsigned root of the following equation: 8733 // 8734 // Start + Step*N = 0 (mod 2^BW) 8735 // 8736 // equivalent to: 8737 // 8738 // Step*N = -Start (mod 2^BW) 8739 // 8740 // where BW is the common bit width of Start and Step. 8741 8742 // Get the initial value for the loop. 8743 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8744 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8745 8746 // For now we handle only constant steps. 8747 // 8748 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8749 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8750 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8751 // We have not yet seen any such cases. 8752 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8753 if (!StepC || StepC->getValue()->isZero()) 8754 return getCouldNotCompute(); 8755 8756 // For positive steps (counting up until unsigned overflow): 8757 // N = -Start/Step (as unsigned) 8758 // For negative steps (counting down to zero): 8759 // N = Start/-Step 8760 // First compute the unsigned distance from zero in the direction of Step. 8761 bool CountDown = StepC->getAPInt().isNegative(); 8762 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8763 8764 // Handle unitary steps, which cannot wraparound. 8765 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8766 // N = Distance (as unsigned) 8767 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8768 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 8769 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 8770 if (MaxBECountBase.ult(MaxBECount)) 8771 MaxBECount = MaxBECountBase; 8772 8773 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8774 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8775 // case, and see if we can improve the bound. 8776 // 8777 // Explicitly handling this here is necessary because getUnsignedRange 8778 // isn't context-sensitive; it doesn't know that we only care about the 8779 // range inside the loop. 8780 const SCEV *Zero = getZero(Distance->getType()); 8781 const SCEV *One = getOne(Distance->getType()); 8782 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8783 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8784 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8785 // as "unsigned_max(Distance + 1) - 1". 8786 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8787 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8788 } 8789 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8790 } 8791 8792 // If the condition controls loop exit (the loop exits only if the expression 8793 // is true) and the addition is no-wrap we can use unsigned divide to 8794 // compute the backedge count. In this case, the step may not divide the 8795 // distance, but we don't care because if the condition is "missed" the loop 8796 // will have undefined behavior due to wrapping. 8797 if (ControlsExit && AddRec->hasNoSelfWrap() && 8798 loopHasNoAbnormalExits(AddRec->getLoop())) { 8799 const SCEV *Exact = 8800 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8801 const SCEV *Max = 8802 Exact == getCouldNotCompute() 8803 ? Exact 8804 : getConstant(getUnsignedRangeMax(Exact)); 8805 return ExitLimit(Exact, Max, false, Predicates); 8806 } 8807 8808 // Solve the general equation. 8809 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8810 getNegativeSCEV(Start), *this); 8811 const SCEV *M = E == getCouldNotCompute() 8812 ? E 8813 : getConstant(getUnsignedRangeMax(E)); 8814 return ExitLimit(E, M, false, Predicates); 8815 } 8816 8817 ScalarEvolution::ExitLimit 8818 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8819 // Loops that look like: while (X == 0) are very strange indeed. We don't 8820 // handle them yet except for the trivial case. This could be expanded in the 8821 // future as needed. 8822 8823 // If the value is a constant, check to see if it is known to be non-zero 8824 // already. If so, the backedge will execute zero times. 8825 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8826 if (!C->getValue()->isZero()) 8827 return getZero(C->getType()); 8828 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8829 } 8830 8831 // We could implement others, but I really doubt anyone writes loops like 8832 // this, and if they did, they would already be constant folded. 8833 return getCouldNotCompute(); 8834 } 8835 8836 std::pair<const BasicBlock *, const BasicBlock *> 8837 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 8838 const { 8839 // If the block has a unique predecessor, then there is no path from the 8840 // predecessor to the block that does not go through the direct edge 8841 // from the predecessor to the block. 8842 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 8843 return {Pred, BB}; 8844 8845 // A loop's header is defined to be a block that dominates the loop. 8846 // If the header has a unique predecessor outside the loop, it must be 8847 // a block that has exactly one successor that can reach the loop. 8848 if (const Loop *L = LI.getLoopFor(BB)) 8849 return {L->getLoopPredecessor(), L->getHeader()}; 8850 8851 return {nullptr, nullptr}; 8852 } 8853 8854 /// SCEV structural equivalence is usually sufficient for testing whether two 8855 /// expressions are equal, however for the purposes of looking for a condition 8856 /// guarding a loop, it can be useful to be a little more general, since a 8857 /// front-end may have replicated the controlling expression. 8858 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8859 // Quick check to see if they are the same SCEV. 8860 if (A == B) return true; 8861 8862 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8863 // Not all instructions that are "identical" compute the same value. For 8864 // instance, two distinct alloca instructions allocating the same type are 8865 // identical and do not read memory; but compute distinct values. 8866 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8867 }; 8868 8869 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8870 // two different instructions with the same value. Check for this case. 8871 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8872 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8873 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8874 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8875 if (ComputesEqualValues(AI, BI)) 8876 return true; 8877 8878 // Otherwise assume they may have a different value. 8879 return false; 8880 } 8881 8882 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8883 const SCEV *&LHS, const SCEV *&RHS, 8884 unsigned Depth) { 8885 bool Changed = false; 8886 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8887 // '0 != 0'. 8888 auto TrivialCase = [&](bool TriviallyTrue) { 8889 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8890 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8891 return true; 8892 }; 8893 // If we hit the max recursion limit bail out. 8894 if (Depth >= 3) 8895 return false; 8896 8897 // Canonicalize a constant to the right side. 8898 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8899 // Check for both operands constant. 8900 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8901 if (ConstantExpr::getICmp(Pred, 8902 LHSC->getValue(), 8903 RHSC->getValue())->isNullValue()) 8904 return TrivialCase(false); 8905 else 8906 return TrivialCase(true); 8907 } 8908 // Otherwise swap the operands to put the constant on the right. 8909 std::swap(LHS, RHS); 8910 Pred = ICmpInst::getSwappedPredicate(Pred); 8911 Changed = true; 8912 } 8913 8914 // If we're comparing an addrec with a value which is loop-invariant in the 8915 // addrec's loop, put the addrec on the left. Also make a dominance check, 8916 // as both operands could be addrecs loop-invariant in each other's loop. 8917 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8918 const Loop *L = AR->getLoop(); 8919 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8920 std::swap(LHS, RHS); 8921 Pred = ICmpInst::getSwappedPredicate(Pred); 8922 Changed = true; 8923 } 8924 } 8925 8926 // If there's a constant operand, canonicalize comparisons with boundary 8927 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8928 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8929 const APInt &RA = RC->getAPInt(); 8930 8931 bool SimplifiedByConstantRange = false; 8932 8933 if (!ICmpInst::isEquality(Pred)) { 8934 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8935 if (ExactCR.isFullSet()) 8936 return TrivialCase(true); 8937 else if (ExactCR.isEmptySet()) 8938 return TrivialCase(false); 8939 8940 APInt NewRHS; 8941 CmpInst::Predicate NewPred; 8942 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8943 ICmpInst::isEquality(NewPred)) { 8944 // We were able to convert an inequality to an equality. 8945 Pred = NewPred; 8946 RHS = getConstant(NewRHS); 8947 Changed = SimplifiedByConstantRange = true; 8948 } 8949 } 8950 8951 if (!SimplifiedByConstantRange) { 8952 switch (Pred) { 8953 default: 8954 break; 8955 case ICmpInst::ICMP_EQ: 8956 case ICmpInst::ICMP_NE: 8957 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8958 if (!RA) 8959 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8960 if (const SCEVMulExpr *ME = 8961 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8962 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8963 ME->getOperand(0)->isAllOnesValue()) { 8964 RHS = AE->getOperand(1); 8965 LHS = ME->getOperand(1); 8966 Changed = true; 8967 } 8968 break; 8969 8970 8971 // The "Should have been caught earlier!" messages refer to the fact 8972 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8973 // should have fired on the corresponding cases, and canonicalized the 8974 // check to trivial case. 8975 8976 case ICmpInst::ICMP_UGE: 8977 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8978 Pred = ICmpInst::ICMP_UGT; 8979 RHS = getConstant(RA - 1); 8980 Changed = true; 8981 break; 8982 case ICmpInst::ICMP_ULE: 8983 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8984 Pred = ICmpInst::ICMP_ULT; 8985 RHS = getConstant(RA + 1); 8986 Changed = true; 8987 break; 8988 case ICmpInst::ICMP_SGE: 8989 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8990 Pred = ICmpInst::ICMP_SGT; 8991 RHS = getConstant(RA - 1); 8992 Changed = true; 8993 break; 8994 case ICmpInst::ICMP_SLE: 8995 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8996 Pred = ICmpInst::ICMP_SLT; 8997 RHS = getConstant(RA + 1); 8998 Changed = true; 8999 break; 9000 } 9001 } 9002 } 9003 9004 // Check for obvious equality. 9005 if (HasSameValue(LHS, RHS)) { 9006 if (ICmpInst::isTrueWhenEqual(Pred)) 9007 return TrivialCase(true); 9008 if (ICmpInst::isFalseWhenEqual(Pred)) 9009 return TrivialCase(false); 9010 } 9011 9012 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9013 // adding or subtracting 1 from one of the operands. 9014 switch (Pred) { 9015 case ICmpInst::ICMP_SLE: 9016 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9017 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9018 SCEV::FlagNSW); 9019 Pred = ICmpInst::ICMP_SLT; 9020 Changed = true; 9021 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9022 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9023 SCEV::FlagNSW); 9024 Pred = ICmpInst::ICMP_SLT; 9025 Changed = true; 9026 } 9027 break; 9028 case ICmpInst::ICMP_SGE: 9029 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9030 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9031 SCEV::FlagNSW); 9032 Pred = ICmpInst::ICMP_SGT; 9033 Changed = true; 9034 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9035 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9036 SCEV::FlagNSW); 9037 Pred = ICmpInst::ICMP_SGT; 9038 Changed = true; 9039 } 9040 break; 9041 case ICmpInst::ICMP_ULE: 9042 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9043 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9044 SCEV::FlagNUW); 9045 Pred = ICmpInst::ICMP_ULT; 9046 Changed = true; 9047 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9048 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9049 Pred = ICmpInst::ICMP_ULT; 9050 Changed = true; 9051 } 9052 break; 9053 case ICmpInst::ICMP_UGE: 9054 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9055 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9056 Pred = ICmpInst::ICMP_UGT; 9057 Changed = true; 9058 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9059 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9060 SCEV::FlagNUW); 9061 Pred = ICmpInst::ICMP_UGT; 9062 Changed = true; 9063 } 9064 break; 9065 default: 9066 break; 9067 } 9068 9069 // TODO: More simplifications are possible here. 9070 9071 // Recursively simplify until we either hit a recursion limit or nothing 9072 // changes. 9073 if (Changed) 9074 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9075 9076 return Changed; 9077 } 9078 9079 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9080 return getSignedRangeMax(S).isNegative(); 9081 } 9082 9083 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9084 return getSignedRangeMin(S).isStrictlyPositive(); 9085 } 9086 9087 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9088 return !getSignedRangeMin(S).isNegative(); 9089 } 9090 9091 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9092 return !getSignedRangeMax(S).isStrictlyPositive(); 9093 } 9094 9095 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9096 return isKnownNegative(S) || isKnownPositive(S); 9097 } 9098 9099 std::pair<const SCEV *, const SCEV *> 9100 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9101 // Compute SCEV on entry of loop L. 9102 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9103 if (Start == getCouldNotCompute()) 9104 return { Start, Start }; 9105 // Compute post increment SCEV for loop L. 9106 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9107 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9108 return { Start, PostInc }; 9109 } 9110 9111 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9112 const SCEV *LHS, const SCEV *RHS) { 9113 // First collect all loops. 9114 SmallPtrSet<const Loop *, 8> LoopsUsed; 9115 getUsedLoops(LHS, LoopsUsed); 9116 getUsedLoops(RHS, LoopsUsed); 9117 9118 if (LoopsUsed.empty()) 9119 return false; 9120 9121 // Domination relationship must be a linear order on collected loops. 9122 #ifndef NDEBUG 9123 for (auto *L1 : LoopsUsed) 9124 for (auto *L2 : LoopsUsed) 9125 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9126 DT.dominates(L2->getHeader(), L1->getHeader())) && 9127 "Domination relationship is not a linear order"); 9128 #endif 9129 9130 const Loop *MDL = 9131 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9132 [&](const Loop *L1, const Loop *L2) { 9133 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9134 }); 9135 9136 // Get init and post increment value for LHS. 9137 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9138 // if LHS contains unknown non-invariant SCEV then bail out. 9139 if (SplitLHS.first == getCouldNotCompute()) 9140 return false; 9141 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9142 // Get init and post increment value for RHS. 9143 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9144 // if RHS contains unknown non-invariant SCEV then bail out. 9145 if (SplitRHS.first == getCouldNotCompute()) 9146 return false; 9147 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9148 // It is possible that init SCEV contains an invariant load but it does 9149 // not dominate MDL and is not available at MDL loop entry, so we should 9150 // check it here. 9151 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9152 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9153 return false; 9154 9155 // It seems backedge guard check is faster than entry one so in some cases 9156 // it can speed up whole estimation by short circuit 9157 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9158 SplitRHS.second) && 9159 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9160 } 9161 9162 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9163 const SCEV *LHS, const SCEV *RHS) { 9164 // Canonicalize the inputs first. 9165 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9166 9167 if (isKnownViaInduction(Pred, LHS, RHS)) 9168 return true; 9169 9170 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9171 return true; 9172 9173 // Otherwise see what can be done with some simple reasoning. 9174 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9175 } 9176 9177 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9178 const SCEV *LHS, const SCEV *RHS, 9179 const Instruction *Context) { 9180 // TODO: Analyze guards and assumes from Context's block. 9181 return isKnownPredicate(Pred, LHS, RHS) || 9182 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9183 } 9184 9185 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9186 const SCEVAddRecExpr *LHS, 9187 const SCEV *RHS) { 9188 const Loop *L = LHS->getLoop(); 9189 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9190 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9191 } 9192 9193 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9194 ICmpInst::Predicate Pred, 9195 bool &Increasing) { 9196 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9197 9198 #ifndef NDEBUG 9199 // Verify an invariant: inverting the predicate should turn a monotonically 9200 // increasing change to a monotonically decreasing one, and vice versa. 9201 bool IncreasingSwapped; 9202 bool ResultSwapped = isMonotonicPredicateImpl( 9203 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9204 9205 assert(Result == ResultSwapped && "should be able to analyze both!"); 9206 if (ResultSwapped) 9207 assert(Increasing == !IncreasingSwapped && 9208 "monotonicity should flip as we flip the predicate"); 9209 #endif 9210 9211 return Result; 9212 } 9213 9214 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9215 ICmpInst::Predicate Pred, 9216 bool &Increasing) { 9217 9218 // A zero step value for LHS means the induction variable is essentially a 9219 // loop invariant value. We don't really depend on the predicate actually 9220 // flipping from false to true (for increasing predicates, and the other way 9221 // around for decreasing predicates), all we care about is that *if* the 9222 // predicate changes then it only changes from false to true. 9223 // 9224 // A zero step value in itself is not very useful, but there may be places 9225 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9226 // as general as possible. 9227 9228 switch (Pred) { 9229 default: 9230 return false; // Conservative answer 9231 9232 case ICmpInst::ICMP_UGT: 9233 case ICmpInst::ICMP_UGE: 9234 case ICmpInst::ICMP_ULT: 9235 case ICmpInst::ICMP_ULE: 9236 if (!LHS->hasNoUnsignedWrap()) 9237 return false; 9238 9239 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9240 return true; 9241 9242 case ICmpInst::ICMP_SGT: 9243 case ICmpInst::ICMP_SGE: 9244 case ICmpInst::ICMP_SLT: 9245 case ICmpInst::ICMP_SLE: { 9246 if (!LHS->hasNoSignedWrap()) 9247 return false; 9248 9249 const SCEV *Step = LHS->getStepRecurrence(*this); 9250 9251 if (isKnownNonNegative(Step)) { 9252 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9253 return true; 9254 } 9255 9256 if (isKnownNonPositive(Step)) { 9257 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9258 return true; 9259 } 9260 9261 return false; 9262 } 9263 9264 } 9265 9266 llvm_unreachable("switch has default clause!"); 9267 } 9268 9269 bool ScalarEvolution::isLoopInvariantPredicate( 9270 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9271 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9272 const SCEV *&InvariantRHS) { 9273 9274 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9275 if (!isLoopInvariant(RHS, L)) { 9276 if (!isLoopInvariant(LHS, L)) 9277 return false; 9278 9279 std::swap(LHS, RHS); 9280 Pred = ICmpInst::getSwappedPredicate(Pred); 9281 } 9282 9283 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9284 if (!ArLHS || ArLHS->getLoop() != L) 9285 return false; 9286 9287 bool Increasing; 9288 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9289 return false; 9290 9291 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9292 // true as the loop iterates, and the backedge is control dependent on 9293 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9294 // 9295 // * if the predicate was false in the first iteration then the predicate 9296 // is never evaluated again, since the loop exits without taking the 9297 // backedge. 9298 // * if the predicate was true in the first iteration then it will 9299 // continue to be true for all future iterations since it is 9300 // monotonically increasing. 9301 // 9302 // For both the above possibilities, we can replace the loop varying 9303 // predicate with its value on the first iteration of the loop (which is 9304 // loop invariant). 9305 // 9306 // A similar reasoning applies for a monotonically decreasing predicate, by 9307 // replacing true with false and false with true in the above two bullets. 9308 9309 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9310 9311 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9312 return false; 9313 9314 InvariantPred = Pred; 9315 InvariantLHS = ArLHS->getStart(); 9316 InvariantRHS = RHS; 9317 return true; 9318 } 9319 9320 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9321 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9322 if (HasSameValue(LHS, RHS)) 9323 return ICmpInst::isTrueWhenEqual(Pred); 9324 9325 // This code is split out from isKnownPredicate because it is called from 9326 // within isLoopEntryGuardedByCond. 9327 9328 auto CheckRanges = 9329 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9330 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9331 .contains(RangeLHS); 9332 }; 9333 9334 // The check at the top of the function catches the case where the values are 9335 // known to be equal. 9336 if (Pred == CmpInst::ICMP_EQ) 9337 return false; 9338 9339 if (Pred == CmpInst::ICMP_NE) 9340 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9341 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9342 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9343 9344 if (CmpInst::isSigned(Pred)) 9345 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9346 9347 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9348 } 9349 9350 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9351 const SCEV *LHS, 9352 const SCEV *RHS) { 9353 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9354 // Return Y via OutY. 9355 auto MatchBinaryAddToConst = 9356 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9357 SCEV::NoWrapFlags ExpectedFlags) { 9358 const SCEV *NonConstOp, *ConstOp; 9359 SCEV::NoWrapFlags FlagsPresent; 9360 9361 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9362 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9363 return false; 9364 9365 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9366 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9367 }; 9368 9369 APInt C; 9370 9371 switch (Pred) { 9372 default: 9373 break; 9374 9375 case ICmpInst::ICMP_SGE: 9376 std::swap(LHS, RHS); 9377 LLVM_FALLTHROUGH; 9378 case ICmpInst::ICMP_SLE: 9379 // X s<= (X + C)<nsw> if C >= 0 9380 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9381 return true; 9382 9383 // (X + C)<nsw> s<= X if C <= 0 9384 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9385 !C.isStrictlyPositive()) 9386 return true; 9387 break; 9388 9389 case ICmpInst::ICMP_SGT: 9390 std::swap(LHS, RHS); 9391 LLVM_FALLTHROUGH; 9392 case ICmpInst::ICMP_SLT: 9393 // X s< (X + C)<nsw> if C > 0 9394 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9395 C.isStrictlyPositive()) 9396 return true; 9397 9398 // (X + C)<nsw> s< X if C < 0 9399 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9400 return true; 9401 break; 9402 9403 case ICmpInst::ICMP_UGE: 9404 std::swap(LHS, RHS); 9405 LLVM_FALLTHROUGH; 9406 case ICmpInst::ICMP_ULE: 9407 // X u<= (X + C)<nuw> for any C 9408 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9409 return true; 9410 break; 9411 9412 case ICmpInst::ICMP_UGT: 9413 std::swap(LHS, RHS); 9414 LLVM_FALLTHROUGH; 9415 case ICmpInst::ICMP_ULT: 9416 // X u< (X + C)<nuw> if C != 0 9417 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9418 return true; 9419 break; 9420 } 9421 9422 return false; 9423 } 9424 9425 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9426 const SCEV *LHS, 9427 const SCEV *RHS) { 9428 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9429 return false; 9430 9431 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9432 // the stack can result in exponential time complexity. 9433 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9434 9435 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9436 // 9437 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9438 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9439 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9440 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9441 // use isKnownPredicate later if needed. 9442 return isKnownNonNegative(RHS) && 9443 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9444 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9445 } 9446 9447 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9448 ICmpInst::Predicate Pred, 9449 const SCEV *LHS, const SCEV *RHS) { 9450 // No need to even try if we know the module has no guards. 9451 if (!HasGuards) 9452 return false; 9453 9454 return any_of(*BB, [&](const Instruction &I) { 9455 using namespace llvm::PatternMatch; 9456 9457 Value *Condition; 9458 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9459 m_Value(Condition))) && 9460 isImpliedCond(Pred, LHS, RHS, Condition, false); 9461 }); 9462 } 9463 9464 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9465 /// protected by a conditional between LHS and RHS. This is used to 9466 /// to eliminate casts. 9467 bool 9468 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9469 ICmpInst::Predicate Pred, 9470 const SCEV *LHS, const SCEV *RHS) { 9471 // Interpret a null as meaning no loop, where there is obviously no guard 9472 // (interprocedural conditions notwithstanding). 9473 if (!L) return true; 9474 9475 if (VerifyIR) 9476 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9477 "This cannot be done on broken IR!"); 9478 9479 9480 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9481 return true; 9482 9483 BasicBlock *Latch = L->getLoopLatch(); 9484 if (!Latch) 9485 return false; 9486 9487 BranchInst *LoopContinuePredicate = 9488 dyn_cast<BranchInst>(Latch->getTerminator()); 9489 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9490 isImpliedCond(Pred, LHS, RHS, 9491 LoopContinuePredicate->getCondition(), 9492 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9493 return true; 9494 9495 // We don't want more than one activation of the following loops on the stack 9496 // -- that can lead to O(n!) time complexity. 9497 if (WalkingBEDominatingConds) 9498 return false; 9499 9500 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9501 9502 // See if we can exploit a trip count to prove the predicate. 9503 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9504 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9505 if (LatchBECount != getCouldNotCompute()) { 9506 // We know that Latch branches back to the loop header exactly 9507 // LatchBECount times. This means the backdege condition at Latch is 9508 // equivalent to "{0,+,1} u< LatchBECount". 9509 Type *Ty = LatchBECount->getType(); 9510 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9511 const SCEV *LoopCounter = 9512 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9513 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9514 LatchBECount)) 9515 return true; 9516 } 9517 9518 // Check conditions due to any @llvm.assume intrinsics. 9519 for (auto &AssumeVH : AC.assumptions()) { 9520 if (!AssumeVH) 9521 continue; 9522 auto *CI = cast<CallInst>(AssumeVH); 9523 if (!DT.dominates(CI, Latch->getTerminator())) 9524 continue; 9525 9526 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9527 return true; 9528 } 9529 9530 // If the loop is not reachable from the entry block, we risk running into an 9531 // infinite loop as we walk up into the dom tree. These loops do not matter 9532 // anyway, so we just return a conservative answer when we see them. 9533 if (!DT.isReachableFromEntry(L->getHeader())) 9534 return false; 9535 9536 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9537 return true; 9538 9539 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9540 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9541 assert(DTN && "should reach the loop header before reaching the root!"); 9542 9543 BasicBlock *BB = DTN->getBlock(); 9544 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9545 return true; 9546 9547 BasicBlock *PBB = BB->getSinglePredecessor(); 9548 if (!PBB) 9549 continue; 9550 9551 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9552 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9553 continue; 9554 9555 Value *Condition = ContinuePredicate->getCondition(); 9556 9557 // If we have an edge `E` within the loop body that dominates the only 9558 // latch, the condition guarding `E` also guards the backedge. This 9559 // reasoning works only for loops with a single latch. 9560 9561 BasicBlockEdge DominatingEdge(PBB, BB); 9562 if (DominatingEdge.isSingleEdge()) { 9563 // We're constructively (and conservatively) enumerating edges within the 9564 // loop body that dominate the latch. The dominator tree better agree 9565 // with us on this: 9566 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9567 9568 if (isImpliedCond(Pred, LHS, RHS, Condition, 9569 BB != ContinuePredicate->getSuccessor(0))) 9570 return true; 9571 } 9572 } 9573 9574 return false; 9575 } 9576 9577 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 9578 ICmpInst::Predicate Pred, 9579 const SCEV *LHS, 9580 const SCEV *RHS) { 9581 if (VerifyIR) 9582 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 9583 "This cannot be done on broken IR!"); 9584 9585 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9586 return true; 9587 9588 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9589 // the facts (a >= b && a != b) separately. A typical situation is when the 9590 // non-strict comparison is known from ranges and non-equality is known from 9591 // dominating predicates. If we are proving strict comparison, we always try 9592 // to prove non-equality and non-strict comparison separately. 9593 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9594 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9595 bool ProvedNonStrictComparison = false; 9596 bool ProvedNonEquality = false; 9597 9598 if (ProvingStrictComparison) { 9599 ProvedNonStrictComparison = 9600 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9601 ProvedNonEquality = 9602 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9603 if (ProvedNonStrictComparison && ProvedNonEquality) 9604 return true; 9605 } 9606 9607 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9608 auto ProveViaGuard = [&](const BasicBlock *Block) { 9609 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9610 return true; 9611 if (ProvingStrictComparison) { 9612 if (!ProvedNonStrictComparison) 9613 ProvedNonStrictComparison = 9614 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9615 if (!ProvedNonEquality) 9616 ProvedNonEquality = 9617 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9618 if (ProvedNonStrictComparison && ProvedNonEquality) 9619 return true; 9620 } 9621 return false; 9622 }; 9623 9624 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9625 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 9626 const Instruction *Context = &BB->front(); 9627 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 9628 return true; 9629 if (ProvingStrictComparison) { 9630 if (!ProvedNonStrictComparison) 9631 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS, 9632 Condition, Inverse, Context); 9633 if (!ProvedNonEquality) 9634 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, 9635 Condition, Inverse, Context); 9636 if (ProvedNonStrictComparison && ProvedNonEquality) 9637 return true; 9638 } 9639 return false; 9640 }; 9641 9642 // Starting at the block's predecessor, climb up the predecessor chain, as long 9643 // as there are predecessors that can be found that have unique successors 9644 // leading to the original block. 9645 const Loop *ContainingLoop = LI.getLoopFor(BB); 9646 const BasicBlock *PredBB; 9647 if (ContainingLoop && ContainingLoop->getHeader() == BB) 9648 PredBB = ContainingLoop->getLoopPredecessor(); 9649 else 9650 PredBB = BB->getSinglePredecessor(); 9651 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 9652 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9653 if (ProveViaGuard(Pair.first)) 9654 return true; 9655 9656 const BranchInst *LoopEntryPredicate = 9657 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9658 if (!LoopEntryPredicate || 9659 LoopEntryPredicate->isUnconditional()) 9660 continue; 9661 9662 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9663 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9664 return true; 9665 } 9666 9667 // Check conditions due to any @llvm.assume intrinsics. 9668 for (auto &AssumeVH : AC.assumptions()) { 9669 if (!AssumeVH) 9670 continue; 9671 auto *CI = cast<CallInst>(AssumeVH); 9672 if (!DT.dominates(CI, BB)) 9673 continue; 9674 9675 if (ProveViaCond(CI->getArgOperand(0), false)) 9676 return true; 9677 } 9678 9679 return false; 9680 } 9681 9682 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9683 ICmpInst::Predicate Pred, 9684 const SCEV *LHS, 9685 const SCEV *RHS) { 9686 // Interpret a null as meaning no loop, where there is obviously no guard 9687 // (interprocedural conditions notwithstanding). 9688 if (!L) 9689 return false; 9690 9691 // Both LHS and RHS must be available at loop entry. 9692 assert(isAvailableAtLoopEntry(LHS, L) && 9693 "LHS is not available at Loop Entry"); 9694 assert(isAvailableAtLoopEntry(RHS, L) && 9695 "RHS is not available at Loop Entry"); 9696 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 9697 } 9698 9699 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9700 const SCEV *RHS, 9701 const Value *FoundCondValue, bool Inverse, 9702 const Instruction *Context) { 9703 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9704 return false; 9705 9706 auto ClearOnExit = 9707 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9708 9709 // Recursively handle And and Or conditions. 9710 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9711 if (BO->getOpcode() == Instruction::And) { 9712 if (!Inverse) 9713 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 9714 Context) || 9715 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 9716 Context); 9717 } else if (BO->getOpcode() == Instruction::Or) { 9718 if (Inverse) 9719 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 9720 Context) || 9721 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 9722 Context); 9723 } 9724 } 9725 9726 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9727 if (!ICI) return false; 9728 9729 // Now that we found a conditional branch that dominates the loop or controls 9730 // the loop latch. Check to see if it is the comparison we are looking for. 9731 ICmpInst::Predicate FoundPred; 9732 if (Inverse) 9733 FoundPred = ICI->getInversePredicate(); 9734 else 9735 FoundPred = ICI->getPredicate(); 9736 9737 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9738 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9739 9740 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 9741 } 9742 9743 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9744 const SCEV *RHS, 9745 ICmpInst::Predicate FoundPred, 9746 const SCEV *FoundLHS, const SCEV *FoundRHS, 9747 const Instruction *Context) { 9748 // Balance the types. 9749 if (getTypeSizeInBits(LHS->getType()) < 9750 getTypeSizeInBits(FoundLHS->getType())) { 9751 if (CmpInst::isSigned(Pred)) { 9752 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9753 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9754 } else { 9755 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9756 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9757 } 9758 } else if (getTypeSizeInBits(LHS->getType()) > 9759 getTypeSizeInBits(FoundLHS->getType())) { 9760 if (CmpInst::isSigned(FoundPred)) { 9761 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9762 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9763 } else { 9764 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9765 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9766 } 9767 } 9768 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 9769 FoundRHS, Context); 9770 } 9771 9772 bool ScalarEvolution::isImpliedCondBalancedTypes( 9773 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9774 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 9775 const Instruction *Context) { 9776 assert(getTypeSizeInBits(LHS->getType()) == 9777 getTypeSizeInBits(FoundLHS->getType()) && 9778 "Types should be balanced!"); 9779 // Canonicalize the query to match the way instcombine will have 9780 // canonicalized the comparison. 9781 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9782 if (LHS == RHS) 9783 return CmpInst::isTrueWhenEqual(Pred); 9784 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9785 if (FoundLHS == FoundRHS) 9786 return CmpInst::isFalseWhenEqual(FoundPred); 9787 9788 // Check to see if we can make the LHS or RHS match. 9789 if (LHS == FoundRHS || RHS == FoundLHS) { 9790 if (isa<SCEVConstant>(RHS)) { 9791 std::swap(FoundLHS, FoundRHS); 9792 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9793 } else { 9794 std::swap(LHS, RHS); 9795 Pred = ICmpInst::getSwappedPredicate(Pred); 9796 } 9797 } 9798 9799 // Check whether the found predicate is the same as the desired predicate. 9800 if (FoundPred == Pred) 9801 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 9802 9803 // Check whether swapping the found predicate makes it the same as the 9804 // desired predicate. 9805 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9806 if (isa<SCEVConstant>(RHS)) 9807 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 9808 else 9809 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS, 9810 LHS, FoundLHS, FoundRHS, Context); 9811 } 9812 9813 // Unsigned comparison is the same as signed comparison when both the operands 9814 // are non-negative. 9815 if (CmpInst::isUnsigned(FoundPred) && 9816 CmpInst::getSignedPredicate(FoundPred) == Pred && 9817 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9818 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 9819 9820 // Check if we can make progress by sharpening ranges. 9821 if (FoundPred == ICmpInst::ICMP_NE && 9822 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9823 9824 const SCEVConstant *C = nullptr; 9825 const SCEV *V = nullptr; 9826 9827 if (isa<SCEVConstant>(FoundLHS)) { 9828 C = cast<SCEVConstant>(FoundLHS); 9829 V = FoundRHS; 9830 } else { 9831 C = cast<SCEVConstant>(FoundRHS); 9832 V = FoundLHS; 9833 } 9834 9835 // The guarding predicate tells us that C != V. If the known range 9836 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9837 // range we consider has to correspond to same signedness as the 9838 // predicate we're interested in folding. 9839 9840 APInt Min = ICmpInst::isSigned(Pred) ? 9841 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9842 9843 if (Min == C->getAPInt()) { 9844 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9845 // This is true even if (Min + 1) wraps around -- in case of 9846 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9847 9848 APInt SharperMin = Min + 1; 9849 9850 switch (Pred) { 9851 case ICmpInst::ICMP_SGE: 9852 case ICmpInst::ICMP_UGE: 9853 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9854 // RHS, we're done. 9855 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 9856 Context)) 9857 return true; 9858 LLVM_FALLTHROUGH; 9859 9860 case ICmpInst::ICMP_SGT: 9861 case ICmpInst::ICMP_UGT: 9862 // We know from the range information that (V `Pred` Min || 9863 // V == Min). We know from the guarding condition that !(V 9864 // == Min). This gives us 9865 // 9866 // V `Pred` Min || V == Min && !(V == Min) 9867 // => V `Pred` Min 9868 // 9869 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9870 9871 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 9872 Context)) 9873 return true; 9874 break; 9875 9876 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 9877 case ICmpInst::ICMP_SLE: 9878 case ICmpInst::ICMP_ULE: 9879 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 9880 LHS, V, getConstant(SharperMin), Context)) 9881 return true; 9882 LLVM_FALLTHROUGH; 9883 9884 case ICmpInst::ICMP_SLT: 9885 case ICmpInst::ICMP_ULT: 9886 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 9887 LHS, V, getConstant(Min), Context)) 9888 return true; 9889 break; 9890 9891 default: 9892 // No change 9893 break; 9894 } 9895 } 9896 } 9897 9898 // Check whether the actual condition is beyond sufficient. 9899 if (FoundPred == ICmpInst::ICMP_EQ) 9900 if (ICmpInst::isTrueWhenEqual(Pred)) 9901 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 9902 return true; 9903 if (Pred == ICmpInst::ICMP_NE) 9904 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9905 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 9906 Context)) 9907 return true; 9908 9909 // Otherwise assume the worst. 9910 return false; 9911 } 9912 9913 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9914 const SCEV *&L, const SCEV *&R, 9915 SCEV::NoWrapFlags &Flags) { 9916 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9917 if (!AE || AE->getNumOperands() != 2) 9918 return false; 9919 9920 L = AE->getOperand(0); 9921 R = AE->getOperand(1); 9922 Flags = AE->getNoWrapFlags(); 9923 return true; 9924 } 9925 9926 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9927 const SCEV *Less) { 9928 // We avoid subtracting expressions here because this function is usually 9929 // fairly deep in the call stack (i.e. is called many times). 9930 9931 // X - X = 0. 9932 if (More == Less) 9933 return APInt(getTypeSizeInBits(More->getType()), 0); 9934 9935 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9936 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9937 const auto *MAR = cast<SCEVAddRecExpr>(More); 9938 9939 if (LAR->getLoop() != MAR->getLoop()) 9940 return None; 9941 9942 // We look at affine expressions only; not for correctness but to keep 9943 // getStepRecurrence cheap. 9944 if (!LAR->isAffine() || !MAR->isAffine()) 9945 return None; 9946 9947 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9948 return None; 9949 9950 Less = LAR->getStart(); 9951 More = MAR->getStart(); 9952 9953 // fall through 9954 } 9955 9956 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9957 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9958 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9959 return M - L; 9960 } 9961 9962 SCEV::NoWrapFlags Flags; 9963 const SCEV *LLess = nullptr, *RLess = nullptr; 9964 const SCEV *LMore = nullptr, *RMore = nullptr; 9965 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9966 // Compare (X + C1) vs X. 9967 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9968 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9969 if (RLess == More) 9970 return -(C1->getAPInt()); 9971 9972 // Compare X vs (X + C2). 9973 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9974 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9975 if (RMore == Less) 9976 return C2->getAPInt(); 9977 9978 // Compare (X + C1) vs (X + C2). 9979 if (C1 && C2 && RLess == RMore) 9980 return C2->getAPInt() - C1->getAPInt(); 9981 9982 return None; 9983 } 9984 9985 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 9986 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9987 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 9988 // Try to recognize the following pattern: 9989 // 9990 // FoundRHS = ... 9991 // ... 9992 // loop: 9993 // FoundLHS = {Start,+,W} 9994 // context_bb: // Basic block from the same loop 9995 // known(Pred, FoundLHS, FoundRHS) 9996 // 9997 // If some predicate is known in the context of a loop, it is also known on 9998 // each iteration of this loop, including the first iteration. Therefore, in 9999 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10000 // prove the original pred using this fact. 10001 if (!Context) 10002 return false; 10003 const BasicBlock *ContextBB = Context->getParent(); 10004 // Make sure AR varies in the context block. 10005 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10006 const Loop *L = AR->getLoop(); 10007 // Make sure that context belongs to the loop and executes on 1st iteration 10008 // (if it ever executes at all). 10009 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10010 return false; 10011 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10012 return false; 10013 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10014 } 10015 10016 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10017 const Loop *L = AR->getLoop(); 10018 // Make sure that context belongs to the loop and executes on 1st iteration 10019 // (if it ever executes at all). 10020 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10021 return false; 10022 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10023 return false; 10024 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10025 } 10026 10027 return false; 10028 } 10029 10030 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10031 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10032 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10033 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10034 return false; 10035 10036 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10037 if (!AddRecLHS) 10038 return false; 10039 10040 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10041 if (!AddRecFoundLHS) 10042 return false; 10043 10044 // We'd like to let SCEV reason about control dependencies, so we constrain 10045 // both the inequalities to be about add recurrences on the same loop. This 10046 // way we can use isLoopEntryGuardedByCond later. 10047 10048 const Loop *L = AddRecFoundLHS->getLoop(); 10049 if (L != AddRecLHS->getLoop()) 10050 return false; 10051 10052 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10053 // 10054 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10055 // ... (2) 10056 // 10057 // Informal proof for (2), assuming (1) [*]: 10058 // 10059 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10060 // 10061 // Then 10062 // 10063 // FoundLHS s< FoundRHS s< INT_MIN - C 10064 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10065 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10066 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10067 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10068 // <=> FoundLHS + C s< FoundRHS + C 10069 // 10070 // [*]: (1) can be proved by ruling out overflow. 10071 // 10072 // [**]: This can be proved by analyzing all the four possibilities: 10073 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10074 // (A s>= 0, B s>= 0). 10075 // 10076 // Note: 10077 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10078 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10079 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10080 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10081 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10082 // C)". 10083 10084 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10085 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10086 if (!LDiff || !RDiff || *LDiff != *RDiff) 10087 return false; 10088 10089 if (LDiff->isMinValue()) 10090 return true; 10091 10092 APInt FoundRHSLimit; 10093 10094 if (Pred == CmpInst::ICMP_ULT) { 10095 FoundRHSLimit = -(*RDiff); 10096 } else { 10097 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10098 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10099 } 10100 10101 // Try to prove (1) or (2), as needed. 10102 return isAvailableAtLoopEntry(FoundRHS, L) && 10103 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10104 getConstant(FoundRHSLimit)); 10105 } 10106 10107 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10108 const SCEV *LHS, const SCEV *RHS, 10109 const SCEV *FoundLHS, 10110 const SCEV *FoundRHS, unsigned Depth) { 10111 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10112 10113 auto ClearOnExit = make_scope_exit([&]() { 10114 if (LPhi) { 10115 bool Erased = PendingMerges.erase(LPhi); 10116 assert(Erased && "Failed to erase LPhi!"); 10117 (void)Erased; 10118 } 10119 if (RPhi) { 10120 bool Erased = PendingMerges.erase(RPhi); 10121 assert(Erased && "Failed to erase RPhi!"); 10122 (void)Erased; 10123 } 10124 }); 10125 10126 // Find respective Phis and check that they are not being pending. 10127 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10128 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10129 if (!PendingMerges.insert(Phi).second) 10130 return false; 10131 LPhi = Phi; 10132 } 10133 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10134 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10135 // If we detect a loop of Phi nodes being processed by this method, for 10136 // example: 10137 // 10138 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10139 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10140 // 10141 // we don't want to deal with a case that complex, so return conservative 10142 // answer false. 10143 if (!PendingMerges.insert(Phi).second) 10144 return false; 10145 RPhi = Phi; 10146 } 10147 10148 // If none of LHS, RHS is a Phi, nothing to do here. 10149 if (!LPhi && !RPhi) 10150 return false; 10151 10152 // If there is a SCEVUnknown Phi we are interested in, make it left. 10153 if (!LPhi) { 10154 std::swap(LHS, RHS); 10155 std::swap(FoundLHS, FoundRHS); 10156 std::swap(LPhi, RPhi); 10157 Pred = ICmpInst::getSwappedPredicate(Pred); 10158 } 10159 10160 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10161 const BasicBlock *LBB = LPhi->getParent(); 10162 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10163 10164 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10165 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10166 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10167 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10168 }; 10169 10170 if (RPhi && RPhi->getParent() == LBB) { 10171 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10172 // If we compare two Phis from the same block, and for each entry block 10173 // the predicate is true for incoming values from this block, then the 10174 // predicate is also true for the Phis. 10175 for (const BasicBlock *IncBB : predecessors(LBB)) { 10176 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10177 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10178 if (!ProvedEasily(L, R)) 10179 return false; 10180 } 10181 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10182 // Case two: RHS is also a Phi from the same basic block, and it is an 10183 // AddRec. It means that there is a loop which has both AddRec and Unknown 10184 // PHIs, for it we can compare incoming values of AddRec from above the loop 10185 // and latch with their respective incoming values of LPhi. 10186 // TODO: Generalize to handle loops with many inputs in a header. 10187 if (LPhi->getNumIncomingValues() != 2) return false; 10188 10189 auto *RLoop = RAR->getLoop(); 10190 auto *Predecessor = RLoop->getLoopPredecessor(); 10191 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10192 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10193 if (!ProvedEasily(L1, RAR->getStart())) 10194 return false; 10195 auto *Latch = RLoop->getLoopLatch(); 10196 assert(Latch && "Loop with AddRec with no latch?"); 10197 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10198 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10199 return false; 10200 } else { 10201 // In all other cases go over inputs of LHS and compare each of them to RHS, 10202 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10203 // At this point RHS is either a non-Phi, or it is a Phi from some block 10204 // different from LBB. 10205 for (const BasicBlock *IncBB : predecessors(LBB)) { 10206 // Check that RHS is available in this block. 10207 if (!dominates(RHS, IncBB)) 10208 return false; 10209 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10210 if (!ProvedEasily(L, RHS)) 10211 return false; 10212 } 10213 } 10214 return true; 10215 } 10216 10217 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10218 const SCEV *LHS, const SCEV *RHS, 10219 const SCEV *FoundLHS, 10220 const SCEV *FoundRHS, 10221 const Instruction *Context) { 10222 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10223 return true; 10224 10225 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10226 return true; 10227 10228 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10229 Context)) 10230 return true; 10231 10232 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10233 FoundLHS, FoundRHS) || 10234 // ~x < ~y --> x > y 10235 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10236 getNotSCEV(FoundRHS), 10237 getNotSCEV(FoundLHS)); 10238 } 10239 10240 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10241 template <typename MinMaxExprType> 10242 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10243 const SCEV *Candidate) { 10244 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10245 if (!MinMaxExpr) 10246 return false; 10247 10248 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10249 } 10250 10251 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10252 ICmpInst::Predicate Pred, 10253 const SCEV *LHS, const SCEV *RHS) { 10254 // If both sides are affine addrecs for the same loop, with equal 10255 // steps, and we know the recurrences don't wrap, then we only 10256 // need to check the predicate on the starting values. 10257 10258 if (!ICmpInst::isRelational(Pred)) 10259 return false; 10260 10261 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10262 if (!LAR) 10263 return false; 10264 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10265 if (!RAR) 10266 return false; 10267 if (LAR->getLoop() != RAR->getLoop()) 10268 return false; 10269 if (!LAR->isAffine() || !RAR->isAffine()) 10270 return false; 10271 10272 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10273 return false; 10274 10275 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10276 SCEV::FlagNSW : SCEV::FlagNUW; 10277 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10278 return false; 10279 10280 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10281 } 10282 10283 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10284 /// expression? 10285 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10286 ICmpInst::Predicate Pred, 10287 const SCEV *LHS, const SCEV *RHS) { 10288 switch (Pred) { 10289 default: 10290 return false; 10291 10292 case ICmpInst::ICMP_SGE: 10293 std::swap(LHS, RHS); 10294 LLVM_FALLTHROUGH; 10295 case ICmpInst::ICMP_SLE: 10296 return 10297 // min(A, ...) <= A 10298 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10299 // A <= max(A, ...) 10300 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10301 10302 case ICmpInst::ICMP_UGE: 10303 std::swap(LHS, RHS); 10304 LLVM_FALLTHROUGH; 10305 case ICmpInst::ICMP_ULE: 10306 return 10307 // min(A, ...) <= A 10308 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10309 // A <= max(A, ...) 10310 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10311 } 10312 10313 llvm_unreachable("covered switch fell through?!"); 10314 } 10315 10316 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10317 const SCEV *LHS, const SCEV *RHS, 10318 const SCEV *FoundLHS, 10319 const SCEV *FoundRHS, 10320 unsigned Depth) { 10321 assert(getTypeSizeInBits(LHS->getType()) == 10322 getTypeSizeInBits(RHS->getType()) && 10323 "LHS and RHS have different sizes?"); 10324 assert(getTypeSizeInBits(FoundLHS->getType()) == 10325 getTypeSizeInBits(FoundRHS->getType()) && 10326 "FoundLHS and FoundRHS have different sizes?"); 10327 // We want to avoid hurting the compile time with analysis of too big trees. 10328 if (Depth > MaxSCEVOperationsImplicationDepth) 10329 return false; 10330 10331 // We only want to work with GT comparison so far. 10332 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10333 Pred = CmpInst::getSwappedPredicate(Pred); 10334 std::swap(LHS, RHS); 10335 std::swap(FoundLHS, FoundRHS); 10336 } 10337 10338 // For unsigned, try to reduce it to corresponding signed comparison. 10339 if (Pred == ICmpInst::ICMP_UGT) 10340 // We can replace unsigned predicate with its signed counterpart if all 10341 // involved values are non-negative. 10342 // TODO: We could have better support for unsigned. 10343 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10344 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10345 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10346 // use this fact to prove that LHS and RHS are non-negative. 10347 const SCEV *MinusOne = getNegativeSCEV(getOne(LHS->getType())); 10348 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10349 FoundRHS) && 10350 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10351 FoundRHS)) 10352 Pred = ICmpInst::ICMP_SGT; 10353 } 10354 10355 if (Pred != ICmpInst::ICMP_SGT) 10356 return false; 10357 10358 auto GetOpFromSExt = [&](const SCEV *S) { 10359 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10360 return Ext->getOperand(); 10361 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10362 // the constant in some cases. 10363 return S; 10364 }; 10365 10366 // Acquire values from extensions. 10367 auto *OrigLHS = LHS; 10368 auto *OrigFoundLHS = FoundLHS; 10369 LHS = GetOpFromSExt(LHS); 10370 FoundLHS = GetOpFromSExt(FoundLHS); 10371 10372 // Is the SGT predicate can be proved trivially or using the found context. 10373 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10374 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10375 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10376 FoundRHS, Depth + 1); 10377 }; 10378 10379 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10380 // We want to avoid creation of any new non-constant SCEV. Since we are 10381 // going to compare the operands to RHS, we should be certain that we don't 10382 // need any size extensions for this. So let's decline all cases when the 10383 // sizes of types of LHS and RHS do not match. 10384 // TODO: Maybe try to get RHS from sext to catch more cases? 10385 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10386 return false; 10387 10388 // Should not overflow. 10389 if (!LHSAddExpr->hasNoSignedWrap()) 10390 return false; 10391 10392 auto *LL = LHSAddExpr->getOperand(0); 10393 auto *LR = LHSAddExpr->getOperand(1); 10394 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10395 10396 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10397 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10398 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10399 }; 10400 // Try to prove the following rule: 10401 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10402 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10403 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10404 return true; 10405 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10406 Value *LL, *LR; 10407 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10408 10409 using namespace llvm::PatternMatch; 10410 10411 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10412 // Rules for division. 10413 // We are going to perform some comparisons with Denominator and its 10414 // derivative expressions. In general case, creating a SCEV for it may 10415 // lead to a complex analysis of the entire graph, and in particular it 10416 // can request trip count recalculation for the same loop. This would 10417 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10418 // this, we only want to create SCEVs that are constants in this section. 10419 // So we bail if Denominator is not a constant. 10420 if (!isa<ConstantInt>(LR)) 10421 return false; 10422 10423 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10424 10425 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10426 // then a SCEV for the numerator already exists and matches with FoundLHS. 10427 auto *Numerator = getExistingSCEV(LL); 10428 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10429 return false; 10430 10431 // Make sure that the numerator matches with FoundLHS and the denominator 10432 // is positive. 10433 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10434 return false; 10435 10436 auto *DTy = Denominator->getType(); 10437 auto *FRHSTy = FoundRHS->getType(); 10438 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10439 // One of types is a pointer and another one is not. We cannot extend 10440 // them properly to a wider type, so let us just reject this case. 10441 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10442 // to avoid this check. 10443 return false; 10444 10445 // Given that: 10446 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10447 auto *WTy = getWiderType(DTy, FRHSTy); 10448 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10449 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10450 10451 // Try to prove the following rule: 10452 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10453 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10454 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10455 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10456 if (isKnownNonPositive(RHS) && 10457 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10458 return true; 10459 10460 // Try to prove the following rule: 10461 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10462 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10463 // If we divide it by Denominator > 2, then: 10464 // 1. If FoundLHS is negative, then the result is 0. 10465 // 2. If FoundLHS is non-negative, then the result is non-negative. 10466 // Anyways, the result is non-negative. 10467 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10468 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10469 if (isKnownNegative(RHS) && 10470 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10471 return true; 10472 } 10473 } 10474 10475 // If our expression contained SCEVUnknown Phis, and we split it down and now 10476 // need to prove something for them, try to prove the predicate for every 10477 // possible incoming values of those Phis. 10478 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10479 return true; 10480 10481 return false; 10482 } 10483 10484 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10485 const SCEV *LHS, const SCEV *RHS) { 10486 // zext x u<= sext x, sext x s<= zext x 10487 switch (Pred) { 10488 case ICmpInst::ICMP_SGE: 10489 std::swap(LHS, RHS); 10490 LLVM_FALLTHROUGH; 10491 case ICmpInst::ICMP_SLE: { 10492 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10493 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10494 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10495 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10496 return true; 10497 break; 10498 } 10499 case ICmpInst::ICMP_UGE: 10500 std::swap(LHS, RHS); 10501 LLVM_FALLTHROUGH; 10502 case ICmpInst::ICMP_ULE: { 10503 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10504 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10505 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10506 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10507 return true; 10508 break; 10509 } 10510 default: 10511 break; 10512 }; 10513 return false; 10514 } 10515 10516 bool 10517 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10518 const SCEV *LHS, const SCEV *RHS) { 10519 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10520 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10521 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10522 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10523 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10524 } 10525 10526 bool 10527 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10528 const SCEV *LHS, const SCEV *RHS, 10529 const SCEV *FoundLHS, 10530 const SCEV *FoundRHS) { 10531 switch (Pred) { 10532 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10533 case ICmpInst::ICMP_EQ: 10534 case ICmpInst::ICMP_NE: 10535 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10536 return true; 10537 break; 10538 case ICmpInst::ICMP_SLT: 10539 case ICmpInst::ICMP_SLE: 10540 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10541 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10542 return true; 10543 break; 10544 case ICmpInst::ICMP_SGT: 10545 case ICmpInst::ICMP_SGE: 10546 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10547 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10548 return true; 10549 break; 10550 case ICmpInst::ICMP_ULT: 10551 case ICmpInst::ICMP_ULE: 10552 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10553 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10554 return true; 10555 break; 10556 case ICmpInst::ICMP_UGT: 10557 case ICmpInst::ICMP_UGE: 10558 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10559 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10560 return true; 10561 break; 10562 } 10563 10564 // Maybe it can be proved via operations? 10565 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10566 return true; 10567 10568 return false; 10569 } 10570 10571 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10572 const SCEV *LHS, 10573 const SCEV *RHS, 10574 const SCEV *FoundLHS, 10575 const SCEV *FoundRHS) { 10576 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10577 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10578 // reduce the compile time impact of this optimization. 10579 return false; 10580 10581 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10582 if (!Addend) 10583 return false; 10584 10585 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10586 10587 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10588 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10589 ConstantRange FoundLHSRange = 10590 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10591 10592 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10593 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10594 10595 // We can also compute the range of values for `LHS` that satisfy the 10596 // consequent, "`LHS` `Pred` `RHS`": 10597 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10598 ConstantRange SatisfyingLHSRange = 10599 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10600 10601 // The antecedent implies the consequent if every value of `LHS` that 10602 // satisfies the antecedent also satisfies the consequent. 10603 return SatisfyingLHSRange.contains(LHSRange); 10604 } 10605 10606 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10607 bool IsSigned, bool NoWrap) { 10608 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10609 10610 if (NoWrap) return false; 10611 10612 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10613 const SCEV *One = getOne(Stride->getType()); 10614 10615 if (IsSigned) { 10616 APInt MaxRHS = getSignedRangeMax(RHS); 10617 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10618 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10619 10620 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10621 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10622 } 10623 10624 APInt MaxRHS = getUnsignedRangeMax(RHS); 10625 APInt MaxValue = APInt::getMaxValue(BitWidth); 10626 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10627 10628 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10629 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10630 } 10631 10632 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10633 bool IsSigned, bool NoWrap) { 10634 if (NoWrap) return false; 10635 10636 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10637 const SCEV *One = getOne(Stride->getType()); 10638 10639 if (IsSigned) { 10640 APInt MinRHS = getSignedRangeMin(RHS); 10641 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10642 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10643 10644 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10645 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10646 } 10647 10648 APInt MinRHS = getUnsignedRangeMin(RHS); 10649 APInt MinValue = APInt::getMinValue(BitWidth); 10650 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10651 10652 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10653 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10654 } 10655 10656 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10657 bool Equality) { 10658 const SCEV *One = getOne(Step->getType()); 10659 Delta = Equality ? getAddExpr(Delta, Step) 10660 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10661 return getUDivExpr(Delta, Step); 10662 } 10663 10664 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10665 const SCEV *Stride, 10666 const SCEV *End, 10667 unsigned BitWidth, 10668 bool IsSigned) { 10669 10670 assert(!isKnownNonPositive(Stride) && 10671 "Stride is expected strictly positive!"); 10672 // Calculate the maximum backedge count based on the range of values 10673 // permitted by Start, End, and Stride. 10674 const SCEV *MaxBECount; 10675 APInt MinStart = 10676 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10677 10678 APInt StrideForMaxBECount = 10679 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10680 10681 // We already know that the stride is positive, so we paper over conservatism 10682 // in our range computation by forcing StrideForMaxBECount to be at least one. 10683 // In theory this is unnecessary, but we expect MaxBECount to be a 10684 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10685 // is nothing to constant fold it to). 10686 APInt One(BitWidth, 1, IsSigned); 10687 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10688 10689 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10690 : APInt::getMaxValue(BitWidth); 10691 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10692 10693 // Although End can be a MAX expression we estimate MaxEnd considering only 10694 // the case End = RHS of the loop termination condition. This is safe because 10695 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10696 // taken count. 10697 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10698 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10699 10700 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10701 getConstant(StrideForMaxBECount) /* Step */, 10702 false /* Equality */); 10703 10704 return MaxBECount; 10705 } 10706 10707 ScalarEvolution::ExitLimit 10708 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10709 const Loop *L, bool IsSigned, 10710 bool ControlsExit, bool AllowPredicates) { 10711 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10712 10713 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10714 bool PredicatedIV = false; 10715 10716 if (!IV && AllowPredicates) { 10717 // Try to make this an AddRec using runtime tests, in the first X 10718 // iterations of this loop, where X is the SCEV expression found by the 10719 // algorithm below. 10720 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10721 PredicatedIV = true; 10722 } 10723 10724 // Avoid weird loops 10725 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10726 return getCouldNotCompute(); 10727 10728 bool NoWrap = ControlsExit && 10729 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10730 10731 const SCEV *Stride = IV->getStepRecurrence(*this); 10732 10733 bool PositiveStride = isKnownPositive(Stride); 10734 10735 // Avoid negative or zero stride values. 10736 if (!PositiveStride) { 10737 // We can compute the correct backedge taken count for loops with unknown 10738 // strides if we can prove that the loop is not an infinite loop with side 10739 // effects. Here's the loop structure we are trying to handle - 10740 // 10741 // i = start 10742 // do { 10743 // A[i] = i; 10744 // i += s; 10745 // } while (i < end); 10746 // 10747 // The backedge taken count for such loops is evaluated as - 10748 // (max(end, start + stride) - start - 1) /u stride 10749 // 10750 // The additional preconditions that we need to check to prove correctness 10751 // of the above formula is as follows - 10752 // 10753 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10754 // NoWrap flag). 10755 // b) loop is single exit with no side effects. 10756 // 10757 // 10758 // Precondition a) implies that if the stride is negative, this is a single 10759 // trip loop. The backedge taken count formula reduces to zero in this case. 10760 // 10761 // Precondition b) implies that the unknown stride cannot be zero otherwise 10762 // we have UB. 10763 // 10764 // The positive stride case is the same as isKnownPositive(Stride) returning 10765 // true (original behavior of the function). 10766 // 10767 // We want to make sure that the stride is truly unknown as there are edge 10768 // cases where ScalarEvolution propagates no wrap flags to the 10769 // post-increment/decrement IV even though the increment/decrement operation 10770 // itself is wrapping. The computed backedge taken count may be wrong in 10771 // such cases. This is prevented by checking that the stride is not known to 10772 // be either positive or non-positive. For example, no wrap flags are 10773 // propagated to the post-increment IV of this loop with a trip count of 2 - 10774 // 10775 // unsigned char i; 10776 // for(i=127; i<128; i+=129) 10777 // A[i] = i; 10778 // 10779 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10780 !loopHasNoSideEffects(L)) 10781 return getCouldNotCompute(); 10782 } else if (!Stride->isOne() && 10783 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10784 // Avoid proven overflow cases: this will ensure that the backedge taken 10785 // count will not generate any unsigned overflow. Relaxed no-overflow 10786 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10787 // undefined behaviors like the case of C language. 10788 return getCouldNotCompute(); 10789 10790 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10791 : ICmpInst::ICMP_ULT; 10792 const SCEV *Start = IV->getStart(); 10793 const SCEV *End = RHS; 10794 // When the RHS is not invariant, we do not know the end bound of the loop and 10795 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10796 // calculate the MaxBECount, given the start, stride and max value for the end 10797 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10798 // checked above). 10799 if (!isLoopInvariant(RHS, L)) { 10800 const SCEV *MaxBECount = computeMaxBECountForLT( 10801 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10802 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10803 false /*MaxOrZero*/, Predicates); 10804 } 10805 // If the backedge is taken at least once, then it will be taken 10806 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10807 // is the LHS value of the less-than comparison the first time it is evaluated 10808 // and End is the RHS. 10809 const SCEV *BECountIfBackedgeTaken = 10810 computeBECount(getMinusSCEV(End, Start), Stride, false); 10811 // If the loop entry is guarded by the result of the backedge test of the 10812 // first loop iteration, then we know the backedge will be taken at least 10813 // once and so the backedge taken count is as above. If not then we use the 10814 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10815 // as if the backedge is taken at least once max(End,Start) is End and so the 10816 // result is as above, and if not max(End,Start) is Start so we get a backedge 10817 // count of zero. 10818 const SCEV *BECount; 10819 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10820 BECount = BECountIfBackedgeTaken; 10821 else { 10822 // If we know that RHS >= Start in the context of loop, then we know that 10823 // max(RHS, Start) = RHS at this point. 10824 if (isLoopEntryGuardedByCond( 10825 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 10826 End = RHS; 10827 else 10828 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10829 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10830 } 10831 10832 const SCEV *MaxBECount; 10833 bool MaxOrZero = false; 10834 if (isa<SCEVConstant>(BECount)) 10835 MaxBECount = BECount; 10836 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10837 // If we know exactly how many times the backedge will be taken if it's 10838 // taken at least once, then the backedge count will either be that or 10839 // zero. 10840 MaxBECount = BECountIfBackedgeTaken; 10841 MaxOrZero = true; 10842 } else { 10843 MaxBECount = computeMaxBECountForLT( 10844 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10845 } 10846 10847 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10848 !isa<SCEVCouldNotCompute>(BECount)) 10849 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10850 10851 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10852 } 10853 10854 ScalarEvolution::ExitLimit 10855 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10856 const Loop *L, bool IsSigned, 10857 bool ControlsExit, bool AllowPredicates) { 10858 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10859 // We handle only IV > Invariant 10860 if (!isLoopInvariant(RHS, L)) 10861 return getCouldNotCompute(); 10862 10863 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10864 if (!IV && AllowPredicates) 10865 // Try to make this an AddRec using runtime tests, in the first X 10866 // iterations of this loop, where X is the SCEV expression found by the 10867 // algorithm below. 10868 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10869 10870 // Avoid weird loops 10871 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10872 return getCouldNotCompute(); 10873 10874 bool NoWrap = ControlsExit && 10875 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10876 10877 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10878 10879 // Avoid negative or zero stride values 10880 if (!isKnownPositive(Stride)) 10881 return getCouldNotCompute(); 10882 10883 // Avoid proven overflow cases: this will ensure that the backedge taken count 10884 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10885 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10886 // behaviors like the case of C language. 10887 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10888 return getCouldNotCompute(); 10889 10890 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10891 : ICmpInst::ICMP_UGT; 10892 10893 const SCEV *Start = IV->getStart(); 10894 const SCEV *End = RHS; 10895 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 10896 // If we know that Start >= RHS in the context of loop, then we know that 10897 // min(RHS, Start) = RHS at this point. 10898 if (isLoopEntryGuardedByCond( 10899 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 10900 End = RHS; 10901 else 10902 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10903 } 10904 10905 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10906 10907 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10908 : getUnsignedRangeMax(Start); 10909 10910 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10911 : getUnsignedRangeMin(Stride); 10912 10913 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10914 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10915 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10916 10917 // Although End can be a MIN expression we estimate MinEnd considering only 10918 // the case End = RHS. This is safe because in the other case (Start - End) 10919 // is zero, leading to a zero maximum backedge taken count. 10920 APInt MinEnd = 10921 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10922 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10923 10924 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 10925 ? BECount 10926 : computeBECount(getConstant(MaxStart - MinEnd), 10927 getConstant(MinStride), false); 10928 10929 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10930 MaxBECount = BECount; 10931 10932 return ExitLimit(BECount, MaxBECount, false, Predicates); 10933 } 10934 10935 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10936 ScalarEvolution &SE) const { 10937 if (Range.isFullSet()) // Infinite loop. 10938 return SE.getCouldNotCompute(); 10939 10940 // If the start is a non-zero constant, shift the range to simplify things. 10941 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10942 if (!SC->getValue()->isZero()) { 10943 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10944 Operands[0] = SE.getZero(SC->getType()); 10945 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10946 getNoWrapFlags(FlagNW)); 10947 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10948 return ShiftedAddRec->getNumIterationsInRange( 10949 Range.subtract(SC->getAPInt()), SE); 10950 // This is strange and shouldn't happen. 10951 return SE.getCouldNotCompute(); 10952 } 10953 10954 // The only time we can solve this is when we have all constant indices. 10955 // Otherwise, we cannot determine the overflow conditions. 10956 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10957 return SE.getCouldNotCompute(); 10958 10959 // Okay at this point we know that all elements of the chrec are constants and 10960 // that the start element is zero. 10961 10962 // First check to see if the range contains zero. If not, the first 10963 // iteration exits. 10964 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10965 if (!Range.contains(APInt(BitWidth, 0))) 10966 return SE.getZero(getType()); 10967 10968 if (isAffine()) { 10969 // If this is an affine expression then we have this situation: 10970 // Solve {0,+,A} in Range === Ax in Range 10971 10972 // We know that zero is in the range. If A is positive then we know that 10973 // the upper value of the range must be the first possible exit value. 10974 // If A is negative then the lower of the range is the last possible loop 10975 // value. Also note that we already checked for a full range. 10976 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10977 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10978 10979 // The exit value should be (End+A)/A. 10980 APInt ExitVal = (End + A).udiv(A); 10981 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10982 10983 // Evaluate at the exit value. If we really did fall out of the valid 10984 // range, then we computed our trip count, otherwise wrap around or other 10985 // things must have happened. 10986 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10987 if (Range.contains(Val->getValue())) 10988 return SE.getCouldNotCompute(); // Something strange happened 10989 10990 // Ensure that the previous value is in the range. This is a sanity check. 10991 assert(Range.contains( 10992 EvaluateConstantChrecAtConstant(this, 10993 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10994 "Linear scev computation is off in a bad way!"); 10995 return SE.getConstant(ExitValue); 10996 } 10997 10998 if (isQuadratic()) { 10999 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11000 return SE.getConstant(S.getValue()); 11001 } 11002 11003 return SE.getCouldNotCompute(); 11004 } 11005 11006 const SCEVAddRecExpr * 11007 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11008 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11009 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11010 // but in this case we cannot guarantee that the value returned will be an 11011 // AddRec because SCEV does not have a fixed point where it stops 11012 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11013 // may happen if we reach arithmetic depth limit while simplifying. So we 11014 // construct the returned value explicitly. 11015 SmallVector<const SCEV *, 3> Ops; 11016 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11017 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11018 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11019 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11020 // We know that the last operand is not a constant zero (otherwise it would 11021 // have been popped out earlier). This guarantees us that if the result has 11022 // the same last operand, then it will also not be popped out, meaning that 11023 // the returned value will be an AddRec. 11024 const SCEV *Last = getOperand(getNumOperands() - 1); 11025 assert(!Last->isZero() && "Recurrency with zero step?"); 11026 Ops.push_back(Last); 11027 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11028 SCEV::FlagAnyWrap)); 11029 } 11030 11031 // Return true when S contains at least an undef value. 11032 static inline bool containsUndefs(const SCEV *S) { 11033 return SCEVExprContains(S, [](const SCEV *S) { 11034 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11035 return isa<UndefValue>(SU->getValue()); 11036 return false; 11037 }); 11038 } 11039 11040 namespace { 11041 11042 // Collect all steps of SCEV expressions. 11043 struct SCEVCollectStrides { 11044 ScalarEvolution &SE; 11045 SmallVectorImpl<const SCEV *> &Strides; 11046 11047 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11048 : SE(SE), Strides(S) {} 11049 11050 bool follow(const SCEV *S) { 11051 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11052 Strides.push_back(AR->getStepRecurrence(SE)); 11053 return true; 11054 } 11055 11056 bool isDone() const { return false; } 11057 }; 11058 11059 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11060 struct SCEVCollectTerms { 11061 SmallVectorImpl<const SCEV *> &Terms; 11062 11063 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11064 11065 bool follow(const SCEV *S) { 11066 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11067 isa<SCEVSignExtendExpr>(S)) { 11068 if (!containsUndefs(S)) 11069 Terms.push_back(S); 11070 11071 // Stop recursion: once we collected a term, do not walk its operands. 11072 return false; 11073 } 11074 11075 // Keep looking. 11076 return true; 11077 } 11078 11079 bool isDone() const { return false; } 11080 }; 11081 11082 // Check if a SCEV contains an AddRecExpr. 11083 struct SCEVHasAddRec { 11084 bool &ContainsAddRec; 11085 11086 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11087 ContainsAddRec = false; 11088 } 11089 11090 bool follow(const SCEV *S) { 11091 if (isa<SCEVAddRecExpr>(S)) { 11092 ContainsAddRec = true; 11093 11094 // Stop recursion: once we collected a term, do not walk its operands. 11095 return false; 11096 } 11097 11098 // Keep looking. 11099 return true; 11100 } 11101 11102 bool isDone() const { return false; } 11103 }; 11104 11105 // Find factors that are multiplied with an expression that (possibly as a 11106 // subexpression) contains an AddRecExpr. In the expression: 11107 // 11108 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11109 // 11110 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11111 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11112 // parameters as they form a product with an induction variable. 11113 // 11114 // This collector expects all array size parameters to be in the same MulExpr. 11115 // It might be necessary to later add support for collecting parameters that are 11116 // spread over different nested MulExpr. 11117 struct SCEVCollectAddRecMultiplies { 11118 SmallVectorImpl<const SCEV *> &Terms; 11119 ScalarEvolution &SE; 11120 11121 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11122 : Terms(T), SE(SE) {} 11123 11124 bool follow(const SCEV *S) { 11125 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11126 bool HasAddRec = false; 11127 SmallVector<const SCEV *, 0> Operands; 11128 for (auto Op : Mul->operands()) { 11129 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11130 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11131 Operands.push_back(Op); 11132 } else if (Unknown) { 11133 HasAddRec = true; 11134 } else { 11135 bool ContainsAddRec = false; 11136 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11137 visitAll(Op, ContiansAddRec); 11138 HasAddRec |= ContainsAddRec; 11139 } 11140 } 11141 if (Operands.size() == 0) 11142 return true; 11143 11144 if (!HasAddRec) 11145 return false; 11146 11147 Terms.push_back(SE.getMulExpr(Operands)); 11148 // Stop recursion: once we collected a term, do not walk its operands. 11149 return false; 11150 } 11151 11152 // Keep looking. 11153 return true; 11154 } 11155 11156 bool isDone() const { return false; } 11157 }; 11158 11159 } // end anonymous namespace 11160 11161 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11162 /// two places: 11163 /// 1) The strides of AddRec expressions. 11164 /// 2) Unknowns that are multiplied with AddRec expressions. 11165 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11166 SmallVectorImpl<const SCEV *> &Terms) { 11167 SmallVector<const SCEV *, 4> Strides; 11168 SCEVCollectStrides StrideCollector(*this, Strides); 11169 visitAll(Expr, StrideCollector); 11170 11171 LLVM_DEBUG({ 11172 dbgs() << "Strides:\n"; 11173 for (const SCEV *S : Strides) 11174 dbgs() << *S << "\n"; 11175 }); 11176 11177 for (const SCEV *S : Strides) { 11178 SCEVCollectTerms TermCollector(Terms); 11179 visitAll(S, TermCollector); 11180 } 11181 11182 LLVM_DEBUG({ 11183 dbgs() << "Terms:\n"; 11184 for (const SCEV *T : Terms) 11185 dbgs() << *T << "\n"; 11186 }); 11187 11188 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11189 visitAll(Expr, MulCollector); 11190 } 11191 11192 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11193 SmallVectorImpl<const SCEV *> &Terms, 11194 SmallVectorImpl<const SCEV *> &Sizes) { 11195 int Last = Terms.size() - 1; 11196 const SCEV *Step = Terms[Last]; 11197 11198 // End of recursion. 11199 if (Last == 0) { 11200 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11201 SmallVector<const SCEV *, 2> Qs; 11202 for (const SCEV *Op : M->operands()) 11203 if (!isa<SCEVConstant>(Op)) 11204 Qs.push_back(Op); 11205 11206 Step = SE.getMulExpr(Qs); 11207 } 11208 11209 Sizes.push_back(Step); 11210 return true; 11211 } 11212 11213 for (const SCEV *&Term : Terms) { 11214 // Normalize the terms before the next call to findArrayDimensionsRec. 11215 const SCEV *Q, *R; 11216 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11217 11218 // Bail out when GCD does not evenly divide one of the terms. 11219 if (!R->isZero()) 11220 return false; 11221 11222 Term = Q; 11223 } 11224 11225 // Remove all SCEVConstants. 11226 Terms.erase( 11227 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11228 Terms.end()); 11229 11230 if (Terms.size() > 0) 11231 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11232 return false; 11233 11234 Sizes.push_back(Step); 11235 return true; 11236 } 11237 11238 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11239 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11240 for (const SCEV *T : Terms) 11241 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11242 return true; 11243 11244 return false; 11245 } 11246 11247 // Return the number of product terms in S. 11248 static inline int numberOfTerms(const SCEV *S) { 11249 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11250 return Expr->getNumOperands(); 11251 return 1; 11252 } 11253 11254 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11255 if (isa<SCEVConstant>(T)) 11256 return nullptr; 11257 11258 if (isa<SCEVUnknown>(T)) 11259 return T; 11260 11261 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11262 SmallVector<const SCEV *, 2> Factors; 11263 for (const SCEV *Op : M->operands()) 11264 if (!isa<SCEVConstant>(Op)) 11265 Factors.push_back(Op); 11266 11267 return SE.getMulExpr(Factors); 11268 } 11269 11270 return T; 11271 } 11272 11273 /// Return the size of an element read or written by Inst. 11274 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11275 Type *Ty; 11276 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11277 Ty = Store->getValueOperand()->getType(); 11278 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11279 Ty = Load->getType(); 11280 else 11281 return nullptr; 11282 11283 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11284 return getSizeOfExpr(ETy, Ty); 11285 } 11286 11287 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11288 SmallVectorImpl<const SCEV *> &Sizes, 11289 const SCEV *ElementSize) { 11290 if (Terms.size() < 1 || !ElementSize) 11291 return; 11292 11293 // Early return when Terms do not contain parameters: we do not delinearize 11294 // non parametric SCEVs. 11295 if (!containsParameters(Terms)) 11296 return; 11297 11298 LLVM_DEBUG({ 11299 dbgs() << "Terms:\n"; 11300 for (const SCEV *T : Terms) 11301 dbgs() << *T << "\n"; 11302 }); 11303 11304 // Remove duplicates. 11305 array_pod_sort(Terms.begin(), Terms.end()); 11306 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11307 11308 // Put larger terms first. 11309 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11310 return numberOfTerms(LHS) > numberOfTerms(RHS); 11311 }); 11312 11313 // Try to divide all terms by the element size. If term is not divisible by 11314 // element size, proceed with the original term. 11315 for (const SCEV *&Term : Terms) { 11316 const SCEV *Q, *R; 11317 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11318 if (!Q->isZero()) 11319 Term = Q; 11320 } 11321 11322 SmallVector<const SCEV *, 4> NewTerms; 11323 11324 // Remove constant factors. 11325 for (const SCEV *T : Terms) 11326 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11327 NewTerms.push_back(NewT); 11328 11329 LLVM_DEBUG({ 11330 dbgs() << "Terms after sorting:\n"; 11331 for (const SCEV *T : NewTerms) 11332 dbgs() << *T << "\n"; 11333 }); 11334 11335 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11336 Sizes.clear(); 11337 return; 11338 } 11339 11340 // The last element to be pushed into Sizes is the size of an element. 11341 Sizes.push_back(ElementSize); 11342 11343 LLVM_DEBUG({ 11344 dbgs() << "Sizes:\n"; 11345 for (const SCEV *S : Sizes) 11346 dbgs() << *S << "\n"; 11347 }); 11348 } 11349 11350 void ScalarEvolution::computeAccessFunctions( 11351 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11352 SmallVectorImpl<const SCEV *> &Sizes) { 11353 // Early exit in case this SCEV is not an affine multivariate function. 11354 if (Sizes.empty()) 11355 return; 11356 11357 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11358 if (!AR->isAffine()) 11359 return; 11360 11361 const SCEV *Res = Expr; 11362 int Last = Sizes.size() - 1; 11363 for (int i = Last; i >= 0; i--) { 11364 const SCEV *Q, *R; 11365 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11366 11367 LLVM_DEBUG({ 11368 dbgs() << "Res: " << *Res << "\n"; 11369 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11370 dbgs() << "Res divided by Sizes[i]:\n"; 11371 dbgs() << "Quotient: " << *Q << "\n"; 11372 dbgs() << "Remainder: " << *R << "\n"; 11373 }); 11374 11375 Res = Q; 11376 11377 // Do not record the last subscript corresponding to the size of elements in 11378 // the array. 11379 if (i == Last) { 11380 11381 // Bail out if the remainder is too complex. 11382 if (isa<SCEVAddRecExpr>(R)) { 11383 Subscripts.clear(); 11384 Sizes.clear(); 11385 return; 11386 } 11387 11388 continue; 11389 } 11390 11391 // Record the access function for the current subscript. 11392 Subscripts.push_back(R); 11393 } 11394 11395 // Also push in last position the remainder of the last division: it will be 11396 // the access function of the innermost dimension. 11397 Subscripts.push_back(Res); 11398 11399 std::reverse(Subscripts.begin(), Subscripts.end()); 11400 11401 LLVM_DEBUG({ 11402 dbgs() << "Subscripts:\n"; 11403 for (const SCEV *S : Subscripts) 11404 dbgs() << *S << "\n"; 11405 }); 11406 } 11407 11408 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11409 /// sizes of an array access. Returns the remainder of the delinearization that 11410 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11411 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11412 /// expressions in the stride and base of a SCEV corresponding to the 11413 /// computation of a GCD (greatest common divisor) of base and stride. When 11414 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11415 /// 11416 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11417 /// 11418 /// void foo(long n, long m, long o, double A[n][m][o]) { 11419 /// 11420 /// for (long i = 0; i < n; i++) 11421 /// for (long j = 0; j < m; j++) 11422 /// for (long k = 0; k < o; k++) 11423 /// A[i][j][k] = 1.0; 11424 /// } 11425 /// 11426 /// the delinearization input is the following AddRec SCEV: 11427 /// 11428 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11429 /// 11430 /// From this SCEV, we are able to say that the base offset of the access is %A 11431 /// because it appears as an offset that does not divide any of the strides in 11432 /// the loops: 11433 /// 11434 /// CHECK: Base offset: %A 11435 /// 11436 /// and then SCEV->delinearize determines the size of some of the dimensions of 11437 /// the array as these are the multiples by which the strides are happening: 11438 /// 11439 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11440 /// 11441 /// Note that the outermost dimension remains of UnknownSize because there are 11442 /// no strides that would help identifying the size of the last dimension: when 11443 /// the array has been statically allocated, one could compute the size of that 11444 /// dimension by dividing the overall size of the array by the size of the known 11445 /// dimensions: %m * %o * 8. 11446 /// 11447 /// Finally delinearize provides the access functions for the array reference 11448 /// that does correspond to A[i][j][k] of the above C testcase: 11449 /// 11450 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11451 /// 11452 /// The testcases are checking the output of a function pass: 11453 /// DelinearizationPass that walks through all loads and stores of a function 11454 /// asking for the SCEV of the memory access with respect to all enclosing 11455 /// loops, calling SCEV->delinearize on that and printing the results. 11456 void ScalarEvolution::delinearize(const SCEV *Expr, 11457 SmallVectorImpl<const SCEV *> &Subscripts, 11458 SmallVectorImpl<const SCEV *> &Sizes, 11459 const SCEV *ElementSize) { 11460 // First step: collect parametric terms. 11461 SmallVector<const SCEV *, 4> Terms; 11462 collectParametricTerms(Expr, Terms); 11463 11464 if (Terms.empty()) 11465 return; 11466 11467 // Second step: find subscript sizes. 11468 findArrayDimensions(Terms, Sizes, ElementSize); 11469 11470 if (Sizes.empty()) 11471 return; 11472 11473 // Third step: compute the access functions for each subscript. 11474 computeAccessFunctions(Expr, Subscripts, Sizes); 11475 11476 if (Subscripts.empty()) 11477 return; 11478 11479 LLVM_DEBUG({ 11480 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11481 dbgs() << "ArrayDecl[UnknownSize]"; 11482 for (const SCEV *S : Sizes) 11483 dbgs() << "[" << *S << "]"; 11484 11485 dbgs() << "\nArrayRef"; 11486 for (const SCEV *S : Subscripts) 11487 dbgs() << "[" << *S << "]"; 11488 dbgs() << "\n"; 11489 }); 11490 } 11491 11492 bool ScalarEvolution::getIndexExpressionsFromGEP( 11493 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11494 SmallVectorImpl<int> &Sizes) { 11495 assert(Subscripts.empty() && Sizes.empty() && 11496 "Expected output lists to be empty on entry to this function."); 11497 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11498 Type *Ty = GEP->getPointerOperandType(); 11499 bool DroppedFirstDim = false; 11500 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11501 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11502 if (i == 1) { 11503 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11504 Ty = PtrTy->getElementType(); 11505 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11506 Ty = ArrayTy->getElementType(); 11507 } else { 11508 Subscripts.clear(); 11509 Sizes.clear(); 11510 return false; 11511 } 11512 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11513 if (Const->getValue()->isZero()) { 11514 DroppedFirstDim = true; 11515 continue; 11516 } 11517 Subscripts.push_back(Expr); 11518 continue; 11519 } 11520 11521 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11522 if (!ArrayTy) { 11523 Subscripts.clear(); 11524 Sizes.clear(); 11525 return false; 11526 } 11527 11528 Subscripts.push_back(Expr); 11529 if (!(DroppedFirstDim && i == 2)) 11530 Sizes.push_back(ArrayTy->getNumElements()); 11531 11532 Ty = ArrayTy->getElementType(); 11533 } 11534 return !Subscripts.empty(); 11535 } 11536 11537 //===----------------------------------------------------------------------===// 11538 // SCEVCallbackVH Class Implementation 11539 //===----------------------------------------------------------------------===// 11540 11541 void ScalarEvolution::SCEVCallbackVH::deleted() { 11542 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11543 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11544 SE->ConstantEvolutionLoopExitValue.erase(PN); 11545 SE->eraseValueFromMap(getValPtr()); 11546 // this now dangles! 11547 } 11548 11549 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11550 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11551 11552 // Forget all the expressions associated with users of the old value, 11553 // so that future queries will recompute the expressions using the new 11554 // value. 11555 Value *Old = getValPtr(); 11556 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11557 SmallPtrSet<User *, 8> Visited; 11558 while (!Worklist.empty()) { 11559 User *U = Worklist.pop_back_val(); 11560 // Deleting the Old value will cause this to dangle. Postpone 11561 // that until everything else is done. 11562 if (U == Old) 11563 continue; 11564 if (!Visited.insert(U).second) 11565 continue; 11566 if (PHINode *PN = dyn_cast<PHINode>(U)) 11567 SE->ConstantEvolutionLoopExitValue.erase(PN); 11568 SE->eraseValueFromMap(U); 11569 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11570 } 11571 // Delete the Old value. 11572 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11573 SE->ConstantEvolutionLoopExitValue.erase(PN); 11574 SE->eraseValueFromMap(Old); 11575 // this now dangles! 11576 } 11577 11578 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11579 : CallbackVH(V), SE(se) {} 11580 11581 //===----------------------------------------------------------------------===// 11582 // ScalarEvolution Class Implementation 11583 //===----------------------------------------------------------------------===// 11584 11585 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11586 AssumptionCache &AC, DominatorTree &DT, 11587 LoopInfo &LI) 11588 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11589 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11590 LoopDispositions(64), BlockDispositions(64) { 11591 // To use guards for proving predicates, we need to scan every instruction in 11592 // relevant basic blocks, and not just terminators. Doing this is a waste of 11593 // time if the IR does not actually contain any calls to 11594 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11595 // 11596 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11597 // to _add_ guards to the module when there weren't any before, and wants 11598 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11599 // efficient in lieu of being smart in that rather obscure case. 11600 11601 auto *GuardDecl = F.getParent()->getFunction( 11602 Intrinsic::getName(Intrinsic::experimental_guard)); 11603 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11604 } 11605 11606 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11607 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11608 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11609 ValueExprMap(std::move(Arg.ValueExprMap)), 11610 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11611 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11612 PendingMerges(std::move(Arg.PendingMerges)), 11613 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11614 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11615 PredicatedBackedgeTakenCounts( 11616 std::move(Arg.PredicatedBackedgeTakenCounts)), 11617 ConstantEvolutionLoopExitValue( 11618 std::move(Arg.ConstantEvolutionLoopExitValue)), 11619 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11620 LoopDispositions(std::move(Arg.LoopDispositions)), 11621 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11622 BlockDispositions(std::move(Arg.BlockDispositions)), 11623 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11624 SignedRanges(std::move(Arg.SignedRanges)), 11625 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11626 UniquePreds(std::move(Arg.UniquePreds)), 11627 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11628 LoopUsers(std::move(Arg.LoopUsers)), 11629 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11630 FirstUnknown(Arg.FirstUnknown) { 11631 Arg.FirstUnknown = nullptr; 11632 } 11633 11634 ScalarEvolution::~ScalarEvolution() { 11635 // Iterate through all the SCEVUnknown instances and call their 11636 // destructors, so that they release their references to their values. 11637 for (SCEVUnknown *U = FirstUnknown; U;) { 11638 SCEVUnknown *Tmp = U; 11639 U = U->Next; 11640 Tmp->~SCEVUnknown(); 11641 } 11642 FirstUnknown = nullptr; 11643 11644 ExprValueMap.clear(); 11645 ValueExprMap.clear(); 11646 HasRecMap.clear(); 11647 11648 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11649 // that a loop had multiple computable exits. 11650 for (auto &BTCI : BackedgeTakenCounts) 11651 BTCI.second.clear(); 11652 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11653 BTCI.second.clear(); 11654 11655 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11656 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11657 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11658 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11659 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11660 } 11661 11662 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11663 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11664 } 11665 11666 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11667 const Loop *L) { 11668 // Print all inner loops first 11669 for (Loop *I : *L) 11670 PrintLoopInfo(OS, SE, I); 11671 11672 OS << "Loop "; 11673 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11674 OS << ": "; 11675 11676 SmallVector<BasicBlock *, 8> ExitingBlocks; 11677 L->getExitingBlocks(ExitingBlocks); 11678 if (ExitingBlocks.size() != 1) 11679 OS << "<multiple exits> "; 11680 11681 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11682 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11683 else 11684 OS << "Unpredictable backedge-taken count.\n"; 11685 11686 if (ExitingBlocks.size() > 1) 11687 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11688 OS << " exit count for " << ExitingBlock->getName() << ": " 11689 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11690 } 11691 11692 OS << "Loop "; 11693 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11694 OS << ": "; 11695 11696 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11697 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11698 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11699 OS << ", actual taken count either this or zero."; 11700 } else { 11701 OS << "Unpredictable max backedge-taken count. "; 11702 } 11703 11704 OS << "\n" 11705 "Loop "; 11706 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11707 OS << ": "; 11708 11709 SCEVUnionPredicate Pred; 11710 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11711 if (!isa<SCEVCouldNotCompute>(PBT)) { 11712 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11713 OS << " Predicates:\n"; 11714 Pred.print(OS, 4); 11715 } else { 11716 OS << "Unpredictable predicated backedge-taken count. "; 11717 } 11718 OS << "\n"; 11719 11720 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11721 OS << "Loop "; 11722 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11723 OS << ": "; 11724 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11725 } 11726 } 11727 11728 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11729 switch (LD) { 11730 case ScalarEvolution::LoopVariant: 11731 return "Variant"; 11732 case ScalarEvolution::LoopInvariant: 11733 return "Invariant"; 11734 case ScalarEvolution::LoopComputable: 11735 return "Computable"; 11736 } 11737 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11738 } 11739 11740 void ScalarEvolution::print(raw_ostream &OS) const { 11741 // ScalarEvolution's implementation of the print method is to print 11742 // out SCEV values of all instructions that are interesting. Doing 11743 // this potentially causes it to create new SCEV objects though, 11744 // which technically conflicts with the const qualifier. This isn't 11745 // observable from outside the class though, so casting away the 11746 // const isn't dangerous. 11747 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11748 11749 if (ClassifyExpressions) { 11750 OS << "Classifying expressions for: "; 11751 F.printAsOperand(OS, /*PrintType=*/false); 11752 OS << "\n"; 11753 for (Instruction &I : instructions(F)) 11754 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11755 OS << I << '\n'; 11756 OS << " --> "; 11757 const SCEV *SV = SE.getSCEV(&I); 11758 SV->print(OS); 11759 if (!isa<SCEVCouldNotCompute>(SV)) { 11760 OS << " U: "; 11761 SE.getUnsignedRange(SV).print(OS); 11762 OS << " S: "; 11763 SE.getSignedRange(SV).print(OS); 11764 } 11765 11766 const Loop *L = LI.getLoopFor(I.getParent()); 11767 11768 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11769 if (AtUse != SV) { 11770 OS << " --> "; 11771 AtUse->print(OS); 11772 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11773 OS << " U: "; 11774 SE.getUnsignedRange(AtUse).print(OS); 11775 OS << " S: "; 11776 SE.getSignedRange(AtUse).print(OS); 11777 } 11778 } 11779 11780 if (L) { 11781 OS << "\t\t" "Exits: "; 11782 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11783 if (!SE.isLoopInvariant(ExitValue, L)) { 11784 OS << "<<Unknown>>"; 11785 } else { 11786 OS << *ExitValue; 11787 } 11788 11789 bool First = true; 11790 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11791 if (First) { 11792 OS << "\t\t" "LoopDispositions: { "; 11793 First = false; 11794 } else { 11795 OS << ", "; 11796 } 11797 11798 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11799 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11800 } 11801 11802 for (auto *InnerL : depth_first(L)) { 11803 if (InnerL == L) 11804 continue; 11805 if (First) { 11806 OS << "\t\t" "LoopDispositions: { "; 11807 First = false; 11808 } else { 11809 OS << ", "; 11810 } 11811 11812 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11813 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11814 } 11815 11816 OS << " }"; 11817 } 11818 11819 OS << "\n"; 11820 } 11821 } 11822 11823 OS << "Determining loop execution counts for: "; 11824 F.printAsOperand(OS, /*PrintType=*/false); 11825 OS << "\n"; 11826 for (Loop *I : LI) 11827 PrintLoopInfo(OS, &SE, I); 11828 } 11829 11830 ScalarEvolution::LoopDisposition 11831 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11832 auto &Values = LoopDispositions[S]; 11833 for (auto &V : Values) { 11834 if (V.getPointer() == L) 11835 return V.getInt(); 11836 } 11837 Values.emplace_back(L, LoopVariant); 11838 LoopDisposition D = computeLoopDisposition(S, L); 11839 auto &Values2 = LoopDispositions[S]; 11840 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11841 if (V.getPointer() == L) { 11842 V.setInt(D); 11843 break; 11844 } 11845 } 11846 return D; 11847 } 11848 11849 ScalarEvolution::LoopDisposition 11850 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11851 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11852 case scConstant: 11853 return LoopInvariant; 11854 case scTruncate: 11855 case scZeroExtend: 11856 case scSignExtend: 11857 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11858 case scAddRecExpr: { 11859 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11860 11861 // If L is the addrec's loop, it's computable. 11862 if (AR->getLoop() == L) 11863 return LoopComputable; 11864 11865 // Add recurrences are never invariant in the function-body (null loop). 11866 if (!L) 11867 return LoopVariant; 11868 11869 // Everything that is not defined at loop entry is variant. 11870 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11871 return LoopVariant; 11872 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11873 " dominate the contained loop's header?"); 11874 11875 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11876 if (AR->getLoop()->contains(L)) 11877 return LoopInvariant; 11878 11879 // This recurrence is variant w.r.t. L if any of its operands 11880 // are variant. 11881 for (auto *Op : AR->operands()) 11882 if (!isLoopInvariant(Op, L)) 11883 return LoopVariant; 11884 11885 // Otherwise it's loop-invariant. 11886 return LoopInvariant; 11887 } 11888 case scAddExpr: 11889 case scMulExpr: 11890 case scUMaxExpr: 11891 case scSMaxExpr: 11892 case scUMinExpr: 11893 case scSMinExpr: { 11894 bool HasVarying = false; 11895 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11896 LoopDisposition D = getLoopDisposition(Op, L); 11897 if (D == LoopVariant) 11898 return LoopVariant; 11899 if (D == LoopComputable) 11900 HasVarying = true; 11901 } 11902 return HasVarying ? LoopComputable : LoopInvariant; 11903 } 11904 case scUDivExpr: { 11905 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11906 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11907 if (LD == LoopVariant) 11908 return LoopVariant; 11909 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11910 if (RD == LoopVariant) 11911 return LoopVariant; 11912 return (LD == LoopInvariant && RD == LoopInvariant) ? 11913 LoopInvariant : LoopComputable; 11914 } 11915 case scUnknown: 11916 // All non-instruction values are loop invariant. All instructions are loop 11917 // invariant if they are not contained in the specified loop. 11918 // Instructions are never considered invariant in the function body 11919 // (null loop) because they are defined within the "loop". 11920 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11921 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11922 return LoopInvariant; 11923 case scCouldNotCompute: 11924 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11925 } 11926 llvm_unreachable("Unknown SCEV kind!"); 11927 } 11928 11929 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11930 return getLoopDisposition(S, L) == LoopInvariant; 11931 } 11932 11933 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11934 return getLoopDisposition(S, L) == LoopComputable; 11935 } 11936 11937 ScalarEvolution::BlockDisposition 11938 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11939 auto &Values = BlockDispositions[S]; 11940 for (auto &V : Values) { 11941 if (V.getPointer() == BB) 11942 return V.getInt(); 11943 } 11944 Values.emplace_back(BB, DoesNotDominateBlock); 11945 BlockDisposition D = computeBlockDisposition(S, BB); 11946 auto &Values2 = BlockDispositions[S]; 11947 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11948 if (V.getPointer() == BB) { 11949 V.setInt(D); 11950 break; 11951 } 11952 } 11953 return D; 11954 } 11955 11956 ScalarEvolution::BlockDisposition 11957 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11958 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11959 case scConstant: 11960 return ProperlyDominatesBlock; 11961 case scTruncate: 11962 case scZeroExtend: 11963 case scSignExtend: 11964 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11965 case scAddRecExpr: { 11966 // This uses a "dominates" query instead of "properly dominates" query 11967 // to test for proper dominance too, because the instruction which 11968 // produces the addrec's value is a PHI, and a PHI effectively properly 11969 // dominates its entire containing block. 11970 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11971 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11972 return DoesNotDominateBlock; 11973 11974 // Fall through into SCEVNAryExpr handling. 11975 LLVM_FALLTHROUGH; 11976 } 11977 case scAddExpr: 11978 case scMulExpr: 11979 case scUMaxExpr: 11980 case scSMaxExpr: 11981 case scUMinExpr: 11982 case scSMinExpr: { 11983 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11984 bool Proper = true; 11985 for (const SCEV *NAryOp : NAry->operands()) { 11986 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11987 if (D == DoesNotDominateBlock) 11988 return DoesNotDominateBlock; 11989 if (D == DominatesBlock) 11990 Proper = false; 11991 } 11992 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11993 } 11994 case scUDivExpr: { 11995 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11996 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11997 BlockDisposition LD = getBlockDisposition(LHS, BB); 11998 if (LD == DoesNotDominateBlock) 11999 return DoesNotDominateBlock; 12000 BlockDisposition RD = getBlockDisposition(RHS, BB); 12001 if (RD == DoesNotDominateBlock) 12002 return DoesNotDominateBlock; 12003 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12004 ProperlyDominatesBlock : DominatesBlock; 12005 } 12006 case scUnknown: 12007 if (Instruction *I = 12008 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12009 if (I->getParent() == BB) 12010 return DominatesBlock; 12011 if (DT.properlyDominates(I->getParent(), BB)) 12012 return ProperlyDominatesBlock; 12013 return DoesNotDominateBlock; 12014 } 12015 return ProperlyDominatesBlock; 12016 case scCouldNotCompute: 12017 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12018 } 12019 llvm_unreachable("Unknown SCEV kind!"); 12020 } 12021 12022 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12023 return getBlockDisposition(S, BB) >= DominatesBlock; 12024 } 12025 12026 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12027 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12028 } 12029 12030 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12031 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12032 } 12033 12034 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12035 auto IsS = [&](const SCEV *X) { return S == X; }; 12036 auto ContainsS = [&](const SCEV *X) { 12037 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12038 }; 12039 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12040 } 12041 12042 void 12043 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12044 ValuesAtScopes.erase(S); 12045 LoopDispositions.erase(S); 12046 BlockDispositions.erase(S); 12047 UnsignedRanges.erase(S); 12048 SignedRanges.erase(S); 12049 ExprValueMap.erase(S); 12050 HasRecMap.erase(S); 12051 MinTrailingZerosCache.erase(S); 12052 12053 for (auto I = PredicatedSCEVRewrites.begin(); 12054 I != PredicatedSCEVRewrites.end();) { 12055 std::pair<const SCEV *, const Loop *> Entry = I->first; 12056 if (Entry.first == S) 12057 PredicatedSCEVRewrites.erase(I++); 12058 else 12059 ++I; 12060 } 12061 12062 auto RemoveSCEVFromBackedgeMap = 12063 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12064 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12065 BackedgeTakenInfo &BEInfo = I->second; 12066 if (BEInfo.hasOperand(S, this)) { 12067 BEInfo.clear(); 12068 Map.erase(I++); 12069 } else 12070 ++I; 12071 } 12072 }; 12073 12074 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12075 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12076 } 12077 12078 void 12079 ScalarEvolution::getUsedLoops(const SCEV *S, 12080 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12081 struct FindUsedLoops { 12082 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12083 : LoopsUsed(LoopsUsed) {} 12084 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12085 bool follow(const SCEV *S) { 12086 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12087 LoopsUsed.insert(AR->getLoop()); 12088 return true; 12089 } 12090 12091 bool isDone() const { return false; } 12092 }; 12093 12094 FindUsedLoops F(LoopsUsed); 12095 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12096 } 12097 12098 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12099 SmallPtrSet<const Loop *, 8> LoopsUsed; 12100 getUsedLoops(S, LoopsUsed); 12101 for (auto *L : LoopsUsed) 12102 LoopUsers[L].push_back(S); 12103 } 12104 12105 void ScalarEvolution::verify() const { 12106 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12107 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12108 12109 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12110 12111 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12112 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12113 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12114 12115 const SCEV *visitConstant(const SCEVConstant *Constant) { 12116 return SE.getConstant(Constant->getAPInt()); 12117 } 12118 12119 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12120 return SE.getUnknown(Expr->getValue()); 12121 } 12122 12123 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12124 return SE.getCouldNotCompute(); 12125 } 12126 }; 12127 12128 SCEVMapper SCM(SE2); 12129 12130 while (!LoopStack.empty()) { 12131 auto *L = LoopStack.pop_back_val(); 12132 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 12133 12134 auto *CurBECount = SCM.visit( 12135 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12136 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12137 12138 if (CurBECount == SE2.getCouldNotCompute() || 12139 NewBECount == SE2.getCouldNotCompute()) { 12140 // NB! This situation is legal, but is very suspicious -- whatever pass 12141 // change the loop to make a trip count go from could not compute to 12142 // computable or vice-versa *should have* invalidated SCEV. However, we 12143 // choose not to assert here (for now) since we don't want false 12144 // positives. 12145 continue; 12146 } 12147 12148 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12149 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12150 // not propagate undef aggressively). This means we can (and do) fail 12151 // verification in cases where a transform makes the trip count of a loop 12152 // go from "undef" to "undef+1" (say). The transform is fine, since in 12153 // both cases the loop iterates "undef" times, but SCEV thinks we 12154 // increased the trip count of the loop by 1 incorrectly. 12155 continue; 12156 } 12157 12158 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12159 SE.getTypeSizeInBits(NewBECount->getType())) 12160 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12161 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12162 SE.getTypeSizeInBits(NewBECount->getType())) 12163 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12164 12165 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12166 12167 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12168 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12169 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12170 dbgs() << "Old: " << *CurBECount << "\n"; 12171 dbgs() << "New: " << *NewBECount << "\n"; 12172 dbgs() << "Delta: " << *Delta << "\n"; 12173 std::abort(); 12174 } 12175 } 12176 12177 // Collect all valid loops currently in LoopInfo. 12178 SmallPtrSet<Loop *, 32> ValidLoops; 12179 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12180 while (!Worklist.empty()) { 12181 Loop *L = Worklist.pop_back_val(); 12182 if (ValidLoops.contains(L)) 12183 continue; 12184 ValidLoops.insert(L); 12185 Worklist.append(L->begin(), L->end()); 12186 } 12187 // Check for SCEV expressions referencing invalid/deleted loops. 12188 for (auto &KV : ValueExprMap) { 12189 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12190 if (!AR) 12191 continue; 12192 assert(ValidLoops.contains(AR->getLoop()) && 12193 "AddRec references invalid loop"); 12194 } 12195 } 12196 12197 bool ScalarEvolution::invalidate( 12198 Function &F, const PreservedAnalyses &PA, 12199 FunctionAnalysisManager::Invalidator &Inv) { 12200 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12201 // of its dependencies is invalidated. 12202 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12203 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12204 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12205 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12206 Inv.invalidate<LoopAnalysis>(F, PA); 12207 } 12208 12209 AnalysisKey ScalarEvolutionAnalysis::Key; 12210 12211 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12212 FunctionAnalysisManager &AM) { 12213 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12214 AM.getResult<AssumptionAnalysis>(F), 12215 AM.getResult<DominatorTreeAnalysis>(F), 12216 AM.getResult<LoopAnalysis>(F)); 12217 } 12218 12219 PreservedAnalyses 12220 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12221 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12222 return PreservedAnalyses::all(); 12223 } 12224 12225 PreservedAnalyses 12226 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12227 // For compatibility with opt's -analyze feature under legacy pass manager 12228 // which was not ported to NPM. This keeps tests using 12229 // update_analyze_test_checks.py working. 12230 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12231 << F.getName() << "':\n"; 12232 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12233 return PreservedAnalyses::all(); 12234 } 12235 12236 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12237 "Scalar Evolution Analysis", false, true) 12238 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12239 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12240 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12241 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12242 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12243 "Scalar Evolution Analysis", false, true) 12244 12245 char ScalarEvolutionWrapperPass::ID = 0; 12246 12247 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12248 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12249 } 12250 12251 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12252 SE.reset(new ScalarEvolution( 12253 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12254 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12255 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12256 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12257 return false; 12258 } 12259 12260 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12261 12262 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12263 SE->print(OS); 12264 } 12265 12266 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12267 if (!VerifySCEV) 12268 return; 12269 12270 SE->verify(); 12271 } 12272 12273 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12274 AU.setPreservesAll(); 12275 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12276 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12277 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12278 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12279 } 12280 12281 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12282 const SCEV *RHS) { 12283 FoldingSetNodeID ID; 12284 assert(LHS->getType() == RHS->getType() && 12285 "Type mismatch between LHS and RHS"); 12286 // Unique this node based on the arguments 12287 ID.AddInteger(SCEVPredicate::P_Equal); 12288 ID.AddPointer(LHS); 12289 ID.AddPointer(RHS); 12290 void *IP = nullptr; 12291 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12292 return S; 12293 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12294 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12295 UniquePreds.InsertNode(Eq, IP); 12296 return Eq; 12297 } 12298 12299 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12300 const SCEVAddRecExpr *AR, 12301 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12302 FoldingSetNodeID ID; 12303 // Unique this node based on the arguments 12304 ID.AddInteger(SCEVPredicate::P_Wrap); 12305 ID.AddPointer(AR); 12306 ID.AddInteger(AddedFlags); 12307 void *IP = nullptr; 12308 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12309 return S; 12310 auto *OF = new (SCEVAllocator) 12311 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12312 UniquePreds.InsertNode(OF, IP); 12313 return OF; 12314 } 12315 12316 namespace { 12317 12318 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12319 public: 12320 12321 /// Rewrites \p S in the context of a loop L and the SCEV predication 12322 /// infrastructure. 12323 /// 12324 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12325 /// equivalences present in \p Pred. 12326 /// 12327 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12328 /// \p NewPreds such that the result will be an AddRecExpr. 12329 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12330 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12331 SCEVUnionPredicate *Pred) { 12332 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12333 return Rewriter.visit(S); 12334 } 12335 12336 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12337 if (Pred) { 12338 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12339 for (auto *Pred : ExprPreds) 12340 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12341 if (IPred->getLHS() == Expr) 12342 return IPred->getRHS(); 12343 } 12344 return convertToAddRecWithPreds(Expr); 12345 } 12346 12347 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12348 const SCEV *Operand = visit(Expr->getOperand()); 12349 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12350 if (AR && AR->getLoop() == L && AR->isAffine()) { 12351 // This couldn't be folded because the operand didn't have the nuw 12352 // flag. Add the nusw flag as an assumption that we could make. 12353 const SCEV *Step = AR->getStepRecurrence(SE); 12354 Type *Ty = Expr->getType(); 12355 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12356 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12357 SE.getSignExtendExpr(Step, Ty), L, 12358 AR->getNoWrapFlags()); 12359 } 12360 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12361 } 12362 12363 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12364 const SCEV *Operand = visit(Expr->getOperand()); 12365 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12366 if (AR && AR->getLoop() == L && AR->isAffine()) { 12367 // This couldn't be folded because the operand didn't have the nsw 12368 // flag. Add the nssw flag as an assumption that we could make. 12369 const SCEV *Step = AR->getStepRecurrence(SE); 12370 Type *Ty = Expr->getType(); 12371 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12372 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12373 SE.getSignExtendExpr(Step, Ty), L, 12374 AR->getNoWrapFlags()); 12375 } 12376 return SE.getSignExtendExpr(Operand, Expr->getType()); 12377 } 12378 12379 private: 12380 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12381 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12382 SCEVUnionPredicate *Pred) 12383 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12384 12385 bool addOverflowAssumption(const SCEVPredicate *P) { 12386 if (!NewPreds) { 12387 // Check if we've already made this assumption. 12388 return Pred && Pred->implies(P); 12389 } 12390 NewPreds->insert(P); 12391 return true; 12392 } 12393 12394 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12395 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12396 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12397 return addOverflowAssumption(A); 12398 } 12399 12400 // If \p Expr represents a PHINode, we try to see if it can be represented 12401 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12402 // to add this predicate as a runtime overflow check, we return the AddRec. 12403 // If \p Expr does not meet these conditions (is not a PHI node, or we 12404 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12405 // return \p Expr. 12406 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12407 if (!isa<PHINode>(Expr->getValue())) 12408 return Expr; 12409 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12410 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12411 if (!PredicatedRewrite) 12412 return Expr; 12413 for (auto *P : PredicatedRewrite->second){ 12414 // Wrap predicates from outer loops are not supported. 12415 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12416 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12417 if (L != AR->getLoop()) 12418 return Expr; 12419 } 12420 if (!addOverflowAssumption(P)) 12421 return Expr; 12422 } 12423 return PredicatedRewrite->first; 12424 } 12425 12426 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12427 SCEVUnionPredicate *Pred; 12428 const Loop *L; 12429 }; 12430 12431 } // end anonymous namespace 12432 12433 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12434 SCEVUnionPredicate &Preds) { 12435 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12436 } 12437 12438 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12439 const SCEV *S, const Loop *L, 12440 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12441 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12442 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12443 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12444 12445 if (!AddRec) 12446 return nullptr; 12447 12448 // Since the transformation was successful, we can now transfer the SCEV 12449 // predicates. 12450 for (auto *P : TransformPreds) 12451 Preds.insert(P); 12452 12453 return AddRec; 12454 } 12455 12456 /// SCEV predicates 12457 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12458 SCEVPredicateKind Kind) 12459 : FastID(ID), Kind(Kind) {} 12460 12461 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12462 const SCEV *LHS, const SCEV *RHS) 12463 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12464 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12465 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12466 } 12467 12468 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12469 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12470 12471 if (!Op) 12472 return false; 12473 12474 return Op->LHS == LHS && Op->RHS == RHS; 12475 } 12476 12477 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12478 12479 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12480 12481 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12482 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12483 } 12484 12485 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12486 const SCEVAddRecExpr *AR, 12487 IncrementWrapFlags Flags) 12488 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12489 12490 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12491 12492 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12493 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12494 12495 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12496 } 12497 12498 bool SCEVWrapPredicate::isAlwaysTrue() const { 12499 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12500 IncrementWrapFlags IFlags = Flags; 12501 12502 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12503 IFlags = clearFlags(IFlags, IncrementNSSW); 12504 12505 return IFlags == IncrementAnyWrap; 12506 } 12507 12508 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12509 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12510 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12511 OS << "<nusw>"; 12512 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12513 OS << "<nssw>"; 12514 OS << "\n"; 12515 } 12516 12517 SCEVWrapPredicate::IncrementWrapFlags 12518 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12519 ScalarEvolution &SE) { 12520 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12521 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12522 12523 // We can safely transfer the NSW flag as NSSW. 12524 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12525 ImpliedFlags = IncrementNSSW; 12526 12527 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12528 // If the increment is positive, the SCEV NUW flag will also imply the 12529 // WrapPredicate NUSW flag. 12530 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12531 if (Step->getValue()->getValue().isNonNegative()) 12532 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12533 } 12534 12535 return ImpliedFlags; 12536 } 12537 12538 /// Union predicates don't get cached so create a dummy set ID for it. 12539 SCEVUnionPredicate::SCEVUnionPredicate() 12540 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12541 12542 bool SCEVUnionPredicate::isAlwaysTrue() const { 12543 return all_of(Preds, 12544 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12545 } 12546 12547 ArrayRef<const SCEVPredicate *> 12548 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12549 auto I = SCEVToPreds.find(Expr); 12550 if (I == SCEVToPreds.end()) 12551 return ArrayRef<const SCEVPredicate *>(); 12552 return I->second; 12553 } 12554 12555 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12556 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12557 return all_of(Set->Preds, 12558 [this](const SCEVPredicate *I) { return this->implies(I); }); 12559 12560 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12561 if (ScevPredsIt == SCEVToPreds.end()) 12562 return false; 12563 auto &SCEVPreds = ScevPredsIt->second; 12564 12565 return any_of(SCEVPreds, 12566 [N](const SCEVPredicate *I) { return I->implies(N); }); 12567 } 12568 12569 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12570 12571 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12572 for (auto Pred : Preds) 12573 Pred->print(OS, Depth); 12574 } 12575 12576 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12577 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12578 for (auto Pred : Set->Preds) 12579 add(Pred); 12580 return; 12581 } 12582 12583 if (implies(N)) 12584 return; 12585 12586 const SCEV *Key = N->getExpr(); 12587 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12588 " associated expression!"); 12589 12590 SCEVToPreds[Key].push_back(N); 12591 Preds.push_back(N); 12592 } 12593 12594 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12595 Loop &L) 12596 : SE(SE), L(L) {} 12597 12598 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12599 const SCEV *Expr = SE.getSCEV(V); 12600 RewriteEntry &Entry = RewriteMap[Expr]; 12601 12602 // If we already have an entry and the version matches, return it. 12603 if (Entry.second && Generation == Entry.first) 12604 return Entry.second; 12605 12606 // We found an entry but it's stale. Rewrite the stale entry 12607 // according to the current predicate. 12608 if (Entry.second) 12609 Expr = Entry.second; 12610 12611 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12612 Entry = {Generation, NewSCEV}; 12613 12614 return NewSCEV; 12615 } 12616 12617 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12618 if (!BackedgeCount) { 12619 SCEVUnionPredicate BackedgePred; 12620 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12621 addPredicate(BackedgePred); 12622 } 12623 return BackedgeCount; 12624 } 12625 12626 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12627 if (Preds.implies(&Pred)) 12628 return; 12629 Preds.add(&Pred); 12630 updateGeneration(); 12631 } 12632 12633 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12634 return Preds; 12635 } 12636 12637 void PredicatedScalarEvolution::updateGeneration() { 12638 // If the generation number wrapped recompute everything. 12639 if (++Generation == 0) { 12640 for (auto &II : RewriteMap) { 12641 const SCEV *Rewritten = II.second.second; 12642 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12643 } 12644 } 12645 } 12646 12647 void PredicatedScalarEvolution::setNoOverflow( 12648 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12649 const SCEV *Expr = getSCEV(V); 12650 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12651 12652 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12653 12654 // Clear the statically implied flags. 12655 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12656 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12657 12658 auto II = FlagsMap.insert({V, Flags}); 12659 if (!II.second) 12660 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12661 } 12662 12663 bool PredicatedScalarEvolution::hasNoOverflow( 12664 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12665 const SCEV *Expr = getSCEV(V); 12666 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12667 12668 Flags = SCEVWrapPredicate::clearFlags( 12669 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12670 12671 auto II = FlagsMap.find(V); 12672 12673 if (II != FlagsMap.end()) 12674 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12675 12676 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12677 } 12678 12679 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12680 const SCEV *Expr = this->getSCEV(V); 12681 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12682 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12683 12684 if (!New) 12685 return nullptr; 12686 12687 for (auto *P : NewPreds) 12688 Preds.add(P); 12689 12690 updateGeneration(); 12691 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12692 return New; 12693 } 12694 12695 PredicatedScalarEvolution::PredicatedScalarEvolution( 12696 const PredicatedScalarEvolution &Init) 12697 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12698 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12699 for (auto I : Init.FlagsMap) 12700 FlagsMap.insert(I); 12701 } 12702 12703 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12704 // For each block. 12705 for (auto *BB : L.getBlocks()) 12706 for (auto &I : *BB) { 12707 if (!SE.isSCEVable(I.getType())) 12708 continue; 12709 12710 auto *Expr = SE.getSCEV(&I); 12711 auto II = RewriteMap.find(Expr); 12712 12713 if (II == RewriteMap.end()) 12714 continue; 12715 12716 // Don't print things that are not interesting. 12717 if (II->second.second == Expr) 12718 continue; 12719 12720 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12721 OS.indent(Depth + 2) << *Expr << "\n"; 12722 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12723 } 12724 } 12725 12726 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12727 // arbitrary expressions. 12728 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12729 // 4, A / B becomes X / 8). 12730 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12731 const SCEV *&RHS) { 12732 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12733 if (Add == nullptr || Add->getNumOperands() != 2) 12734 return false; 12735 12736 const SCEV *A = Add->getOperand(1); 12737 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12738 12739 if (Mul == nullptr) 12740 return false; 12741 12742 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12743 // (SomeExpr + (-(SomeExpr / B) * B)). 12744 if (Expr == getURemExpr(A, B)) { 12745 LHS = A; 12746 RHS = B; 12747 return true; 12748 } 12749 return false; 12750 }; 12751 12752 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12753 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12754 return MatchURemWithDivisor(Mul->getOperand(1)) || 12755 MatchURemWithDivisor(Mul->getOperand(2)); 12756 12757 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12758 if (Mul->getNumOperands() == 2) 12759 return MatchURemWithDivisor(Mul->getOperand(1)) || 12760 MatchURemWithDivisor(Mul->getOperand(0)) || 12761 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12762 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12763 return false; 12764 } 12765 12766 const SCEV* ScalarEvolution::computeMaxBackedgeTakenCount(const Loop *L) { 12767 SmallVector<BasicBlock*, 16> ExitingBlocks; 12768 L->getExitingBlocks(ExitingBlocks); 12769 12770 // Form an expression for the maximum exit count possible for this loop. We 12771 // merge the max and exact information to approximate a version of 12772 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 12773 SmallVector<const SCEV*, 4> ExitCounts; 12774 for (BasicBlock *ExitingBB : ExitingBlocks) { 12775 const SCEV *ExitCount = getExitCount(L, ExitingBB); 12776 if (isa<SCEVCouldNotCompute>(ExitCount)) 12777 ExitCount = getExitCount(L, ExitingBB, 12778 ScalarEvolution::ConstantMaximum); 12779 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 12780 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 12781 "We should only have known counts for exiting blocks that " 12782 "dominate latch!"); 12783 ExitCounts.push_back(ExitCount); 12784 } 12785 } 12786 if (ExitCounts.empty()) 12787 return getCouldNotCompute(); 12788 return getUMinFromMismatchedTypes(ExitCounts); 12789 } 12790 12791 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 12792 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 12793 /// we cannot guarantee that the replacement is loop invariant in the loop of 12794 /// the AddRec. 12795 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 12796 ValueToSCEVMapTy ⤅ 12797 12798 public: 12799 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 12800 : SCEVRewriteVisitor(SE), Map(M) {} 12801 12802 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 12803 12804 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12805 auto I = Map.find(Expr->getValue()); 12806 if (I == Map.end()) 12807 return Expr; 12808 return I->second; 12809 } 12810 }; 12811 12812 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 12813 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 12814 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 12815 if (!isa<SCEVUnknown>(LHS)) { 12816 std::swap(LHS, RHS); 12817 Predicate = CmpInst::getSwappedPredicate(Predicate); 12818 } 12819 12820 // For now, limit to conditions that provide information about unknown 12821 // expressions. 12822 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 12823 if (!LHSUnknown) 12824 return; 12825 12826 // TODO: use information from more predicates. 12827 switch (Predicate) { 12828 case CmpInst::ICMP_ULT: { 12829 if (!containsAddRecurrence(RHS)) { 12830 const SCEV *Base = LHS; 12831 auto I = RewriteMap.find(LHSUnknown->getValue()); 12832 if (I != RewriteMap.end()) 12833 Base = I->second; 12834 12835 RewriteMap[LHSUnknown->getValue()] = 12836 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 12837 } 12838 break; 12839 } 12840 case CmpInst::ICMP_ULE: { 12841 if (!containsAddRecurrence(RHS)) { 12842 const SCEV *Base = LHS; 12843 auto I = RewriteMap.find(LHSUnknown->getValue()); 12844 if (I != RewriteMap.end()) 12845 Base = I->second; 12846 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 12847 } 12848 break; 12849 } 12850 case CmpInst::ICMP_EQ: 12851 if (isa<SCEVConstant>(RHS)) 12852 RewriteMap[LHSUnknown->getValue()] = RHS; 12853 break; 12854 case CmpInst::ICMP_NE: 12855 if (isa<SCEVConstant>(RHS) && 12856 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 12857 RewriteMap[LHSUnknown->getValue()] = 12858 getUMaxExpr(LHS, getOne(RHS->getType())); 12859 break; 12860 default: 12861 break; 12862 } 12863 }; 12864 // Starting at the loop predecessor, climb up the predecessor chain, as long 12865 // as there are predecessors that can be found that have unique successors 12866 // leading to the original header. 12867 // TODO: share this logic with isLoopEntryGuardedByCond. 12868 ValueToSCEVMapTy RewriteMap; 12869 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 12870 L->getLoopPredecessor(), L->getHeader()); 12871 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 12872 12873 const BranchInst *LoopEntryPredicate = 12874 dyn_cast<BranchInst>(Pair.first->getTerminator()); 12875 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 12876 continue; 12877 12878 // TODO: use information from more complex conditions, e.g. AND expressions. 12879 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 12880 if (!Cmp) 12881 continue; 12882 12883 auto Predicate = Cmp->getPredicate(); 12884 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 12885 Predicate = CmpInst::getInversePredicate(Predicate); 12886 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 12887 getSCEV(Cmp->getOperand(1)), RewriteMap); 12888 } 12889 12890 // Also collect information from assumptions dominating the loop. 12891 for (auto &AssumeVH : AC.assumptions()) { 12892 if (!AssumeVH) 12893 continue; 12894 auto *AssumeI = cast<CallInst>(AssumeVH); 12895 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 12896 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 12897 continue; 12898 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 12899 getSCEV(Cmp->getOperand(1)), RewriteMap); 12900 } 12901 12902 if (RewriteMap.empty()) 12903 return Expr; 12904 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 12905 return Rewriter.visit(Expr); 12906 } 12907