1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Assembly/Writer.h" 72 #include "llvm/Target/TargetData.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Support/CFG.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/GetElementPtrTypeIterator.h" 79 #include "llvm/Support/InstIterator.h" 80 #include "llvm/Support/ManagedStatic.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/ADT/Statistic.h" 84 #include "llvm/ADT/STLExtras.h" 85 #include <ostream> 86 #include <algorithm> 87 #include <cmath> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant derived loop"), 103 cl::init(100)); 104 105 static RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 107 char ScalarEvolution::ID = 0; 108 109 //===----------------------------------------------------------------------===// 110 // SCEV class definitions 111 //===----------------------------------------------------------------------===// 112 113 //===----------------------------------------------------------------------===// 114 // Implementation of the SCEV class. 115 // 116 SCEV::~SCEV() {} 117 void SCEV::dump() const { 118 print(errs()); 119 errs() << '\n'; 120 } 121 122 void SCEV::print(std::ostream &o) const { 123 raw_os_ostream OS(o); 124 print(OS); 125 } 126 127 bool SCEV::isZero() const { 128 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 129 return SC->getValue()->isZero(); 130 return false; 131 } 132 133 134 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 135 SCEVCouldNotCompute::~SCEVCouldNotCompute() {} 136 137 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 139 return false; 140 } 141 142 const Type *SCEVCouldNotCompute::getType() const { 143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 144 return 0; 145 } 146 147 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 148 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 149 return false; 150 } 151 152 SCEVHandle SCEVCouldNotCompute:: 153 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 154 const SCEVHandle &Conc, 155 ScalarEvolution &SE) const { 156 return this; 157 } 158 159 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 160 OS << "***COULDNOTCOMPUTE***"; 161 } 162 163 bool SCEVCouldNotCompute::classof(const SCEV *S) { 164 return S->getSCEVType() == scCouldNotCompute; 165 } 166 167 168 // SCEVConstants - Only allow the creation of one SCEVConstant for any 169 // particular value. Don't use a SCEVHandle here, or else the object will 170 // never be deleted! 171 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 172 173 174 SCEVConstant::~SCEVConstant() { 175 SCEVConstants->erase(V); 176 } 177 178 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 179 SCEVConstant *&R = (*SCEVConstants)[V]; 180 if (R == 0) R = new SCEVConstant(V); 181 return R; 182 } 183 184 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 185 return getConstant(ConstantInt::get(Val)); 186 } 187 188 const Type *SCEVConstant::getType() const { return V->getType(); } 189 190 void SCEVConstant::print(raw_ostream &OS) const { 191 WriteAsOperand(OS, V, false); 192 } 193 194 SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy, 195 const SCEVHandle &op, const Type *ty) 196 : SCEV(SCEVTy), Op(op), Ty(ty) {} 197 198 SCEVCastExpr::~SCEVCastExpr() {} 199 200 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 201 return Op->dominates(BB, DT); 202 } 203 204 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 205 // particular input. Don't use a SCEVHandle here, or else the object will 206 // never be deleted! 207 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 208 SCEVTruncateExpr*> > SCEVTruncates; 209 210 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 211 : SCEVCastExpr(scTruncate, op, ty) { 212 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 213 (Ty->isInteger() || isa<PointerType>(Ty)) && 214 "Cannot truncate non-integer value!"); 215 } 216 217 SCEVTruncateExpr::~SCEVTruncateExpr() { 218 SCEVTruncates->erase(std::make_pair(Op, Ty)); 219 } 220 221 void SCEVTruncateExpr::print(raw_ostream &OS) const { 222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 223 } 224 225 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 226 // particular input. Don't use a SCEVHandle here, or else the object will never 227 // be deleted! 228 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 229 SCEVZeroExtendExpr*> > SCEVZeroExtends; 230 231 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 232 : SCEVCastExpr(scZeroExtend, op, ty) { 233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 234 (Ty->isInteger() || isa<PointerType>(Ty)) && 235 "Cannot zero extend non-integer value!"); 236 } 237 238 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 239 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 240 } 241 242 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 243 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 244 } 245 246 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 247 // particular input. Don't use a SCEVHandle here, or else the object will never 248 // be deleted! 249 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 250 SCEVSignExtendExpr*> > SCEVSignExtends; 251 252 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 253 : SCEVCastExpr(scSignExtend, op, ty) { 254 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 255 (Ty->isInteger() || isa<PointerType>(Ty)) && 256 "Cannot sign extend non-integer value!"); 257 } 258 259 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 260 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 261 } 262 263 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 264 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 265 } 266 267 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 268 // particular input. Don't use a SCEVHandle here, or else the object will never 269 // be deleted! 270 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 271 SCEVCommutativeExpr*> > SCEVCommExprs; 272 273 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 274 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 275 std::vector<SCEV*>(Operands.begin(), 276 Operands.end()))); 277 } 278 279 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 281 const char *OpStr = getOperationStr(); 282 OS << "(" << *Operands[0]; 283 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 284 OS << OpStr << *Operands[i]; 285 OS << ")"; 286 } 287 288 SCEVHandle SCEVCommutativeExpr:: 289 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 290 const SCEVHandle &Conc, 291 ScalarEvolution &SE) const { 292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 293 SCEVHandle H = 294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 295 if (H != getOperand(i)) { 296 std::vector<SCEVHandle> NewOps; 297 NewOps.reserve(getNumOperands()); 298 for (unsigned j = 0; j != i; ++j) 299 NewOps.push_back(getOperand(j)); 300 NewOps.push_back(H); 301 for (++i; i != e; ++i) 302 NewOps.push_back(getOperand(i)-> 303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 304 305 if (isa<SCEVAddExpr>(this)) 306 return SE.getAddExpr(NewOps); 307 else if (isa<SCEVMulExpr>(this)) 308 return SE.getMulExpr(NewOps); 309 else if (isa<SCEVSMaxExpr>(this)) 310 return SE.getSMaxExpr(NewOps); 311 else if (isa<SCEVUMaxExpr>(this)) 312 return SE.getUMaxExpr(NewOps); 313 else 314 assert(0 && "Unknown commutative expr!"); 315 } 316 } 317 return this; 318 } 319 320 bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 322 if (!getOperand(i)->dominates(BB, DT)) 323 return false; 324 } 325 return true; 326 } 327 328 329 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 330 // input. Don't use a SCEVHandle here, or else the object will never be 331 // deleted! 332 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 333 SCEVUDivExpr*> > SCEVUDivs; 334 335 SCEVUDivExpr::~SCEVUDivExpr() { 336 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 337 } 338 339 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 341 } 342 343 void SCEVUDivExpr::print(raw_ostream &OS) const { 344 OS << "(" << *LHS << " /u " << *RHS << ")"; 345 } 346 347 const Type *SCEVUDivExpr::getType() const { 348 return LHS->getType(); 349 } 350 351 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 352 // particular input. Don't use a SCEVHandle here, or else the object will never 353 // be deleted! 354 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 355 SCEVAddRecExpr*> > SCEVAddRecExprs; 356 357 SCEVAddRecExpr::~SCEVAddRecExpr() { 358 SCEVAddRecExprs->erase(std::make_pair(L, 359 std::vector<SCEV*>(Operands.begin(), 360 Operands.end()))); 361 } 362 363 bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 364 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 365 if (!getOperand(i)->dominates(BB, DT)) 366 return false; 367 } 368 return true; 369 } 370 371 372 SCEVHandle SCEVAddRecExpr:: 373 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 374 const SCEVHandle &Conc, 375 ScalarEvolution &SE) const { 376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 377 SCEVHandle H = 378 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 379 if (H != getOperand(i)) { 380 std::vector<SCEVHandle> NewOps; 381 NewOps.reserve(getNumOperands()); 382 for (unsigned j = 0; j != i; ++j) 383 NewOps.push_back(getOperand(j)); 384 NewOps.push_back(H); 385 for (++i; i != e; ++i) 386 NewOps.push_back(getOperand(i)-> 387 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 388 389 return SE.getAddRecExpr(NewOps, L); 390 } 391 } 392 return this; 393 } 394 395 396 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 397 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 398 // contain L and if the start is invariant. 399 return !QueryLoop->contains(L->getHeader()) && 400 getOperand(0)->isLoopInvariant(QueryLoop); 401 } 402 403 404 void SCEVAddRecExpr::print(raw_ostream &OS) const { 405 OS << "{" << *Operands[0]; 406 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 407 OS << ",+," << *Operands[i]; 408 OS << "}<" << L->getHeader()->getName() + ">"; 409 } 410 411 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 412 // value. Don't use a SCEVHandle here, or else the object will never be 413 // deleted! 414 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 415 416 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 417 418 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 419 // All non-instruction values are loop invariant. All instructions are loop 420 // invariant if they are not contained in the specified loop. 421 if (Instruction *I = dyn_cast<Instruction>(V)) 422 return !L->contains(I->getParent()); 423 return true; 424 } 425 426 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 427 if (Instruction *I = dyn_cast<Instruction>(getValue())) 428 return DT->dominates(I->getParent(), BB); 429 return true; 430 } 431 432 const Type *SCEVUnknown::getType() const { 433 return V->getType(); 434 } 435 436 void SCEVUnknown::print(raw_ostream &OS) const { 437 if (isa<PointerType>(V->getType())) 438 OS << "(ptrtoint " << *V->getType() << " "; 439 WriteAsOperand(OS, V, false); 440 if (isa<PointerType>(V->getType())) 441 OS << " to iPTR)"; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 453 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 454 return LHS->getSCEVType() < RHS->getSCEVType(); 455 } 456 }; 457 } 458 459 /// GroupByComplexity - Given a list of SCEV objects, order them by their 460 /// complexity, and group objects of the same complexity together by value. 461 /// When this routine is finished, we know that any duplicates in the vector are 462 /// consecutive and that complexity is monotonically increasing. 463 /// 464 /// Note that we go take special precautions to ensure that we get determinstic 465 /// results from this routine. In other words, we don't want the results of 466 /// this to depend on where the addresses of various SCEV objects happened to 467 /// land in memory. 468 /// 469 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 470 if (Ops.size() < 2) return; // Noop 471 if (Ops.size() == 2) { 472 // This is the common case, which also happens to be trivially simple. 473 // Special case it. 474 if (SCEVComplexityCompare()(Ops[1], Ops[0])) 475 std::swap(Ops[0], Ops[1]); 476 return; 477 } 478 479 // Do the rough sort by complexity. 480 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 481 482 // Now that we are sorted by complexity, group elements of the same 483 // complexity. Note that this is, at worst, N^2, but the vector is likely to 484 // be extremely short in practice. Note that we take this approach because we 485 // do not want to depend on the addresses of the objects we are grouping. 486 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 487 SCEV *S = Ops[i]; 488 unsigned Complexity = S->getSCEVType(); 489 490 // If there are any objects of the same complexity and same value as this 491 // one, group them. 492 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 493 if (Ops[j] == S) { // Found a duplicate. 494 // Move it to immediately after i'th element. 495 std::swap(Ops[i+1], Ops[j]); 496 ++i; // no need to rescan it. 497 if (i == e-2) return; // Done! 498 } 499 } 500 } 501 } 502 503 504 505 //===----------------------------------------------------------------------===// 506 // Simple SCEV method implementations 507 //===----------------------------------------------------------------------===// 508 509 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 510 // Assume, K > 0. 511 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 512 ScalarEvolution &SE, 513 const Type* ResultTy) { 514 // Handle the simplest case efficiently. 515 if (K == 1) 516 return SE.getTruncateOrZeroExtend(It, ResultTy); 517 518 // We are using the following formula for BC(It, K): 519 // 520 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 521 // 522 // Suppose, W is the bitwidth of the return value. We must be prepared for 523 // overflow. Hence, we must assure that the result of our computation is 524 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 525 // safe in modular arithmetic. 526 // 527 // However, this code doesn't use exactly that formula; the formula it uses 528 // is something like the following, where T is the number of factors of 2 in 529 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 530 // exponentiation: 531 // 532 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 533 // 534 // This formula is trivially equivalent to the previous formula. However, 535 // this formula can be implemented much more efficiently. The trick is that 536 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 537 // arithmetic. To do exact division in modular arithmetic, all we have 538 // to do is multiply by the inverse. Therefore, this step can be done at 539 // width W. 540 // 541 // The next issue is how to safely do the division by 2^T. The way this 542 // is done is by doing the multiplication step at a width of at least W + T 543 // bits. This way, the bottom W+T bits of the product are accurate. Then, 544 // when we perform the division by 2^T (which is equivalent to a right shift 545 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 546 // truncated out after the division by 2^T. 547 // 548 // In comparison to just directly using the first formula, this technique 549 // is much more efficient; using the first formula requires W * K bits, 550 // but this formula less than W + K bits. Also, the first formula requires 551 // a division step, whereas this formula only requires multiplies and shifts. 552 // 553 // It doesn't matter whether the subtraction step is done in the calculation 554 // width or the input iteration count's width; if the subtraction overflows, 555 // the result must be zero anyway. We prefer here to do it in the width of 556 // the induction variable because it helps a lot for certain cases; CodeGen 557 // isn't smart enough to ignore the overflow, which leads to much less 558 // efficient code if the width of the subtraction is wider than the native 559 // register width. 560 // 561 // (It's possible to not widen at all by pulling out factors of 2 before 562 // the multiplication; for example, K=2 can be calculated as 563 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 564 // extra arithmetic, so it's not an obvious win, and it gets 565 // much more complicated for K > 3.) 566 567 // Protection from insane SCEVs; this bound is conservative, 568 // but it probably doesn't matter. 569 if (K > 1000) 570 return SE.getCouldNotCompute(); 571 572 unsigned W = SE.getTypeSizeInBits(ResultTy); 573 574 // Calculate K! / 2^T and T; we divide out the factors of two before 575 // multiplying for calculating K! / 2^T to avoid overflow. 576 // Other overflow doesn't matter because we only care about the bottom 577 // W bits of the result. 578 APInt OddFactorial(W, 1); 579 unsigned T = 1; 580 for (unsigned i = 3; i <= K; ++i) { 581 APInt Mult(W, i); 582 unsigned TwoFactors = Mult.countTrailingZeros(); 583 T += TwoFactors; 584 Mult = Mult.lshr(TwoFactors); 585 OddFactorial *= Mult; 586 } 587 588 // We need at least W + T bits for the multiplication step 589 unsigned CalculationBits = W + T; 590 591 // Calcuate 2^T, at width T+W. 592 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 593 594 // Calculate the multiplicative inverse of K! / 2^T; 595 // this multiplication factor will perform the exact division by 596 // K! / 2^T. 597 APInt Mod = APInt::getSignedMinValue(W+1); 598 APInt MultiplyFactor = OddFactorial.zext(W+1); 599 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 600 MultiplyFactor = MultiplyFactor.trunc(W); 601 602 // Calculate the product, at width T+W 603 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 604 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 605 for (unsigned i = 1; i != K; ++i) { 606 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 607 Dividend = SE.getMulExpr(Dividend, 608 SE.getTruncateOrZeroExtend(S, CalculationTy)); 609 } 610 611 // Divide by 2^T 612 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 613 614 // Truncate the result, and divide by K! / 2^T. 615 616 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 617 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 618 } 619 620 /// evaluateAtIteration - Return the value of this chain of recurrences at 621 /// the specified iteration number. We can evaluate this recurrence by 622 /// multiplying each element in the chain by the binomial coefficient 623 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 624 /// 625 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 626 /// 627 /// where BC(It, k) stands for binomial coefficient. 628 /// 629 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 630 ScalarEvolution &SE) const { 631 SCEVHandle Result = getStart(); 632 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 633 // The computation is correct in the face of overflow provided that the 634 // multiplication is performed _after_ the evaluation of the binomial 635 // coefficient. 636 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 637 if (isa<SCEVCouldNotCompute>(Coeff)) 638 return Coeff; 639 640 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 641 } 642 return Result; 643 } 644 645 //===----------------------------------------------------------------------===// 646 // SCEV Expression folder implementations 647 //===----------------------------------------------------------------------===// 648 649 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 650 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 651 "This is not a truncating conversion!"); 652 assert(isSCEVable(Ty) && 653 "This is not a conversion to a SCEVable type!"); 654 Ty = getEffectiveSCEVType(Ty); 655 656 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 657 return getUnknown( 658 ConstantExpr::getTrunc(SC->getValue(), Ty)); 659 660 // trunc(trunc(x)) --> trunc(x) 661 if (SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 662 return getTruncateExpr(ST->getOperand(), Ty); 663 664 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 665 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 666 return getTruncateOrSignExtend(SS->getOperand(), Ty); 667 668 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 669 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 670 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 671 672 // If the input value is a chrec scev made out of constants, truncate 673 // all of the constants. 674 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 675 std::vector<SCEVHandle> Operands; 676 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 677 // FIXME: This should allow truncation of other expression types! 678 if (isa<SCEVConstant>(AddRec->getOperand(i))) 679 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 680 else 681 break; 682 if (Operands.size() == AddRec->getNumOperands()) 683 return getAddRecExpr(Operands, AddRec->getLoop()); 684 } 685 686 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 687 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 688 return Result; 689 } 690 691 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, 692 const Type *Ty) { 693 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 694 "This is not an extending conversion!"); 695 assert(isSCEVable(Ty) && 696 "This is not a conversion to a SCEVable type!"); 697 Ty = getEffectiveSCEVType(Ty); 698 699 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 700 const Type *IntTy = getEffectiveSCEVType(Ty); 701 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 702 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 703 return getUnknown(C); 704 } 705 706 // zext(zext(x)) --> zext(x) 707 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 708 return getZeroExtendExpr(SZ->getOperand(), Ty); 709 710 // If the input value is a chrec scev, and we can prove that the value 711 // did not overflow the old, smaller, value, we can zero extend all of the 712 // operands (often constants). This allows analysis of something like 713 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 714 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 715 if (AR->isAffine()) { 716 // Check whether the backedge-taken count is SCEVCouldNotCompute. 717 // Note that this serves two purposes: It filters out loops that are 718 // simply not analyzable, and it covers the case where this code is 719 // being called from within backedge-taken count analysis, such that 720 // attempting to ask for the backedge-taken count would likely result 721 // in infinite recursion. In the later case, the analysis code will 722 // cope with a conservative value, and it will take care to purge 723 // that value once it has finished. 724 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 725 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 726 // Manually compute the final value for AR, checking for 727 // overflow. 728 SCEVHandle Start = AR->getStart(); 729 SCEVHandle Step = AR->getStepRecurrence(*this); 730 731 // Check whether the backedge-taken count can be losslessly casted to 732 // the addrec's type. The count is always unsigned. 733 SCEVHandle CastedMaxBECount = 734 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 735 if (MaxBECount == 736 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) { 737 const Type *WideTy = 738 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 739 // Check whether Start+Step*MaxBECount has no unsigned overflow. 740 SCEVHandle ZMul = 741 getMulExpr(CastedMaxBECount, 742 getTruncateOrZeroExtend(Step, Start->getType())); 743 SCEVHandle Add = getAddExpr(Start, ZMul); 744 if (getZeroExtendExpr(Add, WideTy) == 745 getAddExpr(getZeroExtendExpr(Start, WideTy), 746 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 747 getZeroExtendExpr(Step, WideTy)))) 748 // Return the expression with the addrec on the outside. 749 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 750 getZeroExtendExpr(Step, Ty), 751 AR->getLoop()); 752 753 // Similar to above, only this time treat the step value as signed. 754 // This covers loops that count down. 755 SCEVHandle SMul = 756 getMulExpr(CastedMaxBECount, 757 getTruncateOrSignExtend(Step, Start->getType())); 758 Add = getAddExpr(Start, SMul); 759 if (getZeroExtendExpr(Add, WideTy) == 760 getAddExpr(getZeroExtendExpr(Start, WideTy), 761 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 762 getSignExtendExpr(Step, WideTy)))) 763 // Return the expression with the addrec on the outside. 764 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 765 getSignExtendExpr(Step, Ty), 766 AR->getLoop()); 767 } 768 } 769 } 770 771 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 772 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 773 return Result; 774 } 775 776 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, 777 const Type *Ty) { 778 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 779 "This is not an extending conversion!"); 780 assert(isSCEVable(Ty) && 781 "This is not a conversion to a SCEVable type!"); 782 Ty = getEffectiveSCEVType(Ty); 783 784 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 785 const Type *IntTy = getEffectiveSCEVType(Ty); 786 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 787 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 788 return getUnknown(C); 789 } 790 791 // sext(sext(x)) --> sext(x) 792 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 793 return getSignExtendExpr(SS->getOperand(), Ty); 794 795 // If the input value is a chrec scev, and we can prove that the value 796 // did not overflow the old, smaller, value, we can sign extend all of the 797 // operands (often constants). This allows analysis of something like 798 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 799 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 800 if (AR->isAffine()) { 801 // Check whether the backedge-taken count is SCEVCouldNotCompute. 802 // Note that this serves two purposes: It filters out loops that are 803 // simply not analyzable, and it covers the case where this code is 804 // being called from within backedge-taken count analysis, such that 805 // attempting to ask for the backedge-taken count would likely result 806 // in infinite recursion. In the later case, the analysis code will 807 // cope with a conservative value, and it will take care to purge 808 // that value once it has finished. 809 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop()); 810 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 811 // Manually compute the final value for AR, checking for 812 // overflow. 813 SCEVHandle Start = AR->getStart(); 814 SCEVHandle Step = AR->getStepRecurrence(*this); 815 816 // Check whether the backedge-taken count can be losslessly casted to 817 // the addrec's type. The count is always unsigned. 818 SCEVHandle CastedMaxBECount = 819 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 820 if (MaxBECount == 821 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType())) { 822 const Type *WideTy = 823 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2); 824 // Check whether Start+Step*MaxBECount has no signed overflow. 825 SCEVHandle SMul = 826 getMulExpr(CastedMaxBECount, 827 getTruncateOrSignExtend(Step, Start->getType())); 828 SCEVHandle Add = getAddExpr(Start, SMul); 829 if (getSignExtendExpr(Add, WideTy) == 830 getAddExpr(getSignExtendExpr(Start, WideTy), 831 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 832 getSignExtendExpr(Step, WideTy)))) 833 // Return the expression with the addrec on the outside. 834 return getAddRecExpr(getSignExtendExpr(Start, Ty), 835 getSignExtendExpr(Step, Ty), 836 AR->getLoop()); 837 } 838 } 839 } 840 841 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 842 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 843 return Result; 844 } 845 846 // get - Get a canonical add expression, or something simpler if possible. 847 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 848 assert(!Ops.empty() && "Cannot get empty add!"); 849 if (Ops.size() == 1) return Ops[0]; 850 851 // Sort by complexity, this groups all similar expression types together. 852 GroupByComplexity(Ops); 853 854 // If there are any constants, fold them together. 855 unsigned Idx = 0; 856 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 857 ++Idx; 858 assert(Idx < Ops.size()); 859 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 860 // We found two constants, fold them together! 861 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 862 RHSC->getValue()->getValue()); 863 Ops[0] = getConstant(Fold); 864 Ops.erase(Ops.begin()+1); // Erase the folded element 865 if (Ops.size() == 1) return Ops[0]; 866 LHSC = cast<SCEVConstant>(Ops[0]); 867 } 868 869 // If we are left with a constant zero being added, strip it off. 870 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 871 Ops.erase(Ops.begin()); 872 --Idx; 873 } 874 } 875 876 if (Ops.size() == 1) return Ops[0]; 877 878 // Okay, check to see if the same value occurs in the operand list twice. If 879 // so, merge them together into an multiply expression. Since we sorted the 880 // list, these values are required to be adjacent. 881 const Type *Ty = Ops[0]->getType(); 882 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 883 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 884 // Found a match, merge the two values into a multiply, and add any 885 // remaining values to the result. 886 SCEVHandle Two = getIntegerSCEV(2, Ty); 887 SCEVHandle Mul = getMulExpr(Ops[i], Two); 888 if (Ops.size() == 2) 889 return Mul; 890 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 891 Ops.push_back(Mul); 892 return getAddExpr(Ops); 893 } 894 895 // Now we know the first non-constant operand. Skip past any cast SCEVs. 896 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 897 ++Idx; 898 899 // If there are add operands they would be next. 900 if (Idx < Ops.size()) { 901 bool DeletedAdd = false; 902 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 903 // If we have an add, expand the add operands onto the end of the operands 904 // list. 905 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 906 Ops.erase(Ops.begin()+Idx); 907 DeletedAdd = true; 908 } 909 910 // If we deleted at least one add, we added operands to the end of the list, 911 // and they are not necessarily sorted. Recurse to resort and resimplify 912 // any operands we just aquired. 913 if (DeletedAdd) 914 return getAddExpr(Ops); 915 } 916 917 // Skip over the add expression until we get to a multiply. 918 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 919 ++Idx; 920 921 // If we are adding something to a multiply expression, make sure the 922 // something is not already an operand of the multiply. If so, merge it into 923 // the multiply. 924 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 925 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 926 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 927 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 928 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 929 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 930 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 931 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 932 if (Mul->getNumOperands() != 2) { 933 // If the multiply has more than two operands, we must get the 934 // Y*Z term. 935 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 936 MulOps.erase(MulOps.begin()+MulOp); 937 InnerMul = getMulExpr(MulOps); 938 } 939 SCEVHandle One = getIntegerSCEV(1, Ty); 940 SCEVHandle AddOne = getAddExpr(InnerMul, One); 941 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 942 if (Ops.size() == 2) return OuterMul; 943 if (AddOp < Idx) { 944 Ops.erase(Ops.begin()+AddOp); 945 Ops.erase(Ops.begin()+Idx-1); 946 } else { 947 Ops.erase(Ops.begin()+Idx); 948 Ops.erase(Ops.begin()+AddOp-1); 949 } 950 Ops.push_back(OuterMul); 951 return getAddExpr(Ops); 952 } 953 954 // Check this multiply against other multiplies being added together. 955 for (unsigned OtherMulIdx = Idx+1; 956 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 957 ++OtherMulIdx) { 958 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 959 // If MulOp occurs in OtherMul, we can fold the two multiplies 960 // together. 961 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 962 OMulOp != e; ++OMulOp) 963 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 964 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 965 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 966 if (Mul->getNumOperands() != 2) { 967 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 968 MulOps.erase(MulOps.begin()+MulOp); 969 InnerMul1 = getMulExpr(MulOps); 970 } 971 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 972 if (OtherMul->getNumOperands() != 2) { 973 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 974 OtherMul->op_end()); 975 MulOps.erase(MulOps.begin()+OMulOp); 976 InnerMul2 = getMulExpr(MulOps); 977 } 978 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 979 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 980 if (Ops.size() == 2) return OuterMul; 981 Ops.erase(Ops.begin()+Idx); 982 Ops.erase(Ops.begin()+OtherMulIdx-1); 983 Ops.push_back(OuterMul); 984 return getAddExpr(Ops); 985 } 986 } 987 } 988 } 989 990 // If there are any add recurrences in the operands list, see if any other 991 // added values are loop invariant. If so, we can fold them into the 992 // recurrence. 993 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 994 ++Idx; 995 996 // Scan over all recurrences, trying to fold loop invariants into them. 997 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 998 // Scan all of the other operands to this add and add them to the vector if 999 // they are loop invariant w.r.t. the recurrence. 1000 std::vector<SCEVHandle> LIOps; 1001 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1002 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1003 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1004 LIOps.push_back(Ops[i]); 1005 Ops.erase(Ops.begin()+i); 1006 --i; --e; 1007 } 1008 1009 // If we found some loop invariants, fold them into the recurrence. 1010 if (!LIOps.empty()) { 1011 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1012 LIOps.push_back(AddRec->getStart()); 1013 1014 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 1015 AddRecOps[0] = getAddExpr(LIOps); 1016 1017 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1018 // If all of the other operands were loop invariant, we are done. 1019 if (Ops.size() == 1) return NewRec; 1020 1021 // Otherwise, add the folded AddRec by the non-liv parts. 1022 for (unsigned i = 0;; ++i) 1023 if (Ops[i] == AddRec) { 1024 Ops[i] = NewRec; 1025 break; 1026 } 1027 return getAddExpr(Ops); 1028 } 1029 1030 // Okay, if there weren't any loop invariants to be folded, check to see if 1031 // there are multiple AddRec's with the same loop induction variable being 1032 // added together. If so, we can fold them. 1033 for (unsigned OtherIdx = Idx+1; 1034 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1035 if (OtherIdx != Idx) { 1036 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1037 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1038 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1039 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 1040 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1041 if (i >= NewOps.size()) { 1042 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1043 OtherAddRec->op_end()); 1044 break; 1045 } 1046 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1047 } 1048 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1049 1050 if (Ops.size() == 2) return NewAddRec; 1051 1052 Ops.erase(Ops.begin()+Idx); 1053 Ops.erase(Ops.begin()+OtherIdx-1); 1054 Ops.push_back(NewAddRec); 1055 return getAddExpr(Ops); 1056 } 1057 } 1058 1059 // Otherwise couldn't fold anything into this recurrence. Move onto the 1060 // next one. 1061 } 1062 1063 // Okay, it looks like we really DO need an add expr. Check to see if we 1064 // already have one, otherwise create a new one. 1065 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1066 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 1067 SCEVOps)]; 1068 if (Result == 0) Result = new SCEVAddExpr(Ops); 1069 return Result; 1070 } 1071 1072 1073 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 1074 assert(!Ops.empty() && "Cannot get empty mul!"); 1075 1076 // Sort by complexity, this groups all similar expression types together. 1077 GroupByComplexity(Ops); 1078 1079 // If there are any constants, fold them together. 1080 unsigned Idx = 0; 1081 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1082 1083 // C1*(C2+V) -> C1*C2 + C1*V 1084 if (Ops.size() == 2) 1085 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1086 if (Add->getNumOperands() == 2 && 1087 isa<SCEVConstant>(Add->getOperand(0))) 1088 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1089 getMulExpr(LHSC, Add->getOperand(1))); 1090 1091 1092 ++Idx; 1093 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1094 // We found two constants, fold them together! 1095 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 1096 RHSC->getValue()->getValue()); 1097 Ops[0] = getConstant(Fold); 1098 Ops.erase(Ops.begin()+1); // Erase the folded element 1099 if (Ops.size() == 1) return Ops[0]; 1100 LHSC = cast<SCEVConstant>(Ops[0]); 1101 } 1102 1103 // If we are left with a constant one being multiplied, strip it off. 1104 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1105 Ops.erase(Ops.begin()); 1106 --Idx; 1107 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1108 // If we have a multiply of zero, it will always be zero. 1109 return Ops[0]; 1110 } 1111 } 1112 1113 // Skip over the add expression until we get to a multiply. 1114 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1115 ++Idx; 1116 1117 if (Ops.size() == 1) 1118 return Ops[0]; 1119 1120 // If there are mul operands inline them all into this expression. 1121 if (Idx < Ops.size()) { 1122 bool DeletedMul = false; 1123 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1124 // If we have an mul, expand the mul operands onto the end of the operands 1125 // list. 1126 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1127 Ops.erase(Ops.begin()+Idx); 1128 DeletedMul = true; 1129 } 1130 1131 // If we deleted at least one mul, we added operands to the end of the list, 1132 // and they are not necessarily sorted. Recurse to resort and resimplify 1133 // any operands we just aquired. 1134 if (DeletedMul) 1135 return getMulExpr(Ops); 1136 } 1137 1138 // If there are any add recurrences in the operands list, see if any other 1139 // added values are loop invariant. If so, we can fold them into the 1140 // recurrence. 1141 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1142 ++Idx; 1143 1144 // Scan over all recurrences, trying to fold loop invariants into them. 1145 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1146 // Scan all of the other operands to this mul and add them to the vector if 1147 // they are loop invariant w.r.t. the recurrence. 1148 std::vector<SCEVHandle> LIOps; 1149 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1150 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1151 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1152 LIOps.push_back(Ops[i]); 1153 Ops.erase(Ops.begin()+i); 1154 --i; --e; 1155 } 1156 1157 // If we found some loop invariants, fold them into the recurrence. 1158 if (!LIOps.empty()) { 1159 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1160 std::vector<SCEVHandle> NewOps; 1161 NewOps.reserve(AddRec->getNumOperands()); 1162 if (LIOps.size() == 1) { 1163 SCEV *Scale = LIOps[0]; 1164 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1165 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1166 } else { 1167 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1168 std::vector<SCEVHandle> MulOps(LIOps); 1169 MulOps.push_back(AddRec->getOperand(i)); 1170 NewOps.push_back(getMulExpr(MulOps)); 1171 } 1172 } 1173 1174 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1175 1176 // If all of the other operands were loop invariant, we are done. 1177 if (Ops.size() == 1) return NewRec; 1178 1179 // Otherwise, multiply the folded AddRec by the non-liv parts. 1180 for (unsigned i = 0;; ++i) 1181 if (Ops[i] == AddRec) { 1182 Ops[i] = NewRec; 1183 break; 1184 } 1185 return getMulExpr(Ops); 1186 } 1187 1188 // Okay, if there weren't any loop invariants to be folded, check to see if 1189 // there are multiple AddRec's with the same loop induction variable being 1190 // multiplied together. If so, we can fold them. 1191 for (unsigned OtherIdx = Idx+1; 1192 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1193 if (OtherIdx != Idx) { 1194 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1195 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1196 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1197 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1198 SCEVHandle NewStart = getMulExpr(F->getStart(), 1199 G->getStart()); 1200 SCEVHandle B = F->getStepRecurrence(*this); 1201 SCEVHandle D = G->getStepRecurrence(*this); 1202 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1203 getMulExpr(G, B), 1204 getMulExpr(B, D)); 1205 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1206 F->getLoop()); 1207 if (Ops.size() == 2) return NewAddRec; 1208 1209 Ops.erase(Ops.begin()+Idx); 1210 Ops.erase(Ops.begin()+OtherIdx-1); 1211 Ops.push_back(NewAddRec); 1212 return getMulExpr(Ops); 1213 } 1214 } 1215 1216 // Otherwise couldn't fold anything into this recurrence. Move onto the 1217 // next one. 1218 } 1219 1220 // Okay, it looks like we really DO need an mul expr. Check to see if we 1221 // already have one, otherwise create a new one. 1222 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1223 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1224 SCEVOps)]; 1225 if (Result == 0) 1226 Result = new SCEVMulExpr(Ops); 1227 return Result; 1228 } 1229 1230 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1231 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1232 if (RHSC->getValue()->equalsInt(1)) 1233 return LHS; // X udiv 1 --> x 1234 1235 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1236 Constant *LHSCV = LHSC->getValue(); 1237 Constant *RHSCV = RHSC->getValue(); 1238 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1239 } 1240 } 1241 1242 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1243 1244 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1245 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1246 return Result; 1247 } 1248 1249 1250 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1251 /// specified loop. Simplify the expression as much as possible. 1252 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1253 const SCEVHandle &Step, const Loop *L) { 1254 std::vector<SCEVHandle> Operands; 1255 Operands.push_back(Start); 1256 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1257 if (StepChrec->getLoop() == L) { 1258 Operands.insert(Operands.end(), StepChrec->op_begin(), 1259 StepChrec->op_end()); 1260 return getAddRecExpr(Operands, L); 1261 } 1262 1263 Operands.push_back(Step); 1264 return getAddRecExpr(Operands, L); 1265 } 1266 1267 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1268 /// specified loop. Simplify the expression as much as possible. 1269 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1270 const Loop *L) { 1271 if (Operands.size() == 1) return Operands[0]; 1272 1273 if (Operands.back()->isZero()) { 1274 Operands.pop_back(); 1275 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1276 } 1277 1278 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1279 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1280 const Loop* NestedLoop = NestedAR->getLoop(); 1281 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1282 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1283 NestedAR->op_end()); 1284 SCEVHandle NestedARHandle(NestedAR); 1285 Operands[0] = NestedAR->getStart(); 1286 NestedOperands[0] = getAddRecExpr(Operands, L); 1287 return getAddRecExpr(NestedOperands, NestedLoop); 1288 } 1289 } 1290 1291 SCEVAddRecExpr *&Result = 1292 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1293 Operands.end()))]; 1294 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1295 return Result; 1296 } 1297 1298 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1299 const SCEVHandle &RHS) { 1300 std::vector<SCEVHandle> Ops; 1301 Ops.push_back(LHS); 1302 Ops.push_back(RHS); 1303 return getSMaxExpr(Ops); 1304 } 1305 1306 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1307 assert(!Ops.empty() && "Cannot get empty smax!"); 1308 if (Ops.size() == 1) return Ops[0]; 1309 1310 // Sort by complexity, this groups all similar expression types together. 1311 GroupByComplexity(Ops); 1312 1313 // If there are any constants, fold them together. 1314 unsigned Idx = 0; 1315 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1316 ++Idx; 1317 assert(Idx < Ops.size()); 1318 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1319 // We found two constants, fold them together! 1320 ConstantInt *Fold = ConstantInt::get( 1321 APIntOps::smax(LHSC->getValue()->getValue(), 1322 RHSC->getValue()->getValue())); 1323 Ops[0] = getConstant(Fold); 1324 Ops.erase(Ops.begin()+1); // Erase the folded element 1325 if (Ops.size() == 1) return Ops[0]; 1326 LHSC = cast<SCEVConstant>(Ops[0]); 1327 } 1328 1329 // If we are left with a constant -inf, strip it off. 1330 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1331 Ops.erase(Ops.begin()); 1332 --Idx; 1333 } 1334 } 1335 1336 if (Ops.size() == 1) return Ops[0]; 1337 1338 // Find the first SMax 1339 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1340 ++Idx; 1341 1342 // Check to see if one of the operands is an SMax. If so, expand its operands 1343 // onto our operand list, and recurse to simplify. 1344 if (Idx < Ops.size()) { 1345 bool DeletedSMax = false; 1346 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1347 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1348 Ops.erase(Ops.begin()+Idx); 1349 DeletedSMax = true; 1350 } 1351 1352 if (DeletedSMax) 1353 return getSMaxExpr(Ops); 1354 } 1355 1356 // Okay, check to see if the same value occurs in the operand list twice. If 1357 // so, delete one. Since we sorted the list, these values are required to 1358 // be adjacent. 1359 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1360 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1361 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1362 --i; --e; 1363 } 1364 1365 if (Ops.size() == 1) return Ops[0]; 1366 1367 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1368 1369 // Okay, it looks like we really DO need an smax expr. Check to see if we 1370 // already have one, otherwise create a new one. 1371 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1372 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1373 SCEVOps)]; 1374 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1375 return Result; 1376 } 1377 1378 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1379 const SCEVHandle &RHS) { 1380 std::vector<SCEVHandle> Ops; 1381 Ops.push_back(LHS); 1382 Ops.push_back(RHS); 1383 return getUMaxExpr(Ops); 1384 } 1385 1386 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1387 assert(!Ops.empty() && "Cannot get empty umax!"); 1388 if (Ops.size() == 1) return Ops[0]; 1389 1390 // Sort by complexity, this groups all similar expression types together. 1391 GroupByComplexity(Ops); 1392 1393 // If there are any constants, fold them together. 1394 unsigned Idx = 0; 1395 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1396 ++Idx; 1397 assert(Idx < Ops.size()); 1398 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1399 // We found two constants, fold them together! 1400 ConstantInt *Fold = ConstantInt::get( 1401 APIntOps::umax(LHSC->getValue()->getValue(), 1402 RHSC->getValue()->getValue())); 1403 Ops[0] = getConstant(Fold); 1404 Ops.erase(Ops.begin()+1); // Erase the folded element 1405 if (Ops.size() == 1) return Ops[0]; 1406 LHSC = cast<SCEVConstant>(Ops[0]); 1407 } 1408 1409 // If we are left with a constant zero, strip it off. 1410 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1411 Ops.erase(Ops.begin()); 1412 --Idx; 1413 } 1414 } 1415 1416 if (Ops.size() == 1) return Ops[0]; 1417 1418 // Find the first UMax 1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1420 ++Idx; 1421 1422 // Check to see if one of the operands is a UMax. If so, expand its operands 1423 // onto our operand list, and recurse to simplify. 1424 if (Idx < Ops.size()) { 1425 bool DeletedUMax = false; 1426 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1427 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1428 Ops.erase(Ops.begin()+Idx); 1429 DeletedUMax = true; 1430 } 1431 1432 if (DeletedUMax) 1433 return getUMaxExpr(Ops); 1434 } 1435 1436 // Okay, check to see if the same value occurs in the operand list twice. If 1437 // so, delete one. Since we sorted the list, these values are required to 1438 // be adjacent. 1439 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1440 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1441 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1442 --i; --e; 1443 } 1444 1445 if (Ops.size() == 1) return Ops[0]; 1446 1447 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1448 1449 // Okay, it looks like we really DO need a umax expr. Check to see if we 1450 // already have one, otherwise create a new one. 1451 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1452 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1453 SCEVOps)]; 1454 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1455 return Result; 1456 } 1457 1458 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1459 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1460 return getConstant(CI); 1461 if (isa<ConstantPointerNull>(V)) 1462 return getIntegerSCEV(0, V->getType()); 1463 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1464 if (Result == 0) Result = new SCEVUnknown(V); 1465 return Result; 1466 } 1467 1468 //===----------------------------------------------------------------------===// 1469 // Basic SCEV Analysis and PHI Idiom Recognition Code 1470 // 1471 1472 /// deleteValueFromRecords - This method should be called by the 1473 /// client before it removes an instruction from the program, to make sure 1474 /// that no dangling references are left around. 1475 void ScalarEvolution::deleteValueFromRecords(Value *V) { 1476 SmallVector<Value *, 16> Worklist; 1477 1478 if (Scalars.erase(V)) { 1479 if (PHINode *PN = dyn_cast<PHINode>(V)) 1480 ConstantEvolutionLoopExitValue.erase(PN); 1481 Worklist.push_back(V); 1482 } 1483 1484 while (!Worklist.empty()) { 1485 Value *VV = Worklist.back(); 1486 Worklist.pop_back(); 1487 1488 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1489 UI != UE; ++UI) { 1490 Instruction *Inst = cast<Instruction>(*UI); 1491 if (Scalars.erase(Inst)) { 1492 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1493 ConstantEvolutionLoopExitValue.erase(PN); 1494 Worklist.push_back(Inst); 1495 } 1496 } 1497 } 1498 } 1499 1500 /// isSCEVable - Test if values of the given type are analyzable within 1501 /// the SCEV framework. This primarily includes integer types, and it 1502 /// can optionally include pointer types if the ScalarEvolution class 1503 /// has access to target-specific information. 1504 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 1505 // Integers are always SCEVable. 1506 if (Ty->isInteger()) 1507 return true; 1508 1509 // Pointers are SCEVable if TargetData information is available 1510 // to provide pointer size information. 1511 if (isa<PointerType>(Ty)) 1512 return TD != NULL; 1513 1514 // Otherwise it's not SCEVable. 1515 return false; 1516 } 1517 1518 /// getTypeSizeInBits - Return the size in bits of the specified type, 1519 /// for which isSCEVable must return true. 1520 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 1521 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1522 1523 // If we have a TargetData, use it! 1524 if (TD) 1525 return TD->getTypeSizeInBits(Ty); 1526 1527 // Otherwise, we support only integer types. 1528 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!"); 1529 return Ty->getPrimitiveSizeInBits(); 1530 } 1531 1532 /// getEffectiveSCEVType - Return a type with the same bitwidth as 1533 /// the given type and which represents how SCEV will treat the given 1534 /// type, for which isSCEVable must return true. For pointer types, 1535 /// this is the pointer-sized integer type. 1536 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 1537 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 1538 1539 if (Ty->isInteger()) 1540 return Ty; 1541 1542 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 1543 return TD->getIntPtrType(); 1544 } 1545 1546 SCEVHandle ScalarEvolution::getCouldNotCompute() { 1547 return UnknownValue; 1548 } 1549 1550 // hasSCEV - Return true if the SCEV for this value has already been 1551 /// computed. 1552 bool ScalarEvolution::hasSCEV(Value *V) const { 1553 return Scalars.count(V); 1554 } 1555 1556 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1557 /// expression and create a new one. 1558 SCEVHandle ScalarEvolution::getSCEV(Value *V) { 1559 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 1560 1561 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1562 if (I != Scalars.end()) return I->second; 1563 SCEVHandle S = createSCEV(V); 1564 Scalars.insert(std::make_pair(V, S)); 1565 return S; 1566 } 1567 1568 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1569 /// specified signed integer value and return a SCEV for the constant. 1570 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 1571 Ty = getEffectiveSCEVType(Ty); 1572 Constant *C; 1573 if (Val == 0) 1574 C = Constant::getNullValue(Ty); 1575 else if (Ty->isFloatingPoint()) 1576 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1577 APFloat::IEEEdouble, Val)); 1578 else 1579 C = ConstantInt::get(Ty, Val); 1580 return getUnknown(C); 1581 } 1582 1583 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1584 /// 1585 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 1586 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1587 return getUnknown(ConstantExpr::getNeg(VC->getValue())); 1588 1589 const Type *Ty = V->getType(); 1590 Ty = getEffectiveSCEVType(Ty); 1591 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty))); 1592 } 1593 1594 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1595 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 1596 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1597 return getUnknown(ConstantExpr::getNot(VC->getValue())); 1598 1599 const Type *Ty = V->getType(); 1600 Ty = getEffectiveSCEVType(Ty); 1601 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty)); 1602 return getMinusSCEV(AllOnes, V); 1603 } 1604 1605 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1606 /// 1607 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 1608 const SCEVHandle &RHS) { 1609 // X - Y --> X + -Y 1610 return getAddExpr(LHS, getNegativeSCEV(RHS)); 1611 } 1612 1613 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 1614 /// input value to the specified type. If the type must be extended, it is zero 1615 /// extended. 1616 SCEVHandle 1617 ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 1618 const Type *Ty) { 1619 const Type *SrcTy = V->getType(); 1620 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1621 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1622 "Cannot truncate or zero extend with non-integer arguments!"); 1623 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1624 return V; // No conversion 1625 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1626 return getTruncateExpr(V, Ty); 1627 return getZeroExtendExpr(V, Ty); 1628 } 1629 1630 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 1631 /// input value to the specified type. If the type must be extended, it is sign 1632 /// extended. 1633 SCEVHandle 1634 ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 1635 const Type *Ty) { 1636 const Type *SrcTy = V->getType(); 1637 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) && 1638 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) && 1639 "Cannot truncate or zero extend with non-integer arguments!"); 1640 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 1641 return V; // No conversion 1642 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 1643 return getTruncateExpr(V, Ty); 1644 return getSignExtendExpr(V, Ty); 1645 } 1646 1647 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1648 /// the specified instruction and replaces any references to the symbolic value 1649 /// SymName with the specified value. This is used during PHI resolution. 1650 void ScalarEvolution:: 1651 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1652 const SCEVHandle &NewVal) { 1653 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1654 if (SI == Scalars.end()) return; 1655 1656 SCEVHandle NV = 1657 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this); 1658 if (NV == SI->second) return; // No change. 1659 1660 SI->second = NV; // Update the scalars map! 1661 1662 // Any instruction values that use this instruction might also need to be 1663 // updated! 1664 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1665 UI != E; ++UI) 1666 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1667 } 1668 1669 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1670 /// a loop header, making it a potential recurrence, or it doesn't. 1671 /// 1672 SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) { 1673 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1674 if (const Loop *L = LI->getLoopFor(PN->getParent())) 1675 if (L->getHeader() == PN->getParent()) { 1676 // If it lives in the loop header, it has two incoming values, one 1677 // from outside the loop, and one from inside. 1678 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1679 unsigned BackEdge = IncomingEdge^1; 1680 1681 // While we are analyzing this PHI node, handle its value symbolically. 1682 SCEVHandle SymbolicName = getUnknown(PN); 1683 assert(Scalars.find(PN) == Scalars.end() && 1684 "PHI node already processed?"); 1685 Scalars.insert(std::make_pair(PN, SymbolicName)); 1686 1687 // Using this symbolic name for the PHI, analyze the value coming around 1688 // the back-edge. 1689 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1690 1691 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1692 // has a special value for the first iteration of the loop. 1693 1694 // If the value coming around the backedge is an add with the symbolic 1695 // value we just inserted, then we found a simple induction variable! 1696 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1697 // If there is a single occurrence of the symbolic value, replace it 1698 // with a recurrence. 1699 unsigned FoundIndex = Add->getNumOperands(); 1700 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1701 if (Add->getOperand(i) == SymbolicName) 1702 if (FoundIndex == e) { 1703 FoundIndex = i; 1704 break; 1705 } 1706 1707 if (FoundIndex != Add->getNumOperands()) { 1708 // Create an add with everything but the specified operand. 1709 std::vector<SCEVHandle> Ops; 1710 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1711 if (i != FoundIndex) 1712 Ops.push_back(Add->getOperand(i)); 1713 SCEVHandle Accum = getAddExpr(Ops); 1714 1715 // This is not a valid addrec if the step amount is varying each 1716 // loop iteration, but is not itself an addrec in this loop. 1717 if (Accum->isLoopInvariant(L) || 1718 (isa<SCEVAddRecExpr>(Accum) && 1719 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1720 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1721 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L); 1722 1723 // Okay, for the entire analysis of this edge we assumed the PHI 1724 // to be symbolic. We now need to go back and update all of the 1725 // entries for the scalars that use the PHI (except for the PHI 1726 // itself) to use the new analyzed value instead of the "symbolic" 1727 // value. 1728 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1729 return PHISCEV; 1730 } 1731 } 1732 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1733 // Otherwise, this could be a loop like this: 1734 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1735 // In this case, j = {1,+,1} and BEValue is j. 1736 // Because the other in-value of i (0) fits the evolution of BEValue 1737 // i really is an addrec evolution. 1738 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1739 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1740 1741 // If StartVal = j.start - j.stride, we can use StartVal as the 1742 // initial step of the addrec evolution. 1743 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 1744 AddRec->getOperand(1))) { 1745 SCEVHandle PHISCEV = 1746 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1747 1748 // Okay, for the entire analysis of this edge we assumed the PHI 1749 // to be symbolic. We now need to go back and update all of the 1750 // entries for the scalars that use the PHI (except for the PHI 1751 // itself) to use the new analyzed value instead of the "symbolic" 1752 // value. 1753 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1754 return PHISCEV; 1755 } 1756 } 1757 } 1758 1759 return SymbolicName; 1760 } 1761 1762 // If it's not a loop phi, we can't handle it yet. 1763 return getUnknown(PN); 1764 } 1765 1766 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1767 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1768 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1769 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1770 static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) { 1771 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1772 return C->getValue()->getValue().countTrailingZeros(); 1773 1774 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1775 return std::min(GetMinTrailingZeros(T->getOperand(), SE), 1776 (uint32_t)SE.getTypeSizeInBits(T->getType())); 1777 1778 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1779 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 1780 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 1781 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1782 } 1783 1784 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1785 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE); 1786 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ? 1787 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1788 } 1789 1790 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1791 // The result is the min of all operands results. 1792 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 1793 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1794 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 1795 return MinOpRes; 1796 } 1797 1798 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1799 // The result is the sum of all operands results. 1800 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 1801 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType()); 1802 for (unsigned i = 1, e = M->getNumOperands(); 1803 SumOpRes != BitWidth && i != e; ++i) 1804 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE), 1805 BitWidth); 1806 return SumOpRes; 1807 } 1808 1809 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1810 // The result is the min of all operands results. 1811 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE); 1812 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1813 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE)); 1814 return MinOpRes; 1815 } 1816 1817 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 1818 // The result is the min of all operands results. 1819 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 1820 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1821 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 1822 return MinOpRes; 1823 } 1824 1825 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 1826 // The result is the min of all operands results. 1827 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE); 1828 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1829 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE)); 1830 return MinOpRes; 1831 } 1832 1833 // SCEVUDivExpr, SCEVUnknown 1834 return 0; 1835 } 1836 1837 /// createSCEV - We know that there is no SCEV for the specified value. 1838 /// Analyze the expression. 1839 /// 1840 SCEVHandle ScalarEvolution::createSCEV(Value *V) { 1841 if (!isSCEVable(V->getType())) 1842 return getUnknown(V); 1843 1844 unsigned Opcode = Instruction::UserOp1; 1845 if (Instruction *I = dyn_cast<Instruction>(V)) 1846 Opcode = I->getOpcode(); 1847 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1848 Opcode = CE->getOpcode(); 1849 else 1850 return getUnknown(V); 1851 1852 User *U = cast<User>(V); 1853 switch (Opcode) { 1854 case Instruction::Add: 1855 return getAddExpr(getSCEV(U->getOperand(0)), 1856 getSCEV(U->getOperand(1))); 1857 case Instruction::Mul: 1858 return getMulExpr(getSCEV(U->getOperand(0)), 1859 getSCEV(U->getOperand(1))); 1860 case Instruction::UDiv: 1861 return getUDivExpr(getSCEV(U->getOperand(0)), 1862 getSCEV(U->getOperand(1))); 1863 case Instruction::Sub: 1864 return getMinusSCEV(getSCEV(U->getOperand(0)), 1865 getSCEV(U->getOperand(1))); 1866 case Instruction::And: 1867 // For an expression like x&255 that merely masks off the high bits, 1868 // use zext(trunc(x)) as the SCEV expression. 1869 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1870 if (CI->isNullValue()) 1871 return getSCEV(U->getOperand(1)); 1872 if (CI->isAllOnesValue()) 1873 return getSCEV(U->getOperand(0)); 1874 const APInt &A = CI->getValue(); 1875 unsigned Ones = A.countTrailingOnes(); 1876 if (APIntOps::isMask(Ones, A)) 1877 return 1878 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 1879 IntegerType::get(Ones)), 1880 U->getType()); 1881 } 1882 break; 1883 case Instruction::Or: 1884 // If the RHS of the Or is a constant, we may have something like: 1885 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1886 // optimizations will transparently handle this case. 1887 // 1888 // In order for this transformation to be safe, the LHS must be of the 1889 // form X*(2^n) and the Or constant must be less than 2^n. 1890 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1891 SCEVHandle LHS = getSCEV(U->getOperand(0)); 1892 const APInt &CIVal = CI->getValue(); 1893 if (GetMinTrailingZeros(LHS, *this) >= 1894 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1895 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 1896 } 1897 break; 1898 case Instruction::Xor: 1899 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1900 // If the RHS of the xor is a signbit, then this is just an add. 1901 // Instcombine turns add of signbit into xor as a strength reduction step. 1902 if (CI->getValue().isSignBit()) 1903 return getAddExpr(getSCEV(U->getOperand(0)), 1904 getSCEV(U->getOperand(1))); 1905 1906 // If the RHS of xor is -1, then this is a not operation. 1907 else if (CI->isAllOnesValue()) 1908 return getNotSCEV(getSCEV(U->getOperand(0))); 1909 } 1910 break; 1911 1912 case Instruction::Shl: 1913 // Turn shift left of a constant amount into a multiply. 1914 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1915 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1916 Constant *X = ConstantInt::get( 1917 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1918 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1919 } 1920 break; 1921 1922 case Instruction::LShr: 1923 // Turn logical shift right of a constant into a unsigned divide. 1924 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1925 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1926 Constant *X = ConstantInt::get( 1927 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1928 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1929 } 1930 break; 1931 1932 case Instruction::AShr: 1933 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 1934 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 1935 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 1936 if (L->getOpcode() == Instruction::Shl && 1937 L->getOperand(1) == U->getOperand(1)) { 1938 unsigned BitWidth = getTypeSizeInBits(U->getType()); 1939 uint64_t Amt = BitWidth - CI->getZExtValue(); 1940 if (Amt == BitWidth) 1941 return getSCEV(L->getOperand(0)); // shift by zero --> noop 1942 if (Amt > BitWidth) 1943 return getIntegerSCEV(0, U->getType()); // value is undefined 1944 return 1945 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 1946 IntegerType::get(Amt)), 1947 U->getType()); 1948 } 1949 break; 1950 1951 case Instruction::Trunc: 1952 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 1953 1954 case Instruction::ZExt: 1955 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1956 1957 case Instruction::SExt: 1958 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1959 1960 case Instruction::BitCast: 1961 // BitCasts are no-op casts so we just eliminate the cast. 1962 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 1963 return getSCEV(U->getOperand(0)); 1964 break; 1965 1966 case Instruction::IntToPtr: 1967 if (!TD) break; // Without TD we can't analyze pointers. 1968 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1969 TD->getIntPtrType()); 1970 1971 case Instruction::PtrToInt: 1972 if (!TD) break; // Without TD we can't analyze pointers. 1973 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1974 U->getType()); 1975 1976 case Instruction::GetElementPtr: { 1977 if (!TD) break; // Without TD we can't analyze pointers. 1978 const Type *IntPtrTy = TD->getIntPtrType(); 1979 Value *Base = U->getOperand(0); 1980 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy); 1981 gep_type_iterator GTI = gep_type_begin(U); 1982 for (GetElementPtrInst::op_iterator I = next(U->op_begin()), 1983 E = U->op_end(); 1984 I != E; ++I) { 1985 Value *Index = *I; 1986 // Compute the (potentially symbolic) offset in bytes for this index. 1987 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 1988 // For a struct, add the member offset. 1989 const StructLayout &SL = *TD->getStructLayout(STy); 1990 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 1991 uint64_t Offset = SL.getElementOffset(FieldNo); 1992 TotalOffset = getAddExpr(TotalOffset, 1993 getIntegerSCEV(Offset, IntPtrTy)); 1994 } else { 1995 // For an array, add the element offset, explicitly scaled. 1996 SCEVHandle LocalOffset = getSCEV(Index); 1997 if (!isa<PointerType>(LocalOffset->getType())) 1998 // Getelementptr indicies are signed. 1999 LocalOffset = getTruncateOrSignExtend(LocalOffset, 2000 IntPtrTy); 2001 LocalOffset = 2002 getMulExpr(LocalOffset, 2003 getIntegerSCEV(TD->getTypePaddedSize(*GTI), 2004 IntPtrTy)); 2005 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2006 } 2007 } 2008 return getAddExpr(getSCEV(Base), TotalOffset); 2009 } 2010 2011 case Instruction::PHI: 2012 return createNodeForPHI(cast<PHINode>(U)); 2013 2014 case Instruction::Select: 2015 // This could be a smax or umax that was lowered earlier. 2016 // Try to recover it. 2017 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2018 Value *LHS = ICI->getOperand(0); 2019 Value *RHS = ICI->getOperand(1); 2020 switch (ICI->getPredicate()) { 2021 case ICmpInst::ICMP_SLT: 2022 case ICmpInst::ICMP_SLE: 2023 std::swap(LHS, RHS); 2024 // fall through 2025 case ICmpInst::ICMP_SGT: 2026 case ICmpInst::ICMP_SGE: 2027 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2028 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2029 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2030 // ~smax(~x, ~y) == smin(x, y). 2031 return getNotSCEV(getSMaxExpr( 2032 getNotSCEV(getSCEV(LHS)), 2033 getNotSCEV(getSCEV(RHS)))); 2034 break; 2035 case ICmpInst::ICMP_ULT: 2036 case ICmpInst::ICMP_ULE: 2037 std::swap(LHS, RHS); 2038 // fall through 2039 case ICmpInst::ICMP_UGT: 2040 case ICmpInst::ICMP_UGE: 2041 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2042 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2043 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2044 // ~umax(~x, ~y) == umin(x, y) 2045 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)), 2046 getNotSCEV(getSCEV(RHS)))); 2047 break; 2048 default: 2049 break; 2050 } 2051 } 2052 2053 default: // We cannot analyze this expression. 2054 break; 2055 } 2056 2057 return getUnknown(V); 2058 } 2059 2060 2061 2062 //===----------------------------------------------------------------------===// 2063 // Iteration Count Computation Code 2064 // 2065 2066 /// getBackedgeTakenCount - If the specified loop has a predictable 2067 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2068 /// object. The backedge-taken count is the number of times the loop header 2069 /// will be branched to from within the loop. This is one less than the 2070 /// trip count of the loop, since it doesn't count the first iteration, 2071 /// when the header is branched to from outside the loop. 2072 /// 2073 /// Note that it is not valid to call this method on a loop without a 2074 /// loop-invariant backedge-taken count (see 2075 /// hasLoopInvariantBackedgeTakenCount). 2076 /// 2077 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 2078 return getBackedgeTakenInfo(L).Exact; 2079 } 2080 2081 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 2082 /// return the least SCEV value that is known never to be less than the 2083 /// actual backedge taken count. 2084 SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 2085 return getBackedgeTakenInfo(L).Max; 2086 } 2087 2088 const ScalarEvolution::BackedgeTakenInfo & 2089 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 2090 // Initially insert a CouldNotCompute for this loop. If the insertion 2091 // succeeds, procede to actually compute a backedge-taken count and 2092 // update the value. The temporary CouldNotCompute value tells SCEV 2093 // code elsewhere that it shouldn't attempt to request a new 2094 // backedge-taken count, which could result in infinite recursion. 2095 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 2096 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 2097 if (Pair.second) { 2098 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 2099 if (ItCount.Exact != UnknownValue) { 2100 assert(ItCount.Exact->isLoopInvariant(L) && 2101 ItCount.Max->isLoopInvariant(L) && 2102 "Computed trip count isn't loop invariant for loop!"); 2103 ++NumTripCountsComputed; 2104 2105 // Update the value in the map. 2106 Pair.first->second = ItCount; 2107 } else if (isa<PHINode>(L->getHeader()->begin())) { 2108 // Only count loops that have phi nodes as not being computable. 2109 ++NumTripCountsNotComputed; 2110 } 2111 2112 // Now that we know more about the trip count for this loop, forget any 2113 // existing SCEV values for PHI nodes in this loop since they are only 2114 // conservative estimates made without the benefit 2115 // of trip count information. 2116 if (ItCount.hasAnyInfo()) 2117 for (BasicBlock::iterator I = L->getHeader()->begin(); 2118 PHINode *PN = dyn_cast<PHINode>(I); ++I) 2119 deleteValueFromRecords(PN); 2120 } 2121 return Pair.first->second; 2122 } 2123 2124 /// forgetLoopBackedgeTakenCount - This method should be called by the 2125 /// client when it has changed a loop in a way that may effect 2126 /// ScalarEvolution's ability to compute a trip count, or if the loop 2127 /// is deleted. 2128 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 2129 BackedgeTakenCounts.erase(L); 2130 } 2131 2132 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2133 /// of the specified loop will execute. 2134 ScalarEvolution::BackedgeTakenInfo 2135 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 2136 // If the loop has a non-one exit block count, we can't analyze it. 2137 SmallVector<BasicBlock*, 8> ExitBlocks; 2138 L->getExitBlocks(ExitBlocks); 2139 if (ExitBlocks.size() != 1) return UnknownValue; 2140 2141 // Okay, there is one exit block. Try to find the condition that causes the 2142 // loop to be exited. 2143 BasicBlock *ExitBlock = ExitBlocks[0]; 2144 2145 BasicBlock *ExitingBlock = 0; 2146 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 2147 PI != E; ++PI) 2148 if (L->contains(*PI)) { 2149 if (ExitingBlock == 0) 2150 ExitingBlock = *PI; 2151 else 2152 return UnknownValue; // More than one block exiting! 2153 } 2154 assert(ExitingBlock && "No exits from loop, something is broken!"); 2155 2156 // Okay, we've computed the exiting block. See what condition causes us to 2157 // exit. 2158 // 2159 // FIXME: we should be able to handle switch instructions (with a single exit) 2160 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2161 if (ExitBr == 0) return UnknownValue; 2162 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2163 2164 // At this point, we know we have a conditional branch that determines whether 2165 // the loop is exited. However, we don't know if the branch is executed each 2166 // time through the loop. If not, then the execution count of the branch will 2167 // not be equal to the trip count of the loop. 2168 // 2169 // Currently we check for this by checking to see if the Exit branch goes to 2170 // the loop header. If so, we know it will always execute the same number of 2171 // times as the loop. We also handle the case where the exit block *is* the 2172 // loop header. This is common for un-rotated loops. More extensive analysis 2173 // could be done to handle more cases here. 2174 if (ExitBr->getSuccessor(0) != L->getHeader() && 2175 ExitBr->getSuccessor(1) != L->getHeader() && 2176 ExitBr->getParent() != L->getHeader()) 2177 return UnknownValue; 2178 2179 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2180 2181 // If it's not an integer comparison then compute it the hard way. 2182 // Note that ICmpInst deals with pointer comparisons too so we must check 2183 // the type of the operand. 2184 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 2185 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2186 ExitBr->getSuccessor(0) == ExitBlock); 2187 2188 // If the condition was exit on true, convert the condition to exit on false 2189 ICmpInst::Predicate Cond; 2190 if (ExitBr->getSuccessor(1) == ExitBlock) 2191 Cond = ExitCond->getPredicate(); 2192 else 2193 Cond = ExitCond->getInversePredicate(); 2194 2195 // Handle common loops like: for (X = "string"; *X; ++X) 2196 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2197 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2198 SCEVHandle ItCnt = 2199 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2200 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2201 } 2202 2203 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2204 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2205 2206 // Try to evaluate any dependencies out of the loop. 2207 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 2208 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 2209 Tmp = getSCEVAtScope(RHS, L); 2210 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 2211 2212 // At this point, we would like to compute how many iterations of the 2213 // loop the predicate will return true for these inputs. 2214 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2215 // If there is a loop-invariant, force it into the RHS. 2216 std::swap(LHS, RHS); 2217 Cond = ICmpInst::getSwappedPredicate(Cond); 2218 } 2219 2220 // If we have a comparison of a chrec against a constant, try to use value 2221 // ranges to answer this query. 2222 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2223 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2224 if (AddRec->getLoop() == L) { 2225 // Form the comparison range using the constant of the correct type so 2226 // that the ConstantRange class knows to do a signed or unsigned 2227 // comparison. 2228 ConstantInt *CompVal = RHSC->getValue(); 2229 const Type *RealTy = ExitCond->getOperand(0)->getType(); 2230 CompVal = dyn_cast<ConstantInt>( 2231 ConstantExpr::getBitCast(CompVal, RealTy)); 2232 if (CompVal) { 2233 // Form the constant range. 2234 ConstantRange CompRange( 2235 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2236 2237 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this); 2238 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2239 } 2240 } 2241 2242 switch (Cond) { 2243 case ICmpInst::ICMP_NE: { // while (X != Y) 2244 // Convert to: while (X-Y != 0) 2245 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 2246 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2247 break; 2248 } 2249 case ICmpInst::ICMP_EQ: { 2250 // Convert to: while (X-Y == 0) // while (X == Y) 2251 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 2252 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2253 break; 2254 } 2255 case ICmpInst::ICMP_SLT: { 2256 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 2257 if (BTI.hasAnyInfo()) return BTI; 2258 break; 2259 } 2260 case ICmpInst::ICMP_SGT: { 2261 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2262 getNotSCEV(RHS), L, true); 2263 if (BTI.hasAnyInfo()) return BTI; 2264 break; 2265 } 2266 case ICmpInst::ICMP_ULT: { 2267 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 2268 if (BTI.hasAnyInfo()) return BTI; 2269 break; 2270 } 2271 case ICmpInst::ICMP_UGT: { 2272 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 2273 getNotSCEV(RHS), L, false); 2274 if (BTI.hasAnyInfo()) return BTI; 2275 break; 2276 } 2277 default: 2278 #if 0 2279 errs() << "ComputeBackedgeTakenCount "; 2280 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2281 errs() << "[unsigned] "; 2282 errs() << *LHS << " " 2283 << Instruction::getOpcodeName(Instruction::ICmp) 2284 << " " << *RHS << "\n"; 2285 #endif 2286 break; 2287 } 2288 return 2289 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2290 ExitBr->getSuccessor(0) == ExitBlock); 2291 } 2292 2293 static ConstantInt * 2294 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2295 ScalarEvolution &SE) { 2296 SCEVHandle InVal = SE.getConstant(C); 2297 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2298 assert(isa<SCEVConstant>(Val) && 2299 "Evaluation of SCEV at constant didn't fold correctly?"); 2300 return cast<SCEVConstant>(Val)->getValue(); 2301 } 2302 2303 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2304 /// and a GEP expression (missing the pointer index) indexing into it, return 2305 /// the addressed element of the initializer or null if the index expression is 2306 /// invalid. 2307 static Constant * 2308 GetAddressedElementFromGlobal(GlobalVariable *GV, 2309 const std::vector<ConstantInt*> &Indices) { 2310 Constant *Init = GV->getInitializer(); 2311 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2312 uint64_t Idx = Indices[i]->getZExtValue(); 2313 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2314 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2315 Init = cast<Constant>(CS->getOperand(Idx)); 2316 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2317 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2318 Init = cast<Constant>(CA->getOperand(Idx)); 2319 } else if (isa<ConstantAggregateZero>(Init)) { 2320 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2321 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2322 Init = Constant::getNullValue(STy->getElementType(Idx)); 2323 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2324 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2325 Init = Constant::getNullValue(ATy->getElementType()); 2326 } else { 2327 assert(0 && "Unknown constant aggregate type!"); 2328 } 2329 return 0; 2330 } else { 2331 return 0; // Unknown initializer type 2332 } 2333 } 2334 return Init; 2335 } 2336 2337 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2338 /// 'icmp op load X, cst', try to see if we can compute the backedge 2339 /// execution count. 2340 SCEVHandle ScalarEvolution:: 2341 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2342 const Loop *L, 2343 ICmpInst::Predicate predicate) { 2344 if (LI->isVolatile()) return UnknownValue; 2345 2346 // Check to see if the loaded pointer is a getelementptr of a global. 2347 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2348 if (!GEP) return UnknownValue; 2349 2350 // Make sure that it is really a constant global we are gepping, with an 2351 // initializer, and make sure the first IDX is really 0. 2352 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2353 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2354 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2355 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2356 return UnknownValue; 2357 2358 // Okay, we allow one non-constant index into the GEP instruction. 2359 Value *VarIdx = 0; 2360 std::vector<ConstantInt*> Indexes; 2361 unsigned VarIdxNum = 0; 2362 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2363 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2364 Indexes.push_back(CI); 2365 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2366 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2367 VarIdx = GEP->getOperand(i); 2368 VarIdxNum = i-2; 2369 Indexes.push_back(0); 2370 } 2371 2372 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2373 // Check to see if X is a loop variant variable value now. 2374 SCEVHandle Idx = getSCEV(VarIdx); 2375 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2376 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2377 2378 // We can only recognize very limited forms of loop index expressions, in 2379 // particular, only affine AddRec's like {C1,+,C2}. 2380 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2381 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2382 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2383 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2384 return UnknownValue; 2385 2386 unsigned MaxSteps = MaxBruteForceIterations; 2387 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2388 ConstantInt *ItCst = 2389 ConstantInt::get(IdxExpr->getType(), IterationNum); 2390 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 2391 2392 // Form the GEP offset. 2393 Indexes[VarIdxNum] = Val; 2394 2395 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2396 if (Result == 0) break; // Cannot compute! 2397 2398 // Evaluate the condition for this iteration. 2399 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2400 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2401 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2402 #if 0 2403 errs() << "\n***\n*** Computed loop count " << *ItCst 2404 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2405 << "***\n"; 2406 #endif 2407 ++NumArrayLenItCounts; 2408 return getConstant(ItCst); // Found terminating iteration! 2409 } 2410 } 2411 return UnknownValue; 2412 } 2413 2414 2415 /// CanConstantFold - Return true if we can constant fold an instruction of the 2416 /// specified type, assuming that all operands were constants. 2417 static bool CanConstantFold(const Instruction *I) { 2418 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2419 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2420 return true; 2421 2422 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2423 if (const Function *F = CI->getCalledFunction()) 2424 return canConstantFoldCallTo(F); 2425 return false; 2426 } 2427 2428 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2429 /// in the loop that V is derived from. We allow arbitrary operations along the 2430 /// way, but the operands of an operation must either be constants or a value 2431 /// derived from a constant PHI. If this expression does not fit with these 2432 /// constraints, return null. 2433 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2434 // If this is not an instruction, or if this is an instruction outside of the 2435 // loop, it can't be derived from a loop PHI. 2436 Instruction *I = dyn_cast<Instruction>(V); 2437 if (I == 0 || !L->contains(I->getParent())) return 0; 2438 2439 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2440 if (L->getHeader() == I->getParent()) 2441 return PN; 2442 else 2443 // We don't currently keep track of the control flow needed to evaluate 2444 // PHIs, so we cannot handle PHIs inside of loops. 2445 return 0; 2446 } 2447 2448 // If we won't be able to constant fold this expression even if the operands 2449 // are constants, return early. 2450 if (!CanConstantFold(I)) return 0; 2451 2452 // Otherwise, we can evaluate this instruction if all of its operands are 2453 // constant or derived from a PHI node themselves. 2454 PHINode *PHI = 0; 2455 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2456 if (!(isa<Constant>(I->getOperand(Op)) || 2457 isa<GlobalValue>(I->getOperand(Op)))) { 2458 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2459 if (P == 0) return 0; // Not evolving from PHI 2460 if (PHI == 0) 2461 PHI = P; 2462 else if (PHI != P) 2463 return 0; // Evolving from multiple different PHIs. 2464 } 2465 2466 // This is a expression evolving from a constant PHI! 2467 return PHI; 2468 } 2469 2470 /// EvaluateExpression - Given an expression that passes the 2471 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2472 /// in the loop has the value PHIVal. If we can't fold this expression for some 2473 /// reason, return null. 2474 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2475 if (isa<PHINode>(V)) return PHIVal; 2476 if (Constant *C = dyn_cast<Constant>(V)) return C; 2477 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 2478 Instruction *I = cast<Instruction>(V); 2479 2480 std::vector<Constant*> Operands; 2481 Operands.resize(I->getNumOperands()); 2482 2483 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2484 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2485 if (Operands[i] == 0) return 0; 2486 } 2487 2488 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2489 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2490 &Operands[0], Operands.size()); 2491 else 2492 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2493 &Operands[0], Operands.size()); 2494 } 2495 2496 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2497 /// in the header of its containing loop, we know the loop executes a 2498 /// constant number of times, and the PHI node is just a recurrence 2499 /// involving constants, fold it. 2500 Constant *ScalarEvolution:: 2501 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 2502 std::map<PHINode*, Constant*>::iterator I = 2503 ConstantEvolutionLoopExitValue.find(PN); 2504 if (I != ConstantEvolutionLoopExitValue.end()) 2505 return I->second; 2506 2507 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 2508 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2509 2510 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2511 2512 // Since the loop is canonicalized, the PHI node must have two entries. One 2513 // entry must be a constant (coming in from outside of the loop), and the 2514 // second must be derived from the same PHI. 2515 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2516 Constant *StartCST = 2517 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2518 if (StartCST == 0) 2519 return RetVal = 0; // Must be a constant. 2520 2521 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2522 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2523 if (PN2 != PN) 2524 return RetVal = 0; // Not derived from same PHI. 2525 2526 // Execute the loop symbolically to determine the exit value. 2527 if (BEs.getActiveBits() >= 32) 2528 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2529 2530 unsigned NumIterations = BEs.getZExtValue(); // must be in range 2531 unsigned IterationNum = 0; 2532 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2533 if (IterationNum == NumIterations) 2534 return RetVal = PHIVal; // Got exit value! 2535 2536 // Compute the value of the PHI node for the next iteration. 2537 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2538 if (NextPHI == PHIVal) 2539 return RetVal = NextPHI; // Stopped evolving! 2540 if (NextPHI == 0) 2541 return 0; // Couldn't evaluate! 2542 PHIVal = NextPHI; 2543 } 2544 } 2545 2546 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 2547 /// constant number of times (the condition evolves only from constants), 2548 /// try to evaluate a few iterations of the loop until we get the exit 2549 /// condition gets a value of ExitWhen (true or false). If we cannot 2550 /// evaluate the trip count of the loop, return UnknownValue. 2551 SCEVHandle ScalarEvolution:: 2552 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2553 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2554 if (PN == 0) return UnknownValue; 2555 2556 // Since the loop is canonicalized, the PHI node must have two entries. One 2557 // entry must be a constant (coming in from outside of the loop), and the 2558 // second must be derived from the same PHI. 2559 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2560 Constant *StartCST = 2561 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2562 if (StartCST == 0) return UnknownValue; // Must be a constant. 2563 2564 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2565 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2566 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2567 2568 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2569 // the loop symbolically to determine when the condition gets a value of 2570 // "ExitWhen". 2571 unsigned IterationNum = 0; 2572 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2573 for (Constant *PHIVal = StartCST; 2574 IterationNum != MaxIterations; ++IterationNum) { 2575 ConstantInt *CondVal = 2576 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2577 2578 // Couldn't symbolically evaluate. 2579 if (!CondVal) return UnknownValue; 2580 2581 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2582 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2583 ++NumBruteForceTripCountsComputed; 2584 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2585 } 2586 2587 // Compute the value of the PHI node for the next iteration. 2588 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2589 if (NextPHI == 0 || NextPHI == PHIVal) 2590 return UnknownValue; // Couldn't evaluate or not making progress... 2591 PHIVal = NextPHI; 2592 } 2593 2594 // Too many iterations were needed to evaluate. 2595 return UnknownValue; 2596 } 2597 2598 /// getSCEVAtScope - Compute the value of the specified expression within the 2599 /// indicated loop (which may be null to indicate in no loop). If the 2600 /// expression cannot be evaluated, return UnknownValue. 2601 SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) { 2602 // FIXME: this should be turned into a virtual method on SCEV! 2603 2604 if (isa<SCEVConstant>(V)) return V; 2605 2606 // If this instruction is evolved from a constant-evolving PHI, compute the 2607 // exit value from the loop without using SCEVs. 2608 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2609 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2610 const Loop *LI = (*this->LI)[I->getParent()]; 2611 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2612 if (PHINode *PN = dyn_cast<PHINode>(I)) 2613 if (PN->getParent() == LI->getHeader()) { 2614 // Okay, there is no closed form solution for the PHI node. Check 2615 // to see if the loop that contains it has a known backedge-taken 2616 // count. If so, we may be able to force computation of the exit 2617 // value. 2618 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 2619 if (SCEVConstant *BTCC = 2620 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 2621 // Okay, we know how many times the containing loop executes. If 2622 // this is a constant evolving PHI node, get the final value at 2623 // the specified iteration number. 2624 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2625 BTCC->getValue()->getValue(), 2626 LI); 2627 if (RV) return getUnknown(RV); 2628 } 2629 } 2630 2631 // Okay, this is an expression that we cannot symbolically evaluate 2632 // into a SCEV. Check to see if it's possible to symbolically evaluate 2633 // the arguments into constants, and if so, try to constant propagate the 2634 // result. This is particularly useful for computing loop exit values. 2635 if (CanConstantFold(I)) { 2636 std::vector<Constant*> Operands; 2637 Operands.reserve(I->getNumOperands()); 2638 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2639 Value *Op = I->getOperand(i); 2640 if (Constant *C = dyn_cast<Constant>(Op)) { 2641 Operands.push_back(C); 2642 } else { 2643 // If any of the operands is non-constant and if they are 2644 // non-integer and non-pointer, don't even try to analyze them 2645 // with scev techniques. 2646 if (!isSCEVable(Op->getType())) 2647 return V; 2648 2649 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2650 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 2651 Constant *C = SC->getValue(); 2652 if (C->getType() != Op->getType()) 2653 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 2654 Op->getType(), 2655 false), 2656 C, Op->getType()); 2657 Operands.push_back(C); 2658 } else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2659 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 2660 if (C->getType() != Op->getType()) 2661 C = 2662 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 2663 Op->getType(), 2664 false), 2665 C, Op->getType()); 2666 Operands.push_back(C); 2667 } else 2668 return V; 2669 } else { 2670 return V; 2671 } 2672 } 2673 } 2674 2675 Constant *C; 2676 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2677 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2678 &Operands[0], Operands.size()); 2679 else 2680 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2681 &Operands[0], Operands.size()); 2682 return getUnknown(C); 2683 } 2684 } 2685 2686 // This is some other type of SCEVUnknown, just return it. 2687 return V; 2688 } 2689 2690 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2691 // Avoid performing the look-up in the common case where the specified 2692 // expression has no loop-variant portions. 2693 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2694 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2695 if (OpAtScope != Comm->getOperand(i)) { 2696 if (OpAtScope == UnknownValue) return UnknownValue; 2697 // Okay, at least one of these operands is loop variant but might be 2698 // foldable. Build a new instance of the folded commutative expression. 2699 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2700 NewOps.push_back(OpAtScope); 2701 2702 for (++i; i != e; ++i) { 2703 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2704 if (OpAtScope == UnknownValue) return UnknownValue; 2705 NewOps.push_back(OpAtScope); 2706 } 2707 if (isa<SCEVAddExpr>(Comm)) 2708 return getAddExpr(NewOps); 2709 if (isa<SCEVMulExpr>(Comm)) 2710 return getMulExpr(NewOps); 2711 if (isa<SCEVSMaxExpr>(Comm)) 2712 return getSMaxExpr(NewOps); 2713 if (isa<SCEVUMaxExpr>(Comm)) 2714 return getUMaxExpr(NewOps); 2715 assert(0 && "Unknown commutative SCEV type!"); 2716 } 2717 } 2718 // If we got here, all operands are loop invariant. 2719 return Comm; 2720 } 2721 2722 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2723 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2724 if (LHS == UnknownValue) return LHS; 2725 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2726 if (RHS == UnknownValue) return RHS; 2727 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2728 return Div; // must be loop invariant 2729 return getUDivExpr(LHS, RHS); 2730 } 2731 2732 // If this is a loop recurrence for a loop that does not contain L, then we 2733 // are dealing with the final value computed by the loop. 2734 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2735 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2736 // To evaluate this recurrence, we need to know how many times the AddRec 2737 // loop iterates. Compute this now. 2738 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 2739 if (BackedgeTakenCount == UnknownValue) return UnknownValue; 2740 2741 // Then, evaluate the AddRec. 2742 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 2743 } 2744 return UnknownValue; 2745 } 2746 2747 if (SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 2748 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 2749 if (Op == UnknownValue) return Op; 2750 if (Op == Cast->getOperand()) 2751 return Cast; // must be loop invariant 2752 return getZeroExtendExpr(Op, Cast->getType()); 2753 } 2754 2755 if (SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 2756 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 2757 if (Op == UnknownValue) return Op; 2758 if (Op == Cast->getOperand()) 2759 return Cast; // must be loop invariant 2760 return getSignExtendExpr(Op, Cast->getType()); 2761 } 2762 2763 if (SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 2764 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L); 2765 if (Op == UnknownValue) return Op; 2766 if (Op == Cast->getOperand()) 2767 return Cast; // must be loop invariant 2768 return getTruncateExpr(Op, Cast->getType()); 2769 } 2770 2771 assert(0 && "Unknown SCEV type!"); 2772 } 2773 2774 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 2775 /// at the specified scope in the program. The L value specifies a loop 2776 /// nest to evaluate the expression at, where null is the top-level or a 2777 /// specified loop is immediately inside of the loop. 2778 /// 2779 /// This method can be used to compute the exit value for a variable defined 2780 /// in a loop by querying what the value will hold in the parent loop. 2781 /// 2782 /// If this value is not computable at this scope, a SCEVCouldNotCompute 2783 /// object is returned. 2784 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 2785 return getSCEVAtScope(getSCEV(V), L); 2786 } 2787 2788 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2789 /// following equation: 2790 /// 2791 /// A * X = B (mod N) 2792 /// 2793 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2794 /// A and B isn't important. 2795 /// 2796 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2797 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2798 ScalarEvolution &SE) { 2799 uint32_t BW = A.getBitWidth(); 2800 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2801 assert(A != 0 && "A must be non-zero."); 2802 2803 // 1. D = gcd(A, N) 2804 // 2805 // The gcd of A and N may have only one prime factor: 2. The number of 2806 // trailing zeros in A is its multiplicity 2807 uint32_t Mult2 = A.countTrailingZeros(); 2808 // D = 2^Mult2 2809 2810 // 2. Check if B is divisible by D. 2811 // 2812 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 2813 // is not less than multiplicity of this prime factor for D. 2814 if (B.countTrailingZeros() < Mult2) 2815 return SE.getCouldNotCompute(); 2816 2817 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 2818 // modulo (N / D). 2819 // 2820 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 2821 // bit width during computations. 2822 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 2823 APInt Mod(BW + 1, 0); 2824 Mod.set(BW - Mult2); // Mod = N / D 2825 APInt I = AD.multiplicativeInverse(Mod); 2826 2827 // 4. Compute the minimum unsigned root of the equation: 2828 // I * (B / D) mod (N / D) 2829 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 2830 2831 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 2832 // bits. 2833 return SE.getConstant(Result.trunc(BW)); 2834 } 2835 2836 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2837 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2838 /// might be the same) or two SCEVCouldNotCompute objects. 2839 /// 2840 static std::pair<SCEVHandle,SCEVHandle> 2841 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2842 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2843 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2844 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2845 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2846 2847 // We currently can only solve this if the coefficients are constants. 2848 if (!LC || !MC || !NC) { 2849 SCEV *CNC = SE.getCouldNotCompute(); 2850 return std::make_pair(CNC, CNC); 2851 } 2852 2853 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2854 const APInt &L = LC->getValue()->getValue(); 2855 const APInt &M = MC->getValue()->getValue(); 2856 const APInt &N = NC->getValue()->getValue(); 2857 APInt Two(BitWidth, 2); 2858 APInt Four(BitWidth, 4); 2859 2860 { 2861 using namespace APIntOps; 2862 const APInt& C = L; 2863 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2864 // The B coefficient is M-N/2 2865 APInt B(M); 2866 B -= sdiv(N,Two); 2867 2868 // The A coefficient is N/2 2869 APInt A(N.sdiv(Two)); 2870 2871 // Compute the B^2-4ac term. 2872 APInt SqrtTerm(B); 2873 SqrtTerm *= B; 2874 SqrtTerm -= Four * (A * C); 2875 2876 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2877 // integer value or else APInt::sqrt() will assert. 2878 APInt SqrtVal(SqrtTerm.sqrt()); 2879 2880 // Compute the two solutions for the quadratic formula. 2881 // The divisions must be performed as signed divisions. 2882 APInt NegB(-B); 2883 APInt TwoA( A << 1 ); 2884 if (TwoA.isMinValue()) { 2885 SCEV *CNC = SE.getCouldNotCompute(); 2886 return std::make_pair(CNC, CNC); 2887 } 2888 2889 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2890 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2891 2892 return std::make_pair(SE.getConstant(Solution1), 2893 SE.getConstant(Solution2)); 2894 } // end APIntOps namespace 2895 } 2896 2897 /// HowFarToZero - Return the number of times a backedge comparing the specified 2898 /// value to zero will execute. If not computable, return UnknownValue 2899 SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) { 2900 // If the value is a constant 2901 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2902 // If the value is already zero, the branch will execute zero times. 2903 if (C->getValue()->isZero()) return C; 2904 return UnknownValue; // Otherwise it will loop infinitely. 2905 } 2906 2907 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2908 if (!AddRec || AddRec->getLoop() != L) 2909 return UnknownValue; 2910 2911 if (AddRec->isAffine()) { 2912 // If this is an affine expression, the execution count of this branch is 2913 // the minimum unsigned root of the following equation: 2914 // 2915 // Start + Step*N = 0 (mod 2^BW) 2916 // 2917 // equivalent to: 2918 // 2919 // Step*N = -Start (mod 2^BW) 2920 // 2921 // where BW is the common bit width of Start and Step. 2922 2923 // Get the initial value for the loop. 2924 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2925 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2926 2927 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 2928 2929 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2930 // For now we handle only constant steps. 2931 2932 // First, handle unitary steps. 2933 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 2934 return getNegativeSCEV(Start); // N = -Start (as unsigned) 2935 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 2936 return Start; // N = Start (as unsigned) 2937 2938 // Then, try to solve the above equation provided that Start is constant. 2939 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 2940 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 2941 -StartC->getValue()->getValue(), 2942 *this); 2943 } 2944 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2945 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2946 // the quadratic equation to solve it. 2947 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, 2948 *this); 2949 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2950 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2951 if (R1) { 2952 #if 0 2953 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 2954 << " sol#2: " << *R2 << "\n"; 2955 #endif 2956 // Pick the smallest positive root value. 2957 if (ConstantInt *CB = 2958 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2959 R1->getValue(), R2->getValue()))) { 2960 if (CB->getZExtValue() == false) 2961 std::swap(R1, R2); // R1 is the minimum root now. 2962 2963 // We can only use this value if the chrec ends up with an exact zero 2964 // value at this index. When solving for "X*X != 5", for example, we 2965 // should not accept a root of 2. 2966 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this); 2967 if (Val->isZero()) 2968 return R1; // We found a quadratic root! 2969 } 2970 } 2971 } 2972 2973 return UnknownValue; 2974 } 2975 2976 /// HowFarToNonZero - Return the number of times a backedge checking the 2977 /// specified value for nonzero will execute. If not computable, return 2978 /// UnknownValue 2979 SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) { 2980 // Loops that look like: while (X == 0) are very strange indeed. We don't 2981 // handle them yet except for the trivial case. This could be expanded in the 2982 // future as needed. 2983 2984 // If the value is a constant, check to see if it is known to be non-zero 2985 // already. If so, the backedge will execute zero times. 2986 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2987 if (!C->getValue()->isNullValue()) 2988 return getIntegerSCEV(0, C->getType()); 2989 return UnknownValue; // Otherwise it will loop infinitely. 2990 } 2991 2992 // We could implement others, but I really doubt anyone writes loops like 2993 // this, and if they did, they would already be constant folded. 2994 return UnknownValue; 2995 } 2996 2997 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 2998 /// (which may not be an immediate predecessor) which has exactly one 2999 /// successor from which BB is reachable, or null if no such block is 3000 /// found. 3001 /// 3002 BasicBlock * 3003 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 3004 // If the block has a unique predecessor, then there is no path from the 3005 // predecessor to the block that does not go through the direct edge 3006 // from the predecessor to the block. 3007 if (BasicBlock *Pred = BB->getSinglePredecessor()) 3008 return Pred; 3009 3010 // A loop's header is defined to be a block that dominates the loop. 3011 // If the loop has a preheader, it must be a block that has exactly 3012 // one successor that can reach BB. This is slightly more strict 3013 // than necessary, but works if critical edges are split. 3014 if (Loop *L = LI->getLoopFor(BB)) 3015 return L->getLoopPreheader(); 3016 3017 return 0; 3018 } 3019 3020 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 3021 /// a conditional between LHS and RHS. This is used to help avoid max 3022 /// expressions in loop trip counts. 3023 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3024 ICmpInst::Predicate Pred, 3025 SCEV *LHS, SCEV *RHS) { 3026 BasicBlock *Preheader = L->getLoopPreheader(); 3027 BasicBlock *PreheaderDest = L->getHeader(); 3028 3029 // Starting at the preheader, climb up the predecessor chain, as long as 3030 // there are predecessors that can be found that have unique successors 3031 // leading to the original header. 3032 for (; Preheader; 3033 PreheaderDest = Preheader, 3034 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 3035 3036 BranchInst *LoopEntryPredicate = 3037 dyn_cast<BranchInst>(Preheader->getTerminator()); 3038 if (!LoopEntryPredicate || 3039 LoopEntryPredicate->isUnconditional()) 3040 continue; 3041 3042 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 3043 if (!ICI) continue; 3044 3045 // Now that we found a conditional branch that dominates the loop, check to 3046 // see if it is the comparison we are looking for. 3047 Value *PreCondLHS = ICI->getOperand(0); 3048 Value *PreCondRHS = ICI->getOperand(1); 3049 ICmpInst::Predicate Cond; 3050 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 3051 Cond = ICI->getPredicate(); 3052 else 3053 Cond = ICI->getInversePredicate(); 3054 3055 if (Cond == Pred) 3056 ; // An exact match. 3057 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 3058 ; // The actual condition is beyond sufficient. 3059 else 3060 // Check a few special cases. 3061 switch (Cond) { 3062 case ICmpInst::ICMP_UGT: 3063 if (Pred == ICmpInst::ICMP_ULT) { 3064 std::swap(PreCondLHS, PreCondRHS); 3065 Cond = ICmpInst::ICMP_ULT; 3066 break; 3067 } 3068 continue; 3069 case ICmpInst::ICMP_SGT: 3070 if (Pred == ICmpInst::ICMP_SLT) { 3071 std::swap(PreCondLHS, PreCondRHS); 3072 Cond = ICmpInst::ICMP_SLT; 3073 break; 3074 } 3075 continue; 3076 case ICmpInst::ICMP_NE: 3077 // Expressions like (x >u 0) are often canonicalized to (x != 0), 3078 // so check for this case by checking if the NE is comparing against 3079 // a minimum or maximum constant. 3080 if (!ICmpInst::isTrueWhenEqual(Pred)) 3081 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 3082 const APInt &A = CI->getValue(); 3083 switch (Pred) { 3084 case ICmpInst::ICMP_SLT: 3085 if (A.isMaxSignedValue()) break; 3086 continue; 3087 case ICmpInst::ICMP_SGT: 3088 if (A.isMinSignedValue()) break; 3089 continue; 3090 case ICmpInst::ICMP_ULT: 3091 if (A.isMaxValue()) break; 3092 continue; 3093 case ICmpInst::ICMP_UGT: 3094 if (A.isMinValue()) break; 3095 continue; 3096 default: 3097 continue; 3098 } 3099 Cond = ICmpInst::ICMP_NE; 3100 // NE is symmetric but the original comparison may not be. Swap 3101 // the operands if necessary so that they match below. 3102 if (isa<SCEVConstant>(LHS)) 3103 std::swap(PreCondLHS, PreCondRHS); 3104 break; 3105 } 3106 continue; 3107 default: 3108 // We weren't able to reconcile the condition. 3109 continue; 3110 } 3111 3112 if (!PreCondLHS->getType()->isInteger()) continue; 3113 3114 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3115 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3116 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3117 (LHS == getNotSCEV(PreCondRHSSCEV) && 3118 RHS == getNotSCEV(PreCondLHSSCEV))) 3119 return true; 3120 } 3121 3122 return false; 3123 } 3124 3125 /// HowManyLessThans - Return the number of times a backedge containing the 3126 /// specified less-than comparison will execute. If not computable, return 3127 /// UnknownValue. 3128 ScalarEvolution::BackedgeTakenInfo ScalarEvolution:: 3129 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 3130 // Only handle: "ADDREC < LoopInvariant". 3131 if (!RHS->isLoopInvariant(L)) return UnknownValue; 3132 3133 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3134 if (!AddRec || AddRec->getLoop() != L) 3135 return UnknownValue; 3136 3137 if (AddRec->isAffine()) { 3138 // FORNOW: We only support unit strides. 3139 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 3140 SCEVHandle Step = AddRec->getStepRecurrence(*this); 3141 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType()); 3142 3143 // TODO: handle non-constant strides. 3144 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 3145 if (!CStep || CStep->isZero()) 3146 return UnknownValue; 3147 if (CStep->getValue()->getValue() == 1) { 3148 // With unit stride, the iteration never steps past the limit value. 3149 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 3150 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 3151 // Test whether a positive iteration iteration can step past the limit 3152 // value and past the maximum value for its type in a single step. 3153 if (isSigned) { 3154 APInt Max = APInt::getSignedMaxValue(BitWidth); 3155 if ((Max - CStep->getValue()->getValue()) 3156 .slt(CLimit->getValue()->getValue())) 3157 return UnknownValue; 3158 } else { 3159 APInt Max = APInt::getMaxValue(BitWidth); 3160 if ((Max - CStep->getValue()->getValue()) 3161 .ult(CLimit->getValue()->getValue())) 3162 return UnknownValue; 3163 } 3164 } else 3165 // TODO: handle non-constant limit values below. 3166 return UnknownValue; 3167 } else 3168 // TODO: handle negative strides below. 3169 return UnknownValue; 3170 3171 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 3172 // m. So, we count the number of iterations in which {n,+,s} < m is true. 3173 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 3174 // treat m-n as signed nor unsigned due to overflow possibility. 3175 3176 // First, we get the value of the LHS in the first iteration: n 3177 SCEVHandle Start = AddRec->getOperand(0); 3178 3179 // Determine the minimum constant start value. 3180 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start : 3181 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) : 3182 APInt::getMinValue(BitWidth)); 3183 3184 // If we know that the condition is true in order to enter the loop, 3185 // then we know that it will run exactly (m-n)/s times. Otherwise, we 3186 // only know if will execute (max(m,n)-n)/s times. In both cases, the 3187 // division must round up. 3188 SCEVHandle End = RHS; 3189 if (!isLoopGuardedByCond(L, 3190 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3191 getMinusSCEV(Start, Step), RHS)) 3192 End = isSigned ? getSMaxExpr(RHS, Start) 3193 : getUMaxExpr(RHS, Start); 3194 3195 // Determine the maximum constant end value. 3196 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End : 3197 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) : 3198 APInt::getMaxValue(BitWidth)); 3199 3200 // Finally, we subtract these two values and divide, rounding up, to get 3201 // the number of times the backedge is executed. 3202 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start), 3203 getAddExpr(Step, NegOne)), 3204 Step); 3205 3206 // The maximum backedge count is similar, except using the minimum start 3207 // value and the maximum end value. 3208 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd, 3209 MinStart), 3210 getAddExpr(Step, NegOne)), 3211 Step); 3212 3213 return BackedgeTakenInfo(BECount, MaxBECount); 3214 } 3215 3216 return UnknownValue; 3217 } 3218 3219 /// getNumIterationsInRange - Return the number of iterations of this loop that 3220 /// produce values in the specified constant range. Another way of looking at 3221 /// this is that it returns the first iteration number where the value is not in 3222 /// the condition, thus computing the exit count. If the iteration count can't 3223 /// be computed, an instance of SCEVCouldNotCompute is returned. 3224 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3225 ScalarEvolution &SE) const { 3226 if (Range.isFullSet()) // Infinite loop. 3227 return SE.getCouldNotCompute(); 3228 3229 // If the start is a non-zero constant, shift the range to simplify things. 3230 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3231 if (!SC->getValue()->isZero()) { 3232 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 3233 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3234 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3235 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 3236 return ShiftedAddRec->getNumIterationsInRange( 3237 Range.subtract(SC->getValue()->getValue()), SE); 3238 // This is strange and shouldn't happen. 3239 return SE.getCouldNotCompute(); 3240 } 3241 3242 // The only time we can solve this is when we have all constant indices. 3243 // Otherwise, we cannot determine the overflow conditions. 3244 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3245 if (!isa<SCEVConstant>(getOperand(i))) 3246 return SE.getCouldNotCompute(); 3247 3248 3249 // Okay at this point we know that all elements of the chrec are constants and 3250 // that the start element is zero. 3251 3252 // First check to see if the range contains zero. If not, the first 3253 // iteration exits. 3254 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 3255 if (!Range.contains(APInt(BitWidth, 0))) 3256 return SE.getConstant(ConstantInt::get(getType(),0)); 3257 3258 if (isAffine()) { 3259 // If this is an affine expression then we have this situation: 3260 // Solve {0,+,A} in Range === Ax in Range 3261 3262 // We know that zero is in the range. If A is positive then we know that 3263 // the upper value of the range must be the first possible exit value. 3264 // If A is negative then the lower of the range is the last possible loop 3265 // value. Also note that we already checked for a full range. 3266 APInt One(BitWidth,1); 3267 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3268 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3269 3270 // The exit value should be (End+A)/A. 3271 APInt ExitVal = (End + A).udiv(A); 3272 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3273 3274 // Evaluate at the exit value. If we really did fall out of the valid 3275 // range, then we computed our trip count, otherwise wrap around or other 3276 // things must have happened. 3277 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3278 if (Range.contains(Val->getValue())) 3279 return SE.getCouldNotCompute(); // Something strange happened 3280 3281 // Ensure that the previous value is in the range. This is a sanity check. 3282 assert(Range.contains( 3283 EvaluateConstantChrecAtConstant(this, 3284 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3285 "Linear scev computation is off in a bad way!"); 3286 return SE.getConstant(ExitValue); 3287 } else if (isQuadratic()) { 3288 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3289 // quadratic equation to solve it. To do this, we must frame our problem in 3290 // terms of figuring out when zero is crossed, instead of when 3291 // Range.getUpper() is crossed. 3292 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 3293 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3294 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3295 3296 // Next, solve the constructed addrec 3297 std::pair<SCEVHandle,SCEVHandle> Roots = 3298 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3299 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3300 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3301 if (R1) { 3302 // Pick the smallest positive root value. 3303 if (ConstantInt *CB = 3304 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3305 R1->getValue(), R2->getValue()))) { 3306 if (CB->getZExtValue() == false) 3307 std::swap(R1, R2); // R1 is the minimum root now. 3308 3309 // Make sure the root is not off by one. The returned iteration should 3310 // not be in the range, but the previous one should be. When solving 3311 // for "X*X < 5", for example, we should not return a root of 2. 3312 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3313 R1->getValue(), 3314 SE); 3315 if (Range.contains(R1Val->getValue())) { 3316 // The next iteration must be out of the range... 3317 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3318 3319 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3320 if (!Range.contains(R1Val->getValue())) 3321 return SE.getConstant(NextVal); 3322 return SE.getCouldNotCompute(); // Something strange happened 3323 } 3324 3325 // If R1 was not in the range, then it is a good return value. Make 3326 // sure that R1-1 WAS in the range though, just in case. 3327 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3328 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3329 if (Range.contains(R1Val->getValue())) 3330 return R1; 3331 return SE.getCouldNotCompute(); // Something strange happened 3332 } 3333 } 3334 } 3335 3336 return SE.getCouldNotCompute(); 3337 } 3338 3339 3340 3341 //===----------------------------------------------------------------------===// 3342 // ScalarEvolution Class Implementation 3343 //===----------------------------------------------------------------------===// 3344 3345 ScalarEvolution::ScalarEvolution() 3346 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) { 3347 } 3348 3349 bool ScalarEvolution::runOnFunction(Function &F) { 3350 this->F = &F; 3351 LI = &getAnalysis<LoopInfo>(); 3352 TD = getAnalysisIfAvailable<TargetData>(); 3353 return false; 3354 } 3355 3356 void ScalarEvolution::releaseMemory() { 3357 Scalars.clear(); 3358 BackedgeTakenCounts.clear(); 3359 ConstantEvolutionLoopExitValue.clear(); 3360 } 3361 3362 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3363 AU.setPreservesAll(); 3364 AU.addRequiredTransitive<LoopInfo>(); 3365 } 3366 3367 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 3368 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3369 } 3370 3371 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 3372 const Loop *L) { 3373 // Print all inner loops first 3374 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3375 PrintLoopInfo(OS, SE, *I); 3376 3377 OS << "Loop " << L->getHeader()->getName() << ": "; 3378 3379 SmallVector<BasicBlock*, 8> ExitBlocks; 3380 L->getExitBlocks(ExitBlocks); 3381 if (ExitBlocks.size() != 1) 3382 OS << "<multiple exits> "; 3383 3384 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 3385 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 3386 } else { 3387 OS << "Unpredictable backedge-taken count. "; 3388 } 3389 3390 OS << "\n"; 3391 } 3392 3393 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 3394 // ScalarEvolution's implementaiton of the print method is to print 3395 // out SCEV values of all instructions that are interesting. Doing 3396 // this potentially causes it to create new SCEV objects though, 3397 // which technically conflicts with the const qualifier. This isn't 3398 // observable from outside the class though (the hasSCEV function 3399 // notwithstanding), so casting away the const isn't dangerous. 3400 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 3401 3402 OS << "Classifying expressions for: " << F->getName() << "\n"; 3403 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3404 if (isSCEVable(I->getType())) { 3405 OS << *I; 3406 OS << " --> "; 3407 SCEVHandle SV = SE.getSCEV(&*I); 3408 SV->print(OS); 3409 OS << "\t\t"; 3410 3411 if (const Loop *L = LI->getLoopFor((*I).getParent())) { 3412 OS << "Exits: "; 3413 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop()); 3414 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3415 OS << "<<Unknown>>"; 3416 } else { 3417 OS << *ExitValue; 3418 } 3419 } 3420 3421 3422 OS << "\n"; 3423 } 3424 3425 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 3426 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 3427 PrintLoopInfo(OS, &SE, *I); 3428 } 3429 3430 void ScalarEvolution::print(std::ostream &o, const Module *M) const { 3431 raw_os_ostream OS(o); 3432 print(OS, M); 3433 } 3434