1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 230 //===----------------------------------------------------------------------===// 231 // SCEV class definitions 232 //===----------------------------------------------------------------------===// 233 234 //===----------------------------------------------------------------------===// 235 // Implementation of the SCEV class. 236 // 237 238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 239 LLVM_DUMP_METHOD void SCEV::dump() const { 240 print(dbgs()); 241 dbgs() << '\n'; 242 } 243 #endif 244 245 void SCEV::print(raw_ostream &OS) const { 246 switch (static_cast<SCEVTypes>(getSCEVType())) { 247 case scConstant: 248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 249 return; 250 case scTruncate: { 251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 252 const SCEV *Op = Trunc->getOperand(); 253 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 254 << *Trunc->getType() << ")"; 255 return; 256 } 257 case scZeroExtend: { 258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 259 const SCEV *Op = ZExt->getOperand(); 260 OS << "(zext " << *Op->getType() << " " << *Op << " to " 261 << *ZExt->getType() << ")"; 262 return; 263 } 264 case scSignExtend: { 265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 266 const SCEV *Op = SExt->getOperand(); 267 OS << "(sext " << *Op->getType() << " " << *Op << " to " 268 << *SExt->getType() << ")"; 269 return; 270 } 271 case scAddRecExpr: { 272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 273 OS << "{" << *AR->getOperand(0); 274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 275 OS << ",+," << *AR->getOperand(i); 276 OS << "}<"; 277 if (AR->hasNoUnsignedWrap()) 278 OS << "nuw><"; 279 if (AR->hasNoSignedWrap()) 280 OS << "nsw><"; 281 if (AR->hasNoSelfWrap() && 282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 283 OS << "nw><"; 284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 285 OS << ">"; 286 return; 287 } 288 case scAddExpr: 289 case scMulExpr: 290 case scUMaxExpr: 291 case scSMaxExpr: 292 case scUMinExpr: 293 case scSMinExpr: { 294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 295 const char *OpStr = nullptr; 296 switch (NAry->getSCEVType()) { 297 case scAddExpr: OpStr = " + "; break; 298 case scMulExpr: OpStr = " * "; break; 299 case scUMaxExpr: OpStr = " umax "; break; 300 case scSMaxExpr: OpStr = " smax "; break; 301 case scUMinExpr: 302 OpStr = " umin "; 303 break; 304 case scSMinExpr: 305 OpStr = " smin "; 306 break; 307 } 308 OS << "("; 309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 310 I != E; ++I) { 311 OS << **I; 312 if (std::next(I) != E) 313 OS << OpStr; 314 } 315 OS << ")"; 316 switch (NAry->getSCEVType()) { 317 case scAddExpr: 318 case scMulExpr: 319 if (NAry->hasNoUnsignedWrap()) 320 OS << "<nuw>"; 321 if (NAry->hasNoSignedWrap()) 322 OS << "<nsw>"; 323 } 324 return; 325 } 326 case scUDivExpr: { 327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 329 return; 330 } 331 case scUnknown: { 332 const SCEVUnknown *U = cast<SCEVUnknown>(this); 333 Type *AllocTy; 334 if (U->isSizeOf(AllocTy)) { 335 OS << "sizeof(" << *AllocTy << ")"; 336 return; 337 } 338 if (U->isAlignOf(AllocTy)) { 339 OS << "alignof(" << *AllocTy << ")"; 340 return; 341 } 342 343 Type *CTy; 344 Constant *FieldNo; 345 if (U->isOffsetOf(CTy, FieldNo)) { 346 OS << "offsetof(" << *CTy << ", "; 347 FieldNo->printAsOperand(OS, false); 348 OS << ")"; 349 return; 350 } 351 352 // Otherwise just print it normally. 353 U->getValue()->printAsOperand(OS, false); 354 return; 355 } 356 case scCouldNotCompute: 357 OS << "***COULDNOTCOMPUTE***"; 358 return; 359 } 360 llvm_unreachable("Unknown SCEV kind!"); 361 } 362 363 Type *SCEV::getType() const { 364 switch (static_cast<SCEVTypes>(getSCEVType())) { 365 case scConstant: 366 return cast<SCEVConstant>(this)->getType(); 367 case scTruncate: 368 case scZeroExtend: 369 case scSignExtend: 370 return cast<SCEVCastExpr>(this)->getType(); 371 case scAddRecExpr: 372 case scMulExpr: 373 case scUMaxExpr: 374 case scSMaxExpr: 375 case scUMinExpr: 376 case scSMinExpr: 377 return cast<SCEVNAryExpr>(this)->getType(); 378 case scAddExpr: 379 return cast<SCEVAddExpr>(this)->getType(); 380 case scUDivExpr: 381 return cast<SCEVUDivExpr>(this)->getType(); 382 case scUnknown: 383 return cast<SCEVUnknown>(this)->getType(); 384 case scCouldNotCompute: 385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 386 } 387 llvm_unreachable("Unknown SCEV kind!"); 388 } 389 390 bool SCEV::isZero() const { 391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 392 return SC->getValue()->isZero(); 393 return false; 394 } 395 396 bool SCEV::isOne() const { 397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 398 return SC->getValue()->isOne(); 399 return false; 400 } 401 402 bool SCEV::isAllOnesValue() const { 403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 404 return SC->getValue()->isMinusOne(); 405 return false; 406 } 407 408 bool SCEV::isNonConstantNegative() const { 409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 410 if (!Mul) return false; 411 412 // If there is a constant factor, it will be first. 413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 414 if (!SC) return false; 415 416 // Return true if the value is negative, this matches things like (-42 * V). 417 return SC->getAPInt().isNegative(); 418 } 419 420 SCEVCouldNotCompute::SCEVCouldNotCompute() : 421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 422 423 bool SCEVCouldNotCompute::classof(const SCEV *S) { 424 return S->getSCEVType() == scCouldNotCompute; 425 } 426 427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 428 FoldingSetNodeID ID; 429 ID.AddInteger(scConstant); 430 ID.AddPointer(V); 431 void *IP = nullptr; 432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 434 UniqueSCEVs.InsertNode(S, IP); 435 return S; 436 } 437 438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 439 return getConstant(ConstantInt::get(getContext(), Val)); 440 } 441 442 const SCEV * 443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 445 return getConstant(ConstantInt::get(ITy, V, isSigned)); 446 } 447 448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 449 unsigned SCEVTy, const SCEV *op, Type *ty) 450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 451 Operands[0] = op; 452 } 453 454 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 455 const SCEV *op, Type *ty) 456 : SCEVCastExpr(ID, scTruncate, op, ty) { 457 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 458 "Cannot truncate non-integer value!"); 459 } 460 461 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 462 const SCEV *op, Type *ty) 463 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 464 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 465 "Cannot zero extend non-integer value!"); 466 } 467 468 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 469 const SCEV *op, Type *ty) 470 : SCEVCastExpr(ID, scSignExtend, op, ty) { 471 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 472 "Cannot sign extend non-integer value!"); 473 } 474 475 void SCEVUnknown::deleted() { 476 // Clear this SCEVUnknown from various maps. 477 SE->forgetMemoizedResults(this); 478 479 // Remove this SCEVUnknown from the uniquing map. 480 SE->UniqueSCEVs.RemoveNode(this); 481 482 // Release the value. 483 setValPtr(nullptr); 484 } 485 486 void SCEVUnknown::allUsesReplacedWith(Value *New) { 487 // Remove this SCEVUnknown from the uniquing map. 488 SE->UniqueSCEVs.RemoveNode(this); 489 490 // Update this SCEVUnknown to point to the new value. This is needed 491 // because there may still be outstanding SCEVs which still point to 492 // this SCEVUnknown. 493 setValPtr(New); 494 } 495 496 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 497 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 498 if (VCE->getOpcode() == Instruction::PtrToInt) 499 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 500 if (CE->getOpcode() == Instruction::GetElementPtr && 501 CE->getOperand(0)->isNullValue() && 502 CE->getNumOperands() == 2) 503 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 504 if (CI->isOne()) { 505 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 506 ->getElementType(); 507 return true; 508 } 509 510 return false; 511 } 512 513 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 514 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 515 if (VCE->getOpcode() == Instruction::PtrToInt) 516 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 517 if (CE->getOpcode() == Instruction::GetElementPtr && 518 CE->getOperand(0)->isNullValue()) { 519 Type *Ty = 520 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 521 if (StructType *STy = dyn_cast<StructType>(Ty)) 522 if (!STy->isPacked() && 523 CE->getNumOperands() == 3 && 524 CE->getOperand(1)->isNullValue()) { 525 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 526 if (CI->isOne() && 527 STy->getNumElements() == 2 && 528 STy->getElementType(0)->isIntegerTy(1)) { 529 AllocTy = STy->getElementType(1); 530 return true; 531 } 532 } 533 } 534 535 return false; 536 } 537 538 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 539 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 540 if (VCE->getOpcode() == Instruction::PtrToInt) 541 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 542 if (CE->getOpcode() == Instruction::GetElementPtr && 543 CE->getNumOperands() == 3 && 544 CE->getOperand(0)->isNullValue() && 545 CE->getOperand(1)->isNullValue()) { 546 Type *Ty = 547 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 548 // Ignore vector types here so that ScalarEvolutionExpander doesn't 549 // emit getelementptrs that index into vectors. 550 if (Ty->isStructTy() || Ty->isArrayTy()) { 551 CTy = Ty; 552 FieldNo = CE->getOperand(2); 553 return true; 554 } 555 } 556 557 return false; 558 } 559 560 //===----------------------------------------------------------------------===// 561 // SCEV Utilities 562 //===----------------------------------------------------------------------===// 563 564 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 565 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 566 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 567 /// have been previously deemed to be "equally complex" by this routine. It is 568 /// intended to avoid exponential time complexity in cases like: 569 /// 570 /// %a = f(%x, %y) 571 /// %b = f(%a, %a) 572 /// %c = f(%b, %b) 573 /// 574 /// %d = f(%x, %y) 575 /// %e = f(%d, %d) 576 /// %f = f(%e, %e) 577 /// 578 /// CompareValueComplexity(%f, %c) 579 /// 580 /// Since we do not continue running this routine on expression trees once we 581 /// have seen unequal values, there is no need to track them in the cache. 582 static int 583 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 584 const LoopInfo *const LI, Value *LV, Value *RV, 585 unsigned Depth) { 586 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 587 return 0; 588 589 // Order pointer values after integer values. This helps SCEVExpander form 590 // GEPs. 591 bool LIsPointer = LV->getType()->isPointerTy(), 592 RIsPointer = RV->getType()->isPointerTy(); 593 if (LIsPointer != RIsPointer) 594 return (int)LIsPointer - (int)RIsPointer; 595 596 // Compare getValueID values. 597 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 598 if (LID != RID) 599 return (int)LID - (int)RID; 600 601 // Sort arguments by their position. 602 if (const auto *LA = dyn_cast<Argument>(LV)) { 603 const auto *RA = cast<Argument>(RV); 604 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 605 return (int)LArgNo - (int)RArgNo; 606 } 607 608 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 609 const auto *RGV = cast<GlobalValue>(RV); 610 611 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 612 auto LT = GV->getLinkage(); 613 return !(GlobalValue::isPrivateLinkage(LT) || 614 GlobalValue::isInternalLinkage(LT)); 615 }; 616 617 // Use the names to distinguish the two values, but only if the 618 // names are semantically important. 619 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 620 return LGV->getName().compare(RGV->getName()); 621 } 622 623 // For instructions, compare their loop depth, and their operand count. This 624 // is pretty loose. 625 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 626 const auto *RInst = cast<Instruction>(RV); 627 628 // Compare loop depths. 629 const BasicBlock *LParent = LInst->getParent(), 630 *RParent = RInst->getParent(); 631 if (LParent != RParent) { 632 unsigned LDepth = LI->getLoopDepth(LParent), 633 RDepth = LI->getLoopDepth(RParent); 634 if (LDepth != RDepth) 635 return (int)LDepth - (int)RDepth; 636 } 637 638 // Compare the number of operands. 639 unsigned LNumOps = LInst->getNumOperands(), 640 RNumOps = RInst->getNumOperands(); 641 if (LNumOps != RNumOps) 642 return (int)LNumOps - (int)RNumOps; 643 644 for (unsigned Idx : seq(0u, LNumOps)) { 645 int Result = 646 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 647 RInst->getOperand(Idx), Depth + 1); 648 if (Result != 0) 649 return Result; 650 } 651 } 652 653 EqCacheValue.unionSets(LV, RV); 654 return 0; 655 } 656 657 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 658 // than RHS, respectively. A three-way result allows recursive comparisons to be 659 // more efficient. 660 static int CompareSCEVComplexity( 661 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 662 EquivalenceClasses<const Value *> &EqCacheValue, 663 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 664 DominatorTree &DT, unsigned Depth = 0) { 665 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 666 if (LHS == RHS) 667 return 0; 668 669 // Primarily, sort the SCEVs by their getSCEVType(). 670 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 671 if (LType != RType) 672 return (int)LType - (int)RType; 673 674 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 675 return 0; 676 // Aside from the getSCEVType() ordering, the particular ordering 677 // isn't very important except that it's beneficial to be consistent, 678 // so that (a + b) and (b + a) don't end up as different expressions. 679 switch (static_cast<SCEVTypes>(LType)) { 680 case scUnknown: { 681 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 682 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 683 684 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 685 RU->getValue(), Depth + 1); 686 if (X == 0) 687 EqCacheSCEV.unionSets(LHS, RHS); 688 return X; 689 } 690 691 case scConstant: { 692 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 693 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 694 695 // Compare constant values. 696 const APInt &LA = LC->getAPInt(); 697 const APInt &RA = RC->getAPInt(); 698 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 699 if (LBitWidth != RBitWidth) 700 return (int)LBitWidth - (int)RBitWidth; 701 return LA.ult(RA) ? -1 : 1; 702 } 703 704 case scAddRecExpr: { 705 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 706 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 707 708 // There is always a dominance between two recs that are used by one SCEV, 709 // so we can safely sort recs by loop header dominance. We require such 710 // order in getAddExpr. 711 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 712 if (LLoop != RLoop) { 713 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 714 assert(LHead != RHead && "Two loops share the same header?"); 715 if (DT.dominates(LHead, RHead)) 716 return 1; 717 else 718 assert(DT.dominates(RHead, LHead) && 719 "No dominance between recurrences used by one SCEV?"); 720 return -1; 721 } 722 723 // Addrec complexity grows with operand count. 724 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 725 if (LNumOps != RNumOps) 726 return (int)LNumOps - (int)RNumOps; 727 728 // Lexicographically compare. 729 for (unsigned i = 0; i != LNumOps; ++i) { 730 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 731 LA->getOperand(i), RA->getOperand(i), DT, 732 Depth + 1); 733 if (X != 0) 734 return X; 735 } 736 EqCacheSCEV.unionSets(LHS, RHS); 737 return 0; 738 } 739 740 case scAddExpr: 741 case scMulExpr: 742 case scSMaxExpr: 743 case scUMaxExpr: 744 case scSMinExpr: 745 case scUMinExpr: { 746 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 747 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 748 749 // Lexicographically compare n-ary expressions. 750 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 751 if (LNumOps != RNumOps) 752 return (int)LNumOps - (int)RNumOps; 753 754 for (unsigned i = 0; i != LNumOps; ++i) { 755 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 756 LC->getOperand(i), RC->getOperand(i), DT, 757 Depth + 1); 758 if (X != 0) 759 return X; 760 } 761 EqCacheSCEV.unionSets(LHS, RHS); 762 return 0; 763 } 764 765 case scUDivExpr: { 766 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 767 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 768 769 // Lexicographically compare udiv expressions. 770 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 771 RC->getLHS(), DT, Depth + 1); 772 if (X != 0) 773 return X; 774 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 775 RC->getRHS(), DT, Depth + 1); 776 if (X == 0) 777 EqCacheSCEV.unionSets(LHS, RHS); 778 return X; 779 } 780 781 case scTruncate: 782 case scZeroExtend: 783 case scSignExtend: { 784 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 785 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 786 787 // Compare cast expressions by operand. 788 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 789 LC->getOperand(), RC->getOperand(), DT, 790 Depth + 1); 791 if (X == 0) 792 EqCacheSCEV.unionSets(LHS, RHS); 793 return X; 794 } 795 796 case scCouldNotCompute: 797 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 798 } 799 llvm_unreachable("Unknown SCEV kind!"); 800 } 801 802 /// Given a list of SCEV objects, order them by their complexity, and group 803 /// objects of the same complexity together by value. When this routine is 804 /// finished, we know that any duplicates in the vector are consecutive and that 805 /// complexity is monotonically increasing. 806 /// 807 /// Note that we go take special precautions to ensure that we get deterministic 808 /// results from this routine. In other words, we don't want the results of 809 /// this to depend on where the addresses of various SCEV objects happened to 810 /// land in memory. 811 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 812 LoopInfo *LI, DominatorTree &DT) { 813 if (Ops.size() < 2) return; // Noop 814 815 EquivalenceClasses<const SCEV *> EqCacheSCEV; 816 EquivalenceClasses<const Value *> EqCacheValue; 817 if (Ops.size() == 2) { 818 // This is the common case, which also happens to be trivially simple. 819 // Special case it. 820 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 821 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 822 std::swap(LHS, RHS); 823 return; 824 } 825 826 // Do the rough sort by complexity. 827 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 828 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 829 0; 830 }); 831 832 // Now that we are sorted by complexity, group elements of the same 833 // complexity. Note that this is, at worst, N^2, but the vector is likely to 834 // be extremely short in practice. Note that we take this approach because we 835 // do not want to depend on the addresses of the objects we are grouping. 836 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 837 const SCEV *S = Ops[i]; 838 unsigned Complexity = S->getSCEVType(); 839 840 // If there are any objects of the same complexity and same value as this 841 // one, group them. 842 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 843 if (Ops[j] == S) { // Found a duplicate. 844 // Move it to immediately after i'th element. 845 std::swap(Ops[i+1], Ops[j]); 846 ++i; // no need to rescan it. 847 if (i == e-2) return; // Done! 848 } 849 } 850 } 851 } 852 853 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 854 /// least HugeExprThreshold nodes). 855 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 856 return any_of(Ops, [](const SCEV *S) { 857 return S->getExpressionSize() >= HugeExprThreshold; 858 }); 859 } 860 861 //===----------------------------------------------------------------------===// 862 // Simple SCEV method implementations 863 //===----------------------------------------------------------------------===// 864 865 /// Compute BC(It, K). The result has width W. Assume, K > 0. 866 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 867 ScalarEvolution &SE, 868 Type *ResultTy) { 869 // Handle the simplest case efficiently. 870 if (K == 1) 871 return SE.getTruncateOrZeroExtend(It, ResultTy); 872 873 // We are using the following formula for BC(It, K): 874 // 875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 876 // 877 // Suppose, W is the bitwidth of the return value. We must be prepared for 878 // overflow. Hence, we must assure that the result of our computation is 879 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 880 // safe in modular arithmetic. 881 // 882 // However, this code doesn't use exactly that formula; the formula it uses 883 // is something like the following, where T is the number of factors of 2 in 884 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 885 // exponentiation: 886 // 887 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 888 // 889 // This formula is trivially equivalent to the previous formula. However, 890 // this formula can be implemented much more efficiently. The trick is that 891 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 892 // arithmetic. To do exact division in modular arithmetic, all we have 893 // to do is multiply by the inverse. Therefore, this step can be done at 894 // width W. 895 // 896 // The next issue is how to safely do the division by 2^T. The way this 897 // is done is by doing the multiplication step at a width of at least W + T 898 // bits. This way, the bottom W+T bits of the product are accurate. Then, 899 // when we perform the division by 2^T (which is equivalent to a right shift 900 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 901 // truncated out after the division by 2^T. 902 // 903 // In comparison to just directly using the first formula, this technique 904 // is much more efficient; using the first formula requires W * K bits, 905 // but this formula less than W + K bits. Also, the first formula requires 906 // a division step, whereas this formula only requires multiplies and shifts. 907 // 908 // It doesn't matter whether the subtraction step is done in the calculation 909 // width or the input iteration count's width; if the subtraction overflows, 910 // the result must be zero anyway. We prefer here to do it in the width of 911 // the induction variable because it helps a lot for certain cases; CodeGen 912 // isn't smart enough to ignore the overflow, which leads to much less 913 // efficient code if the width of the subtraction is wider than the native 914 // register width. 915 // 916 // (It's possible to not widen at all by pulling out factors of 2 before 917 // the multiplication; for example, K=2 can be calculated as 918 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 919 // extra arithmetic, so it's not an obvious win, and it gets 920 // much more complicated for K > 3.) 921 922 // Protection from insane SCEVs; this bound is conservative, 923 // but it probably doesn't matter. 924 if (K > 1000) 925 return SE.getCouldNotCompute(); 926 927 unsigned W = SE.getTypeSizeInBits(ResultTy); 928 929 // Calculate K! / 2^T and T; we divide out the factors of two before 930 // multiplying for calculating K! / 2^T to avoid overflow. 931 // Other overflow doesn't matter because we only care about the bottom 932 // W bits of the result. 933 APInt OddFactorial(W, 1); 934 unsigned T = 1; 935 for (unsigned i = 3; i <= K; ++i) { 936 APInt Mult(W, i); 937 unsigned TwoFactors = Mult.countTrailingZeros(); 938 T += TwoFactors; 939 Mult.lshrInPlace(TwoFactors); 940 OddFactorial *= Mult; 941 } 942 943 // We need at least W + T bits for the multiplication step 944 unsigned CalculationBits = W + T; 945 946 // Calculate 2^T, at width T+W. 947 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 948 949 // Calculate the multiplicative inverse of K! / 2^T; 950 // this multiplication factor will perform the exact division by 951 // K! / 2^T. 952 APInt Mod = APInt::getSignedMinValue(W+1); 953 APInt MultiplyFactor = OddFactorial.zext(W+1); 954 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 955 MultiplyFactor = MultiplyFactor.trunc(W); 956 957 // Calculate the product, at width T+W 958 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 959 CalculationBits); 960 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 961 for (unsigned i = 1; i != K; ++i) { 962 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 963 Dividend = SE.getMulExpr(Dividend, 964 SE.getTruncateOrZeroExtend(S, CalculationTy)); 965 } 966 967 // Divide by 2^T 968 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 969 970 // Truncate the result, and divide by K! / 2^T. 971 972 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 973 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 974 } 975 976 /// Return the value of this chain of recurrences at the specified iteration 977 /// number. We can evaluate this recurrence by multiplying each element in the 978 /// chain by the binomial coefficient corresponding to it. In other words, we 979 /// can evaluate {A,+,B,+,C,+,D} as: 980 /// 981 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 982 /// 983 /// where BC(It, k) stands for binomial coefficient. 984 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 985 ScalarEvolution &SE) const { 986 const SCEV *Result = getStart(); 987 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 988 // The computation is correct in the face of overflow provided that the 989 // multiplication is performed _after_ the evaluation of the binomial 990 // coefficient. 991 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 992 if (isa<SCEVCouldNotCompute>(Coeff)) 993 return Coeff; 994 995 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 996 } 997 return Result; 998 } 999 1000 //===----------------------------------------------------------------------===// 1001 // SCEV Expression folder implementations 1002 //===----------------------------------------------------------------------===// 1003 1004 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1005 unsigned Depth) { 1006 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1007 "This is not a truncating conversion!"); 1008 assert(isSCEVable(Ty) && 1009 "This is not a conversion to a SCEVable type!"); 1010 Ty = getEffectiveSCEVType(Ty); 1011 1012 FoldingSetNodeID ID; 1013 ID.AddInteger(scTruncate); 1014 ID.AddPointer(Op); 1015 ID.AddPointer(Ty); 1016 void *IP = nullptr; 1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1018 1019 // Fold if the operand is constant. 1020 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1021 return getConstant( 1022 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1023 1024 // trunc(trunc(x)) --> trunc(x) 1025 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1026 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1027 1028 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1029 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1030 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1031 1032 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1033 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1034 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1035 1036 if (Depth > MaxCastDepth) { 1037 SCEV *S = 1038 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1039 UniqueSCEVs.InsertNode(S, IP); 1040 addToLoopUseLists(S); 1041 return S; 1042 } 1043 1044 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1045 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1046 // if after transforming we have at most one truncate, not counting truncates 1047 // that replace other casts. 1048 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1049 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1050 SmallVector<const SCEV *, 4> Operands; 1051 unsigned numTruncs = 0; 1052 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1053 ++i) { 1054 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1055 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1056 numTruncs++; 1057 Operands.push_back(S); 1058 } 1059 if (numTruncs < 2) { 1060 if (isa<SCEVAddExpr>(Op)) 1061 return getAddExpr(Operands); 1062 else if (isa<SCEVMulExpr>(Op)) 1063 return getMulExpr(Operands); 1064 else 1065 llvm_unreachable("Unexpected SCEV type for Op."); 1066 } 1067 // Although we checked in the beginning that ID is not in the cache, it is 1068 // possible that during recursion and different modification ID was inserted 1069 // into the cache. So if we find it, just return it. 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 } 1073 1074 // If the input value is a chrec scev, truncate the chrec's operands. 1075 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1076 SmallVector<const SCEV *, 4> Operands; 1077 for (const SCEV *Op : AddRec->operands()) 1078 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1079 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1080 } 1081 1082 // The cast wasn't folded; create an explicit cast node. We can reuse 1083 // the existing insert position since if we get here, we won't have 1084 // made any changes which would invalidate it. 1085 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1086 Op, Ty); 1087 UniqueSCEVs.InsertNode(S, IP); 1088 addToLoopUseLists(S); 1089 return S; 1090 } 1091 1092 // Get the limit of a recurrence such that incrementing by Step cannot cause 1093 // signed overflow as long as the value of the recurrence within the 1094 // loop does not exceed this limit before incrementing. 1095 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1096 ICmpInst::Predicate *Pred, 1097 ScalarEvolution *SE) { 1098 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1099 if (SE->isKnownPositive(Step)) { 1100 *Pred = ICmpInst::ICMP_SLT; 1101 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1102 SE->getSignedRangeMax(Step)); 1103 } 1104 if (SE->isKnownNegative(Step)) { 1105 *Pred = ICmpInst::ICMP_SGT; 1106 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1107 SE->getSignedRangeMin(Step)); 1108 } 1109 return nullptr; 1110 } 1111 1112 // Get the limit of a recurrence such that incrementing by Step cannot cause 1113 // unsigned overflow as long as the value of the recurrence within the loop does 1114 // not exceed this limit before incrementing. 1115 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1116 ICmpInst::Predicate *Pred, 1117 ScalarEvolution *SE) { 1118 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1119 *Pred = ICmpInst::ICMP_ULT; 1120 1121 return SE->getConstant(APInt::getMinValue(BitWidth) - 1122 SE->getUnsignedRangeMax(Step)); 1123 } 1124 1125 namespace { 1126 1127 struct ExtendOpTraitsBase { 1128 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1129 unsigned); 1130 }; 1131 1132 // Used to make code generic over signed and unsigned overflow. 1133 template <typename ExtendOp> struct ExtendOpTraits { 1134 // Members present: 1135 // 1136 // static const SCEV::NoWrapFlags WrapType; 1137 // 1138 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1139 // 1140 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1141 // ICmpInst::Predicate *Pred, 1142 // ScalarEvolution *SE); 1143 }; 1144 1145 template <> 1146 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1147 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1148 1149 static const GetExtendExprTy GetExtendExpr; 1150 1151 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1152 ICmpInst::Predicate *Pred, 1153 ScalarEvolution *SE) { 1154 return getSignedOverflowLimitForStep(Step, Pred, SE); 1155 } 1156 }; 1157 1158 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1159 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1160 1161 template <> 1162 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1163 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1164 1165 static const GetExtendExprTy GetExtendExpr; 1166 1167 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1168 ICmpInst::Predicate *Pred, 1169 ScalarEvolution *SE) { 1170 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1171 } 1172 }; 1173 1174 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1175 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1176 1177 } // end anonymous namespace 1178 1179 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1180 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1181 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1182 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1183 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1184 // expression "Step + sext/zext(PreIncAR)" is congruent with 1185 // "sext/zext(PostIncAR)" 1186 template <typename ExtendOpTy> 1187 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1188 ScalarEvolution *SE, unsigned Depth) { 1189 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1190 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1191 1192 const Loop *L = AR->getLoop(); 1193 const SCEV *Start = AR->getStart(); 1194 const SCEV *Step = AR->getStepRecurrence(*SE); 1195 1196 // Check for a simple looking step prior to loop entry. 1197 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1198 if (!SA) 1199 return nullptr; 1200 1201 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1202 // subtraction is expensive. For this purpose, perform a quick and dirty 1203 // difference, by checking for Step in the operand list. 1204 SmallVector<const SCEV *, 4> DiffOps; 1205 for (const SCEV *Op : SA->operands()) 1206 if (Op != Step) 1207 DiffOps.push_back(Op); 1208 1209 if (DiffOps.size() == SA->getNumOperands()) 1210 return nullptr; 1211 1212 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1213 // `Step`: 1214 1215 // 1. NSW/NUW flags on the step increment. 1216 auto PreStartFlags = 1217 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1218 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1219 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1220 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1221 1222 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1223 // "S+X does not sign/unsign-overflow". 1224 // 1225 1226 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1227 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1228 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1229 return PreStart; 1230 1231 // 2. Direct overflow check on the step operation's expression. 1232 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1233 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1234 const SCEV *OperandExtendedStart = 1235 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1236 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1237 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1238 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1239 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1240 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1241 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1242 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1243 } 1244 return PreStart; 1245 } 1246 1247 // 3. Loop precondition. 1248 ICmpInst::Predicate Pred; 1249 const SCEV *OverflowLimit = 1250 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1251 1252 if (OverflowLimit && 1253 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1254 return PreStart; 1255 1256 return nullptr; 1257 } 1258 1259 // Get the normalized zero or sign extended expression for this AddRec's Start. 1260 template <typename ExtendOpTy> 1261 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1262 ScalarEvolution *SE, 1263 unsigned Depth) { 1264 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1265 1266 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1267 if (!PreStart) 1268 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1269 1270 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1271 Depth), 1272 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1273 } 1274 1275 // Try to prove away overflow by looking at "nearby" add recurrences. A 1276 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1277 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1278 // 1279 // Formally: 1280 // 1281 // {S,+,X} == {S-T,+,X} + T 1282 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1283 // 1284 // If ({S-T,+,X} + T) does not overflow ... (1) 1285 // 1286 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1287 // 1288 // If {S-T,+,X} does not overflow ... (2) 1289 // 1290 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1291 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1292 // 1293 // If (S-T)+T does not overflow ... (3) 1294 // 1295 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1296 // == {Ext(S),+,Ext(X)} == LHS 1297 // 1298 // Thus, if (1), (2) and (3) are true for some T, then 1299 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1300 // 1301 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1302 // does not overflow" restricted to the 0th iteration. Therefore we only need 1303 // to check for (1) and (2). 1304 // 1305 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1306 // is `Delta` (defined below). 1307 template <typename ExtendOpTy> 1308 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1309 const SCEV *Step, 1310 const Loop *L) { 1311 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1312 1313 // We restrict `Start` to a constant to prevent SCEV from spending too much 1314 // time here. It is correct (but more expensive) to continue with a 1315 // non-constant `Start` and do a general SCEV subtraction to compute 1316 // `PreStart` below. 1317 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1318 if (!StartC) 1319 return false; 1320 1321 APInt StartAI = StartC->getAPInt(); 1322 1323 for (unsigned Delta : {-2, -1, 1, 2}) { 1324 const SCEV *PreStart = getConstant(StartAI - Delta); 1325 1326 FoldingSetNodeID ID; 1327 ID.AddInteger(scAddRecExpr); 1328 ID.AddPointer(PreStart); 1329 ID.AddPointer(Step); 1330 ID.AddPointer(L); 1331 void *IP = nullptr; 1332 const auto *PreAR = 1333 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1334 1335 // Give up if we don't already have the add recurrence we need because 1336 // actually constructing an add recurrence is relatively expensive. 1337 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1338 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1339 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1340 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1341 DeltaS, &Pred, this); 1342 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 // Finds an integer D for an expression (C + x + y + ...) such that the top 1351 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1352 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1353 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1354 // the (C + x + y + ...) expression is \p WholeAddExpr. 1355 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1356 const SCEVConstant *ConstantTerm, 1357 const SCEVAddExpr *WholeAddExpr) { 1358 const APInt &C = ConstantTerm->getAPInt(); 1359 const unsigned BitWidth = C.getBitWidth(); 1360 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1361 uint32_t TZ = BitWidth; 1362 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1363 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1364 if (TZ) { 1365 // Set D to be as many least significant bits of C as possible while still 1366 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1367 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1368 } 1369 return APInt(BitWidth, 0); 1370 } 1371 1372 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1373 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1374 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1375 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1376 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1377 const APInt &ConstantStart, 1378 const SCEV *Step) { 1379 const unsigned BitWidth = ConstantStart.getBitWidth(); 1380 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1381 if (TZ) 1382 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1383 : ConstantStart; 1384 return APInt(BitWidth, 0); 1385 } 1386 1387 const SCEV * 1388 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1389 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1390 "This is not an extending conversion!"); 1391 assert(isSCEVable(Ty) && 1392 "This is not a conversion to a SCEVable type!"); 1393 Ty = getEffectiveSCEVType(Ty); 1394 1395 // Fold if the operand is constant. 1396 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1397 return getConstant( 1398 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1399 1400 // zext(zext(x)) --> zext(x) 1401 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1402 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1403 1404 // Before doing any expensive analysis, check to see if we've already 1405 // computed a SCEV for this Op and Ty. 1406 FoldingSetNodeID ID; 1407 ID.AddInteger(scZeroExtend); 1408 ID.AddPointer(Op); 1409 ID.AddPointer(Ty); 1410 void *IP = nullptr; 1411 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1412 if (Depth > MaxCastDepth) { 1413 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1414 Op, Ty); 1415 UniqueSCEVs.InsertNode(S, IP); 1416 addToLoopUseLists(S); 1417 return S; 1418 } 1419 1420 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1421 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1422 // It's possible the bits taken off by the truncate were all zero bits. If 1423 // so, we should be able to simplify this further. 1424 const SCEV *X = ST->getOperand(); 1425 ConstantRange CR = getUnsignedRange(X); 1426 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1427 unsigned NewBits = getTypeSizeInBits(Ty); 1428 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1429 CR.zextOrTrunc(NewBits))) 1430 return getTruncateOrZeroExtend(X, Ty, Depth); 1431 } 1432 1433 // If the input value is a chrec scev, and we can prove that the value 1434 // did not overflow the old, smaller, value, we can zero extend all of the 1435 // operands (often constants). This allows analysis of something like 1436 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1437 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1438 if (AR->isAffine()) { 1439 const SCEV *Start = AR->getStart(); 1440 const SCEV *Step = AR->getStepRecurrence(*this); 1441 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1442 const Loop *L = AR->getLoop(); 1443 1444 if (!AR->hasNoUnsignedWrap()) { 1445 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1446 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1447 } 1448 1449 // If we have special knowledge that this addrec won't overflow, 1450 // we don't need to do any further analysis. 1451 if (AR->hasNoUnsignedWrap()) 1452 return getAddRecExpr( 1453 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1454 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1455 1456 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1457 // Note that this serves two purposes: It filters out loops that are 1458 // simply not analyzable, and it covers the case where this code is 1459 // being called from within backedge-taken count analysis, such that 1460 // attempting to ask for the backedge-taken count would likely result 1461 // in infinite recursion. In the later case, the analysis code will 1462 // cope with a conservative value, and it will take care to purge 1463 // that value once it has finished. 1464 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1465 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1466 // Manually compute the final value for AR, checking for 1467 // overflow. 1468 1469 // Check whether the backedge-taken count can be losslessly casted to 1470 // the addrec's type. The count is always unsigned. 1471 const SCEV *CastedMaxBECount = 1472 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1473 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1474 CastedMaxBECount, MaxBECount->getType(), Depth); 1475 if (MaxBECount == RecastedMaxBECount) { 1476 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1477 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1478 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1479 SCEV::FlagAnyWrap, Depth + 1); 1480 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1481 SCEV::FlagAnyWrap, 1482 Depth + 1), 1483 WideTy, Depth + 1); 1484 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1485 const SCEV *WideMaxBECount = 1486 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1487 const SCEV *OperandExtendedAdd = 1488 getAddExpr(WideStart, 1489 getMulExpr(WideMaxBECount, 1490 getZeroExtendExpr(Step, WideTy, Depth + 1), 1491 SCEV::FlagAnyWrap, Depth + 1), 1492 SCEV::FlagAnyWrap, Depth + 1); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1499 Depth + 1), 1500 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1501 AR->getNoWrapFlags()); 1502 } 1503 // Similar to above, only this time treat the step value as signed. 1504 // This covers loops that count down. 1505 OperandExtendedAdd = 1506 getAddExpr(WideStart, 1507 getMulExpr(WideMaxBECount, 1508 getSignExtendExpr(Step, WideTy, Depth + 1), 1509 SCEV::FlagAnyWrap, Depth + 1), 1510 SCEV::FlagAnyWrap, Depth + 1); 1511 if (ZAdd == OperandExtendedAdd) { 1512 // Cache knowledge of AR NW, which is propagated to this AddRec. 1513 // Negative step causes unsigned wrap, but it still can't self-wrap. 1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1515 // Return the expression with the addrec on the outside. 1516 return getAddRecExpr( 1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1518 Depth + 1), 1519 getSignExtendExpr(Step, Ty, Depth + 1), L, 1520 AR->getNoWrapFlags()); 1521 } 1522 } 1523 } 1524 1525 // Normally, in the cases we can prove no-overflow via a 1526 // backedge guarding condition, we can also compute a backedge 1527 // taken count for the loop. The exceptions are assumptions and 1528 // guards present in the loop -- SCEV is not great at exploiting 1529 // these to compute max backedge taken counts, but can still use 1530 // these to prove lack of overflow. Use this fact to avoid 1531 // doing extra work that may not pay off. 1532 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1533 !AC.assumptions().empty()) { 1534 // If the backedge is guarded by a comparison with the pre-inc 1535 // value the addrec is safe. Also, if the entry is guarded by 1536 // a comparison with the start value and the backedge is 1537 // guarded by a comparison with the post-inc value, the addrec 1538 // is safe. 1539 if (isKnownPositive(Step)) { 1540 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1541 getUnsignedRangeMax(Step)); 1542 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1543 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1544 // Cache knowledge of AR NUW, which is propagated to this 1545 // AddRec. 1546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1547 // Return the expression with the addrec on the outside. 1548 return getAddRecExpr( 1549 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1550 Depth + 1), 1551 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1552 AR->getNoWrapFlags()); 1553 } 1554 } else if (isKnownNegative(Step)) { 1555 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1556 getSignedRangeMin(Step)); 1557 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1558 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1559 // Cache knowledge of AR NW, which is propagated to this 1560 // AddRec. Negative step causes unsigned wrap, but it 1561 // still can't self-wrap. 1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1563 // Return the expression with the addrec on the outside. 1564 return getAddRecExpr( 1565 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1566 Depth + 1), 1567 getSignExtendExpr(Step, Ty, Depth + 1), L, 1568 AR->getNoWrapFlags()); 1569 } 1570 } 1571 } 1572 1573 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1574 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1575 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1576 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1577 const APInt &C = SC->getAPInt(); 1578 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1579 if (D != 0) { 1580 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1581 const SCEV *SResidual = 1582 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1583 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1584 return getAddExpr(SZExtD, SZExtR, 1585 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1586 Depth + 1); 1587 } 1588 } 1589 1590 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1591 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1592 return getAddRecExpr( 1593 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1594 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1595 } 1596 } 1597 1598 // zext(A % B) --> zext(A) % zext(B) 1599 { 1600 const SCEV *LHS; 1601 const SCEV *RHS; 1602 if (matchURem(Op, LHS, RHS)) 1603 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1604 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1605 } 1606 1607 // zext(A / B) --> zext(A) / zext(B). 1608 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1609 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1610 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1611 1612 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1613 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1614 if (SA->hasNoUnsignedWrap()) { 1615 // If the addition does not unsign overflow then we can, by definition, 1616 // commute the zero extension with the addition operation. 1617 SmallVector<const SCEV *, 4> Ops; 1618 for (const auto *Op : SA->operands()) 1619 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1620 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1621 } 1622 1623 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1624 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1625 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1626 // 1627 // Often address arithmetics contain expressions like 1628 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1629 // This transformation is useful while proving that such expressions are 1630 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1631 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1632 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1633 if (D != 0) { 1634 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1635 const SCEV *SResidual = 1636 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1637 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1638 return getAddExpr(SZExtD, SZExtR, 1639 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1640 Depth + 1); 1641 } 1642 } 1643 } 1644 1645 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1646 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1647 if (SM->hasNoUnsignedWrap()) { 1648 // If the multiply does not unsign overflow then we can, by definition, 1649 // commute the zero extension with the multiply operation. 1650 SmallVector<const SCEV *, 4> Ops; 1651 for (const auto *Op : SM->operands()) 1652 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1653 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1654 } 1655 1656 // zext(2^K * (trunc X to iN)) to iM -> 1657 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1658 // 1659 // Proof: 1660 // 1661 // zext(2^K * (trunc X to iN)) to iM 1662 // = zext((trunc X to iN) << K) to iM 1663 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1664 // (because shl removes the top K bits) 1665 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1666 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1667 // 1668 if (SM->getNumOperands() == 2) 1669 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1670 if (MulLHS->getAPInt().isPowerOf2()) 1671 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1672 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1673 MulLHS->getAPInt().logBase2(); 1674 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1675 return getMulExpr( 1676 getZeroExtendExpr(MulLHS, Ty), 1677 getZeroExtendExpr( 1678 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1679 SCEV::FlagNUW, Depth + 1); 1680 } 1681 } 1682 1683 // The cast wasn't folded; create an explicit cast node. 1684 // Recompute the insert position, as it may have been invalidated. 1685 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1686 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1687 Op, Ty); 1688 UniqueSCEVs.InsertNode(S, IP); 1689 addToLoopUseLists(S); 1690 return S; 1691 } 1692 1693 const SCEV * 1694 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1695 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1696 "This is not an extending conversion!"); 1697 assert(isSCEVable(Ty) && 1698 "This is not a conversion to a SCEVable type!"); 1699 Ty = getEffectiveSCEVType(Ty); 1700 1701 // Fold if the operand is constant. 1702 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1703 return getConstant( 1704 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1705 1706 // sext(sext(x)) --> sext(x) 1707 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1708 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1709 1710 // sext(zext(x)) --> zext(x) 1711 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1712 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1713 1714 // Before doing any expensive analysis, check to see if we've already 1715 // computed a SCEV for this Op and Ty. 1716 FoldingSetNodeID ID; 1717 ID.AddInteger(scSignExtend); 1718 ID.AddPointer(Op); 1719 ID.AddPointer(Ty); 1720 void *IP = nullptr; 1721 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1722 // Limit recursion depth. 1723 if (Depth > MaxCastDepth) { 1724 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1725 Op, Ty); 1726 UniqueSCEVs.InsertNode(S, IP); 1727 addToLoopUseLists(S); 1728 return S; 1729 } 1730 1731 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1732 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1733 // It's possible the bits taken off by the truncate were all sign bits. If 1734 // so, we should be able to simplify this further. 1735 const SCEV *X = ST->getOperand(); 1736 ConstantRange CR = getSignedRange(X); 1737 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1738 unsigned NewBits = getTypeSizeInBits(Ty); 1739 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1740 CR.sextOrTrunc(NewBits))) 1741 return getTruncateOrSignExtend(X, Ty, Depth); 1742 } 1743 1744 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1745 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1746 if (SA->hasNoSignedWrap()) { 1747 // If the addition does not sign overflow then we can, by definition, 1748 // commute the sign extension with the addition operation. 1749 SmallVector<const SCEV *, 4> Ops; 1750 for (const auto *Op : SA->operands()) 1751 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1752 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1753 } 1754 1755 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1756 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1757 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1758 // 1759 // For instance, this will bring two seemingly different expressions: 1760 // 1 + sext(5 + 20 * %x + 24 * %y) and 1761 // sext(6 + 20 * %x + 24 * %y) 1762 // to the same form: 1763 // 2 + sext(4 + 20 * %x + 24 * %y) 1764 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1765 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1766 if (D != 0) { 1767 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1768 const SCEV *SResidual = 1769 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1770 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1771 return getAddExpr(SSExtD, SSExtR, 1772 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1773 Depth + 1); 1774 } 1775 } 1776 } 1777 // If the input value is a chrec scev, and we can prove that the value 1778 // did not overflow the old, smaller, value, we can sign extend all of the 1779 // operands (often constants). This allows analysis of something like 1780 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1781 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1782 if (AR->isAffine()) { 1783 const SCEV *Start = AR->getStart(); 1784 const SCEV *Step = AR->getStepRecurrence(*this); 1785 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1786 const Loop *L = AR->getLoop(); 1787 1788 if (!AR->hasNoSignedWrap()) { 1789 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1790 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1791 } 1792 1793 // If we have special knowledge that this addrec won't overflow, 1794 // we don't need to do any further analysis. 1795 if (AR->hasNoSignedWrap()) 1796 return getAddRecExpr( 1797 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1798 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1799 1800 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1801 // Note that this serves two purposes: It filters out loops that are 1802 // simply not analyzable, and it covers the case where this code is 1803 // being called from within backedge-taken count analysis, such that 1804 // attempting to ask for the backedge-taken count would likely result 1805 // in infinite recursion. In the later case, the analysis code will 1806 // cope with a conservative value, and it will take care to purge 1807 // that value once it has finished. 1808 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1809 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1810 // Manually compute the final value for AR, checking for 1811 // overflow. 1812 1813 // Check whether the backedge-taken count can be losslessly casted to 1814 // the addrec's type. The count is always unsigned. 1815 const SCEV *CastedMaxBECount = 1816 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1817 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1818 CastedMaxBECount, MaxBECount->getType(), Depth); 1819 if (MaxBECount == RecastedMaxBECount) { 1820 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1821 // Check whether Start+Step*MaxBECount has no signed overflow. 1822 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1823 SCEV::FlagAnyWrap, Depth + 1); 1824 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1825 SCEV::FlagAnyWrap, 1826 Depth + 1), 1827 WideTy, Depth + 1); 1828 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1829 const SCEV *WideMaxBECount = 1830 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1831 const SCEV *OperandExtendedAdd = 1832 getAddExpr(WideStart, 1833 getMulExpr(WideMaxBECount, 1834 getSignExtendExpr(Step, WideTy, Depth + 1), 1835 SCEV::FlagAnyWrap, Depth + 1), 1836 SCEV::FlagAnyWrap, Depth + 1); 1837 if (SAdd == OperandExtendedAdd) { 1838 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1839 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1840 // Return the expression with the addrec on the outside. 1841 return getAddRecExpr( 1842 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1843 Depth + 1), 1844 getSignExtendExpr(Step, Ty, Depth + 1), L, 1845 AR->getNoWrapFlags()); 1846 } 1847 // Similar to above, only this time treat the step value as unsigned. 1848 // This covers loops that count up with an unsigned step. 1849 OperandExtendedAdd = 1850 getAddExpr(WideStart, 1851 getMulExpr(WideMaxBECount, 1852 getZeroExtendExpr(Step, WideTy, Depth + 1), 1853 SCEV::FlagAnyWrap, Depth + 1), 1854 SCEV::FlagAnyWrap, Depth + 1); 1855 if (SAdd == OperandExtendedAdd) { 1856 // If AR wraps around then 1857 // 1858 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1859 // => SAdd != OperandExtendedAdd 1860 // 1861 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1862 // (SAdd == OperandExtendedAdd => AR is NW) 1863 1864 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1865 1866 // Return the expression with the addrec on the outside. 1867 return getAddRecExpr( 1868 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1869 Depth + 1), 1870 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1871 AR->getNoWrapFlags()); 1872 } 1873 } 1874 } 1875 1876 // Normally, in the cases we can prove no-overflow via a 1877 // backedge guarding condition, we can also compute a backedge 1878 // taken count for the loop. The exceptions are assumptions and 1879 // guards present in the loop -- SCEV is not great at exploiting 1880 // these to compute max backedge taken counts, but can still use 1881 // these to prove lack of overflow. Use this fact to avoid 1882 // doing extra work that may not pay off. 1883 1884 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1885 !AC.assumptions().empty()) { 1886 // If the backedge is guarded by a comparison with the pre-inc 1887 // value the addrec is safe. Also, if the entry is guarded by 1888 // a comparison with the start value and the backedge is 1889 // guarded by a comparison with the post-inc value, the addrec 1890 // is safe. 1891 ICmpInst::Predicate Pred; 1892 const SCEV *OverflowLimit = 1893 getSignedOverflowLimitForStep(Step, &Pred, this); 1894 if (OverflowLimit && 1895 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1896 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 1897 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1898 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1899 return getAddRecExpr( 1900 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1901 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1902 } 1903 } 1904 1905 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 1906 // if D + (C - D + Step * n) could be proven to not signed wrap 1907 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1908 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1909 const APInt &C = SC->getAPInt(); 1910 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1911 if (D != 0) { 1912 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1913 const SCEV *SResidual = 1914 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1915 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1916 return getAddExpr(SSExtD, SSExtR, 1917 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1918 Depth + 1); 1919 } 1920 } 1921 1922 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1923 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1924 return getAddRecExpr( 1925 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1926 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1927 } 1928 } 1929 1930 // If the input value is provably positive and we could not simplify 1931 // away the sext build a zext instead. 1932 if (isKnownNonNegative(Op)) 1933 return getZeroExtendExpr(Op, Ty, Depth + 1); 1934 1935 // The cast wasn't folded; create an explicit cast node. 1936 // Recompute the insert position, as it may have been invalidated. 1937 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1938 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1939 Op, Ty); 1940 UniqueSCEVs.InsertNode(S, IP); 1941 addToLoopUseLists(S); 1942 return S; 1943 } 1944 1945 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1946 /// unspecified bits out to the given type. 1947 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1948 Type *Ty) { 1949 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1950 "This is not an extending conversion!"); 1951 assert(isSCEVable(Ty) && 1952 "This is not a conversion to a SCEVable type!"); 1953 Ty = getEffectiveSCEVType(Ty); 1954 1955 // Sign-extend negative constants. 1956 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1957 if (SC->getAPInt().isNegative()) 1958 return getSignExtendExpr(Op, Ty); 1959 1960 // Peel off a truncate cast. 1961 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1962 const SCEV *NewOp = T->getOperand(); 1963 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1964 return getAnyExtendExpr(NewOp, Ty); 1965 return getTruncateOrNoop(NewOp, Ty); 1966 } 1967 1968 // Next try a zext cast. If the cast is folded, use it. 1969 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1970 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1971 return ZExt; 1972 1973 // Next try a sext cast. If the cast is folded, use it. 1974 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1975 if (!isa<SCEVSignExtendExpr>(SExt)) 1976 return SExt; 1977 1978 // Force the cast to be folded into the operands of an addrec. 1979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1980 SmallVector<const SCEV *, 4> Ops; 1981 for (const SCEV *Op : AR->operands()) 1982 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1983 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1984 } 1985 1986 // If the expression is obviously signed, use the sext cast value. 1987 if (isa<SCEVSMaxExpr>(Op)) 1988 return SExt; 1989 1990 // Absent any other information, use the zext cast value. 1991 return ZExt; 1992 } 1993 1994 /// Process the given Ops list, which is a list of operands to be added under 1995 /// the given scale, update the given map. This is a helper function for 1996 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1997 /// that would form an add expression like this: 1998 /// 1999 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2000 /// 2001 /// where A and B are constants, update the map with these values: 2002 /// 2003 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2004 /// 2005 /// and add 13 + A*B*29 to AccumulatedConstant. 2006 /// This will allow getAddRecExpr to produce this: 2007 /// 2008 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2009 /// 2010 /// This form often exposes folding opportunities that are hidden in 2011 /// the original operand list. 2012 /// 2013 /// Return true iff it appears that any interesting folding opportunities 2014 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2015 /// the common case where no interesting opportunities are present, and 2016 /// is also used as a check to avoid infinite recursion. 2017 static bool 2018 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2019 SmallVectorImpl<const SCEV *> &NewOps, 2020 APInt &AccumulatedConstant, 2021 const SCEV *const *Ops, size_t NumOperands, 2022 const APInt &Scale, 2023 ScalarEvolution &SE) { 2024 bool Interesting = false; 2025 2026 // Iterate over the add operands. They are sorted, with constants first. 2027 unsigned i = 0; 2028 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2029 ++i; 2030 // Pull a buried constant out to the outside. 2031 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2032 Interesting = true; 2033 AccumulatedConstant += Scale * C->getAPInt(); 2034 } 2035 2036 // Next comes everything else. We're especially interested in multiplies 2037 // here, but they're in the middle, so just visit the rest with one loop. 2038 for (; i != NumOperands; ++i) { 2039 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2040 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2041 APInt NewScale = 2042 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2043 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2044 // A multiplication of a constant with another add; recurse. 2045 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2046 Interesting |= 2047 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2048 Add->op_begin(), Add->getNumOperands(), 2049 NewScale, SE); 2050 } else { 2051 // A multiplication of a constant with some other value. Update 2052 // the map. 2053 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2054 const SCEV *Key = SE.getMulExpr(MulOps); 2055 auto Pair = M.insert({Key, NewScale}); 2056 if (Pair.second) { 2057 NewOps.push_back(Pair.first->first); 2058 } else { 2059 Pair.first->second += NewScale; 2060 // The map already had an entry for this value, which may indicate 2061 // a folding opportunity. 2062 Interesting = true; 2063 } 2064 } 2065 } else { 2066 // An ordinary operand. Update the map. 2067 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2068 M.insert({Ops[i], Scale}); 2069 if (Pair.second) { 2070 NewOps.push_back(Pair.first->first); 2071 } else { 2072 Pair.first->second += Scale; 2073 // The map already had an entry for this value, which may indicate 2074 // a folding opportunity. 2075 Interesting = true; 2076 } 2077 } 2078 } 2079 2080 return Interesting; 2081 } 2082 2083 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2084 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2085 // can't-overflow flags for the operation if possible. 2086 static SCEV::NoWrapFlags 2087 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2088 const ArrayRef<const SCEV *> Ops, 2089 SCEV::NoWrapFlags Flags) { 2090 using namespace std::placeholders; 2091 2092 using OBO = OverflowingBinaryOperator; 2093 2094 bool CanAnalyze = 2095 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2096 (void)CanAnalyze; 2097 assert(CanAnalyze && "don't call from other places!"); 2098 2099 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2100 SCEV::NoWrapFlags SignOrUnsignWrap = 2101 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2102 2103 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2104 auto IsKnownNonNegative = [&](const SCEV *S) { 2105 return SE->isKnownNonNegative(S); 2106 }; 2107 2108 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2109 Flags = 2110 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2111 2112 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2113 2114 if (SignOrUnsignWrap != SignOrUnsignMask && 2115 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2116 isa<SCEVConstant>(Ops[0])) { 2117 2118 auto Opcode = [&] { 2119 switch (Type) { 2120 case scAddExpr: 2121 return Instruction::Add; 2122 case scMulExpr: 2123 return Instruction::Mul; 2124 default: 2125 llvm_unreachable("Unexpected SCEV op."); 2126 } 2127 }(); 2128 2129 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2130 2131 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2132 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2133 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2134 Opcode, C, OBO::NoSignedWrap); 2135 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2136 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2137 } 2138 2139 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2140 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2141 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2142 Opcode, C, OBO::NoUnsignedWrap); 2143 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2144 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2145 } 2146 } 2147 2148 return Flags; 2149 } 2150 2151 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2152 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2153 } 2154 2155 /// Get a canonical add expression, or something simpler if possible. 2156 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2157 SCEV::NoWrapFlags Flags, 2158 unsigned Depth) { 2159 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2160 "only nuw or nsw allowed"); 2161 assert(!Ops.empty() && "Cannot get empty add!"); 2162 if (Ops.size() == 1) return Ops[0]; 2163 #ifndef NDEBUG 2164 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2165 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2166 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2167 "SCEVAddExpr operand types don't match!"); 2168 #endif 2169 2170 // Sort by complexity, this groups all similar expression types together. 2171 GroupByComplexity(Ops, &LI, DT); 2172 2173 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2174 2175 // If there are any constants, fold them together. 2176 unsigned Idx = 0; 2177 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2178 ++Idx; 2179 assert(Idx < Ops.size()); 2180 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2181 // We found two constants, fold them together! 2182 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2183 if (Ops.size() == 2) return Ops[0]; 2184 Ops.erase(Ops.begin()+1); // Erase the folded element 2185 LHSC = cast<SCEVConstant>(Ops[0]); 2186 } 2187 2188 // If we are left with a constant zero being added, strip it off. 2189 if (LHSC->getValue()->isZero()) { 2190 Ops.erase(Ops.begin()); 2191 --Idx; 2192 } 2193 2194 if (Ops.size() == 1) return Ops[0]; 2195 } 2196 2197 // Limit recursion calls depth. 2198 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2199 return getOrCreateAddExpr(Ops, Flags); 2200 2201 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2202 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags); 2203 return S; 2204 } 2205 2206 // Okay, check to see if the same value occurs in the operand list more than 2207 // once. If so, merge them together into an multiply expression. Since we 2208 // sorted the list, these values are required to be adjacent. 2209 Type *Ty = Ops[0]->getType(); 2210 bool FoundMatch = false; 2211 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2212 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2213 // Scan ahead to count how many equal operands there are. 2214 unsigned Count = 2; 2215 while (i+Count != e && Ops[i+Count] == Ops[i]) 2216 ++Count; 2217 // Merge the values into a multiply. 2218 const SCEV *Scale = getConstant(Ty, Count); 2219 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2220 if (Ops.size() == Count) 2221 return Mul; 2222 Ops[i] = Mul; 2223 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2224 --i; e -= Count - 1; 2225 FoundMatch = true; 2226 } 2227 if (FoundMatch) 2228 return getAddExpr(Ops, Flags, Depth + 1); 2229 2230 // Check for truncates. If all the operands are truncated from the same 2231 // type, see if factoring out the truncate would permit the result to be 2232 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2233 // if the contents of the resulting outer trunc fold to something simple. 2234 auto FindTruncSrcType = [&]() -> Type * { 2235 // We're ultimately looking to fold an addrec of truncs and muls of only 2236 // constants and truncs, so if we find any other types of SCEV 2237 // as operands of the addrec then we bail and return nullptr here. 2238 // Otherwise, we return the type of the operand of a trunc that we find. 2239 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2240 return T->getOperand()->getType(); 2241 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2242 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2243 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2244 return T->getOperand()->getType(); 2245 } 2246 return nullptr; 2247 }; 2248 if (auto *SrcType = FindTruncSrcType()) { 2249 SmallVector<const SCEV *, 8> LargeOps; 2250 bool Ok = true; 2251 // Check all the operands to see if they can be represented in the 2252 // source type of the truncate. 2253 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2254 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2255 if (T->getOperand()->getType() != SrcType) { 2256 Ok = false; 2257 break; 2258 } 2259 LargeOps.push_back(T->getOperand()); 2260 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2261 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2262 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2263 SmallVector<const SCEV *, 8> LargeMulOps; 2264 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2265 if (const SCEVTruncateExpr *T = 2266 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2267 if (T->getOperand()->getType() != SrcType) { 2268 Ok = false; 2269 break; 2270 } 2271 LargeMulOps.push_back(T->getOperand()); 2272 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2273 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2274 } else { 2275 Ok = false; 2276 break; 2277 } 2278 } 2279 if (Ok) 2280 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2281 } else { 2282 Ok = false; 2283 break; 2284 } 2285 } 2286 if (Ok) { 2287 // Evaluate the expression in the larger type. 2288 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2289 // If it folds to something simple, use it. Otherwise, don't. 2290 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2291 return getTruncateExpr(Fold, Ty); 2292 } 2293 } 2294 2295 // Skip past any other cast SCEVs. 2296 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2297 ++Idx; 2298 2299 // If there are add operands they would be next. 2300 if (Idx < Ops.size()) { 2301 bool DeletedAdd = false; 2302 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2303 if (Ops.size() > AddOpsInlineThreshold || 2304 Add->getNumOperands() > AddOpsInlineThreshold) 2305 break; 2306 // If we have an add, expand the add operands onto the end of the operands 2307 // list. 2308 Ops.erase(Ops.begin()+Idx); 2309 Ops.append(Add->op_begin(), Add->op_end()); 2310 DeletedAdd = true; 2311 } 2312 2313 // If we deleted at least one add, we added operands to the end of the list, 2314 // and they are not necessarily sorted. Recurse to resort and resimplify 2315 // any operands we just acquired. 2316 if (DeletedAdd) 2317 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2318 } 2319 2320 // Skip over the add expression until we get to a multiply. 2321 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2322 ++Idx; 2323 2324 // Check to see if there are any folding opportunities present with 2325 // operands multiplied by constant values. 2326 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2327 uint64_t BitWidth = getTypeSizeInBits(Ty); 2328 DenseMap<const SCEV *, APInt> M; 2329 SmallVector<const SCEV *, 8> NewOps; 2330 APInt AccumulatedConstant(BitWidth, 0); 2331 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2332 Ops.data(), Ops.size(), 2333 APInt(BitWidth, 1), *this)) { 2334 struct APIntCompare { 2335 bool operator()(const APInt &LHS, const APInt &RHS) const { 2336 return LHS.ult(RHS); 2337 } 2338 }; 2339 2340 // Some interesting folding opportunity is present, so its worthwhile to 2341 // re-generate the operands list. Group the operands by constant scale, 2342 // to avoid multiplying by the same constant scale multiple times. 2343 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2344 for (const SCEV *NewOp : NewOps) 2345 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2346 // Re-generate the operands list. 2347 Ops.clear(); 2348 if (AccumulatedConstant != 0) 2349 Ops.push_back(getConstant(AccumulatedConstant)); 2350 for (auto &MulOp : MulOpLists) 2351 if (MulOp.first != 0) 2352 Ops.push_back(getMulExpr( 2353 getConstant(MulOp.first), 2354 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2355 SCEV::FlagAnyWrap, Depth + 1)); 2356 if (Ops.empty()) 2357 return getZero(Ty); 2358 if (Ops.size() == 1) 2359 return Ops[0]; 2360 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2361 } 2362 } 2363 2364 // If we are adding something to a multiply expression, make sure the 2365 // something is not already an operand of the multiply. If so, merge it into 2366 // the multiply. 2367 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2368 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2369 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2370 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2371 if (isa<SCEVConstant>(MulOpSCEV)) 2372 continue; 2373 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2374 if (MulOpSCEV == Ops[AddOp]) { 2375 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2376 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2377 if (Mul->getNumOperands() != 2) { 2378 // If the multiply has more than two operands, we must get the 2379 // Y*Z term. 2380 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2381 Mul->op_begin()+MulOp); 2382 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2383 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2384 } 2385 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2386 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2387 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2388 SCEV::FlagAnyWrap, Depth + 1); 2389 if (Ops.size() == 2) return OuterMul; 2390 if (AddOp < Idx) { 2391 Ops.erase(Ops.begin()+AddOp); 2392 Ops.erase(Ops.begin()+Idx-1); 2393 } else { 2394 Ops.erase(Ops.begin()+Idx); 2395 Ops.erase(Ops.begin()+AddOp-1); 2396 } 2397 Ops.push_back(OuterMul); 2398 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2399 } 2400 2401 // Check this multiply against other multiplies being added together. 2402 for (unsigned OtherMulIdx = Idx+1; 2403 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2404 ++OtherMulIdx) { 2405 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2406 // If MulOp occurs in OtherMul, we can fold the two multiplies 2407 // together. 2408 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2409 OMulOp != e; ++OMulOp) 2410 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2411 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2412 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2413 if (Mul->getNumOperands() != 2) { 2414 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2415 Mul->op_begin()+MulOp); 2416 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2417 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2418 } 2419 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2420 if (OtherMul->getNumOperands() != 2) { 2421 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2422 OtherMul->op_begin()+OMulOp); 2423 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2424 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2425 } 2426 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2427 const SCEV *InnerMulSum = 2428 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2429 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2430 SCEV::FlagAnyWrap, Depth + 1); 2431 if (Ops.size() == 2) return OuterMul; 2432 Ops.erase(Ops.begin()+Idx); 2433 Ops.erase(Ops.begin()+OtherMulIdx-1); 2434 Ops.push_back(OuterMul); 2435 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2436 } 2437 } 2438 } 2439 } 2440 2441 // If there are any add recurrences in the operands list, see if any other 2442 // added values are loop invariant. If so, we can fold them into the 2443 // recurrence. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2445 ++Idx; 2446 2447 // Scan over all recurrences, trying to fold loop invariants into them. 2448 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2449 // Scan all of the other operands to this add and add them to the vector if 2450 // they are loop invariant w.r.t. the recurrence. 2451 SmallVector<const SCEV *, 8> LIOps; 2452 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2453 const Loop *AddRecLoop = AddRec->getLoop(); 2454 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2455 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2456 LIOps.push_back(Ops[i]); 2457 Ops.erase(Ops.begin()+i); 2458 --i; --e; 2459 } 2460 2461 // If we found some loop invariants, fold them into the recurrence. 2462 if (!LIOps.empty()) { 2463 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2464 LIOps.push_back(AddRec->getStart()); 2465 2466 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2467 AddRec->op_end()); 2468 // This follows from the fact that the no-wrap flags on the outer add 2469 // expression are applicable on the 0th iteration, when the add recurrence 2470 // will be equal to its start value. 2471 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2472 2473 // Build the new addrec. Propagate the NUW and NSW flags if both the 2474 // outer add and the inner addrec are guaranteed to have no overflow. 2475 // Always propagate NW. 2476 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2477 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2478 2479 // If all of the other operands were loop invariant, we are done. 2480 if (Ops.size() == 1) return NewRec; 2481 2482 // Otherwise, add the folded AddRec by the non-invariant parts. 2483 for (unsigned i = 0;; ++i) 2484 if (Ops[i] == AddRec) { 2485 Ops[i] = NewRec; 2486 break; 2487 } 2488 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2489 } 2490 2491 // Okay, if there weren't any loop invariants to be folded, check to see if 2492 // there are multiple AddRec's with the same loop induction variable being 2493 // added together. If so, we can fold them. 2494 for (unsigned OtherIdx = Idx+1; 2495 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2496 ++OtherIdx) { 2497 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2498 // so that the 1st found AddRecExpr is dominated by all others. 2499 assert(DT.dominates( 2500 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2501 AddRec->getLoop()->getHeader()) && 2502 "AddRecExprs are not sorted in reverse dominance order?"); 2503 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2504 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2505 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2506 AddRec->op_end()); 2507 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2508 ++OtherIdx) { 2509 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2510 if (OtherAddRec->getLoop() == AddRecLoop) { 2511 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2512 i != e; ++i) { 2513 if (i >= AddRecOps.size()) { 2514 AddRecOps.append(OtherAddRec->op_begin()+i, 2515 OtherAddRec->op_end()); 2516 break; 2517 } 2518 SmallVector<const SCEV *, 2> TwoOps = { 2519 AddRecOps[i], OtherAddRec->getOperand(i)}; 2520 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2521 } 2522 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2523 } 2524 } 2525 // Step size has changed, so we cannot guarantee no self-wraparound. 2526 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2527 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2528 } 2529 } 2530 2531 // Otherwise couldn't fold anything into this recurrence. Move onto the 2532 // next one. 2533 } 2534 2535 // Okay, it looks like we really DO need an add expr. Check to see if we 2536 // already have one, otherwise create a new one. 2537 return getOrCreateAddExpr(Ops, Flags); 2538 } 2539 2540 const SCEV * 2541 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2542 SCEV::NoWrapFlags Flags) { 2543 FoldingSetNodeID ID; 2544 ID.AddInteger(scAddExpr); 2545 for (const SCEV *Op : Ops) 2546 ID.AddPointer(Op); 2547 void *IP = nullptr; 2548 SCEVAddExpr *S = 2549 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2550 if (!S) { 2551 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2552 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2553 S = new (SCEVAllocator) 2554 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2555 UniqueSCEVs.InsertNode(S, IP); 2556 addToLoopUseLists(S); 2557 } 2558 S->setNoWrapFlags(Flags); 2559 return S; 2560 } 2561 2562 const SCEV * 2563 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2564 const Loop *L, SCEV::NoWrapFlags Flags) { 2565 FoldingSetNodeID ID; 2566 ID.AddInteger(scAddRecExpr); 2567 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2568 ID.AddPointer(Ops[i]); 2569 ID.AddPointer(L); 2570 void *IP = nullptr; 2571 SCEVAddRecExpr *S = 2572 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2573 if (!S) { 2574 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2575 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2576 S = new (SCEVAllocator) 2577 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2578 UniqueSCEVs.InsertNode(S, IP); 2579 addToLoopUseLists(S); 2580 } 2581 S->setNoWrapFlags(Flags); 2582 return S; 2583 } 2584 2585 const SCEV * 2586 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2587 SCEV::NoWrapFlags Flags) { 2588 FoldingSetNodeID ID; 2589 ID.AddInteger(scMulExpr); 2590 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2591 ID.AddPointer(Ops[i]); 2592 void *IP = nullptr; 2593 SCEVMulExpr *S = 2594 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2595 if (!S) { 2596 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2597 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2598 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2599 O, Ops.size()); 2600 UniqueSCEVs.InsertNode(S, IP); 2601 addToLoopUseLists(S); 2602 } 2603 S->setNoWrapFlags(Flags); 2604 return S; 2605 } 2606 2607 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2608 uint64_t k = i*j; 2609 if (j > 1 && k / j != i) Overflow = true; 2610 return k; 2611 } 2612 2613 /// Compute the result of "n choose k", the binomial coefficient. If an 2614 /// intermediate computation overflows, Overflow will be set and the return will 2615 /// be garbage. Overflow is not cleared on absence of overflow. 2616 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2617 // We use the multiplicative formula: 2618 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2619 // At each iteration, we take the n-th term of the numeral and divide by the 2620 // (k-n)th term of the denominator. This division will always produce an 2621 // integral result, and helps reduce the chance of overflow in the 2622 // intermediate computations. However, we can still overflow even when the 2623 // final result would fit. 2624 2625 if (n == 0 || n == k) return 1; 2626 if (k > n) return 0; 2627 2628 if (k > n/2) 2629 k = n-k; 2630 2631 uint64_t r = 1; 2632 for (uint64_t i = 1; i <= k; ++i) { 2633 r = umul_ov(r, n-(i-1), Overflow); 2634 r /= i; 2635 } 2636 return r; 2637 } 2638 2639 /// Determine if any of the operands in this SCEV are a constant or if 2640 /// any of the add or multiply expressions in this SCEV contain a constant. 2641 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2642 struct FindConstantInAddMulChain { 2643 bool FoundConstant = false; 2644 2645 bool follow(const SCEV *S) { 2646 FoundConstant |= isa<SCEVConstant>(S); 2647 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2648 } 2649 2650 bool isDone() const { 2651 return FoundConstant; 2652 } 2653 }; 2654 2655 FindConstantInAddMulChain F; 2656 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2657 ST.visitAll(StartExpr); 2658 return F.FoundConstant; 2659 } 2660 2661 /// Get a canonical multiply expression, or something simpler if possible. 2662 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2663 SCEV::NoWrapFlags Flags, 2664 unsigned Depth) { 2665 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2666 "only nuw or nsw allowed"); 2667 assert(!Ops.empty() && "Cannot get empty mul!"); 2668 if (Ops.size() == 1) return Ops[0]; 2669 #ifndef NDEBUG 2670 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2671 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2672 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2673 "SCEVMulExpr operand types don't match!"); 2674 #endif 2675 2676 // Sort by complexity, this groups all similar expression types together. 2677 GroupByComplexity(Ops, &LI, DT); 2678 2679 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2680 2681 // Limit recursion calls depth, but fold all-constant expressions. 2682 // `Ops` is sorted, so it's enough to check just last one. 2683 if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) && 2684 !isa<SCEVConstant>(Ops.back())) 2685 return getOrCreateMulExpr(Ops, Flags); 2686 2687 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2688 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags); 2689 return S; 2690 } 2691 2692 // If there are any constants, fold them together. 2693 unsigned Idx = 0; 2694 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2695 2696 if (Ops.size() == 2) 2697 // C1*(C2+V) -> C1*C2 + C1*V 2698 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2699 // If any of Add's ops are Adds or Muls with a constant, apply this 2700 // transformation as well. 2701 // 2702 // TODO: There are some cases where this transformation is not 2703 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2704 // this transformation should be narrowed down. 2705 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2706 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2707 SCEV::FlagAnyWrap, Depth + 1), 2708 getMulExpr(LHSC, Add->getOperand(1), 2709 SCEV::FlagAnyWrap, Depth + 1), 2710 SCEV::FlagAnyWrap, Depth + 1); 2711 2712 ++Idx; 2713 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2714 // We found two constants, fold them together! 2715 ConstantInt *Fold = 2716 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2717 Ops[0] = getConstant(Fold); 2718 Ops.erase(Ops.begin()+1); // Erase the folded element 2719 if (Ops.size() == 1) return Ops[0]; 2720 LHSC = cast<SCEVConstant>(Ops[0]); 2721 } 2722 2723 // If we are left with a constant one being multiplied, strip it off. 2724 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2725 Ops.erase(Ops.begin()); 2726 --Idx; 2727 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2728 // If we have a multiply of zero, it will always be zero. 2729 return Ops[0]; 2730 } else if (Ops[0]->isAllOnesValue()) { 2731 // If we have a mul by -1 of an add, try distributing the -1 among the 2732 // add operands. 2733 if (Ops.size() == 2) { 2734 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2735 SmallVector<const SCEV *, 4> NewOps; 2736 bool AnyFolded = false; 2737 for (const SCEV *AddOp : Add->operands()) { 2738 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2739 Depth + 1); 2740 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2741 NewOps.push_back(Mul); 2742 } 2743 if (AnyFolded) 2744 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2745 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2746 // Negation preserves a recurrence's no self-wrap property. 2747 SmallVector<const SCEV *, 4> Operands; 2748 for (const SCEV *AddRecOp : AddRec->operands()) 2749 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2750 Depth + 1)); 2751 2752 return getAddRecExpr(Operands, AddRec->getLoop(), 2753 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2754 } 2755 } 2756 } 2757 2758 if (Ops.size() == 1) 2759 return Ops[0]; 2760 } 2761 2762 // Skip over the add expression until we get to a multiply. 2763 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2764 ++Idx; 2765 2766 // If there are mul operands inline them all into this expression. 2767 if (Idx < Ops.size()) { 2768 bool DeletedMul = false; 2769 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2770 if (Ops.size() > MulOpsInlineThreshold) 2771 break; 2772 // If we have an mul, expand the mul operands onto the end of the 2773 // operands list. 2774 Ops.erase(Ops.begin()+Idx); 2775 Ops.append(Mul->op_begin(), Mul->op_end()); 2776 DeletedMul = true; 2777 } 2778 2779 // If we deleted at least one mul, we added operands to the end of the 2780 // list, and they are not necessarily sorted. Recurse to resort and 2781 // resimplify any operands we just acquired. 2782 if (DeletedMul) 2783 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2784 } 2785 2786 // If there are any add recurrences in the operands list, see if any other 2787 // added values are loop invariant. If so, we can fold them into the 2788 // recurrence. 2789 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2790 ++Idx; 2791 2792 // Scan over all recurrences, trying to fold loop invariants into them. 2793 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2794 // Scan all of the other operands to this mul and add them to the vector 2795 // if they are loop invariant w.r.t. the recurrence. 2796 SmallVector<const SCEV *, 8> LIOps; 2797 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2798 const Loop *AddRecLoop = AddRec->getLoop(); 2799 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2800 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2801 LIOps.push_back(Ops[i]); 2802 Ops.erase(Ops.begin()+i); 2803 --i; --e; 2804 } 2805 2806 // If we found some loop invariants, fold them into the recurrence. 2807 if (!LIOps.empty()) { 2808 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2809 SmallVector<const SCEV *, 4> NewOps; 2810 NewOps.reserve(AddRec->getNumOperands()); 2811 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2812 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2813 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2814 SCEV::FlagAnyWrap, Depth + 1)); 2815 2816 // Build the new addrec. Propagate the NUW and NSW flags if both the 2817 // outer mul and the inner addrec are guaranteed to have no overflow. 2818 // 2819 // No self-wrap cannot be guaranteed after changing the step size, but 2820 // will be inferred if either NUW or NSW is true. 2821 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2822 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2823 2824 // If all of the other operands were loop invariant, we are done. 2825 if (Ops.size() == 1) return NewRec; 2826 2827 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2828 for (unsigned i = 0;; ++i) 2829 if (Ops[i] == AddRec) { 2830 Ops[i] = NewRec; 2831 break; 2832 } 2833 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2834 } 2835 2836 // Okay, if there weren't any loop invariants to be folded, check to see 2837 // if there are multiple AddRec's with the same loop induction variable 2838 // being multiplied together. If so, we can fold them. 2839 2840 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2841 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2842 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2843 // ]]],+,...up to x=2n}. 2844 // Note that the arguments to choose() are always integers with values 2845 // known at compile time, never SCEV objects. 2846 // 2847 // The implementation avoids pointless extra computations when the two 2848 // addrec's are of different length (mathematically, it's equivalent to 2849 // an infinite stream of zeros on the right). 2850 bool OpsModified = false; 2851 for (unsigned OtherIdx = Idx+1; 2852 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2853 ++OtherIdx) { 2854 const SCEVAddRecExpr *OtherAddRec = 2855 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2856 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2857 continue; 2858 2859 // Limit max number of arguments to avoid creation of unreasonably big 2860 // SCEVAddRecs with very complex operands. 2861 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2862 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 2863 continue; 2864 2865 bool Overflow = false; 2866 Type *Ty = AddRec->getType(); 2867 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2868 SmallVector<const SCEV*, 7> AddRecOps; 2869 for (int x = 0, xe = AddRec->getNumOperands() + 2870 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2871 SmallVector <const SCEV *, 7> SumOps; 2872 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2873 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2874 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2875 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2876 z < ze && !Overflow; ++z) { 2877 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2878 uint64_t Coeff; 2879 if (LargerThan64Bits) 2880 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2881 else 2882 Coeff = Coeff1*Coeff2; 2883 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2884 const SCEV *Term1 = AddRec->getOperand(y-z); 2885 const SCEV *Term2 = OtherAddRec->getOperand(z); 2886 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 2887 SCEV::FlagAnyWrap, Depth + 1)); 2888 } 2889 } 2890 if (SumOps.empty()) 2891 SumOps.push_back(getZero(Ty)); 2892 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 2893 } 2894 if (!Overflow) { 2895 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 2896 SCEV::FlagAnyWrap); 2897 if (Ops.size() == 2) return NewAddRec; 2898 Ops[Idx] = NewAddRec; 2899 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2900 OpsModified = true; 2901 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2902 if (!AddRec) 2903 break; 2904 } 2905 } 2906 if (OpsModified) 2907 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2908 2909 // Otherwise couldn't fold anything into this recurrence. Move onto the 2910 // next one. 2911 } 2912 2913 // Okay, it looks like we really DO need an mul expr. Check to see if we 2914 // already have one, otherwise create a new one. 2915 return getOrCreateMulExpr(Ops, Flags); 2916 } 2917 2918 /// Represents an unsigned remainder expression based on unsigned division. 2919 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 2920 const SCEV *RHS) { 2921 assert(getEffectiveSCEVType(LHS->getType()) == 2922 getEffectiveSCEVType(RHS->getType()) && 2923 "SCEVURemExpr operand types don't match!"); 2924 2925 // Short-circuit easy cases 2926 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2927 // If constant is one, the result is trivial 2928 if (RHSC->getValue()->isOne()) 2929 return getZero(LHS->getType()); // X urem 1 --> 0 2930 2931 // If constant is a power of two, fold into a zext(trunc(LHS)). 2932 if (RHSC->getAPInt().isPowerOf2()) { 2933 Type *FullTy = LHS->getType(); 2934 Type *TruncTy = 2935 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 2936 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 2937 } 2938 } 2939 2940 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 2941 const SCEV *UDiv = getUDivExpr(LHS, RHS); 2942 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 2943 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 2944 } 2945 2946 /// Get a canonical unsigned division expression, or something simpler if 2947 /// possible. 2948 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2949 const SCEV *RHS) { 2950 assert(getEffectiveSCEVType(LHS->getType()) == 2951 getEffectiveSCEVType(RHS->getType()) && 2952 "SCEVUDivExpr operand types don't match!"); 2953 2954 FoldingSetNodeID ID; 2955 ID.AddInteger(scUDivExpr); 2956 ID.AddPointer(LHS); 2957 ID.AddPointer(RHS); 2958 void *IP = nullptr; 2959 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 2960 return S; 2961 2962 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2963 if (RHSC->getValue()->isOne()) 2964 return LHS; // X udiv 1 --> x 2965 // If the denominator is zero, the result of the udiv is undefined. Don't 2966 // try to analyze it, because the resolution chosen here may differ from 2967 // the resolution chosen in other parts of the compiler. 2968 if (!RHSC->getValue()->isZero()) { 2969 // Determine if the division can be folded into the operands of 2970 // its operands. 2971 // TODO: Generalize this to non-constants by using known-bits information. 2972 Type *Ty = LHS->getType(); 2973 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2974 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2975 // For non-power-of-two values, effectively round the value up to the 2976 // nearest power of two. 2977 if (!RHSC->getAPInt().isPowerOf2()) 2978 ++MaxShiftAmt; 2979 IntegerType *ExtTy = 2980 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2981 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2982 if (const SCEVConstant *Step = 2983 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2984 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2985 const APInt &StepInt = Step->getAPInt(); 2986 const APInt &DivInt = RHSC->getAPInt(); 2987 if (!StepInt.urem(DivInt) && 2988 getZeroExtendExpr(AR, ExtTy) == 2989 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2990 getZeroExtendExpr(Step, ExtTy), 2991 AR->getLoop(), SCEV::FlagAnyWrap)) { 2992 SmallVector<const SCEV *, 4> Operands; 2993 for (const SCEV *Op : AR->operands()) 2994 Operands.push_back(getUDivExpr(Op, RHS)); 2995 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2996 } 2997 /// Get a canonical UDivExpr for a recurrence. 2998 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2999 // We can currently only fold X%N if X is constant. 3000 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3001 if (StartC && !DivInt.urem(StepInt) && 3002 getZeroExtendExpr(AR, ExtTy) == 3003 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3004 getZeroExtendExpr(Step, ExtTy), 3005 AR->getLoop(), SCEV::FlagAnyWrap)) { 3006 const APInt &StartInt = StartC->getAPInt(); 3007 const APInt &StartRem = StartInt.urem(StepInt); 3008 if (StartRem != 0) { 3009 const SCEV *NewLHS = 3010 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3011 AR->getLoop(), SCEV::FlagNW); 3012 if (LHS != NewLHS) { 3013 LHS = NewLHS; 3014 3015 // Reset the ID to include the new LHS, and check if it is 3016 // already cached. 3017 ID.clear(); 3018 ID.AddInteger(scUDivExpr); 3019 ID.AddPointer(LHS); 3020 ID.AddPointer(RHS); 3021 IP = nullptr; 3022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3023 return S; 3024 } 3025 } 3026 } 3027 } 3028 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3029 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3030 SmallVector<const SCEV *, 4> Operands; 3031 for (const SCEV *Op : M->operands()) 3032 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3033 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3034 // Find an operand that's safely divisible. 3035 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3036 const SCEV *Op = M->getOperand(i); 3037 const SCEV *Div = getUDivExpr(Op, RHSC); 3038 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3039 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3040 M->op_end()); 3041 Operands[i] = Div; 3042 return getMulExpr(Operands); 3043 } 3044 } 3045 } 3046 3047 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3048 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3049 if (auto *DivisorConstant = 3050 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3051 bool Overflow = false; 3052 APInt NewRHS = 3053 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3054 if (Overflow) { 3055 return getConstant(RHSC->getType(), 0, false); 3056 } 3057 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3058 } 3059 } 3060 3061 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3062 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3063 SmallVector<const SCEV *, 4> Operands; 3064 for (const SCEV *Op : A->operands()) 3065 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3066 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3067 Operands.clear(); 3068 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3069 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3070 if (isa<SCEVUDivExpr>(Op) || 3071 getMulExpr(Op, RHS) != A->getOperand(i)) 3072 break; 3073 Operands.push_back(Op); 3074 } 3075 if (Operands.size() == A->getNumOperands()) 3076 return getAddExpr(Operands); 3077 } 3078 } 3079 3080 // Fold if both operands are constant. 3081 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3082 Constant *LHSCV = LHSC->getValue(); 3083 Constant *RHSCV = RHSC->getValue(); 3084 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3085 RHSCV))); 3086 } 3087 } 3088 } 3089 3090 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3091 // changes). Make sure we get a new one. 3092 IP = nullptr; 3093 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3094 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3095 LHS, RHS); 3096 UniqueSCEVs.InsertNode(S, IP); 3097 addToLoopUseLists(S); 3098 return S; 3099 } 3100 3101 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3102 APInt A = C1->getAPInt().abs(); 3103 APInt B = C2->getAPInt().abs(); 3104 uint32_t ABW = A.getBitWidth(); 3105 uint32_t BBW = B.getBitWidth(); 3106 3107 if (ABW > BBW) 3108 B = B.zext(ABW); 3109 else if (ABW < BBW) 3110 A = A.zext(BBW); 3111 3112 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3113 } 3114 3115 /// Get a canonical unsigned division expression, or something simpler if 3116 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3117 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3118 /// it's not exact because the udiv may be clearing bits. 3119 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3120 const SCEV *RHS) { 3121 // TODO: we could try to find factors in all sorts of things, but for now we 3122 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3123 // end of this file for inspiration. 3124 3125 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3126 if (!Mul || !Mul->hasNoUnsignedWrap()) 3127 return getUDivExpr(LHS, RHS); 3128 3129 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3130 // If the mulexpr multiplies by a constant, then that constant must be the 3131 // first element of the mulexpr. 3132 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3133 if (LHSCst == RHSCst) { 3134 SmallVector<const SCEV *, 2> Operands; 3135 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3136 return getMulExpr(Operands); 3137 } 3138 3139 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3140 // that there's a factor provided by one of the other terms. We need to 3141 // check. 3142 APInt Factor = gcd(LHSCst, RHSCst); 3143 if (!Factor.isIntN(1)) { 3144 LHSCst = 3145 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3146 RHSCst = 3147 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3148 SmallVector<const SCEV *, 2> Operands; 3149 Operands.push_back(LHSCst); 3150 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3151 LHS = getMulExpr(Operands); 3152 RHS = RHSCst; 3153 Mul = dyn_cast<SCEVMulExpr>(LHS); 3154 if (!Mul) 3155 return getUDivExactExpr(LHS, RHS); 3156 } 3157 } 3158 } 3159 3160 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3161 if (Mul->getOperand(i) == RHS) { 3162 SmallVector<const SCEV *, 2> Operands; 3163 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3164 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3165 return getMulExpr(Operands); 3166 } 3167 } 3168 3169 return getUDivExpr(LHS, RHS); 3170 } 3171 3172 /// Get an add recurrence expression for the specified loop. Simplify the 3173 /// expression as much as possible. 3174 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3175 const Loop *L, 3176 SCEV::NoWrapFlags Flags) { 3177 SmallVector<const SCEV *, 4> Operands; 3178 Operands.push_back(Start); 3179 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3180 if (StepChrec->getLoop() == L) { 3181 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3182 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3183 } 3184 3185 Operands.push_back(Step); 3186 return getAddRecExpr(Operands, L, Flags); 3187 } 3188 3189 /// Get an add recurrence expression for the specified loop. Simplify the 3190 /// expression as much as possible. 3191 const SCEV * 3192 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3193 const Loop *L, SCEV::NoWrapFlags Flags) { 3194 if (Operands.size() == 1) return Operands[0]; 3195 #ifndef NDEBUG 3196 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3197 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3198 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3199 "SCEVAddRecExpr operand types don't match!"); 3200 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3201 assert(isLoopInvariant(Operands[i], L) && 3202 "SCEVAddRecExpr operand is not loop-invariant!"); 3203 #endif 3204 3205 if (Operands.back()->isZero()) { 3206 Operands.pop_back(); 3207 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3208 } 3209 3210 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3211 // use that information to infer NUW and NSW flags. However, computing a 3212 // BE count requires calling getAddRecExpr, so we may not yet have a 3213 // meaningful BE count at this point (and if we don't, we'd be stuck 3214 // with a SCEVCouldNotCompute as the cached BE count). 3215 3216 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3217 3218 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3219 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3220 const Loop *NestedLoop = NestedAR->getLoop(); 3221 if (L->contains(NestedLoop) 3222 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3223 : (!NestedLoop->contains(L) && 3224 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3225 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3226 NestedAR->op_end()); 3227 Operands[0] = NestedAR->getStart(); 3228 // AddRecs require their operands be loop-invariant with respect to their 3229 // loops. Don't perform this transformation if it would break this 3230 // requirement. 3231 bool AllInvariant = all_of( 3232 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3233 3234 if (AllInvariant) { 3235 // Create a recurrence for the outer loop with the same step size. 3236 // 3237 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3238 // inner recurrence has the same property. 3239 SCEV::NoWrapFlags OuterFlags = 3240 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3241 3242 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3243 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3244 return isLoopInvariant(Op, NestedLoop); 3245 }); 3246 3247 if (AllInvariant) { 3248 // Ok, both add recurrences are valid after the transformation. 3249 // 3250 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3251 // the outer recurrence has the same property. 3252 SCEV::NoWrapFlags InnerFlags = 3253 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3254 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3255 } 3256 } 3257 // Reset Operands to its original state. 3258 Operands[0] = NestedAR; 3259 } 3260 } 3261 3262 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3263 // already have one, otherwise create a new one. 3264 return getOrCreateAddRecExpr(Operands, L, Flags); 3265 } 3266 3267 const SCEV * 3268 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3269 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3270 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3271 // getSCEV(Base)->getType() has the same address space as Base->getType() 3272 // because SCEV::getType() preserves the address space. 3273 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3274 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3275 // instruction to its SCEV, because the Instruction may be guarded by control 3276 // flow and the no-overflow bits may not be valid for the expression in any 3277 // context. This can be fixed similarly to how these flags are handled for 3278 // adds. 3279 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3280 : SCEV::FlagAnyWrap; 3281 3282 const SCEV *TotalOffset = getZero(IntIdxTy); 3283 Type *CurTy = GEP->getType(); 3284 bool FirstIter = true; 3285 for (const SCEV *IndexExpr : IndexExprs) { 3286 // Compute the (potentially symbolic) offset in bytes for this index. 3287 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3288 // For a struct, add the member offset. 3289 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3290 unsigned FieldNo = Index->getZExtValue(); 3291 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3292 3293 // Add the field offset to the running total offset. 3294 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3295 3296 // Update CurTy to the type of the field at Index. 3297 CurTy = STy->getTypeAtIndex(Index); 3298 } else { 3299 // Update CurTy to its element type. 3300 if (FirstIter) { 3301 assert(isa<PointerType>(CurTy) && 3302 "The first index of a GEP indexes a pointer"); 3303 CurTy = GEP->getSourceElementType(); 3304 FirstIter = false; 3305 } else { 3306 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3307 } 3308 // For an array, add the element offset, explicitly scaled. 3309 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3310 // Getelementptr indices are signed. 3311 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3312 3313 // Multiply the index by the element size to compute the element offset. 3314 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3315 3316 // Add the element offset to the running total offset. 3317 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3318 } 3319 } 3320 3321 // Add the total offset from all the GEP indices to the base. 3322 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3323 } 3324 3325 std::tuple<SCEV *, FoldingSetNodeID, void *> 3326 ScalarEvolution::findExistingSCEVInCache(int SCEVType, 3327 ArrayRef<const SCEV *> Ops) { 3328 FoldingSetNodeID ID; 3329 void *IP = nullptr; 3330 ID.AddInteger(SCEVType); 3331 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3332 ID.AddPointer(Ops[i]); 3333 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3334 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3335 } 3336 3337 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3338 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3339 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3340 } 3341 3342 const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) { 3343 Type *Ty = Op->getType(); 3344 return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty)); 3345 } 3346 3347 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, 3348 SmallVectorImpl<const SCEV *> &Ops) { 3349 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3350 if (Ops.size() == 1) return Ops[0]; 3351 #ifndef NDEBUG 3352 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3353 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3354 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3355 "Operand types don't match!"); 3356 #endif 3357 3358 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3359 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3360 3361 // Sort by complexity, this groups all similar expression types together. 3362 GroupByComplexity(Ops, &LI, DT); 3363 3364 // Check if we have created the same expression before. 3365 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3366 return S; 3367 } 3368 3369 // If there are any constants, fold them together. 3370 unsigned Idx = 0; 3371 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3372 ++Idx; 3373 assert(Idx < Ops.size()); 3374 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3375 if (Kind == scSMaxExpr) 3376 return APIntOps::smax(LHS, RHS); 3377 else if (Kind == scSMinExpr) 3378 return APIntOps::smin(LHS, RHS); 3379 else if (Kind == scUMaxExpr) 3380 return APIntOps::umax(LHS, RHS); 3381 else if (Kind == scUMinExpr) 3382 return APIntOps::umin(LHS, RHS); 3383 llvm_unreachable("Unknown SCEV min/max opcode"); 3384 }; 3385 3386 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3387 // We found two constants, fold them together! 3388 ConstantInt *Fold = ConstantInt::get( 3389 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3390 Ops[0] = getConstant(Fold); 3391 Ops.erase(Ops.begin()+1); // Erase the folded element 3392 if (Ops.size() == 1) return Ops[0]; 3393 LHSC = cast<SCEVConstant>(Ops[0]); 3394 } 3395 3396 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3397 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3398 3399 if (IsMax ? IsMinV : IsMaxV) { 3400 // If we are left with a constant minimum(/maximum)-int, strip it off. 3401 Ops.erase(Ops.begin()); 3402 --Idx; 3403 } else if (IsMax ? IsMaxV : IsMinV) { 3404 // If we have a max(/min) with a constant maximum(/minimum)-int, 3405 // it will always be the extremum. 3406 return LHSC; 3407 } 3408 3409 if (Ops.size() == 1) return Ops[0]; 3410 } 3411 3412 // Find the first operation of the same kind 3413 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3414 ++Idx; 3415 3416 // Check to see if one of the operands is of the same kind. If so, expand its 3417 // operands onto our operand list, and recurse to simplify. 3418 if (Idx < Ops.size()) { 3419 bool DeletedAny = false; 3420 while (Ops[Idx]->getSCEVType() == Kind) { 3421 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3422 Ops.erase(Ops.begin()+Idx); 3423 Ops.append(SMME->op_begin(), SMME->op_end()); 3424 DeletedAny = true; 3425 } 3426 3427 if (DeletedAny) 3428 return getMinMaxExpr(Kind, Ops); 3429 } 3430 3431 // Okay, check to see if the same value occurs in the operand list twice. If 3432 // so, delete one. Since we sorted the list, these values are required to 3433 // be adjacent. 3434 llvm::CmpInst::Predicate GEPred = 3435 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3436 llvm::CmpInst::Predicate LEPred = 3437 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3438 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3439 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3440 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3441 if (Ops[i] == Ops[i + 1] || 3442 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3443 // X op Y op Y --> X op Y 3444 // X op Y --> X, if we know X, Y are ordered appropriately 3445 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3446 --i; 3447 --e; 3448 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3449 Ops[i + 1])) { 3450 // X op Y --> Y, if we know X, Y are ordered appropriately 3451 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3452 --i; 3453 --e; 3454 } 3455 } 3456 3457 if (Ops.size() == 1) return Ops[0]; 3458 3459 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3460 3461 // Okay, it looks like we really DO need an expr. Check to see if we 3462 // already have one, otherwise create a new one. 3463 const SCEV *ExistingSCEV; 3464 FoldingSetNodeID ID; 3465 void *IP; 3466 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3467 if (ExistingSCEV) 3468 return ExistingSCEV; 3469 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3470 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3471 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( 3472 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); 3473 3474 UniqueSCEVs.InsertNode(S, IP); 3475 addToLoopUseLists(S); 3476 return S; 3477 } 3478 3479 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3480 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3481 return getSMaxExpr(Ops); 3482 } 3483 3484 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3485 return getMinMaxExpr(scSMaxExpr, Ops); 3486 } 3487 3488 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3489 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3490 return getUMaxExpr(Ops); 3491 } 3492 3493 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3494 return getMinMaxExpr(scUMaxExpr, Ops); 3495 } 3496 3497 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3498 const SCEV *RHS) { 3499 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3500 return getSMinExpr(Ops); 3501 } 3502 3503 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3504 return getMinMaxExpr(scSMinExpr, Ops); 3505 } 3506 3507 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3508 const SCEV *RHS) { 3509 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3510 return getUMinExpr(Ops); 3511 } 3512 3513 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3514 return getMinMaxExpr(scUMinExpr, Ops); 3515 } 3516 3517 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3518 // We can bypass creating a target-independent 3519 // constant expression and then folding it back into a ConstantInt. 3520 // This is just a compile-time optimization. 3521 if (isa<ScalableVectorType>(AllocTy)) { 3522 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3523 Constant *One = ConstantInt::get(IntTy, 1); 3524 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3525 return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy)); 3526 } 3527 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3528 } 3529 3530 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3531 StructType *STy, 3532 unsigned FieldNo) { 3533 // We can bypass creating a target-independent 3534 // constant expression and then folding it back into a ConstantInt. 3535 // This is just a compile-time optimization. 3536 return getConstant( 3537 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3538 } 3539 3540 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3541 // Don't attempt to do anything other than create a SCEVUnknown object 3542 // here. createSCEV only calls getUnknown after checking for all other 3543 // interesting possibilities, and any other code that calls getUnknown 3544 // is doing so in order to hide a value from SCEV canonicalization. 3545 3546 FoldingSetNodeID ID; 3547 ID.AddInteger(scUnknown); 3548 ID.AddPointer(V); 3549 void *IP = nullptr; 3550 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3551 assert(cast<SCEVUnknown>(S)->getValue() == V && 3552 "Stale SCEVUnknown in uniquing map!"); 3553 return S; 3554 } 3555 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3556 FirstUnknown); 3557 FirstUnknown = cast<SCEVUnknown>(S); 3558 UniqueSCEVs.InsertNode(S, IP); 3559 return S; 3560 } 3561 3562 //===----------------------------------------------------------------------===// 3563 // Basic SCEV Analysis and PHI Idiom Recognition Code 3564 // 3565 3566 /// Test if values of the given type are analyzable within the SCEV 3567 /// framework. This primarily includes integer types, and it can optionally 3568 /// include pointer types if the ScalarEvolution class has access to 3569 /// target-specific information. 3570 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3571 // Integers and pointers are always SCEVable. 3572 return Ty->isIntOrPtrTy(); 3573 } 3574 3575 /// Return the size in bits of the specified type, for which isSCEVable must 3576 /// return true. 3577 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3578 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3579 if (Ty->isPointerTy()) 3580 return getDataLayout().getIndexTypeSizeInBits(Ty); 3581 return getDataLayout().getTypeSizeInBits(Ty); 3582 } 3583 3584 /// Return a type with the same bitwidth as the given type and which represents 3585 /// how SCEV will treat the given type, for which isSCEVable must return 3586 /// true. For pointer types, this is the pointer index sized integer type. 3587 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3588 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3589 3590 if (Ty->isIntegerTy()) 3591 return Ty; 3592 3593 // The only other support type is pointer. 3594 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3595 return getDataLayout().getIndexType(Ty); 3596 } 3597 3598 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3599 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3600 } 3601 3602 const SCEV *ScalarEvolution::getCouldNotCompute() { 3603 return CouldNotCompute.get(); 3604 } 3605 3606 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3607 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3608 auto *SU = dyn_cast<SCEVUnknown>(S); 3609 return SU && SU->getValue() == nullptr; 3610 }); 3611 3612 return !ContainsNulls; 3613 } 3614 3615 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3616 HasRecMapType::iterator I = HasRecMap.find(S); 3617 if (I != HasRecMap.end()) 3618 return I->second; 3619 3620 bool FoundAddRec = 3621 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3622 HasRecMap.insert({S, FoundAddRec}); 3623 return FoundAddRec; 3624 } 3625 3626 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3627 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3628 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3629 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3630 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3631 if (!Add) 3632 return {S, nullptr}; 3633 3634 if (Add->getNumOperands() != 2) 3635 return {S, nullptr}; 3636 3637 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3638 if (!ConstOp) 3639 return {S, nullptr}; 3640 3641 return {Add->getOperand(1), ConstOp->getValue()}; 3642 } 3643 3644 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3645 /// by the value and offset from any ValueOffsetPair in the set. 3646 SetVector<ScalarEvolution::ValueOffsetPair> * 3647 ScalarEvolution::getSCEVValues(const SCEV *S) { 3648 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3649 if (SI == ExprValueMap.end()) 3650 return nullptr; 3651 #ifndef NDEBUG 3652 if (VerifySCEVMap) { 3653 // Check there is no dangling Value in the set returned. 3654 for (const auto &VE : SI->second) 3655 assert(ValueExprMap.count(VE.first)); 3656 } 3657 #endif 3658 return &SI->second; 3659 } 3660 3661 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3662 /// cannot be used separately. eraseValueFromMap should be used to remove 3663 /// V from ValueExprMap and ExprValueMap at the same time. 3664 void ScalarEvolution::eraseValueFromMap(Value *V) { 3665 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3666 if (I != ValueExprMap.end()) { 3667 const SCEV *S = I->second; 3668 // Remove {V, 0} from the set of ExprValueMap[S] 3669 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3670 SV->remove({V, nullptr}); 3671 3672 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3673 const SCEV *Stripped; 3674 ConstantInt *Offset; 3675 std::tie(Stripped, Offset) = splitAddExpr(S); 3676 if (Offset != nullptr) { 3677 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3678 SV->remove({V, Offset}); 3679 } 3680 ValueExprMap.erase(V); 3681 } 3682 } 3683 3684 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3685 /// TODO: In reality it is better to check the poison recursively 3686 /// but this is better than nothing. 3687 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3688 if (auto *I = dyn_cast<Instruction>(V)) { 3689 if (isa<OverflowingBinaryOperator>(I)) { 3690 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3691 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3692 return true; 3693 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3694 return true; 3695 } 3696 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3697 return true; 3698 } 3699 return false; 3700 } 3701 3702 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3703 /// create a new one. 3704 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3705 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3706 3707 const SCEV *S = getExistingSCEV(V); 3708 if (S == nullptr) { 3709 S = createSCEV(V); 3710 // During PHI resolution, it is possible to create two SCEVs for the same 3711 // V, so it is needed to double check whether V->S is inserted into 3712 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3713 std::pair<ValueExprMapType::iterator, bool> Pair = 3714 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3715 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3716 ExprValueMap[S].insert({V, nullptr}); 3717 3718 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3719 // ExprValueMap. 3720 const SCEV *Stripped = S; 3721 ConstantInt *Offset = nullptr; 3722 std::tie(Stripped, Offset) = splitAddExpr(S); 3723 // If stripped is SCEVUnknown, don't bother to save 3724 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3725 // increase the complexity of the expansion code. 3726 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3727 // because it may generate add/sub instead of GEP in SCEV expansion. 3728 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3729 !isa<GetElementPtrInst>(V)) 3730 ExprValueMap[Stripped].insert({V, Offset}); 3731 } 3732 } 3733 return S; 3734 } 3735 3736 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3737 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3738 3739 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3740 if (I != ValueExprMap.end()) { 3741 const SCEV *S = I->second; 3742 if (checkValidity(S)) 3743 return S; 3744 eraseValueFromMap(V); 3745 forgetMemoizedResults(S); 3746 } 3747 return nullptr; 3748 } 3749 3750 /// Return a SCEV corresponding to -V = -1*V 3751 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3752 SCEV::NoWrapFlags Flags) { 3753 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3754 return getConstant( 3755 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3756 3757 Type *Ty = V->getType(); 3758 Ty = getEffectiveSCEVType(Ty); 3759 return getMulExpr(V, getMinusOne(Ty), Flags); 3760 } 3761 3762 /// If Expr computes ~A, return A else return nullptr 3763 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3764 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3765 if (!Add || Add->getNumOperands() != 2 || 3766 !Add->getOperand(0)->isAllOnesValue()) 3767 return nullptr; 3768 3769 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3770 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3771 !AddRHS->getOperand(0)->isAllOnesValue()) 3772 return nullptr; 3773 3774 return AddRHS->getOperand(1); 3775 } 3776 3777 /// Return a SCEV corresponding to ~V = -1-V 3778 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3779 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3780 return getConstant( 3781 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3782 3783 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3784 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3785 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3786 SmallVector<const SCEV *, 2> MatchedOperands; 3787 for (const SCEV *Operand : MME->operands()) { 3788 const SCEV *Matched = MatchNotExpr(Operand); 3789 if (!Matched) 3790 return (const SCEV *)nullptr; 3791 MatchedOperands.push_back(Matched); 3792 } 3793 return getMinMaxExpr( 3794 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), 3795 MatchedOperands); 3796 }; 3797 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3798 return Replaced; 3799 } 3800 3801 Type *Ty = V->getType(); 3802 Ty = getEffectiveSCEVType(Ty); 3803 return getMinusSCEV(getMinusOne(Ty), V); 3804 } 3805 3806 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3807 SCEV::NoWrapFlags Flags, 3808 unsigned Depth) { 3809 // Fast path: X - X --> 0. 3810 if (LHS == RHS) 3811 return getZero(LHS->getType()); 3812 3813 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3814 // makes it so that we cannot make much use of NUW. 3815 auto AddFlags = SCEV::FlagAnyWrap; 3816 const bool RHSIsNotMinSigned = 3817 !getSignedRangeMin(RHS).isMinSignedValue(); 3818 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3819 // Let M be the minimum representable signed value. Then (-1)*RHS 3820 // signed-wraps if and only if RHS is M. That can happen even for 3821 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3822 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3823 // (-1)*RHS, we need to prove that RHS != M. 3824 // 3825 // If LHS is non-negative and we know that LHS - RHS does not 3826 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3827 // either by proving that RHS > M or that LHS >= 0. 3828 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3829 AddFlags = SCEV::FlagNSW; 3830 } 3831 } 3832 3833 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3834 // RHS is NSW and LHS >= 0. 3835 // 3836 // The difficulty here is that the NSW flag may have been proven 3837 // relative to a loop that is to be found in a recurrence in LHS and 3838 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3839 // larger scope than intended. 3840 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3841 3842 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3843 } 3844 3845 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 3846 unsigned Depth) { 3847 Type *SrcTy = V->getType(); 3848 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3849 "Cannot truncate or zero extend with non-integer arguments!"); 3850 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3851 return V; // No conversion 3852 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3853 return getTruncateExpr(V, Ty, Depth); 3854 return getZeroExtendExpr(V, Ty, Depth); 3855 } 3856 3857 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 3858 unsigned Depth) { 3859 Type *SrcTy = V->getType(); 3860 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3861 "Cannot truncate or zero extend with non-integer arguments!"); 3862 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3863 return V; // No conversion 3864 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3865 return getTruncateExpr(V, Ty, Depth); 3866 return getSignExtendExpr(V, Ty, Depth); 3867 } 3868 3869 const SCEV * 3870 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3871 Type *SrcTy = V->getType(); 3872 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3873 "Cannot noop or zero extend with non-integer arguments!"); 3874 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3875 "getNoopOrZeroExtend cannot truncate!"); 3876 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3877 return V; // No conversion 3878 return getZeroExtendExpr(V, Ty); 3879 } 3880 3881 const SCEV * 3882 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3883 Type *SrcTy = V->getType(); 3884 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3885 "Cannot noop or sign extend with non-integer arguments!"); 3886 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3887 "getNoopOrSignExtend cannot truncate!"); 3888 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3889 return V; // No conversion 3890 return getSignExtendExpr(V, Ty); 3891 } 3892 3893 const SCEV * 3894 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3895 Type *SrcTy = V->getType(); 3896 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3897 "Cannot noop or any extend with non-integer arguments!"); 3898 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3899 "getNoopOrAnyExtend cannot truncate!"); 3900 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3901 return V; // No conversion 3902 return getAnyExtendExpr(V, Ty); 3903 } 3904 3905 const SCEV * 3906 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3907 Type *SrcTy = V->getType(); 3908 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3909 "Cannot truncate or noop with non-integer arguments!"); 3910 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3911 "getTruncateOrNoop cannot extend!"); 3912 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3913 return V; // No conversion 3914 return getTruncateExpr(V, Ty); 3915 } 3916 3917 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3918 const SCEV *RHS) { 3919 const SCEV *PromotedLHS = LHS; 3920 const SCEV *PromotedRHS = RHS; 3921 3922 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3923 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3924 else 3925 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3926 3927 return getUMaxExpr(PromotedLHS, PromotedRHS); 3928 } 3929 3930 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3931 const SCEV *RHS) { 3932 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3933 return getUMinFromMismatchedTypes(Ops); 3934 } 3935 3936 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 3937 SmallVectorImpl<const SCEV *> &Ops) { 3938 assert(!Ops.empty() && "At least one operand must be!"); 3939 // Trivial case. 3940 if (Ops.size() == 1) 3941 return Ops[0]; 3942 3943 // Find the max type first. 3944 Type *MaxType = nullptr; 3945 for (auto *S : Ops) 3946 if (MaxType) 3947 MaxType = getWiderType(MaxType, S->getType()); 3948 else 3949 MaxType = S->getType(); 3950 assert(MaxType && "Failed to find maximum type!"); 3951 3952 // Extend all ops to max type. 3953 SmallVector<const SCEV *, 2> PromotedOps; 3954 for (auto *S : Ops) 3955 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 3956 3957 // Generate umin. 3958 return getUMinExpr(PromotedOps); 3959 } 3960 3961 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3962 // A pointer operand may evaluate to a nonpointer expression, such as null. 3963 if (!V->getType()->isPointerTy()) 3964 return V; 3965 3966 while (true) { 3967 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3968 V = Cast->getOperand(); 3969 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3970 const SCEV *PtrOp = nullptr; 3971 for (const SCEV *NAryOp : NAry->operands()) { 3972 if (NAryOp->getType()->isPointerTy()) { 3973 // Cannot find the base of an expression with multiple pointer ops. 3974 if (PtrOp) 3975 return V; 3976 PtrOp = NAryOp; 3977 } 3978 } 3979 if (!PtrOp) // All operands were non-pointer. 3980 return V; 3981 V = PtrOp; 3982 } else // Not something we can look further into. 3983 return V; 3984 } 3985 } 3986 3987 /// Push users of the given Instruction onto the given Worklist. 3988 static void 3989 PushDefUseChildren(Instruction *I, 3990 SmallVectorImpl<Instruction *> &Worklist) { 3991 // Push the def-use children onto the Worklist stack. 3992 for (User *U : I->users()) 3993 Worklist.push_back(cast<Instruction>(U)); 3994 } 3995 3996 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3997 SmallVector<Instruction *, 16> Worklist; 3998 PushDefUseChildren(PN, Worklist); 3999 4000 SmallPtrSet<Instruction *, 8> Visited; 4001 Visited.insert(PN); 4002 while (!Worklist.empty()) { 4003 Instruction *I = Worklist.pop_back_val(); 4004 if (!Visited.insert(I).second) 4005 continue; 4006 4007 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4008 if (It != ValueExprMap.end()) { 4009 const SCEV *Old = It->second; 4010 4011 // Short-circuit the def-use traversal if the symbolic name 4012 // ceases to appear in expressions. 4013 if (Old != SymName && !hasOperand(Old, SymName)) 4014 continue; 4015 4016 // SCEVUnknown for a PHI either means that it has an unrecognized 4017 // structure, it's a PHI that's in the progress of being computed 4018 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4019 // additional loop trip count information isn't going to change anything. 4020 // In the second case, createNodeForPHI will perform the necessary 4021 // updates on its own when it gets to that point. In the third, we do 4022 // want to forget the SCEVUnknown. 4023 if (!isa<PHINode>(I) || 4024 !isa<SCEVUnknown>(Old) || 4025 (I != PN && Old == SymName)) { 4026 eraseValueFromMap(It->first); 4027 forgetMemoizedResults(Old); 4028 } 4029 } 4030 4031 PushDefUseChildren(I, Worklist); 4032 } 4033 } 4034 4035 namespace { 4036 4037 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4038 /// expression in case its Loop is L. If it is not L then 4039 /// if IgnoreOtherLoops is true then use AddRec itself 4040 /// otherwise rewrite cannot be done. 4041 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4042 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4043 public: 4044 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4045 bool IgnoreOtherLoops = true) { 4046 SCEVInitRewriter Rewriter(L, SE); 4047 const SCEV *Result = Rewriter.visit(S); 4048 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4049 return SE.getCouldNotCompute(); 4050 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4051 ? SE.getCouldNotCompute() 4052 : Result; 4053 } 4054 4055 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4056 if (!SE.isLoopInvariant(Expr, L)) 4057 SeenLoopVariantSCEVUnknown = true; 4058 return Expr; 4059 } 4060 4061 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4062 // Only re-write AddRecExprs for this loop. 4063 if (Expr->getLoop() == L) 4064 return Expr->getStart(); 4065 SeenOtherLoops = true; 4066 return Expr; 4067 } 4068 4069 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4070 4071 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4072 4073 private: 4074 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4075 : SCEVRewriteVisitor(SE), L(L) {} 4076 4077 const Loop *L; 4078 bool SeenLoopVariantSCEVUnknown = false; 4079 bool SeenOtherLoops = false; 4080 }; 4081 4082 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4083 /// increment expression in case its Loop is L. If it is not L then 4084 /// use AddRec itself. 4085 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4086 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4087 public: 4088 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4089 SCEVPostIncRewriter Rewriter(L, SE); 4090 const SCEV *Result = Rewriter.visit(S); 4091 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4092 ? SE.getCouldNotCompute() 4093 : Result; 4094 } 4095 4096 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4097 if (!SE.isLoopInvariant(Expr, L)) 4098 SeenLoopVariantSCEVUnknown = true; 4099 return Expr; 4100 } 4101 4102 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4103 // Only re-write AddRecExprs for this loop. 4104 if (Expr->getLoop() == L) 4105 return Expr->getPostIncExpr(SE); 4106 SeenOtherLoops = true; 4107 return Expr; 4108 } 4109 4110 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4111 4112 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4113 4114 private: 4115 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4116 : SCEVRewriteVisitor(SE), L(L) {} 4117 4118 const Loop *L; 4119 bool SeenLoopVariantSCEVUnknown = false; 4120 bool SeenOtherLoops = false; 4121 }; 4122 4123 /// This class evaluates the compare condition by matching it against the 4124 /// condition of loop latch. If there is a match we assume a true value 4125 /// for the condition while building SCEV nodes. 4126 class SCEVBackedgeConditionFolder 4127 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4128 public: 4129 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4130 ScalarEvolution &SE) { 4131 bool IsPosBECond = false; 4132 Value *BECond = nullptr; 4133 if (BasicBlock *Latch = L->getLoopLatch()) { 4134 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4135 if (BI && BI->isConditional()) { 4136 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4137 "Both outgoing branches should not target same header!"); 4138 BECond = BI->getCondition(); 4139 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4140 } else { 4141 return S; 4142 } 4143 } 4144 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4145 return Rewriter.visit(S); 4146 } 4147 4148 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4149 const SCEV *Result = Expr; 4150 bool InvariantF = SE.isLoopInvariant(Expr, L); 4151 4152 if (!InvariantF) { 4153 Instruction *I = cast<Instruction>(Expr->getValue()); 4154 switch (I->getOpcode()) { 4155 case Instruction::Select: { 4156 SelectInst *SI = cast<SelectInst>(I); 4157 Optional<const SCEV *> Res = 4158 compareWithBackedgeCondition(SI->getCondition()); 4159 if (Res.hasValue()) { 4160 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4161 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4162 } 4163 break; 4164 } 4165 default: { 4166 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4167 if (Res.hasValue()) 4168 Result = Res.getValue(); 4169 break; 4170 } 4171 } 4172 } 4173 return Result; 4174 } 4175 4176 private: 4177 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4178 bool IsPosBECond, ScalarEvolution &SE) 4179 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4180 IsPositiveBECond(IsPosBECond) {} 4181 4182 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4183 4184 const Loop *L; 4185 /// Loop back condition. 4186 Value *BackedgeCond = nullptr; 4187 /// Set to true if loop back is on positive branch condition. 4188 bool IsPositiveBECond; 4189 }; 4190 4191 Optional<const SCEV *> 4192 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4193 4194 // If value matches the backedge condition for loop latch, 4195 // then return a constant evolution node based on loopback 4196 // branch taken. 4197 if (BackedgeCond == IC) 4198 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4199 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4200 return None; 4201 } 4202 4203 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4204 public: 4205 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4206 ScalarEvolution &SE) { 4207 SCEVShiftRewriter Rewriter(L, SE); 4208 const SCEV *Result = Rewriter.visit(S); 4209 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4210 } 4211 4212 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4213 // Only allow AddRecExprs for this loop. 4214 if (!SE.isLoopInvariant(Expr, L)) 4215 Valid = false; 4216 return Expr; 4217 } 4218 4219 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4220 if (Expr->getLoop() == L && Expr->isAffine()) 4221 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4222 Valid = false; 4223 return Expr; 4224 } 4225 4226 bool isValid() { return Valid; } 4227 4228 private: 4229 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4230 : SCEVRewriteVisitor(SE), L(L) {} 4231 4232 const Loop *L; 4233 bool Valid = true; 4234 }; 4235 4236 } // end anonymous namespace 4237 4238 SCEV::NoWrapFlags 4239 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4240 if (!AR->isAffine()) 4241 return SCEV::FlagAnyWrap; 4242 4243 using OBO = OverflowingBinaryOperator; 4244 4245 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4246 4247 if (!AR->hasNoSignedWrap()) { 4248 ConstantRange AddRecRange = getSignedRange(AR); 4249 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4250 4251 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4252 Instruction::Add, IncRange, OBO::NoSignedWrap); 4253 if (NSWRegion.contains(AddRecRange)) 4254 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4255 } 4256 4257 if (!AR->hasNoUnsignedWrap()) { 4258 ConstantRange AddRecRange = getUnsignedRange(AR); 4259 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4260 4261 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4262 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4263 if (NUWRegion.contains(AddRecRange)) 4264 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4265 } 4266 4267 return Result; 4268 } 4269 4270 namespace { 4271 4272 /// Represents an abstract binary operation. This may exist as a 4273 /// normal instruction or constant expression, or may have been 4274 /// derived from an expression tree. 4275 struct BinaryOp { 4276 unsigned Opcode; 4277 Value *LHS; 4278 Value *RHS; 4279 bool IsNSW = false; 4280 bool IsNUW = false; 4281 bool IsExact = false; 4282 4283 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4284 /// constant expression. 4285 Operator *Op = nullptr; 4286 4287 explicit BinaryOp(Operator *Op) 4288 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4289 Op(Op) { 4290 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4291 IsNSW = OBO->hasNoSignedWrap(); 4292 IsNUW = OBO->hasNoUnsignedWrap(); 4293 } 4294 if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op)) 4295 IsExact = PEO->isExact(); 4296 } 4297 4298 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4299 bool IsNUW = false, bool IsExact = false) 4300 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 4301 IsExact(IsExact) {} 4302 }; 4303 4304 } // end anonymous namespace 4305 4306 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4307 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4308 auto *Op = dyn_cast<Operator>(V); 4309 if (!Op) 4310 return None; 4311 4312 // Implementation detail: all the cleverness here should happen without 4313 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4314 // SCEV expressions when possible, and we should not break that. 4315 4316 switch (Op->getOpcode()) { 4317 case Instruction::Add: 4318 case Instruction::Sub: 4319 case Instruction::Mul: 4320 case Instruction::UDiv: 4321 case Instruction::URem: 4322 case Instruction::And: 4323 case Instruction::Or: 4324 case Instruction::AShr: 4325 case Instruction::Shl: 4326 return BinaryOp(Op); 4327 4328 case Instruction::Xor: 4329 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4330 // If the RHS of the xor is a signmask, then this is just an add. 4331 // Instcombine turns add of signmask into xor as a strength reduction step. 4332 if (RHSC->getValue().isSignMask()) 4333 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4334 return BinaryOp(Op); 4335 4336 case Instruction::LShr: 4337 // Turn logical shift right of a constant into a unsigned divide. 4338 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4339 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4340 4341 // If the shift count is not less than the bitwidth, the result of 4342 // the shift is undefined. Don't try to analyze it, because the 4343 // resolution chosen here may differ from the resolution chosen in 4344 // other parts of the compiler. 4345 if (SA->getValue().ult(BitWidth)) { 4346 Constant *X = 4347 ConstantInt::get(SA->getContext(), 4348 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4349 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4350 } 4351 } 4352 return BinaryOp(Op); 4353 4354 case Instruction::ExtractValue: { 4355 auto *EVI = cast<ExtractValueInst>(Op); 4356 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4357 break; 4358 4359 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4360 if (!WO) 4361 break; 4362 4363 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4364 bool Signed = WO->isSigned(); 4365 // TODO: Should add nuw/nsw flags for mul as well. 4366 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4367 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4368 4369 // Now that we know that all uses of the arithmetic-result component of 4370 // CI are guarded by the overflow check, we can go ahead and pretend 4371 // that the arithmetic is non-overflowing. 4372 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4373 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4374 } 4375 4376 default: 4377 break; 4378 } 4379 4380 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4381 // semantics as a Sub, return a binary sub expression. 4382 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4383 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4384 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4385 4386 return None; 4387 } 4388 4389 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4390 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4391 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4392 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4393 /// follows one of the following patterns: 4394 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4395 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4396 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4397 /// we return the type of the truncation operation, and indicate whether the 4398 /// truncated type should be treated as signed/unsigned by setting 4399 /// \p Signed to true/false, respectively. 4400 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4401 bool &Signed, ScalarEvolution &SE) { 4402 // The case where Op == SymbolicPHI (that is, with no type conversions on 4403 // the way) is handled by the regular add recurrence creating logic and 4404 // would have already been triggered in createAddRecForPHI. Reaching it here 4405 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4406 // because one of the other operands of the SCEVAddExpr updating this PHI is 4407 // not invariant). 4408 // 4409 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4410 // this case predicates that allow us to prove that Op == SymbolicPHI will 4411 // be added. 4412 if (Op == SymbolicPHI) 4413 return nullptr; 4414 4415 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4416 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4417 if (SourceBits != NewBits) 4418 return nullptr; 4419 4420 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4421 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4422 if (!SExt && !ZExt) 4423 return nullptr; 4424 const SCEVTruncateExpr *Trunc = 4425 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4426 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4427 if (!Trunc) 4428 return nullptr; 4429 const SCEV *X = Trunc->getOperand(); 4430 if (X != SymbolicPHI) 4431 return nullptr; 4432 Signed = SExt != nullptr; 4433 return Trunc->getType(); 4434 } 4435 4436 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4437 if (!PN->getType()->isIntegerTy()) 4438 return nullptr; 4439 const Loop *L = LI.getLoopFor(PN->getParent()); 4440 if (!L || L->getHeader() != PN->getParent()) 4441 return nullptr; 4442 return L; 4443 } 4444 4445 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4446 // computation that updates the phi follows the following pattern: 4447 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4448 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4449 // If so, try to see if it can be rewritten as an AddRecExpr under some 4450 // Predicates. If successful, return them as a pair. Also cache the results 4451 // of the analysis. 4452 // 4453 // Example usage scenario: 4454 // Say the Rewriter is called for the following SCEV: 4455 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4456 // where: 4457 // %X = phi i64 (%Start, %BEValue) 4458 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4459 // and call this function with %SymbolicPHI = %X. 4460 // 4461 // The analysis will find that the value coming around the backedge has 4462 // the following SCEV: 4463 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4464 // Upon concluding that this matches the desired pattern, the function 4465 // will return the pair {NewAddRec, SmallPredsVec} where: 4466 // NewAddRec = {%Start,+,%Step} 4467 // SmallPredsVec = {P1, P2, P3} as follows: 4468 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4469 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4470 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4471 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4472 // under the predicates {P1,P2,P3}. 4473 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4474 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4475 // 4476 // TODO's: 4477 // 4478 // 1) Extend the Induction descriptor to also support inductions that involve 4479 // casts: When needed (namely, when we are called in the context of the 4480 // vectorizer induction analysis), a Set of cast instructions will be 4481 // populated by this method, and provided back to isInductionPHI. This is 4482 // needed to allow the vectorizer to properly record them to be ignored by 4483 // the cost model and to avoid vectorizing them (otherwise these casts, 4484 // which are redundant under the runtime overflow checks, will be 4485 // vectorized, which can be costly). 4486 // 4487 // 2) Support additional induction/PHISCEV patterns: We also want to support 4488 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4489 // after the induction update operation (the induction increment): 4490 // 4491 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4492 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4493 // 4494 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4495 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4496 // 4497 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4498 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4499 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4500 SmallVector<const SCEVPredicate *, 3> Predicates; 4501 4502 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4503 // return an AddRec expression under some predicate. 4504 4505 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4506 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4507 assert(L && "Expecting an integer loop header phi"); 4508 4509 // The loop may have multiple entrances or multiple exits; we can analyze 4510 // this phi as an addrec if it has a unique entry value and a unique 4511 // backedge value. 4512 Value *BEValueV = nullptr, *StartValueV = nullptr; 4513 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4514 Value *V = PN->getIncomingValue(i); 4515 if (L->contains(PN->getIncomingBlock(i))) { 4516 if (!BEValueV) { 4517 BEValueV = V; 4518 } else if (BEValueV != V) { 4519 BEValueV = nullptr; 4520 break; 4521 } 4522 } else if (!StartValueV) { 4523 StartValueV = V; 4524 } else if (StartValueV != V) { 4525 StartValueV = nullptr; 4526 break; 4527 } 4528 } 4529 if (!BEValueV || !StartValueV) 4530 return None; 4531 4532 const SCEV *BEValue = getSCEV(BEValueV); 4533 4534 // If the value coming around the backedge is an add with the symbolic 4535 // value we just inserted, possibly with casts that we can ignore under 4536 // an appropriate runtime guard, then we found a simple induction variable! 4537 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4538 if (!Add) 4539 return None; 4540 4541 // If there is a single occurrence of the symbolic value, possibly 4542 // casted, replace it with a recurrence. 4543 unsigned FoundIndex = Add->getNumOperands(); 4544 Type *TruncTy = nullptr; 4545 bool Signed; 4546 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4547 if ((TruncTy = 4548 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4549 if (FoundIndex == e) { 4550 FoundIndex = i; 4551 break; 4552 } 4553 4554 if (FoundIndex == Add->getNumOperands()) 4555 return None; 4556 4557 // Create an add with everything but the specified operand. 4558 SmallVector<const SCEV *, 8> Ops; 4559 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4560 if (i != FoundIndex) 4561 Ops.push_back(Add->getOperand(i)); 4562 const SCEV *Accum = getAddExpr(Ops); 4563 4564 // The runtime checks will not be valid if the step amount is 4565 // varying inside the loop. 4566 if (!isLoopInvariant(Accum, L)) 4567 return None; 4568 4569 // *** Part2: Create the predicates 4570 4571 // Analysis was successful: we have a phi-with-cast pattern for which we 4572 // can return an AddRec expression under the following predicates: 4573 // 4574 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4575 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4576 // P2: An Equal predicate that guarantees that 4577 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4578 // P3: An Equal predicate that guarantees that 4579 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4580 // 4581 // As we next prove, the above predicates guarantee that: 4582 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4583 // 4584 // 4585 // More formally, we want to prove that: 4586 // Expr(i+1) = Start + (i+1) * Accum 4587 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4588 // 4589 // Given that: 4590 // 1) Expr(0) = Start 4591 // 2) Expr(1) = Start + Accum 4592 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4593 // 3) Induction hypothesis (step i): 4594 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4595 // 4596 // Proof: 4597 // Expr(i+1) = 4598 // = Start + (i+1)*Accum 4599 // = (Start + i*Accum) + Accum 4600 // = Expr(i) + Accum 4601 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4602 // :: from step i 4603 // 4604 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4605 // 4606 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4607 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4608 // + Accum :: from P3 4609 // 4610 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4611 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4612 // 4613 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4614 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4615 // 4616 // By induction, the same applies to all iterations 1<=i<n: 4617 // 4618 4619 // Create a truncated addrec for which we will add a no overflow check (P1). 4620 const SCEV *StartVal = getSCEV(StartValueV); 4621 const SCEV *PHISCEV = 4622 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4623 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4624 4625 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4626 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4627 // will be constant. 4628 // 4629 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4630 // add P1. 4631 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4632 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4633 Signed ? SCEVWrapPredicate::IncrementNSSW 4634 : SCEVWrapPredicate::IncrementNUSW; 4635 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4636 Predicates.push_back(AddRecPred); 4637 } 4638 4639 // Create the Equal Predicates P2,P3: 4640 4641 // It is possible that the predicates P2 and/or P3 are computable at 4642 // compile time due to StartVal and/or Accum being constants. 4643 // If either one is, then we can check that now and escape if either P2 4644 // or P3 is false. 4645 4646 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4647 // for each of StartVal and Accum 4648 auto getExtendedExpr = [&](const SCEV *Expr, 4649 bool CreateSignExtend) -> const SCEV * { 4650 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4651 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4652 const SCEV *ExtendedExpr = 4653 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4654 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4655 return ExtendedExpr; 4656 }; 4657 4658 // Given: 4659 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4660 // = getExtendedExpr(Expr) 4661 // Determine whether the predicate P: Expr == ExtendedExpr 4662 // is known to be false at compile time 4663 auto PredIsKnownFalse = [&](const SCEV *Expr, 4664 const SCEV *ExtendedExpr) -> bool { 4665 return Expr != ExtendedExpr && 4666 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4667 }; 4668 4669 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4670 if (PredIsKnownFalse(StartVal, StartExtended)) { 4671 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4672 return None; 4673 } 4674 4675 // The Step is always Signed (because the overflow checks are either 4676 // NSSW or NUSW) 4677 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4678 if (PredIsKnownFalse(Accum, AccumExtended)) { 4679 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4680 return None; 4681 } 4682 4683 auto AppendPredicate = [&](const SCEV *Expr, 4684 const SCEV *ExtendedExpr) -> void { 4685 if (Expr != ExtendedExpr && 4686 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4687 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4688 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4689 Predicates.push_back(Pred); 4690 } 4691 }; 4692 4693 AppendPredicate(StartVal, StartExtended); 4694 AppendPredicate(Accum, AccumExtended); 4695 4696 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4697 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4698 // into NewAR if it will also add the runtime overflow checks specified in 4699 // Predicates. 4700 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4701 4702 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4703 std::make_pair(NewAR, Predicates); 4704 // Remember the result of the analysis for this SCEV at this locayyytion. 4705 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4706 return PredRewrite; 4707 } 4708 4709 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4710 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4711 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4712 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4713 if (!L) 4714 return None; 4715 4716 // Check to see if we already analyzed this PHI. 4717 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4718 if (I != PredicatedSCEVRewrites.end()) { 4719 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4720 I->second; 4721 // Analysis was done before and failed to create an AddRec: 4722 if (Rewrite.first == SymbolicPHI) 4723 return None; 4724 // Analysis was done before and succeeded to create an AddRec under 4725 // a predicate: 4726 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4727 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4728 return Rewrite; 4729 } 4730 4731 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4732 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4733 4734 // Record in the cache that the analysis failed 4735 if (!Rewrite) { 4736 SmallVector<const SCEVPredicate *, 3> Predicates; 4737 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4738 return None; 4739 } 4740 4741 return Rewrite; 4742 } 4743 4744 // FIXME: This utility is currently required because the Rewriter currently 4745 // does not rewrite this expression: 4746 // {0, +, (sext ix (trunc iy to ix) to iy)} 4747 // into {0, +, %step}, 4748 // even when the following Equal predicate exists: 4749 // "%step == (sext ix (trunc iy to ix) to iy)". 4750 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4751 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4752 if (AR1 == AR2) 4753 return true; 4754 4755 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4756 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4757 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4758 return false; 4759 return true; 4760 }; 4761 4762 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4763 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4764 return false; 4765 return true; 4766 } 4767 4768 /// A helper function for createAddRecFromPHI to handle simple cases. 4769 /// 4770 /// This function tries to find an AddRec expression for the simplest (yet most 4771 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4772 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4773 /// technique for finding the AddRec expression. 4774 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4775 Value *BEValueV, 4776 Value *StartValueV) { 4777 const Loop *L = LI.getLoopFor(PN->getParent()); 4778 assert(L && L->getHeader() == PN->getParent()); 4779 assert(BEValueV && StartValueV); 4780 4781 auto BO = MatchBinaryOp(BEValueV, DT); 4782 if (!BO) 4783 return nullptr; 4784 4785 if (BO->Opcode != Instruction::Add) 4786 return nullptr; 4787 4788 const SCEV *Accum = nullptr; 4789 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4790 Accum = getSCEV(BO->RHS); 4791 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4792 Accum = getSCEV(BO->LHS); 4793 4794 if (!Accum) 4795 return nullptr; 4796 4797 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4798 if (BO->IsNUW) 4799 Flags = setFlags(Flags, SCEV::FlagNUW); 4800 if (BO->IsNSW) 4801 Flags = setFlags(Flags, SCEV::FlagNSW); 4802 4803 const SCEV *StartVal = getSCEV(StartValueV); 4804 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4805 4806 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4807 4808 // We can add Flags to the post-inc expression only if we 4809 // know that it is *undefined behavior* for BEValueV to 4810 // overflow. 4811 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4812 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4813 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4814 4815 return PHISCEV; 4816 } 4817 4818 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4819 const Loop *L = LI.getLoopFor(PN->getParent()); 4820 if (!L || L->getHeader() != PN->getParent()) 4821 return nullptr; 4822 4823 // The loop may have multiple entrances or multiple exits; we can analyze 4824 // this phi as an addrec if it has a unique entry value and a unique 4825 // backedge value. 4826 Value *BEValueV = nullptr, *StartValueV = nullptr; 4827 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4828 Value *V = PN->getIncomingValue(i); 4829 if (L->contains(PN->getIncomingBlock(i))) { 4830 if (!BEValueV) { 4831 BEValueV = V; 4832 } else if (BEValueV != V) { 4833 BEValueV = nullptr; 4834 break; 4835 } 4836 } else if (!StartValueV) { 4837 StartValueV = V; 4838 } else if (StartValueV != V) { 4839 StartValueV = nullptr; 4840 break; 4841 } 4842 } 4843 if (!BEValueV || !StartValueV) 4844 return nullptr; 4845 4846 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4847 "PHI node already processed?"); 4848 4849 // First, try to find AddRec expression without creating a fictituos symbolic 4850 // value for PN. 4851 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4852 return S; 4853 4854 // Handle PHI node value symbolically. 4855 const SCEV *SymbolicName = getUnknown(PN); 4856 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4857 4858 // Using this symbolic name for the PHI, analyze the value coming around 4859 // the back-edge. 4860 const SCEV *BEValue = getSCEV(BEValueV); 4861 4862 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4863 // has a special value for the first iteration of the loop. 4864 4865 // If the value coming around the backedge is an add with the symbolic 4866 // value we just inserted, then we found a simple induction variable! 4867 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4868 // If there is a single occurrence of the symbolic value, replace it 4869 // with a recurrence. 4870 unsigned FoundIndex = Add->getNumOperands(); 4871 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4872 if (Add->getOperand(i) == SymbolicName) 4873 if (FoundIndex == e) { 4874 FoundIndex = i; 4875 break; 4876 } 4877 4878 if (FoundIndex != Add->getNumOperands()) { 4879 // Create an add with everything but the specified operand. 4880 SmallVector<const SCEV *, 8> Ops; 4881 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4882 if (i != FoundIndex) 4883 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4884 L, *this)); 4885 const SCEV *Accum = getAddExpr(Ops); 4886 4887 // This is not a valid addrec if the step amount is varying each 4888 // loop iteration, but is not itself an addrec in this loop. 4889 if (isLoopInvariant(Accum, L) || 4890 (isa<SCEVAddRecExpr>(Accum) && 4891 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4892 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4893 4894 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4895 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4896 if (BO->IsNUW) 4897 Flags = setFlags(Flags, SCEV::FlagNUW); 4898 if (BO->IsNSW) 4899 Flags = setFlags(Flags, SCEV::FlagNSW); 4900 } 4901 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4902 // If the increment is an inbounds GEP, then we know the address 4903 // space cannot be wrapped around. We cannot make any guarantee 4904 // about signed or unsigned overflow because pointers are 4905 // unsigned but we may have a negative index from the base 4906 // pointer. We can guarantee that no unsigned wrap occurs if the 4907 // indices form a positive value. 4908 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4909 Flags = setFlags(Flags, SCEV::FlagNW); 4910 4911 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4912 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4913 Flags = setFlags(Flags, SCEV::FlagNUW); 4914 } 4915 4916 // We cannot transfer nuw and nsw flags from subtraction 4917 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4918 // for instance. 4919 } 4920 4921 const SCEV *StartVal = getSCEV(StartValueV); 4922 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4923 4924 // Okay, for the entire analysis of this edge we assumed the PHI 4925 // to be symbolic. We now need to go back and purge all of the 4926 // entries for the scalars that use the symbolic expression. 4927 forgetSymbolicName(PN, SymbolicName); 4928 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4929 4930 // We can add Flags to the post-inc expression only if we 4931 // know that it is *undefined behavior* for BEValueV to 4932 // overflow. 4933 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4934 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4935 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4936 4937 return PHISCEV; 4938 } 4939 } 4940 } else { 4941 // Otherwise, this could be a loop like this: 4942 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4943 // In this case, j = {1,+,1} and BEValue is j. 4944 // Because the other in-value of i (0) fits the evolution of BEValue 4945 // i really is an addrec evolution. 4946 // 4947 // We can generalize this saying that i is the shifted value of BEValue 4948 // by one iteration: 4949 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4950 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4951 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 4952 if (Shifted != getCouldNotCompute() && 4953 Start != getCouldNotCompute()) { 4954 const SCEV *StartVal = getSCEV(StartValueV); 4955 if (Start == StartVal) { 4956 // Okay, for the entire analysis of this edge we assumed the PHI 4957 // to be symbolic. We now need to go back and purge all of the 4958 // entries for the scalars that use the symbolic expression. 4959 forgetSymbolicName(PN, SymbolicName); 4960 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4961 return Shifted; 4962 } 4963 } 4964 } 4965 4966 // Remove the temporary PHI node SCEV that has been inserted while intending 4967 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4968 // as it will prevent later (possibly simpler) SCEV expressions to be added 4969 // to the ValueExprMap. 4970 eraseValueFromMap(PN); 4971 4972 return nullptr; 4973 } 4974 4975 // Checks if the SCEV S is available at BB. S is considered available at BB 4976 // if S can be materialized at BB without introducing a fault. 4977 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4978 BasicBlock *BB) { 4979 struct CheckAvailable { 4980 bool TraversalDone = false; 4981 bool Available = true; 4982 4983 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4984 BasicBlock *BB = nullptr; 4985 DominatorTree &DT; 4986 4987 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4988 : L(L), BB(BB), DT(DT) {} 4989 4990 bool setUnavailable() { 4991 TraversalDone = true; 4992 Available = false; 4993 return false; 4994 } 4995 4996 bool follow(const SCEV *S) { 4997 switch (S->getSCEVType()) { 4998 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4999 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5000 case scUMinExpr: 5001 case scSMinExpr: 5002 // These expressions are available if their operand(s) is/are. 5003 return true; 5004 5005 case scAddRecExpr: { 5006 // We allow add recurrences that are on the loop BB is in, or some 5007 // outer loop. This guarantees availability because the value of the 5008 // add recurrence at BB is simply the "current" value of the induction 5009 // variable. We can relax this in the future; for instance an add 5010 // recurrence on a sibling dominating loop is also available at BB. 5011 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5012 if (L && (ARLoop == L || ARLoop->contains(L))) 5013 return true; 5014 5015 return setUnavailable(); 5016 } 5017 5018 case scUnknown: { 5019 // For SCEVUnknown, we check for simple dominance. 5020 const auto *SU = cast<SCEVUnknown>(S); 5021 Value *V = SU->getValue(); 5022 5023 if (isa<Argument>(V)) 5024 return false; 5025 5026 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5027 return false; 5028 5029 return setUnavailable(); 5030 } 5031 5032 case scUDivExpr: 5033 case scCouldNotCompute: 5034 // We do not try to smart about these at all. 5035 return setUnavailable(); 5036 } 5037 llvm_unreachable("switch should be fully covered!"); 5038 } 5039 5040 bool isDone() { return TraversalDone; } 5041 }; 5042 5043 CheckAvailable CA(L, BB, DT); 5044 SCEVTraversal<CheckAvailable> ST(CA); 5045 5046 ST.visitAll(S); 5047 return CA.Available; 5048 } 5049 5050 // Try to match a control flow sequence that branches out at BI and merges back 5051 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5052 // match. 5053 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5054 Value *&C, Value *&LHS, Value *&RHS) { 5055 C = BI->getCondition(); 5056 5057 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5058 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5059 5060 if (!LeftEdge.isSingleEdge()) 5061 return false; 5062 5063 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5064 5065 Use &LeftUse = Merge->getOperandUse(0); 5066 Use &RightUse = Merge->getOperandUse(1); 5067 5068 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5069 LHS = LeftUse; 5070 RHS = RightUse; 5071 return true; 5072 } 5073 5074 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5075 LHS = RightUse; 5076 RHS = LeftUse; 5077 return true; 5078 } 5079 5080 return false; 5081 } 5082 5083 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5084 auto IsReachable = 5085 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5086 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5087 const Loop *L = LI.getLoopFor(PN->getParent()); 5088 5089 // We don't want to break LCSSA, even in a SCEV expression tree. 5090 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5091 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5092 return nullptr; 5093 5094 // Try to match 5095 // 5096 // br %cond, label %left, label %right 5097 // left: 5098 // br label %merge 5099 // right: 5100 // br label %merge 5101 // merge: 5102 // V = phi [ %x, %left ], [ %y, %right ] 5103 // 5104 // as "select %cond, %x, %y" 5105 5106 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5107 assert(IDom && "At least the entry block should dominate PN"); 5108 5109 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5110 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5111 5112 if (BI && BI->isConditional() && 5113 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5114 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5115 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5116 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5117 } 5118 5119 return nullptr; 5120 } 5121 5122 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5123 if (const SCEV *S = createAddRecFromPHI(PN)) 5124 return S; 5125 5126 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5127 return S; 5128 5129 // If the PHI has a single incoming value, follow that value, unless the 5130 // PHI's incoming blocks are in a different loop, in which case doing so 5131 // risks breaking LCSSA form. Instcombine would normally zap these, but 5132 // it doesn't have DominatorTree information, so it may miss cases. 5133 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5134 if (LI.replacementPreservesLCSSAForm(PN, V)) 5135 return getSCEV(V); 5136 5137 // If it's not a loop phi, we can't handle it yet. 5138 return getUnknown(PN); 5139 } 5140 5141 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5142 Value *Cond, 5143 Value *TrueVal, 5144 Value *FalseVal) { 5145 // Handle "constant" branch or select. This can occur for instance when a 5146 // loop pass transforms an inner loop and moves on to process the outer loop. 5147 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5148 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5149 5150 // Try to match some simple smax or umax patterns. 5151 auto *ICI = dyn_cast<ICmpInst>(Cond); 5152 if (!ICI) 5153 return getUnknown(I); 5154 5155 Value *LHS = ICI->getOperand(0); 5156 Value *RHS = ICI->getOperand(1); 5157 5158 switch (ICI->getPredicate()) { 5159 case ICmpInst::ICMP_SLT: 5160 case ICmpInst::ICMP_SLE: 5161 std::swap(LHS, RHS); 5162 LLVM_FALLTHROUGH; 5163 case ICmpInst::ICMP_SGT: 5164 case ICmpInst::ICMP_SGE: 5165 // a >s b ? a+x : b+x -> smax(a, b)+x 5166 // a >s b ? b+x : a+x -> smin(a, b)+x 5167 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5168 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5169 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5170 const SCEV *LA = getSCEV(TrueVal); 5171 const SCEV *RA = getSCEV(FalseVal); 5172 const SCEV *LDiff = getMinusSCEV(LA, LS); 5173 const SCEV *RDiff = getMinusSCEV(RA, RS); 5174 if (LDiff == RDiff) 5175 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5176 LDiff = getMinusSCEV(LA, RS); 5177 RDiff = getMinusSCEV(RA, LS); 5178 if (LDiff == RDiff) 5179 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5180 } 5181 break; 5182 case ICmpInst::ICMP_ULT: 5183 case ICmpInst::ICMP_ULE: 5184 std::swap(LHS, RHS); 5185 LLVM_FALLTHROUGH; 5186 case ICmpInst::ICMP_UGT: 5187 case ICmpInst::ICMP_UGE: 5188 // a >u b ? a+x : b+x -> umax(a, b)+x 5189 // a >u b ? b+x : a+x -> umin(a, b)+x 5190 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5191 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5192 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5193 const SCEV *LA = getSCEV(TrueVal); 5194 const SCEV *RA = getSCEV(FalseVal); 5195 const SCEV *LDiff = getMinusSCEV(LA, LS); 5196 const SCEV *RDiff = getMinusSCEV(RA, RS); 5197 if (LDiff == RDiff) 5198 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5199 LDiff = getMinusSCEV(LA, RS); 5200 RDiff = getMinusSCEV(RA, LS); 5201 if (LDiff == RDiff) 5202 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5203 } 5204 break; 5205 case ICmpInst::ICMP_NE: 5206 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5207 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5208 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5209 const SCEV *One = getOne(I->getType()); 5210 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5211 const SCEV *LA = getSCEV(TrueVal); 5212 const SCEV *RA = getSCEV(FalseVal); 5213 const SCEV *LDiff = getMinusSCEV(LA, LS); 5214 const SCEV *RDiff = getMinusSCEV(RA, One); 5215 if (LDiff == RDiff) 5216 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5217 } 5218 break; 5219 case ICmpInst::ICMP_EQ: 5220 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5221 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5222 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5223 const SCEV *One = getOne(I->getType()); 5224 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5225 const SCEV *LA = getSCEV(TrueVal); 5226 const SCEV *RA = getSCEV(FalseVal); 5227 const SCEV *LDiff = getMinusSCEV(LA, One); 5228 const SCEV *RDiff = getMinusSCEV(RA, LS); 5229 if (LDiff == RDiff) 5230 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5231 } 5232 break; 5233 default: 5234 break; 5235 } 5236 5237 return getUnknown(I); 5238 } 5239 5240 /// Expand GEP instructions into add and multiply operations. This allows them 5241 /// to be analyzed by regular SCEV code. 5242 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5243 // Don't attempt to analyze GEPs over unsized objects. 5244 if (!GEP->getSourceElementType()->isSized()) 5245 return getUnknown(GEP); 5246 5247 SmallVector<const SCEV *, 4> IndexExprs; 5248 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5249 IndexExprs.push_back(getSCEV(*Index)); 5250 return getGEPExpr(GEP, IndexExprs); 5251 } 5252 5253 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5254 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5255 return C->getAPInt().countTrailingZeros(); 5256 5257 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5258 return std::min(GetMinTrailingZeros(T->getOperand()), 5259 (uint32_t)getTypeSizeInBits(T->getType())); 5260 5261 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5262 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5263 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5264 ? getTypeSizeInBits(E->getType()) 5265 : OpRes; 5266 } 5267 5268 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5269 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5270 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5271 ? getTypeSizeInBits(E->getType()) 5272 : OpRes; 5273 } 5274 5275 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5276 // The result is the min of all operands results. 5277 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5278 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5279 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5280 return MinOpRes; 5281 } 5282 5283 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5284 // The result is the sum of all operands results. 5285 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5286 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5287 for (unsigned i = 1, e = M->getNumOperands(); 5288 SumOpRes != BitWidth && i != e; ++i) 5289 SumOpRes = 5290 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5291 return SumOpRes; 5292 } 5293 5294 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5295 // The result is the min of all operands results. 5296 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5297 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5298 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5299 return MinOpRes; 5300 } 5301 5302 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5303 // The result is the min of all operands results. 5304 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5305 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5306 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5307 return MinOpRes; 5308 } 5309 5310 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5311 // The result is the min of all operands results. 5312 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5313 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5314 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5315 return MinOpRes; 5316 } 5317 5318 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5319 // For a SCEVUnknown, ask ValueTracking. 5320 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5321 return Known.countMinTrailingZeros(); 5322 } 5323 5324 // SCEVUDivExpr 5325 return 0; 5326 } 5327 5328 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5329 auto I = MinTrailingZerosCache.find(S); 5330 if (I != MinTrailingZerosCache.end()) 5331 return I->second; 5332 5333 uint32_t Result = GetMinTrailingZerosImpl(S); 5334 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5335 assert(InsertPair.second && "Should insert a new key"); 5336 return InsertPair.first->second; 5337 } 5338 5339 /// Helper method to assign a range to V from metadata present in the IR. 5340 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5341 if (Instruction *I = dyn_cast<Instruction>(V)) 5342 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5343 return getConstantRangeFromMetadata(*MD); 5344 5345 return None; 5346 } 5347 5348 /// Determine the range for a particular SCEV. If SignHint is 5349 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5350 /// with a "cleaner" unsigned (resp. signed) representation. 5351 const ConstantRange & 5352 ScalarEvolution::getRangeRef(const SCEV *S, 5353 ScalarEvolution::RangeSignHint SignHint) { 5354 DenseMap<const SCEV *, ConstantRange> &Cache = 5355 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5356 : SignedRanges; 5357 ConstantRange::PreferredRangeType RangeType = 5358 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5359 ? ConstantRange::Unsigned : ConstantRange::Signed; 5360 5361 // See if we've computed this range already. 5362 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5363 if (I != Cache.end()) 5364 return I->second; 5365 5366 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5367 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5368 5369 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5370 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5371 using OBO = OverflowingBinaryOperator; 5372 5373 // If the value has known zeros, the maximum value will have those known zeros 5374 // as well. 5375 uint32_t TZ = GetMinTrailingZeros(S); 5376 if (TZ != 0) { 5377 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5378 ConservativeResult = 5379 ConstantRange(APInt::getMinValue(BitWidth), 5380 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5381 else 5382 ConservativeResult = ConstantRange( 5383 APInt::getSignedMinValue(BitWidth), 5384 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5385 } 5386 5387 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5388 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5389 unsigned WrapType = OBO::AnyWrap; 5390 if (Add->hasNoSignedWrap()) 5391 WrapType |= OBO::NoSignedWrap; 5392 if (Add->hasNoUnsignedWrap()) 5393 WrapType |= OBO::NoUnsignedWrap; 5394 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5395 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5396 WrapType, RangeType); 5397 return setRange(Add, SignHint, 5398 ConservativeResult.intersectWith(X, RangeType)); 5399 } 5400 5401 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5402 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5403 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5404 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5405 return setRange(Mul, SignHint, 5406 ConservativeResult.intersectWith(X, RangeType)); 5407 } 5408 5409 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5410 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5411 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5412 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5413 return setRange(SMax, SignHint, 5414 ConservativeResult.intersectWith(X, RangeType)); 5415 } 5416 5417 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5418 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5419 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5420 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5421 return setRange(UMax, SignHint, 5422 ConservativeResult.intersectWith(X, RangeType)); 5423 } 5424 5425 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5426 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5427 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5428 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5429 return setRange(SMin, SignHint, 5430 ConservativeResult.intersectWith(X, RangeType)); 5431 } 5432 5433 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5434 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5435 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5436 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5437 return setRange(UMin, SignHint, 5438 ConservativeResult.intersectWith(X, RangeType)); 5439 } 5440 5441 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5442 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5443 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5444 return setRange(UDiv, SignHint, 5445 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5446 } 5447 5448 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5449 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5450 return setRange(ZExt, SignHint, 5451 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5452 RangeType)); 5453 } 5454 5455 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5456 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5457 return setRange(SExt, SignHint, 5458 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5459 RangeType)); 5460 } 5461 5462 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5463 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5464 return setRange(Trunc, SignHint, 5465 ConservativeResult.intersectWith(X.truncate(BitWidth), 5466 RangeType)); 5467 } 5468 5469 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5470 // If there's no unsigned wrap, the value will never be less than its 5471 // initial value. 5472 if (AddRec->hasNoUnsignedWrap()) { 5473 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5474 if (!UnsignedMinValue.isNullValue()) 5475 ConservativeResult = ConservativeResult.intersectWith( 5476 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5477 } 5478 5479 // If there's no signed wrap, and all the operands except initial value have 5480 // the same sign or zero, the value won't ever be: 5481 // 1: smaller than initial value if operands are non negative, 5482 // 2: bigger than initial value if operands are non positive. 5483 // For both cases, value can not cross signed min/max boundary. 5484 if (AddRec->hasNoSignedWrap()) { 5485 bool AllNonNeg = true; 5486 bool AllNonPos = true; 5487 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5488 if (!isKnownNonNegative(AddRec->getOperand(i))) 5489 AllNonNeg = false; 5490 if (!isKnownNonPositive(AddRec->getOperand(i))) 5491 AllNonPos = false; 5492 } 5493 if (AllNonNeg) 5494 ConservativeResult = ConservativeResult.intersectWith( 5495 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5496 APInt::getSignedMinValue(BitWidth)), 5497 RangeType); 5498 else if (AllNonPos) 5499 ConservativeResult = ConservativeResult.intersectWith( 5500 ConstantRange::getNonEmpty( 5501 APInt::getSignedMinValue(BitWidth), 5502 getSignedRangeMax(AddRec->getStart()) + 1), 5503 RangeType); 5504 } 5505 5506 // TODO: non-affine addrec 5507 if (AddRec->isAffine()) { 5508 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5509 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5510 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5511 auto RangeFromAffine = getRangeForAffineAR( 5512 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5513 BitWidth); 5514 ConservativeResult = 5515 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5516 5517 auto RangeFromFactoring = getRangeViaFactoring( 5518 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5519 BitWidth); 5520 ConservativeResult = 5521 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5522 } 5523 } 5524 5525 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5526 } 5527 5528 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5529 // Check if the IR explicitly contains !range metadata. 5530 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5531 if (MDRange.hasValue()) 5532 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5533 RangeType); 5534 5535 // Split here to avoid paying the compile-time cost of calling both 5536 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5537 // if needed. 5538 const DataLayout &DL = getDataLayout(); 5539 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5540 // For a SCEVUnknown, ask ValueTracking. 5541 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5542 if (Known.getBitWidth() != BitWidth) 5543 Known = Known.zextOrTrunc(BitWidth); 5544 // If Known does not result in full-set, intersect with it. 5545 if (Known.getMinValue() != Known.getMaxValue() + 1) 5546 ConservativeResult = ConservativeResult.intersectWith( 5547 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5548 RangeType); 5549 } else { 5550 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5551 "generalize as needed!"); 5552 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5553 // If the pointer size is larger than the index size type, this can cause 5554 // NS to be larger than BitWidth. So compensate for this. 5555 if (U->getType()->isPointerTy()) { 5556 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5557 int ptrIdxDiff = ptrSize - BitWidth; 5558 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5559 NS -= ptrIdxDiff; 5560 } 5561 5562 if (NS > 1) 5563 ConservativeResult = ConservativeResult.intersectWith( 5564 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5565 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5566 RangeType); 5567 } 5568 5569 // A range of Phi is a subset of union of all ranges of its input. 5570 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5571 // Make sure that we do not run over cycled Phis. 5572 if (PendingPhiRanges.insert(Phi).second) { 5573 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5574 for (auto &Op : Phi->operands()) { 5575 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5576 RangeFromOps = RangeFromOps.unionWith(OpRange); 5577 // No point to continue if we already have a full set. 5578 if (RangeFromOps.isFullSet()) 5579 break; 5580 } 5581 ConservativeResult = 5582 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5583 bool Erased = PendingPhiRanges.erase(Phi); 5584 assert(Erased && "Failed to erase Phi properly?"); 5585 (void) Erased; 5586 } 5587 } 5588 5589 return setRange(U, SignHint, std::move(ConservativeResult)); 5590 } 5591 5592 return setRange(S, SignHint, std::move(ConservativeResult)); 5593 } 5594 5595 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5596 // values that the expression can take. Initially, the expression has a value 5597 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5598 // argument defines if we treat Step as signed or unsigned. 5599 static ConstantRange getRangeForAffineARHelper(APInt Step, 5600 const ConstantRange &StartRange, 5601 const APInt &MaxBECount, 5602 unsigned BitWidth, bool Signed) { 5603 // If either Step or MaxBECount is 0, then the expression won't change, and we 5604 // just need to return the initial range. 5605 if (Step == 0 || MaxBECount == 0) 5606 return StartRange; 5607 5608 // If we don't know anything about the initial value (i.e. StartRange is 5609 // FullRange), then we don't know anything about the final range either. 5610 // Return FullRange. 5611 if (StartRange.isFullSet()) 5612 return ConstantRange::getFull(BitWidth); 5613 5614 // If Step is signed and negative, then we use its absolute value, but we also 5615 // note that we're moving in the opposite direction. 5616 bool Descending = Signed && Step.isNegative(); 5617 5618 if (Signed) 5619 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5620 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5621 // This equations hold true due to the well-defined wrap-around behavior of 5622 // APInt. 5623 Step = Step.abs(); 5624 5625 // Check if Offset is more than full span of BitWidth. If it is, the 5626 // expression is guaranteed to overflow. 5627 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5628 return ConstantRange::getFull(BitWidth); 5629 5630 // Offset is by how much the expression can change. Checks above guarantee no 5631 // overflow here. 5632 APInt Offset = Step * MaxBECount; 5633 5634 // Minimum value of the final range will match the minimal value of StartRange 5635 // if the expression is increasing and will be decreased by Offset otherwise. 5636 // Maximum value of the final range will match the maximal value of StartRange 5637 // if the expression is decreasing and will be increased by Offset otherwise. 5638 APInt StartLower = StartRange.getLower(); 5639 APInt StartUpper = StartRange.getUpper() - 1; 5640 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5641 : (StartUpper + std::move(Offset)); 5642 5643 // It's possible that the new minimum/maximum value will fall into the initial 5644 // range (due to wrap around). This means that the expression can take any 5645 // value in this bitwidth, and we have to return full range. 5646 if (StartRange.contains(MovedBoundary)) 5647 return ConstantRange::getFull(BitWidth); 5648 5649 APInt NewLower = 5650 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5651 APInt NewUpper = 5652 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5653 NewUpper += 1; 5654 5655 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5656 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5657 } 5658 5659 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5660 const SCEV *Step, 5661 const SCEV *MaxBECount, 5662 unsigned BitWidth) { 5663 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5664 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5665 "Precondition!"); 5666 5667 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5668 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5669 5670 // First, consider step signed. 5671 ConstantRange StartSRange = getSignedRange(Start); 5672 ConstantRange StepSRange = getSignedRange(Step); 5673 5674 // If Step can be both positive and negative, we need to find ranges for the 5675 // maximum absolute step values in both directions and union them. 5676 ConstantRange SR = 5677 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5678 MaxBECountValue, BitWidth, /* Signed = */ true); 5679 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5680 StartSRange, MaxBECountValue, 5681 BitWidth, /* Signed = */ true)); 5682 5683 // Next, consider step unsigned. 5684 ConstantRange UR = getRangeForAffineARHelper( 5685 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5686 MaxBECountValue, BitWidth, /* Signed = */ false); 5687 5688 // Finally, intersect signed and unsigned ranges. 5689 return SR.intersectWith(UR, ConstantRange::Smallest); 5690 } 5691 5692 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5693 const SCEV *Step, 5694 const SCEV *MaxBECount, 5695 unsigned BitWidth) { 5696 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5697 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5698 5699 struct SelectPattern { 5700 Value *Condition = nullptr; 5701 APInt TrueValue; 5702 APInt FalseValue; 5703 5704 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5705 const SCEV *S) { 5706 Optional<unsigned> CastOp; 5707 APInt Offset(BitWidth, 0); 5708 5709 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5710 "Should be!"); 5711 5712 // Peel off a constant offset: 5713 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5714 // In the future we could consider being smarter here and handle 5715 // {Start+Step,+,Step} too. 5716 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5717 return; 5718 5719 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5720 S = SA->getOperand(1); 5721 } 5722 5723 // Peel off a cast operation 5724 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5725 CastOp = SCast->getSCEVType(); 5726 S = SCast->getOperand(); 5727 } 5728 5729 using namespace llvm::PatternMatch; 5730 5731 auto *SU = dyn_cast<SCEVUnknown>(S); 5732 const APInt *TrueVal, *FalseVal; 5733 if (!SU || 5734 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5735 m_APInt(FalseVal)))) { 5736 Condition = nullptr; 5737 return; 5738 } 5739 5740 TrueValue = *TrueVal; 5741 FalseValue = *FalseVal; 5742 5743 // Re-apply the cast we peeled off earlier 5744 if (CastOp.hasValue()) 5745 switch (*CastOp) { 5746 default: 5747 llvm_unreachable("Unknown SCEV cast type!"); 5748 5749 case scTruncate: 5750 TrueValue = TrueValue.trunc(BitWidth); 5751 FalseValue = FalseValue.trunc(BitWidth); 5752 break; 5753 case scZeroExtend: 5754 TrueValue = TrueValue.zext(BitWidth); 5755 FalseValue = FalseValue.zext(BitWidth); 5756 break; 5757 case scSignExtend: 5758 TrueValue = TrueValue.sext(BitWidth); 5759 FalseValue = FalseValue.sext(BitWidth); 5760 break; 5761 } 5762 5763 // Re-apply the constant offset we peeled off earlier 5764 TrueValue += Offset; 5765 FalseValue += Offset; 5766 } 5767 5768 bool isRecognized() { return Condition != nullptr; } 5769 }; 5770 5771 SelectPattern StartPattern(*this, BitWidth, Start); 5772 if (!StartPattern.isRecognized()) 5773 return ConstantRange::getFull(BitWidth); 5774 5775 SelectPattern StepPattern(*this, BitWidth, Step); 5776 if (!StepPattern.isRecognized()) 5777 return ConstantRange::getFull(BitWidth); 5778 5779 if (StartPattern.Condition != StepPattern.Condition) { 5780 // We don't handle this case today; but we could, by considering four 5781 // possibilities below instead of two. I'm not sure if there are cases where 5782 // that will help over what getRange already does, though. 5783 return ConstantRange::getFull(BitWidth); 5784 } 5785 5786 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5787 // construct arbitrary general SCEV expressions here. This function is called 5788 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5789 // say) can end up caching a suboptimal value. 5790 5791 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5792 // C2352 and C2512 (otherwise it isn't needed). 5793 5794 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5795 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5796 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5797 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5798 5799 ConstantRange TrueRange = 5800 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5801 ConstantRange FalseRange = 5802 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5803 5804 return TrueRange.unionWith(FalseRange); 5805 } 5806 5807 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5808 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5809 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5810 5811 // Return early if there are no flags to propagate to the SCEV. 5812 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5813 if (BinOp->hasNoUnsignedWrap()) 5814 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5815 if (BinOp->hasNoSignedWrap()) 5816 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5817 if (Flags == SCEV::FlagAnyWrap) 5818 return SCEV::FlagAnyWrap; 5819 5820 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5821 } 5822 5823 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5824 // Here we check that I is in the header of the innermost loop containing I, 5825 // since we only deal with instructions in the loop header. The actual loop we 5826 // need to check later will come from an add recurrence, but getting that 5827 // requires computing the SCEV of the operands, which can be expensive. This 5828 // check we can do cheaply to rule out some cases early. 5829 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5830 if (InnermostContainingLoop == nullptr || 5831 InnermostContainingLoop->getHeader() != I->getParent()) 5832 return false; 5833 5834 // Only proceed if we can prove that I does not yield poison. 5835 if (!programUndefinedIfPoison(I)) 5836 return false; 5837 5838 // At this point we know that if I is executed, then it does not wrap 5839 // according to at least one of NSW or NUW. If I is not executed, then we do 5840 // not know if the calculation that I represents would wrap. Multiple 5841 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5842 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5843 // derived from other instructions that map to the same SCEV. We cannot make 5844 // that guarantee for cases where I is not executed. So we need to find the 5845 // loop that I is considered in relation to and prove that I is executed for 5846 // every iteration of that loop. That implies that the value that I 5847 // calculates does not wrap anywhere in the loop, so then we can apply the 5848 // flags to the SCEV. 5849 // 5850 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5851 // from different loops, so that we know which loop to prove that I is 5852 // executed in. 5853 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5854 // I could be an extractvalue from a call to an overflow intrinsic. 5855 // TODO: We can do better here in some cases. 5856 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5857 return false; 5858 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5859 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5860 bool AllOtherOpsLoopInvariant = true; 5861 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5862 ++OtherOpIndex) { 5863 if (OtherOpIndex != OpIndex) { 5864 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5865 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5866 AllOtherOpsLoopInvariant = false; 5867 break; 5868 } 5869 } 5870 } 5871 if (AllOtherOpsLoopInvariant && 5872 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5873 return true; 5874 } 5875 } 5876 return false; 5877 } 5878 5879 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5880 // If we know that \c I can never be poison period, then that's enough. 5881 if (isSCEVExprNeverPoison(I)) 5882 return true; 5883 5884 // For an add recurrence specifically, we assume that infinite loops without 5885 // side effects are undefined behavior, and then reason as follows: 5886 // 5887 // If the add recurrence is poison in any iteration, it is poison on all 5888 // future iterations (since incrementing poison yields poison). If the result 5889 // of the add recurrence is fed into the loop latch condition and the loop 5890 // does not contain any throws or exiting blocks other than the latch, we now 5891 // have the ability to "choose" whether the backedge is taken or not (by 5892 // choosing a sufficiently evil value for the poison feeding into the branch) 5893 // for every iteration including and after the one in which \p I first became 5894 // poison. There are two possibilities (let's call the iteration in which \p 5895 // I first became poison as K): 5896 // 5897 // 1. In the set of iterations including and after K, the loop body executes 5898 // no side effects. In this case executing the backege an infinte number 5899 // of times will yield undefined behavior. 5900 // 5901 // 2. In the set of iterations including and after K, the loop body executes 5902 // at least one side effect. In this case, that specific instance of side 5903 // effect is control dependent on poison, which also yields undefined 5904 // behavior. 5905 5906 auto *ExitingBB = L->getExitingBlock(); 5907 auto *LatchBB = L->getLoopLatch(); 5908 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5909 return false; 5910 5911 SmallPtrSet<const Instruction *, 16> Pushed; 5912 SmallVector<const Instruction *, 8> PoisonStack; 5913 5914 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5915 // things that are known to be poison under that assumption go on the 5916 // PoisonStack. 5917 Pushed.insert(I); 5918 PoisonStack.push_back(I); 5919 5920 bool LatchControlDependentOnPoison = false; 5921 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5922 const Instruction *Poison = PoisonStack.pop_back_val(); 5923 5924 for (auto *PoisonUser : Poison->users()) { 5925 if (propagatesPoison(cast<Operator>(PoisonUser))) { 5926 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5927 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5928 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5929 assert(BI->isConditional() && "Only possibility!"); 5930 if (BI->getParent() == LatchBB) { 5931 LatchControlDependentOnPoison = true; 5932 break; 5933 } 5934 } 5935 } 5936 } 5937 5938 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5939 } 5940 5941 ScalarEvolution::LoopProperties 5942 ScalarEvolution::getLoopProperties(const Loop *L) { 5943 using LoopProperties = ScalarEvolution::LoopProperties; 5944 5945 auto Itr = LoopPropertiesCache.find(L); 5946 if (Itr == LoopPropertiesCache.end()) { 5947 auto HasSideEffects = [](Instruction *I) { 5948 if (auto *SI = dyn_cast<StoreInst>(I)) 5949 return !SI->isSimple(); 5950 5951 return I->mayHaveSideEffects(); 5952 }; 5953 5954 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5955 /*HasNoSideEffects*/ true}; 5956 5957 for (auto *BB : L->getBlocks()) 5958 for (auto &I : *BB) { 5959 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5960 LP.HasNoAbnormalExits = false; 5961 if (HasSideEffects(&I)) 5962 LP.HasNoSideEffects = false; 5963 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5964 break; // We're already as pessimistic as we can get. 5965 } 5966 5967 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5968 assert(InsertPair.second && "We just checked!"); 5969 Itr = InsertPair.first; 5970 } 5971 5972 return Itr->second; 5973 } 5974 5975 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5976 if (!isSCEVable(V->getType())) 5977 return getUnknown(V); 5978 5979 if (Instruction *I = dyn_cast<Instruction>(V)) { 5980 // Don't attempt to analyze instructions in blocks that aren't 5981 // reachable. Such instructions don't matter, and they aren't required 5982 // to obey basic rules for definitions dominating uses which this 5983 // analysis depends on. 5984 if (!DT.isReachableFromEntry(I->getParent())) 5985 return getUnknown(UndefValue::get(V->getType())); 5986 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5987 return getConstant(CI); 5988 else if (isa<ConstantPointerNull>(V)) 5989 return getZero(V->getType()); 5990 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5991 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5992 else if (!isa<ConstantExpr>(V)) 5993 return getUnknown(V); 5994 5995 Operator *U = cast<Operator>(V); 5996 if (auto BO = MatchBinaryOp(U, DT)) { 5997 switch (BO->Opcode) { 5998 case Instruction::Add: { 5999 // The simple thing to do would be to just call getSCEV on both operands 6000 // and call getAddExpr with the result. However if we're looking at a 6001 // bunch of things all added together, this can be quite inefficient, 6002 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6003 // Instead, gather up all the operands and make a single getAddExpr call. 6004 // LLVM IR canonical form means we need only traverse the left operands. 6005 SmallVector<const SCEV *, 4> AddOps; 6006 do { 6007 if (BO->Op) { 6008 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6009 AddOps.push_back(OpSCEV); 6010 break; 6011 } 6012 6013 // If a NUW or NSW flag can be applied to the SCEV for this 6014 // addition, then compute the SCEV for this addition by itself 6015 // with a separate call to getAddExpr. We need to do that 6016 // instead of pushing the operands of the addition onto AddOps, 6017 // since the flags are only known to apply to this particular 6018 // addition - they may not apply to other additions that can be 6019 // formed with operands from AddOps. 6020 const SCEV *RHS = getSCEV(BO->RHS); 6021 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6022 if (Flags != SCEV::FlagAnyWrap) { 6023 const SCEV *LHS = getSCEV(BO->LHS); 6024 if (BO->Opcode == Instruction::Sub) 6025 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6026 else 6027 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6028 break; 6029 } 6030 } 6031 6032 if (BO->Opcode == Instruction::Sub) 6033 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6034 else 6035 AddOps.push_back(getSCEV(BO->RHS)); 6036 6037 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6038 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6039 NewBO->Opcode != Instruction::Sub)) { 6040 AddOps.push_back(getSCEV(BO->LHS)); 6041 break; 6042 } 6043 BO = NewBO; 6044 } while (true); 6045 6046 return getAddExpr(AddOps); 6047 } 6048 6049 case Instruction::Mul: { 6050 SmallVector<const SCEV *, 4> MulOps; 6051 do { 6052 if (BO->Op) { 6053 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6054 MulOps.push_back(OpSCEV); 6055 break; 6056 } 6057 6058 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6059 if (Flags != SCEV::FlagAnyWrap) { 6060 MulOps.push_back( 6061 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6062 break; 6063 } 6064 } 6065 6066 MulOps.push_back(getSCEV(BO->RHS)); 6067 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6068 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6069 MulOps.push_back(getSCEV(BO->LHS)); 6070 break; 6071 } 6072 BO = NewBO; 6073 } while (true); 6074 6075 return getMulExpr(MulOps); 6076 } 6077 case Instruction::UDiv: 6078 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6079 case Instruction::URem: 6080 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6081 case Instruction::Sub: { 6082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6083 if (BO->Op) 6084 Flags = getNoWrapFlagsFromUB(BO->Op); 6085 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6086 } 6087 case Instruction::And: 6088 // For an expression like x&255 that merely masks off the high bits, 6089 // use zext(trunc(x)) as the SCEV expression. 6090 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6091 if (CI->isZero()) 6092 return getSCEV(BO->RHS); 6093 if (CI->isMinusOne()) 6094 return getSCEV(BO->LHS); 6095 const APInt &A = CI->getValue(); 6096 6097 // Instcombine's ShrinkDemandedConstant may strip bits out of 6098 // constants, obscuring what would otherwise be a low-bits mask. 6099 // Use computeKnownBits to compute what ShrinkDemandedConstant 6100 // knew about to reconstruct a low-bits mask value. 6101 unsigned LZ = A.countLeadingZeros(); 6102 unsigned TZ = A.countTrailingZeros(); 6103 unsigned BitWidth = A.getBitWidth(); 6104 KnownBits Known(BitWidth); 6105 computeKnownBits(BO->LHS, Known, getDataLayout(), 6106 0, &AC, nullptr, &DT); 6107 6108 APInt EffectiveMask = 6109 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6110 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6111 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6112 const SCEV *LHS = getSCEV(BO->LHS); 6113 const SCEV *ShiftedLHS = nullptr; 6114 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6115 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6116 // For an expression like (x * 8) & 8, simplify the multiply. 6117 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6118 unsigned GCD = std::min(MulZeros, TZ); 6119 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6120 SmallVector<const SCEV*, 4> MulOps; 6121 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6122 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6123 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6124 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6125 } 6126 } 6127 if (!ShiftedLHS) 6128 ShiftedLHS = getUDivExpr(LHS, MulCount); 6129 return getMulExpr( 6130 getZeroExtendExpr( 6131 getTruncateExpr(ShiftedLHS, 6132 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6133 BO->LHS->getType()), 6134 MulCount); 6135 } 6136 } 6137 break; 6138 6139 case Instruction::Or: 6140 // If the RHS of the Or is a constant, we may have something like: 6141 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6142 // optimizations will transparently handle this case. 6143 // 6144 // In order for this transformation to be safe, the LHS must be of the 6145 // form X*(2^n) and the Or constant must be less than 2^n. 6146 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6147 const SCEV *LHS = getSCEV(BO->LHS); 6148 const APInt &CIVal = CI->getValue(); 6149 if (GetMinTrailingZeros(LHS) >= 6150 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6151 // Build a plain add SCEV. 6152 return getAddExpr(LHS, getSCEV(CI), 6153 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6154 } 6155 } 6156 break; 6157 6158 case Instruction::Xor: 6159 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6160 // If the RHS of xor is -1, then this is a not operation. 6161 if (CI->isMinusOne()) 6162 return getNotSCEV(getSCEV(BO->LHS)); 6163 6164 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6165 // This is a variant of the check for xor with -1, and it handles 6166 // the case where instcombine has trimmed non-demanded bits out 6167 // of an xor with -1. 6168 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6169 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6170 if (LBO->getOpcode() == Instruction::And && 6171 LCI->getValue() == CI->getValue()) 6172 if (const SCEVZeroExtendExpr *Z = 6173 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6174 Type *UTy = BO->LHS->getType(); 6175 const SCEV *Z0 = Z->getOperand(); 6176 Type *Z0Ty = Z0->getType(); 6177 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6178 6179 // If C is a low-bits mask, the zero extend is serving to 6180 // mask off the high bits. Complement the operand and 6181 // re-apply the zext. 6182 if (CI->getValue().isMask(Z0TySize)) 6183 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6184 6185 // If C is a single bit, it may be in the sign-bit position 6186 // before the zero-extend. In this case, represent the xor 6187 // using an add, which is equivalent, and re-apply the zext. 6188 APInt Trunc = CI->getValue().trunc(Z0TySize); 6189 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6190 Trunc.isSignMask()) 6191 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6192 UTy); 6193 } 6194 } 6195 break; 6196 6197 case Instruction::Shl: 6198 // Turn shift left of a constant amount into a multiply. 6199 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6200 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6201 6202 // If the shift count is not less than the bitwidth, the result of 6203 // the shift is undefined. Don't try to analyze it, because the 6204 // resolution chosen here may differ from the resolution chosen in 6205 // other parts of the compiler. 6206 if (SA->getValue().uge(BitWidth)) 6207 break; 6208 6209 // We can safely preserve the nuw flag in all cases. It's also safe to 6210 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6211 // requires special handling. It can be preserved as long as we're not 6212 // left shifting by bitwidth - 1. 6213 auto Flags = SCEV::FlagAnyWrap; 6214 if (BO->Op) { 6215 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6216 if ((MulFlags & SCEV::FlagNSW) && 6217 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6218 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6219 if (MulFlags & SCEV::FlagNUW) 6220 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6221 } 6222 6223 Constant *X = ConstantInt::get( 6224 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6225 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6226 } 6227 break; 6228 6229 case Instruction::AShr: { 6230 // AShr X, C, where C is a constant. 6231 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6232 if (!CI) 6233 break; 6234 6235 Type *OuterTy = BO->LHS->getType(); 6236 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6237 // If the shift count is not less than the bitwidth, the result of 6238 // the shift is undefined. Don't try to analyze it, because the 6239 // resolution chosen here may differ from the resolution chosen in 6240 // other parts of the compiler. 6241 if (CI->getValue().uge(BitWidth)) 6242 break; 6243 6244 if (CI->isZero()) 6245 return getSCEV(BO->LHS); // shift by zero --> noop 6246 6247 uint64_t AShrAmt = CI->getZExtValue(); 6248 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6249 6250 Operator *L = dyn_cast<Operator>(BO->LHS); 6251 if (L && L->getOpcode() == Instruction::Shl) { 6252 // X = Shl A, n 6253 // Y = AShr X, m 6254 // Both n and m are constant. 6255 6256 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6257 if (L->getOperand(1) == BO->RHS) 6258 // For a two-shift sext-inreg, i.e. n = m, 6259 // use sext(trunc(x)) as the SCEV expression. 6260 return getSignExtendExpr( 6261 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6262 6263 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6264 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6265 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6266 if (ShlAmt > AShrAmt) { 6267 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6268 // expression. We already checked that ShlAmt < BitWidth, so 6269 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6270 // ShlAmt - AShrAmt < Amt. 6271 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6272 ShlAmt - AShrAmt); 6273 return getSignExtendExpr( 6274 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6275 getConstant(Mul)), OuterTy); 6276 } 6277 } 6278 } 6279 if (BO->IsExact) { 6280 // Given exact arithmetic in-bounds right-shift by a constant, 6281 // we can lower it into: (abs(x) EXACT/u (1<<C)) * signum(x) 6282 const SCEV *X = getSCEV(BO->LHS); 6283 const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false); 6284 APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt); 6285 const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult)); 6286 return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW); 6287 } 6288 break; 6289 } 6290 } 6291 } 6292 6293 switch (U->getOpcode()) { 6294 case Instruction::Trunc: 6295 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6296 6297 case Instruction::ZExt: 6298 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6299 6300 case Instruction::SExt: 6301 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6302 // The NSW flag of a subtract does not always survive the conversion to 6303 // A + (-1)*B. By pushing sign extension onto its operands we are much 6304 // more likely to preserve NSW and allow later AddRec optimisations. 6305 // 6306 // NOTE: This is effectively duplicating this logic from getSignExtend: 6307 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6308 // but by that point the NSW information has potentially been lost. 6309 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6310 Type *Ty = U->getType(); 6311 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6312 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6313 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6314 } 6315 } 6316 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6317 6318 case Instruction::BitCast: 6319 // BitCasts are no-op casts so we just eliminate the cast. 6320 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6321 return getSCEV(U->getOperand(0)); 6322 break; 6323 6324 case Instruction::SDiv: 6325 // If both operands are non-negative, this is just an udiv. 6326 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6327 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6328 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6329 break; 6330 6331 case Instruction::SRem: 6332 // If both operands are non-negative, this is just an urem. 6333 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6334 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6335 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6336 break; 6337 6338 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6339 // lead to pointer expressions which cannot safely be expanded to GEPs, 6340 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6341 // simplifying integer expressions. 6342 6343 case Instruction::GetElementPtr: 6344 return createNodeForGEP(cast<GEPOperator>(U)); 6345 6346 case Instruction::PHI: 6347 return createNodeForPHI(cast<PHINode>(U)); 6348 6349 case Instruction::Select: 6350 // U can also be a select constant expr, which let fall through. Since 6351 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6352 // constant expressions cannot have instructions as operands, we'd have 6353 // returned getUnknown for a select constant expressions anyway. 6354 if (isa<Instruction>(U)) 6355 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6356 U->getOperand(1), U->getOperand(2)); 6357 break; 6358 6359 case Instruction::Call: 6360 case Instruction::Invoke: 6361 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6362 return getSCEV(RV); 6363 6364 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6365 switch (II->getIntrinsicID()) { 6366 case Intrinsic::abs: 6367 return getAbsExpr( 6368 getSCEV(II->getArgOperand(0)), 6369 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6370 case Intrinsic::umax: 6371 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6372 getSCEV(II->getArgOperand(1))); 6373 case Intrinsic::umin: 6374 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6375 getSCEV(II->getArgOperand(1))); 6376 case Intrinsic::smax: 6377 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6378 getSCEV(II->getArgOperand(1))); 6379 case Intrinsic::smin: 6380 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6381 getSCEV(II->getArgOperand(1))); 6382 case Intrinsic::usub_sat: { 6383 const SCEV *X = getSCEV(II->getArgOperand(0)); 6384 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6385 const SCEV *ClampedY = getUMinExpr(X, Y); 6386 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6387 } 6388 case Intrinsic::uadd_sat: { 6389 const SCEV *X = getSCEV(II->getArgOperand(0)); 6390 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6391 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6392 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6393 } 6394 default: 6395 break; 6396 } 6397 } 6398 break; 6399 } 6400 6401 return getUnknown(V); 6402 } 6403 6404 //===----------------------------------------------------------------------===// 6405 // Iteration Count Computation Code 6406 // 6407 6408 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6409 if (!ExitCount) 6410 return 0; 6411 6412 ConstantInt *ExitConst = ExitCount->getValue(); 6413 6414 // Guard against huge trip counts. 6415 if (ExitConst->getValue().getActiveBits() > 32) 6416 return 0; 6417 6418 // In case of integer overflow, this returns 0, which is correct. 6419 return ((unsigned)ExitConst->getZExtValue()) + 1; 6420 } 6421 6422 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6423 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6424 return getSmallConstantTripCount(L, ExitingBB); 6425 6426 // No trip count information for multiple exits. 6427 return 0; 6428 } 6429 6430 unsigned 6431 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6432 const BasicBlock *ExitingBlock) { 6433 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6434 assert(L->isLoopExiting(ExitingBlock) && 6435 "Exiting block must actually branch out of the loop!"); 6436 const SCEVConstant *ExitCount = 6437 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6438 return getConstantTripCount(ExitCount); 6439 } 6440 6441 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6442 const auto *MaxExitCount = 6443 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6444 return getConstantTripCount(MaxExitCount); 6445 } 6446 6447 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6448 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6449 return getSmallConstantTripMultiple(L, ExitingBB); 6450 6451 // No trip multiple information for multiple exits. 6452 return 0; 6453 } 6454 6455 /// Returns the largest constant divisor of the trip count of this loop as a 6456 /// normal unsigned value, if possible. This means that the actual trip count is 6457 /// always a multiple of the returned value (don't forget the trip count could 6458 /// very well be zero as well!). 6459 /// 6460 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6461 /// multiple of a constant (which is also the case if the trip count is simply 6462 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6463 /// if the trip count is very large (>= 2^32). 6464 /// 6465 /// As explained in the comments for getSmallConstantTripCount, this assumes 6466 /// that control exits the loop via ExitingBlock. 6467 unsigned 6468 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6469 const BasicBlock *ExitingBlock) { 6470 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6471 assert(L->isLoopExiting(ExitingBlock) && 6472 "Exiting block must actually branch out of the loop!"); 6473 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6474 if (ExitCount == getCouldNotCompute()) 6475 return 1; 6476 6477 // Get the trip count from the BE count by adding 1. 6478 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6479 6480 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6481 if (!TC) 6482 // Attempt to factor more general cases. Returns the greatest power of 6483 // two divisor. If overflow happens, the trip count expression is still 6484 // divisible by the greatest power of 2 divisor returned. 6485 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6486 6487 ConstantInt *Result = TC->getValue(); 6488 6489 // Guard against huge trip counts (this requires checking 6490 // for zero to handle the case where the trip count == -1 and the 6491 // addition wraps). 6492 if (!Result || Result->getValue().getActiveBits() > 32 || 6493 Result->getValue().getActiveBits() == 0) 6494 return 1; 6495 6496 return (unsigned)Result->getZExtValue(); 6497 } 6498 6499 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6500 const BasicBlock *ExitingBlock, 6501 ExitCountKind Kind) { 6502 switch (Kind) { 6503 case Exact: 6504 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6505 case ConstantMaximum: 6506 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); 6507 }; 6508 llvm_unreachable("Invalid ExitCountKind!"); 6509 } 6510 6511 const SCEV * 6512 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6513 SCEVUnionPredicate &Preds) { 6514 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6515 } 6516 6517 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6518 ExitCountKind Kind) { 6519 switch (Kind) { 6520 case Exact: 6521 return getBackedgeTakenInfo(L).getExact(L, this); 6522 case ConstantMaximum: 6523 return getBackedgeTakenInfo(L).getMax(this); 6524 }; 6525 llvm_unreachable("Invalid ExitCountKind!"); 6526 } 6527 6528 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6529 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6530 } 6531 6532 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6533 static void 6534 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6535 BasicBlock *Header = L->getHeader(); 6536 6537 // Push all Loop-header PHIs onto the Worklist stack. 6538 for (PHINode &PN : Header->phis()) 6539 Worklist.push_back(&PN); 6540 } 6541 6542 const ScalarEvolution::BackedgeTakenInfo & 6543 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6544 auto &BTI = getBackedgeTakenInfo(L); 6545 if (BTI.hasFullInfo()) 6546 return BTI; 6547 6548 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6549 6550 if (!Pair.second) 6551 return Pair.first->second; 6552 6553 BackedgeTakenInfo Result = 6554 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6555 6556 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6557 } 6558 6559 const ScalarEvolution::BackedgeTakenInfo & 6560 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6561 // Initially insert an invalid entry for this loop. If the insertion 6562 // succeeds, proceed to actually compute a backedge-taken count and 6563 // update the value. The temporary CouldNotCompute value tells SCEV 6564 // code elsewhere that it shouldn't attempt to request a new 6565 // backedge-taken count, which could result in infinite recursion. 6566 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6567 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6568 if (!Pair.second) 6569 return Pair.first->second; 6570 6571 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6572 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6573 // must be cleared in this scope. 6574 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6575 6576 // In product build, there are no usage of statistic. 6577 (void)NumTripCountsComputed; 6578 (void)NumTripCountsNotComputed; 6579 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6580 const SCEV *BEExact = Result.getExact(L, this); 6581 if (BEExact != getCouldNotCompute()) { 6582 assert(isLoopInvariant(BEExact, L) && 6583 isLoopInvariant(Result.getMax(this), L) && 6584 "Computed backedge-taken count isn't loop invariant for loop!"); 6585 ++NumTripCountsComputed; 6586 } 6587 else if (Result.getMax(this) == getCouldNotCompute() && 6588 isa<PHINode>(L->getHeader()->begin())) { 6589 // Only count loops that have phi nodes as not being computable. 6590 ++NumTripCountsNotComputed; 6591 } 6592 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6593 6594 // Now that we know more about the trip count for this loop, forget any 6595 // existing SCEV values for PHI nodes in this loop since they are only 6596 // conservative estimates made without the benefit of trip count 6597 // information. This is similar to the code in forgetLoop, except that 6598 // it handles SCEVUnknown PHI nodes specially. 6599 if (Result.hasAnyInfo()) { 6600 SmallVector<Instruction *, 16> Worklist; 6601 PushLoopPHIs(L, Worklist); 6602 6603 SmallPtrSet<Instruction *, 8> Discovered; 6604 while (!Worklist.empty()) { 6605 Instruction *I = Worklist.pop_back_val(); 6606 6607 ValueExprMapType::iterator It = 6608 ValueExprMap.find_as(static_cast<Value *>(I)); 6609 if (It != ValueExprMap.end()) { 6610 const SCEV *Old = It->second; 6611 6612 // SCEVUnknown for a PHI either means that it has an unrecognized 6613 // structure, or it's a PHI that's in the progress of being computed 6614 // by createNodeForPHI. In the former case, additional loop trip 6615 // count information isn't going to change anything. In the later 6616 // case, createNodeForPHI will perform the necessary updates on its 6617 // own when it gets to that point. 6618 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6619 eraseValueFromMap(It->first); 6620 forgetMemoizedResults(Old); 6621 } 6622 if (PHINode *PN = dyn_cast<PHINode>(I)) 6623 ConstantEvolutionLoopExitValue.erase(PN); 6624 } 6625 6626 // Since we don't need to invalidate anything for correctness and we're 6627 // only invalidating to make SCEV's results more precise, we get to stop 6628 // early to avoid invalidating too much. This is especially important in 6629 // cases like: 6630 // 6631 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6632 // loop0: 6633 // %pn0 = phi 6634 // ... 6635 // loop1: 6636 // %pn1 = phi 6637 // ... 6638 // 6639 // where both loop0 and loop1's backedge taken count uses the SCEV 6640 // expression for %v. If we don't have the early stop below then in cases 6641 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6642 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6643 // count for loop1, effectively nullifying SCEV's trip count cache. 6644 for (auto *U : I->users()) 6645 if (auto *I = dyn_cast<Instruction>(U)) { 6646 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6647 if (LoopForUser && L->contains(LoopForUser) && 6648 Discovered.insert(I).second) 6649 Worklist.push_back(I); 6650 } 6651 } 6652 } 6653 6654 // Re-lookup the insert position, since the call to 6655 // computeBackedgeTakenCount above could result in a 6656 // recusive call to getBackedgeTakenInfo (on a different 6657 // loop), which would invalidate the iterator computed 6658 // earlier. 6659 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6660 } 6661 6662 void ScalarEvolution::forgetAllLoops() { 6663 // This method is intended to forget all info about loops. It should 6664 // invalidate caches as if the following happened: 6665 // - The trip counts of all loops have changed arbitrarily 6666 // - Every llvm::Value has been updated in place to produce a different 6667 // result. 6668 BackedgeTakenCounts.clear(); 6669 PredicatedBackedgeTakenCounts.clear(); 6670 LoopPropertiesCache.clear(); 6671 ConstantEvolutionLoopExitValue.clear(); 6672 ValueExprMap.clear(); 6673 ValuesAtScopes.clear(); 6674 LoopDispositions.clear(); 6675 BlockDispositions.clear(); 6676 UnsignedRanges.clear(); 6677 SignedRanges.clear(); 6678 ExprValueMap.clear(); 6679 HasRecMap.clear(); 6680 MinTrailingZerosCache.clear(); 6681 PredicatedSCEVRewrites.clear(); 6682 } 6683 6684 void ScalarEvolution::forgetLoop(const Loop *L) { 6685 // Drop any stored trip count value. 6686 auto RemoveLoopFromBackedgeMap = 6687 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6688 auto BTCPos = Map.find(L); 6689 if (BTCPos != Map.end()) { 6690 BTCPos->second.clear(); 6691 Map.erase(BTCPos); 6692 } 6693 }; 6694 6695 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6696 SmallVector<Instruction *, 32> Worklist; 6697 SmallPtrSet<Instruction *, 16> Visited; 6698 6699 // Iterate over all the loops and sub-loops to drop SCEV information. 6700 while (!LoopWorklist.empty()) { 6701 auto *CurrL = LoopWorklist.pop_back_val(); 6702 6703 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6704 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6705 6706 // Drop information about predicated SCEV rewrites for this loop. 6707 for (auto I = PredicatedSCEVRewrites.begin(); 6708 I != PredicatedSCEVRewrites.end();) { 6709 std::pair<const SCEV *, const Loop *> Entry = I->first; 6710 if (Entry.second == CurrL) 6711 PredicatedSCEVRewrites.erase(I++); 6712 else 6713 ++I; 6714 } 6715 6716 auto LoopUsersItr = LoopUsers.find(CurrL); 6717 if (LoopUsersItr != LoopUsers.end()) { 6718 for (auto *S : LoopUsersItr->second) 6719 forgetMemoizedResults(S); 6720 LoopUsers.erase(LoopUsersItr); 6721 } 6722 6723 // Drop information about expressions based on loop-header PHIs. 6724 PushLoopPHIs(CurrL, Worklist); 6725 6726 while (!Worklist.empty()) { 6727 Instruction *I = Worklist.pop_back_val(); 6728 if (!Visited.insert(I).second) 6729 continue; 6730 6731 ValueExprMapType::iterator It = 6732 ValueExprMap.find_as(static_cast<Value *>(I)); 6733 if (It != ValueExprMap.end()) { 6734 eraseValueFromMap(It->first); 6735 forgetMemoizedResults(It->second); 6736 if (PHINode *PN = dyn_cast<PHINode>(I)) 6737 ConstantEvolutionLoopExitValue.erase(PN); 6738 } 6739 6740 PushDefUseChildren(I, Worklist); 6741 } 6742 6743 LoopPropertiesCache.erase(CurrL); 6744 // Forget all contained loops too, to avoid dangling entries in the 6745 // ValuesAtScopes map. 6746 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6747 } 6748 } 6749 6750 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6751 while (Loop *Parent = L->getParentLoop()) 6752 L = Parent; 6753 forgetLoop(L); 6754 } 6755 6756 void ScalarEvolution::forgetValue(Value *V) { 6757 Instruction *I = dyn_cast<Instruction>(V); 6758 if (!I) return; 6759 6760 // Drop information about expressions based on loop-header PHIs. 6761 SmallVector<Instruction *, 16> Worklist; 6762 Worklist.push_back(I); 6763 6764 SmallPtrSet<Instruction *, 8> Visited; 6765 while (!Worklist.empty()) { 6766 I = Worklist.pop_back_val(); 6767 if (!Visited.insert(I).second) 6768 continue; 6769 6770 ValueExprMapType::iterator It = 6771 ValueExprMap.find_as(static_cast<Value *>(I)); 6772 if (It != ValueExprMap.end()) { 6773 eraseValueFromMap(It->first); 6774 forgetMemoizedResults(It->second); 6775 if (PHINode *PN = dyn_cast<PHINode>(I)) 6776 ConstantEvolutionLoopExitValue.erase(PN); 6777 } 6778 6779 PushDefUseChildren(I, Worklist); 6780 } 6781 } 6782 6783 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 6784 LoopDispositions.clear(); 6785 } 6786 6787 /// Get the exact loop backedge taken count considering all loop exits. A 6788 /// computable result can only be returned for loops with all exiting blocks 6789 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6790 /// is never skipped. This is a valid assumption as long as the loop exits via 6791 /// that test. For precise results, it is the caller's responsibility to specify 6792 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6793 const SCEV * 6794 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6795 SCEVUnionPredicate *Preds) const { 6796 // If any exits were not computable, the loop is not computable. 6797 if (!isComplete() || ExitNotTaken.empty()) 6798 return SE->getCouldNotCompute(); 6799 6800 const BasicBlock *Latch = L->getLoopLatch(); 6801 // All exiting blocks we have collected must dominate the only backedge. 6802 if (!Latch) 6803 return SE->getCouldNotCompute(); 6804 6805 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6806 // count is simply a minimum out of all these calculated exit counts. 6807 SmallVector<const SCEV *, 2> Ops; 6808 for (auto &ENT : ExitNotTaken) { 6809 const SCEV *BECount = ENT.ExactNotTaken; 6810 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6811 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6812 "We should only have known counts for exiting blocks that dominate " 6813 "latch!"); 6814 6815 Ops.push_back(BECount); 6816 6817 if (Preds && !ENT.hasAlwaysTruePredicate()) 6818 Preds->add(ENT.Predicate.get()); 6819 6820 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6821 "Predicate should be always true!"); 6822 } 6823 6824 return SE->getUMinFromMismatchedTypes(Ops); 6825 } 6826 6827 /// Get the exact not taken count for this loop exit. 6828 const SCEV * 6829 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 6830 ScalarEvolution *SE) const { 6831 for (auto &ENT : ExitNotTaken) 6832 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6833 return ENT.ExactNotTaken; 6834 6835 return SE->getCouldNotCompute(); 6836 } 6837 6838 const SCEV * 6839 ScalarEvolution::BackedgeTakenInfo::getMax(const BasicBlock *ExitingBlock, 6840 ScalarEvolution *SE) const { 6841 for (auto &ENT : ExitNotTaken) 6842 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6843 return ENT.MaxNotTaken; 6844 6845 return SE->getCouldNotCompute(); 6846 } 6847 6848 /// getMax - Get the max backedge taken count for the loop. 6849 const SCEV * 6850 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6851 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6852 return !ENT.hasAlwaysTruePredicate(); 6853 }; 6854 6855 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6856 return SE->getCouldNotCompute(); 6857 6858 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6859 "No point in having a non-constant max backedge taken count!"); 6860 return getMax(); 6861 } 6862 6863 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6864 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6865 return !ENT.hasAlwaysTruePredicate(); 6866 }; 6867 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6868 } 6869 6870 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6871 ScalarEvolution *SE) const { 6872 if (getMax() && getMax() != SE->getCouldNotCompute() && 6873 SE->hasOperand(getMax(), S)) 6874 return true; 6875 6876 for (auto &ENT : ExitNotTaken) 6877 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6878 SE->hasOperand(ENT.ExactNotTaken, S)) 6879 return true; 6880 6881 return false; 6882 } 6883 6884 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6885 : ExactNotTaken(E), MaxNotTaken(E) { 6886 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6887 isa<SCEVConstant>(MaxNotTaken)) && 6888 "No point in having a non-constant max backedge taken count!"); 6889 } 6890 6891 ScalarEvolution::ExitLimit::ExitLimit( 6892 const SCEV *E, const SCEV *M, bool MaxOrZero, 6893 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6894 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6895 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6896 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6897 "Exact is not allowed to be less precise than Max"); 6898 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6899 isa<SCEVConstant>(MaxNotTaken)) && 6900 "No point in having a non-constant max backedge taken count!"); 6901 for (auto *PredSet : PredSetList) 6902 for (auto *P : *PredSet) 6903 addPredicate(P); 6904 } 6905 6906 ScalarEvolution::ExitLimit::ExitLimit( 6907 const SCEV *E, const SCEV *M, bool MaxOrZero, 6908 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6909 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6910 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6911 isa<SCEVConstant>(MaxNotTaken)) && 6912 "No point in having a non-constant max backedge taken count!"); 6913 } 6914 6915 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6916 bool MaxOrZero) 6917 : ExitLimit(E, M, MaxOrZero, None) { 6918 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6919 isa<SCEVConstant>(MaxNotTaken)) && 6920 "No point in having a non-constant max backedge taken count!"); 6921 } 6922 6923 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6924 /// computable exit into a persistent ExitNotTakenInfo array. 6925 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6926 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6927 ExitCounts, 6928 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6929 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6930 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6931 6932 ExitNotTaken.reserve(ExitCounts.size()); 6933 std::transform( 6934 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6935 [&](const EdgeExitInfo &EEI) { 6936 BasicBlock *ExitBB = EEI.first; 6937 const ExitLimit &EL = EEI.second; 6938 if (EL.Predicates.empty()) 6939 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6940 nullptr); 6941 6942 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6943 for (auto *Pred : EL.Predicates) 6944 Predicate->add(Pred); 6945 6946 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6947 std::move(Predicate)); 6948 }); 6949 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6950 "No point in having a non-constant max backedge taken count!"); 6951 } 6952 6953 /// Invalidate this result and free the ExitNotTakenInfo array. 6954 void ScalarEvolution::BackedgeTakenInfo::clear() { 6955 ExitNotTaken.clear(); 6956 } 6957 6958 /// Compute the number of times the backedge of the specified loop will execute. 6959 ScalarEvolution::BackedgeTakenInfo 6960 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6961 bool AllowPredicates) { 6962 SmallVector<BasicBlock *, 8> ExitingBlocks; 6963 L->getExitingBlocks(ExitingBlocks); 6964 6965 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6966 6967 SmallVector<EdgeExitInfo, 4> ExitCounts; 6968 bool CouldComputeBECount = true; 6969 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6970 const SCEV *MustExitMaxBECount = nullptr; 6971 const SCEV *MayExitMaxBECount = nullptr; 6972 bool MustExitMaxOrZero = false; 6973 6974 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6975 // and compute maxBECount. 6976 // Do a union of all the predicates here. 6977 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6978 BasicBlock *ExitBB = ExitingBlocks[i]; 6979 6980 // We canonicalize untaken exits to br (constant), ignore them so that 6981 // proving an exit untaken doesn't negatively impact our ability to reason 6982 // about the loop as whole. 6983 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 6984 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 6985 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6986 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 6987 continue; 6988 } 6989 6990 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6991 6992 assert((AllowPredicates || EL.Predicates.empty()) && 6993 "Predicated exit limit when predicates are not allowed!"); 6994 6995 // 1. For each exit that can be computed, add an entry to ExitCounts. 6996 // CouldComputeBECount is true only if all exits can be computed. 6997 if (EL.ExactNotTaken == getCouldNotCompute()) 6998 // We couldn't compute an exact value for this exit, so 6999 // we won't be able to compute an exact value for the loop. 7000 CouldComputeBECount = false; 7001 else 7002 ExitCounts.emplace_back(ExitBB, EL); 7003 7004 // 2. Derive the loop's MaxBECount from each exit's max number of 7005 // non-exiting iterations. Partition the loop exits into two kinds: 7006 // LoopMustExits and LoopMayExits. 7007 // 7008 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7009 // is a LoopMayExit. If any computable LoopMustExit is found, then 7010 // MaxBECount is the minimum EL.MaxNotTaken of computable 7011 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7012 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7013 // computable EL.MaxNotTaken. 7014 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7015 DT.dominates(ExitBB, Latch)) { 7016 if (!MustExitMaxBECount) { 7017 MustExitMaxBECount = EL.MaxNotTaken; 7018 MustExitMaxOrZero = EL.MaxOrZero; 7019 } else { 7020 MustExitMaxBECount = 7021 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7022 } 7023 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7024 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7025 MayExitMaxBECount = EL.MaxNotTaken; 7026 else { 7027 MayExitMaxBECount = 7028 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7029 } 7030 } 7031 } 7032 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7033 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7034 // The loop backedge will be taken the maximum or zero times if there's 7035 // a single exit that must be taken the maximum or zero times. 7036 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7037 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7038 MaxBECount, MaxOrZero); 7039 } 7040 7041 ScalarEvolution::ExitLimit 7042 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7043 bool AllowPredicates) { 7044 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7045 // If our exiting block does not dominate the latch, then its connection with 7046 // loop's exit limit may be far from trivial. 7047 const BasicBlock *Latch = L->getLoopLatch(); 7048 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7049 return getCouldNotCompute(); 7050 7051 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7052 Instruction *Term = ExitingBlock->getTerminator(); 7053 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7054 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7055 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7056 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7057 "It should have one successor in loop and one exit block!"); 7058 // Proceed to the next level to examine the exit condition expression. 7059 return computeExitLimitFromCond( 7060 L, BI->getCondition(), ExitIfTrue, 7061 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7062 } 7063 7064 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7065 // For switch, make sure that there is a single exit from the loop. 7066 BasicBlock *Exit = nullptr; 7067 for (auto *SBB : successors(ExitingBlock)) 7068 if (!L->contains(SBB)) { 7069 if (Exit) // Multiple exit successors. 7070 return getCouldNotCompute(); 7071 Exit = SBB; 7072 } 7073 assert(Exit && "Exiting block must have at least one exit"); 7074 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7075 /*ControlsExit=*/IsOnlyExit); 7076 } 7077 7078 return getCouldNotCompute(); 7079 } 7080 7081 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7082 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7083 bool ControlsExit, bool AllowPredicates) { 7084 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7085 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7086 ControlsExit, AllowPredicates); 7087 } 7088 7089 Optional<ScalarEvolution::ExitLimit> 7090 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7091 bool ExitIfTrue, bool ControlsExit, 7092 bool AllowPredicates) { 7093 (void)this->L; 7094 (void)this->ExitIfTrue; 7095 (void)this->AllowPredicates; 7096 7097 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7098 this->AllowPredicates == AllowPredicates && 7099 "Variance in assumed invariant key components!"); 7100 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7101 if (Itr == TripCountMap.end()) 7102 return None; 7103 return Itr->second; 7104 } 7105 7106 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7107 bool ExitIfTrue, 7108 bool ControlsExit, 7109 bool AllowPredicates, 7110 const ExitLimit &EL) { 7111 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7112 this->AllowPredicates == AllowPredicates && 7113 "Variance in assumed invariant key components!"); 7114 7115 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7116 assert(InsertResult.second && "Expected successful insertion!"); 7117 (void)InsertResult; 7118 (void)ExitIfTrue; 7119 } 7120 7121 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7122 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7123 bool ControlsExit, bool AllowPredicates) { 7124 7125 if (auto MaybeEL = 7126 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7127 return *MaybeEL; 7128 7129 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7130 ControlsExit, AllowPredicates); 7131 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7132 return EL; 7133 } 7134 7135 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7136 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7137 bool ControlsExit, bool AllowPredicates) { 7138 // Check if the controlling expression for this loop is an And or Or. 7139 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7140 if (BO->getOpcode() == Instruction::And) { 7141 // Recurse on the operands of the and. 7142 bool EitherMayExit = !ExitIfTrue; 7143 ExitLimit EL0 = computeExitLimitFromCondCached( 7144 Cache, L, BO->getOperand(0), ExitIfTrue, 7145 ControlsExit && !EitherMayExit, AllowPredicates); 7146 ExitLimit EL1 = computeExitLimitFromCondCached( 7147 Cache, L, BO->getOperand(1), ExitIfTrue, 7148 ControlsExit && !EitherMayExit, AllowPredicates); 7149 // Be robust against unsimplified IR for the form "and i1 X, true" 7150 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7151 return CI->isOne() ? EL0 : EL1; 7152 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7153 return CI->isOne() ? EL1 : EL0; 7154 const SCEV *BECount = getCouldNotCompute(); 7155 const SCEV *MaxBECount = getCouldNotCompute(); 7156 if (EitherMayExit) { 7157 // Both conditions must be true for the loop to continue executing. 7158 // Choose the less conservative count. 7159 if (EL0.ExactNotTaken == getCouldNotCompute() || 7160 EL1.ExactNotTaken == getCouldNotCompute()) 7161 BECount = getCouldNotCompute(); 7162 else 7163 BECount = 7164 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7165 if (EL0.MaxNotTaken == getCouldNotCompute()) 7166 MaxBECount = EL1.MaxNotTaken; 7167 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7168 MaxBECount = EL0.MaxNotTaken; 7169 else 7170 MaxBECount = 7171 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7172 } else { 7173 // Both conditions must be true at the same time for the loop to exit. 7174 // For now, be conservative. 7175 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7176 MaxBECount = EL0.MaxNotTaken; 7177 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7178 BECount = EL0.ExactNotTaken; 7179 } 7180 7181 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7182 // to be more aggressive when computing BECount than when computing 7183 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7184 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7185 // to not. 7186 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7187 !isa<SCEVCouldNotCompute>(BECount)) 7188 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7189 7190 return ExitLimit(BECount, MaxBECount, false, 7191 {&EL0.Predicates, &EL1.Predicates}); 7192 } 7193 if (BO->getOpcode() == Instruction::Or) { 7194 // Recurse on the operands of the or. 7195 bool EitherMayExit = ExitIfTrue; 7196 ExitLimit EL0 = computeExitLimitFromCondCached( 7197 Cache, L, BO->getOperand(0), ExitIfTrue, 7198 ControlsExit && !EitherMayExit, AllowPredicates); 7199 ExitLimit EL1 = computeExitLimitFromCondCached( 7200 Cache, L, BO->getOperand(1), ExitIfTrue, 7201 ControlsExit && !EitherMayExit, AllowPredicates); 7202 // Be robust against unsimplified IR for the form "or i1 X, true" 7203 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7204 return CI->isZero() ? EL0 : EL1; 7205 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7206 return CI->isZero() ? EL1 : EL0; 7207 const SCEV *BECount = getCouldNotCompute(); 7208 const SCEV *MaxBECount = getCouldNotCompute(); 7209 if (EitherMayExit) { 7210 // Both conditions must be false for the loop to continue executing. 7211 // Choose the less conservative count. 7212 if (EL0.ExactNotTaken == getCouldNotCompute() || 7213 EL1.ExactNotTaken == getCouldNotCompute()) 7214 BECount = getCouldNotCompute(); 7215 else 7216 BECount = 7217 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7218 if (EL0.MaxNotTaken == getCouldNotCompute()) 7219 MaxBECount = EL1.MaxNotTaken; 7220 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7221 MaxBECount = EL0.MaxNotTaken; 7222 else 7223 MaxBECount = 7224 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7225 } else { 7226 // Both conditions must be false at the same time for the loop to exit. 7227 // For now, be conservative. 7228 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7229 MaxBECount = EL0.MaxNotTaken; 7230 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7231 BECount = EL0.ExactNotTaken; 7232 } 7233 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7234 // to be more aggressive when computing BECount than when computing 7235 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7236 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7237 // to not. 7238 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7239 !isa<SCEVCouldNotCompute>(BECount)) 7240 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7241 7242 return ExitLimit(BECount, MaxBECount, false, 7243 {&EL0.Predicates, &EL1.Predicates}); 7244 } 7245 } 7246 7247 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7248 // Proceed to the next level to examine the icmp. 7249 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7250 ExitLimit EL = 7251 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7252 if (EL.hasFullInfo() || !AllowPredicates) 7253 return EL; 7254 7255 // Try again, but use SCEV predicates this time. 7256 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7257 /*AllowPredicates=*/true); 7258 } 7259 7260 // Check for a constant condition. These are normally stripped out by 7261 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7262 // preserve the CFG and is temporarily leaving constant conditions 7263 // in place. 7264 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7265 if (ExitIfTrue == !CI->getZExtValue()) 7266 // The backedge is always taken. 7267 return getCouldNotCompute(); 7268 else 7269 // The backedge is never taken. 7270 return getZero(CI->getType()); 7271 } 7272 7273 // If it's not an integer or pointer comparison then compute it the hard way. 7274 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7275 } 7276 7277 ScalarEvolution::ExitLimit 7278 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7279 ICmpInst *ExitCond, 7280 bool ExitIfTrue, 7281 bool ControlsExit, 7282 bool AllowPredicates) { 7283 // If the condition was exit on true, convert the condition to exit on false 7284 ICmpInst::Predicate Pred; 7285 if (!ExitIfTrue) 7286 Pred = ExitCond->getPredicate(); 7287 else 7288 Pred = ExitCond->getInversePredicate(); 7289 const ICmpInst::Predicate OriginalPred = Pred; 7290 7291 // Handle common loops like: for (X = "string"; *X; ++X) 7292 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7293 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7294 ExitLimit ItCnt = 7295 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7296 if (ItCnt.hasAnyInfo()) 7297 return ItCnt; 7298 } 7299 7300 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7301 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7302 7303 // Try to evaluate any dependencies out of the loop. 7304 LHS = getSCEVAtScope(LHS, L); 7305 RHS = getSCEVAtScope(RHS, L); 7306 7307 // At this point, we would like to compute how many iterations of the 7308 // loop the predicate will return true for these inputs. 7309 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7310 // If there is a loop-invariant, force it into the RHS. 7311 std::swap(LHS, RHS); 7312 Pred = ICmpInst::getSwappedPredicate(Pred); 7313 } 7314 7315 // Simplify the operands before analyzing them. 7316 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7317 7318 // If we have a comparison of a chrec against a constant, try to use value 7319 // ranges to answer this query. 7320 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7321 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7322 if (AddRec->getLoop() == L) { 7323 // Form the constant range. 7324 ConstantRange CompRange = 7325 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7326 7327 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7328 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7329 } 7330 7331 switch (Pred) { 7332 case ICmpInst::ICMP_NE: { // while (X != Y) 7333 // Convert to: while (X-Y != 0) 7334 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7335 AllowPredicates); 7336 if (EL.hasAnyInfo()) return EL; 7337 break; 7338 } 7339 case ICmpInst::ICMP_EQ: { // while (X == Y) 7340 // Convert to: while (X-Y == 0) 7341 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7342 if (EL.hasAnyInfo()) return EL; 7343 break; 7344 } 7345 case ICmpInst::ICMP_SLT: 7346 case ICmpInst::ICMP_ULT: { // while (X < Y) 7347 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7348 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7349 AllowPredicates); 7350 if (EL.hasAnyInfo()) return EL; 7351 break; 7352 } 7353 case ICmpInst::ICMP_SGT: 7354 case ICmpInst::ICMP_UGT: { // while (X > Y) 7355 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7356 ExitLimit EL = 7357 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7358 AllowPredicates); 7359 if (EL.hasAnyInfo()) return EL; 7360 break; 7361 } 7362 default: 7363 break; 7364 } 7365 7366 auto *ExhaustiveCount = 7367 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7368 7369 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7370 return ExhaustiveCount; 7371 7372 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7373 ExitCond->getOperand(1), L, OriginalPred); 7374 } 7375 7376 ScalarEvolution::ExitLimit 7377 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7378 SwitchInst *Switch, 7379 BasicBlock *ExitingBlock, 7380 bool ControlsExit) { 7381 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7382 7383 // Give up if the exit is the default dest of a switch. 7384 if (Switch->getDefaultDest() == ExitingBlock) 7385 return getCouldNotCompute(); 7386 7387 assert(L->contains(Switch->getDefaultDest()) && 7388 "Default case must not exit the loop!"); 7389 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7390 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7391 7392 // while (X != Y) --> while (X-Y != 0) 7393 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7394 if (EL.hasAnyInfo()) 7395 return EL; 7396 7397 return getCouldNotCompute(); 7398 } 7399 7400 static ConstantInt * 7401 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7402 ScalarEvolution &SE) { 7403 const SCEV *InVal = SE.getConstant(C); 7404 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7405 assert(isa<SCEVConstant>(Val) && 7406 "Evaluation of SCEV at constant didn't fold correctly?"); 7407 return cast<SCEVConstant>(Val)->getValue(); 7408 } 7409 7410 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7411 /// compute the backedge execution count. 7412 ScalarEvolution::ExitLimit 7413 ScalarEvolution::computeLoadConstantCompareExitLimit( 7414 LoadInst *LI, 7415 Constant *RHS, 7416 const Loop *L, 7417 ICmpInst::Predicate predicate) { 7418 if (LI->isVolatile()) return getCouldNotCompute(); 7419 7420 // Check to see if the loaded pointer is a getelementptr of a global. 7421 // TODO: Use SCEV instead of manually grubbing with GEPs. 7422 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7423 if (!GEP) return getCouldNotCompute(); 7424 7425 // Make sure that it is really a constant global we are gepping, with an 7426 // initializer, and make sure the first IDX is really 0. 7427 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7428 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7429 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7430 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7431 return getCouldNotCompute(); 7432 7433 // Okay, we allow one non-constant index into the GEP instruction. 7434 Value *VarIdx = nullptr; 7435 std::vector<Constant*> Indexes; 7436 unsigned VarIdxNum = 0; 7437 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7438 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7439 Indexes.push_back(CI); 7440 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7441 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7442 VarIdx = GEP->getOperand(i); 7443 VarIdxNum = i-2; 7444 Indexes.push_back(nullptr); 7445 } 7446 7447 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7448 if (!VarIdx) 7449 return getCouldNotCompute(); 7450 7451 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7452 // Check to see if X is a loop variant variable value now. 7453 const SCEV *Idx = getSCEV(VarIdx); 7454 Idx = getSCEVAtScope(Idx, L); 7455 7456 // We can only recognize very limited forms of loop index expressions, in 7457 // particular, only affine AddRec's like {C1,+,C2}. 7458 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7459 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7460 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7461 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7462 return getCouldNotCompute(); 7463 7464 unsigned MaxSteps = MaxBruteForceIterations; 7465 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7466 ConstantInt *ItCst = ConstantInt::get( 7467 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7468 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7469 7470 // Form the GEP offset. 7471 Indexes[VarIdxNum] = Val; 7472 7473 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7474 Indexes); 7475 if (!Result) break; // Cannot compute! 7476 7477 // Evaluate the condition for this iteration. 7478 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7479 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7480 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7481 ++NumArrayLenItCounts; 7482 return getConstant(ItCst); // Found terminating iteration! 7483 } 7484 } 7485 return getCouldNotCompute(); 7486 } 7487 7488 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7489 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7490 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7491 if (!RHS) 7492 return getCouldNotCompute(); 7493 7494 const BasicBlock *Latch = L->getLoopLatch(); 7495 if (!Latch) 7496 return getCouldNotCompute(); 7497 7498 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7499 if (!Predecessor) 7500 return getCouldNotCompute(); 7501 7502 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7503 // Return LHS in OutLHS and shift_opt in OutOpCode. 7504 auto MatchPositiveShift = 7505 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7506 7507 using namespace PatternMatch; 7508 7509 ConstantInt *ShiftAmt; 7510 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7511 OutOpCode = Instruction::LShr; 7512 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7513 OutOpCode = Instruction::AShr; 7514 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7515 OutOpCode = Instruction::Shl; 7516 else 7517 return false; 7518 7519 return ShiftAmt->getValue().isStrictlyPositive(); 7520 }; 7521 7522 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7523 // 7524 // loop: 7525 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7526 // %iv.shifted = lshr i32 %iv, <positive constant> 7527 // 7528 // Return true on a successful match. Return the corresponding PHI node (%iv 7529 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7530 auto MatchShiftRecurrence = 7531 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7532 Optional<Instruction::BinaryOps> PostShiftOpCode; 7533 7534 { 7535 Instruction::BinaryOps OpC; 7536 Value *V; 7537 7538 // If we encounter a shift instruction, "peel off" the shift operation, 7539 // and remember that we did so. Later when we inspect %iv's backedge 7540 // value, we will make sure that the backedge value uses the same 7541 // operation. 7542 // 7543 // Note: the peeled shift operation does not have to be the same 7544 // instruction as the one feeding into the PHI's backedge value. We only 7545 // really care about it being the same *kind* of shift instruction -- 7546 // that's all that is required for our later inferences to hold. 7547 if (MatchPositiveShift(LHS, V, OpC)) { 7548 PostShiftOpCode = OpC; 7549 LHS = V; 7550 } 7551 } 7552 7553 PNOut = dyn_cast<PHINode>(LHS); 7554 if (!PNOut || PNOut->getParent() != L->getHeader()) 7555 return false; 7556 7557 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7558 Value *OpLHS; 7559 7560 return 7561 // The backedge value for the PHI node must be a shift by a positive 7562 // amount 7563 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7564 7565 // of the PHI node itself 7566 OpLHS == PNOut && 7567 7568 // and the kind of shift should be match the kind of shift we peeled 7569 // off, if any. 7570 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7571 }; 7572 7573 PHINode *PN; 7574 Instruction::BinaryOps OpCode; 7575 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7576 return getCouldNotCompute(); 7577 7578 const DataLayout &DL = getDataLayout(); 7579 7580 // The key rationale for this optimization is that for some kinds of shift 7581 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7582 // within a finite number of iterations. If the condition guarding the 7583 // backedge (in the sense that the backedge is taken if the condition is true) 7584 // is false for the value the shift recurrence stabilizes to, then we know 7585 // that the backedge is taken only a finite number of times. 7586 7587 ConstantInt *StableValue = nullptr; 7588 switch (OpCode) { 7589 default: 7590 llvm_unreachable("Impossible case!"); 7591 7592 case Instruction::AShr: { 7593 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7594 // bitwidth(K) iterations. 7595 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7596 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7597 Predecessor->getTerminator(), &DT); 7598 auto *Ty = cast<IntegerType>(RHS->getType()); 7599 if (Known.isNonNegative()) 7600 StableValue = ConstantInt::get(Ty, 0); 7601 else if (Known.isNegative()) 7602 StableValue = ConstantInt::get(Ty, -1, true); 7603 else 7604 return getCouldNotCompute(); 7605 7606 break; 7607 } 7608 case Instruction::LShr: 7609 case Instruction::Shl: 7610 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7611 // stabilize to 0 in at most bitwidth(K) iterations. 7612 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7613 break; 7614 } 7615 7616 auto *Result = 7617 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7618 assert(Result->getType()->isIntegerTy(1) && 7619 "Otherwise cannot be an operand to a branch instruction"); 7620 7621 if (Result->isZeroValue()) { 7622 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7623 const SCEV *UpperBound = 7624 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7625 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7626 } 7627 7628 return getCouldNotCompute(); 7629 } 7630 7631 /// Return true if we can constant fold an instruction of the specified type, 7632 /// assuming that all operands were constants. 7633 static bool CanConstantFold(const Instruction *I) { 7634 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7635 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7636 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7637 return true; 7638 7639 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7640 if (const Function *F = CI->getCalledFunction()) 7641 return canConstantFoldCallTo(CI, F); 7642 return false; 7643 } 7644 7645 /// Determine whether this instruction can constant evolve within this loop 7646 /// assuming its operands can all constant evolve. 7647 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7648 // An instruction outside of the loop can't be derived from a loop PHI. 7649 if (!L->contains(I)) return false; 7650 7651 if (isa<PHINode>(I)) { 7652 // We don't currently keep track of the control flow needed to evaluate 7653 // PHIs, so we cannot handle PHIs inside of loops. 7654 return L->getHeader() == I->getParent(); 7655 } 7656 7657 // If we won't be able to constant fold this expression even if the operands 7658 // are constants, bail early. 7659 return CanConstantFold(I); 7660 } 7661 7662 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7663 /// recursing through each instruction operand until reaching a loop header phi. 7664 static PHINode * 7665 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7666 DenseMap<Instruction *, PHINode *> &PHIMap, 7667 unsigned Depth) { 7668 if (Depth > MaxConstantEvolvingDepth) 7669 return nullptr; 7670 7671 // Otherwise, we can evaluate this instruction if all of its operands are 7672 // constant or derived from a PHI node themselves. 7673 PHINode *PHI = nullptr; 7674 for (Value *Op : UseInst->operands()) { 7675 if (isa<Constant>(Op)) continue; 7676 7677 Instruction *OpInst = dyn_cast<Instruction>(Op); 7678 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7679 7680 PHINode *P = dyn_cast<PHINode>(OpInst); 7681 if (!P) 7682 // If this operand is already visited, reuse the prior result. 7683 // We may have P != PHI if this is the deepest point at which the 7684 // inconsistent paths meet. 7685 P = PHIMap.lookup(OpInst); 7686 if (!P) { 7687 // Recurse and memoize the results, whether a phi is found or not. 7688 // This recursive call invalidates pointers into PHIMap. 7689 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7690 PHIMap[OpInst] = P; 7691 } 7692 if (!P) 7693 return nullptr; // Not evolving from PHI 7694 if (PHI && PHI != P) 7695 return nullptr; // Evolving from multiple different PHIs. 7696 PHI = P; 7697 } 7698 // This is a expression evolving from a constant PHI! 7699 return PHI; 7700 } 7701 7702 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7703 /// in the loop that V is derived from. We allow arbitrary operations along the 7704 /// way, but the operands of an operation must either be constants or a value 7705 /// derived from a constant PHI. If this expression does not fit with these 7706 /// constraints, return null. 7707 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7708 Instruction *I = dyn_cast<Instruction>(V); 7709 if (!I || !canConstantEvolve(I, L)) return nullptr; 7710 7711 if (PHINode *PN = dyn_cast<PHINode>(I)) 7712 return PN; 7713 7714 // Record non-constant instructions contained by the loop. 7715 DenseMap<Instruction *, PHINode *> PHIMap; 7716 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7717 } 7718 7719 /// EvaluateExpression - Given an expression that passes the 7720 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7721 /// in the loop has the value PHIVal. If we can't fold this expression for some 7722 /// reason, return null. 7723 static Constant *EvaluateExpression(Value *V, const Loop *L, 7724 DenseMap<Instruction *, Constant *> &Vals, 7725 const DataLayout &DL, 7726 const TargetLibraryInfo *TLI) { 7727 // Convenient constant check, but redundant for recursive calls. 7728 if (Constant *C = dyn_cast<Constant>(V)) return C; 7729 Instruction *I = dyn_cast<Instruction>(V); 7730 if (!I) return nullptr; 7731 7732 if (Constant *C = Vals.lookup(I)) return C; 7733 7734 // An instruction inside the loop depends on a value outside the loop that we 7735 // weren't given a mapping for, or a value such as a call inside the loop. 7736 if (!canConstantEvolve(I, L)) return nullptr; 7737 7738 // An unmapped PHI can be due to a branch or another loop inside this loop, 7739 // or due to this not being the initial iteration through a loop where we 7740 // couldn't compute the evolution of this particular PHI last time. 7741 if (isa<PHINode>(I)) return nullptr; 7742 7743 std::vector<Constant*> Operands(I->getNumOperands()); 7744 7745 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7746 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7747 if (!Operand) { 7748 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7749 if (!Operands[i]) return nullptr; 7750 continue; 7751 } 7752 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7753 Vals[Operand] = C; 7754 if (!C) return nullptr; 7755 Operands[i] = C; 7756 } 7757 7758 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7759 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7760 Operands[1], DL, TLI); 7761 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7762 if (!LI->isVolatile()) 7763 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7764 } 7765 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7766 } 7767 7768 7769 // If every incoming value to PN except the one for BB is a specific Constant, 7770 // return that, else return nullptr. 7771 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7772 Constant *IncomingVal = nullptr; 7773 7774 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7775 if (PN->getIncomingBlock(i) == BB) 7776 continue; 7777 7778 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7779 if (!CurrentVal) 7780 return nullptr; 7781 7782 if (IncomingVal != CurrentVal) { 7783 if (IncomingVal) 7784 return nullptr; 7785 IncomingVal = CurrentVal; 7786 } 7787 } 7788 7789 return IncomingVal; 7790 } 7791 7792 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7793 /// in the header of its containing loop, we know the loop executes a 7794 /// constant number of times, and the PHI node is just a recurrence 7795 /// involving constants, fold it. 7796 Constant * 7797 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7798 const APInt &BEs, 7799 const Loop *L) { 7800 auto I = ConstantEvolutionLoopExitValue.find(PN); 7801 if (I != ConstantEvolutionLoopExitValue.end()) 7802 return I->second; 7803 7804 if (BEs.ugt(MaxBruteForceIterations)) 7805 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7806 7807 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7808 7809 DenseMap<Instruction *, Constant *> CurrentIterVals; 7810 BasicBlock *Header = L->getHeader(); 7811 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7812 7813 BasicBlock *Latch = L->getLoopLatch(); 7814 if (!Latch) 7815 return nullptr; 7816 7817 for (PHINode &PHI : Header->phis()) { 7818 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7819 CurrentIterVals[&PHI] = StartCST; 7820 } 7821 if (!CurrentIterVals.count(PN)) 7822 return RetVal = nullptr; 7823 7824 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7825 7826 // Execute the loop symbolically to determine the exit value. 7827 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7828 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7829 7830 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7831 unsigned IterationNum = 0; 7832 const DataLayout &DL = getDataLayout(); 7833 for (; ; ++IterationNum) { 7834 if (IterationNum == NumIterations) 7835 return RetVal = CurrentIterVals[PN]; // Got exit value! 7836 7837 // Compute the value of the PHIs for the next iteration. 7838 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7839 DenseMap<Instruction *, Constant *> NextIterVals; 7840 Constant *NextPHI = 7841 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7842 if (!NextPHI) 7843 return nullptr; // Couldn't evaluate! 7844 NextIterVals[PN] = NextPHI; 7845 7846 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7847 7848 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7849 // cease to be able to evaluate one of them or if they stop evolving, 7850 // because that doesn't necessarily prevent us from computing PN. 7851 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7852 for (const auto &I : CurrentIterVals) { 7853 PHINode *PHI = dyn_cast<PHINode>(I.first); 7854 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7855 PHIsToCompute.emplace_back(PHI, I.second); 7856 } 7857 // We use two distinct loops because EvaluateExpression may invalidate any 7858 // iterators into CurrentIterVals. 7859 for (const auto &I : PHIsToCompute) { 7860 PHINode *PHI = I.first; 7861 Constant *&NextPHI = NextIterVals[PHI]; 7862 if (!NextPHI) { // Not already computed. 7863 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7864 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7865 } 7866 if (NextPHI != I.second) 7867 StoppedEvolving = false; 7868 } 7869 7870 // If all entries in CurrentIterVals == NextIterVals then we can stop 7871 // iterating, the loop can't continue to change. 7872 if (StoppedEvolving) 7873 return RetVal = CurrentIterVals[PN]; 7874 7875 CurrentIterVals.swap(NextIterVals); 7876 } 7877 } 7878 7879 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7880 Value *Cond, 7881 bool ExitWhen) { 7882 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7883 if (!PN) return getCouldNotCompute(); 7884 7885 // If the loop is canonicalized, the PHI will have exactly two entries. 7886 // That's the only form we support here. 7887 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7888 7889 DenseMap<Instruction *, Constant *> CurrentIterVals; 7890 BasicBlock *Header = L->getHeader(); 7891 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7892 7893 BasicBlock *Latch = L->getLoopLatch(); 7894 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7895 7896 for (PHINode &PHI : Header->phis()) { 7897 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7898 CurrentIterVals[&PHI] = StartCST; 7899 } 7900 if (!CurrentIterVals.count(PN)) 7901 return getCouldNotCompute(); 7902 7903 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7904 // the loop symbolically to determine when the condition gets a value of 7905 // "ExitWhen". 7906 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7907 const DataLayout &DL = getDataLayout(); 7908 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7909 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7910 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7911 7912 // Couldn't symbolically evaluate. 7913 if (!CondVal) return getCouldNotCompute(); 7914 7915 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7916 ++NumBruteForceTripCountsComputed; 7917 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7918 } 7919 7920 // Update all the PHI nodes for the next iteration. 7921 DenseMap<Instruction *, Constant *> NextIterVals; 7922 7923 // Create a list of which PHIs we need to compute. We want to do this before 7924 // calling EvaluateExpression on them because that may invalidate iterators 7925 // into CurrentIterVals. 7926 SmallVector<PHINode *, 8> PHIsToCompute; 7927 for (const auto &I : CurrentIterVals) { 7928 PHINode *PHI = dyn_cast<PHINode>(I.first); 7929 if (!PHI || PHI->getParent() != Header) continue; 7930 PHIsToCompute.push_back(PHI); 7931 } 7932 for (PHINode *PHI : PHIsToCompute) { 7933 Constant *&NextPHI = NextIterVals[PHI]; 7934 if (NextPHI) continue; // Already computed! 7935 7936 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7937 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7938 } 7939 CurrentIterVals.swap(NextIterVals); 7940 } 7941 7942 // Too many iterations were needed to evaluate. 7943 return getCouldNotCompute(); 7944 } 7945 7946 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7947 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7948 ValuesAtScopes[V]; 7949 // Check to see if we've folded this expression at this loop before. 7950 for (auto &LS : Values) 7951 if (LS.first == L) 7952 return LS.second ? LS.second : V; 7953 7954 Values.emplace_back(L, nullptr); 7955 7956 // Otherwise compute it. 7957 const SCEV *C = computeSCEVAtScope(V, L); 7958 for (auto &LS : reverse(ValuesAtScopes[V])) 7959 if (LS.first == L) { 7960 LS.second = C; 7961 break; 7962 } 7963 return C; 7964 } 7965 7966 /// This builds up a Constant using the ConstantExpr interface. That way, we 7967 /// will return Constants for objects which aren't represented by a 7968 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7969 /// Returns NULL if the SCEV isn't representable as a Constant. 7970 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7971 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7972 case scCouldNotCompute: 7973 case scAddRecExpr: 7974 break; 7975 case scConstant: 7976 return cast<SCEVConstant>(V)->getValue(); 7977 case scUnknown: 7978 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7979 case scSignExtend: { 7980 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7981 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7982 return ConstantExpr::getSExt(CastOp, SS->getType()); 7983 break; 7984 } 7985 case scZeroExtend: { 7986 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7987 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7988 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7989 break; 7990 } 7991 case scTruncate: { 7992 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7993 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7994 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7995 break; 7996 } 7997 case scAddExpr: { 7998 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7999 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8000 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8001 unsigned AS = PTy->getAddressSpace(); 8002 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8003 C = ConstantExpr::getBitCast(C, DestPtrTy); 8004 } 8005 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8006 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8007 if (!C2) return nullptr; 8008 8009 // First pointer! 8010 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8011 unsigned AS = C2->getType()->getPointerAddressSpace(); 8012 std::swap(C, C2); 8013 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8014 // The offsets have been converted to bytes. We can add bytes to an 8015 // i8* by GEP with the byte count in the first index. 8016 C = ConstantExpr::getBitCast(C, DestPtrTy); 8017 } 8018 8019 // Don't bother trying to sum two pointers. We probably can't 8020 // statically compute a load that results from it anyway. 8021 if (C2->getType()->isPointerTy()) 8022 return nullptr; 8023 8024 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8025 if (PTy->getElementType()->isStructTy()) 8026 C2 = ConstantExpr::getIntegerCast( 8027 C2, Type::getInt32Ty(C->getContext()), true); 8028 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8029 } else 8030 C = ConstantExpr::getAdd(C, C2); 8031 } 8032 return C; 8033 } 8034 break; 8035 } 8036 case scMulExpr: { 8037 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8038 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8039 // Don't bother with pointers at all. 8040 if (C->getType()->isPointerTy()) return nullptr; 8041 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8042 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8043 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 8044 C = ConstantExpr::getMul(C, C2); 8045 } 8046 return C; 8047 } 8048 break; 8049 } 8050 case scUDivExpr: { 8051 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8052 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8053 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8054 if (LHS->getType() == RHS->getType()) 8055 return ConstantExpr::getUDiv(LHS, RHS); 8056 break; 8057 } 8058 case scSMaxExpr: 8059 case scUMaxExpr: 8060 case scSMinExpr: 8061 case scUMinExpr: 8062 break; // TODO: smax, umax, smin, umax. 8063 } 8064 return nullptr; 8065 } 8066 8067 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8068 if (isa<SCEVConstant>(V)) return V; 8069 8070 // If this instruction is evolved from a constant-evolving PHI, compute the 8071 // exit value from the loop without using SCEVs. 8072 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8073 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8074 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8075 const Loop *CurrLoop = this->LI[I->getParent()]; 8076 // Looking for loop exit value. 8077 if (CurrLoop && CurrLoop->getParentLoop() == L && 8078 PN->getParent() == CurrLoop->getHeader()) { 8079 // Okay, there is no closed form solution for the PHI node. Check 8080 // to see if the loop that contains it has a known backedge-taken 8081 // count. If so, we may be able to force computation of the exit 8082 // value. 8083 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8084 // This trivial case can show up in some degenerate cases where 8085 // the incoming IR has not yet been fully simplified. 8086 if (BackedgeTakenCount->isZero()) { 8087 Value *InitValue = nullptr; 8088 bool MultipleInitValues = false; 8089 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8090 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8091 if (!InitValue) 8092 InitValue = PN->getIncomingValue(i); 8093 else if (InitValue != PN->getIncomingValue(i)) { 8094 MultipleInitValues = true; 8095 break; 8096 } 8097 } 8098 } 8099 if (!MultipleInitValues && InitValue) 8100 return getSCEV(InitValue); 8101 } 8102 // Do we have a loop invariant value flowing around the backedge 8103 // for a loop which must execute the backedge? 8104 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8105 isKnownPositive(BackedgeTakenCount) && 8106 PN->getNumIncomingValues() == 2) { 8107 8108 unsigned InLoopPred = 8109 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8110 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8111 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8112 return getSCEV(BackedgeVal); 8113 } 8114 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8115 // Okay, we know how many times the containing loop executes. If 8116 // this is a constant evolving PHI node, get the final value at 8117 // the specified iteration number. 8118 Constant *RV = getConstantEvolutionLoopExitValue( 8119 PN, BTCC->getAPInt(), CurrLoop); 8120 if (RV) return getSCEV(RV); 8121 } 8122 } 8123 8124 // If there is a single-input Phi, evaluate it at our scope. If we can 8125 // prove that this replacement does not break LCSSA form, use new value. 8126 if (PN->getNumOperands() == 1) { 8127 const SCEV *Input = getSCEV(PN->getOperand(0)); 8128 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8129 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8130 // for the simplest case just support constants. 8131 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8132 } 8133 } 8134 8135 // Okay, this is an expression that we cannot symbolically evaluate 8136 // into a SCEV. Check to see if it's possible to symbolically evaluate 8137 // the arguments into constants, and if so, try to constant propagate the 8138 // result. This is particularly useful for computing loop exit values. 8139 if (CanConstantFold(I)) { 8140 SmallVector<Constant *, 4> Operands; 8141 bool MadeImprovement = false; 8142 for (Value *Op : I->operands()) { 8143 if (Constant *C = dyn_cast<Constant>(Op)) { 8144 Operands.push_back(C); 8145 continue; 8146 } 8147 8148 // If any of the operands is non-constant and if they are 8149 // non-integer and non-pointer, don't even try to analyze them 8150 // with scev techniques. 8151 if (!isSCEVable(Op->getType())) 8152 return V; 8153 8154 const SCEV *OrigV = getSCEV(Op); 8155 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8156 MadeImprovement |= OrigV != OpV; 8157 8158 Constant *C = BuildConstantFromSCEV(OpV); 8159 if (!C) return V; 8160 if (C->getType() != Op->getType()) 8161 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8162 Op->getType(), 8163 false), 8164 C, Op->getType()); 8165 Operands.push_back(C); 8166 } 8167 8168 // Check to see if getSCEVAtScope actually made an improvement. 8169 if (MadeImprovement) { 8170 Constant *C = nullptr; 8171 const DataLayout &DL = getDataLayout(); 8172 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8173 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8174 Operands[1], DL, &TLI); 8175 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8176 if (!Load->isVolatile()) 8177 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8178 DL); 8179 } else 8180 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8181 if (!C) return V; 8182 return getSCEV(C); 8183 } 8184 } 8185 } 8186 8187 // This is some other type of SCEVUnknown, just return it. 8188 return V; 8189 } 8190 8191 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8192 // Avoid performing the look-up in the common case where the specified 8193 // expression has no loop-variant portions. 8194 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8195 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8196 if (OpAtScope != Comm->getOperand(i)) { 8197 // Okay, at least one of these operands is loop variant but might be 8198 // foldable. Build a new instance of the folded commutative expression. 8199 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8200 Comm->op_begin()+i); 8201 NewOps.push_back(OpAtScope); 8202 8203 for (++i; i != e; ++i) { 8204 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8205 NewOps.push_back(OpAtScope); 8206 } 8207 if (isa<SCEVAddExpr>(Comm)) 8208 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8209 if (isa<SCEVMulExpr>(Comm)) 8210 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8211 if (isa<SCEVMinMaxExpr>(Comm)) 8212 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8213 llvm_unreachable("Unknown commutative SCEV type!"); 8214 } 8215 } 8216 // If we got here, all operands are loop invariant. 8217 return Comm; 8218 } 8219 8220 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8221 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8222 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8223 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8224 return Div; // must be loop invariant 8225 return getUDivExpr(LHS, RHS); 8226 } 8227 8228 // If this is a loop recurrence for a loop that does not contain L, then we 8229 // are dealing with the final value computed by the loop. 8230 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8231 // First, attempt to evaluate each operand. 8232 // Avoid performing the look-up in the common case where the specified 8233 // expression has no loop-variant portions. 8234 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8235 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8236 if (OpAtScope == AddRec->getOperand(i)) 8237 continue; 8238 8239 // Okay, at least one of these operands is loop variant but might be 8240 // foldable. Build a new instance of the folded commutative expression. 8241 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8242 AddRec->op_begin()+i); 8243 NewOps.push_back(OpAtScope); 8244 for (++i; i != e; ++i) 8245 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8246 8247 const SCEV *FoldedRec = 8248 getAddRecExpr(NewOps, AddRec->getLoop(), 8249 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8250 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8251 // The addrec may be folded to a nonrecurrence, for example, if the 8252 // induction variable is multiplied by zero after constant folding. Go 8253 // ahead and return the folded value. 8254 if (!AddRec) 8255 return FoldedRec; 8256 break; 8257 } 8258 8259 // If the scope is outside the addrec's loop, evaluate it by using the 8260 // loop exit value of the addrec. 8261 if (!AddRec->getLoop()->contains(L)) { 8262 // To evaluate this recurrence, we need to know how many times the AddRec 8263 // loop iterates. Compute this now. 8264 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8265 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8266 8267 // Then, evaluate the AddRec. 8268 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8269 } 8270 8271 return AddRec; 8272 } 8273 8274 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8275 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8276 if (Op == Cast->getOperand()) 8277 return Cast; // must be loop invariant 8278 return getZeroExtendExpr(Op, Cast->getType()); 8279 } 8280 8281 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8282 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8283 if (Op == Cast->getOperand()) 8284 return Cast; // must be loop invariant 8285 return getSignExtendExpr(Op, Cast->getType()); 8286 } 8287 8288 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8289 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8290 if (Op == Cast->getOperand()) 8291 return Cast; // must be loop invariant 8292 return getTruncateExpr(Op, Cast->getType()); 8293 } 8294 8295 llvm_unreachable("Unknown SCEV type!"); 8296 } 8297 8298 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8299 return getSCEVAtScope(getSCEV(V), L); 8300 } 8301 8302 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8303 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8304 return stripInjectiveFunctions(ZExt->getOperand()); 8305 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8306 return stripInjectiveFunctions(SExt->getOperand()); 8307 return S; 8308 } 8309 8310 /// Finds the minimum unsigned root of the following equation: 8311 /// 8312 /// A * X = B (mod N) 8313 /// 8314 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8315 /// A and B isn't important. 8316 /// 8317 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8318 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8319 ScalarEvolution &SE) { 8320 uint32_t BW = A.getBitWidth(); 8321 assert(BW == SE.getTypeSizeInBits(B->getType())); 8322 assert(A != 0 && "A must be non-zero."); 8323 8324 // 1. D = gcd(A, N) 8325 // 8326 // The gcd of A and N may have only one prime factor: 2. The number of 8327 // trailing zeros in A is its multiplicity 8328 uint32_t Mult2 = A.countTrailingZeros(); 8329 // D = 2^Mult2 8330 8331 // 2. Check if B is divisible by D. 8332 // 8333 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8334 // is not less than multiplicity of this prime factor for D. 8335 if (SE.GetMinTrailingZeros(B) < Mult2) 8336 return SE.getCouldNotCompute(); 8337 8338 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8339 // modulo (N / D). 8340 // 8341 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8342 // (N / D) in general. The inverse itself always fits into BW bits, though, 8343 // so we immediately truncate it. 8344 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8345 APInt Mod(BW + 1, 0); 8346 Mod.setBit(BW - Mult2); // Mod = N / D 8347 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8348 8349 // 4. Compute the minimum unsigned root of the equation: 8350 // I * (B / D) mod (N / D) 8351 // To simplify the computation, we factor out the divide by D: 8352 // (I * B mod N) / D 8353 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8354 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8355 } 8356 8357 /// For a given quadratic addrec, generate coefficients of the corresponding 8358 /// quadratic equation, multiplied by a common value to ensure that they are 8359 /// integers. 8360 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8361 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8362 /// were multiplied by, and BitWidth is the bit width of the original addrec 8363 /// coefficients. 8364 /// This function returns None if the addrec coefficients are not compile- 8365 /// time constants. 8366 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8367 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8368 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8369 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8370 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8371 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8372 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8373 << *AddRec << '\n'); 8374 8375 // We currently can only solve this if the coefficients are constants. 8376 if (!LC || !MC || !NC) { 8377 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8378 return None; 8379 } 8380 8381 APInt L = LC->getAPInt(); 8382 APInt M = MC->getAPInt(); 8383 APInt N = NC->getAPInt(); 8384 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8385 8386 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8387 unsigned NewWidth = BitWidth + 1; 8388 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8389 << BitWidth << '\n'); 8390 // The sign-extension (as opposed to a zero-extension) here matches the 8391 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8392 N = N.sext(NewWidth); 8393 M = M.sext(NewWidth); 8394 L = L.sext(NewWidth); 8395 8396 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8397 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8398 // L+M, L+2M+N, L+3M+3N, ... 8399 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8400 // 8401 // The equation Acc = 0 is then 8402 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8403 // In a quadratic form it becomes: 8404 // N n^2 + (2M-N) n + 2L = 0. 8405 8406 APInt A = N; 8407 APInt B = 2 * M - A; 8408 APInt C = 2 * L; 8409 APInt T = APInt(NewWidth, 2); 8410 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8411 << "x + " << C << ", coeff bw: " << NewWidth 8412 << ", multiplied by " << T << '\n'); 8413 return std::make_tuple(A, B, C, T, BitWidth); 8414 } 8415 8416 /// Helper function to compare optional APInts: 8417 /// (a) if X and Y both exist, return min(X, Y), 8418 /// (b) if neither X nor Y exist, return None, 8419 /// (c) if exactly one of X and Y exists, return that value. 8420 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8421 if (X.hasValue() && Y.hasValue()) { 8422 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8423 APInt XW = X->sextOrSelf(W); 8424 APInt YW = Y->sextOrSelf(W); 8425 return XW.slt(YW) ? *X : *Y; 8426 } 8427 if (!X.hasValue() && !Y.hasValue()) 8428 return None; 8429 return X.hasValue() ? *X : *Y; 8430 } 8431 8432 /// Helper function to truncate an optional APInt to a given BitWidth. 8433 /// When solving addrec-related equations, it is preferable to return a value 8434 /// that has the same bit width as the original addrec's coefficients. If the 8435 /// solution fits in the original bit width, truncate it (except for i1). 8436 /// Returning a value of a different bit width may inhibit some optimizations. 8437 /// 8438 /// In general, a solution to a quadratic equation generated from an addrec 8439 /// may require BW+1 bits, where BW is the bit width of the addrec's 8440 /// coefficients. The reason is that the coefficients of the quadratic 8441 /// equation are BW+1 bits wide (to avoid truncation when converting from 8442 /// the addrec to the equation). 8443 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8444 if (!X.hasValue()) 8445 return None; 8446 unsigned W = X->getBitWidth(); 8447 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8448 return X->trunc(BitWidth); 8449 return X; 8450 } 8451 8452 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8453 /// iterations. The values L, M, N are assumed to be signed, and they 8454 /// should all have the same bit widths. 8455 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8456 /// where BW is the bit width of the addrec's coefficients. 8457 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8458 /// returned as such, otherwise the bit width of the returned value may 8459 /// be greater than BW. 8460 /// 8461 /// This function returns None if 8462 /// (a) the addrec coefficients are not constant, or 8463 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8464 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8465 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8466 static Optional<APInt> 8467 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8468 APInt A, B, C, M; 8469 unsigned BitWidth; 8470 auto T = GetQuadraticEquation(AddRec); 8471 if (!T.hasValue()) 8472 return None; 8473 8474 std::tie(A, B, C, M, BitWidth) = *T; 8475 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8476 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8477 if (!X.hasValue()) 8478 return None; 8479 8480 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8481 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8482 if (!V->isZero()) 8483 return None; 8484 8485 return TruncIfPossible(X, BitWidth); 8486 } 8487 8488 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8489 /// iterations. The values M, N are assumed to be signed, and they 8490 /// should all have the same bit widths. 8491 /// Find the least n such that c(n) does not belong to the given range, 8492 /// while c(n-1) does. 8493 /// 8494 /// This function returns None if 8495 /// (a) the addrec coefficients are not constant, or 8496 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8497 /// bounds of the range. 8498 static Optional<APInt> 8499 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8500 const ConstantRange &Range, ScalarEvolution &SE) { 8501 assert(AddRec->getOperand(0)->isZero() && 8502 "Starting value of addrec should be 0"); 8503 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8504 << Range << ", addrec " << *AddRec << '\n'); 8505 // This case is handled in getNumIterationsInRange. Here we can assume that 8506 // we start in the range. 8507 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8508 "Addrec's initial value should be in range"); 8509 8510 APInt A, B, C, M; 8511 unsigned BitWidth; 8512 auto T = GetQuadraticEquation(AddRec); 8513 if (!T.hasValue()) 8514 return None; 8515 8516 // Be careful about the return value: there can be two reasons for not 8517 // returning an actual number. First, if no solutions to the equations 8518 // were found, and second, if the solutions don't leave the given range. 8519 // The first case means that the actual solution is "unknown", the second 8520 // means that it's known, but not valid. If the solution is unknown, we 8521 // cannot make any conclusions. 8522 // Return a pair: the optional solution and a flag indicating if the 8523 // solution was found. 8524 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8525 // Solve for signed overflow and unsigned overflow, pick the lower 8526 // solution. 8527 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8528 << Bound << " (before multiplying by " << M << ")\n"); 8529 Bound *= M; // The quadratic equation multiplier. 8530 8531 Optional<APInt> SO = None; 8532 if (BitWidth > 1) { 8533 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8534 "signed overflow\n"); 8535 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8536 } 8537 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8538 "unsigned overflow\n"); 8539 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8540 BitWidth+1); 8541 8542 auto LeavesRange = [&] (const APInt &X) { 8543 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8544 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8545 if (Range.contains(V0->getValue())) 8546 return false; 8547 // X should be at least 1, so X-1 is non-negative. 8548 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8549 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8550 if (Range.contains(V1->getValue())) 8551 return true; 8552 return false; 8553 }; 8554 8555 // If SolveQuadraticEquationWrap returns None, it means that there can 8556 // be a solution, but the function failed to find it. We cannot treat it 8557 // as "no solution". 8558 if (!SO.hasValue() || !UO.hasValue()) 8559 return { None, false }; 8560 8561 // Check the smaller value first to see if it leaves the range. 8562 // At this point, both SO and UO must have values. 8563 Optional<APInt> Min = MinOptional(SO, UO); 8564 if (LeavesRange(*Min)) 8565 return { Min, true }; 8566 Optional<APInt> Max = Min == SO ? UO : SO; 8567 if (LeavesRange(*Max)) 8568 return { Max, true }; 8569 8570 // Solutions were found, but were eliminated, hence the "true". 8571 return { None, true }; 8572 }; 8573 8574 std::tie(A, B, C, M, BitWidth) = *T; 8575 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8576 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8577 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8578 auto SL = SolveForBoundary(Lower); 8579 auto SU = SolveForBoundary(Upper); 8580 // If any of the solutions was unknown, no meaninigful conclusions can 8581 // be made. 8582 if (!SL.second || !SU.second) 8583 return None; 8584 8585 // Claim: The correct solution is not some value between Min and Max. 8586 // 8587 // Justification: Assuming that Min and Max are different values, one of 8588 // them is when the first signed overflow happens, the other is when the 8589 // first unsigned overflow happens. Crossing the range boundary is only 8590 // possible via an overflow (treating 0 as a special case of it, modeling 8591 // an overflow as crossing k*2^W for some k). 8592 // 8593 // The interesting case here is when Min was eliminated as an invalid 8594 // solution, but Max was not. The argument is that if there was another 8595 // overflow between Min and Max, it would also have been eliminated if 8596 // it was considered. 8597 // 8598 // For a given boundary, it is possible to have two overflows of the same 8599 // type (signed/unsigned) without having the other type in between: this 8600 // can happen when the vertex of the parabola is between the iterations 8601 // corresponding to the overflows. This is only possible when the two 8602 // overflows cross k*2^W for the same k. In such case, if the second one 8603 // left the range (and was the first one to do so), the first overflow 8604 // would have to enter the range, which would mean that either we had left 8605 // the range before or that we started outside of it. Both of these cases 8606 // are contradictions. 8607 // 8608 // Claim: In the case where SolveForBoundary returns None, the correct 8609 // solution is not some value between the Max for this boundary and the 8610 // Min of the other boundary. 8611 // 8612 // Justification: Assume that we had such Max_A and Min_B corresponding 8613 // to range boundaries A and B and such that Max_A < Min_B. If there was 8614 // a solution between Max_A and Min_B, it would have to be caused by an 8615 // overflow corresponding to either A or B. It cannot correspond to B, 8616 // since Min_B is the first occurrence of such an overflow. If it 8617 // corresponded to A, it would have to be either a signed or an unsigned 8618 // overflow that is larger than both eliminated overflows for A. But 8619 // between the eliminated overflows and this overflow, the values would 8620 // cover the entire value space, thus crossing the other boundary, which 8621 // is a contradiction. 8622 8623 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8624 } 8625 8626 ScalarEvolution::ExitLimit 8627 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8628 bool AllowPredicates) { 8629 8630 // This is only used for loops with a "x != y" exit test. The exit condition 8631 // is now expressed as a single expression, V = x-y. So the exit test is 8632 // effectively V != 0. We know and take advantage of the fact that this 8633 // expression only being used in a comparison by zero context. 8634 8635 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8636 // If the value is a constant 8637 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8638 // If the value is already zero, the branch will execute zero times. 8639 if (C->getValue()->isZero()) return C; 8640 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8641 } 8642 8643 const SCEVAddRecExpr *AddRec = 8644 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8645 8646 if (!AddRec && AllowPredicates) 8647 // Try to make this an AddRec using runtime tests, in the first X 8648 // iterations of this loop, where X is the SCEV expression found by the 8649 // algorithm below. 8650 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8651 8652 if (!AddRec || AddRec->getLoop() != L) 8653 return getCouldNotCompute(); 8654 8655 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8656 // the quadratic equation to solve it. 8657 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8658 // We can only use this value if the chrec ends up with an exact zero 8659 // value at this index. When solving for "X*X != 5", for example, we 8660 // should not accept a root of 2. 8661 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8662 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8663 return ExitLimit(R, R, false, Predicates); 8664 } 8665 return getCouldNotCompute(); 8666 } 8667 8668 // Otherwise we can only handle this if it is affine. 8669 if (!AddRec->isAffine()) 8670 return getCouldNotCompute(); 8671 8672 // If this is an affine expression, the execution count of this branch is 8673 // the minimum unsigned root of the following equation: 8674 // 8675 // Start + Step*N = 0 (mod 2^BW) 8676 // 8677 // equivalent to: 8678 // 8679 // Step*N = -Start (mod 2^BW) 8680 // 8681 // where BW is the common bit width of Start and Step. 8682 8683 // Get the initial value for the loop. 8684 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8685 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8686 8687 // For now we handle only constant steps. 8688 // 8689 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8690 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8691 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8692 // We have not yet seen any such cases. 8693 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8694 if (!StepC || StepC->getValue()->isZero()) 8695 return getCouldNotCompute(); 8696 8697 // For positive steps (counting up until unsigned overflow): 8698 // N = -Start/Step (as unsigned) 8699 // For negative steps (counting down to zero): 8700 // N = Start/-Step 8701 // First compute the unsigned distance from zero in the direction of Step. 8702 bool CountDown = StepC->getAPInt().isNegative(); 8703 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8704 8705 // Handle unitary steps, which cannot wraparound. 8706 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8707 // N = Distance (as unsigned) 8708 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8709 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 8710 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 8711 if (MaxBECountBase.ult(MaxBECount)) 8712 MaxBECount = MaxBECountBase; 8713 8714 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8715 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8716 // case, and see if we can improve the bound. 8717 // 8718 // Explicitly handling this here is necessary because getUnsignedRange 8719 // isn't context-sensitive; it doesn't know that we only care about the 8720 // range inside the loop. 8721 const SCEV *Zero = getZero(Distance->getType()); 8722 const SCEV *One = getOne(Distance->getType()); 8723 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8724 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8725 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8726 // as "unsigned_max(Distance + 1) - 1". 8727 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8728 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8729 } 8730 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8731 } 8732 8733 // If the condition controls loop exit (the loop exits only if the expression 8734 // is true) and the addition is no-wrap we can use unsigned divide to 8735 // compute the backedge count. In this case, the step may not divide the 8736 // distance, but we don't care because if the condition is "missed" the loop 8737 // will have undefined behavior due to wrapping. 8738 if (ControlsExit && AddRec->hasNoSelfWrap() && 8739 loopHasNoAbnormalExits(AddRec->getLoop())) { 8740 const SCEV *Exact = 8741 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8742 const SCEV *Max = 8743 Exact == getCouldNotCompute() 8744 ? Exact 8745 : getConstant(getUnsignedRangeMax(Exact)); 8746 return ExitLimit(Exact, Max, false, Predicates); 8747 } 8748 8749 // Solve the general equation. 8750 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8751 getNegativeSCEV(Start), *this); 8752 const SCEV *M = E == getCouldNotCompute() 8753 ? E 8754 : getConstant(getUnsignedRangeMax(E)); 8755 return ExitLimit(E, M, false, Predicates); 8756 } 8757 8758 ScalarEvolution::ExitLimit 8759 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8760 // Loops that look like: while (X == 0) are very strange indeed. We don't 8761 // handle them yet except for the trivial case. This could be expanded in the 8762 // future as needed. 8763 8764 // If the value is a constant, check to see if it is known to be non-zero 8765 // already. If so, the backedge will execute zero times. 8766 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8767 if (!C->getValue()->isZero()) 8768 return getZero(C->getType()); 8769 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8770 } 8771 8772 // We could implement others, but I really doubt anyone writes loops like 8773 // this, and if they did, they would already be constant folded. 8774 return getCouldNotCompute(); 8775 } 8776 8777 std::pair<const BasicBlock *, const BasicBlock *> 8778 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 8779 const { 8780 // If the block has a unique predecessor, then there is no path from the 8781 // predecessor to the block that does not go through the direct edge 8782 // from the predecessor to the block. 8783 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 8784 return {Pred, BB}; 8785 8786 // A loop's header is defined to be a block that dominates the loop. 8787 // If the header has a unique predecessor outside the loop, it must be 8788 // a block that has exactly one successor that can reach the loop. 8789 if (const Loop *L = LI.getLoopFor(BB)) 8790 return {L->getLoopPredecessor(), L->getHeader()}; 8791 8792 return {nullptr, nullptr}; 8793 } 8794 8795 /// SCEV structural equivalence is usually sufficient for testing whether two 8796 /// expressions are equal, however for the purposes of looking for a condition 8797 /// guarding a loop, it can be useful to be a little more general, since a 8798 /// front-end may have replicated the controlling expression. 8799 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8800 // Quick check to see if they are the same SCEV. 8801 if (A == B) return true; 8802 8803 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8804 // Not all instructions that are "identical" compute the same value. For 8805 // instance, two distinct alloca instructions allocating the same type are 8806 // identical and do not read memory; but compute distinct values. 8807 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8808 }; 8809 8810 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8811 // two different instructions with the same value. Check for this case. 8812 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8813 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8814 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8815 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8816 if (ComputesEqualValues(AI, BI)) 8817 return true; 8818 8819 // Otherwise assume they may have a different value. 8820 return false; 8821 } 8822 8823 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8824 const SCEV *&LHS, const SCEV *&RHS, 8825 unsigned Depth) { 8826 bool Changed = false; 8827 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8828 // '0 != 0'. 8829 auto TrivialCase = [&](bool TriviallyTrue) { 8830 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8831 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8832 return true; 8833 }; 8834 // If we hit the max recursion limit bail out. 8835 if (Depth >= 3) 8836 return false; 8837 8838 // Canonicalize a constant to the right side. 8839 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8840 // Check for both operands constant. 8841 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8842 if (ConstantExpr::getICmp(Pred, 8843 LHSC->getValue(), 8844 RHSC->getValue())->isNullValue()) 8845 return TrivialCase(false); 8846 else 8847 return TrivialCase(true); 8848 } 8849 // Otherwise swap the operands to put the constant on the right. 8850 std::swap(LHS, RHS); 8851 Pred = ICmpInst::getSwappedPredicate(Pred); 8852 Changed = true; 8853 } 8854 8855 // If we're comparing an addrec with a value which is loop-invariant in the 8856 // addrec's loop, put the addrec on the left. Also make a dominance check, 8857 // as both operands could be addrecs loop-invariant in each other's loop. 8858 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8859 const Loop *L = AR->getLoop(); 8860 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8861 std::swap(LHS, RHS); 8862 Pred = ICmpInst::getSwappedPredicate(Pred); 8863 Changed = true; 8864 } 8865 } 8866 8867 // If there's a constant operand, canonicalize comparisons with boundary 8868 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8869 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8870 const APInt &RA = RC->getAPInt(); 8871 8872 bool SimplifiedByConstantRange = false; 8873 8874 if (!ICmpInst::isEquality(Pred)) { 8875 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8876 if (ExactCR.isFullSet()) 8877 return TrivialCase(true); 8878 else if (ExactCR.isEmptySet()) 8879 return TrivialCase(false); 8880 8881 APInt NewRHS; 8882 CmpInst::Predicate NewPred; 8883 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8884 ICmpInst::isEquality(NewPred)) { 8885 // We were able to convert an inequality to an equality. 8886 Pred = NewPred; 8887 RHS = getConstant(NewRHS); 8888 Changed = SimplifiedByConstantRange = true; 8889 } 8890 } 8891 8892 if (!SimplifiedByConstantRange) { 8893 switch (Pred) { 8894 default: 8895 break; 8896 case ICmpInst::ICMP_EQ: 8897 case ICmpInst::ICMP_NE: 8898 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8899 if (!RA) 8900 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8901 if (const SCEVMulExpr *ME = 8902 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8903 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8904 ME->getOperand(0)->isAllOnesValue()) { 8905 RHS = AE->getOperand(1); 8906 LHS = ME->getOperand(1); 8907 Changed = true; 8908 } 8909 break; 8910 8911 8912 // The "Should have been caught earlier!" messages refer to the fact 8913 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8914 // should have fired on the corresponding cases, and canonicalized the 8915 // check to trivial case. 8916 8917 case ICmpInst::ICMP_UGE: 8918 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8919 Pred = ICmpInst::ICMP_UGT; 8920 RHS = getConstant(RA - 1); 8921 Changed = true; 8922 break; 8923 case ICmpInst::ICMP_ULE: 8924 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8925 Pred = ICmpInst::ICMP_ULT; 8926 RHS = getConstant(RA + 1); 8927 Changed = true; 8928 break; 8929 case ICmpInst::ICMP_SGE: 8930 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8931 Pred = ICmpInst::ICMP_SGT; 8932 RHS = getConstant(RA - 1); 8933 Changed = true; 8934 break; 8935 case ICmpInst::ICMP_SLE: 8936 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8937 Pred = ICmpInst::ICMP_SLT; 8938 RHS = getConstant(RA + 1); 8939 Changed = true; 8940 break; 8941 } 8942 } 8943 } 8944 8945 // Check for obvious equality. 8946 if (HasSameValue(LHS, RHS)) { 8947 if (ICmpInst::isTrueWhenEqual(Pred)) 8948 return TrivialCase(true); 8949 if (ICmpInst::isFalseWhenEqual(Pred)) 8950 return TrivialCase(false); 8951 } 8952 8953 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8954 // adding or subtracting 1 from one of the operands. 8955 switch (Pred) { 8956 case ICmpInst::ICMP_SLE: 8957 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8958 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8959 SCEV::FlagNSW); 8960 Pred = ICmpInst::ICMP_SLT; 8961 Changed = true; 8962 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8963 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8964 SCEV::FlagNSW); 8965 Pred = ICmpInst::ICMP_SLT; 8966 Changed = true; 8967 } 8968 break; 8969 case ICmpInst::ICMP_SGE: 8970 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8971 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8972 SCEV::FlagNSW); 8973 Pred = ICmpInst::ICMP_SGT; 8974 Changed = true; 8975 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8976 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8977 SCEV::FlagNSW); 8978 Pred = ICmpInst::ICMP_SGT; 8979 Changed = true; 8980 } 8981 break; 8982 case ICmpInst::ICMP_ULE: 8983 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8984 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8985 SCEV::FlagNUW); 8986 Pred = ICmpInst::ICMP_ULT; 8987 Changed = true; 8988 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8989 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8990 Pred = ICmpInst::ICMP_ULT; 8991 Changed = true; 8992 } 8993 break; 8994 case ICmpInst::ICMP_UGE: 8995 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8996 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8997 Pred = ICmpInst::ICMP_UGT; 8998 Changed = true; 8999 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9000 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9001 SCEV::FlagNUW); 9002 Pred = ICmpInst::ICMP_UGT; 9003 Changed = true; 9004 } 9005 break; 9006 default: 9007 break; 9008 } 9009 9010 // TODO: More simplifications are possible here. 9011 9012 // Recursively simplify until we either hit a recursion limit or nothing 9013 // changes. 9014 if (Changed) 9015 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9016 9017 return Changed; 9018 } 9019 9020 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9021 return getSignedRangeMax(S).isNegative(); 9022 } 9023 9024 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9025 return getSignedRangeMin(S).isStrictlyPositive(); 9026 } 9027 9028 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9029 return !getSignedRangeMin(S).isNegative(); 9030 } 9031 9032 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9033 return !getSignedRangeMax(S).isStrictlyPositive(); 9034 } 9035 9036 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9037 return isKnownNegative(S) || isKnownPositive(S); 9038 } 9039 9040 std::pair<const SCEV *, const SCEV *> 9041 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9042 // Compute SCEV on entry of loop L. 9043 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9044 if (Start == getCouldNotCompute()) 9045 return { Start, Start }; 9046 // Compute post increment SCEV for loop L. 9047 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9048 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9049 return { Start, PostInc }; 9050 } 9051 9052 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9053 const SCEV *LHS, const SCEV *RHS) { 9054 // First collect all loops. 9055 SmallPtrSet<const Loop *, 8> LoopsUsed; 9056 getUsedLoops(LHS, LoopsUsed); 9057 getUsedLoops(RHS, LoopsUsed); 9058 9059 if (LoopsUsed.empty()) 9060 return false; 9061 9062 // Domination relationship must be a linear order on collected loops. 9063 #ifndef NDEBUG 9064 for (auto *L1 : LoopsUsed) 9065 for (auto *L2 : LoopsUsed) 9066 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9067 DT.dominates(L2->getHeader(), L1->getHeader())) && 9068 "Domination relationship is not a linear order"); 9069 #endif 9070 9071 const Loop *MDL = 9072 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9073 [&](const Loop *L1, const Loop *L2) { 9074 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9075 }); 9076 9077 // Get init and post increment value for LHS. 9078 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9079 // if LHS contains unknown non-invariant SCEV then bail out. 9080 if (SplitLHS.first == getCouldNotCompute()) 9081 return false; 9082 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9083 // Get init and post increment value for RHS. 9084 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9085 // if RHS contains unknown non-invariant SCEV then bail out. 9086 if (SplitRHS.first == getCouldNotCompute()) 9087 return false; 9088 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9089 // It is possible that init SCEV contains an invariant load but it does 9090 // not dominate MDL and is not available at MDL loop entry, so we should 9091 // check it here. 9092 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9093 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9094 return false; 9095 9096 // It seems backedge guard check is faster than entry one so in some cases 9097 // it can speed up whole estimation by short circuit 9098 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9099 SplitRHS.second) && 9100 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9101 } 9102 9103 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9104 const SCEV *LHS, const SCEV *RHS) { 9105 // Canonicalize the inputs first. 9106 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9107 9108 if (isKnownViaInduction(Pred, LHS, RHS)) 9109 return true; 9110 9111 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9112 return true; 9113 9114 // Otherwise see what can be done with some simple reasoning. 9115 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9116 } 9117 9118 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9119 const SCEV *LHS, const SCEV *RHS, 9120 const Instruction *Context) { 9121 // TODO: Analyze guards and assumes from Context's block. 9122 return isKnownPredicate(Pred, LHS, RHS) || 9123 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9124 } 9125 9126 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9127 const SCEVAddRecExpr *LHS, 9128 const SCEV *RHS) { 9129 const Loop *L = LHS->getLoop(); 9130 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9131 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9132 } 9133 9134 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9135 ICmpInst::Predicate Pred, 9136 bool &Increasing) { 9137 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9138 9139 #ifndef NDEBUG 9140 // Verify an invariant: inverting the predicate should turn a monotonically 9141 // increasing change to a monotonically decreasing one, and vice versa. 9142 bool IncreasingSwapped; 9143 bool ResultSwapped = isMonotonicPredicateImpl( 9144 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9145 9146 assert(Result == ResultSwapped && "should be able to analyze both!"); 9147 if (ResultSwapped) 9148 assert(Increasing == !IncreasingSwapped && 9149 "monotonicity should flip as we flip the predicate"); 9150 #endif 9151 9152 return Result; 9153 } 9154 9155 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9156 ICmpInst::Predicate Pred, 9157 bool &Increasing) { 9158 9159 // A zero step value for LHS means the induction variable is essentially a 9160 // loop invariant value. We don't really depend on the predicate actually 9161 // flipping from false to true (for increasing predicates, and the other way 9162 // around for decreasing predicates), all we care about is that *if* the 9163 // predicate changes then it only changes from false to true. 9164 // 9165 // A zero step value in itself is not very useful, but there may be places 9166 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9167 // as general as possible. 9168 9169 switch (Pred) { 9170 default: 9171 return false; // Conservative answer 9172 9173 case ICmpInst::ICMP_UGT: 9174 case ICmpInst::ICMP_UGE: 9175 case ICmpInst::ICMP_ULT: 9176 case ICmpInst::ICMP_ULE: 9177 if (!LHS->hasNoUnsignedWrap()) 9178 return false; 9179 9180 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9181 return true; 9182 9183 case ICmpInst::ICMP_SGT: 9184 case ICmpInst::ICMP_SGE: 9185 case ICmpInst::ICMP_SLT: 9186 case ICmpInst::ICMP_SLE: { 9187 if (!LHS->hasNoSignedWrap()) 9188 return false; 9189 9190 const SCEV *Step = LHS->getStepRecurrence(*this); 9191 9192 if (isKnownNonNegative(Step)) { 9193 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9194 return true; 9195 } 9196 9197 if (isKnownNonPositive(Step)) { 9198 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9199 return true; 9200 } 9201 9202 return false; 9203 } 9204 9205 } 9206 9207 llvm_unreachable("switch has default clause!"); 9208 } 9209 9210 bool ScalarEvolution::isLoopInvariantPredicate( 9211 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9212 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9213 const SCEV *&InvariantRHS) { 9214 9215 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9216 if (!isLoopInvariant(RHS, L)) { 9217 if (!isLoopInvariant(LHS, L)) 9218 return false; 9219 9220 std::swap(LHS, RHS); 9221 Pred = ICmpInst::getSwappedPredicate(Pred); 9222 } 9223 9224 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9225 if (!ArLHS || ArLHS->getLoop() != L) 9226 return false; 9227 9228 bool Increasing; 9229 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9230 return false; 9231 9232 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9233 // true as the loop iterates, and the backedge is control dependent on 9234 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9235 // 9236 // * if the predicate was false in the first iteration then the predicate 9237 // is never evaluated again, since the loop exits without taking the 9238 // backedge. 9239 // * if the predicate was true in the first iteration then it will 9240 // continue to be true for all future iterations since it is 9241 // monotonically increasing. 9242 // 9243 // For both the above possibilities, we can replace the loop varying 9244 // predicate with its value on the first iteration of the loop (which is 9245 // loop invariant). 9246 // 9247 // A similar reasoning applies for a monotonically decreasing predicate, by 9248 // replacing true with false and false with true in the above two bullets. 9249 9250 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9251 9252 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9253 return false; 9254 9255 InvariantPred = Pred; 9256 InvariantLHS = ArLHS->getStart(); 9257 InvariantRHS = RHS; 9258 return true; 9259 } 9260 9261 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9262 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9263 if (HasSameValue(LHS, RHS)) 9264 return ICmpInst::isTrueWhenEqual(Pred); 9265 9266 // This code is split out from isKnownPredicate because it is called from 9267 // within isLoopEntryGuardedByCond. 9268 9269 auto CheckRanges = 9270 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9271 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9272 .contains(RangeLHS); 9273 }; 9274 9275 // The check at the top of the function catches the case where the values are 9276 // known to be equal. 9277 if (Pred == CmpInst::ICMP_EQ) 9278 return false; 9279 9280 if (Pred == CmpInst::ICMP_NE) 9281 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9282 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9283 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9284 9285 if (CmpInst::isSigned(Pred)) 9286 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9287 9288 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9289 } 9290 9291 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9292 const SCEV *LHS, 9293 const SCEV *RHS) { 9294 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9295 // Return Y via OutY. 9296 auto MatchBinaryAddToConst = 9297 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9298 SCEV::NoWrapFlags ExpectedFlags) { 9299 const SCEV *NonConstOp, *ConstOp; 9300 SCEV::NoWrapFlags FlagsPresent; 9301 9302 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9303 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9304 return false; 9305 9306 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9307 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9308 }; 9309 9310 APInt C; 9311 9312 switch (Pred) { 9313 default: 9314 break; 9315 9316 case ICmpInst::ICMP_SGE: 9317 std::swap(LHS, RHS); 9318 LLVM_FALLTHROUGH; 9319 case ICmpInst::ICMP_SLE: 9320 // X s<= (X + C)<nsw> if C >= 0 9321 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9322 return true; 9323 9324 // (X + C)<nsw> s<= X if C <= 0 9325 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9326 !C.isStrictlyPositive()) 9327 return true; 9328 break; 9329 9330 case ICmpInst::ICMP_SGT: 9331 std::swap(LHS, RHS); 9332 LLVM_FALLTHROUGH; 9333 case ICmpInst::ICMP_SLT: 9334 // X s< (X + C)<nsw> if C > 0 9335 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9336 C.isStrictlyPositive()) 9337 return true; 9338 9339 // (X + C)<nsw> s< X if C < 0 9340 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9341 return true; 9342 break; 9343 9344 case ICmpInst::ICMP_UGE: 9345 std::swap(LHS, RHS); 9346 LLVM_FALLTHROUGH; 9347 case ICmpInst::ICMP_ULE: 9348 // X u<= (X + C)<nuw> for any C 9349 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9350 return true; 9351 break; 9352 9353 case ICmpInst::ICMP_UGT: 9354 std::swap(LHS, RHS); 9355 LLVM_FALLTHROUGH; 9356 case ICmpInst::ICMP_ULT: 9357 // X u< (X + C)<nuw> if C != 0 9358 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9359 return true; 9360 break; 9361 } 9362 9363 return false; 9364 } 9365 9366 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9367 const SCEV *LHS, 9368 const SCEV *RHS) { 9369 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9370 return false; 9371 9372 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9373 // the stack can result in exponential time complexity. 9374 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9375 9376 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9377 // 9378 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9379 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9380 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9381 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9382 // use isKnownPredicate later if needed. 9383 return isKnownNonNegative(RHS) && 9384 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9385 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9386 } 9387 9388 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9389 ICmpInst::Predicate Pred, 9390 const SCEV *LHS, const SCEV *RHS) { 9391 // No need to even try if we know the module has no guards. 9392 if (!HasGuards) 9393 return false; 9394 9395 return any_of(*BB, [&](const Instruction &I) { 9396 using namespace llvm::PatternMatch; 9397 9398 Value *Condition; 9399 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9400 m_Value(Condition))) && 9401 isImpliedCond(Pred, LHS, RHS, Condition, false); 9402 }); 9403 } 9404 9405 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9406 /// protected by a conditional between LHS and RHS. This is used to 9407 /// to eliminate casts. 9408 bool 9409 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9410 ICmpInst::Predicate Pred, 9411 const SCEV *LHS, const SCEV *RHS) { 9412 // Interpret a null as meaning no loop, where there is obviously no guard 9413 // (interprocedural conditions notwithstanding). 9414 if (!L) return true; 9415 9416 if (VerifyIR) 9417 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9418 "This cannot be done on broken IR!"); 9419 9420 9421 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9422 return true; 9423 9424 BasicBlock *Latch = L->getLoopLatch(); 9425 if (!Latch) 9426 return false; 9427 9428 BranchInst *LoopContinuePredicate = 9429 dyn_cast<BranchInst>(Latch->getTerminator()); 9430 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9431 isImpliedCond(Pred, LHS, RHS, 9432 LoopContinuePredicate->getCondition(), 9433 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9434 return true; 9435 9436 // We don't want more than one activation of the following loops on the stack 9437 // -- that can lead to O(n!) time complexity. 9438 if (WalkingBEDominatingConds) 9439 return false; 9440 9441 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9442 9443 // See if we can exploit a trip count to prove the predicate. 9444 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9445 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9446 if (LatchBECount != getCouldNotCompute()) { 9447 // We know that Latch branches back to the loop header exactly 9448 // LatchBECount times. This means the backdege condition at Latch is 9449 // equivalent to "{0,+,1} u< LatchBECount". 9450 Type *Ty = LatchBECount->getType(); 9451 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9452 const SCEV *LoopCounter = 9453 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9454 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9455 LatchBECount)) 9456 return true; 9457 } 9458 9459 // Check conditions due to any @llvm.assume intrinsics. 9460 for (auto &AssumeVH : AC.assumptions()) { 9461 if (!AssumeVH) 9462 continue; 9463 auto *CI = cast<CallInst>(AssumeVH); 9464 if (!DT.dominates(CI, Latch->getTerminator())) 9465 continue; 9466 9467 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9468 return true; 9469 } 9470 9471 // If the loop is not reachable from the entry block, we risk running into an 9472 // infinite loop as we walk up into the dom tree. These loops do not matter 9473 // anyway, so we just return a conservative answer when we see them. 9474 if (!DT.isReachableFromEntry(L->getHeader())) 9475 return false; 9476 9477 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9478 return true; 9479 9480 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9481 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9482 assert(DTN && "should reach the loop header before reaching the root!"); 9483 9484 BasicBlock *BB = DTN->getBlock(); 9485 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9486 return true; 9487 9488 BasicBlock *PBB = BB->getSinglePredecessor(); 9489 if (!PBB) 9490 continue; 9491 9492 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9493 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9494 continue; 9495 9496 Value *Condition = ContinuePredicate->getCondition(); 9497 9498 // If we have an edge `E` within the loop body that dominates the only 9499 // latch, the condition guarding `E` also guards the backedge. This 9500 // reasoning works only for loops with a single latch. 9501 9502 BasicBlockEdge DominatingEdge(PBB, BB); 9503 if (DominatingEdge.isSingleEdge()) { 9504 // We're constructively (and conservatively) enumerating edges within the 9505 // loop body that dominate the latch. The dominator tree better agree 9506 // with us on this: 9507 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9508 9509 if (isImpliedCond(Pred, LHS, RHS, Condition, 9510 BB != ContinuePredicate->getSuccessor(0))) 9511 return true; 9512 } 9513 } 9514 9515 return false; 9516 } 9517 9518 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 9519 ICmpInst::Predicate Pred, 9520 const SCEV *LHS, 9521 const SCEV *RHS) { 9522 if (VerifyIR) 9523 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 9524 "This cannot be done on broken IR!"); 9525 9526 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9527 return true; 9528 9529 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9530 // the facts (a >= b && a != b) separately. A typical situation is when the 9531 // non-strict comparison is known from ranges and non-equality is known from 9532 // dominating predicates. If we are proving strict comparison, we always try 9533 // to prove non-equality and non-strict comparison separately. 9534 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9535 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9536 bool ProvedNonStrictComparison = false; 9537 bool ProvedNonEquality = false; 9538 9539 if (ProvingStrictComparison) { 9540 ProvedNonStrictComparison = 9541 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9542 ProvedNonEquality = 9543 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9544 if (ProvedNonStrictComparison && ProvedNonEquality) 9545 return true; 9546 } 9547 9548 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9549 auto ProveViaGuard = [&](const BasicBlock *Block) { 9550 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9551 return true; 9552 if (ProvingStrictComparison) { 9553 if (!ProvedNonStrictComparison) 9554 ProvedNonStrictComparison = 9555 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9556 if (!ProvedNonEquality) 9557 ProvedNonEquality = 9558 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9559 if (ProvedNonStrictComparison && ProvedNonEquality) 9560 return true; 9561 } 9562 return false; 9563 }; 9564 9565 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9566 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 9567 const Instruction *Context = &BB->front(); 9568 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 9569 return true; 9570 if (ProvingStrictComparison) { 9571 if (!ProvedNonStrictComparison) 9572 ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS, 9573 Condition, Inverse, Context); 9574 if (!ProvedNonEquality) 9575 ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, 9576 Condition, Inverse, Context); 9577 if (ProvedNonStrictComparison && ProvedNonEquality) 9578 return true; 9579 } 9580 return false; 9581 }; 9582 9583 // Starting at the block's predecessor, climb up the predecessor chain, as long 9584 // as there are predecessors that can be found that have unique successors 9585 // leading to the original block. 9586 const Loop *ContainingLoop = LI.getLoopFor(BB); 9587 const BasicBlock *PredBB; 9588 if (ContainingLoop && ContainingLoop->getHeader() == BB) 9589 PredBB = ContainingLoop->getLoopPredecessor(); 9590 else 9591 PredBB = BB->getSinglePredecessor(); 9592 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 9593 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9594 if (ProveViaGuard(Pair.first)) 9595 return true; 9596 9597 const BranchInst *LoopEntryPredicate = 9598 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9599 if (!LoopEntryPredicate || 9600 LoopEntryPredicate->isUnconditional()) 9601 continue; 9602 9603 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9604 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9605 return true; 9606 } 9607 9608 // Check conditions due to any @llvm.assume intrinsics. 9609 for (auto &AssumeVH : AC.assumptions()) { 9610 if (!AssumeVH) 9611 continue; 9612 auto *CI = cast<CallInst>(AssumeVH); 9613 if (!DT.dominates(CI, BB)) 9614 continue; 9615 9616 if (ProveViaCond(CI->getArgOperand(0), false)) 9617 return true; 9618 } 9619 9620 return false; 9621 } 9622 9623 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9624 ICmpInst::Predicate Pred, 9625 const SCEV *LHS, 9626 const SCEV *RHS) { 9627 // Interpret a null as meaning no loop, where there is obviously no guard 9628 // (interprocedural conditions notwithstanding). 9629 if (!L) 9630 return false; 9631 9632 // Both LHS and RHS must be available at loop entry. 9633 assert(isAvailableAtLoopEntry(LHS, L) && 9634 "LHS is not available at Loop Entry"); 9635 assert(isAvailableAtLoopEntry(RHS, L) && 9636 "RHS is not available at Loop Entry"); 9637 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 9638 } 9639 9640 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9641 const SCEV *RHS, 9642 const Value *FoundCondValue, bool Inverse, 9643 const Instruction *Context) { 9644 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9645 return false; 9646 9647 auto ClearOnExit = 9648 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9649 9650 // Recursively handle And and Or conditions. 9651 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9652 if (BO->getOpcode() == Instruction::And) { 9653 if (!Inverse) 9654 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 9655 Context) || 9656 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 9657 Context); 9658 } else if (BO->getOpcode() == Instruction::Or) { 9659 if (Inverse) 9660 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse, 9661 Context) || 9662 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse, 9663 Context); 9664 } 9665 } 9666 9667 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9668 if (!ICI) return false; 9669 9670 // Now that we found a conditional branch that dominates the loop or controls 9671 // the loop latch. Check to see if it is the comparison we are looking for. 9672 ICmpInst::Predicate FoundPred; 9673 if (Inverse) 9674 FoundPred = ICI->getInversePredicate(); 9675 else 9676 FoundPred = ICI->getPredicate(); 9677 9678 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9679 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9680 9681 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 9682 } 9683 9684 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9685 const SCEV *RHS, 9686 ICmpInst::Predicate FoundPred, 9687 const SCEV *FoundLHS, const SCEV *FoundRHS, 9688 const Instruction *Context) { 9689 // Balance the types. 9690 if (getTypeSizeInBits(LHS->getType()) < 9691 getTypeSizeInBits(FoundLHS->getType())) { 9692 if (CmpInst::isSigned(Pred)) { 9693 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9694 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9695 } else { 9696 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9697 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9698 } 9699 } else if (getTypeSizeInBits(LHS->getType()) > 9700 getTypeSizeInBits(FoundLHS->getType())) { 9701 if (CmpInst::isSigned(FoundPred)) { 9702 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9703 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9704 } else { 9705 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9706 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9707 } 9708 } 9709 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 9710 FoundRHS, Context); 9711 } 9712 9713 bool ScalarEvolution::isImpliedCondBalancedTypes( 9714 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9715 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 9716 const Instruction *Context) { 9717 assert(getTypeSizeInBits(LHS->getType()) == 9718 getTypeSizeInBits(FoundLHS->getType()) && 9719 "Types should be balanced!"); 9720 // Canonicalize the query to match the way instcombine will have 9721 // canonicalized the comparison. 9722 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9723 if (LHS == RHS) 9724 return CmpInst::isTrueWhenEqual(Pred); 9725 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9726 if (FoundLHS == FoundRHS) 9727 return CmpInst::isFalseWhenEqual(FoundPred); 9728 9729 // Check to see if we can make the LHS or RHS match. 9730 if (LHS == FoundRHS || RHS == FoundLHS) { 9731 if (isa<SCEVConstant>(RHS)) { 9732 std::swap(FoundLHS, FoundRHS); 9733 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9734 } else { 9735 std::swap(LHS, RHS); 9736 Pred = ICmpInst::getSwappedPredicate(Pred); 9737 } 9738 } 9739 9740 // Check whether the found predicate is the same as the desired predicate. 9741 if (FoundPred == Pred) 9742 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 9743 9744 // Check whether swapping the found predicate makes it the same as the 9745 // desired predicate. 9746 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9747 if (isa<SCEVConstant>(RHS)) 9748 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 9749 else 9750 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS, 9751 LHS, FoundLHS, FoundRHS, Context); 9752 } 9753 9754 // Unsigned comparison is the same as signed comparison when both the operands 9755 // are non-negative. 9756 if (CmpInst::isUnsigned(FoundPred) && 9757 CmpInst::getSignedPredicate(FoundPred) == Pred && 9758 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9759 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 9760 9761 // Check if we can make progress by sharpening ranges. 9762 if (FoundPred == ICmpInst::ICMP_NE && 9763 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9764 9765 const SCEVConstant *C = nullptr; 9766 const SCEV *V = nullptr; 9767 9768 if (isa<SCEVConstant>(FoundLHS)) { 9769 C = cast<SCEVConstant>(FoundLHS); 9770 V = FoundRHS; 9771 } else { 9772 C = cast<SCEVConstant>(FoundRHS); 9773 V = FoundLHS; 9774 } 9775 9776 // The guarding predicate tells us that C != V. If the known range 9777 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9778 // range we consider has to correspond to same signedness as the 9779 // predicate we're interested in folding. 9780 9781 APInt Min = ICmpInst::isSigned(Pred) ? 9782 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9783 9784 if (Min == C->getAPInt()) { 9785 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9786 // This is true even if (Min + 1) wraps around -- in case of 9787 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9788 9789 APInt SharperMin = Min + 1; 9790 9791 switch (Pred) { 9792 case ICmpInst::ICMP_SGE: 9793 case ICmpInst::ICMP_UGE: 9794 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9795 // RHS, we're done. 9796 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 9797 Context)) 9798 return true; 9799 LLVM_FALLTHROUGH; 9800 9801 case ICmpInst::ICMP_SGT: 9802 case ICmpInst::ICMP_UGT: 9803 // We know from the range information that (V `Pred` Min || 9804 // V == Min). We know from the guarding condition that !(V 9805 // == Min). This gives us 9806 // 9807 // V `Pred` Min || V == Min && !(V == Min) 9808 // => V `Pred` Min 9809 // 9810 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9811 9812 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 9813 Context)) 9814 return true; 9815 break; 9816 9817 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 9818 case ICmpInst::ICMP_SLE: 9819 case ICmpInst::ICMP_ULE: 9820 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 9821 LHS, V, getConstant(SharperMin), Context)) 9822 return true; 9823 LLVM_FALLTHROUGH; 9824 9825 case ICmpInst::ICMP_SLT: 9826 case ICmpInst::ICMP_ULT: 9827 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 9828 LHS, V, getConstant(Min), Context)) 9829 return true; 9830 break; 9831 9832 default: 9833 // No change 9834 break; 9835 } 9836 } 9837 } 9838 9839 // Check whether the actual condition is beyond sufficient. 9840 if (FoundPred == ICmpInst::ICMP_EQ) 9841 if (ICmpInst::isTrueWhenEqual(Pred)) 9842 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 9843 return true; 9844 if (Pred == ICmpInst::ICMP_NE) 9845 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9846 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 9847 Context)) 9848 return true; 9849 9850 // Otherwise assume the worst. 9851 return false; 9852 } 9853 9854 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9855 const SCEV *&L, const SCEV *&R, 9856 SCEV::NoWrapFlags &Flags) { 9857 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9858 if (!AE || AE->getNumOperands() != 2) 9859 return false; 9860 9861 L = AE->getOperand(0); 9862 R = AE->getOperand(1); 9863 Flags = AE->getNoWrapFlags(); 9864 return true; 9865 } 9866 9867 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9868 const SCEV *Less) { 9869 // We avoid subtracting expressions here because this function is usually 9870 // fairly deep in the call stack (i.e. is called many times). 9871 9872 // X - X = 0. 9873 if (More == Less) 9874 return APInt(getTypeSizeInBits(More->getType()), 0); 9875 9876 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9877 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9878 const auto *MAR = cast<SCEVAddRecExpr>(More); 9879 9880 if (LAR->getLoop() != MAR->getLoop()) 9881 return None; 9882 9883 // We look at affine expressions only; not for correctness but to keep 9884 // getStepRecurrence cheap. 9885 if (!LAR->isAffine() || !MAR->isAffine()) 9886 return None; 9887 9888 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9889 return None; 9890 9891 Less = LAR->getStart(); 9892 More = MAR->getStart(); 9893 9894 // fall through 9895 } 9896 9897 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9898 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9899 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9900 return M - L; 9901 } 9902 9903 SCEV::NoWrapFlags Flags; 9904 const SCEV *LLess = nullptr, *RLess = nullptr; 9905 const SCEV *LMore = nullptr, *RMore = nullptr; 9906 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9907 // Compare (X + C1) vs X. 9908 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9909 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9910 if (RLess == More) 9911 return -(C1->getAPInt()); 9912 9913 // Compare X vs (X + C2). 9914 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9915 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9916 if (RMore == Less) 9917 return C2->getAPInt(); 9918 9919 // Compare (X + C1) vs (X + C2). 9920 if (C1 && C2 && RLess == RMore) 9921 return C2->getAPInt() - C1->getAPInt(); 9922 9923 return None; 9924 } 9925 9926 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 9927 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9928 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 9929 // Try to recognize the following pattern: 9930 // 9931 // FoundRHS = ... 9932 // ... 9933 // loop: 9934 // FoundLHS = {Start,+,W} 9935 // context_bb: // Basic block from the same loop 9936 // known(Pred, FoundLHS, FoundRHS) 9937 // 9938 // If some predicate is known in the context of a loop, it is also known on 9939 // each iteration of this loop, including the first iteration. Therefore, in 9940 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 9941 // prove the original pred using this fact. 9942 if (!Context) 9943 return false; 9944 const BasicBlock *ContextBB = Context->getParent(); 9945 // Make sure AR varies in the context block. 9946 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 9947 const Loop *L = AR->getLoop(); 9948 // Make sure that context belongs to the loop and executes on 1st iteration 9949 // (if it ever executes at all). 9950 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 9951 return false; 9952 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 9953 return false; 9954 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 9955 } 9956 9957 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 9958 const Loop *L = AR->getLoop(); 9959 // Make sure that context belongs to the loop and executes on 1st iteration 9960 // (if it ever executes at all). 9961 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 9962 return false; 9963 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 9964 return false; 9965 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 9966 } 9967 9968 return false; 9969 } 9970 9971 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9972 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9973 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9974 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9975 return false; 9976 9977 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9978 if (!AddRecLHS) 9979 return false; 9980 9981 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9982 if (!AddRecFoundLHS) 9983 return false; 9984 9985 // We'd like to let SCEV reason about control dependencies, so we constrain 9986 // both the inequalities to be about add recurrences on the same loop. This 9987 // way we can use isLoopEntryGuardedByCond later. 9988 9989 const Loop *L = AddRecFoundLHS->getLoop(); 9990 if (L != AddRecLHS->getLoop()) 9991 return false; 9992 9993 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9994 // 9995 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9996 // ... (2) 9997 // 9998 // Informal proof for (2), assuming (1) [*]: 9999 // 10000 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10001 // 10002 // Then 10003 // 10004 // FoundLHS s< FoundRHS s< INT_MIN - C 10005 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10006 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10007 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10008 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10009 // <=> FoundLHS + C s< FoundRHS + C 10010 // 10011 // [*]: (1) can be proved by ruling out overflow. 10012 // 10013 // [**]: This can be proved by analyzing all the four possibilities: 10014 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10015 // (A s>= 0, B s>= 0). 10016 // 10017 // Note: 10018 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10019 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10020 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10021 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10022 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10023 // C)". 10024 10025 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10026 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10027 if (!LDiff || !RDiff || *LDiff != *RDiff) 10028 return false; 10029 10030 if (LDiff->isMinValue()) 10031 return true; 10032 10033 APInt FoundRHSLimit; 10034 10035 if (Pred == CmpInst::ICMP_ULT) { 10036 FoundRHSLimit = -(*RDiff); 10037 } else { 10038 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10039 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10040 } 10041 10042 // Try to prove (1) or (2), as needed. 10043 return isAvailableAtLoopEntry(FoundRHS, L) && 10044 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10045 getConstant(FoundRHSLimit)); 10046 } 10047 10048 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10049 const SCEV *LHS, const SCEV *RHS, 10050 const SCEV *FoundLHS, 10051 const SCEV *FoundRHS, unsigned Depth) { 10052 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10053 10054 auto ClearOnExit = make_scope_exit([&]() { 10055 if (LPhi) { 10056 bool Erased = PendingMerges.erase(LPhi); 10057 assert(Erased && "Failed to erase LPhi!"); 10058 (void)Erased; 10059 } 10060 if (RPhi) { 10061 bool Erased = PendingMerges.erase(RPhi); 10062 assert(Erased && "Failed to erase RPhi!"); 10063 (void)Erased; 10064 } 10065 }); 10066 10067 // Find respective Phis and check that they are not being pending. 10068 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10069 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10070 if (!PendingMerges.insert(Phi).second) 10071 return false; 10072 LPhi = Phi; 10073 } 10074 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10075 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10076 // If we detect a loop of Phi nodes being processed by this method, for 10077 // example: 10078 // 10079 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10080 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10081 // 10082 // we don't want to deal with a case that complex, so return conservative 10083 // answer false. 10084 if (!PendingMerges.insert(Phi).second) 10085 return false; 10086 RPhi = Phi; 10087 } 10088 10089 // If none of LHS, RHS is a Phi, nothing to do here. 10090 if (!LPhi && !RPhi) 10091 return false; 10092 10093 // If there is a SCEVUnknown Phi we are interested in, make it left. 10094 if (!LPhi) { 10095 std::swap(LHS, RHS); 10096 std::swap(FoundLHS, FoundRHS); 10097 std::swap(LPhi, RPhi); 10098 Pred = ICmpInst::getSwappedPredicate(Pred); 10099 } 10100 10101 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10102 const BasicBlock *LBB = LPhi->getParent(); 10103 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10104 10105 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10106 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10107 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10108 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10109 }; 10110 10111 if (RPhi && RPhi->getParent() == LBB) { 10112 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10113 // If we compare two Phis from the same block, and for each entry block 10114 // the predicate is true for incoming values from this block, then the 10115 // predicate is also true for the Phis. 10116 for (const BasicBlock *IncBB : predecessors(LBB)) { 10117 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10118 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10119 if (!ProvedEasily(L, R)) 10120 return false; 10121 } 10122 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10123 // Case two: RHS is also a Phi from the same basic block, and it is an 10124 // AddRec. It means that there is a loop which has both AddRec and Unknown 10125 // PHIs, for it we can compare incoming values of AddRec from above the loop 10126 // and latch with their respective incoming values of LPhi. 10127 // TODO: Generalize to handle loops with many inputs in a header. 10128 if (LPhi->getNumIncomingValues() != 2) return false; 10129 10130 auto *RLoop = RAR->getLoop(); 10131 auto *Predecessor = RLoop->getLoopPredecessor(); 10132 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10133 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10134 if (!ProvedEasily(L1, RAR->getStart())) 10135 return false; 10136 auto *Latch = RLoop->getLoopLatch(); 10137 assert(Latch && "Loop with AddRec with no latch?"); 10138 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10139 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10140 return false; 10141 } else { 10142 // In all other cases go over inputs of LHS and compare each of them to RHS, 10143 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10144 // At this point RHS is either a non-Phi, or it is a Phi from some block 10145 // different from LBB. 10146 for (const BasicBlock *IncBB : predecessors(LBB)) { 10147 // Check that RHS is available in this block. 10148 if (!dominates(RHS, IncBB)) 10149 return false; 10150 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10151 if (!ProvedEasily(L, RHS)) 10152 return false; 10153 } 10154 } 10155 return true; 10156 } 10157 10158 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10159 const SCEV *LHS, const SCEV *RHS, 10160 const SCEV *FoundLHS, 10161 const SCEV *FoundRHS, 10162 const Instruction *Context) { 10163 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10164 return true; 10165 10166 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10167 return true; 10168 10169 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10170 Context)) 10171 return true; 10172 10173 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10174 FoundLHS, FoundRHS) || 10175 // ~x < ~y --> x > y 10176 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10177 getNotSCEV(FoundRHS), 10178 getNotSCEV(FoundLHS)); 10179 } 10180 10181 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10182 template <typename MinMaxExprType> 10183 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10184 const SCEV *Candidate) { 10185 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10186 if (!MinMaxExpr) 10187 return false; 10188 10189 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10190 } 10191 10192 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10193 ICmpInst::Predicate Pred, 10194 const SCEV *LHS, const SCEV *RHS) { 10195 // If both sides are affine addrecs for the same loop, with equal 10196 // steps, and we know the recurrences don't wrap, then we only 10197 // need to check the predicate on the starting values. 10198 10199 if (!ICmpInst::isRelational(Pred)) 10200 return false; 10201 10202 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10203 if (!LAR) 10204 return false; 10205 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10206 if (!RAR) 10207 return false; 10208 if (LAR->getLoop() != RAR->getLoop()) 10209 return false; 10210 if (!LAR->isAffine() || !RAR->isAffine()) 10211 return false; 10212 10213 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10214 return false; 10215 10216 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10217 SCEV::FlagNSW : SCEV::FlagNUW; 10218 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10219 return false; 10220 10221 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10222 } 10223 10224 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10225 /// expression? 10226 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10227 ICmpInst::Predicate Pred, 10228 const SCEV *LHS, const SCEV *RHS) { 10229 switch (Pred) { 10230 default: 10231 return false; 10232 10233 case ICmpInst::ICMP_SGE: 10234 std::swap(LHS, RHS); 10235 LLVM_FALLTHROUGH; 10236 case ICmpInst::ICMP_SLE: 10237 return 10238 // min(A, ...) <= A 10239 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10240 // A <= max(A, ...) 10241 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10242 10243 case ICmpInst::ICMP_UGE: 10244 std::swap(LHS, RHS); 10245 LLVM_FALLTHROUGH; 10246 case ICmpInst::ICMP_ULE: 10247 return 10248 // min(A, ...) <= A 10249 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10250 // A <= max(A, ...) 10251 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10252 } 10253 10254 llvm_unreachable("covered switch fell through?!"); 10255 } 10256 10257 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10258 const SCEV *LHS, const SCEV *RHS, 10259 const SCEV *FoundLHS, 10260 const SCEV *FoundRHS, 10261 unsigned Depth) { 10262 assert(getTypeSizeInBits(LHS->getType()) == 10263 getTypeSizeInBits(RHS->getType()) && 10264 "LHS and RHS have different sizes?"); 10265 assert(getTypeSizeInBits(FoundLHS->getType()) == 10266 getTypeSizeInBits(FoundRHS->getType()) && 10267 "FoundLHS and FoundRHS have different sizes?"); 10268 // We want to avoid hurting the compile time with analysis of too big trees. 10269 if (Depth > MaxSCEVOperationsImplicationDepth) 10270 return false; 10271 10272 // We only want to work with GT comparison so far. 10273 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10274 Pred = CmpInst::getSwappedPredicate(Pred); 10275 std::swap(LHS, RHS); 10276 std::swap(FoundLHS, FoundRHS); 10277 } 10278 10279 // For unsigned, try to reduce it to corresponding signed comparison. 10280 if (Pred == ICmpInst::ICMP_UGT) 10281 // We can replace unsigned predicate with its signed counterpart if all 10282 // involved values are non-negative. 10283 // TODO: We could have better support for unsigned. 10284 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10285 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10286 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10287 // use this fact to prove that LHS and RHS are non-negative. 10288 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10289 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10290 FoundRHS) && 10291 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10292 FoundRHS)) 10293 Pred = ICmpInst::ICMP_SGT; 10294 } 10295 10296 if (Pred != ICmpInst::ICMP_SGT) 10297 return false; 10298 10299 auto GetOpFromSExt = [&](const SCEV *S) { 10300 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10301 return Ext->getOperand(); 10302 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10303 // the constant in some cases. 10304 return S; 10305 }; 10306 10307 // Acquire values from extensions. 10308 auto *OrigLHS = LHS; 10309 auto *OrigFoundLHS = FoundLHS; 10310 LHS = GetOpFromSExt(LHS); 10311 FoundLHS = GetOpFromSExt(FoundLHS); 10312 10313 // Is the SGT predicate can be proved trivially or using the found context. 10314 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10315 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10316 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10317 FoundRHS, Depth + 1); 10318 }; 10319 10320 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10321 // We want to avoid creation of any new non-constant SCEV. Since we are 10322 // going to compare the operands to RHS, we should be certain that we don't 10323 // need any size extensions for this. So let's decline all cases when the 10324 // sizes of types of LHS and RHS do not match. 10325 // TODO: Maybe try to get RHS from sext to catch more cases? 10326 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10327 return false; 10328 10329 // Should not overflow. 10330 if (!LHSAddExpr->hasNoSignedWrap()) 10331 return false; 10332 10333 auto *LL = LHSAddExpr->getOperand(0); 10334 auto *LR = LHSAddExpr->getOperand(1); 10335 auto *MinusOne = getMinusOne(RHS->getType()); 10336 10337 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10338 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10339 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10340 }; 10341 // Try to prove the following rule: 10342 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10343 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10344 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10345 return true; 10346 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10347 Value *LL, *LR; 10348 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10349 10350 using namespace llvm::PatternMatch; 10351 10352 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10353 // Rules for division. 10354 // We are going to perform some comparisons with Denominator and its 10355 // derivative expressions. In general case, creating a SCEV for it may 10356 // lead to a complex analysis of the entire graph, and in particular it 10357 // can request trip count recalculation for the same loop. This would 10358 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10359 // this, we only want to create SCEVs that are constants in this section. 10360 // So we bail if Denominator is not a constant. 10361 if (!isa<ConstantInt>(LR)) 10362 return false; 10363 10364 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10365 10366 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10367 // then a SCEV for the numerator already exists and matches with FoundLHS. 10368 auto *Numerator = getExistingSCEV(LL); 10369 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10370 return false; 10371 10372 // Make sure that the numerator matches with FoundLHS and the denominator 10373 // is positive. 10374 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10375 return false; 10376 10377 auto *DTy = Denominator->getType(); 10378 auto *FRHSTy = FoundRHS->getType(); 10379 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10380 // One of types is a pointer and another one is not. We cannot extend 10381 // them properly to a wider type, so let us just reject this case. 10382 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10383 // to avoid this check. 10384 return false; 10385 10386 // Given that: 10387 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10388 auto *WTy = getWiderType(DTy, FRHSTy); 10389 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10390 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10391 10392 // Try to prove the following rule: 10393 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10394 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10395 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10396 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10397 if (isKnownNonPositive(RHS) && 10398 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10399 return true; 10400 10401 // Try to prove the following rule: 10402 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10403 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10404 // If we divide it by Denominator > 2, then: 10405 // 1. If FoundLHS is negative, then the result is 0. 10406 // 2. If FoundLHS is non-negative, then the result is non-negative. 10407 // Anyways, the result is non-negative. 10408 auto *MinusOne = getMinusOne(WTy); 10409 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10410 if (isKnownNegative(RHS) && 10411 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10412 return true; 10413 } 10414 } 10415 10416 // If our expression contained SCEVUnknown Phis, and we split it down and now 10417 // need to prove something for them, try to prove the predicate for every 10418 // possible incoming values of those Phis. 10419 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10420 return true; 10421 10422 return false; 10423 } 10424 10425 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10426 const SCEV *LHS, const SCEV *RHS) { 10427 // zext x u<= sext x, sext x s<= zext x 10428 switch (Pred) { 10429 case ICmpInst::ICMP_SGE: 10430 std::swap(LHS, RHS); 10431 LLVM_FALLTHROUGH; 10432 case ICmpInst::ICMP_SLE: { 10433 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10434 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10435 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10436 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10437 return true; 10438 break; 10439 } 10440 case ICmpInst::ICMP_UGE: 10441 std::swap(LHS, RHS); 10442 LLVM_FALLTHROUGH; 10443 case ICmpInst::ICMP_ULE: { 10444 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10445 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10446 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10447 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10448 return true; 10449 break; 10450 } 10451 default: 10452 break; 10453 }; 10454 return false; 10455 } 10456 10457 bool 10458 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10459 const SCEV *LHS, const SCEV *RHS) { 10460 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10461 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10462 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10463 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10464 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10465 } 10466 10467 bool 10468 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10469 const SCEV *LHS, const SCEV *RHS, 10470 const SCEV *FoundLHS, 10471 const SCEV *FoundRHS) { 10472 switch (Pred) { 10473 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10474 case ICmpInst::ICMP_EQ: 10475 case ICmpInst::ICMP_NE: 10476 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10477 return true; 10478 break; 10479 case ICmpInst::ICMP_SLT: 10480 case ICmpInst::ICMP_SLE: 10481 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10482 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10483 return true; 10484 break; 10485 case ICmpInst::ICMP_SGT: 10486 case ICmpInst::ICMP_SGE: 10487 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10488 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10489 return true; 10490 break; 10491 case ICmpInst::ICMP_ULT: 10492 case ICmpInst::ICMP_ULE: 10493 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10494 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10495 return true; 10496 break; 10497 case ICmpInst::ICMP_UGT: 10498 case ICmpInst::ICMP_UGE: 10499 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10500 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10501 return true; 10502 break; 10503 } 10504 10505 // Maybe it can be proved via operations? 10506 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10507 return true; 10508 10509 return false; 10510 } 10511 10512 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10513 const SCEV *LHS, 10514 const SCEV *RHS, 10515 const SCEV *FoundLHS, 10516 const SCEV *FoundRHS) { 10517 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10518 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10519 // reduce the compile time impact of this optimization. 10520 return false; 10521 10522 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10523 if (!Addend) 10524 return false; 10525 10526 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10527 10528 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10529 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10530 ConstantRange FoundLHSRange = 10531 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10532 10533 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10534 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10535 10536 // We can also compute the range of values for `LHS` that satisfy the 10537 // consequent, "`LHS` `Pred` `RHS`": 10538 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10539 ConstantRange SatisfyingLHSRange = 10540 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10541 10542 // The antecedent implies the consequent if every value of `LHS` that 10543 // satisfies the antecedent also satisfies the consequent. 10544 return SatisfyingLHSRange.contains(LHSRange); 10545 } 10546 10547 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10548 bool IsSigned, bool NoWrap) { 10549 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10550 10551 if (NoWrap) return false; 10552 10553 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10554 const SCEV *One = getOne(Stride->getType()); 10555 10556 if (IsSigned) { 10557 APInt MaxRHS = getSignedRangeMax(RHS); 10558 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10559 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10560 10561 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10562 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10563 } 10564 10565 APInt MaxRHS = getUnsignedRangeMax(RHS); 10566 APInt MaxValue = APInt::getMaxValue(BitWidth); 10567 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10568 10569 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10570 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10571 } 10572 10573 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10574 bool IsSigned, bool NoWrap) { 10575 if (NoWrap) return false; 10576 10577 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10578 const SCEV *One = getOne(Stride->getType()); 10579 10580 if (IsSigned) { 10581 APInt MinRHS = getSignedRangeMin(RHS); 10582 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10583 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10584 10585 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10586 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10587 } 10588 10589 APInt MinRHS = getUnsignedRangeMin(RHS); 10590 APInt MinValue = APInt::getMinValue(BitWidth); 10591 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10592 10593 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10594 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10595 } 10596 10597 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10598 bool Equality) { 10599 const SCEV *One = getOne(Step->getType()); 10600 Delta = Equality ? getAddExpr(Delta, Step) 10601 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10602 return getUDivExpr(Delta, Step); 10603 } 10604 10605 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10606 const SCEV *Stride, 10607 const SCEV *End, 10608 unsigned BitWidth, 10609 bool IsSigned) { 10610 10611 assert(!isKnownNonPositive(Stride) && 10612 "Stride is expected strictly positive!"); 10613 // Calculate the maximum backedge count based on the range of values 10614 // permitted by Start, End, and Stride. 10615 const SCEV *MaxBECount; 10616 APInt MinStart = 10617 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10618 10619 APInt StrideForMaxBECount = 10620 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10621 10622 // We already know that the stride is positive, so we paper over conservatism 10623 // in our range computation by forcing StrideForMaxBECount to be at least one. 10624 // In theory this is unnecessary, but we expect MaxBECount to be a 10625 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10626 // is nothing to constant fold it to). 10627 APInt One(BitWidth, 1, IsSigned); 10628 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10629 10630 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10631 : APInt::getMaxValue(BitWidth); 10632 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10633 10634 // Although End can be a MAX expression we estimate MaxEnd considering only 10635 // the case End = RHS of the loop termination condition. This is safe because 10636 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10637 // taken count. 10638 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10639 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10640 10641 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10642 getConstant(StrideForMaxBECount) /* Step */, 10643 false /* Equality */); 10644 10645 return MaxBECount; 10646 } 10647 10648 ScalarEvolution::ExitLimit 10649 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10650 const Loop *L, bool IsSigned, 10651 bool ControlsExit, bool AllowPredicates) { 10652 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10653 10654 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10655 bool PredicatedIV = false; 10656 10657 if (!IV && AllowPredicates) { 10658 // Try to make this an AddRec using runtime tests, in the first X 10659 // iterations of this loop, where X is the SCEV expression found by the 10660 // algorithm below. 10661 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10662 PredicatedIV = true; 10663 } 10664 10665 // Avoid weird loops 10666 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10667 return getCouldNotCompute(); 10668 10669 bool NoWrap = ControlsExit && 10670 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10671 10672 const SCEV *Stride = IV->getStepRecurrence(*this); 10673 10674 bool PositiveStride = isKnownPositive(Stride); 10675 10676 // Avoid negative or zero stride values. 10677 if (!PositiveStride) { 10678 // We can compute the correct backedge taken count for loops with unknown 10679 // strides if we can prove that the loop is not an infinite loop with side 10680 // effects. Here's the loop structure we are trying to handle - 10681 // 10682 // i = start 10683 // do { 10684 // A[i] = i; 10685 // i += s; 10686 // } while (i < end); 10687 // 10688 // The backedge taken count for such loops is evaluated as - 10689 // (max(end, start + stride) - start - 1) /u stride 10690 // 10691 // The additional preconditions that we need to check to prove correctness 10692 // of the above formula is as follows - 10693 // 10694 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10695 // NoWrap flag). 10696 // b) loop is single exit with no side effects. 10697 // 10698 // 10699 // Precondition a) implies that if the stride is negative, this is a single 10700 // trip loop. The backedge taken count formula reduces to zero in this case. 10701 // 10702 // Precondition b) implies that the unknown stride cannot be zero otherwise 10703 // we have UB. 10704 // 10705 // The positive stride case is the same as isKnownPositive(Stride) returning 10706 // true (original behavior of the function). 10707 // 10708 // We want to make sure that the stride is truly unknown as there are edge 10709 // cases where ScalarEvolution propagates no wrap flags to the 10710 // post-increment/decrement IV even though the increment/decrement operation 10711 // itself is wrapping. The computed backedge taken count may be wrong in 10712 // such cases. This is prevented by checking that the stride is not known to 10713 // be either positive or non-positive. For example, no wrap flags are 10714 // propagated to the post-increment IV of this loop with a trip count of 2 - 10715 // 10716 // unsigned char i; 10717 // for(i=127; i<128; i+=129) 10718 // A[i] = i; 10719 // 10720 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10721 !loopHasNoSideEffects(L)) 10722 return getCouldNotCompute(); 10723 } else if (!Stride->isOne() && 10724 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10725 // Avoid proven overflow cases: this will ensure that the backedge taken 10726 // count will not generate any unsigned overflow. Relaxed no-overflow 10727 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10728 // undefined behaviors like the case of C language. 10729 return getCouldNotCompute(); 10730 10731 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10732 : ICmpInst::ICMP_ULT; 10733 const SCEV *Start = IV->getStart(); 10734 const SCEV *End = RHS; 10735 // When the RHS is not invariant, we do not know the end bound of the loop and 10736 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10737 // calculate the MaxBECount, given the start, stride and max value for the end 10738 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10739 // checked above). 10740 if (!isLoopInvariant(RHS, L)) { 10741 const SCEV *MaxBECount = computeMaxBECountForLT( 10742 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10743 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10744 false /*MaxOrZero*/, Predicates); 10745 } 10746 // If the backedge is taken at least once, then it will be taken 10747 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10748 // is the LHS value of the less-than comparison the first time it is evaluated 10749 // and End is the RHS. 10750 const SCEV *BECountIfBackedgeTaken = 10751 computeBECount(getMinusSCEV(End, Start), Stride, false); 10752 // If the loop entry is guarded by the result of the backedge test of the 10753 // first loop iteration, then we know the backedge will be taken at least 10754 // once and so the backedge taken count is as above. If not then we use the 10755 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10756 // as if the backedge is taken at least once max(End,Start) is End and so the 10757 // result is as above, and if not max(End,Start) is Start so we get a backedge 10758 // count of zero. 10759 const SCEV *BECount; 10760 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10761 BECount = BECountIfBackedgeTaken; 10762 else { 10763 // If we know that RHS >= Start in the context of loop, then we know that 10764 // max(RHS, Start) = RHS at this point. 10765 if (isLoopEntryGuardedByCond( 10766 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 10767 End = RHS; 10768 else 10769 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10770 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10771 } 10772 10773 const SCEV *MaxBECount; 10774 bool MaxOrZero = false; 10775 if (isa<SCEVConstant>(BECount)) 10776 MaxBECount = BECount; 10777 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10778 // If we know exactly how many times the backedge will be taken if it's 10779 // taken at least once, then the backedge count will either be that or 10780 // zero. 10781 MaxBECount = BECountIfBackedgeTaken; 10782 MaxOrZero = true; 10783 } else { 10784 MaxBECount = computeMaxBECountForLT( 10785 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10786 } 10787 10788 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10789 !isa<SCEVCouldNotCompute>(BECount)) 10790 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10791 10792 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10793 } 10794 10795 ScalarEvolution::ExitLimit 10796 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10797 const Loop *L, bool IsSigned, 10798 bool ControlsExit, bool AllowPredicates) { 10799 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10800 // We handle only IV > Invariant 10801 if (!isLoopInvariant(RHS, L)) 10802 return getCouldNotCompute(); 10803 10804 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10805 if (!IV && AllowPredicates) 10806 // Try to make this an AddRec using runtime tests, in the first X 10807 // iterations of this loop, where X is the SCEV expression found by the 10808 // algorithm below. 10809 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10810 10811 // Avoid weird loops 10812 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10813 return getCouldNotCompute(); 10814 10815 bool NoWrap = ControlsExit && 10816 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10817 10818 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10819 10820 // Avoid negative or zero stride values 10821 if (!isKnownPositive(Stride)) 10822 return getCouldNotCompute(); 10823 10824 // Avoid proven overflow cases: this will ensure that the backedge taken count 10825 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10826 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10827 // behaviors like the case of C language. 10828 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10829 return getCouldNotCompute(); 10830 10831 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10832 : ICmpInst::ICMP_UGT; 10833 10834 const SCEV *Start = IV->getStart(); 10835 const SCEV *End = RHS; 10836 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 10837 // If we know that Start >= RHS in the context of loop, then we know that 10838 // min(RHS, Start) = RHS at this point. 10839 if (isLoopEntryGuardedByCond( 10840 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 10841 End = RHS; 10842 else 10843 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10844 } 10845 10846 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10847 10848 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10849 : getUnsignedRangeMax(Start); 10850 10851 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10852 : getUnsignedRangeMin(Stride); 10853 10854 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10855 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10856 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10857 10858 // Although End can be a MIN expression we estimate MinEnd considering only 10859 // the case End = RHS. This is safe because in the other case (Start - End) 10860 // is zero, leading to a zero maximum backedge taken count. 10861 APInt MinEnd = 10862 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10863 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10864 10865 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 10866 ? BECount 10867 : computeBECount(getConstant(MaxStart - MinEnd), 10868 getConstant(MinStride), false); 10869 10870 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10871 MaxBECount = BECount; 10872 10873 return ExitLimit(BECount, MaxBECount, false, Predicates); 10874 } 10875 10876 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10877 ScalarEvolution &SE) const { 10878 if (Range.isFullSet()) // Infinite loop. 10879 return SE.getCouldNotCompute(); 10880 10881 // If the start is a non-zero constant, shift the range to simplify things. 10882 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10883 if (!SC->getValue()->isZero()) { 10884 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10885 Operands[0] = SE.getZero(SC->getType()); 10886 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10887 getNoWrapFlags(FlagNW)); 10888 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10889 return ShiftedAddRec->getNumIterationsInRange( 10890 Range.subtract(SC->getAPInt()), SE); 10891 // This is strange and shouldn't happen. 10892 return SE.getCouldNotCompute(); 10893 } 10894 10895 // The only time we can solve this is when we have all constant indices. 10896 // Otherwise, we cannot determine the overflow conditions. 10897 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10898 return SE.getCouldNotCompute(); 10899 10900 // Okay at this point we know that all elements of the chrec are constants and 10901 // that the start element is zero. 10902 10903 // First check to see if the range contains zero. If not, the first 10904 // iteration exits. 10905 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10906 if (!Range.contains(APInt(BitWidth, 0))) 10907 return SE.getZero(getType()); 10908 10909 if (isAffine()) { 10910 // If this is an affine expression then we have this situation: 10911 // Solve {0,+,A} in Range === Ax in Range 10912 10913 // We know that zero is in the range. If A is positive then we know that 10914 // the upper value of the range must be the first possible exit value. 10915 // If A is negative then the lower of the range is the last possible loop 10916 // value. Also note that we already checked for a full range. 10917 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10918 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10919 10920 // The exit value should be (End+A)/A. 10921 APInt ExitVal = (End + A).udiv(A); 10922 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10923 10924 // Evaluate at the exit value. If we really did fall out of the valid 10925 // range, then we computed our trip count, otherwise wrap around or other 10926 // things must have happened. 10927 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10928 if (Range.contains(Val->getValue())) 10929 return SE.getCouldNotCompute(); // Something strange happened 10930 10931 // Ensure that the previous value is in the range. This is a sanity check. 10932 assert(Range.contains( 10933 EvaluateConstantChrecAtConstant(this, 10934 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10935 "Linear scev computation is off in a bad way!"); 10936 return SE.getConstant(ExitValue); 10937 } 10938 10939 if (isQuadratic()) { 10940 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10941 return SE.getConstant(S.getValue()); 10942 } 10943 10944 return SE.getCouldNotCompute(); 10945 } 10946 10947 const SCEVAddRecExpr * 10948 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10949 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10950 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10951 // but in this case we cannot guarantee that the value returned will be an 10952 // AddRec because SCEV does not have a fixed point where it stops 10953 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10954 // may happen if we reach arithmetic depth limit while simplifying. So we 10955 // construct the returned value explicitly. 10956 SmallVector<const SCEV *, 3> Ops; 10957 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10958 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10959 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10960 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10961 // We know that the last operand is not a constant zero (otherwise it would 10962 // have been popped out earlier). This guarantees us that if the result has 10963 // the same last operand, then it will also not be popped out, meaning that 10964 // the returned value will be an AddRec. 10965 const SCEV *Last = getOperand(getNumOperands() - 1); 10966 assert(!Last->isZero() && "Recurrency with zero step?"); 10967 Ops.push_back(Last); 10968 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10969 SCEV::FlagAnyWrap)); 10970 } 10971 10972 // Return true when S contains at least an undef value. 10973 static inline bool containsUndefs(const SCEV *S) { 10974 return SCEVExprContains(S, [](const SCEV *S) { 10975 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10976 return isa<UndefValue>(SU->getValue()); 10977 return false; 10978 }); 10979 } 10980 10981 namespace { 10982 10983 // Collect all steps of SCEV expressions. 10984 struct SCEVCollectStrides { 10985 ScalarEvolution &SE; 10986 SmallVectorImpl<const SCEV *> &Strides; 10987 10988 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10989 : SE(SE), Strides(S) {} 10990 10991 bool follow(const SCEV *S) { 10992 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10993 Strides.push_back(AR->getStepRecurrence(SE)); 10994 return true; 10995 } 10996 10997 bool isDone() const { return false; } 10998 }; 10999 11000 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11001 struct SCEVCollectTerms { 11002 SmallVectorImpl<const SCEV *> &Terms; 11003 11004 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11005 11006 bool follow(const SCEV *S) { 11007 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11008 isa<SCEVSignExtendExpr>(S)) { 11009 if (!containsUndefs(S)) 11010 Terms.push_back(S); 11011 11012 // Stop recursion: once we collected a term, do not walk its operands. 11013 return false; 11014 } 11015 11016 // Keep looking. 11017 return true; 11018 } 11019 11020 bool isDone() const { return false; } 11021 }; 11022 11023 // Check if a SCEV contains an AddRecExpr. 11024 struct SCEVHasAddRec { 11025 bool &ContainsAddRec; 11026 11027 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11028 ContainsAddRec = false; 11029 } 11030 11031 bool follow(const SCEV *S) { 11032 if (isa<SCEVAddRecExpr>(S)) { 11033 ContainsAddRec = true; 11034 11035 // Stop recursion: once we collected a term, do not walk its operands. 11036 return false; 11037 } 11038 11039 // Keep looking. 11040 return true; 11041 } 11042 11043 bool isDone() const { return false; } 11044 }; 11045 11046 // Find factors that are multiplied with an expression that (possibly as a 11047 // subexpression) contains an AddRecExpr. In the expression: 11048 // 11049 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11050 // 11051 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11052 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11053 // parameters as they form a product with an induction variable. 11054 // 11055 // This collector expects all array size parameters to be in the same MulExpr. 11056 // It might be necessary to later add support for collecting parameters that are 11057 // spread over different nested MulExpr. 11058 struct SCEVCollectAddRecMultiplies { 11059 SmallVectorImpl<const SCEV *> &Terms; 11060 ScalarEvolution &SE; 11061 11062 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11063 : Terms(T), SE(SE) {} 11064 11065 bool follow(const SCEV *S) { 11066 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11067 bool HasAddRec = false; 11068 SmallVector<const SCEV *, 0> Operands; 11069 for (auto Op : Mul->operands()) { 11070 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11071 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11072 Operands.push_back(Op); 11073 } else if (Unknown) { 11074 HasAddRec = true; 11075 } else { 11076 bool ContainsAddRec = false; 11077 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11078 visitAll(Op, ContiansAddRec); 11079 HasAddRec |= ContainsAddRec; 11080 } 11081 } 11082 if (Operands.size() == 0) 11083 return true; 11084 11085 if (!HasAddRec) 11086 return false; 11087 11088 Terms.push_back(SE.getMulExpr(Operands)); 11089 // Stop recursion: once we collected a term, do not walk its operands. 11090 return false; 11091 } 11092 11093 // Keep looking. 11094 return true; 11095 } 11096 11097 bool isDone() const { return false; } 11098 }; 11099 11100 } // end anonymous namespace 11101 11102 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11103 /// two places: 11104 /// 1) The strides of AddRec expressions. 11105 /// 2) Unknowns that are multiplied with AddRec expressions. 11106 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11107 SmallVectorImpl<const SCEV *> &Terms) { 11108 SmallVector<const SCEV *, 4> Strides; 11109 SCEVCollectStrides StrideCollector(*this, Strides); 11110 visitAll(Expr, StrideCollector); 11111 11112 LLVM_DEBUG({ 11113 dbgs() << "Strides:\n"; 11114 for (const SCEV *S : Strides) 11115 dbgs() << *S << "\n"; 11116 }); 11117 11118 for (const SCEV *S : Strides) { 11119 SCEVCollectTerms TermCollector(Terms); 11120 visitAll(S, TermCollector); 11121 } 11122 11123 LLVM_DEBUG({ 11124 dbgs() << "Terms:\n"; 11125 for (const SCEV *T : Terms) 11126 dbgs() << *T << "\n"; 11127 }); 11128 11129 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11130 visitAll(Expr, MulCollector); 11131 } 11132 11133 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11134 SmallVectorImpl<const SCEV *> &Terms, 11135 SmallVectorImpl<const SCEV *> &Sizes) { 11136 int Last = Terms.size() - 1; 11137 const SCEV *Step = Terms[Last]; 11138 11139 // End of recursion. 11140 if (Last == 0) { 11141 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11142 SmallVector<const SCEV *, 2> Qs; 11143 for (const SCEV *Op : M->operands()) 11144 if (!isa<SCEVConstant>(Op)) 11145 Qs.push_back(Op); 11146 11147 Step = SE.getMulExpr(Qs); 11148 } 11149 11150 Sizes.push_back(Step); 11151 return true; 11152 } 11153 11154 for (const SCEV *&Term : Terms) { 11155 // Normalize the terms before the next call to findArrayDimensionsRec. 11156 const SCEV *Q, *R; 11157 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11158 11159 // Bail out when GCD does not evenly divide one of the terms. 11160 if (!R->isZero()) 11161 return false; 11162 11163 Term = Q; 11164 } 11165 11166 // Remove all SCEVConstants. 11167 Terms.erase( 11168 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11169 Terms.end()); 11170 11171 if (Terms.size() > 0) 11172 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11173 return false; 11174 11175 Sizes.push_back(Step); 11176 return true; 11177 } 11178 11179 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11180 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11181 for (const SCEV *T : Terms) 11182 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11183 return true; 11184 11185 return false; 11186 } 11187 11188 // Return the number of product terms in S. 11189 static inline int numberOfTerms(const SCEV *S) { 11190 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11191 return Expr->getNumOperands(); 11192 return 1; 11193 } 11194 11195 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11196 if (isa<SCEVConstant>(T)) 11197 return nullptr; 11198 11199 if (isa<SCEVUnknown>(T)) 11200 return T; 11201 11202 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11203 SmallVector<const SCEV *, 2> Factors; 11204 for (const SCEV *Op : M->operands()) 11205 if (!isa<SCEVConstant>(Op)) 11206 Factors.push_back(Op); 11207 11208 return SE.getMulExpr(Factors); 11209 } 11210 11211 return T; 11212 } 11213 11214 /// Return the size of an element read or written by Inst. 11215 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11216 Type *Ty; 11217 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11218 Ty = Store->getValueOperand()->getType(); 11219 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11220 Ty = Load->getType(); 11221 else 11222 return nullptr; 11223 11224 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11225 return getSizeOfExpr(ETy, Ty); 11226 } 11227 11228 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11229 SmallVectorImpl<const SCEV *> &Sizes, 11230 const SCEV *ElementSize) { 11231 if (Terms.size() < 1 || !ElementSize) 11232 return; 11233 11234 // Early return when Terms do not contain parameters: we do not delinearize 11235 // non parametric SCEVs. 11236 if (!containsParameters(Terms)) 11237 return; 11238 11239 LLVM_DEBUG({ 11240 dbgs() << "Terms:\n"; 11241 for (const SCEV *T : Terms) 11242 dbgs() << *T << "\n"; 11243 }); 11244 11245 // Remove duplicates. 11246 array_pod_sort(Terms.begin(), Terms.end()); 11247 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11248 11249 // Put larger terms first. 11250 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11251 return numberOfTerms(LHS) > numberOfTerms(RHS); 11252 }); 11253 11254 // Try to divide all terms by the element size. If term is not divisible by 11255 // element size, proceed with the original term. 11256 for (const SCEV *&Term : Terms) { 11257 const SCEV *Q, *R; 11258 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11259 if (!Q->isZero()) 11260 Term = Q; 11261 } 11262 11263 SmallVector<const SCEV *, 4> NewTerms; 11264 11265 // Remove constant factors. 11266 for (const SCEV *T : Terms) 11267 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11268 NewTerms.push_back(NewT); 11269 11270 LLVM_DEBUG({ 11271 dbgs() << "Terms after sorting:\n"; 11272 for (const SCEV *T : NewTerms) 11273 dbgs() << *T << "\n"; 11274 }); 11275 11276 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11277 Sizes.clear(); 11278 return; 11279 } 11280 11281 // The last element to be pushed into Sizes is the size of an element. 11282 Sizes.push_back(ElementSize); 11283 11284 LLVM_DEBUG({ 11285 dbgs() << "Sizes:\n"; 11286 for (const SCEV *S : Sizes) 11287 dbgs() << *S << "\n"; 11288 }); 11289 } 11290 11291 void ScalarEvolution::computeAccessFunctions( 11292 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11293 SmallVectorImpl<const SCEV *> &Sizes) { 11294 // Early exit in case this SCEV is not an affine multivariate function. 11295 if (Sizes.empty()) 11296 return; 11297 11298 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11299 if (!AR->isAffine()) 11300 return; 11301 11302 const SCEV *Res = Expr; 11303 int Last = Sizes.size() - 1; 11304 for (int i = Last; i >= 0; i--) { 11305 const SCEV *Q, *R; 11306 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11307 11308 LLVM_DEBUG({ 11309 dbgs() << "Res: " << *Res << "\n"; 11310 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11311 dbgs() << "Res divided by Sizes[i]:\n"; 11312 dbgs() << "Quotient: " << *Q << "\n"; 11313 dbgs() << "Remainder: " << *R << "\n"; 11314 }); 11315 11316 Res = Q; 11317 11318 // Do not record the last subscript corresponding to the size of elements in 11319 // the array. 11320 if (i == Last) { 11321 11322 // Bail out if the remainder is too complex. 11323 if (isa<SCEVAddRecExpr>(R)) { 11324 Subscripts.clear(); 11325 Sizes.clear(); 11326 return; 11327 } 11328 11329 continue; 11330 } 11331 11332 // Record the access function for the current subscript. 11333 Subscripts.push_back(R); 11334 } 11335 11336 // Also push in last position the remainder of the last division: it will be 11337 // the access function of the innermost dimension. 11338 Subscripts.push_back(Res); 11339 11340 std::reverse(Subscripts.begin(), Subscripts.end()); 11341 11342 LLVM_DEBUG({ 11343 dbgs() << "Subscripts:\n"; 11344 for (const SCEV *S : Subscripts) 11345 dbgs() << *S << "\n"; 11346 }); 11347 } 11348 11349 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11350 /// sizes of an array access. Returns the remainder of the delinearization that 11351 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11352 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11353 /// expressions in the stride and base of a SCEV corresponding to the 11354 /// computation of a GCD (greatest common divisor) of base and stride. When 11355 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11356 /// 11357 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11358 /// 11359 /// void foo(long n, long m, long o, double A[n][m][o]) { 11360 /// 11361 /// for (long i = 0; i < n; i++) 11362 /// for (long j = 0; j < m; j++) 11363 /// for (long k = 0; k < o; k++) 11364 /// A[i][j][k] = 1.0; 11365 /// } 11366 /// 11367 /// the delinearization input is the following AddRec SCEV: 11368 /// 11369 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11370 /// 11371 /// From this SCEV, we are able to say that the base offset of the access is %A 11372 /// because it appears as an offset that does not divide any of the strides in 11373 /// the loops: 11374 /// 11375 /// CHECK: Base offset: %A 11376 /// 11377 /// and then SCEV->delinearize determines the size of some of the dimensions of 11378 /// the array as these are the multiples by which the strides are happening: 11379 /// 11380 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11381 /// 11382 /// Note that the outermost dimension remains of UnknownSize because there are 11383 /// no strides that would help identifying the size of the last dimension: when 11384 /// the array has been statically allocated, one could compute the size of that 11385 /// dimension by dividing the overall size of the array by the size of the known 11386 /// dimensions: %m * %o * 8. 11387 /// 11388 /// Finally delinearize provides the access functions for the array reference 11389 /// that does correspond to A[i][j][k] of the above C testcase: 11390 /// 11391 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11392 /// 11393 /// The testcases are checking the output of a function pass: 11394 /// DelinearizationPass that walks through all loads and stores of a function 11395 /// asking for the SCEV of the memory access with respect to all enclosing 11396 /// loops, calling SCEV->delinearize on that and printing the results. 11397 void ScalarEvolution::delinearize(const SCEV *Expr, 11398 SmallVectorImpl<const SCEV *> &Subscripts, 11399 SmallVectorImpl<const SCEV *> &Sizes, 11400 const SCEV *ElementSize) { 11401 // First step: collect parametric terms. 11402 SmallVector<const SCEV *, 4> Terms; 11403 collectParametricTerms(Expr, Terms); 11404 11405 if (Terms.empty()) 11406 return; 11407 11408 // Second step: find subscript sizes. 11409 findArrayDimensions(Terms, Sizes, ElementSize); 11410 11411 if (Sizes.empty()) 11412 return; 11413 11414 // Third step: compute the access functions for each subscript. 11415 computeAccessFunctions(Expr, Subscripts, Sizes); 11416 11417 if (Subscripts.empty()) 11418 return; 11419 11420 LLVM_DEBUG({ 11421 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11422 dbgs() << "ArrayDecl[UnknownSize]"; 11423 for (const SCEV *S : Sizes) 11424 dbgs() << "[" << *S << "]"; 11425 11426 dbgs() << "\nArrayRef"; 11427 for (const SCEV *S : Subscripts) 11428 dbgs() << "[" << *S << "]"; 11429 dbgs() << "\n"; 11430 }); 11431 } 11432 11433 bool ScalarEvolution::getIndexExpressionsFromGEP( 11434 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11435 SmallVectorImpl<int> &Sizes) { 11436 assert(Subscripts.empty() && Sizes.empty() && 11437 "Expected output lists to be empty on entry to this function."); 11438 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11439 Type *Ty = GEP->getPointerOperandType(); 11440 bool DroppedFirstDim = false; 11441 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11442 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11443 if (i == 1) { 11444 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11445 Ty = PtrTy->getElementType(); 11446 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11447 Ty = ArrayTy->getElementType(); 11448 } else { 11449 Subscripts.clear(); 11450 Sizes.clear(); 11451 return false; 11452 } 11453 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11454 if (Const->getValue()->isZero()) { 11455 DroppedFirstDim = true; 11456 continue; 11457 } 11458 Subscripts.push_back(Expr); 11459 continue; 11460 } 11461 11462 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11463 if (!ArrayTy) { 11464 Subscripts.clear(); 11465 Sizes.clear(); 11466 return false; 11467 } 11468 11469 Subscripts.push_back(Expr); 11470 if (!(DroppedFirstDim && i == 2)) 11471 Sizes.push_back(ArrayTy->getNumElements()); 11472 11473 Ty = ArrayTy->getElementType(); 11474 } 11475 return !Subscripts.empty(); 11476 } 11477 11478 //===----------------------------------------------------------------------===// 11479 // SCEVCallbackVH Class Implementation 11480 //===----------------------------------------------------------------------===// 11481 11482 void ScalarEvolution::SCEVCallbackVH::deleted() { 11483 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11484 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11485 SE->ConstantEvolutionLoopExitValue.erase(PN); 11486 SE->eraseValueFromMap(getValPtr()); 11487 // this now dangles! 11488 } 11489 11490 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11491 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11492 11493 // Forget all the expressions associated with users of the old value, 11494 // so that future queries will recompute the expressions using the new 11495 // value. 11496 Value *Old = getValPtr(); 11497 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11498 SmallPtrSet<User *, 8> Visited; 11499 while (!Worklist.empty()) { 11500 User *U = Worklist.pop_back_val(); 11501 // Deleting the Old value will cause this to dangle. Postpone 11502 // that until everything else is done. 11503 if (U == Old) 11504 continue; 11505 if (!Visited.insert(U).second) 11506 continue; 11507 if (PHINode *PN = dyn_cast<PHINode>(U)) 11508 SE->ConstantEvolutionLoopExitValue.erase(PN); 11509 SE->eraseValueFromMap(U); 11510 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11511 } 11512 // Delete the Old value. 11513 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11514 SE->ConstantEvolutionLoopExitValue.erase(PN); 11515 SE->eraseValueFromMap(Old); 11516 // this now dangles! 11517 } 11518 11519 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11520 : CallbackVH(V), SE(se) {} 11521 11522 //===----------------------------------------------------------------------===// 11523 // ScalarEvolution Class Implementation 11524 //===----------------------------------------------------------------------===// 11525 11526 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11527 AssumptionCache &AC, DominatorTree &DT, 11528 LoopInfo &LI) 11529 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11530 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11531 LoopDispositions(64), BlockDispositions(64) { 11532 // To use guards for proving predicates, we need to scan every instruction in 11533 // relevant basic blocks, and not just terminators. Doing this is a waste of 11534 // time if the IR does not actually contain any calls to 11535 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11536 // 11537 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11538 // to _add_ guards to the module when there weren't any before, and wants 11539 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11540 // efficient in lieu of being smart in that rather obscure case. 11541 11542 auto *GuardDecl = F.getParent()->getFunction( 11543 Intrinsic::getName(Intrinsic::experimental_guard)); 11544 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11545 } 11546 11547 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11548 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11549 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11550 ValueExprMap(std::move(Arg.ValueExprMap)), 11551 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11552 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11553 PendingMerges(std::move(Arg.PendingMerges)), 11554 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11555 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11556 PredicatedBackedgeTakenCounts( 11557 std::move(Arg.PredicatedBackedgeTakenCounts)), 11558 ConstantEvolutionLoopExitValue( 11559 std::move(Arg.ConstantEvolutionLoopExitValue)), 11560 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11561 LoopDispositions(std::move(Arg.LoopDispositions)), 11562 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11563 BlockDispositions(std::move(Arg.BlockDispositions)), 11564 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11565 SignedRanges(std::move(Arg.SignedRanges)), 11566 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11567 UniquePreds(std::move(Arg.UniquePreds)), 11568 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11569 LoopUsers(std::move(Arg.LoopUsers)), 11570 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11571 FirstUnknown(Arg.FirstUnknown) { 11572 Arg.FirstUnknown = nullptr; 11573 } 11574 11575 ScalarEvolution::~ScalarEvolution() { 11576 // Iterate through all the SCEVUnknown instances and call their 11577 // destructors, so that they release their references to their values. 11578 for (SCEVUnknown *U = FirstUnknown; U;) { 11579 SCEVUnknown *Tmp = U; 11580 U = U->Next; 11581 Tmp->~SCEVUnknown(); 11582 } 11583 FirstUnknown = nullptr; 11584 11585 ExprValueMap.clear(); 11586 ValueExprMap.clear(); 11587 HasRecMap.clear(); 11588 11589 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11590 // that a loop had multiple computable exits. 11591 for (auto &BTCI : BackedgeTakenCounts) 11592 BTCI.second.clear(); 11593 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11594 BTCI.second.clear(); 11595 11596 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11597 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11598 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11599 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11600 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11601 } 11602 11603 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11604 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11605 } 11606 11607 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11608 const Loop *L) { 11609 // Print all inner loops first 11610 for (Loop *I : *L) 11611 PrintLoopInfo(OS, SE, I); 11612 11613 OS << "Loop "; 11614 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11615 OS << ": "; 11616 11617 SmallVector<BasicBlock *, 8> ExitingBlocks; 11618 L->getExitingBlocks(ExitingBlocks); 11619 if (ExitingBlocks.size() != 1) 11620 OS << "<multiple exits> "; 11621 11622 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11623 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11624 else 11625 OS << "Unpredictable backedge-taken count.\n"; 11626 11627 if (ExitingBlocks.size() > 1) 11628 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11629 OS << " exit count for " << ExitingBlock->getName() << ": " 11630 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11631 } 11632 11633 OS << "Loop "; 11634 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11635 OS << ": "; 11636 11637 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11638 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11639 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11640 OS << ", actual taken count either this or zero."; 11641 } else { 11642 OS << "Unpredictable max backedge-taken count. "; 11643 } 11644 11645 OS << "\n" 11646 "Loop "; 11647 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11648 OS << ": "; 11649 11650 SCEVUnionPredicate Pred; 11651 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11652 if (!isa<SCEVCouldNotCompute>(PBT)) { 11653 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11654 OS << " Predicates:\n"; 11655 Pred.print(OS, 4); 11656 } else { 11657 OS << "Unpredictable predicated backedge-taken count. "; 11658 } 11659 OS << "\n"; 11660 11661 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11662 OS << "Loop "; 11663 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11664 OS << ": "; 11665 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11666 } 11667 } 11668 11669 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11670 switch (LD) { 11671 case ScalarEvolution::LoopVariant: 11672 return "Variant"; 11673 case ScalarEvolution::LoopInvariant: 11674 return "Invariant"; 11675 case ScalarEvolution::LoopComputable: 11676 return "Computable"; 11677 } 11678 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11679 } 11680 11681 void ScalarEvolution::print(raw_ostream &OS) const { 11682 // ScalarEvolution's implementation of the print method is to print 11683 // out SCEV values of all instructions that are interesting. Doing 11684 // this potentially causes it to create new SCEV objects though, 11685 // which technically conflicts with the const qualifier. This isn't 11686 // observable from outside the class though, so casting away the 11687 // const isn't dangerous. 11688 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11689 11690 if (ClassifyExpressions) { 11691 OS << "Classifying expressions for: "; 11692 F.printAsOperand(OS, /*PrintType=*/false); 11693 OS << "\n"; 11694 for (Instruction &I : instructions(F)) 11695 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11696 OS << I << '\n'; 11697 OS << " --> "; 11698 const SCEV *SV = SE.getSCEV(&I); 11699 SV->print(OS); 11700 if (!isa<SCEVCouldNotCompute>(SV)) { 11701 OS << " U: "; 11702 SE.getUnsignedRange(SV).print(OS); 11703 OS << " S: "; 11704 SE.getSignedRange(SV).print(OS); 11705 } 11706 11707 const Loop *L = LI.getLoopFor(I.getParent()); 11708 11709 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11710 if (AtUse != SV) { 11711 OS << " --> "; 11712 AtUse->print(OS); 11713 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11714 OS << " U: "; 11715 SE.getUnsignedRange(AtUse).print(OS); 11716 OS << " S: "; 11717 SE.getSignedRange(AtUse).print(OS); 11718 } 11719 } 11720 11721 if (L) { 11722 OS << "\t\t" "Exits: "; 11723 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11724 if (!SE.isLoopInvariant(ExitValue, L)) { 11725 OS << "<<Unknown>>"; 11726 } else { 11727 OS << *ExitValue; 11728 } 11729 11730 bool First = true; 11731 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11732 if (First) { 11733 OS << "\t\t" "LoopDispositions: { "; 11734 First = false; 11735 } else { 11736 OS << ", "; 11737 } 11738 11739 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11740 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11741 } 11742 11743 for (auto *InnerL : depth_first(L)) { 11744 if (InnerL == L) 11745 continue; 11746 if (First) { 11747 OS << "\t\t" "LoopDispositions: { "; 11748 First = false; 11749 } else { 11750 OS << ", "; 11751 } 11752 11753 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11754 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11755 } 11756 11757 OS << " }"; 11758 } 11759 11760 OS << "\n"; 11761 } 11762 } 11763 11764 OS << "Determining loop execution counts for: "; 11765 F.printAsOperand(OS, /*PrintType=*/false); 11766 OS << "\n"; 11767 for (Loop *I : LI) 11768 PrintLoopInfo(OS, &SE, I); 11769 } 11770 11771 ScalarEvolution::LoopDisposition 11772 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11773 auto &Values = LoopDispositions[S]; 11774 for (auto &V : Values) { 11775 if (V.getPointer() == L) 11776 return V.getInt(); 11777 } 11778 Values.emplace_back(L, LoopVariant); 11779 LoopDisposition D = computeLoopDisposition(S, L); 11780 auto &Values2 = LoopDispositions[S]; 11781 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11782 if (V.getPointer() == L) { 11783 V.setInt(D); 11784 break; 11785 } 11786 } 11787 return D; 11788 } 11789 11790 ScalarEvolution::LoopDisposition 11791 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11792 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11793 case scConstant: 11794 return LoopInvariant; 11795 case scTruncate: 11796 case scZeroExtend: 11797 case scSignExtend: 11798 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11799 case scAddRecExpr: { 11800 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11801 11802 // If L is the addrec's loop, it's computable. 11803 if (AR->getLoop() == L) 11804 return LoopComputable; 11805 11806 // Add recurrences are never invariant in the function-body (null loop). 11807 if (!L) 11808 return LoopVariant; 11809 11810 // Everything that is not defined at loop entry is variant. 11811 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11812 return LoopVariant; 11813 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11814 " dominate the contained loop's header?"); 11815 11816 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11817 if (AR->getLoop()->contains(L)) 11818 return LoopInvariant; 11819 11820 // This recurrence is variant w.r.t. L if any of its operands 11821 // are variant. 11822 for (auto *Op : AR->operands()) 11823 if (!isLoopInvariant(Op, L)) 11824 return LoopVariant; 11825 11826 // Otherwise it's loop-invariant. 11827 return LoopInvariant; 11828 } 11829 case scAddExpr: 11830 case scMulExpr: 11831 case scUMaxExpr: 11832 case scSMaxExpr: 11833 case scUMinExpr: 11834 case scSMinExpr: { 11835 bool HasVarying = false; 11836 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11837 LoopDisposition D = getLoopDisposition(Op, L); 11838 if (D == LoopVariant) 11839 return LoopVariant; 11840 if (D == LoopComputable) 11841 HasVarying = true; 11842 } 11843 return HasVarying ? LoopComputable : LoopInvariant; 11844 } 11845 case scUDivExpr: { 11846 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11847 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11848 if (LD == LoopVariant) 11849 return LoopVariant; 11850 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11851 if (RD == LoopVariant) 11852 return LoopVariant; 11853 return (LD == LoopInvariant && RD == LoopInvariant) ? 11854 LoopInvariant : LoopComputable; 11855 } 11856 case scUnknown: 11857 // All non-instruction values are loop invariant. All instructions are loop 11858 // invariant if they are not contained in the specified loop. 11859 // Instructions are never considered invariant in the function body 11860 // (null loop) because they are defined within the "loop". 11861 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11862 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11863 return LoopInvariant; 11864 case scCouldNotCompute: 11865 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11866 } 11867 llvm_unreachable("Unknown SCEV kind!"); 11868 } 11869 11870 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11871 return getLoopDisposition(S, L) == LoopInvariant; 11872 } 11873 11874 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11875 return getLoopDisposition(S, L) == LoopComputable; 11876 } 11877 11878 ScalarEvolution::BlockDisposition 11879 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11880 auto &Values = BlockDispositions[S]; 11881 for (auto &V : Values) { 11882 if (V.getPointer() == BB) 11883 return V.getInt(); 11884 } 11885 Values.emplace_back(BB, DoesNotDominateBlock); 11886 BlockDisposition D = computeBlockDisposition(S, BB); 11887 auto &Values2 = BlockDispositions[S]; 11888 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11889 if (V.getPointer() == BB) { 11890 V.setInt(D); 11891 break; 11892 } 11893 } 11894 return D; 11895 } 11896 11897 ScalarEvolution::BlockDisposition 11898 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11899 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11900 case scConstant: 11901 return ProperlyDominatesBlock; 11902 case scTruncate: 11903 case scZeroExtend: 11904 case scSignExtend: 11905 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11906 case scAddRecExpr: { 11907 // This uses a "dominates" query instead of "properly dominates" query 11908 // to test for proper dominance too, because the instruction which 11909 // produces the addrec's value is a PHI, and a PHI effectively properly 11910 // dominates its entire containing block. 11911 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11912 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11913 return DoesNotDominateBlock; 11914 11915 // Fall through into SCEVNAryExpr handling. 11916 LLVM_FALLTHROUGH; 11917 } 11918 case scAddExpr: 11919 case scMulExpr: 11920 case scUMaxExpr: 11921 case scSMaxExpr: 11922 case scUMinExpr: 11923 case scSMinExpr: { 11924 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11925 bool Proper = true; 11926 for (const SCEV *NAryOp : NAry->operands()) { 11927 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11928 if (D == DoesNotDominateBlock) 11929 return DoesNotDominateBlock; 11930 if (D == DominatesBlock) 11931 Proper = false; 11932 } 11933 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11934 } 11935 case scUDivExpr: { 11936 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11937 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11938 BlockDisposition LD = getBlockDisposition(LHS, BB); 11939 if (LD == DoesNotDominateBlock) 11940 return DoesNotDominateBlock; 11941 BlockDisposition RD = getBlockDisposition(RHS, BB); 11942 if (RD == DoesNotDominateBlock) 11943 return DoesNotDominateBlock; 11944 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11945 ProperlyDominatesBlock : DominatesBlock; 11946 } 11947 case scUnknown: 11948 if (Instruction *I = 11949 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11950 if (I->getParent() == BB) 11951 return DominatesBlock; 11952 if (DT.properlyDominates(I->getParent(), BB)) 11953 return ProperlyDominatesBlock; 11954 return DoesNotDominateBlock; 11955 } 11956 return ProperlyDominatesBlock; 11957 case scCouldNotCompute: 11958 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11959 } 11960 llvm_unreachable("Unknown SCEV kind!"); 11961 } 11962 11963 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11964 return getBlockDisposition(S, BB) >= DominatesBlock; 11965 } 11966 11967 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11968 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11969 } 11970 11971 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11972 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11973 } 11974 11975 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11976 auto IsS = [&](const SCEV *X) { return S == X; }; 11977 auto ContainsS = [&](const SCEV *X) { 11978 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11979 }; 11980 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11981 } 11982 11983 void 11984 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11985 ValuesAtScopes.erase(S); 11986 LoopDispositions.erase(S); 11987 BlockDispositions.erase(S); 11988 UnsignedRanges.erase(S); 11989 SignedRanges.erase(S); 11990 ExprValueMap.erase(S); 11991 HasRecMap.erase(S); 11992 MinTrailingZerosCache.erase(S); 11993 11994 for (auto I = PredicatedSCEVRewrites.begin(); 11995 I != PredicatedSCEVRewrites.end();) { 11996 std::pair<const SCEV *, const Loop *> Entry = I->first; 11997 if (Entry.first == S) 11998 PredicatedSCEVRewrites.erase(I++); 11999 else 12000 ++I; 12001 } 12002 12003 auto RemoveSCEVFromBackedgeMap = 12004 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12005 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12006 BackedgeTakenInfo &BEInfo = I->second; 12007 if (BEInfo.hasOperand(S, this)) { 12008 BEInfo.clear(); 12009 Map.erase(I++); 12010 } else 12011 ++I; 12012 } 12013 }; 12014 12015 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12016 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12017 } 12018 12019 void 12020 ScalarEvolution::getUsedLoops(const SCEV *S, 12021 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12022 struct FindUsedLoops { 12023 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12024 : LoopsUsed(LoopsUsed) {} 12025 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12026 bool follow(const SCEV *S) { 12027 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12028 LoopsUsed.insert(AR->getLoop()); 12029 return true; 12030 } 12031 12032 bool isDone() const { return false; } 12033 }; 12034 12035 FindUsedLoops F(LoopsUsed); 12036 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12037 } 12038 12039 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12040 SmallPtrSet<const Loop *, 8> LoopsUsed; 12041 getUsedLoops(S, LoopsUsed); 12042 for (auto *L : LoopsUsed) 12043 LoopUsers[L].push_back(S); 12044 } 12045 12046 void ScalarEvolution::verify() const { 12047 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12048 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12049 12050 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12051 12052 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12053 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12054 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12055 12056 const SCEV *visitConstant(const SCEVConstant *Constant) { 12057 return SE.getConstant(Constant->getAPInt()); 12058 } 12059 12060 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12061 return SE.getUnknown(Expr->getValue()); 12062 } 12063 12064 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12065 return SE.getCouldNotCompute(); 12066 } 12067 }; 12068 12069 SCEVMapper SCM(SE2); 12070 12071 while (!LoopStack.empty()) { 12072 auto *L = LoopStack.pop_back_val(); 12073 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 12074 12075 auto *CurBECount = SCM.visit( 12076 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12077 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12078 12079 if (CurBECount == SE2.getCouldNotCompute() || 12080 NewBECount == SE2.getCouldNotCompute()) { 12081 // NB! This situation is legal, but is very suspicious -- whatever pass 12082 // change the loop to make a trip count go from could not compute to 12083 // computable or vice-versa *should have* invalidated SCEV. However, we 12084 // choose not to assert here (for now) since we don't want false 12085 // positives. 12086 continue; 12087 } 12088 12089 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12090 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12091 // not propagate undef aggressively). This means we can (and do) fail 12092 // verification in cases where a transform makes the trip count of a loop 12093 // go from "undef" to "undef+1" (say). The transform is fine, since in 12094 // both cases the loop iterates "undef" times, but SCEV thinks we 12095 // increased the trip count of the loop by 1 incorrectly. 12096 continue; 12097 } 12098 12099 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12100 SE.getTypeSizeInBits(NewBECount->getType())) 12101 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12102 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12103 SE.getTypeSizeInBits(NewBECount->getType())) 12104 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12105 12106 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12107 12108 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12109 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12110 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12111 dbgs() << "Old: " << *CurBECount << "\n"; 12112 dbgs() << "New: " << *NewBECount << "\n"; 12113 dbgs() << "Delta: " << *Delta << "\n"; 12114 std::abort(); 12115 } 12116 } 12117 12118 // Collect all valid loops currently in LoopInfo. 12119 SmallPtrSet<Loop *, 32> ValidLoops; 12120 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12121 while (!Worklist.empty()) { 12122 Loop *L = Worklist.pop_back_val(); 12123 if (ValidLoops.contains(L)) 12124 continue; 12125 ValidLoops.insert(L); 12126 Worklist.append(L->begin(), L->end()); 12127 } 12128 // Check for SCEV expressions referencing invalid/deleted loops. 12129 for (auto &KV : ValueExprMap) { 12130 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12131 if (!AR) 12132 continue; 12133 assert(ValidLoops.contains(AR->getLoop()) && 12134 "AddRec references invalid loop"); 12135 } 12136 } 12137 12138 bool ScalarEvolution::invalidate( 12139 Function &F, const PreservedAnalyses &PA, 12140 FunctionAnalysisManager::Invalidator &Inv) { 12141 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12142 // of its dependencies is invalidated. 12143 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12144 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12145 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12146 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12147 Inv.invalidate<LoopAnalysis>(F, PA); 12148 } 12149 12150 AnalysisKey ScalarEvolutionAnalysis::Key; 12151 12152 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12153 FunctionAnalysisManager &AM) { 12154 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12155 AM.getResult<AssumptionAnalysis>(F), 12156 AM.getResult<DominatorTreeAnalysis>(F), 12157 AM.getResult<LoopAnalysis>(F)); 12158 } 12159 12160 PreservedAnalyses 12161 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12162 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12163 return PreservedAnalyses::all(); 12164 } 12165 12166 PreservedAnalyses 12167 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12168 // For compatibility with opt's -analyze feature under legacy pass manager 12169 // which was not ported to NPM. This keeps tests using 12170 // update_analyze_test_checks.py working. 12171 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12172 << F.getName() << "':\n"; 12173 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12174 return PreservedAnalyses::all(); 12175 } 12176 12177 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12178 "Scalar Evolution Analysis", false, true) 12179 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12180 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12181 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12182 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12183 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12184 "Scalar Evolution Analysis", false, true) 12185 12186 char ScalarEvolutionWrapperPass::ID = 0; 12187 12188 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12189 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12190 } 12191 12192 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12193 SE.reset(new ScalarEvolution( 12194 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12195 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12196 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12197 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12198 return false; 12199 } 12200 12201 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12202 12203 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12204 SE->print(OS); 12205 } 12206 12207 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12208 if (!VerifySCEV) 12209 return; 12210 12211 SE->verify(); 12212 } 12213 12214 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12215 AU.setPreservesAll(); 12216 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12217 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12218 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12219 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12220 } 12221 12222 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12223 const SCEV *RHS) { 12224 FoldingSetNodeID ID; 12225 assert(LHS->getType() == RHS->getType() && 12226 "Type mismatch between LHS and RHS"); 12227 // Unique this node based on the arguments 12228 ID.AddInteger(SCEVPredicate::P_Equal); 12229 ID.AddPointer(LHS); 12230 ID.AddPointer(RHS); 12231 void *IP = nullptr; 12232 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12233 return S; 12234 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12235 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12236 UniquePreds.InsertNode(Eq, IP); 12237 return Eq; 12238 } 12239 12240 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12241 const SCEVAddRecExpr *AR, 12242 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12243 FoldingSetNodeID ID; 12244 // Unique this node based on the arguments 12245 ID.AddInteger(SCEVPredicate::P_Wrap); 12246 ID.AddPointer(AR); 12247 ID.AddInteger(AddedFlags); 12248 void *IP = nullptr; 12249 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12250 return S; 12251 auto *OF = new (SCEVAllocator) 12252 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12253 UniquePreds.InsertNode(OF, IP); 12254 return OF; 12255 } 12256 12257 namespace { 12258 12259 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12260 public: 12261 12262 /// Rewrites \p S in the context of a loop L and the SCEV predication 12263 /// infrastructure. 12264 /// 12265 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12266 /// equivalences present in \p Pred. 12267 /// 12268 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12269 /// \p NewPreds such that the result will be an AddRecExpr. 12270 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12271 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12272 SCEVUnionPredicate *Pred) { 12273 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12274 return Rewriter.visit(S); 12275 } 12276 12277 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12278 if (Pred) { 12279 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12280 for (auto *Pred : ExprPreds) 12281 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12282 if (IPred->getLHS() == Expr) 12283 return IPred->getRHS(); 12284 } 12285 return convertToAddRecWithPreds(Expr); 12286 } 12287 12288 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12289 const SCEV *Operand = visit(Expr->getOperand()); 12290 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12291 if (AR && AR->getLoop() == L && AR->isAffine()) { 12292 // This couldn't be folded because the operand didn't have the nuw 12293 // flag. Add the nusw flag as an assumption that we could make. 12294 const SCEV *Step = AR->getStepRecurrence(SE); 12295 Type *Ty = Expr->getType(); 12296 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12297 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12298 SE.getSignExtendExpr(Step, Ty), L, 12299 AR->getNoWrapFlags()); 12300 } 12301 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12302 } 12303 12304 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12305 const SCEV *Operand = visit(Expr->getOperand()); 12306 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12307 if (AR && AR->getLoop() == L && AR->isAffine()) { 12308 // This couldn't be folded because the operand didn't have the nsw 12309 // flag. Add the nssw flag as an assumption that we could make. 12310 const SCEV *Step = AR->getStepRecurrence(SE); 12311 Type *Ty = Expr->getType(); 12312 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12313 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12314 SE.getSignExtendExpr(Step, Ty), L, 12315 AR->getNoWrapFlags()); 12316 } 12317 return SE.getSignExtendExpr(Operand, Expr->getType()); 12318 } 12319 12320 private: 12321 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12322 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12323 SCEVUnionPredicate *Pred) 12324 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12325 12326 bool addOverflowAssumption(const SCEVPredicate *P) { 12327 if (!NewPreds) { 12328 // Check if we've already made this assumption. 12329 return Pred && Pred->implies(P); 12330 } 12331 NewPreds->insert(P); 12332 return true; 12333 } 12334 12335 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12336 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12337 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12338 return addOverflowAssumption(A); 12339 } 12340 12341 // If \p Expr represents a PHINode, we try to see if it can be represented 12342 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12343 // to add this predicate as a runtime overflow check, we return the AddRec. 12344 // If \p Expr does not meet these conditions (is not a PHI node, or we 12345 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12346 // return \p Expr. 12347 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12348 if (!isa<PHINode>(Expr->getValue())) 12349 return Expr; 12350 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12351 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12352 if (!PredicatedRewrite) 12353 return Expr; 12354 for (auto *P : PredicatedRewrite->second){ 12355 // Wrap predicates from outer loops are not supported. 12356 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12357 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12358 if (L != AR->getLoop()) 12359 return Expr; 12360 } 12361 if (!addOverflowAssumption(P)) 12362 return Expr; 12363 } 12364 return PredicatedRewrite->first; 12365 } 12366 12367 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12368 SCEVUnionPredicate *Pred; 12369 const Loop *L; 12370 }; 12371 12372 } // end anonymous namespace 12373 12374 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12375 SCEVUnionPredicate &Preds) { 12376 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12377 } 12378 12379 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12380 const SCEV *S, const Loop *L, 12381 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12382 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12383 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12384 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12385 12386 if (!AddRec) 12387 return nullptr; 12388 12389 // Since the transformation was successful, we can now transfer the SCEV 12390 // predicates. 12391 for (auto *P : TransformPreds) 12392 Preds.insert(P); 12393 12394 return AddRec; 12395 } 12396 12397 /// SCEV predicates 12398 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12399 SCEVPredicateKind Kind) 12400 : FastID(ID), Kind(Kind) {} 12401 12402 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12403 const SCEV *LHS, const SCEV *RHS) 12404 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12405 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12406 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12407 } 12408 12409 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12410 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12411 12412 if (!Op) 12413 return false; 12414 12415 return Op->LHS == LHS && Op->RHS == RHS; 12416 } 12417 12418 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12419 12420 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12421 12422 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12423 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12424 } 12425 12426 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12427 const SCEVAddRecExpr *AR, 12428 IncrementWrapFlags Flags) 12429 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12430 12431 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12432 12433 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12434 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12435 12436 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12437 } 12438 12439 bool SCEVWrapPredicate::isAlwaysTrue() const { 12440 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12441 IncrementWrapFlags IFlags = Flags; 12442 12443 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12444 IFlags = clearFlags(IFlags, IncrementNSSW); 12445 12446 return IFlags == IncrementAnyWrap; 12447 } 12448 12449 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12450 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12451 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12452 OS << "<nusw>"; 12453 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12454 OS << "<nssw>"; 12455 OS << "\n"; 12456 } 12457 12458 SCEVWrapPredicate::IncrementWrapFlags 12459 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12460 ScalarEvolution &SE) { 12461 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12462 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12463 12464 // We can safely transfer the NSW flag as NSSW. 12465 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12466 ImpliedFlags = IncrementNSSW; 12467 12468 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12469 // If the increment is positive, the SCEV NUW flag will also imply the 12470 // WrapPredicate NUSW flag. 12471 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12472 if (Step->getValue()->getValue().isNonNegative()) 12473 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12474 } 12475 12476 return ImpliedFlags; 12477 } 12478 12479 /// Union predicates don't get cached so create a dummy set ID for it. 12480 SCEVUnionPredicate::SCEVUnionPredicate() 12481 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12482 12483 bool SCEVUnionPredicate::isAlwaysTrue() const { 12484 return all_of(Preds, 12485 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12486 } 12487 12488 ArrayRef<const SCEVPredicate *> 12489 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12490 auto I = SCEVToPreds.find(Expr); 12491 if (I == SCEVToPreds.end()) 12492 return ArrayRef<const SCEVPredicate *>(); 12493 return I->second; 12494 } 12495 12496 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12497 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12498 return all_of(Set->Preds, 12499 [this](const SCEVPredicate *I) { return this->implies(I); }); 12500 12501 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12502 if (ScevPredsIt == SCEVToPreds.end()) 12503 return false; 12504 auto &SCEVPreds = ScevPredsIt->second; 12505 12506 return any_of(SCEVPreds, 12507 [N](const SCEVPredicate *I) { return I->implies(N); }); 12508 } 12509 12510 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12511 12512 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12513 for (auto Pred : Preds) 12514 Pred->print(OS, Depth); 12515 } 12516 12517 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12518 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12519 for (auto Pred : Set->Preds) 12520 add(Pred); 12521 return; 12522 } 12523 12524 if (implies(N)) 12525 return; 12526 12527 const SCEV *Key = N->getExpr(); 12528 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12529 " associated expression!"); 12530 12531 SCEVToPreds[Key].push_back(N); 12532 Preds.push_back(N); 12533 } 12534 12535 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12536 Loop &L) 12537 : SE(SE), L(L) {} 12538 12539 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12540 const SCEV *Expr = SE.getSCEV(V); 12541 RewriteEntry &Entry = RewriteMap[Expr]; 12542 12543 // If we already have an entry and the version matches, return it. 12544 if (Entry.second && Generation == Entry.first) 12545 return Entry.second; 12546 12547 // We found an entry but it's stale. Rewrite the stale entry 12548 // according to the current predicate. 12549 if (Entry.second) 12550 Expr = Entry.second; 12551 12552 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12553 Entry = {Generation, NewSCEV}; 12554 12555 return NewSCEV; 12556 } 12557 12558 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12559 if (!BackedgeCount) { 12560 SCEVUnionPredicate BackedgePred; 12561 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12562 addPredicate(BackedgePred); 12563 } 12564 return BackedgeCount; 12565 } 12566 12567 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12568 if (Preds.implies(&Pred)) 12569 return; 12570 Preds.add(&Pred); 12571 updateGeneration(); 12572 } 12573 12574 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12575 return Preds; 12576 } 12577 12578 void PredicatedScalarEvolution::updateGeneration() { 12579 // If the generation number wrapped recompute everything. 12580 if (++Generation == 0) { 12581 for (auto &II : RewriteMap) { 12582 const SCEV *Rewritten = II.second.second; 12583 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12584 } 12585 } 12586 } 12587 12588 void PredicatedScalarEvolution::setNoOverflow( 12589 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12590 const SCEV *Expr = getSCEV(V); 12591 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12592 12593 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12594 12595 // Clear the statically implied flags. 12596 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12597 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12598 12599 auto II = FlagsMap.insert({V, Flags}); 12600 if (!II.second) 12601 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12602 } 12603 12604 bool PredicatedScalarEvolution::hasNoOverflow( 12605 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12606 const SCEV *Expr = getSCEV(V); 12607 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12608 12609 Flags = SCEVWrapPredicate::clearFlags( 12610 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12611 12612 auto II = FlagsMap.find(V); 12613 12614 if (II != FlagsMap.end()) 12615 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12616 12617 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12618 } 12619 12620 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12621 const SCEV *Expr = this->getSCEV(V); 12622 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12623 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12624 12625 if (!New) 12626 return nullptr; 12627 12628 for (auto *P : NewPreds) 12629 Preds.add(P); 12630 12631 updateGeneration(); 12632 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12633 return New; 12634 } 12635 12636 PredicatedScalarEvolution::PredicatedScalarEvolution( 12637 const PredicatedScalarEvolution &Init) 12638 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12639 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12640 for (auto I : Init.FlagsMap) 12641 FlagsMap.insert(I); 12642 } 12643 12644 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12645 // For each block. 12646 for (auto *BB : L.getBlocks()) 12647 for (auto &I : *BB) { 12648 if (!SE.isSCEVable(I.getType())) 12649 continue; 12650 12651 auto *Expr = SE.getSCEV(&I); 12652 auto II = RewriteMap.find(Expr); 12653 12654 if (II == RewriteMap.end()) 12655 continue; 12656 12657 // Don't print things that are not interesting. 12658 if (II->second.second == Expr) 12659 continue; 12660 12661 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12662 OS.indent(Depth + 2) << *Expr << "\n"; 12663 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12664 } 12665 } 12666 12667 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12668 // arbitrary expressions. 12669 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12670 // 4, A / B becomes X / 8). 12671 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12672 const SCEV *&RHS) { 12673 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12674 if (Add == nullptr || Add->getNumOperands() != 2) 12675 return false; 12676 12677 const SCEV *A = Add->getOperand(1); 12678 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12679 12680 if (Mul == nullptr) 12681 return false; 12682 12683 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12684 // (SomeExpr + (-(SomeExpr / B) * B)). 12685 if (Expr == getURemExpr(A, B)) { 12686 LHS = A; 12687 RHS = B; 12688 return true; 12689 } 12690 return false; 12691 }; 12692 12693 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12694 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12695 return MatchURemWithDivisor(Mul->getOperand(1)) || 12696 MatchURemWithDivisor(Mul->getOperand(2)); 12697 12698 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12699 if (Mul->getNumOperands() == 2) 12700 return MatchURemWithDivisor(Mul->getOperand(1)) || 12701 MatchURemWithDivisor(Mul->getOperand(0)) || 12702 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12703 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12704 return false; 12705 } 12706 12707 const SCEV* ScalarEvolution::computeMaxBackedgeTakenCount(const Loop *L) { 12708 SmallVector<BasicBlock*, 16> ExitingBlocks; 12709 L->getExitingBlocks(ExitingBlocks); 12710 12711 // Form an expression for the maximum exit count possible for this loop. We 12712 // merge the max and exact information to approximate a version of 12713 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 12714 SmallVector<const SCEV*, 4> ExitCounts; 12715 for (BasicBlock *ExitingBB : ExitingBlocks) { 12716 const SCEV *ExitCount = getExitCount(L, ExitingBB); 12717 if (isa<SCEVCouldNotCompute>(ExitCount)) 12718 ExitCount = getExitCount(L, ExitingBB, 12719 ScalarEvolution::ConstantMaximum); 12720 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 12721 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 12722 "We should only have known counts for exiting blocks that " 12723 "dominate latch!"); 12724 ExitCounts.push_back(ExitCount); 12725 } 12726 } 12727 if (ExitCounts.empty()) 12728 return getCouldNotCompute(); 12729 return getUMinFromMismatchedTypes(ExitCounts); 12730 } 12731 12732 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 12733 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 12734 /// we cannot guarantee that the replacement is loop invariant in the loop of 12735 /// the AddRec. 12736 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 12737 ValueToSCEVMapTy ⤅ 12738 12739 public: 12740 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 12741 : SCEVRewriteVisitor(SE), Map(M) {} 12742 12743 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 12744 12745 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12746 auto I = Map.find(Expr->getValue()); 12747 if (I == Map.end()) 12748 return Expr; 12749 return I->second; 12750 } 12751 }; 12752 12753 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 12754 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 12755 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 12756 if (!isa<SCEVUnknown>(LHS)) { 12757 std::swap(LHS, RHS); 12758 Predicate = CmpInst::getSwappedPredicate(Predicate); 12759 } 12760 12761 // For now, limit to conditions that provide information about unknown 12762 // expressions. 12763 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 12764 if (!LHSUnknown) 12765 return; 12766 12767 // TODO: use information from more predicates. 12768 switch (Predicate) { 12769 case CmpInst::ICMP_ULT: { 12770 if (!containsAddRecurrence(RHS)) { 12771 const SCEV *Base = LHS; 12772 auto I = RewriteMap.find(LHSUnknown->getValue()); 12773 if (I != RewriteMap.end()) 12774 Base = I->second; 12775 12776 RewriteMap[LHSUnknown->getValue()] = 12777 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 12778 } 12779 break; 12780 } 12781 case CmpInst::ICMP_ULE: { 12782 if (!containsAddRecurrence(RHS)) { 12783 const SCEV *Base = LHS; 12784 auto I = RewriteMap.find(LHSUnknown->getValue()); 12785 if (I != RewriteMap.end()) 12786 Base = I->second; 12787 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 12788 } 12789 break; 12790 } 12791 case CmpInst::ICMP_EQ: 12792 if (isa<SCEVConstant>(RHS)) 12793 RewriteMap[LHSUnknown->getValue()] = RHS; 12794 break; 12795 case CmpInst::ICMP_NE: 12796 if (isa<SCEVConstant>(RHS) && 12797 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 12798 RewriteMap[LHSUnknown->getValue()] = 12799 getUMaxExpr(LHS, getOne(RHS->getType())); 12800 break; 12801 default: 12802 break; 12803 } 12804 }; 12805 // Starting at the loop predecessor, climb up the predecessor chain, as long 12806 // as there are predecessors that can be found that have unique successors 12807 // leading to the original header. 12808 // TODO: share this logic with isLoopEntryGuardedByCond. 12809 ValueToSCEVMapTy RewriteMap; 12810 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 12811 L->getLoopPredecessor(), L->getHeader()); 12812 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 12813 12814 const BranchInst *LoopEntryPredicate = 12815 dyn_cast<BranchInst>(Pair.first->getTerminator()); 12816 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 12817 continue; 12818 12819 // TODO: use information from more complex conditions, e.g. AND expressions. 12820 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 12821 if (!Cmp) 12822 continue; 12823 12824 auto Predicate = Cmp->getPredicate(); 12825 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 12826 Predicate = CmpInst::getInversePredicate(Predicate); 12827 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 12828 getSCEV(Cmp->getOperand(1)), RewriteMap); 12829 } 12830 12831 // Also collect information from assumptions dominating the loop. 12832 for (auto &AssumeVH : AC.assumptions()) { 12833 if (!AssumeVH) 12834 continue; 12835 auto *AssumeI = cast<CallInst>(AssumeVH); 12836 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 12837 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 12838 continue; 12839 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 12840 getSCEV(Cmp->getOperand(1)), RewriteMap); 12841 } 12842 12843 if (RewriteMap.empty()) 12844 return Expr; 12845 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 12846 return Rewriter.visit(Expr); 12847 } 12848