xref: /llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp (revision 16bc24e7be90f32056a1915d8c57adf1478384e0)
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::ZeroOrMore,
152                         cl::desc("Maximum number of iterations SCEV will "
153                                  "symbolically execute a constant "
154                                  "derived loop"),
155                         cl::init(100));
156 
157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158 static cl::opt<bool> VerifySCEV(
159     "verify-scev", cl::Hidden,
160     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt<bool> VerifySCEVStrict(
162     "verify-scev-strict", cl::Hidden,
163     cl::desc("Enable stricter verification with -verify-scev is passed"));
164 static cl::opt<bool>
165     VerifySCEVMap("verify-scev-maps", cl::Hidden,
166                   cl::desc("Verify no dangling value in ScalarEvolution's "
167                            "ExprValueMap (slow)"));
168 
169 static cl::opt<bool> VerifyIR(
170     "scev-verify-ir", cl::Hidden,
171     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172     cl::init(false));
173 
174 static cl::opt<unsigned> MulOpsInlineThreshold(
175     "scev-mulops-inline-threshold", cl::Hidden,
176     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177     cl::init(32));
178 
179 static cl::opt<unsigned> AddOpsInlineThreshold(
180     "scev-addops-inline-threshold", cl::Hidden,
181     cl::desc("Threshold for inlining addition operands into a SCEV"),
182     cl::init(500));
183 
184 static cl::opt<unsigned> MaxSCEVCompareDepth(
185     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187     cl::init(32));
188 
189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192     cl::init(2));
193 
194 static cl::opt<unsigned> MaxValueCompareDepth(
195     "scalar-evolution-max-value-compare-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive value complexity comparisons"),
197     cl::init(2));
198 
199 static cl::opt<unsigned>
200     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201                   cl::desc("Maximum depth of recursive arithmetics"),
202                   cl::init(32));
203 
204 static cl::opt<unsigned> MaxConstantEvolvingDepth(
205     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207 
208 static cl::opt<unsigned>
209     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211                  cl::init(8));
212 
213 static cl::opt<unsigned>
214     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215                   cl::desc("Max coefficients in AddRec during evolving"),
216                   cl::init(8));
217 
218 static cl::opt<unsigned>
219     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220                   cl::desc("Size of the expression which is considered huge"),
221                   cl::init(4096));
222 
223 static cl::opt<bool>
224 ClassifyExpressions("scalar-evolution-classify-expressions",
225     cl::Hidden, cl::init(true),
226     cl::desc("When printing analysis, include information on every instruction"));
227 
228 static cl::opt<bool> UseExpensiveRangeSharpening(
229     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
230     cl::init(false),
231     cl::desc("Use more powerful methods of sharpening expression ranges. May "
232              "be costly in terms of compile time"));
233 
234 //===----------------------------------------------------------------------===//
235 //                           SCEV class definitions
236 //===----------------------------------------------------------------------===//
237 
238 //===----------------------------------------------------------------------===//
239 // Implementation of the SCEV class.
240 //
241 
242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
243 LLVM_DUMP_METHOD void SCEV::dump() const {
244   print(dbgs());
245   dbgs() << '\n';
246 }
247 #endif
248 
249 void SCEV::print(raw_ostream &OS) const {
250   switch (getSCEVType()) {
251   case scConstant:
252     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
253     return;
254   case scPtrToInt: {
255     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
256     const SCEV *Op = PtrToInt->getOperand();
257     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
258        << *PtrToInt->getType() << ")";
259     return;
260   }
261   case scTruncate: {
262     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
263     const SCEV *Op = Trunc->getOperand();
264     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
265        << *Trunc->getType() << ")";
266     return;
267   }
268   case scZeroExtend: {
269     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
270     const SCEV *Op = ZExt->getOperand();
271     OS << "(zext " << *Op->getType() << " " << *Op << " to "
272        << *ZExt->getType() << ")";
273     return;
274   }
275   case scSignExtend: {
276     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
277     const SCEV *Op = SExt->getOperand();
278     OS << "(sext " << *Op->getType() << " " << *Op << " to "
279        << *SExt->getType() << ")";
280     return;
281   }
282   case scAddRecExpr: {
283     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
284     OS << "{" << *AR->getOperand(0);
285     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
286       OS << ",+," << *AR->getOperand(i);
287     OS << "}<";
288     if (AR->hasNoUnsignedWrap())
289       OS << "nuw><";
290     if (AR->hasNoSignedWrap())
291       OS << "nsw><";
292     if (AR->hasNoSelfWrap() &&
293         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
294       OS << "nw><";
295     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
296     OS << ">";
297     return;
298   }
299   case scAddExpr:
300   case scMulExpr:
301   case scUMaxExpr:
302   case scSMaxExpr:
303   case scUMinExpr:
304   case scSMinExpr:
305   case scSequentialUMinExpr: {
306     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
307     const char *OpStr = nullptr;
308     switch (NAry->getSCEVType()) {
309     case scAddExpr: OpStr = " + "; break;
310     case scMulExpr: OpStr = " * "; break;
311     case scUMaxExpr: OpStr = " umax "; break;
312     case scSMaxExpr: OpStr = " smax "; break;
313     case scUMinExpr:
314       OpStr = " umin ";
315       break;
316     case scSMinExpr:
317       OpStr = " smin ";
318       break;
319     case scSequentialUMinExpr:
320       OpStr = " umin_seq ";
321       break;
322     default:
323       llvm_unreachable("There are no other nary expression types.");
324     }
325     OS << "(";
326     ListSeparator LS(OpStr);
327     for (const SCEV *Op : NAry->operands())
328       OS << LS << *Op;
329     OS << ")";
330     switch (NAry->getSCEVType()) {
331     case scAddExpr:
332     case scMulExpr:
333       if (NAry->hasNoUnsignedWrap())
334         OS << "<nuw>";
335       if (NAry->hasNoSignedWrap())
336         OS << "<nsw>";
337       break;
338     default:
339       // Nothing to print for other nary expressions.
340       break;
341     }
342     return;
343   }
344   case scUDivExpr: {
345     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
346     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
347     return;
348   }
349   case scUnknown: {
350     const SCEVUnknown *U = cast<SCEVUnknown>(this);
351     Type *AllocTy;
352     if (U->isSizeOf(AllocTy)) {
353       OS << "sizeof(" << *AllocTy << ")";
354       return;
355     }
356     if (U->isAlignOf(AllocTy)) {
357       OS << "alignof(" << *AllocTy << ")";
358       return;
359     }
360 
361     Type *CTy;
362     Constant *FieldNo;
363     if (U->isOffsetOf(CTy, FieldNo)) {
364       OS << "offsetof(" << *CTy << ", ";
365       FieldNo->printAsOperand(OS, false);
366       OS << ")";
367       return;
368     }
369 
370     // Otherwise just print it normally.
371     U->getValue()->printAsOperand(OS, false);
372     return;
373   }
374   case scCouldNotCompute:
375     OS << "***COULDNOTCOMPUTE***";
376     return;
377   }
378   llvm_unreachable("Unknown SCEV kind!");
379 }
380 
381 Type *SCEV::getType() const {
382   switch (getSCEVType()) {
383   case scConstant:
384     return cast<SCEVConstant>(this)->getType();
385   case scPtrToInt:
386   case scTruncate:
387   case scZeroExtend:
388   case scSignExtend:
389     return cast<SCEVCastExpr>(this)->getType();
390   case scAddRecExpr:
391     return cast<SCEVAddRecExpr>(this)->getType();
392   case scMulExpr:
393     return cast<SCEVMulExpr>(this)->getType();
394   case scUMaxExpr:
395   case scSMaxExpr:
396   case scUMinExpr:
397   case scSMinExpr:
398     return cast<SCEVMinMaxExpr>(this)->getType();
399   case scSequentialUMinExpr:
400     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
401   case scAddExpr:
402     return cast<SCEVAddExpr>(this)->getType();
403   case scUDivExpr:
404     return cast<SCEVUDivExpr>(this)->getType();
405   case scUnknown:
406     return cast<SCEVUnknown>(this)->getType();
407   case scCouldNotCompute:
408     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
409   }
410   llvm_unreachable("Unknown SCEV kind!");
411 }
412 
413 bool SCEV::isZero() const {
414   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415     return SC->getValue()->isZero();
416   return false;
417 }
418 
419 bool SCEV::isOne() const {
420   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421     return SC->getValue()->isOne();
422   return false;
423 }
424 
425 bool SCEV::isAllOnesValue() const {
426   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
427     return SC->getValue()->isMinusOne();
428   return false;
429 }
430 
431 bool SCEV::isNonConstantNegative() const {
432   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
433   if (!Mul) return false;
434 
435   // If there is a constant factor, it will be first.
436   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
437   if (!SC) return false;
438 
439   // Return true if the value is negative, this matches things like (-42 * V).
440   return SC->getAPInt().isNegative();
441 }
442 
443 SCEVCouldNotCompute::SCEVCouldNotCompute() :
444   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
445 
446 bool SCEVCouldNotCompute::classof(const SCEV *S) {
447   return S->getSCEVType() == scCouldNotCompute;
448 }
449 
450 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
451   FoldingSetNodeID ID;
452   ID.AddInteger(scConstant);
453   ID.AddPointer(V);
454   void *IP = nullptr;
455   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
456   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
457   UniqueSCEVs.InsertNode(S, IP);
458   return S;
459 }
460 
461 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
462   return getConstant(ConstantInt::get(getContext(), Val));
463 }
464 
465 const SCEV *
466 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
467   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
468   return getConstant(ConstantInt::get(ITy, V, isSigned));
469 }
470 
471 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
472                            const SCEV *op, Type *ty)
473     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
474   Operands[0] = op;
475 }
476 
477 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
478                                    Type *ITy)
479     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
480   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
481          "Must be a non-bit-width-changing pointer-to-integer cast!");
482 }
483 
484 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
485                                            SCEVTypes SCEVTy, const SCEV *op,
486                                            Type *ty)
487     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
488 
489 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
490                                    Type *ty)
491     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
492   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
493          "Cannot truncate non-integer value!");
494 }
495 
496 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
497                                        const SCEV *op, Type *ty)
498     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
499   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
500          "Cannot zero extend non-integer value!");
501 }
502 
503 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
504                                        const SCEV *op, Type *ty)
505     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
506   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
507          "Cannot sign extend non-integer value!");
508 }
509 
510 void SCEVUnknown::deleted() {
511   // Clear this SCEVUnknown from various maps.
512   SE->forgetMemoizedResults(this);
513 
514   // Remove this SCEVUnknown from the uniquing map.
515   SE->UniqueSCEVs.RemoveNode(this);
516 
517   // Release the value.
518   setValPtr(nullptr);
519 }
520 
521 void SCEVUnknown::allUsesReplacedWith(Value *New) {
522   // Remove this SCEVUnknown from the uniquing map.
523   SE->UniqueSCEVs.RemoveNode(this);
524 
525   // Update this SCEVUnknown to point to the new value. This is needed
526   // because there may still be outstanding SCEVs which still point to
527   // this SCEVUnknown.
528   setValPtr(New);
529 }
530 
531 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
532   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
533     if (VCE->getOpcode() == Instruction::PtrToInt)
534       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
535         if (CE->getOpcode() == Instruction::GetElementPtr &&
536             CE->getOperand(0)->isNullValue() &&
537             CE->getNumOperands() == 2)
538           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
539             if (CI->isOne()) {
540               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
541               return true;
542             }
543 
544   return false;
545 }
546 
547 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
548   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
549     if (VCE->getOpcode() == Instruction::PtrToInt)
550       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
551         if (CE->getOpcode() == Instruction::GetElementPtr &&
552             CE->getOperand(0)->isNullValue()) {
553           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
554           if (StructType *STy = dyn_cast<StructType>(Ty))
555             if (!STy->isPacked() &&
556                 CE->getNumOperands() == 3 &&
557                 CE->getOperand(1)->isNullValue()) {
558               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
559                 if (CI->isOne() &&
560                     STy->getNumElements() == 2 &&
561                     STy->getElementType(0)->isIntegerTy(1)) {
562                   AllocTy = STy->getElementType(1);
563                   return true;
564                 }
565             }
566         }
567 
568   return false;
569 }
570 
571 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
572   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
573     if (VCE->getOpcode() == Instruction::PtrToInt)
574       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
575         if (CE->getOpcode() == Instruction::GetElementPtr &&
576             CE->getNumOperands() == 3 &&
577             CE->getOperand(0)->isNullValue() &&
578             CE->getOperand(1)->isNullValue()) {
579           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
580           // Ignore vector types here so that ScalarEvolutionExpander doesn't
581           // emit getelementptrs that index into vectors.
582           if (Ty->isStructTy() || Ty->isArrayTy()) {
583             CTy = Ty;
584             FieldNo = CE->getOperand(2);
585             return true;
586           }
587         }
588 
589   return false;
590 }
591 
592 //===----------------------------------------------------------------------===//
593 //                               SCEV Utilities
594 //===----------------------------------------------------------------------===//
595 
596 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
597 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
598 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
599 /// have been previously deemed to be "equally complex" by this routine.  It is
600 /// intended to avoid exponential time complexity in cases like:
601 ///
602 ///   %a = f(%x, %y)
603 ///   %b = f(%a, %a)
604 ///   %c = f(%b, %b)
605 ///
606 ///   %d = f(%x, %y)
607 ///   %e = f(%d, %d)
608 ///   %f = f(%e, %e)
609 ///
610 ///   CompareValueComplexity(%f, %c)
611 ///
612 /// Since we do not continue running this routine on expression trees once we
613 /// have seen unequal values, there is no need to track them in the cache.
614 static int
615 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
616                        const LoopInfo *const LI, Value *LV, Value *RV,
617                        unsigned Depth) {
618   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
619     return 0;
620 
621   // Order pointer values after integer values. This helps SCEVExpander form
622   // GEPs.
623   bool LIsPointer = LV->getType()->isPointerTy(),
624        RIsPointer = RV->getType()->isPointerTy();
625   if (LIsPointer != RIsPointer)
626     return (int)LIsPointer - (int)RIsPointer;
627 
628   // Compare getValueID values.
629   unsigned LID = LV->getValueID(), RID = RV->getValueID();
630   if (LID != RID)
631     return (int)LID - (int)RID;
632 
633   // Sort arguments by their position.
634   if (const auto *LA = dyn_cast<Argument>(LV)) {
635     const auto *RA = cast<Argument>(RV);
636     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
637     return (int)LArgNo - (int)RArgNo;
638   }
639 
640   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
641     const auto *RGV = cast<GlobalValue>(RV);
642 
643     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
644       auto LT = GV->getLinkage();
645       return !(GlobalValue::isPrivateLinkage(LT) ||
646                GlobalValue::isInternalLinkage(LT));
647     };
648 
649     // Use the names to distinguish the two values, but only if the
650     // names are semantically important.
651     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
652       return LGV->getName().compare(RGV->getName());
653   }
654 
655   // For instructions, compare their loop depth, and their operand count.  This
656   // is pretty loose.
657   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
658     const auto *RInst = cast<Instruction>(RV);
659 
660     // Compare loop depths.
661     const BasicBlock *LParent = LInst->getParent(),
662                      *RParent = RInst->getParent();
663     if (LParent != RParent) {
664       unsigned LDepth = LI->getLoopDepth(LParent),
665                RDepth = LI->getLoopDepth(RParent);
666       if (LDepth != RDepth)
667         return (int)LDepth - (int)RDepth;
668     }
669 
670     // Compare the number of operands.
671     unsigned LNumOps = LInst->getNumOperands(),
672              RNumOps = RInst->getNumOperands();
673     if (LNumOps != RNumOps)
674       return (int)LNumOps - (int)RNumOps;
675 
676     for (unsigned Idx : seq(0u, LNumOps)) {
677       int Result =
678           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
679                                  RInst->getOperand(Idx), Depth + 1);
680       if (Result != 0)
681         return Result;
682     }
683   }
684 
685   EqCacheValue.unionSets(LV, RV);
686   return 0;
687 }
688 
689 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
690 // than RHS, respectively. A three-way result allows recursive comparisons to be
691 // more efficient.
692 // If the max analysis depth was reached, return None, assuming we do not know
693 // if they are equivalent for sure.
694 static Optional<int>
695 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
696                       EquivalenceClasses<const Value *> &EqCacheValue,
697                       const LoopInfo *const LI, const SCEV *LHS,
698                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
699   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
700   if (LHS == RHS)
701     return 0;
702 
703   // Primarily, sort the SCEVs by their getSCEVType().
704   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
705   if (LType != RType)
706     return (int)LType - (int)RType;
707 
708   if (EqCacheSCEV.isEquivalent(LHS, RHS))
709     return 0;
710 
711   if (Depth > MaxSCEVCompareDepth)
712     return None;
713 
714   // Aside from the getSCEVType() ordering, the particular ordering
715   // isn't very important except that it's beneficial to be consistent,
716   // so that (a + b) and (b + a) don't end up as different expressions.
717   switch (LType) {
718   case scUnknown: {
719     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
720     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
721 
722     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
723                                    RU->getValue(), Depth + 1);
724     if (X == 0)
725       EqCacheSCEV.unionSets(LHS, RHS);
726     return X;
727   }
728 
729   case scConstant: {
730     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
731     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
732 
733     // Compare constant values.
734     const APInt &LA = LC->getAPInt();
735     const APInt &RA = RC->getAPInt();
736     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
737     if (LBitWidth != RBitWidth)
738       return (int)LBitWidth - (int)RBitWidth;
739     return LA.ult(RA) ? -1 : 1;
740   }
741 
742   case scAddRecExpr: {
743     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
744     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
745 
746     // There is always a dominance between two recs that are used by one SCEV,
747     // so we can safely sort recs by loop header dominance. We require such
748     // order in getAddExpr.
749     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
750     if (LLoop != RLoop) {
751       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
752       assert(LHead != RHead && "Two loops share the same header?");
753       if (DT.dominates(LHead, RHead))
754         return 1;
755       else
756         assert(DT.dominates(RHead, LHead) &&
757                "No dominance between recurrences used by one SCEV?");
758       return -1;
759     }
760 
761     // Addrec complexity grows with operand count.
762     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
763     if (LNumOps != RNumOps)
764       return (int)LNumOps - (int)RNumOps;
765 
766     // Lexicographically compare.
767     for (unsigned i = 0; i != LNumOps; ++i) {
768       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
769                                      LA->getOperand(i), RA->getOperand(i), DT,
770                                      Depth + 1);
771       if (X != 0)
772         return X;
773     }
774     EqCacheSCEV.unionSets(LHS, RHS);
775     return 0;
776   }
777 
778   case scAddExpr:
779   case scMulExpr:
780   case scSMaxExpr:
781   case scUMaxExpr:
782   case scSMinExpr:
783   case scUMinExpr:
784   case scSequentialUMinExpr: {
785     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
786     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
787 
788     // Lexicographically compare n-ary expressions.
789     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
790     if (LNumOps != RNumOps)
791       return (int)LNumOps - (int)RNumOps;
792 
793     for (unsigned i = 0; i != LNumOps; ++i) {
794       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
795                                      LC->getOperand(i), RC->getOperand(i), DT,
796                                      Depth + 1);
797       if (X != 0)
798         return X;
799     }
800     EqCacheSCEV.unionSets(LHS, RHS);
801     return 0;
802   }
803 
804   case scUDivExpr: {
805     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
806     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
807 
808     // Lexicographically compare udiv expressions.
809     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
810                                    RC->getLHS(), DT, Depth + 1);
811     if (X != 0)
812       return X;
813     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
814                               RC->getRHS(), DT, Depth + 1);
815     if (X == 0)
816       EqCacheSCEV.unionSets(LHS, RHS);
817     return X;
818   }
819 
820   case scPtrToInt:
821   case scTruncate:
822   case scZeroExtend:
823   case scSignExtend: {
824     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
825     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
826 
827     // Compare cast expressions by operand.
828     auto X =
829         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
830                               RC->getOperand(), DT, Depth + 1);
831     if (X == 0)
832       EqCacheSCEV.unionSets(LHS, RHS);
833     return X;
834   }
835 
836   case scCouldNotCompute:
837     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
838   }
839   llvm_unreachable("Unknown SCEV kind!");
840 }
841 
842 /// Given a list of SCEV objects, order them by their complexity, and group
843 /// objects of the same complexity together by value.  When this routine is
844 /// finished, we know that any duplicates in the vector are consecutive and that
845 /// complexity is monotonically increasing.
846 ///
847 /// Note that we go take special precautions to ensure that we get deterministic
848 /// results from this routine.  In other words, we don't want the results of
849 /// this to depend on where the addresses of various SCEV objects happened to
850 /// land in memory.
851 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
852                               LoopInfo *LI, DominatorTree &DT) {
853   if (Ops.size() < 2) return;  // Noop
854 
855   EquivalenceClasses<const SCEV *> EqCacheSCEV;
856   EquivalenceClasses<const Value *> EqCacheValue;
857 
858   // Whether LHS has provably less complexity than RHS.
859   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
860     auto Complexity =
861         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
862     return Complexity && *Complexity < 0;
863   };
864   if (Ops.size() == 2) {
865     // This is the common case, which also happens to be trivially simple.
866     // Special case it.
867     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
868     if (IsLessComplex(RHS, LHS))
869       std::swap(LHS, RHS);
870     return;
871   }
872 
873   // Do the rough sort by complexity.
874   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
875     return IsLessComplex(LHS, RHS);
876   });
877 
878   // Now that we are sorted by complexity, group elements of the same
879   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
880   // be extremely short in practice.  Note that we take this approach because we
881   // do not want to depend on the addresses of the objects we are grouping.
882   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
883     const SCEV *S = Ops[i];
884     unsigned Complexity = S->getSCEVType();
885 
886     // If there are any objects of the same complexity and same value as this
887     // one, group them.
888     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
889       if (Ops[j] == S) { // Found a duplicate.
890         // Move it to immediately after i'th element.
891         std::swap(Ops[i+1], Ops[j]);
892         ++i;   // no need to rescan it.
893         if (i == e-2) return;  // Done!
894       }
895     }
896   }
897 }
898 
899 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
900 /// least HugeExprThreshold nodes).
901 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
902   return any_of(Ops, [](const SCEV *S) {
903     return S->getExpressionSize() >= HugeExprThreshold;
904   });
905 }
906 
907 //===----------------------------------------------------------------------===//
908 //                      Simple SCEV method implementations
909 //===----------------------------------------------------------------------===//
910 
911 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
912 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
913                                        ScalarEvolution &SE,
914                                        Type *ResultTy) {
915   // Handle the simplest case efficiently.
916   if (K == 1)
917     return SE.getTruncateOrZeroExtend(It, ResultTy);
918 
919   // We are using the following formula for BC(It, K):
920   //
921   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
922   //
923   // Suppose, W is the bitwidth of the return value.  We must be prepared for
924   // overflow.  Hence, we must assure that the result of our computation is
925   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
926   // safe in modular arithmetic.
927   //
928   // However, this code doesn't use exactly that formula; the formula it uses
929   // is something like the following, where T is the number of factors of 2 in
930   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
931   // exponentiation:
932   //
933   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
934   //
935   // This formula is trivially equivalent to the previous formula.  However,
936   // this formula can be implemented much more efficiently.  The trick is that
937   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
938   // arithmetic.  To do exact division in modular arithmetic, all we have
939   // to do is multiply by the inverse.  Therefore, this step can be done at
940   // width W.
941   //
942   // The next issue is how to safely do the division by 2^T.  The way this
943   // is done is by doing the multiplication step at a width of at least W + T
944   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
945   // when we perform the division by 2^T (which is equivalent to a right shift
946   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
947   // truncated out after the division by 2^T.
948   //
949   // In comparison to just directly using the first formula, this technique
950   // is much more efficient; using the first formula requires W * K bits,
951   // but this formula less than W + K bits. Also, the first formula requires
952   // a division step, whereas this formula only requires multiplies and shifts.
953   //
954   // It doesn't matter whether the subtraction step is done in the calculation
955   // width or the input iteration count's width; if the subtraction overflows,
956   // the result must be zero anyway.  We prefer here to do it in the width of
957   // the induction variable because it helps a lot for certain cases; CodeGen
958   // isn't smart enough to ignore the overflow, which leads to much less
959   // efficient code if the width of the subtraction is wider than the native
960   // register width.
961   //
962   // (It's possible to not widen at all by pulling out factors of 2 before
963   // the multiplication; for example, K=2 can be calculated as
964   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
965   // extra arithmetic, so it's not an obvious win, and it gets
966   // much more complicated for K > 3.)
967 
968   // Protection from insane SCEVs; this bound is conservative,
969   // but it probably doesn't matter.
970   if (K > 1000)
971     return SE.getCouldNotCompute();
972 
973   unsigned W = SE.getTypeSizeInBits(ResultTy);
974 
975   // Calculate K! / 2^T and T; we divide out the factors of two before
976   // multiplying for calculating K! / 2^T to avoid overflow.
977   // Other overflow doesn't matter because we only care about the bottom
978   // W bits of the result.
979   APInt OddFactorial(W, 1);
980   unsigned T = 1;
981   for (unsigned i = 3; i <= K; ++i) {
982     APInt Mult(W, i);
983     unsigned TwoFactors = Mult.countTrailingZeros();
984     T += TwoFactors;
985     Mult.lshrInPlace(TwoFactors);
986     OddFactorial *= Mult;
987   }
988 
989   // We need at least W + T bits for the multiplication step
990   unsigned CalculationBits = W + T;
991 
992   // Calculate 2^T, at width T+W.
993   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
994 
995   // Calculate the multiplicative inverse of K! / 2^T;
996   // this multiplication factor will perform the exact division by
997   // K! / 2^T.
998   APInt Mod = APInt::getSignedMinValue(W+1);
999   APInt MultiplyFactor = OddFactorial.zext(W+1);
1000   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1001   MultiplyFactor = MultiplyFactor.trunc(W);
1002 
1003   // Calculate the product, at width T+W
1004   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1005                                                       CalculationBits);
1006   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1007   for (unsigned i = 1; i != K; ++i) {
1008     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1009     Dividend = SE.getMulExpr(Dividend,
1010                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1011   }
1012 
1013   // Divide by 2^T
1014   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1015 
1016   // Truncate the result, and divide by K! / 2^T.
1017 
1018   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1019                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1020 }
1021 
1022 /// Return the value of this chain of recurrences at the specified iteration
1023 /// number.  We can evaluate this recurrence by multiplying each element in the
1024 /// chain by the binomial coefficient corresponding to it.  In other words, we
1025 /// can evaluate {A,+,B,+,C,+,D} as:
1026 ///
1027 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1028 ///
1029 /// where BC(It, k) stands for binomial coefficient.
1030 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1031                                                 ScalarEvolution &SE) const {
1032   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1033 }
1034 
1035 const SCEV *
1036 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1037                                     const SCEV *It, ScalarEvolution &SE) {
1038   assert(Operands.size() > 0);
1039   const SCEV *Result = Operands[0];
1040   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1041     // The computation is correct in the face of overflow provided that the
1042     // multiplication is performed _after_ the evaluation of the binomial
1043     // coefficient.
1044     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1045     if (isa<SCEVCouldNotCompute>(Coeff))
1046       return Coeff;
1047 
1048     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1049   }
1050   return Result;
1051 }
1052 
1053 //===----------------------------------------------------------------------===//
1054 //                    SCEV Expression folder implementations
1055 //===----------------------------------------------------------------------===//
1056 
1057 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1058                                                      unsigned Depth) {
1059   assert(Depth <= 1 &&
1060          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1061 
1062   // We could be called with an integer-typed operands during SCEV rewrites.
1063   // Since the operand is an integer already, just perform zext/trunc/self cast.
1064   if (!Op->getType()->isPointerTy())
1065     return Op;
1066 
1067   // What would be an ID for such a SCEV cast expression?
1068   FoldingSetNodeID ID;
1069   ID.AddInteger(scPtrToInt);
1070   ID.AddPointer(Op);
1071 
1072   void *IP = nullptr;
1073 
1074   // Is there already an expression for such a cast?
1075   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1076     return S;
1077 
1078   // It isn't legal for optimizations to construct new ptrtoint expressions
1079   // for non-integral pointers.
1080   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1081     return getCouldNotCompute();
1082 
1083   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1084 
1085   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1086   // is sufficiently wide to represent all possible pointer values.
1087   // We could theoretically teach SCEV to truncate wider pointers, but
1088   // that isn't implemented for now.
1089   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1090       getDataLayout().getTypeSizeInBits(IntPtrTy))
1091     return getCouldNotCompute();
1092 
1093   // If not, is this expression something we can't reduce any further?
1094   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1095     // Perform some basic constant folding. If the operand of the ptr2int cast
1096     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1097     // left as-is), but produce a zero constant.
1098     // NOTE: We could handle a more general case, but lack motivational cases.
1099     if (isa<ConstantPointerNull>(U->getValue()))
1100       return getZero(IntPtrTy);
1101 
1102     // Create an explicit cast node.
1103     // We can reuse the existing insert position since if we get here,
1104     // we won't have made any changes which would invalidate it.
1105     SCEV *S = new (SCEVAllocator)
1106         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1107     UniqueSCEVs.InsertNode(S, IP);
1108     registerUser(S, Op);
1109     return S;
1110   }
1111 
1112   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1113                        "non-SCEVUnknown's.");
1114 
1115   // Otherwise, we've got some expression that is more complex than just a
1116   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1117   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1118   // only, and the expressions must otherwise be integer-typed.
1119   // So sink the cast down to the SCEVUnknown's.
1120 
1121   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1122   /// which computes a pointer-typed value, and rewrites the whole expression
1123   /// tree so that *all* the computations are done on integers, and the only
1124   /// pointer-typed operands in the expression are SCEVUnknown.
1125   class SCEVPtrToIntSinkingRewriter
1126       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1127     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1128 
1129   public:
1130     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1131 
1132     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1133       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1134       return Rewriter.visit(Scev);
1135     }
1136 
1137     const SCEV *visit(const SCEV *S) {
1138       Type *STy = S->getType();
1139       // If the expression is not pointer-typed, just keep it as-is.
1140       if (!STy->isPointerTy())
1141         return S;
1142       // Else, recursively sink the cast down into it.
1143       return Base::visit(S);
1144     }
1145 
1146     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1147       SmallVector<const SCEV *, 2> Operands;
1148       bool Changed = false;
1149       for (auto *Op : Expr->operands()) {
1150         Operands.push_back(visit(Op));
1151         Changed |= Op != Operands.back();
1152       }
1153       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1154     }
1155 
1156     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1157       SmallVector<const SCEV *, 2> Operands;
1158       bool Changed = false;
1159       for (auto *Op : Expr->operands()) {
1160         Operands.push_back(visit(Op));
1161         Changed |= Op != Operands.back();
1162       }
1163       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1164     }
1165 
1166     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1167       assert(Expr->getType()->isPointerTy() &&
1168              "Should only reach pointer-typed SCEVUnknown's.");
1169       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1170     }
1171   };
1172 
1173   // And actually perform the cast sinking.
1174   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1175   assert(IntOp->getType()->isIntegerTy() &&
1176          "We must have succeeded in sinking the cast, "
1177          "and ending up with an integer-typed expression!");
1178   return IntOp;
1179 }
1180 
1181 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1182   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1183 
1184   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1185   if (isa<SCEVCouldNotCompute>(IntOp))
1186     return IntOp;
1187 
1188   return getTruncateOrZeroExtend(IntOp, Ty);
1189 }
1190 
1191 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1192                                              unsigned Depth) {
1193   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1194          "This is not a truncating conversion!");
1195   assert(isSCEVable(Ty) &&
1196          "This is not a conversion to a SCEVable type!");
1197   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1198   Ty = getEffectiveSCEVType(Ty);
1199 
1200   FoldingSetNodeID ID;
1201   ID.AddInteger(scTruncate);
1202   ID.AddPointer(Op);
1203   ID.AddPointer(Ty);
1204   void *IP = nullptr;
1205   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1206 
1207   // Fold if the operand is constant.
1208   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1209     return getConstant(
1210       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1211 
1212   // trunc(trunc(x)) --> trunc(x)
1213   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1214     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1215 
1216   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1217   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1218     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1219 
1220   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1221   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1222     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1223 
1224   if (Depth > MaxCastDepth) {
1225     SCEV *S =
1226         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1227     UniqueSCEVs.InsertNode(S, IP);
1228     registerUser(S, Op);
1229     return S;
1230   }
1231 
1232   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1233   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1234   // if after transforming we have at most one truncate, not counting truncates
1235   // that replace other casts.
1236   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1237     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1238     SmallVector<const SCEV *, 4> Operands;
1239     unsigned numTruncs = 0;
1240     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1241          ++i) {
1242       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1243       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1244           isa<SCEVTruncateExpr>(S))
1245         numTruncs++;
1246       Operands.push_back(S);
1247     }
1248     if (numTruncs < 2) {
1249       if (isa<SCEVAddExpr>(Op))
1250         return getAddExpr(Operands);
1251       else if (isa<SCEVMulExpr>(Op))
1252         return getMulExpr(Operands);
1253       else
1254         llvm_unreachable("Unexpected SCEV type for Op.");
1255     }
1256     // Although we checked in the beginning that ID is not in the cache, it is
1257     // possible that during recursion and different modification ID was inserted
1258     // into the cache. So if we find it, just return it.
1259     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1260       return S;
1261   }
1262 
1263   // If the input value is a chrec scev, truncate the chrec's operands.
1264   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1265     SmallVector<const SCEV *, 4> Operands;
1266     for (const SCEV *Op : AddRec->operands())
1267       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1268     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1269   }
1270 
1271   // Return zero if truncating to known zeros.
1272   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1273   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1274     return getZero(Ty);
1275 
1276   // The cast wasn't folded; create an explicit cast node. We can reuse
1277   // the existing insert position since if we get here, we won't have
1278   // made any changes which would invalidate it.
1279   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1280                                                  Op, Ty);
1281   UniqueSCEVs.InsertNode(S, IP);
1282   registerUser(S, Op);
1283   return S;
1284 }
1285 
1286 // Get the limit of a recurrence such that incrementing by Step cannot cause
1287 // signed overflow as long as the value of the recurrence within the
1288 // loop does not exceed this limit before incrementing.
1289 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1290                                                  ICmpInst::Predicate *Pred,
1291                                                  ScalarEvolution *SE) {
1292   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1293   if (SE->isKnownPositive(Step)) {
1294     *Pred = ICmpInst::ICMP_SLT;
1295     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1296                            SE->getSignedRangeMax(Step));
1297   }
1298   if (SE->isKnownNegative(Step)) {
1299     *Pred = ICmpInst::ICMP_SGT;
1300     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1301                            SE->getSignedRangeMin(Step));
1302   }
1303   return nullptr;
1304 }
1305 
1306 // Get the limit of a recurrence such that incrementing by Step cannot cause
1307 // unsigned overflow as long as the value of the recurrence within the loop does
1308 // not exceed this limit before incrementing.
1309 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1310                                                    ICmpInst::Predicate *Pred,
1311                                                    ScalarEvolution *SE) {
1312   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1313   *Pred = ICmpInst::ICMP_ULT;
1314 
1315   return SE->getConstant(APInt::getMinValue(BitWidth) -
1316                          SE->getUnsignedRangeMax(Step));
1317 }
1318 
1319 namespace {
1320 
1321 struct ExtendOpTraitsBase {
1322   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1323                                                           unsigned);
1324 };
1325 
1326 // Used to make code generic over signed and unsigned overflow.
1327 template <typename ExtendOp> struct ExtendOpTraits {
1328   // Members present:
1329   //
1330   // static const SCEV::NoWrapFlags WrapType;
1331   //
1332   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1333   //
1334   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1335   //                                           ICmpInst::Predicate *Pred,
1336   //                                           ScalarEvolution *SE);
1337 };
1338 
1339 template <>
1340 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1341   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1342 
1343   static const GetExtendExprTy GetExtendExpr;
1344 
1345   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1346                                              ICmpInst::Predicate *Pred,
1347                                              ScalarEvolution *SE) {
1348     return getSignedOverflowLimitForStep(Step, Pred, SE);
1349   }
1350 };
1351 
1352 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1353     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1354 
1355 template <>
1356 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1357   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1358 
1359   static const GetExtendExprTy GetExtendExpr;
1360 
1361   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1362                                              ICmpInst::Predicate *Pred,
1363                                              ScalarEvolution *SE) {
1364     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1365   }
1366 };
1367 
1368 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1369     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1370 
1371 } // end anonymous namespace
1372 
1373 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1374 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1375 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1376 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1377 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1378 // expression "Step + sext/zext(PreIncAR)" is congruent with
1379 // "sext/zext(PostIncAR)"
1380 template <typename ExtendOpTy>
1381 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1382                                         ScalarEvolution *SE, unsigned Depth) {
1383   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1384   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1385 
1386   const Loop *L = AR->getLoop();
1387   const SCEV *Start = AR->getStart();
1388   const SCEV *Step = AR->getStepRecurrence(*SE);
1389 
1390   // Check for a simple looking step prior to loop entry.
1391   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1392   if (!SA)
1393     return nullptr;
1394 
1395   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1396   // subtraction is expensive. For this purpose, perform a quick and dirty
1397   // difference, by checking for Step in the operand list.
1398   SmallVector<const SCEV *, 4> DiffOps;
1399   for (const SCEV *Op : SA->operands())
1400     if (Op != Step)
1401       DiffOps.push_back(Op);
1402 
1403   if (DiffOps.size() == SA->getNumOperands())
1404     return nullptr;
1405 
1406   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1407   // `Step`:
1408 
1409   // 1. NSW/NUW flags on the step increment.
1410   auto PreStartFlags =
1411     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1412   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1413   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1414       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1415 
1416   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1417   // "S+X does not sign/unsign-overflow".
1418   //
1419 
1420   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1421   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1422       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1423     return PreStart;
1424 
1425   // 2. Direct overflow check on the step operation's expression.
1426   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1427   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1428   const SCEV *OperandExtendedStart =
1429       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1430                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1431   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1432     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1433       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1434       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1435       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1436       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1437     }
1438     return PreStart;
1439   }
1440 
1441   // 3. Loop precondition.
1442   ICmpInst::Predicate Pred;
1443   const SCEV *OverflowLimit =
1444       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1445 
1446   if (OverflowLimit &&
1447       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1448     return PreStart;
1449 
1450   return nullptr;
1451 }
1452 
1453 // Get the normalized zero or sign extended expression for this AddRec's Start.
1454 template <typename ExtendOpTy>
1455 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1456                                         ScalarEvolution *SE,
1457                                         unsigned Depth) {
1458   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1459 
1460   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1461   if (!PreStart)
1462     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1463 
1464   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1465                                              Depth),
1466                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1467 }
1468 
1469 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1470 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1471 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1472 //
1473 // Formally:
1474 //
1475 //     {S,+,X} == {S-T,+,X} + T
1476 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1477 //
1478 // If ({S-T,+,X} + T) does not overflow  ... (1)
1479 //
1480 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1481 //
1482 // If {S-T,+,X} does not overflow  ... (2)
1483 //
1484 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1485 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1486 //
1487 // If (S-T)+T does not overflow  ... (3)
1488 //
1489 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1490 //      == {Ext(S),+,Ext(X)} == LHS
1491 //
1492 // Thus, if (1), (2) and (3) are true for some T, then
1493 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1494 //
1495 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1496 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1497 // to check for (1) and (2).
1498 //
1499 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1500 // is `Delta` (defined below).
1501 template <typename ExtendOpTy>
1502 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1503                                                 const SCEV *Step,
1504                                                 const Loop *L) {
1505   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1506 
1507   // We restrict `Start` to a constant to prevent SCEV from spending too much
1508   // time here.  It is correct (but more expensive) to continue with a
1509   // non-constant `Start` and do a general SCEV subtraction to compute
1510   // `PreStart` below.
1511   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1512   if (!StartC)
1513     return false;
1514 
1515   APInt StartAI = StartC->getAPInt();
1516 
1517   for (unsigned Delta : {-2, -1, 1, 2}) {
1518     const SCEV *PreStart = getConstant(StartAI - Delta);
1519 
1520     FoldingSetNodeID ID;
1521     ID.AddInteger(scAddRecExpr);
1522     ID.AddPointer(PreStart);
1523     ID.AddPointer(Step);
1524     ID.AddPointer(L);
1525     void *IP = nullptr;
1526     const auto *PreAR =
1527       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1528 
1529     // Give up if we don't already have the add recurrence we need because
1530     // actually constructing an add recurrence is relatively expensive.
1531     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1532       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1533       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1534       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1535           DeltaS, &Pred, this);
1536       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1537         return true;
1538     }
1539   }
1540 
1541   return false;
1542 }
1543 
1544 // Finds an integer D for an expression (C + x + y + ...) such that the top
1545 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1546 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1547 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1548 // the (C + x + y + ...) expression is \p WholeAddExpr.
1549 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1550                                             const SCEVConstant *ConstantTerm,
1551                                             const SCEVAddExpr *WholeAddExpr) {
1552   const APInt &C = ConstantTerm->getAPInt();
1553   const unsigned BitWidth = C.getBitWidth();
1554   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1555   uint32_t TZ = BitWidth;
1556   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1557     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1558   if (TZ) {
1559     // Set D to be as many least significant bits of C as possible while still
1560     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1561     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1562   }
1563   return APInt(BitWidth, 0);
1564 }
1565 
1566 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1567 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1568 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1569 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1570 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1571                                             const APInt &ConstantStart,
1572                                             const SCEV *Step) {
1573   const unsigned BitWidth = ConstantStart.getBitWidth();
1574   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1575   if (TZ)
1576     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1577                          : ConstantStart;
1578   return APInt(BitWidth, 0);
1579 }
1580 
1581 const SCEV *
1582 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1583   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1584          "This is not an extending conversion!");
1585   assert(isSCEVable(Ty) &&
1586          "This is not a conversion to a SCEVable type!");
1587   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1588   Ty = getEffectiveSCEVType(Ty);
1589 
1590   // Fold if the operand is constant.
1591   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1592     return getConstant(
1593       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1594 
1595   // zext(zext(x)) --> zext(x)
1596   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1597     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1598 
1599   // Before doing any expensive analysis, check to see if we've already
1600   // computed a SCEV for this Op and Ty.
1601   FoldingSetNodeID ID;
1602   ID.AddInteger(scZeroExtend);
1603   ID.AddPointer(Op);
1604   ID.AddPointer(Ty);
1605   void *IP = nullptr;
1606   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1607   if (Depth > MaxCastDepth) {
1608     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1609                                                      Op, Ty);
1610     UniqueSCEVs.InsertNode(S, IP);
1611     registerUser(S, Op);
1612     return S;
1613   }
1614 
1615   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1616   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1617     // It's possible the bits taken off by the truncate were all zero bits. If
1618     // so, we should be able to simplify this further.
1619     const SCEV *X = ST->getOperand();
1620     ConstantRange CR = getUnsignedRange(X);
1621     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1622     unsigned NewBits = getTypeSizeInBits(Ty);
1623     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1624             CR.zextOrTrunc(NewBits)))
1625       return getTruncateOrZeroExtend(X, Ty, Depth);
1626   }
1627 
1628   // If the input value is a chrec scev, and we can prove that the value
1629   // did not overflow the old, smaller, value, we can zero extend all of the
1630   // operands (often constants).  This allows analysis of something like
1631   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1632   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1633     if (AR->isAffine()) {
1634       const SCEV *Start = AR->getStart();
1635       const SCEV *Step = AR->getStepRecurrence(*this);
1636       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1637       const Loop *L = AR->getLoop();
1638 
1639       if (!AR->hasNoUnsignedWrap()) {
1640         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1641         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1642       }
1643 
1644       // If we have special knowledge that this addrec won't overflow,
1645       // we don't need to do any further analysis.
1646       if (AR->hasNoUnsignedWrap())
1647         return getAddRecExpr(
1648             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1649             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1650 
1651       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1652       // Note that this serves two purposes: It filters out loops that are
1653       // simply not analyzable, and it covers the case where this code is
1654       // being called from within backedge-taken count analysis, such that
1655       // attempting to ask for the backedge-taken count would likely result
1656       // in infinite recursion. In the later case, the analysis code will
1657       // cope with a conservative value, and it will take care to purge
1658       // that value once it has finished.
1659       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1660       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1661         // Manually compute the final value for AR, checking for overflow.
1662 
1663         // Check whether the backedge-taken count can be losslessly casted to
1664         // the addrec's type. The count is always unsigned.
1665         const SCEV *CastedMaxBECount =
1666             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1667         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1668             CastedMaxBECount, MaxBECount->getType(), Depth);
1669         if (MaxBECount == RecastedMaxBECount) {
1670           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1671           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1672           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1673                                         SCEV::FlagAnyWrap, Depth + 1);
1674           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1675                                                           SCEV::FlagAnyWrap,
1676                                                           Depth + 1),
1677                                                WideTy, Depth + 1);
1678           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1679           const SCEV *WideMaxBECount =
1680             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1681           const SCEV *OperandExtendedAdd =
1682             getAddExpr(WideStart,
1683                        getMulExpr(WideMaxBECount,
1684                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1685                                   SCEV::FlagAnyWrap, Depth + 1),
1686                        SCEV::FlagAnyWrap, Depth + 1);
1687           if (ZAdd == OperandExtendedAdd) {
1688             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1689             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1690             // Return the expression with the addrec on the outside.
1691             return getAddRecExpr(
1692                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1693                                                          Depth + 1),
1694                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1695                 AR->getNoWrapFlags());
1696           }
1697           // Similar to above, only this time treat the step value as signed.
1698           // This covers loops that count down.
1699           OperandExtendedAdd =
1700             getAddExpr(WideStart,
1701                        getMulExpr(WideMaxBECount,
1702                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1703                                   SCEV::FlagAnyWrap, Depth + 1),
1704                        SCEV::FlagAnyWrap, Depth + 1);
1705           if (ZAdd == OperandExtendedAdd) {
1706             // Cache knowledge of AR NW, which is propagated to this AddRec.
1707             // Negative step causes unsigned wrap, but it still can't self-wrap.
1708             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1709             // Return the expression with the addrec on the outside.
1710             return getAddRecExpr(
1711                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1712                                                          Depth + 1),
1713                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1714                 AR->getNoWrapFlags());
1715           }
1716         }
1717       }
1718 
1719       // Normally, in the cases we can prove no-overflow via a
1720       // backedge guarding condition, we can also compute a backedge
1721       // taken count for the loop.  The exceptions are assumptions and
1722       // guards present in the loop -- SCEV is not great at exploiting
1723       // these to compute max backedge taken counts, but can still use
1724       // these to prove lack of overflow.  Use this fact to avoid
1725       // doing extra work that may not pay off.
1726       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1727           !AC.assumptions().empty()) {
1728 
1729         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1730         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1731         if (AR->hasNoUnsignedWrap()) {
1732           // Same as nuw case above - duplicated here to avoid a compile time
1733           // issue.  It's not clear that the order of checks does matter, but
1734           // it's one of two issue possible causes for a change which was
1735           // reverted.  Be conservative for the moment.
1736           return getAddRecExpr(
1737                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1738                                                          Depth + 1),
1739                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1740                 AR->getNoWrapFlags());
1741         }
1742 
1743         // For a negative step, we can extend the operands iff doing so only
1744         // traverses values in the range zext([0,UINT_MAX]).
1745         if (isKnownNegative(Step)) {
1746           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1747                                       getSignedRangeMin(Step));
1748           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1749               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1750             // Cache knowledge of AR NW, which is propagated to this
1751             // AddRec.  Negative step causes unsigned wrap, but it
1752             // still can't self-wrap.
1753             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1754             // Return the expression with the addrec on the outside.
1755             return getAddRecExpr(
1756                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1757                                                          Depth + 1),
1758                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1759                 AR->getNoWrapFlags());
1760           }
1761         }
1762       }
1763 
1764       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1765       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1766       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1767       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1768         const APInt &C = SC->getAPInt();
1769         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1770         if (D != 0) {
1771           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1772           const SCEV *SResidual =
1773               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1774           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1775           return getAddExpr(SZExtD, SZExtR,
1776                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1777                             Depth + 1);
1778         }
1779       }
1780 
1781       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1782         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1783         return getAddRecExpr(
1784             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1785             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1786       }
1787     }
1788 
1789   // zext(A % B) --> zext(A) % zext(B)
1790   {
1791     const SCEV *LHS;
1792     const SCEV *RHS;
1793     if (matchURem(Op, LHS, RHS))
1794       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1795                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1796   }
1797 
1798   // zext(A / B) --> zext(A) / zext(B).
1799   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1800     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1801                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1802 
1803   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1804     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1805     if (SA->hasNoUnsignedWrap()) {
1806       // If the addition does not unsign overflow then we can, by definition,
1807       // commute the zero extension with the addition operation.
1808       SmallVector<const SCEV *, 4> Ops;
1809       for (const auto *Op : SA->operands())
1810         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1811       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1812     }
1813 
1814     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1815     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1816     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1817     //
1818     // Often address arithmetics contain expressions like
1819     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1820     // This transformation is useful while proving that such expressions are
1821     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1822     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1823       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1824       if (D != 0) {
1825         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1826         const SCEV *SResidual =
1827             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1828         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1829         return getAddExpr(SZExtD, SZExtR,
1830                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1831                           Depth + 1);
1832       }
1833     }
1834   }
1835 
1836   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1837     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1838     if (SM->hasNoUnsignedWrap()) {
1839       // If the multiply does not unsign overflow then we can, by definition,
1840       // commute the zero extension with the multiply operation.
1841       SmallVector<const SCEV *, 4> Ops;
1842       for (const auto *Op : SM->operands())
1843         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1844       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1845     }
1846 
1847     // zext(2^K * (trunc X to iN)) to iM ->
1848     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1849     //
1850     // Proof:
1851     //
1852     //     zext(2^K * (trunc X to iN)) to iM
1853     //   = zext((trunc X to iN) << K) to iM
1854     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1855     //     (because shl removes the top K bits)
1856     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1857     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1858     //
1859     if (SM->getNumOperands() == 2)
1860       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1861         if (MulLHS->getAPInt().isPowerOf2())
1862           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1863             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1864                                MulLHS->getAPInt().logBase2();
1865             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1866             return getMulExpr(
1867                 getZeroExtendExpr(MulLHS, Ty),
1868                 getZeroExtendExpr(
1869                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1870                 SCEV::FlagNUW, Depth + 1);
1871           }
1872   }
1873 
1874   // The cast wasn't folded; create an explicit cast node.
1875   // Recompute the insert position, as it may have been invalidated.
1876   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1877   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1878                                                    Op, Ty);
1879   UniqueSCEVs.InsertNode(S, IP);
1880   registerUser(S, Op);
1881   return S;
1882 }
1883 
1884 const SCEV *
1885 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1886   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1887          "This is not an extending conversion!");
1888   assert(isSCEVable(Ty) &&
1889          "This is not a conversion to a SCEVable type!");
1890   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1891   Ty = getEffectiveSCEVType(Ty);
1892 
1893   // Fold if the operand is constant.
1894   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1895     return getConstant(
1896       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1897 
1898   // sext(sext(x)) --> sext(x)
1899   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1900     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1901 
1902   // sext(zext(x)) --> zext(x)
1903   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1904     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1905 
1906   // Before doing any expensive analysis, check to see if we've already
1907   // computed a SCEV for this Op and Ty.
1908   FoldingSetNodeID ID;
1909   ID.AddInteger(scSignExtend);
1910   ID.AddPointer(Op);
1911   ID.AddPointer(Ty);
1912   void *IP = nullptr;
1913   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1914   // Limit recursion depth.
1915   if (Depth > MaxCastDepth) {
1916     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1917                                                      Op, Ty);
1918     UniqueSCEVs.InsertNode(S, IP);
1919     registerUser(S, Op);
1920     return S;
1921   }
1922 
1923   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1924   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1925     // It's possible the bits taken off by the truncate were all sign bits. If
1926     // so, we should be able to simplify this further.
1927     const SCEV *X = ST->getOperand();
1928     ConstantRange CR = getSignedRange(X);
1929     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1930     unsigned NewBits = getTypeSizeInBits(Ty);
1931     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1932             CR.sextOrTrunc(NewBits)))
1933       return getTruncateOrSignExtend(X, Ty, Depth);
1934   }
1935 
1936   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1937     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1938     if (SA->hasNoSignedWrap()) {
1939       // If the addition does not sign overflow then we can, by definition,
1940       // commute the sign extension with the addition operation.
1941       SmallVector<const SCEV *, 4> Ops;
1942       for (const auto *Op : SA->operands())
1943         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1944       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1945     }
1946 
1947     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1948     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1949     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1950     //
1951     // For instance, this will bring two seemingly different expressions:
1952     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1953     //         sext(6 + 20 * %x + 24 * %y)
1954     // to the same form:
1955     //     2 + sext(4 + 20 * %x + 24 * %y)
1956     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1957       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1958       if (D != 0) {
1959         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1960         const SCEV *SResidual =
1961             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1962         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1963         return getAddExpr(SSExtD, SSExtR,
1964                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1965                           Depth + 1);
1966       }
1967     }
1968   }
1969   // If the input value is a chrec scev, and we can prove that the value
1970   // did not overflow the old, smaller, value, we can sign extend all of the
1971   // operands (often constants).  This allows analysis of something like
1972   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1973   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1974     if (AR->isAffine()) {
1975       const SCEV *Start = AR->getStart();
1976       const SCEV *Step = AR->getStepRecurrence(*this);
1977       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1978       const Loop *L = AR->getLoop();
1979 
1980       if (!AR->hasNoSignedWrap()) {
1981         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1982         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1983       }
1984 
1985       // If we have special knowledge that this addrec won't overflow,
1986       // we don't need to do any further analysis.
1987       if (AR->hasNoSignedWrap())
1988         return getAddRecExpr(
1989             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1990             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1991 
1992       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1993       // Note that this serves two purposes: It filters out loops that are
1994       // simply not analyzable, and it covers the case where this code is
1995       // being called from within backedge-taken count analysis, such that
1996       // attempting to ask for the backedge-taken count would likely result
1997       // in infinite recursion. In the later case, the analysis code will
1998       // cope with a conservative value, and it will take care to purge
1999       // that value once it has finished.
2000       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2001       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2002         // Manually compute the final value for AR, checking for
2003         // overflow.
2004 
2005         // Check whether the backedge-taken count can be losslessly casted to
2006         // the addrec's type. The count is always unsigned.
2007         const SCEV *CastedMaxBECount =
2008             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2009         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2010             CastedMaxBECount, MaxBECount->getType(), Depth);
2011         if (MaxBECount == RecastedMaxBECount) {
2012           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2013           // Check whether Start+Step*MaxBECount has no signed overflow.
2014           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2015                                         SCEV::FlagAnyWrap, Depth + 1);
2016           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2017                                                           SCEV::FlagAnyWrap,
2018                                                           Depth + 1),
2019                                                WideTy, Depth + 1);
2020           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2021           const SCEV *WideMaxBECount =
2022             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2023           const SCEV *OperandExtendedAdd =
2024             getAddExpr(WideStart,
2025                        getMulExpr(WideMaxBECount,
2026                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2027                                   SCEV::FlagAnyWrap, Depth + 1),
2028                        SCEV::FlagAnyWrap, Depth + 1);
2029           if (SAdd == OperandExtendedAdd) {
2030             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2031             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2032             // Return the expression with the addrec on the outside.
2033             return getAddRecExpr(
2034                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2035                                                          Depth + 1),
2036                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2037                 AR->getNoWrapFlags());
2038           }
2039           // Similar to above, only this time treat the step value as unsigned.
2040           // This covers loops that count up with an unsigned step.
2041           OperandExtendedAdd =
2042             getAddExpr(WideStart,
2043                        getMulExpr(WideMaxBECount,
2044                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2045                                   SCEV::FlagAnyWrap, Depth + 1),
2046                        SCEV::FlagAnyWrap, Depth + 1);
2047           if (SAdd == OperandExtendedAdd) {
2048             // If AR wraps around then
2049             //
2050             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2051             // => SAdd != OperandExtendedAdd
2052             //
2053             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2054             // (SAdd == OperandExtendedAdd => AR is NW)
2055 
2056             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2057 
2058             // Return the expression with the addrec on the outside.
2059             return getAddRecExpr(
2060                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2061                                                          Depth + 1),
2062                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2063                 AR->getNoWrapFlags());
2064           }
2065         }
2066       }
2067 
2068       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2069       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2070       if (AR->hasNoSignedWrap()) {
2071         // Same as nsw case above - duplicated here to avoid a compile time
2072         // issue.  It's not clear that the order of checks does matter, but
2073         // it's one of two issue possible causes for a change which was
2074         // reverted.  Be conservative for the moment.
2075         return getAddRecExpr(
2076             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2077             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2078       }
2079 
2080       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2081       // if D + (C - D + Step * n) could be proven to not signed wrap
2082       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2083       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2084         const APInt &C = SC->getAPInt();
2085         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2086         if (D != 0) {
2087           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2088           const SCEV *SResidual =
2089               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2090           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2091           return getAddExpr(SSExtD, SSExtR,
2092                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2093                             Depth + 1);
2094         }
2095       }
2096 
2097       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2098         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2099         return getAddRecExpr(
2100             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2101             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2102       }
2103     }
2104 
2105   // If the input value is provably positive and we could not simplify
2106   // away the sext build a zext instead.
2107   if (isKnownNonNegative(Op))
2108     return getZeroExtendExpr(Op, Ty, Depth + 1);
2109 
2110   // The cast wasn't folded; create an explicit cast node.
2111   // Recompute the insert position, as it may have been invalidated.
2112   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2113   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2114                                                    Op, Ty);
2115   UniqueSCEVs.InsertNode(S, IP);
2116   registerUser(S, { Op });
2117   return S;
2118 }
2119 
2120 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2121                                          Type *Ty) {
2122   switch (Kind) {
2123   case scTruncate:
2124     return getTruncateExpr(Op, Ty);
2125   case scZeroExtend:
2126     return getZeroExtendExpr(Op, Ty);
2127   case scSignExtend:
2128     return getSignExtendExpr(Op, Ty);
2129   case scPtrToInt:
2130     return getPtrToIntExpr(Op, Ty);
2131   default:
2132     llvm_unreachable("Not a SCEV cast expression!");
2133   }
2134 }
2135 
2136 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2137 /// unspecified bits out to the given type.
2138 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2139                                               Type *Ty) {
2140   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2141          "This is not an extending conversion!");
2142   assert(isSCEVable(Ty) &&
2143          "This is not a conversion to a SCEVable type!");
2144   Ty = getEffectiveSCEVType(Ty);
2145 
2146   // Sign-extend negative constants.
2147   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2148     if (SC->getAPInt().isNegative())
2149       return getSignExtendExpr(Op, Ty);
2150 
2151   // Peel off a truncate cast.
2152   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2153     const SCEV *NewOp = T->getOperand();
2154     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2155       return getAnyExtendExpr(NewOp, Ty);
2156     return getTruncateOrNoop(NewOp, Ty);
2157   }
2158 
2159   // Next try a zext cast. If the cast is folded, use it.
2160   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2161   if (!isa<SCEVZeroExtendExpr>(ZExt))
2162     return ZExt;
2163 
2164   // Next try a sext cast. If the cast is folded, use it.
2165   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2166   if (!isa<SCEVSignExtendExpr>(SExt))
2167     return SExt;
2168 
2169   // Force the cast to be folded into the operands of an addrec.
2170   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2171     SmallVector<const SCEV *, 4> Ops;
2172     for (const SCEV *Op : AR->operands())
2173       Ops.push_back(getAnyExtendExpr(Op, Ty));
2174     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2175   }
2176 
2177   // If the expression is obviously signed, use the sext cast value.
2178   if (isa<SCEVSMaxExpr>(Op))
2179     return SExt;
2180 
2181   // Absent any other information, use the zext cast value.
2182   return ZExt;
2183 }
2184 
2185 /// Process the given Ops list, which is a list of operands to be added under
2186 /// the given scale, update the given map. This is a helper function for
2187 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2188 /// that would form an add expression like this:
2189 ///
2190 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2191 ///
2192 /// where A and B are constants, update the map with these values:
2193 ///
2194 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2195 ///
2196 /// and add 13 + A*B*29 to AccumulatedConstant.
2197 /// This will allow getAddRecExpr to produce this:
2198 ///
2199 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2200 ///
2201 /// This form often exposes folding opportunities that are hidden in
2202 /// the original operand list.
2203 ///
2204 /// Return true iff it appears that any interesting folding opportunities
2205 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2206 /// the common case where no interesting opportunities are present, and
2207 /// is also used as a check to avoid infinite recursion.
2208 static bool
2209 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2210                              SmallVectorImpl<const SCEV *> &NewOps,
2211                              APInt &AccumulatedConstant,
2212                              const SCEV *const *Ops, size_t NumOperands,
2213                              const APInt &Scale,
2214                              ScalarEvolution &SE) {
2215   bool Interesting = false;
2216 
2217   // Iterate over the add operands. They are sorted, with constants first.
2218   unsigned i = 0;
2219   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2220     ++i;
2221     // Pull a buried constant out to the outside.
2222     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2223       Interesting = true;
2224     AccumulatedConstant += Scale * C->getAPInt();
2225   }
2226 
2227   // Next comes everything else. We're especially interested in multiplies
2228   // here, but they're in the middle, so just visit the rest with one loop.
2229   for (; i != NumOperands; ++i) {
2230     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2231     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2232       APInt NewScale =
2233           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2234       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2235         // A multiplication of a constant with another add; recurse.
2236         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2237         Interesting |=
2238           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2239                                        Add->op_begin(), Add->getNumOperands(),
2240                                        NewScale, SE);
2241       } else {
2242         // A multiplication of a constant with some other value. Update
2243         // the map.
2244         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2245         const SCEV *Key = SE.getMulExpr(MulOps);
2246         auto Pair = M.insert({Key, NewScale});
2247         if (Pair.second) {
2248           NewOps.push_back(Pair.first->first);
2249         } else {
2250           Pair.first->second += NewScale;
2251           // The map already had an entry for this value, which may indicate
2252           // a folding opportunity.
2253           Interesting = true;
2254         }
2255       }
2256     } else {
2257       // An ordinary operand. Update the map.
2258       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2259           M.insert({Ops[i], Scale});
2260       if (Pair.second) {
2261         NewOps.push_back(Pair.first->first);
2262       } else {
2263         Pair.first->second += Scale;
2264         // The map already had an entry for this value, which may indicate
2265         // a folding opportunity.
2266         Interesting = true;
2267       }
2268     }
2269   }
2270 
2271   return Interesting;
2272 }
2273 
2274 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2275                                       const SCEV *LHS, const SCEV *RHS) {
2276   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2277                                             SCEV::NoWrapFlags, unsigned);
2278   switch (BinOp) {
2279   default:
2280     llvm_unreachable("Unsupported binary op");
2281   case Instruction::Add:
2282     Operation = &ScalarEvolution::getAddExpr;
2283     break;
2284   case Instruction::Sub:
2285     Operation = &ScalarEvolution::getMinusSCEV;
2286     break;
2287   case Instruction::Mul:
2288     Operation = &ScalarEvolution::getMulExpr;
2289     break;
2290   }
2291 
2292   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2293       Signed ? &ScalarEvolution::getSignExtendExpr
2294              : &ScalarEvolution::getZeroExtendExpr;
2295 
2296   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2297   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2298   auto *WideTy =
2299       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2300 
2301   const SCEV *A = (this->*Extension)(
2302       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2303   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2304                                      (this->*Extension)(RHS, WideTy, 0),
2305                                      SCEV::FlagAnyWrap, 0);
2306   return A == B;
2307 }
2308 
2309 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2310 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2311     const OverflowingBinaryOperator *OBO) {
2312   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2313 
2314   if (OBO->hasNoUnsignedWrap())
2315     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2316   if (OBO->hasNoSignedWrap())
2317     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2318 
2319   bool Deduced = false;
2320 
2321   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2322     return {Flags, Deduced};
2323 
2324   if (OBO->getOpcode() != Instruction::Add &&
2325       OBO->getOpcode() != Instruction::Sub &&
2326       OBO->getOpcode() != Instruction::Mul)
2327     return {Flags, Deduced};
2328 
2329   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2330   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2331 
2332   if (!OBO->hasNoUnsignedWrap() &&
2333       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2334                       /* Signed */ false, LHS, RHS)) {
2335     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2336     Deduced = true;
2337   }
2338 
2339   if (!OBO->hasNoSignedWrap() &&
2340       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2341                       /* Signed */ true, LHS, RHS)) {
2342     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2343     Deduced = true;
2344   }
2345 
2346   return {Flags, Deduced};
2347 }
2348 
2349 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2350 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2351 // can't-overflow flags for the operation if possible.
2352 static SCEV::NoWrapFlags
2353 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2354                       const ArrayRef<const SCEV *> Ops,
2355                       SCEV::NoWrapFlags Flags) {
2356   using namespace std::placeholders;
2357 
2358   using OBO = OverflowingBinaryOperator;
2359 
2360   bool CanAnalyze =
2361       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2362   (void)CanAnalyze;
2363   assert(CanAnalyze && "don't call from other places!");
2364 
2365   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2366   SCEV::NoWrapFlags SignOrUnsignWrap =
2367       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2368 
2369   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2370   auto IsKnownNonNegative = [&](const SCEV *S) {
2371     return SE->isKnownNonNegative(S);
2372   };
2373 
2374   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2375     Flags =
2376         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2377 
2378   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2379 
2380   if (SignOrUnsignWrap != SignOrUnsignMask &&
2381       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2382       isa<SCEVConstant>(Ops[0])) {
2383 
2384     auto Opcode = [&] {
2385       switch (Type) {
2386       case scAddExpr:
2387         return Instruction::Add;
2388       case scMulExpr:
2389         return Instruction::Mul;
2390       default:
2391         llvm_unreachable("Unexpected SCEV op.");
2392       }
2393     }();
2394 
2395     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2396 
2397     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2398     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2399       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2400           Opcode, C, OBO::NoSignedWrap);
2401       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2402         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2403     }
2404 
2405     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2406     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2407       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2408           Opcode, C, OBO::NoUnsignedWrap);
2409       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2410         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2411     }
2412   }
2413 
2414   // <0,+,nonnegative><nw> is also nuw
2415   // TODO: Add corresponding nsw case
2416   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2417       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2418       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2419     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2420 
2421   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2422   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2423       Ops.size() == 2) {
2424     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2425       if (UDiv->getOperand(1) == Ops[1])
2426         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2427     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2428       if (UDiv->getOperand(1) == Ops[0])
2429         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2430   }
2431 
2432   return Flags;
2433 }
2434 
2435 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2436   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2437 }
2438 
2439 /// Get a canonical add expression, or something simpler if possible.
2440 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2441                                         SCEV::NoWrapFlags OrigFlags,
2442                                         unsigned Depth) {
2443   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2444          "only nuw or nsw allowed");
2445   assert(!Ops.empty() && "Cannot get empty add!");
2446   if (Ops.size() == 1) return Ops[0];
2447 #ifndef NDEBUG
2448   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2449   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2450     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2451            "SCEVAddExpr operand types don't match!");
2452   unsigned NumPtrs = count_if(
2453       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2454   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2455 #endif
2456 
2457   // Sort by complexity, this groups all similar expression types together.
2458   GroupByComplexity(Ops, &LI, DT);
2459 
2460   // If there are any constants, fold them together.
2461   unsigned Idx = 0;
2462   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2463     ++Idx;
2464     assert(Idx < Ops.size());
2465     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2466       // We found two constants, fold them together!
2467       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2468       if (Ops.size() == 2) return Ops[0];
2469       Ops.erase(Ops.begin()+1);  // Erase the folded element
2470       LHSC = cast<SCEVConstant>(Ops[0]);
2471     }
2472 
2473     // If we are left with a constant zero being added, strip it off.
2474     if (LHSC->getValue()->isZero()) {
2475       Ops.erase(Ops.begin());
2476       --Idx;
2477     }
2478 
2479     if (Ops.size() == 1) return Ops[0];
2480   }
2481 
2482   // Delay expensive flag strengthening until necessary.
2483   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2484     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2485   };
2486 
2487   // Limit recursion calls depth.
2488   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2489     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2490 
2491   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2492     // Don't strengthen flags if we have no new information.
2493     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2494     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2495       Add->setNoWrapFlags(ComputeFlags(Ops));
2496     return S;
2497   }
2498 
2499   // Okay, check to see if the same value occurs in the operand list more than
2500   // once.  If so, merge them together into an multiply expression.  Since we
2501   // sorted the list, these values are required to be adjacent.
2502   Type *Ty = Ops[0]->getType();
2503   bool FoundMatch = false;
2504   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2505     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2506       // Scan ahead to count how many equal operands there are.
2507       unsigned Count = 2;
2508       while (i+Count != e && Ops[i+Count] == Ops[i])
2509         ++Count;
2510       // Merge the values into a multiply.
2511       const SCEV *Scale = getConstant(Ty, Count);
2512       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2513       if (Ops.size() == Count)
2514         return Mul;
2515       Ops[i] = Mul;
2516       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2517       --i; e -= Count - 1;
2518       FoundMatch = true;
2519     }
2520   if (FoundMatch)
2521     return getAddExpr(Ops, OrigFlags, Depth + 1);
2522 
2523   // Check for truncates. If all the operands are truncated from the same
2524   // type, see if factoring out the truncate would permit the result to be
2525   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2526   // if the contents of the resulting outer trunc fold to something simple.
2527   auto FindTruncSrcType = [&]() -> Type * {
2528     // We're ultimately looking to fold an addrec of truncs and muls of only
2529     // constants and truncs, so if we find any other types of SCEV
2530     // as operands of the addrec then we bail and return nullptr here.
2531     // Otherwise, we return the type of the operand of a trunc that we find.
2532     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2533       return T->getOperand()->getType();
2534     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2535       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2536       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2537         return T->getOperand()->getType();
2538     }
2539     return nullptr;
2540   };
2541   if (auto *SrcType = FindTruncSrcType()) {
2542     SmallVector<const SCEV *, 8> LargeOps;
2543     bool Ok = true;
2544     // Check all the operands to see if they can be represented in the
2545     // source type of the truncate.
2546     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2547       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2548         if (T->getOperand()->getType() != SrcType) {
2549           Ok = false;
2550           break;
2551         }
2552         LargeOps.push_back(T->getOperand());
2553       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2554         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2555       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2556         SmallVector<const SCEV *, 8> LargeMulOps;
2557         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2558           if (const SCEVTruncateExpr *T =
2559                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2560             if (T->getOperand()->getType() != SrcType) {
2561               Ok = false;
2562               break;
2563             }
2564             LargeMulOps.push_back(T->getOperand());
2565           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2566             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2567           } else {
2568             Ok = false;
2569             break;
2570           }
2571         }
2572         if (Ok)
2573           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2574       } else {
2575         Ok = false;
2576         break;
2577       }
2578     }
2579     if (Ok) {
2580       // Evaluate the expression in the larger type.
2581       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2582       // If it folds to something simple, use it. Otherwise, don't.
2583       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2584         return getTruncateExpr(Fold, Ty);
2585     }
2586   }
2587 
2588   if (Ops.size() == 2) {
2589     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2590     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2591     // C1).
2592     const SCEV *A = Ops[0];
2593     const SCEV *B = Ops[1];
2594     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2595     auto *C = dyn_cast<SCEVConstant>(A);
2596     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2597       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2598       auto C2 = C->getAPInt();
2599       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2600 
2601       APInt ConstAdd = C1 + C2;
2602       auto AddFlags = AddExpr->getNoWrapFlags();
2603       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2604       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2605           ConstAdd.ule(C1)) {
2606         PreservedFlags =
2607             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2608       }
2609 
2610       // Adding a constant with the same sign and small magnitude is NSW, if the
2611       // original AddExpr was NSW.
2612       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2613           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2614           ConstAdd.abs().ule(C1.abs())) {
2615         PreservedFlags =
2616             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2617       }
2618 
2619       if (PreservedFlags != SCEV::FlagAnyWrap) {
2620         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2621         NewOps[0] = getConstant(ConstAdd);
2622         return getAddExpr(NewOps, PreservedFlags);
2623       }
2624     }
2625   }
2626 
2627   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2628   if (Ops.size() == 2) {
2629     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2630     if (Mul && Mul->getNumOperands() == 2 &&
2631         Mul->getOperand(0)->isAllOnesValue()) {
2632       const SCEV *X;
2633       const SCEV *Y;
2634       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2635         return getMulExpr(Y, getUDivExpr(X, Y));
2636       }
2637     }
2638   }
2639 
2640   // Skip past any other cast SCEVs.
2641   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2642     ++Idx;
2643 
2644   // If there are add operands they would be next.
2645   if (Idx < Ops.size()) {
2646     bool DeletedAdd = false;
2647     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2648     // common NUW flag for expression after inlining. Other flags cannot be
2649     // preserved, because they may depend on the original order of operations.
2650     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2651     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2652       if (Ops.size() > AddOpsInlineThreshold ||
2653           Add->getNumOperands() > AddOpsInlineThreshold)
2654         break;
2655       // If we have an add, expand the add operands onto the end of the operands
2656       // list.
2657       Ops.erase(Ops.begin()+Idx);
2658       Ops.append(Add->op_begin(), Add->op_end());
2659       DeletedAdd = true;
2660       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2661     }
2662 
2663     // If we deleted at least one add, we added operands to the end of the list,
2664     // and they are not necessarily sorted.  Recurse to resort and resimplify
2665     // any operands we just acquired.
2666     if (DeletedAdd)
2667       return getAddExpr(Ops, CommonFlags, Depth + 1);
2668   }
2669 
2670   // Skip over the add expression until we get to a multiply.
2671   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2672     ++Idx;
2673 
2674   // Check to see if there are any folding opportunities present with
2675   // operands multiplied by constant values.
2676   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2677     uint64_t BitWidth = getTypeSizeInBits(Ty);
2678     DenseMap<const SCEV *, APInt> M;
2679     SmallVector<const SCEV *, 8> NewOps;
2680     APInt AccumulatedConstant(BitWidth, 0);
2681     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2682                                      Ops.data(), Ops.size(),
2683                                      APInt(BitWidth, 1), *this)) {
2684       struct APIntCompare {
2685         bool operator()(const APInt &LHS, const APInt &RHS) const {
2686           return LHS.ult(RHS);
2687         }
2688       };
2689 
2690       // Some interesting folding opportunity is present, so its worthwhile to
2691       // re-generate the operands list. Group the operands by constant scale,
2692       // to avoid multiplying by the same constant scale multiple times.
2693       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2694       for (const SCEV *NewOp : NewOps)
2695         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2696       // Re-generate the operands list.
2697       Ops.clear();
2698       if (AccumulatedConstant != 0)
2699         Ops.push_back(getConstant(AccumulatedConstant));
2700       for (auto &MulOp : MulOpLists) {
2701         if (MulOp.first == 1) {
2702           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2703         } else if (MulOp.first != 0) {
2704           Ops.push_back(getMulExpr(
2705               getConstant(MulOp.first),
2706               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2707               SCEV::FlagAnyWrap, Depth + 1));
2708         }
2709       }
2710       if (Ops.empty())
2711         return getZero(Ty);
2712       if (Ops.size() == 1)
2713         return Ops[0];
2714       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2715     }
2716   }
2717 
2718   // If we are adding something to a multiply expression, make sure the
2719   // something is not already an operand of the multiply.  If so, merge it into
2720   // the multiply.
2721   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2722     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2723     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2724       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2725       if (isa<SCEVConstant>(MulOpSCEV))
2726         continue;
2727       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2728         if (MulOpSCEV == Ops[AddOp]) {
2729           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2730           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2731           if (Mul->getNumOperands() != 2) {
2732             // If the multiply has more than two operands, we must get the
2733             // Y*Z term.
2734             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2735                                                 Mul->op_begin()+MulOp);
2736             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2737             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2738           }
2739           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2740           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2741           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2742                                             SCEV::FlagAnyWrap, Depth + 1);
2743           if (Ops.size() == 2) return OuterMul;
2744           if (AddOp < Idx) {
2745             Ops.erase(Ops.begin()+AddOp);
2746             Ops.erase(Ops.begin()+Idx-1);
2747           } else {
2748             Ops.erase(Ops.begin()+Idx);
2749             Ops.erase(Ops.begin()+AddOp-1);
2750           }
2751           Ops.push_back(OuterMul);
2752           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2753         }
2754 
2755       // Check this multiply against other multiplies being added together.
2756       for (unsigned OtherMulIdx = Idx+1;
2757            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2758            ++OtherMulIdx) {
2759         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2760         // If MulOp occurs in OtherMul, we can fold the two multiplies
2761         // together.
2762         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2763              OMulOp != e; ++OMulOp)
2764           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2765             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2766             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2767             if (Mul->getNumOperands() != 2) {
2768               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2769                                                   Mul->op_begin()+MulOp);
2770               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2771               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2772             }
2773             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2774             if (OtherMul->getNumOperands() != 2) {
2775               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2776                                                   OtherMul->op_begin()+OMulOp);
2777               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2778               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2779             }
2780             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2781             const SCEV *InnerMulSum =
2782                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2783             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2784                                               SCEV::FlagAnyWrap, Depth + 1);
2785             if (Ops.size() == 2) return OuterMul;
2786             Ops.erase(Ops.begin()+Idx);
2787             Ops.erase(Ops.begin()+OtherMulIdx-1);
2788             Ops.push_back(OuterMul);
2789             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2790           }
2791       }
2792     }
2793   }
2794 
2795   // If there are any add recurrences in the operands list, see if any other
2796   // added values are loop invariant.  If so, we can fold them into the
2797   // recurrence.
2798   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2799     ++Idx;
2800 
2801   // Scan over all recurrences, trying to fold loop invariants into them.
2802   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2803     // Scan all of the other operands to this add and add them to the vector if
2804     // they are loop invariant w.r.t. the recurrence.
2805     SmallVector<const SCEV *, 8> LIOps;
2806     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2807     const Loop *AddRecLoop = AddRec->getLoop();
2808     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2809       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2810         LIOps.push_back(Ops[i]);
2811         Ops.erase(Ops.begin()+i);
2812         --i; --e;
2813       }
2814 
2815     // If we found some loop invariants, fold them into the recurrence.
2816     if (!LIOps.empty()) {
2817       // Compute nowrap flags for the addition of the loop-invariant ops and
2818       // the addrec. Temporarily push it as an operand for that purpose. These
2819       // flags are valid in the scope of the addrec only.
2820       LIOps.push_back(AddRec);
2821       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2822       LIOps.pop_back();
2823 
2824       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2825       LIOps.push_back(AddRec->getStart());
2826 
2827       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2828 
2829       // It is not in general safe to propagate flags valid on an add within
2830       // the addrec scope to one outside it.  We must prove that the inner
2831       // scope is guaranteed to execute if the outer one does to be able to
2832       // safely propagate.  We know the program is undefined if poison is
2833       // produced on the inner scoped addrec.  We also know that *for this use*
2834       // the outer scoped add can't overflow (because of the flags we just
2835       // computed for the inner scoped add) without the program being undefined.
2836       // Proving that entry to the outer scope neccesitates entry to the inner
2837       // scope, thus proves the program undefined if the flags would be violated
2838       // in the outer scope.
2839       SCEV::NoWrapFlags AddFlags = Flags;
2840       if (AddFlags != SCEV::FlagAnyWrap) {
2841         auto *DefI = getDefiningScopeBound(LIOps);
2842         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2843         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2844           AddFlags = SCEV::FlagAnyWrap;
2845       }
2846       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2847 
2848       // Build the new addrec. Propagate the NUW and NSW flags if both the
2849       // outer add and the inner addrec are guaranteed to have no overflow.
2850       // Always propagate NW.
2851       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2852       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2853 
2854       // If all of the other operands were loop invariant, we are done.
2855       if (Ops.size() == 1) return NewRec;
2856 
2857       // Otherwise, add the folded AddRec by the non-invariant parts.
2858       for (unsigned i = 0;; ++i)
2859         if (Ops[i] == AddRec) {
2860           Ops[i] = NewRec;
2861           break;
2862         }
2863       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2864     }
2865 
2866     // Okay, if there weren't any loop invariants to be folded, check to see if
2867     // there are multiple AddRec's with the same loop induction variable being
2868     // added together.  If so, we can fold them.
2869     for (unsigned OtherIdx = Idx+1;
2870          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2871          ++OtherIdx) {
2872       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2873       // so that the 1st found AddRecExpr is dominated by all others.
2874       assert(DT.dominates(
2875            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2876            AddRec->getLoop()->getHeader()) &&
2877         "AddRecExprs are not sorted in reverse dominance order?");
2878       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2879         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2880         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2881         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2882              ++OtherIdx) {
2883           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2884           if (OtherAddRec->getLoop() == AddRecLoop) {
2885             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2886                  i != e; ++i) {
2887               if (i >= AddRecOps.size()) {
2888                 AddRecOps.append(OtherAddRec->op_begin()+i,
2889                                  OtherAddRec->op_end());
2890                 break;
2891               }
2892               SmallVector<const SCEV *, 2> TwoOps = {
2893                   AddRecOps[i], OtherAddRec->getOperand(i)};
2894               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2895             }
2896             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2897           }
2898         }
2899         // Step size has changed, so we cannot guarantee no self-wraparound.
2900         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2901         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2902       }
2903     }
2904 
2905     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2906     // next one.
2907   }
2908 
2909   // Okay, it looks like we really DO need an add expr.  Check to see if we
2910   // already have one, otherwise create a new one.
2911   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2912 }
2913 
2914 const SCEV *
2915 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2916                                     SCEV::NoWrapFlags Flags) {
2917   FoldingSetNodeID ID;
2918   ID.AddInteger(scAddExpr);
2919   for (const SCEV *Op : Ops)
2920     ID.AddPointer(Op);
2921   void *IP = nullptr;
2922   SCEVAddExpr *S =
2923       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2924   if (!S) {
2925     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2926     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2927     S = new (SCEVAllocator)
2928         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2929     UniqueSCEVs.InsertNode(S, IP);
2930     registerUser(S, Ops);
2931   }
2932   S->setNoWrapFlags(Flags);
2933   return S;
2934 }
2935 
2936 const SCEV *
2937 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2938                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2939   FoldingSetNodeID ID;
2940   ID.AddInteger(scAddRecExpr);
2941   for (const SCEV *Op : Ops)
2942     ID.AddPointer(Op);
2943   ID.AddPointer(L);
2944   void *IP = nullptr;
2945   SCEVAddRecExpr *S =
2946       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2947   if (!S) {
2948     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2949     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2950     S = new (SCEVAllocator)
2951         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2952     UniqueSCEVs.InsertNode(S, IP);
2953     LoopUsers[L].push_back(S);
2954     registerUser(S, Ops);
2955   }
2956   setNoWrapFlags(S, Flags);
2957   return S;
2958 }
2959 
2960 const SCEV *
2961 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2962                                     SCEV::NoWrapFlags Flags) {
2963   FoldingSetNodeID ID;
2964   ID.AddInteger(scMulExpr);
2965   for (const SCEV *Op : Ops)
2966     ID.AddPointer(Op);
2967   void *IP = nullptr;
2968   SCEVMulExpr *S =
2969     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2970   if (!S) {
2971     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2972     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2973     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2974                                         O, Ops.size());
2975     UniqueSCEVs.InsertNode(S, IP);
2976     registerUser(S, Ops);
2977   }
2978   S->setNoWrapFlags(Flags);
2979   return S;
2980 }
2981 
2982 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2983   uint64_t k = i*j;
2984   if (j > 1 && k / j != i) Overflow = true;
2985   return k;
2986 }
2987 
2988 /// Compute the result of "n choose k", the binomial coefficient.  If an
2989 /// intermediate computation overflows, Overflow will be set and the return will
2990 /// be garbage. Overflow is not cleared on absence of overflow.
2991 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2992   // We use the multiplicative formula:
2993   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2994   // At each iteration, we take the n-th term of the numeral and divide by the
2995   // (k-n)th term of the denominator.  This division will always produce an
2996   // integral result, and helps reduce the chance of overflow in the
2997   // intermediate computations. However, we can still overflow even when the
2998   // final result would fit.
2999 
3000   if (n == 0 || n == k) return 1;
3001   if (k > n) return 0;
3002 
3003   if (k > n/2)
3004     k = n-k;
3005 
3006   uint64_t r = 1;
3007   for (uint64_t i = 1; i <= k; ++i) {
3008     r = umul_ov(r, n-(i-1), Overflow);
3009     r /= i;
3010   }
3011   return r;
3012 }
3013 
3014 /// Determine if any of the operands in this SCEV are a constant or if
3015 /// any of the add or multiply expressions in this SCEV contain a constant.
3016 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3017   struct FindConstantInAddMulChain {
3018     bool FoundConstant = false;
3019 
3020     bool follow(const SCEV *S) {
3021       FoundConstant |= isa<SCEVConstant>(S);
3022       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3023     }
3024 
3025     bool isDone() const {
3026       return FoundConstant;
3027     }
3028   };
3029 
3030   FindConstantInAddMulChain F;
3031   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3032   ST.visitAll(StartExpr);
3033   return F.FoundConstant;
3034 }
3035 
3036 /// Get a canonical multiply expression, or something simpler if possible.
3037 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3038                                         SCEV::NoWrapFlags OrigFlags,
3039                                         unsigned Depth) {
3040   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3041          "only nuw or nsw allowed");
3042   assert(!Ops.empty() && "Cannot get empty mul!");
3043   if (Ops.size() == 1) return Ops[0];
3044 #ifndef NDEBUG
3045   Type *ETy = Ops[0]->getType();
3046   assert(!ETy->isPointerTy());
3047   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3048     assert(Ops[i]->getType() == ETy &&
3049            "SCEVMulExpr operand types don't match!");
3050 #endif
3051 
3052   // Sort by complexity, this groups all similar expression types together.
3053   GroupByComplexity(Ops, &LI, DT);
3054 
3055   // If there are any constants, fold them together.
3056   unsigned Idx = 0;
3057   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3058     ++Idx;
3059     assert(Idx < Ops.size());
3060     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3061       // We found two constants, fold them together!
3062       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3063       if (Ops.size() == 2) return Ops[0];
3064       Ops.erase(Ops.begin()+1);  // Erase the folded element
3065       LHSC = cast<SCEVConstant>(Ops[0]);
3066     }
3067 
3068     // If we have a multiply of zero, it will always be zero.
3069     if (LHSC->getValue()->isZero())
3070       return LHSC;
3071 
3072     // If we are left with a constant one being multiplied, strip it off.
3073     if (LHSC->getValue()->isOne()) {
3074       Ops.erase(Ops.begin());
3075       --Idx;
3076     }
3077 
3078     if (Ops.size() == 1)
3079       return Ops[0];
3080   }
3081 
3082   // Delay expensive flag strengthening until necessary.
3083   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3084     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3085   };
3086 
3087   // Limit recursion calls depth.
3088   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3089     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3090 
3091   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3092     // Don't strengthen flags if we have no new information.
3093     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3094     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3095       Mul->setNoWrapFlags(ComputeFlags(Ops));
3096     return S;
3097   }
3098 
3099   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3100     if (Ops.size() == 2) {
3101       // C1*(C2+V) -> C1*C2 + C1*V
3102       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3103         // If any of Add's ops are Adds or Muls with a constant, apply this
3104         // transformation as well.
3105         //
3106         // TODO: There are some cases where this transformation is not
3107         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3108         // this transformation should be narrowed down.
3109         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3110           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3111                                        SCEV::FlagAnyWrap, Depth + 1),
3112                             getMulExpr(LHSC, Add->getOperand(1),
3113                                        SCEV::FlagAnyWrap, Depth + 1),
3114                             SCEV::FlagAnyWrap, Depth + 1);
3115 
3116       if (Ops[0]->isAllOnesValue()) {
3117         // If we have a mul by -1 of an add, try distributing the -1 among the
3118         // add operands.
3119         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3120           SmallVector<const SCEV *, 4> NewOps;
3121           bool AnyFolded = false;
3122           for (const SCEV *AddOp : Add->operands()) {
3123             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3124                                          Depth + 1);
3125             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3126             NewOps.push_back(Mul);
3127           }
3128           if (AnyFolded)
3129             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3130         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3131           // Negation preserves a recurrence's no self-wrap property.
3132           SmallVector<const SCEV *, 4> Operands;
3133           for (const SCEV *AddRecOp : AddRec->operands())
3134             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3135                                           Depth + 1));
3136 
3137           return getAddRecExpr(Operands, AddRec->getLoop(),
3138                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3139         }
3140       }
3141     }
3142   }
3143 
3144   // Skip over the add expression until we get to a multiply.
3145   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3146     ++Idx;
3147 
3148   // If there are mul operands inline them all into this expression.
3149   if (Idx < Ops.size()) {
3150     bool DeletedMul = false;
3151     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3152       if (Ops.size() > MulOpsInlineThreshold)
3153         break;
3154       // If we have an mul, expand the mul operands onto the end of the
3155       // operands list.
3156       Ops.erase(Ops.begin()+Idx);
3157       Ops.append(Mul->op_begin(), Mul->op_end());
3158       DeletedMul = true;
3159     }
3160 
3161     // If we deleted at least one mul, we added operands to the end of the
3162     // list, and they are not necessarily sorted.  Recurse to resort and
3163     // resimplify any operands we just acquired.
3164     if (DeletedMul)
3165       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3166   }
3167 
3168   // If there are any add recurrences in the operands list, see if any other
3169   // added values are loop invariant.  If so, we can fold them into the
3170   // recurrence.
3171   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3172     ++Idx;
3173 
3174   // Scan over all recurrences, trying to fold loop invariants into them.
3175   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3176     // Scan all of the other operands to this mul and add them to the vector
3177     // if they are loop invariant w.r.t. the recurrence.
3178     SmallVector<const SCEV *, 8> LIOps;
3179     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3180     const Loop *AddRecLoop = AddRec->getLoop();
3181     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3182       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3183         LIOps.push_back(Ops[i]);
3184         Ops.erase(Ops.begin()+i);
3185         --i; --e;
3186       }
3187 
3188     // If we found some loop invariants, fold them into the recurrence.
3189     if (!LIOps.empty()) {
3190       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3191       SmallVector<const SCEV *, 4> NewOps;
3192       NewOps.reserve(AddRec->getNumOperands());
3193       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3194       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3195         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3196                                     SCEV::FlagAnyWrap, Depth + 1));
3197 
3198       // Build the new addrec. Propagate the NUW and NSW flags if both the
3199       // outer mul and the inner addrec are guaranteed to have no overflow.
3200       //
3201       // No self-wrap cannot be guaranteed after changing the step size, but
3202       // will be inferred if either NUW or NSW is true.
3203       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3204       const SCEV *NewRec = getAddRecExpr(
3205           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3206 
3207       // If all of the other operands were loop invariant, we are done.
3208       if (Ops.size() == 1) return NewRec;
3209 
3210       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3211       for (unsigned i = 0;; ++i)
3212         if (Ops[i] == AddRec) {
3213           Ops[i] = NewRec;
3214           break;
3215         }
3216       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3217     }
3218 
3219     // Okay, if there weren't any loop invariants to be folded, check to see
3220     // if there are multiple AddRec's with the same loop induction variable
3221     // being multiplied together.  If so, we can fold them.
3222 
3223     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3224     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3225     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3226     //   ]]],+,...up to x=2n}.
3227     // Note that the arguments to choose() are always integers with values
3228     // known at compile time, never SCEV objects.
3229     //
3230     // The implementation avoids pointless extra computations when the two
3231     // addrec's are of different length (mathematically, it's equivalent to
3232     // an infinite stream of zeros on the right).
3233     bool OpsModified = false;
3234     for (unsigned OtherIdx = Idx+1;
3235          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3236          ++OtherIdx) {
3237       const SCEVAddRecExpr *OtherAddRec =
3238         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3239       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3240         continue;
3241 
3242       // Limit max number of arguments to avoid creation of unreasonably big
3243       // SCEVAddRecs with very complex operands.
3244       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3245           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3246         continue;
3247 
3248       bool Overflow = false;
3249       Type *Ty = AddRec->getType();
3250       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3251       SmallVector<const SCEV*, 7> AddRecOps;
3252       for (int x = 0, xe = AddRec->getNumOperands() +
3253              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3254         SmallVector <const SCEV *, 7> SumOps;
3255         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3256           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3257           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3258                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3259                z < ze && !Overflow; ++z) {
3260             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3261             uint64_t Coeff;
3262             if (LargerThan64Bits)
3263               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3264             else
3265               Coeff = Coeff1*Coeff2;
3266             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3267             const SCEV *Term1 = AddRec->getOperand(y-z);
3268             const SCEV *Term2 = OtherAddRec->getOperand(z);
3269             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3270                                         SCEV::FlagAnyWrap, Depth + 1));
3271           }
3272         }
3273         if (SumOps.empty())
3274           SumOps.push_back(getZero(Ty));
3275         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3276       }
3277       if (!Overflow) {
3278         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3279                                               SCEV::FlagAnyWrap);
3280         if (Ops.size() == 2) return NewAddRec;
3281         Ops[Idx] = NewAddRec;
3282         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3283         OpsModified = true;
3284         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3285         if (!AddRec)
3286           break;
3287       }
3288     }
3289     if (OpsModified)
3290       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3291 
3292     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3293     // next one.
3294   }
3295 
3296   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3297   // already have one, otherwise create a new one.
3298   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3299 }
3300 
3301 /// Represents an unsigned remainder expression based on unsigned division.
3302 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3303                                          const SCEV *RHS) {
3304   assert(getEffectiveSCEVType(LHS->getType()) ==
3305          getEffectiveSCEVType(RHS->getType()) &&
3306          "SCEVURemExpr operand types don't match!");
3307 
3308   // Short-circuit easy cases
3309   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3310     // If constant is one, the result is trivial
3311     if (RHSC->getValue()->isOne())
3312       return getZero(LHS->getType()); // X urem 1 --> 0
3313 
3314     // If constant is a power of two, fold into a zext(trunc(LHS)).
3315     if (RHSC->getAPInt().isPowerOf2()) {
3316       Type *FullTy = LHS->getType();
3317       Type *TruncTy =
3318           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3319       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3320     }
3321   }
3322 
3323   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3324   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3325   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3326   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3327 }
3328 
3329 /// Get a canonical unsigned division expression, or something simpler if
3330 /// possible.
3331 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3332                                          const SCEV *RHS) {
3333   assert(!LHS->getType()->isPointerTy() &&
3334          "SCEVUDivExpr operand can't be pointer!");
3335   assert(LHS->getType() == RHS->getType() &&
3336          "SCEVUDivExpr operand types don't match!");
3337 
3338   FoldingSetNodeID ID;
3339   ID.AddInteger(scUDivExpr);
3340   ID.AddPointer(LHS);
3341   ID.AddPointer(RHS);
3342   void *IP = nullptr;
3343   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3344     return S;
3345 
3346   // 0 udiv Y == 0
3347   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3348     if (LHSC->getValue()->isZero())
3349       return LHS;
3350 
3351   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3352     if (RHSC->getValue()->isOne())
3353       return LHS;                               // X udiv 1 --> x
3354     // If the denominator is zero, the result of the udiv is undefined. Don't
3355     // try to analyze it, because the resolution chosen here may differ from
3356     // the resolution chosen in other parts of the compiler.
3357     if (!RHSC->getValue()->isZero()) {
3358       // Determine if the division can be folded into the operands of
3359       // its operands.
3360       // TODO: Generalize this to non-constants by using known-bits information.
3361       Type *Ty = LHS->getType();
3362       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3363       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3364       // For non-power-of-two values, effectively round the value up to the
3365       // nearest power of two.
3366       if (!RHSC->getAPInt().isPowerOf2())
3367         ++MaxShiftAmt;
3368       IntegerType *ExtTy =
3369         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3370       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3371         if (const SCEVConstant *Step =
3372             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3373           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3374           const APInt &StepInt = Step->getAPInt();
3375           const APInt &DivInt = RHSC->getAPInt();
3376           if (!StepInt.urem(DivInt) &&
3377               getZeroExtendExpr(AR, ExtTy) ==
3378               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3379                             getZeroExtendExpr(Step, ExtTy),
3380                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3381             SmallVector<const SCEV *, 4> Operands;
3382             for (const SCEV *Op : AR->operands())
3383               Operands.push_back(getUDivExpr(Op, RHS));
3384             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3385           }
3386           /// Get a canonical UDivExpr for a recurrence.
3387           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3388           // We can currently only fold X%N if X is constant.
3389           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3390           if (StartC && !DivInt.urem(StepInt) &&
3391               getZeroExtendExpr(AR, ExtTy) ==
3392               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3393                             getZeroExtendExpr(Step, ExtTy),
3394                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3395             const APInt &StartInt = StartC->getAPInt();
3396             const APInt &StartRem = StartInt.urem(StepInt);
3397             if (StartRem != 0) {
3398               const SCEV *NewLHS =
3399                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3400                                 AR->getLoop(), SCEV::FlagNW);
3401               if (LHS != NewLHS) {
3402                 LHS = NewLHS;
3403 
3404                 // Reset the ID to include the new LHS, and check if it is
3405                 // already cached.
3406                 ID.clear();
3407                 ID.AddInteger(scUDivExpr);
3408                 ID.AddPointer(LHS);
3409                 ID.AddPointer(RHS);
3410                 IP = nullptr;
3411                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3412                   return S;
3413               }
3414             }
3415           }
3416         }
3417       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3418       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3419         SmallVector<const SCEV *, 4> Operands;
3420         for (const SCEV *Op : M->operands())
3421           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3422         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3423           // Find an operand that's safely divisible.
3424           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3425             const SCEV *Op = M->getOperand(i);
3426             const SCEV *Div = getUDivExpr(Op, RHSC);
3427             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3428               Operands = SmallVector<const SCEV *, 4>(M->operands());
3429               Operands[i] = Div;
3430               return getMulExpr(Operands);
3431             }
3432           }
3433       }
3434 
3435       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3436       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3437         if (auto *DivisorConstant =
3438                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3439           bool Overflow = false;
3440           APInt NewRHS =
3441               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3442           if (Overflow) {
3443             return getConstant(RHSC->getType(), 0, false);
3444           }
3445           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3446         }
3447       }
3448 
3449       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3450       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3451         SmallVector<const SCEV *, 4> Operands;
3452         for (const SCEV *Op : A->operands())
3453           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3454         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3455           Operands.clear();
3456           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3457             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3458             if (isa<SCEVUDivExpr>(Op) ||
3459                 getMulExpr(Op, RHS) != A->getOperand(i))
3460               break;
3461             Operands.push_back(Op);
3462           }
3463           if (Operands.size() == A->getNumOperands())
3464             return getAddExpr(Operands);
3465         }
3466       }
3467 
3468       // Fold if both operands are constant.
3469       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3470         Constant *LHSCV = LHSC->getValue();
3471         Constant *RHSCV = RHSC->getValue();
3472         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3473                                                                    RHSCV)));
3474       }
3475     }
3476   }
3477 
3478   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3479   // changes). Make sure we get a new one.
3480   IP = nullptr;
3481   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3482   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3483                                              LHS, RHS);
3484   UniqueSCEVs.InsertNode(S, IP);
3485   registerUser(S, {LHS, RHS});
3486   return S;
3487 }
3488 
3489 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3490   APInt A = C1->getAPInt().abs();
3491   APInt B = C2->getAPInt().abs();
3492   uint32_t ABW = A.getBitWidth();
3493   uint32_t BBW = B.getBitWidth();
3494 
3495   if (ABW > BBW)
3496     B = B.zext(ABW);
3497   else if (ABW < BBW)
3498     A = A.zext(BBW);
3499 
3500   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3501 }
3502 
3503 /// Get a canonical unsigned division expression, or something simpler if
3504 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3505 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3506 /// it's not exact because the udiv may be clearing bits.
3507 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3508                                               const SCEV *RHS) {
3509   // TODO: we could try to find factors in all sorts of things, but for now we
3510   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3511   // end of this file for inspiration.
3512 
3513   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3514   if (!Mul || !Mul->hasNoUnsignedWrap())
3515     return getUDivExpr(LHS, RHS);
3516 
3517   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3518     // If the mulexpr multiplies by a constant, then that constant must be the
3519     // first element of the mulexpr.
3520     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3521       if (LHSCst == RHSCst) {
3522         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3523         return getMulExpr(Operands);
3524       }
3525 
3526       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3527       // that there's a factor provided by one of the other terms. We need to
3528       // check.
3529       APInt Factor = gcd(LHSCst, RHSCst);
3530       if (!Factor.isIntN(1)) {
3531         LHSCst =
3532             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3533         RHSCst =
3534             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3535         SmallVector<const SCEV *, 2> Operands;
3536         Operands.push_back(LHSCst);
3537         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3538         LHS = getMulExpr(Operands);
3539         RHS = RHSCst;
3540         Mul = dyn_cast<SCEVMulExpr>(LHS);
3541         if (!Mul)
3542           return getUDivExactExpr(LHS, RHS);
3543       }
3544     }
3545   }
3546 
3547   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3548     if (Mul->getOperand(i) == RHS) {
3549       SmallVector<const SCEV *, 2> Operands;
3550       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3551       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3552       return getMulExpr(Operands);
3553     }
3554   }
3555 
3556   return getUDivExpr(LHS, RHS);
3557 }
3558 
3559 /// Get an add recurrence expression for the specified loop.  Simplify the
3560 /// expression as much as possible.
3561 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3562                                            const Loop *L,
3563                                            SCEV::NoWrapFlags Flags) {
3564   SmallVector<const SCEV *, 4> Operands;
3565   Operands.push_back(Start);
3566   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3567     if (StepChrec->getLoop() == L) {
3568       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3569       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3570     }
3571 
3572   Operands.push_back(Step);
3573   return getAddRecExpr(Operands, L, Flags);
3574 }
3575 
3576 /// Get an add recurrence expression for the specified loop.  Simplify the
3577 /// expression as much as possible.
3578 const SCEV *
3579 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3580                                const Loop *L, SCEV::NoWrapFlags Flags) {
3581   if (Operands.size() == 1) return Operands[0];
3582 #ifndef NDEBUG
3583   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3584   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3585     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3586            "SCEVAddRecExpr operand types don't match!");
3587     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3588   }
3589   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3590     assert(isLoopInvariant(Operands[i], L) &&
3591            "SCEVAddRecExpr operand is not loop-invariant!");
3592 #endif
3593 
3594   if (Operands.back()->isZero()) {
3595     Operands.pop_back();
3596     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3597   }
3598 
3599   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3600   // use that information to infer NUW and NSW flags. However, computing a
3601   // BE count requires calling getAddRecExpr, so we may not yet have a
3602   // meaningful BE count at this point (and if we don't, we'd be stuck
3603   // with a SCEVCouldNotCompute as the cached BE count).
3604 
3605   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3606 
3607   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3608   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3609     const Loop *NestedLoop = NestedAR->getLoop();
3610     if (L->contains(NestedLoop)
3611             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3612             : (!NestedLoop->contains(L) &&
3613                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3614       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3615       Operands[0] = NestedAR->getStart();
3616       // AddRecs require their operands be loop-invariant with respect to their
3617       // loops. Don't perform this transformation if it would break this
3618       // requirement.
3619       bool AllInvariant = all_of(
3620           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3621 
3622       if (AllInvariant) {
3623         // Create a recurrence for the outer loop with the same step size.
3624         //
3625         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3626         // inner recurrence has the same property.
3627         SCEV::NoWrapFlags OuterFlags =
3628           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3629 
3630         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3631         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3632           return isLoopInvariant(Op, NestedLoop);
3633         });
3634 
3635         if (AllInvariant) {
3636           // Ok, both add recurrences are valid after the transformation.
3637           //
3638           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3639           // the outer recurrence has the same property.
3640           SCEV::NoWrapFlags InnerFlags =
3641             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3642           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3643         }
3644       }
3645       // Reset Operands to its original state.
3646       Operands[0] = NestedAR;
3647     }
3648   }
3649 
3650   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3651   // already have one, otherwise create a new one.
3652   return getOrCreateAddRecExpr(Operands, L, Flags);
3653 }
3654 
3655 const SCEV *
3656 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3657                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3658   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3659   // getSCEV(Base)->getType() has the same address space as Base->getType()
3660   // because SCEV::getType() preserves the address space.
3661   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3662   const bool AssumeInBoundsFlags = [&]() {
3663     if (!GEP->isInBounds())
3664       return false;
3665 
3666     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3667     // but to do that, we have to ensure that said flag is valid in the entire
3668     // defined scope of the SCEV.
3669     auto *GEPI = dyn_cast<Instruction>(GEP);
3670     // TODO: non-instructions have global scope.  We might be able to prove
3671     // some global scope cases
3672     return GEPI && isSCEVExprNeverPoison(GEPI);
3673   }();
3674 
3675   SCEV::NoWrapFlags OffsetWrap =
3676     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3677 
3678   Type *CurTy = GEP->getType();
3679   bool FirstIter = true;
3680   SmallVector<const SCEV *, 4> Offsets;
3681   for (const SCEV *IndexExpr : IndexExprs) {
3682     // Compute the (potentially symbolic) offset in bytes for this index.
3683     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3684       // For a struct, add the member offset.
3685       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3686       unsigned FieldNo = Index->getZExtValue();
3687       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3688       Offsets.push_back(FieldOffset);
3689 
3690       // Update CurTy to the type of the field at Index.
3691       CurTy = STy->getTypeAtIndex(Index);
3692     } else {
3693       // Update CurTy to its element type.
3694       if (FirstIter) {
3695         assert(isa<PointerType>(CurTy) &&
3696                "The first index of a GEP indexes a pointer");
3697         CurTy = GEP->getSourceElementType();
3698         FirstIter = false;
3699       } else {
3700         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3701       }
3702       // For an array, add the element offset, explicitly scaled.
3703       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3704       // Getelementptr indices are signed.
3705       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3706 
3707       // Multiply the index by the element size to compute the element offset.
3708       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3709       Offsets.push_back(LocalOffset);
3710     }
3711   }
3712 
3713   // Handle degenerate case of GEP without offsets.
3714   if (Offsets.empty())
3715     return BaseExpr;
3716 
3717   // Add the offsets together, assuming nsw if inbounds.
3718   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3719   // Add the base address and the offset. We cannot use the nsw flag, as the
3720   // base address is unsigned. However, if we know that the offset is
3721   // non-negative, we can use nuw.
3722   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3723                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3724   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3725   assert(BaseExpr->getType() == GEPExpr->getType() &&
3726          "GEP should not change type mid-flight.");
3727   return GEPExpr;
3728 }
3729 
3730 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3731                                                ArrayRef<const SCEV *> Ops) {
3732   FoldingSetNodeID ID;
3733   ID.AddInteger(SCEVType);
3734   for (const SCEV *Op : Ops)
3735     ID.AddPointer(Op);
3736   void *IP = nullptr;
3737   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3738 }
3739 
3740 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3741   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3742   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3743 }
3744 
3745 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3746                                            SmallVectorImpl<const SCEV *> &Ops) {
3747   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3748   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3749   if (Ops.size() == 1) return Ops[0];
3750 #ifndef NDEBUG
3751   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3752   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3753     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3754            "Operand types don't match!");
3755     assert(Ops[0]->getType()->isPointerTy() ==
3756                Ops[i]->getType()->isPointerTy() &&
3757            "min/max should be consistently pointerish");
3758   }
3759 #endif
3760 
3761   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3762   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3763 
3764   // Sort by complexity, this groups all similar expression types together.
3765   GroupByComplexity(Ops, &LI, DT);
3766 
3767   // Check if we have created the same expression before.
3768   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3769     return S;
3770   }
3771 
3772   // If there are any constants, fold them together.
3773   unsigned Idx = 0;
3774   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3775     ++Idx;
3776     assert(Idx < Ops.size());
3777     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3778       if (Kind == scSMaxExpr)
3779         return APIntOps::smax(LHS, RHS);
3780       else if (Kind == scSMinExpr)
3781         return APIntOps::smin(LHS, RHS);
3782       else if (Kind == scUMaxExpr)
3783         return APIntOps::umax(LHS, RHS);
3784       else if (Kind == scUMinExpr)
3785         return APIntOps::umin(LHS, RHS);
3786       llvm_unreachable("Unknown SCEV min/max opcode");
3787     };
3788 
3789     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3790       // We found two constants, fold them together!
3791       ConstantInt *Fold = ConstantInt::get(
3792           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3793       Ops[0] = getConstant(Fold);
3794       Ops.erase(Ops.begin()+1);  // Erase the folded element
3795       if (Ops.size() == 1) return Ops[0];
3796       LHSC = cast<SCEVConstant>(Ops[0]);
3797     }
3798 
3799     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3800     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3801 
3802     if (IsMax ? IsMinV : IsMaxV) {
3803       // If we are left with a constant minimum(/maximum)-int, strip it off.
3804       Ops.erase(Ops.begin());
3805       --Idx;
3806     } else if (IsMax ? IsMaxV : IsMinV) {
3807       // If we have a max(/min) with a constant maximum(/minimum)-int,
3808       // it will always be the extremum.
3809       return LHSC;
3810     }
3811 
3812     if (Ops.size() == 1) return Ops[0];
3813   }
3814 
3815   // Find the first operation of the same kind
3816   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3817     ++Idx;
3818 
3819   // Check to see if one of the operands is of the same kind. If so, expand its
3820   // operands onto our operand list, and recurse to simplify.
3821   if (Idx < Ops.size()) {
3822     bool DeletedAny = false;
3823     while (Ops[Idx]->getSCEVType() == Kind) {
3824       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3825       Ops.erase(Ops.begin()+Idx);
3826       Ops.append(SMME->op_begin(), SMME->op_end());
3827       DeletedAny = true;
3828     }
3829 
3830     if (DeletedAny)
3831       return getMinMaxExpr(Kind, Ops);
3832   }
3833 
3834   // Okay, check to see if the same value occurs in the operand list twice.  If
3835   // so, delete one.  Since we sorted the list, these values are required to
3836   // be adjacent.
3837   llvm::CmpInst::Predicate GEPred =
3838       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3839   llvm::CmpInst::Predicate LEPred =
3840       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3841   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3842   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3843   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3844     if (Ops[i] == Ops[i + 1] ||
3845         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3846       //  X op Y op Y  -->  X op Y
3847       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3848       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3849       --i;
3850       --e;
3851     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3852                                                Ops[i + 1])) {
3853       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3854       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3855       --i;
3856       --e;
3857     }
3858   }
3859 
3860   if (Ops.size() == 1) return Ops[0];
3861 
3862   assert(!Ops.empty() && "Reduced smax down to nothing!");
3863 
3864   // Okay, it looks like we really DO need an expr.  Check to see if we
3865   // already have one, otherwise create a new one.
3866   FoldingSetNodeID ID;
3867   ID.AddInteger(Kind);
3868   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3869     ID.AddPointer(Ops[i]);
3870   void *IP = nullptr;
3871   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3872   if (ExistingSCEV)
3873     return ExistingSCEV;
3874   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3875   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3876   SCEV *S = new (SCEVAllocator)
3877       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3878 
3879   UniqueSCEVs.InsertNode(S, IP);
3880   registerUser(S, Ops);
3881   return S;
3882 }
3883 
3884 namespace {
3885 
3886 class SCEVSequentialMinMaxDeduplicatingVisitor final
3887     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3888                          Optional<const SCEV *>> {
3889   using RetVal = Optional<const SCEV *>;
3890   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3891 
3892   ScalarEvolution &SE;
3893   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3894   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3895   SmallPtrSet<const SCEV *, 16> SeenOps;
3896 
3897   bool canRecurseInto(SCEVTypes Kind) const {
3898     // We can only recurse into the SCEV expression of the same effective type
3899     // as the type of our root SCEV expression.
3900     return RootKind == Kind || NonSequentialRootKind == Kind;
3901   };
3902 
3903   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3904     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3905            "Only for min/max expressions.");
3906     SCEVTypes Kind = S->getSCEVType();
3907 
3908     if (!canRecurseInto(Kind))
3909       return S;
3910 
3911     auto *NAry = cast<SCEVNAryExpr>(S);
3912     SmallVector<const SCEV *> NewOps;
3913     bool Changed =
3914         visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps);
3915 
3916     if (!Changed)
3917       return S;
3918     if (NewOps.empty())
3919       return None;
3920 
3921     return isa<SCEVSequentialMinMaxExpr>(S)
3922                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
3923                : SE.getMinMaxExpr(Kind, NewOps);
3924   }
3925 
3926   RetVal visit(const SCEV *S) {
3927     // Has the whole operand been seen already?
3928     if (!SeenOps.insert(S).second)
3929       return None;
3930     return Base::visit(S);
3931   }
3932 
3933 public:
3934   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
3935                                            SCEVTypes RootKind)
3936       : SE(SE), RootKind(RootKind),
3937         NonSequentialRootKind(
3938             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
3939                 RootKind)) {}
3940 
3941   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
3942                          SmallVectorImpl<const SCEV *> &NewOps) {
3943     bool Changed = false;
3944     SmallVector<const SCEV *> Ops;
3945     Ops.reserve(OrigOps.size());
3946 
3947     for (const SCEV *Op : OrigOps) {
3948       RetVal NewOp = visit(Op);
3949       if (NewOp != Op)
3950         Changed = true;
3951       if (NewOp)
3952         Ops.emplace_back(*NewOp);
3953     }
3954 
3955     if (Changed)
3956       NewOps = std::move(Ops);
3957     return Changed;
3958   }
3959 
3960   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
3961 
3962   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
3963 
3964   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
3965 
3966   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
3967 
3968   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
3969 
3970   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
3971 
3972   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
3973 
3974   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
3975 
3976   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
3977 
3978   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
3979     return visitAnyMinMaxExpr(Expr);
3980   }
3981 
3982   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
3983     return visitAnyMinMaxExpr(Expr);
3984   }
3985 
3986   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
3987     return visitAnyMinMaxExpr(Expr);
3988   }
3989 
3990   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
3991     return visitAnyMinMaxExpr(Expr);
3992   }
3993 
3994   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
3995     return visitAnyMinMaxExpr(Expr);
3996   }
3997 
3998   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
3999 
4000   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4001 };
4002 
4003 } // namespace
4004 
4005 const SCEV *
4006 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4007                                          SmallVectorImpl<const SCEV *> &Ops) {
4008   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4009          "Not a SCEVSequentialMinMaxExpr!");
4010   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4011   if (Ops.size() == 1)
4012     return Ops[0];
4013   if (Ops.size() == 2 &&
4014       any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); }))
4015     return getMinMaxExpr(
4016         SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4017         Ops);
4018 #ifndef NDEBUG
4019   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4020   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4021     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4022            "Operand types don't match!");
4023     assert(Ops[0]->getType()->isPointerTy() ==
4024                Ops[i]->getType()->isPointerTy() &&
4025            "min/max should be consistently pointerish");
4026   }
4027 #endif
4028 
4029   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4030   // so we can *NOT* do any kind of sorting of the expressions!
4031 
4032   // Check if we have created the same expression before.
4033   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4034     return S;
4035 
4036   // FIXME: there are *some* simplifications that we can do here.
4037 
4038   // Keep only the first instance of an operand.
4039   {
4040     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4041     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4042     if (Changed)
4043       return getSequentialMinMaxExpr(Kind, Ops);
4044   }
4045 
4046   // Check to see if one of the operands is of the same kind. If so, expand its
4047   // operands onto our operand list, and recurse to simplify.
4048   {
4049     unsigned Idx = 0;
4050     bool DeletedAny = false;
4051     while (Idx < Ops.size()) {
4052       if (Ops[Idx]->getSCEVType() != Kind) {
4053         ++Idx;
4054         continue;
4055       }
4056       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4057       Ops.erase(Ops.begin() + Idx);
4058       Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end());
4059       DeletedAny = true;
4060     }
4061 
4062     if (DeletedAny)
4063       return getSequentialMinMaxExpr(Kind, Ops);
4064   }
4065 
4066   // Okay, it looks like we really DO need an expr.  Check to see if we
4067   // already have one, otherwise create a new one.
4068   FoldingSetNodeID ID;
4069   ID.AddInteger(Kind);
4070   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4071     ID.AddPointer(Ops[i]);
4072   void *IP = nullptr;
4073   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4074   if (ExistingSCEV)
4075     return ExistingSCEV;
4076 
4077   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4078   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4079   SCEV *S = new (SCEVAllocator)
4080       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4081 
4082   UniqueSCEVs.InsertNode(S, IP);
4083   registerUser(S, Ops);
4084   return S;
4085 }
4086 
4087 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4088   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4089   return getSMaxExpr(Ops);
4090 }
4091 
4092 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4093   return getMinMaxExpr(scSMaxExpr, Ops);
4094 }
4095 
4096 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4097   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4098   return getUMaxExpr(Ops);
4099 }
4100 
4101 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4102   return getMinMaxExpr(scUMaxExpr, Ops);
4103 }
4104 
4105 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4106                                          const SCEV *RHS) {
4107   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4108   return getSMinExpr(Ops);
4109 }
4110 
4111 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4112   return getMinMaxExpr(scSMinExpr, Ops);
4113 }
4114 
4115 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4116                                          bool Sequential) {
4117   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4118   return getUMinExpr(Ops, Sequential);
4119 }
4120 
4121 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4122                                          bool Sequential) {
4123   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4124                     : getMinMaxExpr(scUMinExpr, Ops);
4125 }
4126 
4127 const SCEV *
4128 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
4129                                              ScalableVectorType *ScalableTy) {
4130   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
4131   Constant *One = ConstantInt::get(IntTy, 1);
4132   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
4133   // Note that the expression we created is the final expression, we don't
4134   // want to simplify it any further Also, if we call a normal getSCEV(),
4135   // we'll end up in an endless recursion. So just create an SCEVUnknown.
4136   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
4137 }
4138 
4139 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4140   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
4141     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
4142   // We can bypass creating a target-independent constant expression and then
4143   // folding it back into a ConstantInt. This is just a compile-time
4144   // optimization.
4145   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4146 }
4147 
4148 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4149   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
4150     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
4151   // We can bypass creating a target-independent constant expression and then
4152   // folding it back into a ConstantInt. This is just a compile-time
4153   // optimization.
4154   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4155 }
4156 
4157 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4158                                              StructType *STy,
4159                                              unsigned FieldNo) {
4160   // We can bypass creating a target-independent constant expression and then
4161   // folding it back into a ConstantInt. This is just a compile-time
4162   // optimization.
4163   return getConstant(
4164       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
4165 }
4166 
4167 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4168   // Don't attempt to do anything other than create a SCEVUnknown object
4169   // here.  createSCEV only calls getUnknown after checking for all other
4170   // interesting possibilities, and any other code that calls getUnknown
4171   // is doing so in order to hide a value from SCEV canonicalization.
4172 
4173   FoldingSetNodeID ID;
4174   ID.AddInteger(scUnknown);
4175   ID.AddPointer(V);
4176   void *IP = nullptr;
4177   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4178     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4179            "Stale SCEVUnknown in uniquing map!");
4180     return S;
4181   }
4182   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4183                                             FirstUnknown);
4184   FirstUnknown = cast<SCEVUnknown>(S);
4185   UniqueSCEVs.InsertNode(S, IP);
4186   return S;
4187 }
4188 
4189 //===----------------------------------------------------------------------===//
4190 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4191 //
4192 
4193 /// Test if values of the given type are analyzable within the SCEV
4194 /// framework. This primarily includes integer types, and it can optionally
4195 /// include pointer types if the ScalarEvolution class has access to
4196 /// target-specific information.
4197 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4198   // Integers and pointers are always SCEVable.
4199   return Ty->isIntOrPtrTy();
4200 }
4201 
4202 /// Return the size in bits of the specified type, for which isSCEVable must
4203 /// return true.
4204 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4205   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4206   if (Ty->isPointerTy())
4207     return getDataLayout().getIndexTypeSizeInBits(Ty);
4208   return getDataLayout().getTypeSizeInBits(Ty);
4209 }
4210 
4211 /// Return a type with the same bitwidth as the given type and which represents
4212 /// how SCEV will treat the given type, for which isSCEVable must return
4213 /// true. For pointer types, this is the pointer index sized integer type.
4214 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4215   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4216 
4217   if (Ty->isIntegerTy())
4218     return Ty;
4219 
4220   // The only other support type is pointer.
4221   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4222   return getDataLayout().getIndexType(Ty);
4223 }
4224 
4225 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4226   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4227 }
4228 
4229 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4230                                                          const SCEV *B) {
4231   /// For a valid use point to exist, the defining scope of one operand
4232   /// must dominate the other.
4233   bool PreciseA, PreciseB;
4234   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4235   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4236   if (!PreciseA || !PreciseB)
4237     // Can't tell.
4238     return false;
4239   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4240     DT.dominates(ScopeB, ScopeA);
4241 }
4242 
4243 
4244 const SCEV *ScalarEvolution::getCouldNotCompute() {
4245   return CouldNotCompute.get();
4246 }
4247 
4248 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4249   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4250     auto *SU = dyn_cast<SCEVUnknown>(S);
4251     return SU && SU->getValue() == nullptr;
4252   });
4253 
4254   return !ContainsNulls;
4255 }
4256 
4257 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4258   HasRecMapType::iterator I = HasRecMap.find(S);
4259   if (I != HasRecMap.end())
4260     return I->second;
4261 
4262   bool FoundAddRec =
4263       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4264   HasRecMap.insert({S, FoundAddRec});
4265   return FoundAddRec;
4266 }
4267 
4268 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
4269 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
4270 /// offset I, then return {S', I}, else return {\p S, nullptr}.
4271 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4272   const auto *Add = dyn_cast<SCEVAddExpr>(S);
4273   if (!Add)
4274     return {S, nullptr};
4275 
4276   if (Add->getNumOperands() != 2)
4277     return {S, nullptr};
4278 
4279   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4280   if (!ConstOp)
4281     return {S, nullptr};
4282 
4283   return {Add->getOperand(1), ConstOp->getValue()};
4284 }
4285 
4286 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4287 /// by the value and offset from any ValueOffsetPair in the set.
4288 ScalarEvolution::ValueOffsetPairSetVector *
4289 ScalarEvolution::getSCEVValues(const SCEV *S) {
4290   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4291   if (SI == ExprValueMap.end())
4292     return nullptr;
4293 #ifndef NDEBUG
4294   if (VerifySCEVMap) {
4295     // Check there is no dangling Value in the set returned.
4296     for (const auto &VE : SI->second)
4297       assert(ValueExprMap.count(VE.first));
4298   }
4299 #endif
4300   return &SI->second;
4301 }
4302 
4303 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4304 /// cannot be used separately. eraseValueFromMap should be used to remove
4305 /// V from ValueExprMap and ExprValueMap at the same time.
4306 void ScalarEvolution::eraseValueFromMap(Value *V) {
4307   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4308   if (I != ValueExprMap.end()) {
4309     const SCEV *S = I->second;
4310     // Remove {V, 0} from the set of ExprValueMap[S]
4311     if (auto *SV = getSCEVValues(S))
4312       SV->remove({V, nullptr});
4313 
4314     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4315     const SCEV *Stripped;
4316     ConstantInt *Offset;
4317     std::tie(Stripped, Offset) = splitAddExpr(S);
4318     if (Offset != nullptr) {
4319       if (auto *SV = getSCEVValues(Stripped))
4320         SV->remove({V, Offset});
4321     }
4322     ValueExprMap.erase(V);
4323   }
4324 }
4325 
4326 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4327   // A recursive query may have already computed the SCEV. It should be
4328   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4329   // inferred nowrap flags.
4330   auto It = ValueExprMap.find_as(V);
4331   if (It == ValueExprMap.end()) {
4332     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4333     ExprValueMap[S].insert({V, nullptr});
4334   }
4335 }
4336 
4337 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4338 /// create a new one.
4339 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4340   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4341 
4342   const SCEV *S = getExistingSCEV(V);
4343   if (S == nullptr) {
4344     S = createSCEV(V);
4345     // During PHI resolution, it is possible to create two SCEVs for the same
4346     // V, so it is needed to double check whether V->S is inserted into
4347     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4348     std::pair<ValueExprMapType::iterator, bool> Pair =
4349         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4350     if (Pair.second) {
4351       ExprValueMap[S].insert({V, nullptr});
4352 
4353       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4354       // ExprValueMap.
4355       const SCEV *Stripped = S;
4356       ConstantInt *Offset = nullptr;
4357       std::tie(Stripped, Offset) = splitAddExpr(S);
4358       // If stripped is SCEVUnknown, don't bother to save
4359       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4360       // increase the complexity of the expansion code.
4361       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4362       // because it may generate add/sub instead of GEP in SCEV expansion.
4363       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4364           !isa<GetElementPtrInst>(V))
4365         ExprValueMap[Stripped].insert({V, Offset});
4366     }
4367   }
4368   return S;
4369 }
4370 
4371 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4372   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4373 
4374   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4375   if (I != ValueExprMap.end()) {
4376     const SCEV *S = I->second;
4377     assert(checkValidity(S) &&
4378            "existing SCEV has not been properly invalidated");
4379     return S;
4380   }
4381   return nullptr;
4382 }
4383 
4384 /// Return a SCEV corresponding to -V = -1*V
4385 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4386                                              SCEV::NoWrapFlags Flags) {
4387   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4388     return getConstant(
4389                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4390 
4391   Type *Ty = V->getType();
4392   Ty = getEffectiveSCEVType(Ty);
4393   return getMulExpr(V, getMinusOne(Ty), Flags);
4394 }
4395 
4396 /// If Expr computes ~A, return A else return nullptr
4397 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4398   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4399   if (!Add || Add->getNumOperands() != 2 ||
4400       !Add->getOperand(0)->isAllOnesValue())
4401     return nullptr;
4402 
4403   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4404   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4405       !AddRHS->getOperand(0)->isAllOnesValue())
4406     return nullptr;
4407 
4408   return AddRHS->getOperand(1);
4409 }
4410 
4411 /// Return a SCEV corresponding to ~V = -1-V
4412 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4413   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4414 
4415   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4416     return getConstant(
4417                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4418 
4419   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4420   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4421     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4422       SmallVector<const SCEV *, 2> MatchedOperands;
4423       for (const SCEV *Operand : MME->operands()) {
4424         const SCEV *Matched = MatchNotExpr(Operand);
4425         if (!Matched)
4426           return (const SCEV *)nullptr;
4427         MatchedOperands.push_back(Matched);
4428       }
4429       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4430                            MatchedOperands);
4431     };
4432     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4433       return Replaced;
4434   }
4435 
4436   Type *Ty = V->getType();
4437   Ty = getEffectiveSCEVType(Ty);
4438   return getMinusSCEV(getMinusOne(Ty), V);
4439 }
4440 
4441 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4442   assert(P->getType()->isPointerTy());
4443 
4444   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4445     // The base of an AddRec is the first operand.
4446     SmallVector<const SCEV *> Ops{AddRec->operands()};
4447     Ops[0] = removePointerBase(Ops[0]);
4448     // Don't try to transfer nowrap flags for now. We could in some cases
4449     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4450     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4451   }
4452   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4453     // The base of an Add is the pointer operand.
4454     SmallVector<const SCEV *> Ops{Add->operands()};
4455     const SCEV **PtrOp = nullptr;
4456     for (const SCEV *&AddOp : Ops) {
4457       if (AddOp->getType()->isPointerTy()) {
4458         assert(!PtrOp && "Cannot have multiple pointer ops");
4459         PtrOp = &AddOp;
4460       }
4461     }
4462     *PtrOp = removePointerBase(*PtrOp);
4463     // Don't try to transfer nowrap flags for now. We could in some cases
4464     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4465     return getAddExpr(Ops);
4466   }
4467   // Any other expression must be a pointer base.
4468   return getZero(P->getType());
4469 }
4470 
4471 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4472                                           SCEV::NoWrapFlags Flags,
4473                                           unsigned Depth) {
4474   // Fast path: X - X --> 0.
4475   if (LHS == RHS)
4476     return getZero(LHS->getType());
4477 
4478   // If we subtract two pointers with different pointer bases, bail.
4479   // Eventually, we're going to add an assertion to getMulExpr that we
4480   // can't multiply by a pointer.
4481   if (RHS->getType()->isPointerTy()) {
4482     if (!LHS->getType()->isPointerTy() ||
4483         getPointerBase(LHS) != getPointerBase(RHS))
4484       return getCouldNotCompute();
4485     LHS = removePointerBase(LHS);
4486     RHS = removePointerBase(RHS);
4487   }
4488 
4489   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4490   // makes it so that we cannot make much use of NUW.
4491   auto AddFlags = SCEV::FlagAnyWrap;
4492   const bool RHSIsNotMinSigned =
4493       !getSignedRangeMin(RHS).isMinSignedValue();
4494   if (hasFlags(Flags, SCEV::FlagNSW)) {
4495     // Let M be the minimum representable signed value. Then (-1)*RHS
4496     // signed-wraps if and only if RHS is M. That can happen even for
4497     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4498     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4499     // (-1)*RHS, we need to prove that RHS != M.
4500     //
4501     // If LHS is non-negative and we know that LHS - RHS does not
4502     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4503     // either by proving that RHS > M or that LHS >= 0.
4504     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4505       AddFlags = SCEV::FlagNSW;
4506     }
4507   }
4508 
4509   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4510   // RHS is NSW and LHS >= 0.
4511   //
4512   // The difficulty here is that the NSW flag may have been proven
4513   // relative to a loop that is to be found in a recurrence in LHS and
4514   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4515   // larger scope than intended.
4516   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4517 
4518   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4519 }
4520 
4521 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4522                                                      unsigned Depth) {
4523   Type *SrcTy = V->getType();
4524   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4525          "Cannot truncate or zero extend with non-integer arguments!");
4526   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4527     return V;  // No conversion
4528   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4529     return getTruncateExpr(V, Ty, Depth);
4530   return getZeroExtendExpr(V, Ty, Depth);
4531 }
4532 
4533 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4534                                                      unsigned Depth) {
4535   Type *SrcTy = V->getType();
4536   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4537          "Cannot truncate or zero extend with non-integer arguments!");
4538   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4539     return V;  // No conversion
4540   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4541     return getTruncateExpr(V, Ty, Depth);
4542   return getSignExtendExpr(V, Ty, Depth);
4543 }
4544 
4545 const SCEV *
4546 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4547   Type *SrcTy = V->getType();
4548   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4549          "Cannot noop or zero extend with non-integer arguments!");
4550   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4551          "getNoopOrZeroExtend cannot truncate!");
4552   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4553     return V;  // No conversion
4554   return getZeroExtendExpr(V, Ty);
4555 }
4556 
4557 const SCEV *
4558 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4559   Type *SrcTy = V->getType();
4560   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4561          "Cannot noop or sign extend with non-integer arguments!");
4562   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4563          "getNoopOrSignExtend cannot truncate!");
4564   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4565     return V;  // No conversion
4566   return getSignExtendExpr(V, Ty);
4567 }
4568 
4569 const SCEV *
4570 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4571   Type *SrcTy = V->getType();
4572   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4573          "Cannot noop or any extend with non-integer arguments!");
4574   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4575          "getNoopOrAnyExtend cannot truncate!");
4576   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4577     return V;  // No conversion
4578   return getAnyExtendExpr(V, Ty);
4579 }
4580 
4581 const SCEV *
4582 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4583   Type *SrcTy = V->getType();
4584   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4585          "Cannot truncate or noop with non-integer arguments!");
4586   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4587          "getTruncateOrNoop cannot extend!");
4588   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4589     return V;  // No conversion
4590   return getTruncateExpr(V, Ty);
4591 }
4592 
4593 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4594                                                         const SCEV *RHS) {
4595   const SCEV *PromotedLHS = LHS;
4596   const SCEV *PromotedRHS = RHS;
4597 
4598   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4599     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4600   else
4601     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4602 
4603   return getUMaxExpr(PromotedLHS, PromotedRHS);
4604 }
4605 
4606 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4607                                                         const SCEV *RHS,
4608                                                         bool Sequential) {
4609   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4610   return getUMinFromMismatchedTypes(Ops, Sequential);
4611 }
4612 
4613 const SCEV *
4614 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4615                                             bool Sequential) {
4616   assert(!Ops.empty() && "At least one operand must be!");
4617   // Trivial case.
4618   if (Ops.size() == 1)
4619     return Ops[0];
4620 
4621   // Find the max type first.
4622   Type *MaxType = nullptr;
4623   for (auto *S : Ops)
4624     if (MaxType)
4625       MaxType = getWiderType(MaxType, S->getType());
4626     else
4627       MaxType = S->getType();
4628   assert(MaxType && "Failed to find maximum type!");
4629 
4630   // Extend all ops to max type.
4631   SmallVector<const SCEV *, 2> PromotedOps;
4632   for (auto *S : Ops)
4633     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4634 
4635   // Generate umin.
4636   return getUMinExpr(PromotedOps, Sequential);
4637 }
4638 
4639 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4640   // A pointer operand may evaluate to a nonpointer expression, such as null.
4641   if (!V->getType()->isPointerTy())
4642     return V;
4643 
4644   while (true) {
4645     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4646       V = AddRec->getStart();
4647     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4648       const SCEV *PtrOp = nullptr;
4649       for (const SCEV *AddOp : Add->operands()) {
4650         if (AddOp->getType()->isPointerTy()) {
4651           assert(!PtrOp && "Cannot have multiple pointer ops");
4652           PtrOp = AddOp;
4653         }
4654       }
4655       assert(PtrOp && "Must have pointer op");
4656       V = PtrOp;
4657     } else // Not something we can look further into.
4658       return V;
4659   }
4660 }
4661 
4662 /// Push users of the given Instruction onto the given Worklist.
4663 static void PushDefUseChildren(Instruction *I,
4664                                SmallVectorImpl<Instruction *> &Worklist,
4665                                SmallPtrSetImpl<Instruction *> &Visited) {
4666   // Push the def-use children onto the Worklist stack.
4667   for (User *U : I->users()) {
4668     auto *UserInsn = cast<Instruction>(U);
4669     if (Visited.insert(UserInsn).second)
4670       Worklist.push_back(UserInsn);
4671   }
4672 }
4673 
4674 namespace {
4675 
4676 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4677 /// expression in case its Loop is L. If it is not L then
4678 /// if IgnoreOtherLoops is true then use AddRec itself
4679 /// otherwise rewrite cannot be done.
4680 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4681 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4682 public:
4683   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4684                              bool IgnoreOtherLoops = true) {
4685     SCEVInitRewriter Rewriter(L, SE);
4686     const SCEV *Result = Rewriter.visit(S);
4687     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4688       return SE.getCouldNotCompute();
4689     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4690                ? SE.getCouldNotCompute()
4691                : Result;
4692   }
4693 
4694   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4695     if (!SE.isLoopInvariant(Expr, L))
4696       SeenLoopVariantSCEVUnknown = true;
4697     return Expr;
4698   }
4699 
4700   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4701     // Only re-write AddRecExprs for this loop.
4702     if (Expr->getLoop() == L)
4703       return Expr->getStart();
4704     SeenOtherLoops = true;
4705     return Expr;
4706   }
4707 
4708   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4709 
4710   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4711 
4712 private:
4713   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4714       : SCEVRewriteVisitor(SE), L(L) {}
4715 
4716   const Loop *L;
4717   bool SeenLoopVariantSCEVUnknown = false;
4718   bool SeenOtherLoops = false;
4719 };
4720 
4721 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4722 /// increment expression in case its Loop is L. If it is not L then
4723 /// use AddRec itself.
4724 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4725 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4726 public:
4727   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4728     SCEVPostIncRewriter Rewriter(L, SE);
4729     const SCEV *Result = Rewriter.visit(S);
4730     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4731         ? SE.getCouldNotCompute()
4732         : Result;
4733   }
4734 
4735   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4736     if (!SE.isLoopInvariant(Expr, L))
4737       SeenLoopVariantSCEVUnknown = true;
4738     return Expr;
4739   }
4740 
4741   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4742     // Only re-write AddRecExprs for this loop.
4743     if (Expr->getLoop() == L)
4744       return Expr->getPostIncExpr(SE);
4745     SeenOtherLoops = true;
4746     return Expr;
4747   }
4748 
4749   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4750 
4751   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4752 
4753 private:
4754   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4755       : SCEVRewriteVisitor(SE), L(L) {}
4756 
4757   const Loop *L;
4758   bool SeenLoopVariantSCEVUnknown = false;
4759   bool SeenOtherLoops = false;
4760 };
4761 
4762 /// This class evaluates the compare condition by matching it against the
4763 /// condition of loop latch. If there is a match we assume a true value
4764 /// for the condition while building SCEV nodes.
4765 class SCEVBackedgeConditionFolder
4766     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4767 public:
4768   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4769                              ScalarEvolution &SE) {
4770     bool IsPosBECond = false;
4771     Value *BECond = nullptr;
4772     if (BasicBlock *Latch = L->getLoopLatch()) {
4773       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4774       if (BI && BI->isConditional()) {
4775         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4776                "Both outgoing branches should not target same header!");
4777         BECond = BI->getCondition();
4778         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4779       } else {
4780         return S;
4781       }
4782     }
4783     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4784     return Rewriter.visit(S);
4785   }
4786 
4787   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4788     const SCEV *Result = Expr;
4789     bool InvariantF = SE.isLoopInvariant(Expr, L);
4790 
4791     if (!InvariantF) {
4792       Instruction *I = cast<Instruction>(Expr->getValue());
4793       switch (I->getOpcode()) {
4794       case Instruction::Select: {
4795         SelectInst *SI = cast<SelectInst>(I);
4796         Optional<const SCEV *> Res =
4797             compareWithBackedgeCondition(SI->getCondition());
4798         if (Res.hasValue()) {
4799           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4800           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4801         }
4802         break;
4803       }
4804       default: {
4805         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4806         if (Res.hasValue())
4807           Result = Res.getValue();
4808         break;
4809       }
4810       }
4811     }
4812     return Result;
4813   }
4814 
4815 private:
4816   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4817                                        bool IsPosBECond, ScalarEvolution &SE)
4818       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4819         IsPositiveBECond(IsPosBECond) {}
4820 
4821   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4822 
4823   const Loop *L;
4824   /// Loop back condition.
4825   Value *BackedgeCond = nullptr;
4826   /// Set to true if loop back is on positive branch condition.
4827   bool IsPositiveBECond;
4828 };
4829 
4830 Optional<const SCEV *>
4831 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4832 
4833   // If value matches the backedge condition for loop latch,
4834   // then return a constant evolution node based on loopback
4835   // branch taken.
4836   if (BackedgeCond == IC)
4837     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4838                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4839   return None;
4840 }
4841 
4842 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4843 public:
4844   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4845                              ScalarEvolution &SE) {
4846     SCEVShiftRewriter Rewriter(L, SE);
4847     const SCEV *Result = Rewriter.visit(S);
4848     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4849   }
4850 
4851   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4852     // Only allow AddRecExprs for this loop.
4853     if (!SE.isLoopInvariant(Expr, L))
4854       Valid = false;
4855     return Expr;
4856   }
4857 
4858   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4859     if (Expr->getLoop() == L && Expr->isAffine())
4860       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4861     Valid = false;
4862     return Expr;
4863   }
4864 
4865   bool isValid() { return Valid; }
4866 
4867 private:
4868   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4869       : SCEVRewriteVisitor(SE), L(L) {}
4870 
4871   const Loop *L;
4872   bool Valid = true;
4873 };
4874 
4875 } // end anonymous namespace
4876 
4877 SCEV::NoWrapFlags
4878 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4879   if (!AR->isAffine())
4880     return SCEV::FlagAnyWrap;
4881 
4882   using OBO = OverflowingBinaryOperator;
4883 
4884   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4885 
4886   if (!AR->hasNoSignedWrap()) {
4887     ConstantRange AddRecRange = getSignedRange(AR);
4888     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4889 
4890     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4891         Instruction::Add, IncRange, OBO::NoSignedWrap);
4892     if (NSWRegion.contains(AddRecRange))
4893       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4894   }
4895 
4896   if (!AR->hasNoUnsignedWrap()) {
4897     ConstantRange AddRecRange = getUnsignedRange(AR);
4898     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4899 
4900     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4901         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4902     if (NUWRegion.contains(AddRecRange))
4903       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4904   }
4905 
4906   return Result;
4907 }
4908 
4909 SCEV::NoWrapFlags
4910 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4911   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4912 
4913   if (AR->hasNoSignedWrap())
4914     return Result;
4915 
4916   if (!AR->isAffine())
4917     return Result;
4918 
4919   const SCEV *Step = AR->getStepRecurrence(*this);
4920   const Loop *L = AR->getLoop();
4921 
4922   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4923   // Note that this serves two purposes: It filters out loops that are
4924   // simply not analyzable, and it covers the case where this code is
4925   // being called from within backedge-taken count analysis, such that
4926   // attempting to ask for the backedge-taken count would likely result
4927   // in infinite recursion. In the later case, the analysis code will
4928   // cope with a conservative value, and it will take care to purge
4929   // that value once it has finished.
4930   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4931 
4932   // Normally, in the cases we can prove no-overflow via a
4933   // backedge guarding condition, we can also compute a backedge
4934   // taken count for the loop.  The exceptions are assumptions and
4935   // guards present in the loop -- SCEV is not great at exploiting
4936   // these to compute max backedge taken counts, but can still use
4937   // these to prove lack of overflow.  Use this fact to avoid
4938   // doing extra work that may not pay off.
4939 
4940   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4941       AC.assumptions().empty())
4942     return Result;
4943 
4944   // If the backedge is guarded by a comparison with the pre-inc  value the
4945   // addrec is safe. Also, if the entry is guarded by a comparison with the
4946   // start value and the backedge is guarded by a comparison with the post-inc
4947   // value, the addrec is safe.
4948   ICmpInst::Predicate Pred;
4949   const SCEV *OverflowLimit =
4950     getSignedOverflowLimitForStep(Step, &Pred, this);
4951   if (OverflowLimit &&
4952       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4953        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4954     Result = setFlags(Result, SCEV::FlagNSW);
4955   }
4956   return Result;
4957 }
4958 SCEV::NoWrapFlags
4959 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4960   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4961 
4962   if (AR->hasNoUnsignedWrap())
4963     return Result;
4964 
4965   if (!AR->isAffine())
4966     return Result;
4967 
4968   const SCEV *Step = AR->getStepRecurrence(*this);
4969   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4970   const Loop *L = AR->getLoop();
4971 
4972   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4973   // Note that this serves two purposes: It filters out loops that are
4974   // simply not analyzable, and it covers the case where this code is
4975   // being called from within backedge-taken count analysis, such that
4976   // attempting to ask for the backedge-taken count would likely result
4977   // in infinite recursion. In the later case, the analysis code will
4978   // cope with a conservative value, and it will take care to purge
4979   // that value once it has finished.
4980   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4981 
4982   // Normally, in the cases we can prove no-overflow via a
4983   // backedge guarding condition, we can also compute a backedge
4984   // taken count for the loop.  The exceptions are assumptions and
4985   // guards present in the loop -- SCEV is not great at exploiting
4986   // these to compute max backedge taken counts, but can still use
4987   // these to prove lack of overflow.  Use this fact to avoid
4988   // doing extra work that may not pay off.
4989 
4990   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4991       AC.assumptions().empty())
4992     return Result;
4993 
4994   // If the backedge is guarded by a comparison with the pre-inc  value the
4995   // addrec is safe. Also, if the entry is guarded by a comparison with the
4996   // start value and the backedge is guarded by a comparison with the post-inc
4997   // value, the addrec is safe.
4998   if (isKnownPositive(Step)) {
4999     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5000                                 getUnsignedRangeMax(Step));
5001     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5002         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5003       Result = setFlags(Result, SCEV::FlagNUW);
5004     }
5005   }
5006 
5007   return Result;
5008 }
5009 
5010 namespace {
5011 
5012 /// Represents an abstract binary operation.  This may exist as a
5013 /// normal instruction or constant expression, or may have been
5014 /// derived from an expression tree.
5015 struct BinaryOp {
5016   unsigned Opcode;
5017   Value *LHS;
5018   Value *RHS;
5019   bool IsNSW = false;
5020   bool IsNUW = false;
5021 
5022   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5023   /// constant expression.
5024   Operator *Op = nullptr;
5025 
5026   explicit BinaryOp(Operator *Op)
5027       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5028         Op(Op) {
5029     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5030       IsNSW = OBO->hasNoSignedWrap();
5031       IsNUW = OBO->hasNoUnsignedWrap();
5032     }
5033   }
5034 
5035   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5036                     bool IsNUW = false)
5037       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5038 };
5039 
5040 } // end anonymous namespace
5041 
5042 /// Try to map \p V into a BinaryOp, and return \c None on failure.
5043 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
5044   auto *Op = dyn_cast<Operator>(V);
5045   if (!Op)
5046     return None;
5047 
5048   // Implementation detail: all the cleverness here should happen without
5049   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5050   // SCEV expressions when possible, and we should not break that.
5051 
5052   switch (Op->getOpcode()) {
5053   case Instruction::Add:
5054   case Instruction::Sub:
5055   case Instruction::Mul:
5056   case Instruction::UDiv:
5057   case Instruction::URem:
5058   case Instruction::And:
5059   case Instruction::Or:
5060   case Instruction::AShr:
5061   case Instruction::Shl:
5062     return BinaryOp(Op);
5063 
5064   case Instruction::Xor:
5065     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5066       // If the RHS of the xor is a signmask, then this is just an add.
5067       // Instcombine turns add of signmask into xor as a strength reduction step.
5068       if (RHSC->getValue().isSignMask())
5069         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5070     // Binary `xor` is a bit-wise `add`.
5071     if (V->getType()->isIntegerTy(1))
5072       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5073     return BinaryOp(Op);
5074 
5075   case Instruction::LShr:
5076     // Turn logical shift right of a constant into a unsigned divide.
5077     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5078       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5079 
5080       // If the shift count is not less than the bitwidth, the result of
5081       // the shift is undefined. Don't try to analyze it, because the
5082       // resolution chosen here may differ from the resolution chosen in
5083       // other parts of the compiler.
5084       if (SA->getValue().ult(BitWidth)) {
5085         Constant *X =
5086             ConstantInt::get(SA->getContext(),
5087                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5088         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5089       }
5090     }
5091     return BinaryOp(Op);
5092 
5093   case Instruction::ExtractValue: {
5094     auto *EVI = cast<ExtractValueInst>(Op);
5095     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5096       break;
5097 
5098     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5099     if (!WO)
5100       break;
5101 
5102     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5103     bool Signed = WO->isSigned();
5104     // TODO: Should add nuw/nsw flags for mul as well.
5105     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5106       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5107 
5108     // Now that we know that all uses of the arithmetic-result component of
5109     // CI are guarded by the overflow check, we can go ahead and pretend
5110     // that the arithmetic is non-overflowing.
5111     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5112                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5113   }
5114 
5115   default:
5116     break;
5117   }
5118 
5119   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5120   // semantics as a Sub, return a binary sub expression.
5121   if (auto *II = dyn_cast<IntrinsicInst>(V))
5122     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5123       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5124 
5125   return None;
5126 }
5127 
5128 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5129 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5130 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5131 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5132 /// follows one of the following patterns:
5133 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5134 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5135 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5136 /// we return the type of the truncation operation, and indicate whether the
5137 /// truncated type should be treated as signed/unsigned by setting
5138 /// \p Signed to true/false, respectively.
5139 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5140                                bool &Signed, ScalarEvolution &SE) {
5141   // The case where Op == SymbolicPHI (that is, with no type conversions on
5142   // the way) is handled by the regular add recurrence creating logic and
5143   // would have already been triggered in createAddRecForPHI. Reaching it here
5144   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5145   // because one of the other operands of the SCEVAddExpr updating this PHI is
5146   // not invariant).
5147   //
5148   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5149   // this case predicates that allow us to prove that Op == SymbolicPHI will
5150   // be added.
5151   if (Op == SymbolicPHI)
5152     return nullptr;
5153 
5154   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5155   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5156   if (SourceBits != NewBits)
5157     return nullptr;
5158 
5159   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5160   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5161   if (!SExt && !ZExt)
5162     return nullptr;
5163   const SCEVTruncateExpr *Trunc =
5164       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5165            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5166   if (!Trunc)
5167     return nullptr;
5168   const SCEV *X = Trunc->getOperand();
5169   if (X != SymbolicPHI)
5170     return nullptr;
5171   Signed = SExt != nullptr;
5172   return Trunc->getType();
5173 }
5174 
5175 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5176   if (!PN->getType()->isIntegerTy())
5177     return nullptr;
5178   const Loop *L = LI.getLoopFor(PN->getParent());
5179   if (!L || L->getHeader() != PN->getParent())
5180     return nullptr;
5181   return L;
5182 }
5183 
5184 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5185 // computation that updates the phi follows the following pattern:
5186 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5187 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5188 // If so, try to see if it can be rewritten as an AddRecExpr under some
5189 // Predicates. If successful, return them as a pair. Also cache the results
5190 // of the analysis.
5191 //
5192 // Example usage scenario:
5193 //    Say the Rewriter is called for the following SCEV:
5194 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5195 //    where:
5196 //         %X = phi i64 (%Start, %BEValue)
5197 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5198 //    and call this function with %SymbolicPHI = %X.
5199 //
5200 //    The analysis will find that the value coming around the backedge has
5201 //    the following SCEV:
5202 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5203 //    Upon concluding that this matches the desired pattern, the function
5204 //    will return the pair {NewAddRec, SmallPredsVec} where:
5205 //         NewAddRec = {%Start,+,%Step}
5206 //         SmallPredsVec = {P1, P2, P3} as follows:
5207 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5208 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5209 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5210 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5211 //    under the predicates {P1,P2,P3}.
5212 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5213 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5214 //
5215 // TODO's:
5216 //
5217 // 1) Extend the Induction descriptor to also support inductions that involve
5218 //    casts: When needed (namely, when we are called in the context of the
5219 //    vectorizer induction analysis), a Set of cast instructions will be
5220 //    populated by this method, and provided back to isInductionPHI. This is
5221 //    needed to allow the vectorizer to properly record them to be ignored by
5222 //    the cost model and to avoid vectorizing them (otherwise these casts,
5223 //    which are redundant under the runtime overflow checks, will be
5224 //    vectorized, which can be costly).
5225 //
5226 // 2) Support additional induction/PHISCEV patterns: We also want to support
5227 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5228 //    after the induction update operation (the induction increment):
5229 //
5230 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5231 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5232 //
5233 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5234 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5235 //
5236 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5237 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5238 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5239   SmallVector<const SCEVPredicate *, 3> Predicates;
5240 
5241   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5242   // return an AddRec expression under some predicate.
5243 
5244   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5245   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5246   assert(L && "Expecting an integer loop header phi");
5247 
5248   // The loop may have multiple entrances or multiple exits; we can analyze
5249   // this phi as an addrec if it has a unique entry value and a unique
5250   // backedge value.
5251   Value *BEValueV = nullptr, *StartValueV = nullptr;
5252   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5253     Value *V = PN->getIncomingValue(i);
5254     if (L->contains(PN->getIncomingBlock(i))) {
5255       if (!BEValueV) {
5256         BEValueV = V;
5257       } else if (BEValueV != V) {
5258         BEValueV = nullptr;
5259         break;
5260       }
5261     } else if (!StartValueV) {
5262       StartValueV = V;
5263     } else if (StartValueV != V) {
5264       StartValueV = nullptr;
5265       break;
5266     }
5267   }
5268   if (!BEValueV || !StartValueV)
5269     return None;
5270 
5271   const SCEV *BEValue = getSCEV(BEValueV);
5272 
5273   // If the value coming around the backedge is an add with the symbolic
5274   // value we just inserted, possibly with casts that we can ignore under
5275   // an appropriate runtime guard, then we found a simple induction variable!
5276   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5277   if (!Add)
5278     return None;
5279 
5280   // If there is a single occurrence of the symbolic value, possibly
5281   // casted, replace it with a recurrence.
5282   unsigned FoundIndex = Add->getNumOperands();
5283   Type *TruncTy = nullptr;
5284   bool Signed;
5285   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5286     if ((TruncTy =
5287              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5288       if (FoundIndex == e) {
5289         FoundIndex = i;
5290         break;
5291       }
5292 
5293   if (FoundIndex == Add->getNumOperands())
5294     return None;
5295 
5296   // Create an add with everything but the specified operand.
5297   SmallVector<const SCEV *, 8> Ops;
5298   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5299     if (i != FoundIndex)
5300       Ops.push_back(Add->getOperand(i));
5301   const SCEV *Accum = getAddExpr(Ops);
5302 
5303   // The runtime checks will not be valid if the step amount is
5304   // varying inside the loop.
5305   if (!isLoopInvariant(Accum, L))
5306     return None;
5307 
5308   // *** Part2: Create the predicates
5309 
5310   // Analysis was successful: we have a phi-with-cast pattern for which we
5311   // can return an AddRec expression under the following predicates:
5312   //
5313   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5314   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5315   // P2: An Equal predicate that guarantees that
5316   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5317   // P3: An Equal predicate that guarantees that
5318   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5319   //
5320   // As we next prove, the above predicates guarantee that:
5321   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5322   //
5323   //
5324   // More formally, we want to prove that:
5325   //     Expr(i+1) = Start + (i+1) * Accum
5326   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5327   //
5328   // Given that:
5329   // 1) Expr(0) = Start
5330   // 2) Expr(1) = Start + Accum
5331   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5332   // 3) Induction hypothesis (step i):
5333   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5334   //
5335   // Proof:
5336   //  Expr(i+1) =
5337   //   = Start + (i+1)*Accum
5338   //   = (Start + i*Accum) + Accum
5339   //   = Expr(i) + Accum
5340   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5341   //                                                             :: from step i
5342   //
5343   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5344   //
5345   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5346   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5347   //     + Accum                                                     :: from P3
5348   //
5349   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5350   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5351   //
5352   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5353   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5354   //
5355   // By induction, the same applies to all iterations 1<=i<n:
5356   //
5357 
5358   // Create a truncated addrec for which we will add a no overflow check (P1).
5359   const SCEV *StartVal = getSCEV(StartValueV);
5360   const SCEV *PHISCEV =
5361       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5362                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5363 
5364   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5365   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5366   // will be constant.
5367   //
5368   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5369   // add P1.
5370   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5371     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5372         Signed ? SCEVWrapPredicate::IncrementNSSW
5373                : SCEVWrapPredicate::IncrementNUSW;
5374     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5375     Predicates.push_back(AddRecPred);
5376   }
5377 
5378   // Create the Equal Predicates P2,P3:
5379 
5380   // It is possible that the predicates P2 and/or P3 are computable at
5381   // compile time due to StartVal and/or Accum being constants.
5382   // If either one is, then we can check that now and escape if either P2
5383   // or P3 is false.
5384 
5385   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5386   // for each of StartVal and Accum
5387   auto getExtendedExpr = [&](const SCEV *Expr,
5388                              bool CreateSignExtend) -> const SCEV * {
5389     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5390     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5391     const SCEV *ExtendedExpr =
5392         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5393                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5394     return ExtendedExpr;
5395   };
5396 
5397   // Given:
5398   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5399   //               = getExtendedExpr(Expr)
5400   // Determine whether the predicate P: Expr == ExtendedExpr
5401   // is known to be false at compile time
5402   auto PredIsKnownFalse = [&](const SCEV *Expr,
5403                               const SCEV *ExtendedExpr) -> bool {
5404     return Expr != ExtendedExpr &&
5405            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5406   };
5407 
5408   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5409   if (PredIsKnownFalse(StartVal, StartExtended)) {
5410     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5411     return None;
5412   }
5413 
5414   // The Step is always Signed (because the overflow checks are either
5415   // NSSW or NUSW)
5416   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5417   if (PredIsKnownFalse(Accum, AccumExtended)) {
5418     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5419     return None;
5420   }
5421 
5422   auto AppendPredicate = [&](const SCEV *Expr,
5423                              const SCEV *ExtendedExpr) -> void {
5424     if (Expr != ExtendedExpr &&
5425         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5426       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5427       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5428       Predicates.push_back(Pred);
5429     }
5430   };
5431 
5432   AppendPredicate(StartVal, StartExtended);
5433   AppendPredicate(Accum, AccumExtended);
5434 
5435   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5436   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5437   // into NewAR if it will also add the runtime overflow checks specified in
5438   // Predicates.
5439   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5440 
5441   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5442       std::make_pair(NewAR, Predicates);
5443   // Remember the result of the analysis for this SCEV at this locayyytion.
5444   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5445   return PredRewrite;
5446 }
5447 
5448 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5449 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5450   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5451   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5452   if (!L)
5453     return None;
5454 
5455   // Check to see if we already analyzed this PHI.
5456   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5457   if (I != PredicatedSCEVRewrites.end()) {
5458     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5459         I->second;
5460     // Analysis was done before and failed to create an AddRec:
5461     if (Rewrite.first == SymbolicPHI)
5462       return None;
5463     // Analysis was done before and succeeded to create an AddRec under
5464     // a predicate:
5465     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5466     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5467     return Rewrite;
5468   }
5469 
5470   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5471     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5472 
5473   // Record in the cache that the analysis failed
5474   if (!Rewrite) {
5475     SmallVector<const SCEVPredicate *, 3> Predicates;
5476     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5477     return None;
5478   }
5479 
5480   return Rewrite;
5481 }
5482 
5483 // FIXME: This utility is currently required because the Rewriter currently
5484 // does not rewrite this expression:
5485 // {0, +, (sext ix (trunc iy to ix) to iy)}
5486 // into {0, +, %step},
5487 // even when the following Equal predicate exists:
5488 // "%step == (sext ix (trunc iy to ix) to iy)".
5489 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5490     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5491   if (AR1 == AR2)
5492     return true;
5493 
5494   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5495     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5496         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5497       return false;
5498     return true;
5499   };
5500 
5501   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5502       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5503     return false;
5504   return true;
5505 }
5506 
5507 /// A helper function for createAddRecFromPHI to handle simple cases.
5508 ///
5509 /// This function tries to find an AddRec expression for the simplest (yet most
5510 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5511 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5512 /// technique for finding the AddRec expression.
5513 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5514                                                       Value *BEValueV,
5515                                                       Value *StartValueV) {
5516   const Loop *L = LI.getLoopFor(PN->getParent());
5517   assert(L && L->getHeader() == PN->getParent());
5518   assert(BEValueV && StartValueV);
5519 
5520   auto BO = MatchBinaryOp(BEValueV, DT);
5521   if (!BO)
5522     return nullptr;
5523 
5524   if (BO->Opcode != Instruction::Add)
5525     return nullptr;
5526 
5527   const SCEV *Accum = nullptr;
5528   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5529     Accum = getSCEV(BO->RHS);
5530   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5531     Accum = getSCEV(BO->LHS);
5532 
5533   if (!Accum)
5534     return nullptr;
5535 
5536   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5537   if (BO->IsNUW)
5538     Flags = setFlags(Flags, SCEV::FlagNUW);
5539   if (BO->IsNSW)
5540     Flags = setFlags(Flags, SCEV::FlagNSW);
5541 
5542   const SCEV *StartVal = getSCEV(StartValueV);
5543   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5544   insertValueToMap(PN, PHISCEV);
5545 
5546   // We can add Flags to the post-inc expression only if we
5547   // know that it is *undefined behavior* for BEValueV to
5548   // overflow.
5549   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5550     assert(isLoopInvariant(Accum, L) &&
5551            "Accum is defined outside L, but is not invariant?");
5552     if (isAddRecNeverPoison(BEInst, L))
5553       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5554   }
5555 
5556   return PHISCEV;
5557 }
5558 
5559 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5560   const Loop *L = LI.getLoopFor(PN->getParent());
5561   if (!L || L->getHeader() != PN->getParent())
5562     return nullptr;
5563 
5564   // The loop may have multiple entrances or multiple exits; we can analyze
5565   // this phi as an addrec if it has a unique entry value and a unique
5566   // backedge value.
5567   Value *BEValueV = nullptr, *StartValueV = nullptr;
5568   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5569     Value *V = PN->getIncomingValue(i);
5570     if (L->contains(PN->getIncomingBlock(i))) {
5571       if (!BEValueV) {
5572         BEValueV = V;
5573       } else if (BEValueV != V) {
5574         BEValueV = nullptr;
5575         break;
5576       }
5577     } else if (!StartValueV) {
5578       StartValueV = V;
5579     } else if (StartValueV != V) {
5580       StartValueV = nullptr;
5581       break;
5582     }
5583   }
5584   if (!BEValueV || !StartValueV)
5585     return nullptr;
5586 
5587   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5588          "PHI node already processed?");
5589 
5590   // First, try to find AddRec expression without creating a fictituos symbolic
5591   // value for PN.
5592   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5593     return S;
5594 
5595   // Handle PHI node value symbolically.
5596   const SCEV *SymbolicName = getUnknown(PN);
5597   insertValueToMap(PN, SymbolicName);
5598 
5599   // Using this symbolic name for the PHI, analyze the value coming around
5600   // the back-edge.
5601   const SCEV *BEValue = getSCEV(BEValueV);
5602 
5603   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5604   // has a special value for the first iteration of the loop.
5605 
5606   // If the value coming around the backedge is an add with the symbolic
5607   // value we just inserted, then we found a simple induction variable!
5608   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5609     // If there is a single occurrence of the symbolic value, replace it
5610     // with a recurrence.
5611     unsigned FoundIndex = Add->getNumOperands();
5612     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5613       if (Add->getOperand(i) == SymbolicName)
5614         if (FoundIndex == e) {
5615           FoundIndex = i;
5616           break;
5617         }
5618 
5619     if (FoundIndex != Add->getNumOperands()) {
5620       // Create an add with everything but the specified operand.
5621       SmallVector<const SCEV *, 8> Ops;
5622       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5623         if (i != FoundIndex)
5624           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5625                                                              L, *this));
5626       const SCEV *Accum = getAddExpr(Ops);
5627 
5628       // This is not a valid addrec if the step amount is varying each
5629       // loop iteration, but is not itself an addrec in this loop.
5630       if (isLoopInvariant(Accum, L) ||
5631           (isa<SCEVAddRecExpr>(Accum) &&
5632            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5633         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5634 
5635         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5636           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5637             if (BO->IsNUW)
5638               Flags = setFlags(Flags, SCEV::FlagNUW);
5639             if (BO->IsNSW)
5640               Flags = setFlags(Flags, SCEV::FlagNSW);
5641           }
5642         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5643           // If the increment is an inbounds GEP, then we know the address
5644           // space cannot be wrapped around. We cannot make any guarantee
5645           // about signed or unsigned overflow because pointers are
5646           // unsigned but we may have a negative index from the base
5647           // pointer. We can guarantee that no unsigned wrap occurs if the
5648           // indices form a positive value.
5649           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5650             Flags = setFlags(Flags, SCEV::FlagNW);
5651 
5652             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5653             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5654               Flags = setFlags(Flags, SCEV::FlagNUW);
5655           }
5656 
5657           // We cannot transfer nuw and nsw flags from subtraction
5658           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5659           // for instance.
5660         }
5661 
5662         const SCEV *StartVal = getSCEV(StartValueV);
5663         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5664 
5665         // Okay, for the entire analysis of this edge we assumed the PHI
5666         // to be symbolic.  We now need to go back and purge all of the
5667         // entries for the scalars that use the symbolic expression.
5668         forgetMemoizedResults(SymbolicName);
5669         insertValueToMap(PN, PHISCEV);
5670 
5671         // We can add Flags to the post-inc expression only if we
5672         // know that it is *undefined behavior* for BEValueV to
5673         // overflow.
5674         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5675           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5676             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5677 
5678         return PHISCEV;
5679       }
5680     }
5681   } else {
5682     // Otherwise, this could be a loop like this:
5683     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5684     // In this case, j = {1,+,1}  and BEValue is j.
5685     // Because the other in-value of i (0) fits the evolution of BEValue
5686     // i really is an addrec evolution.
5687     //
5688     // We can generalize this saying that i is the shifted value of BEValue
5689     // by one iteration:
5690     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5691     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5692     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5693     if (Shifted != getCouldNotCompute() &&
5694         Start != getCouldNotCompute()) {
5695       const SCEV *StartVal = getSCEV(StartValueV);
5696       if (Start == StartVal) {
5697         // Okay, for the entire analysis of this edge we assumed the PHI
5698         // to be symbolic.  We now need to go back and purge all of the
5699         // entries for the scalars that use the symbolic expression.
5700         forgetMemoizedResults(SymbolicName);
5701         insertValueToMap(PN, Shifted);
5702         return Shifted;
5703       }
5704     }
5705   }
5706 
5707   // Remove the temporary PHI node SCEV that has been inserted while intending
5708   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5709   // as it will prevent later (possibly simpler) SCEV expressions to be added
5710   // to the ValueExprMap.
5711   eraseValueFromMap(PN);
5712 
5713   return nullptr;
5714 }
5715 
5716 // Checks if the SCEV S is available at BB.  S is considered available at BB
5717 // if S can be materialized at BB without introducing a fault.
5718 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5719                                BasicBlock *BB) {
5720   struct CheckAvailable {
5721     bool TraversalDone = false;
5722     bool Available = true;
5723 
5724     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5725     BasicBlock *BB = nullptr;
5726     DominatorTree &DT;
5727 
5728     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5729       : L(L), BB(BB), DT(DT) {}
5730 
5731     bool setUnavailable() {
5732       TraversalDone = true;
5733       Available = false;
5734       return false;
5735     }
5736 
5737     bool follow(const SCEV *S) {
5738       switch (S->getSCEVType()) {
5739       case scConstant:
5740       case scPtrToInt:
5741       case scTruncate:
5742       case scZeroExtend:
5743       case scSignExtend:
5744       case scAddExpr:
5745       case scMulExpr:
5746       case scUMaxExpr:
5747       case scSMaxExpr:
5748       case scUMinExpr:
5749       case scSMinExpr:
5750       case scSequentialUMinExpr:
5751         // These expressions are available if their operand(s) is/are.
5752         return true;
5753 
5754       case scAddRecExpr: {
5755         // We allow add recurrences that are on the loop BB is in, or some
5756         // outer loop.  This guarantees availability because the value of the
5757         // add recurrence at BB is simply the "current" value of the induction
5758         // variable.  We can relax this in the future; for instance an add
5759         // recurrence on a sibling dominating loop is also available at BB.
5760         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5761         if (L && (ARLoop == L || ARLoop->contains(L)))
5762           return true;
5763 
5764         return setUnavailable();
5765       }
5766 
5767       case scUnknown: {
5768         // For SCEVUnknown, we check for simple dominance.
5769         const auto *SU = cast<SCEVUnknown>(S);
5770         Value *V = SU->getValue();
5771 
5772         if (isa<Argument>(V))
5773           return false;
5774 
5775         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5776           return false;
5777 
5778         return setUnavailable();
5779       }
5780 
5781       case scUDivExpr:
5782       case scCouldNotCompute:
5783         // We do not try to smart about these at all.
5784         return setUnavailable();
5785       }
5786       llvm_unreachable("Unknown SCEV kind!");
5787     }
5788 
5789     bool isDone() { return TraversalDone; }
5790   };
5791 
5792   CheckAvailable CA(L, BB, DT);
5793   SCEVTraversal<CheckAvailable> ST(CA);
5794 
5795   ST.visitAll(S);
5796   return CA.Available;
5797 }
5798 
5799 // Try to match a control flow sequence that branches out at BI and merges back
5800 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5801 // match.
5802 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5803                           Value *&C, Value *&LHS, Value *&RHS) {
5804   C = BI->getCondition();
5805 
5806   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5807   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5808 
5809   if (!LeftEdge.isSingleEdge())
5810     return false;
5811 
5812   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5813 
5814   Use &LeftUse = Merge->getOperandUse(0);
5815   Use &RightUse = Merge->getOperandUse(1);
5816 
5817   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5818     LHS = LeftUse;
5819     RHS = RightUse;
5820     return true;
5821   }
5822 
5823   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5824     LHS = RightUse;
5825     RHS = LeftUse;
5826     return true;
5827   }
5828 
5829   return false;
5830 }
5831 
5832 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5833   auto IsReachable =
5834       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5835   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5836     const Loop *L = LI.getLoopFor(PN->getParent());
5837 
5838     // We don't want to break LCSSA, even in a SCEV expression tree.
5839     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5840       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5841         return nullptr;
5842 
5843     // Try to match
5844     //
5845     //  br %cond, label %left, label %right
5846     // left:
5847     //  br label %merge
5848     // right:
5849     //  br label %merge
5850     // merge:
5851     //  V = phi [ %x, %left ], [ %y, %right ]
5852     //
5853     // as "select %cond, %x, %y"
5854 
5855     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5856     assert(IDom && "At least the entry block should dominate PN");
5857 
5858     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5859     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5860 
5861     if (BI && BI->isConditional() &&
5862         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5863         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5864         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5865       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5866   }
5867 
5868   return nullptr;
5869 }
5870 
5871 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5872   if (const SCEV *S = createAddRecFromPHI(PN))
5873     return S;
5874 
5875   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5876     return S;
5877 
5878   // If the PHI has a single incoming value, follow that value, unless the
5879   // PHI's incoming blocks are in a different loop, in which case doing so
5880   // risks breaking LCSSA form. Instcombine would normally zap these, but
5881   // it doesn't have DominatorTree information, so it may miss cases.
5882   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5883     if (LI.replacementPreservesLCSSAForm(PN, V))
5884       return getSCEV(V);
5885 
5886   // If it's not a loop phi, we can't handle it yet.
5887   return getUnknown(PN);
5888 }
5889 
5890 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(
5891     Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) {
5892   // Try to match some simple smax or umax patterns.
5893   auto *ICI = Cond;
5894 
5895   Value *LHS = ICI->getOperand(0);
5896   Value *RHS = ICI->getOperand(1);
5897 
5898   switch (ICI->getPredicate()) {
5899   case ICmpInst::ICMP_SLT:
5900   case ICmpInst::ICMP_SLE:
5901   case ICmpInst::ICMP_ULT:
5902   case ICmpInst::ICMP_ULE:
5903     std::swap(LHS, RHS);
5904     LLVM_FALLTHROUGH;
5905   case ICmpInst::ICMP_SGT:
5906   case ICmpInst::ICMP_SGE:
5907   case ICmpInst::ICMP_UGT:
5908   case ICmpInst::ICMP_UGE:
5909     // a > b ? a+x : b+x  ->  max(a, b)+x
5910     // a > b ? b+x : a+x  ->  min(a, b)+x
5911     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5912       bool Signed = ICI->isSigned();
5913       const SCEV *LA = getSCEV(TrueVal);
5914       const SCEV *RA = getSCEV(FalseVal);
5915       const SCEV *LS = getSCEV(LHS);
5916       const SCEV *RS = getSCEV(RHS);
5917       if (LA->getType()->isPointerTy()) {
5918         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5919         // Need to make sure we can't produce weird expressions involving
5920         // negated pointers.
5921         if (LA == LS && RA == RS)
5922           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5923         if (LA == RS && RA == LS)
5924           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5925       }
5926       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5927         if (Op->getType()->isPointerTy()) {
5928           Op = getLosslessPtrToIntExpr(Op);
5929           if (isa<SCEVCouldNotCompute>(Op))
5930             return Op;
5931         }
5932         if (Signed)
5933           Op = getNoopOrSignExtend(Op, I->getType());
5934         else
5935           Op = getNoopOrZeroExtend(Op, I->getType());
5936         return Op;
5937       };
5938       LS = CoerceOperand(LS);
5939       RS = CoerceOperand(RS);
5940       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5941         break;
5942       const SCEV *LDiff = getMinusSCEV(LA, LS);
5943       const SCEV *RDiff = getMinusSCEV(RA, RS);
5944       if (LDiff == RDiff)
5945         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5946                           LDiff);
5947       LDiff = getMinusSCEV(LA, RS);
5948       RDiff = getMinusSCEV(RA, LS);
5949       if (LDiff == RDiff)
5950         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5951                           LDiff);
5952     }
5953     break;
5954   case ICmpInst::ICMP_NE:
5955     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5956     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5957         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5958       const SCEV *One = getOne(I->getType());
5959       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5960       const SCEV *LA = getSCEV(TrueVal);
5961       const SCEV *RA = getSCEV(FalseVal);
5962       const SCEV *LDiff = getMinusSCEV(LA, LS);
5963       const SCEV *RDiff = getMinusSCEV(RA, One);
5964       if (LDiff == RDiff)
5965         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5966     }
5967     break;
5968   case ICmpInst::ICMP_EQ:
5969     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5970     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5971         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5972       const SCEV *One = getOne(I->getType());
5973       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5974       const SCEV *LA = getSCEV(TrueVal);
5975       const SCEV *RA = getSCEV(FalseVal);
5976       const SCEV *LDiff = getMinusSCEV(LA, One);
5977       const SCEV *RDiff = getMinusSCEV(RA, LS);
5978       if (LDiff == RDiff)
5979         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5980     }
5981     break;
5982   default:
5983     break;
5984   }
5985 
5986   return getUnknown(I);
5987 }
5988 
5989 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
5990     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
5991   // For now, only deal with i1-typed `select`s.
5992   if (!V->getType()->isIntegerTy(1) || !Cond->getType()->isIntegerTy(1) ||
5993       !TrueVal->getType()->isIntegerTy(1) ||
5994       !FalseVal->getType()->isIntegerTy(1))
5995     return getUnknown(V);
5996 
5997   // i1 cond ? i1 x : i1 0  -->  umin_seq cond, x
5998   if (auto *FalseConst = dyn_cast<ConstantInt>(FalseVal)) {
5999     if (FalseConst->isZero())
6000       return getUMinExpr(getSCEV(Cond), getSCEV(TrueVal), /*Sequential=*/true);
6001   }
6002 
6003   return getUnknown(V);
6004 }
6005 
6006 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6007                                                       Value *TrueVal,
6008                                                       Value *FalseVal) {
6009   // Handle "constant" branch or select. This can occur for instance when a
6010   // loop pass transforms an inner loop and moves on to process the outer loop.
6011   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6012     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6013 
6014   if (auto *I = dyn_cast<Instruction>(V)) {
6015     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6016       const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond(
6017           I, ICI, TrueVal, FalseVal);
6018       if (!isa<SCEVUnknown>(S))
6019         return S;
6020     }
6021   }
6022 
6023   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6024 }
6025 
6026 /// Expand GEP instructions into add and multiply operations. This allows them
6027 /// to be analyzed by regular SCEV code.
6028 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6029   // Don't attempt to analyze GEPs over unsized objects.
6030   if (!GEP->getSourceElementType()->isSized())
6031     return getUnknown(GEP);
6032 
6033   SmallVector<const SCEV *, 4> IndexExprs;
6034   for (Value *Index : GEP->indices())
6035     IndexExprs.push_back(getSCEV(Index));
6036   return getGEPExpr(GEP, IndexExprs);
6037 }
6038 
6039 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
6040   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6041     return C->getAPInt().countTrailingZeros();
6042 
6043   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
6044     return GetMinTrailingZeros(I->getOperand());
6045 
6046   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
6047     return std::min(GetMinTrailingZeros(T->getOperand()),
6048                     (uint32_t)getTypeSizeInBits(T->getType()));
6049 
6050   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
6051     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6052     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6053                ? getTypeSizeInBits(E->getType())
6054                : OpRes;
6055   }
6056 
6057   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
6058     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6059     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6060                ? getTypeSizeInBits(E->getType())
6061                : OpRes;
6062   }
6063 
6064   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
6065     // The result is the min of all operands results.
6066     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6067     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6068       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6069     return MinOpRes;
6070   }
6071 
6072   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
6073     // The result is the sum of all operands results.
6074     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
6075     uint32_t BitWidth = getTypeSizeInBits(M->getType());
6076     for (unsigned i = 1, e = M->getNumOperands();
6077          SumOpRes != BitWidth && i != e; ++i)
6078       SumOpRes =
6079           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
6080     return SumOpRes;
6081   }
6082 
6083   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
6084     // The result is the min of all operands results.
6085     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6086     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6087       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6088     return MinOpRes;
6089   }
6090 
6091   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
6092     // The result is the min of all operands results.
6093     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6094     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6095       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6096     return MinOpRes;
6097   }
6098 
6099   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
6100     // The result is the min of all operands results.
6101     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6102     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6103       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6104     return MinOpRes;
6105   }
6106 
6107   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6108     // For a SCEVUnknown, ask ValueTracking.
6109     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
6110     return Known.countMinTrailingZeros();
6111   }
6112 
6113   // SCEVUDivExpr
6114   return 0;
6115 }
6116 
6117 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
6118   auto I = MinTrailingZerosCache.find(S);
6119   if (I != MinTrailingZerosCache.end())
6120     return I->second;
6121 
6122   uint32_t Result = GetMinTrailingZerosImpl(S);
6123   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
6124   assert(InsertPair.second && "Should insert a new key");
6125   return InsertPair.first->second;
6126 }
6127 
6128 /// Helper method to assign a range to V from metadata present in the IR.
6129 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6130   if (Instruction *I = dyn_cast<Instruction>(V))
6131     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6132       return getConstantRangeFromMetadata(*MD);
6133 
6134   return None;
6135 }
6136 
6137 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6138                                      SCEV::NoWrapFlags Flags) {
6139   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6140     AddRec->setNoWrapFlags(Flags);
6141     UnsignedRanges.erase(AddRec);
6142     SignedRanges.erase(AddRec);
6143   }
6144 }
6145 
6146 ConstantRange ScalarEvolution::
6147 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6148   const DataLayout &DL = getDataLayout();
6149 
6150   unsigned BitWidth = getTypeSizeInBits(U->getType());
6151   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6152 
6153   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6154   // use information about the trip count to improve our available range.  Note
6155   // that the trip count independent cases are already handled by known bits.
6156   // WARNING: The definition of recurrence used here is subtly different than
6157   // the one used by AddRec (and thus most of this file).  Step is allowed to
6158   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6159   // and other addrecs in the same loop (for non-affine addrecs).  The code
6160   // below intentionally handles the case where step is not loop invariant.
6161   auto *P = dyn_cast<PHINode>(U->getValue());
6162   if (!P)
6163     return FullSet;
6164 
6165   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6166   // even the values that are not available in these blocks may come from them,
6167   // and this leads to false-positive recurrence test.
6168   for (auto *Pred : predecessors(P->getParent()))
6169     if (!DT.isReachableFromEntry(Pred))
6170       return FullSet;
6171 
6172   BinaryOperator *BO;
6173   Value *Start, *Step;
6174   if (!matchSimpleRecurrence(P, BO, Start, Step))
6175     return FullSet;
6176 
6177   // If we found a recurrence in reachable code, we must be in a loop. Note
6178   // that BO might be in some subloop of L, and that's completely okay.
6179   auto *L = LI.getLoopFor(P->getParent());
6180   assert(L && L->getHeader() == P->getParent());
6181   if (!L->contains(BO->getParent()))
6182     // NOTE: This bailout should be an assert instead.  However, asserting
6183     // the condition here exposes a case where LoopFusion is querying SCEV
6184     // with malformed loop information during the midst of the transform.
6185     // There doesn't appear to be an obvious fix, so for the moment bailout
6186     // until the caller issue can be fixed.  PR49566 tracks the bug.
6187     return FullSet;
6188 
6189   // TODO: Extend to other opcodes such as mul, and div
6190   switch (BO->getOpcode()) {
6191   default:
6192     return FullSet;
6193   case Instruction::AShr:
6194   case Instruction::LShr:
6195   case Instruction::Shl:
6196     break;
6197   };
6198 
6199   if (BO->getOperand(0) != P)
6200     // TODO: Handle the power function forms some day.
6201     return FullSet;
6202 
6203   unsigned TC = getSmallConstantMaxTripCount(L);
6204   if (!TC || TC >= BitWidth)
6205     return FullSet;
6206 
6207   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6208   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6209   assert(KnownStart.getBitWidth() == BitWidth &&
6210          KnownStep.getBitWidth() == BitWidth);
6211 
6212   // Compute total shift amount, being careful of overflow and bitwidths.
6213   auto MaxShiftAmt = KnownStep.getMaxValue();
6214   APInt TCAP(BitWidth, TC-1);
6215   bool Overflow = false;
6216   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6217   if (Overflow)
6218     return FullSet;
6219 
6220   switch (BO->getOpcode()) {
6221   default:
6222     llvm_unreachable("filtered out above");
6223   case Instruction::AShr: {
6224     // For each ashr, three cases:
6225     //   shift = 0 => unchanged value
6226     //   saturation => 0 or -1
6227     //   other => a value closer to zero (of the same sign)
6228     // Thus, the end value is closer to zero than the start.
6229     auto KnownEnd = KnownBits::ashr(KnownStart,
6230                                     KnownBits::makeConstant(TotalShift));
6231     if (KnownStart.isNonNegative())
6232       // Analogous to lshr (simply not yet canonicalized)
6233       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6234                                         KnownStart.getMaxValue() + 1);
6235     if (KnownStart.isNegative())
6236       // End >=u Start && End <=s Start
6237       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6238                                         KnownEnd.getMaxValue() + 1);
6239     break;
6240   }
6241   case Instruction::LShr: {
6242     // For each lshr, three cases:
6243     //   shift = 0 => unchanged value
6244     //   saturation => 0
6245     //   other => a smaller positive number
6246     // Thus, the low end of the unsigned range is the last value produced.
6247     auto KnownEnd = KnownBits::lshr(KnownStart,
6248                                     KnownBits::makeConstant(TotalShift));
6249     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6250                                       KnownStart.getMaxValue() + 1);
6251   }
6252   case Instruction::Shl: {
6253     // Iff no bits are shifted out, value increases on every shift.
6254     auto KnownEnd = KnownBits::shl(KnownStart,
6255                                    KnownBits::makeConstant(TotalShift));
6256     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6257       return ConstantRange(KnownStart.getMinValue(),
6258                            KnownEnd.getMaxValue() + 1);
6259     break;
6260   }
6261   };
6262   return FullSet;
6263 }
6264 
6265 /// Determine the range for a particular SCEV.  If SignHint is
6266 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6267 /// with a "cleaner" unsigned (resp. signed) representation.
6268 const ConstantRange &
6269 ScalarEvolution::getRangeRef(const SCEV *S,
6270                              ScalarEvolution::RangeSignHint SignHint) {
6271   DenseMap<const SCEV *, ConstantRange> &Cache =
6272       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6273                                                        : SignedRanges;
6274   ConstantRange::PreferredRangeType RangeType =
6275       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6276           ? ConstantRange::Unsigned : ConstantRange::Signed;
6277 
6278   // See if we've computed this range already.
6279   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6280   if (I != Cache.end())
6281     return I->second;
6282 
6283   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6284     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6285 
6286   unsigned BitWidth = getTypeSizeInBits(S->getType());
6287   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6288   using OBO = OverflowingBinaryOperator;
6289 
6290   // If the value has known zeros, the maximum value will have those known zeros
6291   // as well.
6292   uint32_t TZ = GetMinTrailingZeros(S);
6293   if (TZ != 0) {
6294     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6295       ConservativeResult =
6296           ConstantRange(APInt::getMinValue(BitWidth),
6297                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6298     else
6299       ConservativeResult = ConstantRange(
6300           APInt::getSignedMinValue(BitWidth),
6301           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6302   }
6303 
6304   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6305     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6306     unsigned WrapType = OBO::AnyWrap;
6307     if (Add->hasNoSignedWrap())
6308       WrapType |= OBO::NoSignedWrap;
6309     if (Add->hasNoUnsignedWrap())
6310       WrapType |= OBO::NoUnsignedWrap;
6311     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6312       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6313                           WrapType, RangeType);
6314     return setRange(Add, SignHint,
6315                     ConservativeResult.intersectWith(X, RangeType));
6316   }
6317 
6318   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6319     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6320     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6321       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6322     return setRange(Mul, SignHint,
6323                     ConservativeResult.intersectWith(X, RangeType));
6324   }
6325 
6326   if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) {
6327     Intrinsic::ID ID;
6328     switch (S->getSCEVType()) {
6329     case scUMaxExpr:
6330       ID = Intrinsic::umax;
6331       break;
6332     case scSMaxExpr:
6333       ID = Intrinsic::smax;
6334       break;
6335     case scUMinExpr:
6336     case scSequentialUMinExpr:
6337       ID = Intrinsic::umin;
6338       break;
6339     case scSMinExpr:
6340       ID = Intrinsic::smin;
6341       break;
6342     default:
6343       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6344     }
6345 
6346     const auto *NAry = cast<SCEVNAryExpr>(S);
6347     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint);
6348     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6349       X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)});
6350     return setRange(S, SignHint,
6351                     ConservativeResult.intersectWith(X, RangeType));
6352   }
6353 
6354   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6355     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6356     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6357     return setRange(UDiv, SignHint,
6358                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6359   }
6360 
6361   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6362     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6363     return setRange(ZExt, SignHint,
6364                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6365                                                      RangeType));
6366   }
6367 
6368   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6369     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6370     return setRange(SExt, SignHint,
6371                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6372                                                      RangeType));
6373   }
6374 
6375   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6376     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6377     return setRange(PtrToInt, SignHint, X);
6378   }
6379 
6380   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6381     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6382     return setRange(Trunc, SignHint,
6383                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6384                                                      RangeType));
6385   }
6386 
6387   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6388     // If there's no unsigned wrap, the value will never be less than its
6389     // initial value.
6390     if (AddRec->hasNoUnsignedWrap()) {
6391       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6392       if (!UnsignedMinValue.isZero())
6393         ConservativeResult = ConservativeResult.intersectWith(
6394             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6395     }
6396 
6397     // If there's no signed wrap, and all the operands except initial value have
6398     // the same sign or zero, the value won't ever be:
6399     // 1: smaller than initial value if operands are non negative,
6400     // 2: bigger than initial value if operands are non positive.
6401     // For both cases, value can not cross signed min/max boundary.
6402     if (AddRec->hasNoSignedWrap()) {
6403       bool AllNonNeg = true;
6404       bool AllNonPos = true;
6405       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6406         if (!isKnownNonNegative(AddRec->getOperand(i)))
6407           AllNonNeg = false;
6408         if (!isKnownNonPositive(AddRec->getOperand(i)))
6409           AllNonPos = false;
6410       }
6411       if (AllNonNeg)
6412         ConservativeResult = ConservativeResult.intersectWith(
6413             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6414                                        APInt::getSignedMinValue(BitWidth)),
6415             RangeType);
6416       else if (AllNonPos)
6417         ConservativeResult = ConservativeResult.intersectWith(
6418             ConstantRange::getNonEmpty(
6419                 APInt::getSignedMinValue(BitWidth),
6420                 getSignedRangeMax(AddRec->getStart()) + 1),
6421             RangeType);
6422     }
6423 
6424     // TODO: non-affine addrec
6425     if (AddRec->isAffine()) {
6426       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6427       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6428           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6429         auto RangeFromAffine = getRangeForAffineAR(
6430             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6431             BitWidth);
6432         ConservativeResult =
6433             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6434 
6435         auto RangeFromFactoring = getRangeViaFactoring(
6436             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6437             BitWidth);
6438         ConservativeResult =
6439             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6440       }
6441 
6442       // Now try symbolic BE count and more powerful methods.
6443       if (UseExpensiveRangeSharpening) {
6444         const SCEV *SymbolicMaxBECount =
6445             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6446         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6447             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6448             AddRec->hasNoSelfWrap()) {
6449           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6450               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6451           ConservativeResult =
6452               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6453         }
6454       }
6455     }
6456 
6457     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6458   }
6459 
6460   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6461 
6462     // Check if the IR explicitly contains !range metadata.
6463     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6464     if (MDRange.hasValue())
6465       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6466                                                             RangeType);
6467 
6468     // Use facts about recurrences in the underlying IR.  Note that add
6469     // recurrences are AddRecExprs and thus don't hit this path.  This
6470     // primarily handles shift recurrences.
6471     auto CR = getRangeForUnknownRecurrence(U);
6472     ConservativeResult = ConservativeResult.intersectWith(CR);
6473 
6474     // See if ValueTracking can give us a useful range.
6475     const DataLayout &DL = getDataLayout();
6476     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6477     if (Known.getBitWidth() != BitWidth)
6478       Known = Known.zextOrTrunc(BitWidth);
6479 
6480     // ValueTracking may be able to compute a tighter result for the number of
6481     // sign bits than for the value of those sign bits.
6482     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6483     if (U->getType()->isPointerTy()) {
6484       // If the pointer size is larger than the index size type, this can cause
6485       // NS to be larger than BitWidth. So compensate for this.
6486       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6487       int ptrIdxDiff = ptrSize - BitWidth;
6488       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6489         NS -= ptrIdxDiff;
6490     }
6491 
6492     if (NS > 1) {
6493       // If we know any of the sign bits, we know all of the sign bits.
6494       if (!Known.Zero.getHiBits(NS).isZero())
6495         Known.Zero.setHighBits(NS);
6496       if (!Known.One.getHiBits(NS).isZero())
6497         Known.One.setHighBits(NS);
6498     }
6499 
6500     if (Known.getMinValue() != Known.getMaxValue() + 1)
6501       ConservativeResult = ConservativeResult.intersectWith(
6502           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6503           RangeType);
6504     if (NS > 1)
6505       ConservativeResult = ConservativeResult.intersectWith(
6506           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6507                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6508           RangeType);
6509 
6510     // A range of Phi is a subset of union of all ranges of its input.
6511     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6512       // Make sure that we do not run over cycled Phis.
6513       if (PendingPhiRanges.insert(Phi).second) {
6514         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6515         for (auto &Op : Phi->operands()) {
6516           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6517           RangeFromOps = RangeFromOps.unionWith(OpRange);
6518           // No point to continue if we already have a full set.
6519           if (RangeFromOps.isFullSet())
6520             break;
6521         }
6522         ConservativeResult =
6523             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6524         bool Erased = PendingPhiRanges.erase(Phi);
6525         assert(Erased && "Failed to erase Phi properly?");
6526         (void) Erased;
6527       }
6528     }
6529 
6530     return setRange(U, SignHint, std::move(ConservativeResult));
6531   }
6532 
6533   return setRange(S, SignHint, std::move(ConservativeResult));
6534 }
6535 
6536 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6537 // values that the expression can take. Initially, the expression has a value
6538 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6539 // argument defines if we treat Step as signed or unsigned.
6540 static ConstantRange getRangeForAffineARHelper(APInt Step,
6541                                                const ConstantRange &StartRange,
6542                                                const APInt &MaxBECount,
6543                                                unsigned BitWidth, bool Signed) {
6544   // If either Step or MaxBECount is 0, then the expression won't change, and we
6545   // just need to return the initial range.
6546   if (Step == 0 || MaxBECount == 0)
6547     return StartRange;
6548 
6549   // If we don't know anything about the initial value (i.e. StartRange is
6550   // FullRange), then we don't know anything about the final range either.
6551   // Return FullRange.
6552   if (StartRange.isFullSet())
6553     return ConstantRange::getFull(BitWidth);
6554 
6555   // If Step is signed and negative, then we use its absolute value, but we also
6556   // note that we're moving in the opposite direction.
6557   bool Descending = Signed && Step.isNegative();
6558 
6559   if (Signed)
6560     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6561     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6562     // This equations hold true due to the well-defined wrap-around behavior of
6563     // APInt.
6564     Step = Step.abs();
6565 
6566   // Check if Offset is more than full span of BitWidth. If it is, the
6567   // expression is guaranteed to overflow.
6568   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6569     return ConstantRange::getFull(BitWidth);
6570 
6571   // Offset is by how much the expression can change. Checks above guarantee no
6572   // overflow here.
6573   APInt Offset = Step * MaxBECount;
6574 
6575   // Minimum value of the final range will match the minimal value of StartRange
6576   // if the expression is increasing and will be decreased by Offset otherwise.
6577   // Maximum value of the final range will match the maximal value of StartRange
6578   // if the expression is decreasing and will be increased by Offset otherwise.
6579   APInt StartLower = StartRange.getLower();
6580   APInt StartUpper = StartRange.getUpper() - 1;
6581   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6582                                    : (StartUpper + std::move(Offset));
6583 
6584   // It's possible that the new minimum/maximum value will fall into the initial
6585   // range (due to wrap around). This means that the expression can take any
6586   // value in this bitwidth, and we have to return full range.
6587   if (StartRange.contains(MovedBoundary))
6588     return ConstantRange::getFull(BitWidth);
6589 
6590   APInt NewLower =
6591       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6592   APInt NewUpper =
6593       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6594   NewUpper += 1;
6595 
6596   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6597   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6598 }
6599 
6600 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6601                                                    const SCEV *Step,
6602                                                    const SCEV *MaxBECount,
6603                                                    unsigned BitWidth) {
6604   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6605          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6606          "Precondition!");
6607 
6608   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6609   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6610 
6611   // First, consider step signed.
6612   ConstantRange StartSRange = getSignedRange(Start);
6613   ConstantRange StepSRange = getSignedRange(Step);
6614 
6615   // If Step can be both positive and negative, we need to find ranges for the
6616   // maximum absolute step values in both directions and union them.
6617   ConstantRange SR =
6618       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6619                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6620   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6621                                               StartSRange, MaxBECountValue,
6622                                               BitWidth, /* Signed = */ true));
6623 
6624   // Next, consider step unsigned.
6625   ConstantRange UR = getRangeForAffineARHelper(
6626       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6627       MaxBECountValue, BitWidth, /* Signed = */ false);
6628 
6629   // Finally, intersect signed and unsigned ranges.
6630   return SR.intersectWith(UR, ConstantRange::Smallest);
6631 }
6632 
6633 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6634     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6635     ScalarEvolution::RangeSignHint SignHint) {
6636   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6637   assert(AddRec->hasNoSelfWrap() &&
6638          "This only works for non-self-wrapping AddRecs!");
6639   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6640   const SCEV *Step = AddRec->getStepRecurrence(*this);
6641   // Only deal with constant step to save compile time.
6642   if (!isa<SCEVConstant>(Step))
6643     return ConstantRange::getFull(BitWidth);
6644   // Let's make sure that we can prove that we do not self-wrap during
6645   // MaxBECount iterations. We need this because MaxBECount is a maximum
6646   // iteration count estimate, and we might infer nw from some exit for which we
6647   // do not know max exit count (or any other side reasoning).
6648   // TODO: Turn into assert at some point.
6649   if (getTypeSizeInBits(MaxBECount->getType()) >
6650       getTypeSizeInBits(AddRec->getType()))
6651     return ConstantRange::getFull(BitWidth);
6652   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6653   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6654   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6655   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6656   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6657                                          MaxItersWithoutWrap))
6658     return ConstantRange::getFull(BitWidth);
6659 
6660   ICmpInst::Predicate LEPred =
6661       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6662   ICmpInst::Predicate GEPred =
6663       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6664   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6665 
6666   // We know that there is no self-wrap. Let's take Start and End values and
6667   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6668   // the iteration. They either lie inside the range [Min(Start, End),
6669   // Max(Start, End)] or outside it:
6670   //
6671   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6672   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6673   //
6674   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6675   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6676   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6677   // Start <= End and step is positive, or Start >= End and step is negative.
6678   const SCEV *Start = AddRec->getStart();
6679   ConstantRange StartRange = getRangeRef(Start, SignHint);
6680   ConstantRange EndRange = getRangeRef(End, SignHint);
6681   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6682   // If they already cover full iteration space, we will know nothing useful
6683   // even if we prove what we want to prove.
6684   if (RangeBetween.isFullSet())
6685     return RangeBetween;
6686   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6687   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6688                                : RangeBetween.isWrappedSet();
6689   if (IsWrappedSet)
6690     return ConstantRange::getFull(BitWidth);
6691 
6692   if (isKnownPositive(Step) &&
6693       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6694     return RangeBetween;
6695   else if (isKnownNegative(Step) &&
6696            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6697     return RangeBetween;
6698   return ConstantRange::getFull(BitWidth);
6699 }
6700 
6701 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6702                                                     const SCEV *Step,
6703                                                     const SCEV *MaxBECount,
6704                                                     unsigned BitWidth) {
6705   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6706   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6707 
6708   struct SelectPattern {
6709     Value *Condition = nullptr;
6710     APInt TrueValue;
6711     APInt FalseValue;
6712 
6713     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6714                            const SCEV *S) {
6715       Optional<unsigned> CastOp;
6716       APInt Offset(BitWidth, 0);
6717 
6718       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6719              "Should be!");
6720 
6721       // Peel off a constant offset:
6722       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6723         // In the future we could consider being smarter here and handle
6724         // {Start+Step,+,Step} too.
6725         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6726           return;
6727 
6728         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6729         S = SA->getOperand(1);
6730       }
6731 
6732       // Peel off a cast operation
6733       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6734         CastOp = SCast->getSCEVType();
6735         S = SCast->getOperand();
6736       }
6737 
6738       using namespace llvm::PatternMatch;
6739 
6740       auto *SU = dyn_cast<SCEVUnknown>(S);
6741       const APInt *TrueVal, *FalseVal;
6742       if (!SU ||
6743           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6744                                           m_APInt(FalseVal)))) {
6745         Condition = nullptr;
6746         return;
6747       }
6748 
6749       TrueValue = *TrueVal;
6750       FalseValue = *FalseVal;
6751 
6752       // Re-apply the cast we peeled off earlier
6753       if (CastOp.hasValue())
6754         switch (*CastOp) {
6755         default:
6756           llvm_unreachable("Unknown SCEV cast type!");
6757 
6758         case scTruncate:
6759           TrueValue = TrueValue.trunc(BitWidth);
6760           FalseValue = FalseValue.trunc(BitWidth);
6761           break;
6762         case scZeroExtend:
6763           TrueValue = TrueValue.zext(BitWidth);
6764           FalseValue = FalseValue.zext(BitWidth);
6765           break;
6766         case scSignExtend:
6767           TrueValue = TrueValue.sext(BitWidth);
6768           FalseValue = FalseValue.sext(BitWidth);
6769           break;
6770         }
6771 
6772       // Re-apply the constant offset we peeled off earlier
6773       TrueValue += Offset;
6774       FalseValue += Offset;
6775     }
6776 
6777     bool isRecognized() { return Condition != nullptr; }
6778   };
6779 
6780   SelectPattern StartPattern(*this, BitWidth, Start);
6781   if (!StartPattern.isRecognized())
6782     return ConstantRange::getFull(BitWidth);
6783 
6784   SelectPattern StepPattern(*this, BitWidth, Step);
6785   if (!StepPattern.isRecognized())
6786     return ConstantRange::getFull(BitWidth);
6787 
6788   if (StartPattern.Condition != StepPattern.Condition) {
6789     // We don't handle this case today; but we could, by considering four
6790     // possibilities below instead of two. I'm not sure if there are cases where
6791     // that will help over what getRange already does, though.
6792     return ConstantRange::getFull(BitWidth);
6793   }
6794 
6795   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6796   // construct arbitrary general SCEV expressions here.  This function is called
6797   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6798   // say) can end up caching a suboptimal value.
6799 
6800   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6801   // C2352 and C2512 (otherwise it isn't needed).
6802 
6803   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6804   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6805   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6806   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6807 
6808   ConstantRange TrueRange =
6809       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6810   ConstantRange FalseRange =
6811       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6812 
6813   return TrueRange.unionWith(FalseRange);
6814 }
6815 
6816 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6817   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6818   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6819 
6820   // Return early if there are no flags to propagate to the SCEV.
6821   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6822   if (BinOp->hasNoUnsignedWrap())
6823     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6824   if (BinOp->hasNoSignedWrap())
6825     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6826   if (Flags == SCEV::FlagAnyWrap)
6827     return SCEV::FlagAnyWrap;
6828 
6829   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6830 }
6831 
6832 const Instruction *
6833 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6834   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6835     return &*AddRec->getLoop()->getHeader()->begin();
6836   if (auto *U = dyn_cast<SCEVUnknown>(S))
6837     if (auto *I = dyn_cast<Instruction>(U->getValue()))
6838       return I;
6839   return nullptr;
6840 }
6841 
6842 /// Fills \p Ops with unique operands of \p S, if it has operands. If not,
6843 /// \p Ops remains unmodified.
6844 static void collectUniqueOps(const SCEV *S,
6845                              SmallVectorImpl<const SCEV *> &Ops) {
6846   SmallPtrSet<const SCEV *, 4> Unique;
6847   auto InsertUnique = [&](const SCEV *S) {
6848     if (Unique.insert(S).second)
6849       Ops.push_back(S);
6850   };
6851   if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6852     for (auto *Op : S2->operands())
6853       InsertUnique(Op);
6854   else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6855     for (auto *Op : S2->operands())
6856       InsertUnique(Op);
6857   else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6858     for (auto *Op : S2->operands())
6859       InsertUnique(Op);
6860 }
6861 
6862 const Instruction *
6863 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
6864                                        bool &Precise) {
6865   Precise = true;
6866   // Do a bounded search of the def relation of the requested SCEVs.
6867   SmallSet<const SCEV *, 16> Visited;
6868   SmallVector<const SCEV *> Worklist;
6869   auto pushOp = [&](const SCEV *S) {
6870     if (!Visited.insert(S).second)
6871       return;
6872     // Threshold of 30 here is arbitrary.
6873     if (Visited.size() > 30) {
6874       Precise = false;
6875       return;
6876     }
6877     Worklist.push_back(S);
6878   };
6879 
6880   for (auto *S : Ops)
6881     pushOp(S);
6882 
6883   const Instruction *Bound = nullptr;
6884   while (!Worklist.empty()) {
6885     auto *S = Worklist.pop_back_val();
6886     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
6887       if (!Bound || DT.dominates(Bound, DefI))
6888         Bound = DefI;
6889     } else {
6890       SmallVector<const SCEV *, 4> Ops;
6891       collectUniqueOps(S, Ops);
6892       for (auto *Op : Ops)
6893         pushOp(Op);
6894     }
6895   }
6896   return Bound ? Bound : &*F.getEntryBlock().begin();
6897 }
6898 
6899 const Instruction *
6900 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
6901   bool Discard;
6902   return getDefiningScopeBound(Ops, Discard);
6903 }
6904 
6905 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
6906                                                         const Instruction *B) {
6907   if (A->getParent() == B->getParent() &&
6908       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6909                                                  B->getIterator()))
6910     return true;
6911 
6912   auto *BLoop = LI.getLoopFor(B->getParent());
6913   if (BLoop && BLoop->getHeader() == B->getParent() &&
6914       BLoop->getLoopPreheader() == A->getParent() &&
6915       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6916                                                  A->getParent()->end()) &&
6917       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
6918                                                  B->getIterator()))
6919     return true;
6920   return false;
6921 }
6922 
6923 
6924 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6925   // Only proceed if we can prove that I does not yield poison.
6926   if (!programUndefinedIfPoison(I))
6927     return false;
6928 
6929   // At this point we know that if I is executed, then it does not wrap
6930   // according to at least one of NSW or NUW. If I is not executed, then we do
6931   // not know if the calculation that I represents would wrap. Multiple
6932   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6933   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6934   // derived from other instructions that map to the same SCEV. We cannot make
6935   // that guarantee for cases where I is not executed. So we need to find a
6936   // upper bound on the defining scope for the SCEV, and prove that I is
6937   // executed every time we enter that scope.  When the bounding scope is a
6938   // loop (the common case), this is equivalent to proving I executes on every
6939   // iteration of that loop.
6940   SmallVector<const SCEV *> SCEVOps;
6941   for (const Use &Op : I->operands()) {
6942     // I could be an extractvalue from a call to an overflow intrinsic.
6943     // TODO: We can do better here in some cases.
6944     if (isSCEVable(Op->getType()))
6945       SCEVOps.push_back(getSCEV(Op));
6946   }
6947   auto *DefI = getDefiningScopeBound(SCEVOps);
6948   return isGuaranteedToTransferExecutionTo(DefI, I);
6949 }
6950 
6951 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6952   // If we know that \c I can never be poison period, then that's enough.
6953   if (isSCEVExprNeverPoison(I))
6954     return true;
6955 
6956   // For an add recurrence specifically, we assume that infinite loops without
6957   // side effects are undefined behavior, and then reason as follows:
6958   //
6959   // If the add recurrence is poison in any iteration, it is poison on all
6960   // future iterations (since incrementing poison yields poison). If the result
6961   // of the add recurrence is fed into the loop latch condition and the loop
6962   // does not contain any throws or exiting blocks other than the latch, we now
6963   // have the ability to "choose" whether the backedge is taken or not (by
6964   // choosing a sufficiently evil value for the poison feeding into the branch)
6965   // for every iteration including and after the one in which \p I first became
6966   // poison.  There are two possibilities (let's call the iteration in which \p
6967   // I first became poison as K):
6968   //
6969   //  1. In the set of iterations including and after K, the loop body executes
6970   //     no side effects.  In this case executing the backege an infinte number
6971   //     of times will yield undefined behavior.
6972   //
6973   //  2. In the set of iterations including and after K, the loop body executes
6974   //     at least one side effect.  In this case, that specific instance of side
6975   //     effect is control dependent on poison, which also yields undefined
6976   //     behavior.
6977 
6978   auto *ExitingBB = L->getExitingBlock();
6979   auto *LatchBB = L->getLoopLatch();
6980   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6981     return false;
6982 
6983   SmallPtrSet<const Instruction *, 16> Pushed;
6984   SmallVector<const Instruction *, 8> PoisonStack;
6985 
6986   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6987   // things that are known to be poison under that assumption go on the
6988   // PoisonStack.
6989   Pushed.insert(I);
6990   PoisonStack.push_back(I);
6991 
6992   bool LatchControlDependentOnPoison = false;
6993   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6994     const Instruction *Poison = PoisonStack.pop_back_val();
6995 
6996     for (auto *PoisonUser : Poison->users()) {
6997       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6998         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6999           PoisonStack.push_back(cast<Instruction>(PoisonUser));
7000       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
7001         assert(BI->isConditional() && "Only possibility!");
7002         if (BI->getParent() == LatchBB) {
7003           LatchControlDependentOnPoison = true;
7004           break;
7005         }
7006       }
7007     }
7008   }
7009 
7010   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
7011 }
7012 
7013 ScalarEvolution::LoopProperties
7014 ScalarEvolution::getLoopProperties(const Loop *L) {
7015   using LoopProperties = ScalarEvolution::LoopProperties;
7016 
7017   auto Itr = LoopPropertiesCache.find(L);
7018   if (Itr == LoopPropertiesCache.end()) {
7019     auto HasSideEffects = [](Instruction *I) {
7020       if (auto *SI = dyn_cast<StoreInst>(I))
7021         return !SI->isSimple();
7022 
7023       return I->mayThrow() || I->mayWriteToMemory();
7024     };
7025 
7026     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7027                          /*HasNoSideEffects*/ true};
7028 
7029     for (auto *BB : L->getBlocks())
7030       for (auto &I : *BB) {
7031         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7032           LP.HasNoAbnormalExits = false;
7033         if (HasSideEffects(&I))
7034           LP.HasNoSideEffects = false;
7035         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7036           break; // We're already as pessimistic as we can get.
7037       }
7038 
7039     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7040     assert(InsertPair.second && "We just checked!");
7041     Itr = InsertPair.first;
7042   }
7043 
7044   return Itr->second;
7045 }
7046 
7047 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7048   // A mustprogress loop without side effects must be finite.
7049   // TODO: The check used here is very conservative.  It's only *specific*
7050   // side effects which are well defined in infinite loops.
7051   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7052 }
7053 
7054 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7055   if (!isSCEVable(V->getType()))
7056     return getUnknown(V);
7057 
7058   if (Instruction *I = dyn_cast<Instruction>(V)) {
7059     // Don't attempt to analyze instructions in blocks that aren't
7060     // reachable. Such instructions don't matter, and they aren't required
7061     // to obey basic rules for definitions dominating uses which this
7062     // analysis depends on.
7063     if (!DT.isReachableFromEntry(I->getParent()))
7064       return getUnknown(UndefValue::get(V->getType()));
7065   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7066     return getConstant(CI);
7067   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
7068     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
7069   else if (!isa<ConstantExpr>(V))
7070     return getUnknown(V);
7071 
7072   Operator *U = cast<Operator>(V);
7073   if (auto BO = MatchBinaryOp(U, DT)) {
7074     switch (BO->Opcode) {
7075     case Instruction::Add: {
7076       // The simple thing to do would be to just call getSCEV on both operands
7077       // and call getAddExpr with the result. However if we're looking at a
7078       // bunch of things all added together, this can be quite inefficient,
7079       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7080       // Instead, gather up all the operands and make a single getAddExpr call.
7081       // LLVM IR canonical form means we need only traverse the left operands.
7082       SmallVector<const SCEV *, 4> AddOps;
7083       do {
7084         if (BO->Op) {
7085           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7086             AddOps.push_back(OpSCEV);
7087             break;
7088           }
7089 
7090           // If a NUW or NSW flag can be applied to the SCEV for this
7091           // addition, then compute the SCEV for this addition by itself
7092           // with a separate call to getAddExpr. We need to do that
7093           // instead of pushing the operands of the addition onto AddOps,
7094           // since the flags are only known to apply to this particular
7095           // addition - they may not apply to other additions that can be
7096           // formed with operands from AddOps.
7097           const SCEV *RHS = getSCEV(BO->RHS);
7098           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7099           if (Flags != SCEV::FlagAnyWrap) {
7100             const SCEV *LHS = getSCEV(BO->LHS);
7101             if (BO->Opcode == Instruction::Sub)
7102               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7103             else
7104               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7105             break;
7106           }
7107         }
7108 
7109         if (BO->Opcode == Instruction::Sub)
7110           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7111         else
7112           AddOps.push_back(getSCEV(BO->RHS));
7113 
7114         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7115         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7116                        NewBO->Opcode != Instruction::Sub)) {
7117           AddOps.push_back(getSCEV(BO->LHS));
7118           break;
7119         }
7120         BO = NewBO;
7121       } while (true);
7122 
7123       return getAddExpr(AddOps);
7124     }
7125 
7126     case Instruction::Mul: {
7127       SmallVector<const SCEV *, 4> MulOps;
7128       do {
7129         if (BO->Op) {
7130           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7131             MulOps.push_back(OpSCEV);
7132             break;
7133           }
7134 
7135           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7136           if (Flags != SCEV::FlagAnyWrap) {
7137             MulOps.push_back(
7138                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
7139             break;
7140           }
7141         }
7142 
7143         MulOps.push_back(getSCEV(BO->RHS));
7144         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7145         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7146           MulOps.push_back(getSCEV(BO->LHS));
7147           break;
7148         }
7149         BO = NewBO;
7150       } while (true);
7151 
7152       return getMulExpr(MulOps);
7153     }
7154     case Instruction::UDiv:
7155       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7156     case Instruction::URem:
7157       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7158     case Instruction::Sub: {
7159       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7160       if (BO->Op)
7161         Flags = getNoWrapFlagsFromUB(BO->Op);
7162       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
7163     }
7164     case Instruction::And:
7165       // For an expression like x&255 that merely masks off the high bits,
7166       // use zext(trunc(x)) as the SCEV expression.
7167       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7168         if (CI->isZero())
7169           return getSCEV(BO->RHS);
7170         if (CI->isMinusOne())
7171           return getSCEV(BO->LHS);
7172         const APInt &A = CI->getValue();
7173 
7174         // Instcombine's ShrinkDemandedConstant may strip bits out of
7175         // constants, obscuring what would otherwise be a low-bits mask.
7176         // Use computeKnownBits to compute what ShrinkDemandedConstant
7177         // knew about to reconstruct a low-bits mask value.
7178         unsigned LZ = A.countLeadingZeros();
7179         unsigned TZ = A.countTrailingZeros();
7180         unsigned BitWidth = A.getBitWidth();
7181         KnownBits Known(BitWidth);
7182         computeKnownBits(BO->LHS, Known, getDataLayout(),
7183                          0, &AC, nullptr, &DT);
7184 
7185         APInt EffectiveMask =
7186             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7187         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7188           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7189           const SCEV *LHS = getSCEV(BO->LHS);
7190           const SCEV *ShiftedLHS = nullptr;
7191           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7192             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7193               // For an expression like (x * 8) & 8, simplify the multiply.
7194               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
7195               unsigned GCD = std::min(MulZeros, TZ);
7196               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7197               SmallVector<const SCEV*, 4> MulOps;
7198               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7199               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
7200               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7201               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7202             }
7203           }
7204           if (!ShiftedLHS)
7205             ShiftedLHS = getUDivExpr(LHS, MulCount);
7206           return getMulExpr(
7207               getZeroExtendExpr(
7208                   getTruncateExpr(ShiftedLHS,
7209                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7210                   BO->LHS->getType()),
7211               MulCount);
7212         }
7213       }
7214       // Binary `and` is a bit-wise `umin`.
7215       if (BO->LHS->getType()->isIntegerTy(1))
7216         return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7217       break;
7218 
7219     case Instruction::Or:
7220       // If the RHS of the Or is a constant, we may have something like:
7221       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
7222       // optimizations will transparently handle this case.
7223       //
7224       // In order for this transformation to be safe, the LHS must be of the
7225       // form X*(2^n) and the Or constant must be less than 2^n.
7226       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7227         const SCEV *LHS = getSCEV(BO->LHS);
7228         const APInt &CIVal = CI->getValue();
7229         if (GetMinTrailingZeros(LHS) >=
7230             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
7231           // Build a plain add SCEV.
7232           return getAddExpr(LHS, getSCEV(CI),
7233                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
7234         }
7235       }
7236       // Binary `or` is a bit-wise `umax`.
7237       if (BO->LHS->getType()->isIntegerTy(1))
7238         return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7239       break;
7240 
7241     case Instruction::Xor:
7242       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7243         // If the RHS of xor is -1, then this is a not operation.
7244         if (CI->isMinusOne())
7245           return getNotSCEV(getSCEV(BO->LHS));
7246 
7247         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7248         // This is a variant of the check for xor with -1, and it handles
7249         // the case where instcombine has trimmed non-demanded bits out
7250         // of an xor with -1.
7251         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7252           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7253             if (LBO->getOpcode() == Instruction::And &&
7254                 LCI->getValue() == CI->getValue())
7255               if (const SCEVZeroExtendExpr *Z =
7256                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7257                 Type *UTy = BO->LHS->getType();
7258                 const SCEV *Z0 = Z->getOperand();
7259                 Type *Z0Ty = Z0->getType();
7260                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7261 
7262                 // If C is a low-bits mask, the zero extend is serving to
7263                 // mask off the high bits. Complement the operand and
7264                 // re-apply the zext.
7265                 if (CI->getValue().isMask(Z0TySize))
7266                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7267 
7268                 // If C is a single bit, it may be in the sign-bit position
7269                 // before the zero-extend. In this case, represent the xor
7270                 // using an add, which is equivalent, and re-apply the zext.
7271                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7272                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7273                     Trunc.isSignMask())
7274                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7275                                            UTy);
7276               }
7277       }
7278       break;
7279 
7280     case Instruction::Shl:
7281       // Turn shift left of a constant amount into a multiply.
7282       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7283         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7284 
7285         // If the shift count is not less than the bitwidth, the result of
7286         // the shift is undefined. Don't try to analyze it, because the
7287         // resolution chosen here may differ from the resolution chosen in
7288         // other parts of the compiler.
7289         if (SA->getValue().uge(BitWidth))
7290           break;
7291 
7292         // We can safely preserve the nuw flag in all cases. It's also safe to
7293         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7294         // requires special handling. It can be preserved as long as we're not
7295         // left shifting by bitwidth - 1.
7296         auto Flags = SCEV::FlagAnyWrap;
7297         if (BO->Op) {
7298           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7299           if ((MulFlags & SCEV::FlagNSW) &&
7300               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7301             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7302           if (MulFlags & SCEV::FlagNUW)
7303             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7304         }
7305 
7306         Constant *X = ConstantInt::get(
7307             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7308         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
7309       }
7310       break;
7311 
7312     case Instruction::AShr: {
7313       // AShr X, C, where C is a constant.
7314       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7315       if (!CI)
7316         break;
7317 
7318       Type *OuterTy = BO->LHS->getType();
7319       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7320       // If the shift count is not less than the bitwidth, the result of
7321       // the shift is undefined. Don't try to analyze it, because the
7322       // resolution chosen here may differ from the resolution chosen in
7323       // other parts of the compiler.
7324       if (CI->getValue().uge(BitWidth))
7325         break;
7326 
7327       if (CI->isZero())
7328         return getSCEV(BO->LHS); // shift by zero --> noop
7329 
7330       uint64_t AShrAmt = CI->getZExtValue();
7331       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7332 
7333       Operator *L = dyn_cast<Operator>(BO->LHS);
7334       if (L && L->getOpcode() == Instruction::Shl) {
7335         // X = Shl A, n
7336         // Y = AShr X, m
7337         // Both n and m are constant.
7338 
7339         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7340         if (L->getOperand(1) == BO->RHS)
7341           // For a two-shift sext-inreg, i.e. n = m,
7342           // use sext(trunc(x)) as the SCEV expression.
7343           return getSignExtendExpr(
7344               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7345 
7346         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7347         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7348           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7349           if (ShlAmt > AShrAmt) {
7350             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7351             // expression. We already checked that ShlAmt < BitWidth, so
7352             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7353             // ShlAmt - AShrAmt < Amt.
7354             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7355                                             ShlAmt - AShrAmt);
7356             return getSignExtendExpr(
7357                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7358                 getConstant(Mul)), OuterTy);
7359           }
7360         }
7361       }
7362       break;
7363     }
7364     }
7365   }
7366 
7367   switch (U->getOpcode()) {
7368   case Instruction::Trunc:
7369     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7370 
7371   case Instruction::ZExt:
7372     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7373 
7374   case Instruction::SExt:
7375     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7376       // The NSW flag of a subtract does not always survive the conversion to
7377       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7378       // more likely to preserve NSW and allow later AddRec optimisations.
7379       //
7380       // NOTE: This is effectively duplicating this logic from getSignExtend:
7381       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7382       // but by that point the NSW information has potentially been lost.
7383       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7384         Type *Ty = U->getType();
7385         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7386         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7387         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7388       }
7389     }
7390     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7391 
7392   case Instruction::BitCast:
7393     // BitCasts are no-op casts so we just eliminate the cast.
7394     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7395       return getSCEV(U->getOperand(0));
7396     break;
7397 
7398   case Instruction::PtrToInt: {
7399     // Pointer to integer cast is straight-forward, so do model it.
7400     const SCEV *Op = getSCEV(U->getOperand(0));
7401     Type *DstIntTy = U->getType();
7402     // But only if effective SCEV (integer) type is wide enough to represent
7403     // all possible pointer values.
7404     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7405     if (isa<SCEVCouldNotCompute>(IntOp))
7406       return getUnknown(V);
7407     return IntOp;
7408   }
7409   case Instruction::IntToPtr:
7410     // Just don't deal with inttoptr casts.
7411     return getUnknown(V);
7412 
7413   case Instruction::SDiv:
7414     // If both operands are non-negative, this is just an udiv.
7415     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7416         isKnownNonNegative(getSCEV(U->getOperand(1))))
7417       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7418     break;
7419 
7420   case Instruction::SRem:
7421     // If both operands are non-negative, this is just an urem.
7422     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7423         isKnownNonNegative(getSCEV(U->getOperand(1))))
7424       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7425     break;
7426 
7427   case Instruction::GetElementPtr:
7428     return createNodeForGEP(cast<GEPOperator>(U));
7429 
7430   case Instruction::PHI:
7431     return createNodeForPHI(cast<PHINode>(U));
7432 
7433   case Instruction::Select:
7434     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
7435                                     U->getOperand(2));
7436 
7437   case Instruction::Call:
7438   case Instruction::Invoke:
7439     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7440       return getSCEV(RV);
7441 
7442     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7443       switch (II->getIntrinsicID()) {
7444       case Intrinsic::abs:
7445         return getAbsExpr(
7446             getSCEV(II->getArgOperand(0)),
7447             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7448       case Intrinsic::umax:
7449         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7450                            getSCEV(II->getArgOperand(1)));
7451       case Intrinsic::umin:
7452         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7453                            getSCEV(II->getArgOperand(1)));
7454       case Intrinsic::smax:
7455         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7456                            getSCEV(II->getArgOperand(1)));
7457       case Intrinsic::smin:
7458         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7459                            getSCEV(II->getArgOperand(1)));
7460       case Intrinsic::usub_sat: {
7461         const SCEV *X = getSCEV(II->getArgOperand(0));
7462         const SCEV *Y = getSCEV(II->getArgOperand(1));
7463         const SCEV *ClampedY = getUMinExpr(X, Y);
7464         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7465       }
7466       case Intrinsic::uadd_sat: {
7467         const SCEV *X = getSCEV(II->getArgOperand(0));
7468         const SCEV *Y = getSCEV(II->getArgOperand(1));
7469         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7470         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7471       }
7472       case Intrinsic::start_loop_iterations:
7473         // A start_loop_iterations is just equivalent to the first operand for
7474         // SCEV purposes.
7475         return getSCEV(II->getArgOperand(0));
7476       default:
7477         break;
7478       }
7479     }
7480     break;
7481   }
7482 
7483   return getUnknown(V);
7484 }
7485 
7486 //===----------------------------------------------------------------------===//
7487 //                   Iteration Count Computation Code
7488 //
7489 
7490 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7491                                                        bool Extend) {
7492   if (isa<SCEVCouldNotCompute>(ExitCount))
7493     return getCouldNotCompute();
7494 
7495   auto *ExitCountType = ExitCount->getType();
7496   assert(ExitCountType->isIntegerTy());
7497 
7498   if (!Extend)
7499     return getAddExpr(ExitCount, getOne(ExitCountType));
7500 
7501   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7502                                     1 + ExitCountType->getScalarSizeInBits());
7503   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7504                     getOne(WiderType));
7505 }
7506 
7507 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7508   if (!ExitCount)
7509     return 0;
7510 
7511   ConstantInt *ExitConst = ExitCount->getValue();
7512 
7513   // Guard against huge trip counts.
7514   if (ExitConst->getValue().getActiveBits() > 32)
7515     return 0;
7516 
7517   // In case of integer overflow, this returns 0, which is correct.
7518   return ((unsigned)ExitConst->getZExtValue()) + 1;
7519 }
7520 
7521 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7522   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7523   return getConstantTripCount(ExitCount);
7524 }
7525 
7526 unsigned
7527 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7528                                            const BasicBlock *ExitingBlock) {
7529   assert(ExitingBlock && "Must pass a non-null exiting block!");
7530   assert(L->isLoopExiting(ExitingBlock) &&
7531          "Exiting block must actually branch out of the loop!");
7532   const SCEVConstant *ExitCount =
7533       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7534   return getConstantTripCount(ExitCount);
7535 }
7536 
7537 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7538   const auto *MaxExitCount =
7539       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7540   return getConstantTripCount(MaxExitCount);
7541 }
7542 
7543 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
7544   // We can't infer from Array in Irregular Loop.
7545   // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
7546   if (!L->isLoopSimplifyForm() || !L->isInnermost())
7547     return getCouldNotCompute();
7548 
7549   // FIXME: To make the scene more typical, we only analysis loops that have
7550   // one exiting block and that block must be the latch. To make it easier to
7551   // capture loops that have memory access and memory access will be executed
7552   // in each iteration.
7553   const BasicBlock *LoopLatch = L->getLoopLatch();
7554   assert(LoopLatch && "See defination of simplify form loop.");
7555   if (L->getExitingBlock() != LoopLatch)
7556     return getCouldNotCompute();
7557 
7558   const DataLayout &DL = getDataLayout();
7559   SmallVector<const SCEV *> InferCountColl;
7560   for (auto *BB : L->getBlocks()) {
7561     // Go here, we can know that Loop is a single exiting and simplified form
7562     // loop. Make sure that infer from Memory Operation in those BBs must be
7563     // executed in loop. First step, we can make sure that max execution time
7564     // of MemAccessBB in loop represents latch max excution time.
7565     // If MemAccessBB does not dom Latch, skip.
7566     //            Entry
7567     //              │
7568     //        ┌─────▼─────┐
7569     //        │Loop Header◄─────┐
7570     //        └──┬──────┬─┘     │
7571     //           │      │       │
7572     //  ┌────────▼──┐ ┌─▼─────┐ │
7573     //  │MemAccessBB│ │OtherBB│ │
7574     //  └────────┬──┘ └─┬─────┘ │
7575     //           │      │       │
7576     //         ┌─▼──────▼─┐     │
7577     //         │Loop Latch├─────┘
7578     //         └────┬─────┘
7579     //              ▼
7580     //             Exit
7581     if (!DT.dominates(BB, LoopLatch))
7582       continue;
7583 
7584     for (Instruction &Inst : *BB) {
7585       // Find Memory Operation Instruction.
7586       auto *GEP = getLoadStorePointerOperand(&Inst);
7587       if (!GEP)
7588         continue;
7589 
7590       auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
7591       // Do not infer from scalar type, eg."ElemSize = sizeof()".
7592       if (!ElemSize)
7593         continue;
7594 
7595       // Use a existing polynomial recurrence on the trip count.
7596       auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
7597       if (!AddRec)
7598         continue;
7599       auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
7600       auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
7601       if (!ArrBase || !Step)
7602         continue;
7603       assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
7604 
7605       // Only handle { %array + step },
7606       // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
7607       if (AddRec->getStart() != ArrBase)
7608         continue;
7609 
7610       // Memory operation pattern which have gaps.
7611       // Or repeat memory opreation.
7612       // And index of GEP wraps arround.
7613       if (Step->getAPInt().getActiveBits() > 32 ||
7614           Step->getAPInt().getZExtValue() !=
7615               ElemSize->getAPInt().getZExtValue() ||
7616           Step->isZero() || Step->getAPInt().isNegative())
7617         continue;
7618 
7619       // Only infer from stack array which has certain size.
7620       // Make sure alloca instruction is not excuted in loop.
7621       AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
7622       if (!AllocateInst || L->contains(AllocateInst->getParent()))
7623         continue;
7624 
7625       // Make sure only handle normal array.
7626       auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
7627       auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
7628       if (!Ty || !ArrSize || !ArrSize->isOne())
7629         continue;
7630 
7631       // FIXME: Since gep indices are silently zext to the indexing type,
7632       // we will have a narrow gep index which wraps around rather than
7633       // increasing strictly, we shoule ensure that step is increasing
7634       // strictly by the loop iteration.
7635       // Now we can infer a max execution time by MemLength/StepLength.
7636       const SCEV *MemSize =
7637           getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
7638       auto *MaxExeCount =
7639           dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
7640       if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
7641         continue;
7642 
7643       // If the loop reaches the maximum number of executions, we can not
7644       // access bytes starting outside the statically allocated size without
7645       // being immediate UB. But it is allowed to enter loop header one more
7646       // time.
7647       auto *InferCount = dyn_cast<SCEVConstant>(
7648           getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
7649       // Discard the maximum number of execution times under 32bits.
7650       if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
7651         continue;
7652 
7653       InferCountColl.push_back(InferCount);
7654     }
7655   }
7656 
7657   if (InferCountColl.size() == 0)
7658     return getCouldNotCompute();
7659 
7660   return getUMinFromMismatchedTypes(InferCountColl);
7661 }
7662 
7663 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7664   SmallVector<BasicBlock *, 8> ExitingBlocks;
7665   L->getExitingBlocks(ExitingBlocks);
7666 
7667   Optional<unsigned> Res = None;
7668   for (auto *ExitingBB : ExitingBlocks) {
7669     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7670     if (!Res)
7671       Res = Multiple;
7672     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7673   }
7674   return Res.getValueOr(1);
7675 }
7676 
7677 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7678                                                        const SCEV *ExitCount) {
7679   if (ExitCount == getCouldNotCompute())
7680     return 1;
7681 
7682   // Get the trip count
7683   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7684 
7685   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7686   if (!TC)
7687     // Attempt to factor more general cases. Returns the greatest power of
7688     // two divisor. If overflow happens, the trip count expression is still
7689     // divisible by the greatest power of 2 divisor returned.
7690     return 1U << std::min((uint32_t)31,
7691                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7692 
7693   ConstantInt *Result = TC->getValue();
7694 
7695   // Guard against huge trip counts (this requires checking
7696   // for zero to handle the case where the trip count == -1 and the
7697   // addition wraps).
7698   if (!Result || Result->getValue().getActiveBits() > 32 ||
7699       Result->getValue().getActiveBits() == 0)
7700     return 1;
7701 
7702   return (unsigned)Result->getZExtValue();
7703 }
7704 
7705 /// Returns the largest constant divisor of the trip count of this loop as a
7706 /// normal unsigned value, if possible. This means that the actual trip count is
7707 /// always a multiple of the returned value (don't forget the trip count could
7708 /// very well be zero as well!).
7709 ///
7710 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7711 /// multiple of a constant (which is also the case if the trip count is simply
7712 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7713 /// if the trip count is very large (>= 2^32).
7714 ///
7715 /// As explained in the comments for getSmallConstantTripCount, this assumes
7716 /// that control exits the loop via ExitingBlock.
7717 unsigned
7718 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7719                                               const BasicBlock *ExitingBlock) {
7720   assert(ExitingBlock && "Must pass a non-null exiting block!");
7721   assert(L->isLoopExiting(ExitingBlock) &&
7722          "Exiting block must actually branch out of the loop!");
7723   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7724   return getSmallConstantTripMultiple(L, ExitCount);
7725 }
7726 
7727 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7728                                           const BasicBlock *ExitingBlock,
7729                                           ExitCountKind Kind) {
7730   switch (Kind) {
7731   case Exact:
7732   case SymbolicMaximum:
7733     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7734   case ConstantMaximum:
7735     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7736   };
7737   llvm_unreachable("Invalid ExitCountKind!");
7738 }
7739 
7740 const SCEV *
7741 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7742                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
7743   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7744 }
7745 
7746 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7747                                                    ExitCountKind Kind) {
7748   switch (Kind) {
7749   case Exact:
7750     return getBackedgeTakenInfo(L).getExact(L, this);
7751   case ConstantMaximum:
7752     return getBackedgeTakenInfo(L).getConstantMax(this);
7753   case SymbolicMaximum:
7754     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7755   };
7756   llvm_unreachable("Invalid ExitCountKind!");
7757 }
7758 
7759 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7760   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7761 }
7762 
7763 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7764 static void PushLoopPHIs(const Loop *L,
7765                          SmallVectorImpl<Instruction *> &Worklist,
7766                          SmallPtrSetImpl<Instruction *> &Visited) {
7767   BasicBlock *Header = L->getHeader();
7768 
7769   // Push all Loop-header PHIs onto the Worklist stack.
7770   for (PHINode &PN : Header->phis())
7771     if (Visited.insert(&PN).second)
7772       Worklist.push_back(&PN);
7773 }
7774 
7775 const ScalarEvolution::BackedgeTakenInfo &
7776 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7777   auto &BTI = getBackedgeTakenInfo(L);
7778   if (BTI.hasFullInfo())
7779     return BTI;
7780 
7781   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7782 
7783   if (!Pair.second)
7784     return Pair.first->second;
7785 
7786   BackedgeTakenInfo Result =
7787       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7788 
7789   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7790 }
7791 
7792 ScalarEvolution::BackedgeTakenInfo &
7793 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7794   // Initially insert an invalid entry for this loop. If the insertion
7795   // succeeds, proceed to actually compute a backedge-taken count and
7796   // update the value. The temporary CouldNotCompute value tells SCEV
7797   // code elsewhere that it shouldn't attempt to request a new
7798   // backedge-taken count, which could result in infinite recursion.
7799   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7800       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7801   if (!Pair.second)
7802     return Pair.first->second;
7803 
7804   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7805   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7806   // must be cleared in this scope.
7807   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7808 
7809   // In product build, there are no usage of statistic.
7810   (void)NumTripCountsComputed;
7811   (void)NumTripCountsNotComputed;
7812 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7813   const SCEV *BEExact = Result.getExact(L, this);
7814   if (BEExact != getCouldNotCompute()) {
7815     assert(isLoopInvariant(BEExact, L) &&
7816            isLoopInvariant(Result.getConstantMax(this), L) &&
7817            "Computed backedge-taken count isn't loop invariant for loop!");
7818     ++NumTripCountsComputed;
7819   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7820              isa<PHINode>(L->getHeader()->begin())) {
7821     // Only count loops that have phi nodes as not being computable.
7822     ++NumTripCountsNotComputed;
7823   }
7824 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7825 
7826   // Now that we know more about the trip count for this loop, forget any
7827   // existing SCEV values for PHI nodes in this loop since they are only
7828   // conservative estimates made without the benefit of trip count
7829   // information. This invalidation is not necessary for correctness, and is
7830   // only done to produce more precise results.
7831   if (Result.hasAnyInfo()) {
7832     // Invalidate any expression using an addrec in this loop.
7833     SmallVector<const SCEV *, 8> ToForget;
7834     auto LoopUsersIt = LoopUsers.find(L);
7835     if (LoopUsersIt != LoopUsers.end())
7836       append_range(ToForget, LoopUsersIt->second);
7837     forgetMemoizedResults(ToForget);
7838 
7839     // Invalidate constant-evolved loop header phis.
7840     for (PHINode &PN : L->getHeader()->phis())
7841       ConstantEvolutionLoopExitValue.erase(&PN);
7842   }
7843 
7844   // Re-lookup the insert position, since the call to
7845   // computeBackedgeTakenCount above could result in a
7846   // recusive call to getBackedgeTakenInfo (on a different
7847   // loop), which would invalidate the iterator computed
7848   // earlier.
7849   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7850 }
7851 
7852 void ScalarEvolution::forgetAllLoops() {
7853   // This method is intended to forget all info about loops. It should
7854   // invalidate caches as if the following happened:
7855   // - The trip counts of all loops have changed arbitrarily
7856   // - Every llvm::Value has been updated in place to produce a different
7857   // result.
7858   BackedgeTakenCounts.clear();
7859   PredicatedBackedgeTakenCounts.clear();
7860   BECountUsers.clear();
7861   LoopPropertiesCache.clear();
7862   ConstantEvolutionLoopExitValue.clear();
7863   ValueExprMap.clear();
7864   ValuesAtScopes.clear();
7865   ValuesAtScopesUsers.clear();
7866   LoopDispositions.clear();
7867   BlockDispositions.clear();
7868   UnsignedRanges.clear();
7869   SignedRanges.clear();
7870   ExprValueMap.clear();
7871   HasRecMap.clear();
7872   MinTrailingZerosCache.clear();
7873   PredicatedSCEVRewrites.clear();
7874 }
7875 
7876 void ScalarEvolution::forgetLoop(const Loop *L) {
7877   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7878   SmallVector<Instruction *, 32> Worklist;
7879   SmallPtrSet<Instruction *, 16> Visited;
7880   SmallVector<const SCEV *, 16> ToForget;
7881 
7882   // Iterate over all the loops and sub-loops to drop SCEV information.
7883   while (!LoopWorklist.empty()) {
7884     auto *CurrL = LoopWorklist.pop_back_val();
7885 
7886     // Drop any stored trip count value.
7887     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
7888     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
7889 
7890     // Drop information about predicated SCEV rewrites for this loop.
7891     for (auto I = PredicatedSCEVRewrites.begin();
7892          I != PredicatedSCEVRewrites.end();) {
7893       std::pair<const SCEV *, const Loop *> Entry = I->first;
7894       if (Entry.second == CurrL)
7895         PredicatedSCEVRewrites.erase(I++);
7896       else
7897         ++I;
7898     }
7899 
7900     auto LoopUsersItr = LoopUsers.find(CurrL);
7901     if (LoopUsersItr != LoopUsers.end()) {
7902       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
7903                 LoopUsersItr->second.end());
7904       LoopUsers.erase(LoopUsersItr);
7905     }
7906 
7907     // Drop information about expressions based on loop-header PHIs.
7908     PushLoopPHIs(CurrL, Worklist, Visited);
7909 
7910     while (!Worklist.empty()) {
7911       Instruction *I = Worklist.pop_back_val();
7912 
7913       ValueExprMapType::iterator It =
7914           ValueExprMap.find_as(static_cast<Value *>(I));
7915       if (It != ValueExprMap.end()) {
7916         eraseValueFromMap(It->first);
7917         ToForget.push_back(It->second);
7918         if (PHINode *PN = dyn_cast<PHINode>(I))
7919           ConstantEvolutionLoopExitValue.erase(PN);
7920       }
7921 
7922       PushDefUseChildren(I, Worklist, Visited);
7923     }
7924 
7925     LoopPropertiesCache.erase(CurrL);
7926     // Forget all contained loops too, to avoid dangling entries in the
7927     // ValuesAtScopes map.
7928     LoopWorklist.append(CurrL->begin(), CurrL->end());
7929   }
7930   forgetMemoizedResults(ToForget);
7931 }
7932 
7933 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7934   while (Loop *Parent = L->getParentLoop())
7935     L = Parent;
7936   forgetLoop(L);
7937 }
7938 
7939 void ScalarEvolution::forgetValue(Value *V) {
7940   Instruction *I = dyn_cast<Instruction>(V);
7941   if (!I) return;
7942 
7943   // Drop information about expressions based on loop-header PHIs.
7944   SmallVector<Instruction *, 16> Worklist;
7945   SmallPtrSet<Instruction *, 8> Visited;
7946   SmallVector<const SCEV *, 8> ToForget;
7947   Worklist.push_back(I);
7948   Visited.insert(I);
7949 
7950   while (!Worklist.empty()) {
7951     I = Worklist.pop_back_val();
7952     ValueExprMapType::iterator It =
7953       ValueExprMap.find_as(static_cast<Value *>(I));
7954     if (It != ValueExprMap.end()) {
7955       eraseValueFromMap(It->first);
7956       ToForget.push_back(It->second);
7957       if (PHINode *PN = dyn_cast<PHINode>(I))
7958         ConstantEvolutionLoopExitValue.erase(PN);
7959     }
7960 
7961     PushDefUseChildren(I, Worklist, Visited);
7962   }
7963   forgetMemoizedResults(ToForget);
7964 }
7965 
7966 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7967   LoopDispositions.clear();
7968 }
7969 
7970 /// Get the exact loop backedge taken count considering all loop exits. A
7971 /// computable result can only be returned for loops with all exiting blocks
7972 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7973 /// is never skipped. This is a valid assumption as long as the loop exits via
7974 /// that test. For precise results, it is the caller's responsibility to specify
7975 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7976 const SCEV *
7977 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7978                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
7979   // If any exits were not computable, the loop is not computable.
7980   if (!isComplete() || ExitNotTaken.empty())
7981     return SE->getCouldNotCompute();
7982 
7983   const BasicBlock *Latch = L->getLoopLatch();
7984   // All exiting blocks we have collected must dominate the only backedge.
7985   if (!Latch)
7986     return SE->getCouldNotCompute();
7987 
7988   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7989   // count is simply a minimum out of all these calculated exit counts.
7990   SmallVector<const SCEV *, 2> Ops;
7991   for (auto &ENT : ExitNotTaken) {
7992     const SCEV *BECount = ENT.ExactNotTaken;
7993     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7994     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7995            "We should only have known counts for exiting blocks that dominate "
7996            "latch!");
7997 
7998     Ops.push_back(BECount);
7999 
8000     if (Preds)
8001       for (auto *P : ENT.Predicates)
8002         Preds->push_back(P);
8003 
8004     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8005            "Predicate should be always true!");
8006   }
8007 
8008   return SE->getUMinFromMismatchedTypes(Ops);
8009 }
8010 
8011 /// Get the exact not taken count for this loop exit.
8012 const SCEV *
8013 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8014                                              ScalarEvolution *SE) const {
8015   for (auto &ENT : ExitNotTaken)
8016     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8017       return ENT.ExactNotTaken;
8018 
8019   return SE->getCouldNotCompute();
8020 }
8021 
8022 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8023     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8024   for (auto &ENT : ExitNotTaken)
8025     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8026       return ENT.MaxNotTaken;
8027 
8028   return SE->getCouldNotCompute();
8029 }
8030 
8031 /// getConstantMax - Get the constant max backedge taken count for the loop.
8032 const SCEV *
8033 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8034   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8035     return !ENT.hasAlwaysTruePredicate();
8036   };
8037 
8038   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8039     return SE->getCouldNotCompute();
8040 
8041   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8042           isa<SCEVConstant>(getConstantMax())) &&
8043          "No point in having a non-constant max backedge taken count!");
8044   return getConstantMax();
8045 }
8046 
8047 const SCEV *
8048 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8049                                                    ScalarEvolution *SE) {
8050   if (!SymbolicMax)
8051     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8052   return SymbolicMax;
8053 }
8054 
8055 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8056     ScalarEvolution *SE) const {
8057   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8058     return !ENT.hasAlwaysTruePredicate();
8059   };
8060   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8061 }
8062 
8063 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8064     : ExitLimit(E, E, false, None) {
8065 }
8066 
8067 ScalarEvolution::ExitLimit::ExitLimit(
8068     const SCEV *E, const SCEV *M, bool MaxOrZero,
8069     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8070     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
8071   // If we prove the max count is zero, so is the symbolic bound.  This happens
8072   // in practice due to differences in a) how context sensitive we've chosen
8073   // to be and b) how we reason about bounds impied by UB.
8074   if (MaxNotTaken->isZero())
8075     ExactNotTaken = MaxNotTaken;
8076 
8077   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8078           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
8079          "Exact is not allowed to be less precise than Max");
8080   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
8081           isa<SCEVConstant>(MaxNotTaken)) &&
8082          "No point in having a non-constant max backedge taken count!");
8083   for (auto *PredSet : PredSetList)
8084     for (auto *P : *PredSet)
8085       addPredicate(P);
8086   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8087          "Backedge count should be int");
8088   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
8089          "Max backedge count should be int");
8090 }
8091 
8092 ScalarEvolution::ExitLimit::ExitLimit(
8093     const SCEV *E, const SCEV *M, bool MaxOrZero,
8094     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8095     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
8096 }
8097 
8098 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
8099                                       bool MaxOrZero)
8100     : ExitLimit(E, M, MaxOrZero, None) {
8101 }
8102 
8103 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8104 /// computable exit into a persistent ExitNotTakenInfo array.
8105 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8106     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8107     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8108     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8109   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8110 
8111   ExitNotTaken.reserve(ExitCounts.size());
8112   std::transform(
8113       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
8114       [&](const EdgeExitInfo &EEI) {
8115         BasicBlock *ExitBB = EEI.first;
8116         const ExitLimit &EL = EEI.second;
8117         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
8118                                 EL.Predicates);
8119       });
8120   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8121           isa<SCEVConstant>(ConstantMax)) &&
8122          "No point in having a non-constant max backedge taken count!");
8123 }
8124 
8125 /// Compute the number of times the backedge of the specified loop will execute.
8126 ScalarEvolution::BackedgeTakenInfo
8127 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8128                                            bool AllowPredicates) {
8129   SmallVector<BasicBlock *, 8> ExitingBlocks;
8130   L->getExitingBlocks(ExitingBlocks);
8131 
8132   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8133 
8134   SmallVector<EdgeExitInfo, 4> ExitCounts;
8135   bool CouldComputeBECount = true;
8136   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8137   const SCEV *MustExitMaxBECount = nullptr;
8138   const SCEV *MayExitMaxBECount = nullptr;
8139   bool MustExitMaxOrZero = false;
8140 
8141   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8142   // and compute maxBECount.
8143   // Do a union of all the predicates here.
8144   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8145     BasicBlock *ExitBB = ExitingBlocks[i];
8146 
8147     // We canonicalize untaken exits to br (constant), ignore them so that
8148     // proving an exit untaken doesn't negatively impact our ability to reason
8149     // about the loop as whole.
8150     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8151       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8152         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8153         if (ExitIfTrue == CI->isZero())
8154           continue;
8155       }
8156 
8157     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8158 
8159     assert((AllowPredicates || EL.Predicates.empty()) &&
8160            "Predicated exit limit when predicates are not allowed!");
8161 
8162     // 1. For each exit that can be computed, add an entry to ExitCounts.
8163     // CouldComputeBECount is true only if all exits can be computed.
8164     if (EL.ExactNotTaken == getCouldNotCompute())
8165       // We couldn't compute an exact value for this exit, so
8166       // we won't be able to compute an exact value for the loop.
8167       CouldComputeBECount = false;
8168     else
8169       ExitCounts.emplace_back(ExitBB, EL);
8170 
8171     // 2. Derive the loop's MaxBECount from each exit's max number of
8172     // non-exiting iterations. Partition the loop exits into two kinds:
8173     // LoopMustExits and LoopMayExits.
8174     //
8175     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8176     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8177     // MaxBECount is the minimum EL.MaxNotTaken of computable
8178     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8179     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
8180     // computable EL.MaxNotTaken.
8181     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
8182         DT.dominates(ExitBB, Latch)) {
8183       if (!MustExitMaxBECount) {
8184         MustExitMaxBECount = EL.MaxNotTaken;
8185         MustExitMaxOrZero = EL.MaxOrZero;
8186       } else {
8187         MustExitMaxBECount =
8188             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
8189       }
8190     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8191       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
8192         MayExitMaxBECount = EL.MaxNotTaken;
8193       else {
8194         MayExitMaxBECount =
8195             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
8196       }
8197     }
8198   }
8199   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8200     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8201   // The loop backedge will be taken the maximum or zero times if there's
8202   // a single exit that must be taken the maximum or zero times.
8203   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8204 
8205   // Remember which SCEVs are used in exit limits for invalidation purposes.
8206   // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken
8207   // and MaxBECount, which must be SCEVConstant.
8208   for (const auto &Pair : ExitCounts)
8209     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8210       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8211   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8212                            MaxBECount, MaxOrZero);
8213 }
8214 
8215 ScalarEvolution::ExitLimit
8216 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8217                                       bool AllowPredicates) {
8218   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8219   // If our exiting block does not dominate the latch, then its connection with
8220   // loop's exit limit may be far from trivial.
8221   const BasicBlock *Latch = L->getLoopLatch();
8222   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8223     return getCouldNotCompute();
8224 
8225   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8226   Instruction *Term = ExitingBlock->getTerminator();
8227   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8228     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8229     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8230     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8231            "It should have one successor in loop and one exit block!");
8232     // Proceed to the next level to examine the exit condition expression.
8233     return computeExitLimitFromCond(
8234         L, BI->getCondition(), ExitIfTrue,
8235         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
8236   }
8237 
8238   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8239     // For switch, make sure that there is a single exit from the loop.
8240     BasicBlock *Exit = nullptr;
8241     for (auto *SBB : successors(ExitingBlock))
8242       if (!L->contains(SBB)) {
8243         if (Exit) // Multiple exit successors.
8244           return getCouldNotCompute();
8245         Exit = SBB;
8246       }
8247     assert(Exit && "Exiting block must have at least one exit");
8248     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8249                                                 /*ControlsExit=*/IsOnlyExit);
8250   }
8251 
8252   return getCouldNotCompute();
8253 }
8254 
8255 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8256     const Loop *L, Value *ExitCond, bool ExitIfTrue,
8257     bool ControlsExit, bool AllowPredicates) {
8258   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8259   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8260                                         ControlsExit, AllowPredicates);
8261 }
8262 
8263 Optional<ScalarEvolution::ExitLimit>
8264 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8265                                       bool ExitIfTrue, bool ControlsExit,
8266                                       bool AllowPredicates) {
8267   (void)this->L;
8268   (void)this->ExitIfTrue;
8269   (void)this->AllowPredicates;
8270 
8271   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8272          this->AllowPredicates == AllowPredicates &&
8273          "Variance in assumed invariant key components!");
8274   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8275   if (Itr == TripCountMap.end())
8276     return None;
8277   return Itr->second;
8278 }
8279 
8280 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8281                                              bool ExitIfTrue,
8282                                              bool ControlsExit,
8283                                              bool AllowPredicates,
8284                                              const ExitLimit &EL) {
8285   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8286          this->AllowPredicates == AllowPredicates &&
8287          "Variance in assumed invariant key components!");
8288 
8289   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8290   assert(InsertResult.second && "Expected successful insertion!");
8291   (void)InsertResult;
8292   (void)ExitIfTrue;
8293 }
8294 
8295 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8296     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8297     bool ControlsExit, bool AllowPredicates) {
8298 
8299   if (auto MaybeEL =
8300           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8301     return *MaybeEL;
8302 
8303   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8304                                               ControlsExit, AllowPredicates);
8305   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8306   return EL;
8307 }
8308 
8309 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8310     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8311     bool ControlsExit, bool AllowPredicates) {
8312   // Handle BinOp conditions (And, Or).
8313   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8314           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8315     return *LimitFromBinOp;
8316 
8317   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8318   // Proceed to the next level to examine the icmp.
8319   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8320     ExitLimit EL =
8321         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8322     if (EL.hasFullInfo() || !AllowPredicates)
8323       return EL;
8324 
8325     // Try again, but use SCEV predicates this time.
8326     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8327                                     /*AllowPredicates=*/true);
8328   }
8329 
8330   // Check for a constant condition. These are normally stripped out by
8331   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8332   // preserve the CFG and is temporarily leaving constant conditions
8333   // in place.
8334   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8335     if (ExitIfTrue == !CI->getZExtValue())
8336       // The backedge is always taken.
8337       return getCouldNotCompute();
8338     else
8339       // The backedge is never taken.
8340       return getZero(CI->getType());
8341   }
8342 
8343   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8344   // with a constant step, we can form an equivalent icmp predicate and figure
8345   // out how many iterations will be taken before we exit.
8346   const WithOverflowInst *WO;
8347   const APInt *C;
8348   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8349       match(WO->getRHS(), m_APInt(C))) {
8350     ConstantRange NWR =
8351       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8352                                            WO->getNoWrapKind());
8353     CmpInst::Predicate Pred;
8354     APInt NewRHSC, Offset;
8355     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8356     if (!ExitIfTrue)
8357       Pred = ICmpInst::getInversePredicate(Pred);
8358     auto *LHS = getSCEV(WO->getLHS());
8359     if (Offset != 0)
8360       LHS = getAddExpr(LHS, getConstant(Offset));
8361     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8362                                        ControlsExit, AllowPredicates);
8363     if (EL.hasAnyInfo()) return EL;
8364   }
8365 
8366   // If it's not an integer or pointer comparison then compute it the hard way.
8367   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8368 }
8369 
8370 Optional<ScalarEvolution::ExitLimit>
8371 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8372     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8373     bool ControlsExit, bool AllowPredicates) {
8374   // Check if the controlling expression for this loop is an And or Or.
8375   Value *Op0, *Op1;
8376   bool IsAnd = false;
8377   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8378     IsAnd = true;
8379   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8380     IsAnd = false;
8381   else
8382     return None;
8383 
8384   // EitherMayExit is true in these two cases:
8385   //   br (and Op0 Op1), loop, exit
8386   //   br (or  Op0 Op1), exit, loop
8387   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8388   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8389                                                  ControlsExit && !EitherMayExit,
8390                                                  AllowPredicates);
8391   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8392                                                  ControlsExit && !EitherMayExit,
8393                                                  AllowPredicates);
8394 
8395   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8396   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8397   if (isa<ConstantInt>(Op1))
8398     return Op1 == NeutralElement ? EL0 : EL1;
8399   if (isa<ConstantInt>(Op0))
8400     return Op0 == NeutralElement ? EL1 : EL0;
8401 
8402   const SCEV *BECount = getCouldNotCompute();
8403   const SCEV *MaxBECount = getCouldNotCompute();
8404   if (EitherMayExit) {
8405     // Both conditions must be same for the loop to continue executing.
8406     // Choose the less conservative count.
8407     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8408         EL1.ExactNotTaken != getCouldNotCompute()) {
8409       BECount = getUMinFromMismatchedTypes(
8410           EL0.ExactNotTaken, EL1.ExactNotTaken,
8411           /*Sequential=*/!isa<BinaryOperator>(ExitCond));
8412 
8413       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8414       // it should have been simplified to zero (see the condition (3) above)
8415       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8416              BECount->isZero());
8417     }
8418     if (EL0.MaxNotTaken == getCouldNotCompute())
8419       MaxBECount = EL1.MaxNotTaken;
8420     else if (EL1.MaxNotTaken == getCouldNotCompute())
8421       MaxBECount = EL0.MaxNotTaken;
8422     else
8423       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8424   } else {
8425     // Both conditions must be same at the same time for the loop to exit.
8426     // For now, be conservative.
8427     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8428       BECount = EL0.ExactNotTaken;
8429   }
8430 
8431   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8432   // to be more aggressive when computing BECount than when computing
8433   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8434   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8435   // to not.
8436   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8437       !isa<SCEVCouldNotCompute>(BECount))
8438     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8439 
8440   return ExitLimit(BECount, MaxBECount, false,
8441                    { &EL0.Predicates, &EL1.Predicates });
8442 }
8443 
8444 ScalarEvolution::ExitLimit
8445 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8446                                           ICmpInst *ExitCond,
8447                                           bool ExitIfTrue,
8448                                           bool ControlsExit,
8449                                           bool AllowPredicates) {
8450   // If the condition was exit on true, convert the condition to exit on false
8451   ICmpInst::Predicate Pred;
8452   if (!ExitIfTrue)
8453     Pred = ExitCond->getPredicate();
8454   else
8455     Pred = ExitCond->getInversePredicate();
8456   const ICmpInst::Predicate OriginalPred = Pred;
8457 
8458   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8459   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8460 
8461   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit,
8462                                           AllowPredicates);
8463   if (EL.hasAnyInfo()) return EL;
8464 
8465   auto *ExhaustiveCount =
8466       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8467 
8468   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8469     return ExhaustiveCount;
8470 
8471   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8472                                       ExitCond->getOperand(1), L, OriginalPred);
8473 }
8474 ScalarEvolution::ExitLimit
8475 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8476                                           ICmpInst::Predicate Pred,
8477                                           const SCEV *LHS, const SCEV *RHS,
8478                                           bool ControlsExit,
8479                                           bool AllowPredicates) {
8480 
8481   // Try to evaluate any dependencies out of the loop.
8482   LHS = getSCEVAtScope(LHS, L);
8483   RHS = getSCEVAtScope(RHS, L);
8484 
8485   // At this point, we would like to compute how many iterations of the
8486   // loop the predicate will return true for these inputs.
8487   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8488     // If there is a loop-invariant, force it into the RHS.
8489     std::swap(LHS, RHS);
8490     Pred = ICmpInst::getSwappedPredicate(Pred);
8491   }
8492 
8493   bool ControllingFiniteLoop =
8494       ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L);
8495   // Simplify the operands before analyzing them.
8496   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0,
8497                              ControllingFiniteLoop);
8498 
8499   // If we have a comparison of a chrec against a constant, try to use value
8500   // ranges to answer this query.
8501   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8502     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8503       if (AddRec->getLoop() == L) {
8504         // Form the constant range.
8505         ConstantRange CompRange =
8506             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8507 
8508         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8509         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8510       }
8511 
8512   // If this loop must exit based on this condition (or execute undefined
8513   // behaviour), and we can prove the test sequence produced must repeat
8514   // the same values on self-wrap of the IV, then we can infer that IV
8515   // doesn't self wrap because if it did, we'd have an infinite (undefined)
8516   // loop.
8517   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
8518     // TODO: We can peel off any functions which are invertible *in L*.  Loop
8519     // invariant terms are effectively constants for our purposes here.
8520     auto *InnerLHS = LHS;
8521     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
8522       InnerLHS = ZExt->getOperand();
8523     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
8524       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
8525       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
8526           StrideC && StrideC->getAPInt().isPowerOf2()) {
8527         auto Flags = AR->getNoWrapFlags();
8528         Flags = setFlags(Flags, SCEV::FlagNW);
8529         SmallVector<const SCEV*> Operands{AR->operands()};
8530         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
8531         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
8532       }
8533     }
8534   }
8535 
8536   switch (Pred) {
8537   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8538     // Convert to: while (X-Y != 0)
8539     if (LHS->getType()->isPointerTy()) {
8540       LHS = getLosslessPtrToIntExpr(LHS);
8541       if (isa<SCEVCouldNotCompute>(LHS))
8542         return LHS;
8543     }
8544     if (RHS->getType()->isPointerTy()) {
8545       RHS = getLosslessPtrToIntExpr(RHS);
8546       if (isa<SCEVCouldNotCompute>(RHS))
8547         return RHS;
8548     }
8549     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8550                                 AllowPredicates);
8551     if (EL.hasAnyInfo()) return EL;
8552     break;
8553   }
8554   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8555     // Convert to: while (X-Y == 0)
8556     if (LHS->getType()->isPointerTy()) {
8557       LHS = getLosslessPtrToIntExpr(LHS);
8558       if (isa<SCEVCouldNotCompute>(LHS))
8559         return LHS;
8560     }
8561     if (RHS->getType()->isPointerTy()) {
8562       RHS = getLosslessPtrToIntExpr(RHS);
8563       if (isa<SCEVCouldNotCompute>(RHS))
8564         return RHS;
8565     }
8566     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8567     if (EL.hasAnyInfo()) return EL;
8568     break;
8569   }
8570   case ICmpInst::ICMP_SLT:
8571   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8572     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8573     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8574                                     AllowPredicates);
8575     if (EL.hasAnyInfo()) return EL;
8576     break;
8577   }
8578   case ICmpInst::ICMP_SGT:
8579   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8580     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8581     ExitLimit EL =
8582         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8583                             AllowPredicates);
8584     if (EL.hasAnyInfo()) return EL;
8585     break;
8586   }
8587   default:
8588     break;
8589   }
8590 
8591   return getCouldNotCompute();
8592 }
8593 
8594 ScalarEvolution::ExitLimit
8595 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8596                                                       SwitchInst *Switch,
8597                                                       BasicBlock *ExitingBlock,
8598                                                       bool ControlsExit) {
8599   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8600 
8601   // Give up if the exit is the default dest of a switch.
8602   if (Switch->getDefaultDest() == ExitingBlock)
8603     return getCouldNotCompute();
8604 
8605   assert(L->contains(Switch->getDefaultDest()) &&
8606          "Default case must not exit the loop!");
8607   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8608   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8609 
8610   // while (X != Y) --> while (X-Y != 0)
8611   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8612   if (EL.hasAnyInfo())
8613     return EL;
8614 
8615   return getCouldNotCompute();
8616 }
8617 
8618 static ConstantInt *
8619 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8620                                 ScalarEvolution &SE) {
8621   const SCEV *InVal = SE.getConstant(C);
8622   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8623   assert(isa<SCEVConstant>(Val) &&
8624          "Evaluation of SCEV at constant didn't fold correctly?");
8625   return cast<SCEVConstant>(Val)->getValue();
8626 }
8627 
8628 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8629     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8630   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8631   if (!RHS)
8632     return getCouldNotCompute();
8633 
8634   const BasicBlock *Latch = L->getLoopLatch();
8635   if (!Latch)
8636     return getCouldNotCompute();
8637 
8638   const BasicBlock *Predecessor = L->getLoopPredecessor();
8639   if (!Predecessor)
8640     return getCouldNotCompute();
8641 
8642   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8643   // Return LHS in OutLHS and shift_opt in OutOpCode.
8644   auto MatchPositiveShift =
8645       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8646 
8647     using namespace PatternMatch;
8648 
8649     ConstantInt *ShiftAmt;
8650     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8651       OutOpCode = Instruction::LShr;
8652     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8653       OutOpCode = Instruction::AShr;
8654     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8655       OutOpCode = Instruction::Shl;
8656     else
8657       return false;
8658 
8659     return ShiftAmt->getValue().isStrictlyPositive();
8660   };
8661 
8662   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8663   //
8664   // loop:
8665   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8666   //   %iv.shifted = lshr i32 %iv, <positive constant>
8667   //
8668   // Return true on a successful match.  Return the corresponding PHI node (%iv
8669   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8670   auto MatchShiftRecurrence =
8671       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8672     Optional<Instruction::BinaryOps> PostShiftOpCode;
8673 
8674     {
8675       Instruction::BinaryOps OpC;
8676       Value *V;
8677 
8678       // If we encounter a shift instruction, "peel off" the shift operation,
8679       // and remember that we did so.  Later when we inspect %iv's backedge
8680       // value, we will make sure that the backedge value uses the same
8681       // operation.
8682       //
8683       // Note: the peeled shift operation does not have to be the same
8684       // instruction as the one feeding into the PHI's backedge value.  We only
8685       // really care about it being the same *kind* of shift instruction --
8686       // that's all that is required for our later inferences to hold.
8687       if (MatchPositiveShift(LHS, V, OpC)) {
8688         PostShiftOpCode = OpC;
8689         LHS = V;
8690       }
8691     }
8692 
8693     PNOut = dyn_cast<PHINode>(LHS);
8694     if (!PNOut || PNOut->getParent() != L->getHeader())
8695       return false;
8696 
8697     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8698     Value *OpLHS;
8699 
8700     return
8701         // The backedge value for the PHI node must be a shift by a positive
8702         // amount
8703         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8704 
8705         // of the PHI node itself
8706         OpLHS == PNOut &&
8707 
8708         // and the kind of shift should be match the kind of shift we peeled
8709         // off, if any.
8710         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8711   };
8712 
8713   PHINode *PN;
8714   Instruction::BinaryOps OpCode;
8715   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8716     return getCouldNotCompute();
8717 
8718   const DataLayout &DL = getDataLayout();
8719 
8720   // The key rationale for this optimization is that for some kinds of shift
8721   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8722   // within a finite number of iterations.  If the condition guarding the
8723   // backedge (in the sense that the backedge is taken if the condition is true)
8724   // is false for the value the shift recurrence stabilizes to, then we know
8725   // that the backedge is taken only a finite number of times.
8726 
8727   ConstantInt *StableValue = nullptr;
8728   switch (OpCode) {
8729   default:
8730     llvm_unreachable("Impossible case!");
8731 
8732   case Instruction::AShr: {
8733     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8734     // bitwidth(K) iterations.
8735     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8736     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8737                                        Predecessor->getTerminator(), &DT);
8738     auto *Ty = cast<IntegerType>(RHS->getType());
8739     if (Known.isNonNegative())
8740       StableValue = ConstantInt::get(Ty, 0);
8741     else if (Known.isNegative())
8742       StableValue = ConstantInt::get(Ty, -1, true);
8743     else
8744       return getCouldNotCompute();
8745 
8746     break;
8747   }
8748   case Instruction::LShr:
8749   case Instruction::Shl:
8750     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8751     // stabilize to 0 in at most bitwidth(K) iterations.
8752     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8753     break;
8754   }
8755 
8756   auto *Result =
8757       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8758   assert(Result->getType()->isIntegerTy(1) &&
8759          "Otherwise cannot be an operand to a branch instruction");
8760 
8761   if (Result->isZeroValue()) {
8762     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8763     const SCEV *UpperBound =
8764         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8765     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8766   }
8767 
8768   return getCouldNotCompute();
8769 }
8770 
8771 /// Return true if we can constant fold an instruction of the specified type,
8772 /// assuming that all operands were constants.
8773 static bool CanConstantFold(const Instruction *I) {
8774   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8775       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8776       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8777     return true;
8778 
8779   if (const CallInst *CI = dyn_cast<CallInst>(I))
8780     if (const Function *F = CI->getCalledFunction())
8781       return canConstantFoldCallTo(CI, F);
8782   return false;
8783 }
8784 
8785 /// Determine whether this instruction can constant evolve within this loop
8786 /// assuming its operands can all constant evolve.
8787 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8788   // An instruction outside of the loop can't be derived from a loop PHI.
8789   if (!L->contains(I)) return false;
8790 
8791   if (isa<PHINode>(I)) {
8792     // We don't currently keep track of the control flow needed to evaluate
8793     // PHIs, so we cannot handle PHIs inside of loops.
8794     return L->getHeader() == I->getParent();
8795   }
8796 
8797   // If we won't be able to constant fold this expression even if the operands
8798   // are constants, bail early.
8799   return CanConstantFold(I);
8800 }
8801 
8802 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8803 /// recursing through each instruction operand until reaching a loop header phi.
8804 static PHINode *
8805 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8806                                DenseMap<Instruction *, PHINode *> &PHIMap,
8807                                unsigned Depth) {
8808   if (Depth > MaxConstantEvolvingDepth)
8809     return nullptr;
8810 
8811   // Otherwise, we can evaluate this instruction if all of its operands are
8812   // constant or derived from a PHI node themselves.
8813   PHINode *PHI = nullptr;
8814   for (Value *Op : UseInst->operands()) {
8815     if (isa<Constant>(Op)) continue;
8816 
8817     Instruction *OpInst = dyn_cast<Instruction>(Op);
8818     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8819 
8820     PHINode *P = dyn_cast<PHINode>(OpInst);
8821     if (!P)
8822       // If this operand is already visited, reuse the prior result.
8823       // We may have P != PHI if this is the deepest point at which the
8824       // inconsistent paths meet.
8825       P = PHIMap.lookup(OpInst);
8826     if (!P) {
8827       // Recurse and memoize the results, whether a phi is found or not.
8828       // This recursive call invalidates pointers into PHIMap.
8829       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8830       PHIMap[OpInst] = P;
8831     }
8832     if (!P)
8833       return nullptr;  // Not evolving from PHI
8834     if (PHI && PHI != P)
8835       return nullptr;  // Evolving from multiple different PHIs.
8836     PHI = P;
8837   }
8838   // This is a expression evolving from a constant PHI!
8839   return PHI;
8840 }
8841 
8842 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8843 /// in the loop that V is derived from.  We allow arbitrary operations along the
8844 /// way, but the operands of an operation must either be constants or a value
8845 /// derived from a constant PHI.  If this expression does not fit with these
8846 /// constraints, return null.
8847 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8848   Instruction *I = dyn_cast<Instruction>(V);
8849   if (!I || !canConstantEvolve(I, L)) return nullptr;
8850 
8851   if (PHINode *PN = dyn_cast<PHINode>(I))
8852     return PN;
8853 
8854   // Record non-constant instructions contained by the loop.
8855   DenseMap<Instruction *, PHINode *> PHIMap;
8856   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8857 }
8858 
8859 /// EvaluateExpression - Given an expression that passes the
8860 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8861 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8862 /// reason, return null.
8863 static Constant *EvaluateExpression(Value *V, const Loop *L,
8864                                     DenseMap<Instruction *, Constant *> &Vals,
8865                                     const DataLayout &DL,
8866                                     const TargetLibraryInfo *TLI) {
8867   // Convenient constant check, but redundant for recursive calls.
8868   if (Constant *C = dyn_cast<Constant>(V)) return C;
8869   Instruction *I = dyn_cast<Instruction>(V);
8870   if (!I) return nullptr;
8871 
8872   if (Constant *C = Vals.lookup(I)) return C;
8873 
8874   // An instruction inside the loop depends on a value outside the loop that we
8875   // weren't given a mapping for, or a value such as a call inside the loop.
8876   if (!canConstantEvolve(I, L)) return nullptr;
8877 
8878   // An unmapped PHI can be due to a branch or another loop inside this loop,
8879   // or due to this not being the initial iteration through a loop where we
8880   // couldn't compute the evolution of this particular PHI last time.
8881   if (isa<PHINode>(I)) return nullptr;
8882 
8883   std::vector<Constant*> Operands(I->getNumOperands());
8884 
8885   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8886     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8887     if (!Operand) {
8888       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8889       if (!Operands[i]) return nullptr;
8890       continue;
8891     }
8892     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8893     Vals[Operand] = C;
8894     if (!C) return nullptr;
8895     Operands[i] = C;
8896   }
8897 
8898   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8899     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8900                                            Operands[1], DL, TLI);
8901   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8902     if (!LI->isVolatile())
8903       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8904   }
8905   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8906 }
8907 
8908 
8909 // If every incoming value to PN except the one for BB is a specific Constant,
8910 // return that, else return nullptr.
8911 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8912   Constant *IncomingVal = nullptr;
8913 
8914   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8915     if (PN->getIncomingBlock(i) == BB)
8916       continue;
8917 
8918     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8919     if (!CurrentVal)
8920       return nullptr;
8921 
8922     if (IncomingVal != CurrentVal) {
8923       if (IncomingVal)
8924         return nullptr;
8925       IncomingVal = CurrentVal;
8926     }
8927   }
8928 
8929   return IncomingVal;
8930 }
8931 
8932 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8933 /// in the header of its containing loop, we know the loop executes a
8934 /// constant number of times, and the PHI node is just a recurrence
8935 /// involving constants, fold it.
8936 Constant *
8937 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8938                                                    const APInt &BEs,
8939                                                    const Loop *L) {
8940   auto I = ConstantEvolutionLoopExitValue.find(PN);
8941   if (I != ConstantEvolutionLoopExitValue.end())
8942     return I->second;
8943 
8944   if (BEs.ugt(MaxBruteForceIterations))
8945     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8946 
8947   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8948 
8949   DenseMap<Instruction *, Constant *> CurrentIterVals;
8950   BasicBlock *Header = L->getHeader();
8951   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8952 
8953   BasicBlock *Latch = L->getLoopLatch();
8954   if (!Latch)
8955     return nullptr;
8956 
8957   for (PHINode &PHI : Header->phis()) {
8958     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8959       CurrentIterVals[&PHI] = StartCST;
8960   }
8961   if (!CurrentIterVals.count(PN))
8962     return RetVal = nullptr;
8963 
8964   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8965 
8966   // Execute the loop symbolically to determine the exit value.
8967   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8968          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8969 
8970   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8971   unsigned IterationNum = 0;
8972   const DataLayout &DL = getDataLayout();
8973   for (; ; ++IterationNum) {
8974     if (IterationNum == NumIterations)
8975       return RetVal = CurrentIterVals[PN];  // Got exit value!
8976 
8977     // Compute the value of the PHIs for the next iteration.
8978     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8979     DenseMap<Instruction *, Constant *> NextIterVals;
8980     Constant *NextPHI =
8981         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8982     if (!NextPHI)
8983       return nullptr;        // Couldn't evaluate!
8984     NextIterVals[PN] = NextPHI;
8985 
8986     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8987 
8988     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8989     // cease to be able to evaluate one of them or if they stop evolving,
8990     // because that doesn't necessarily prevent us from computing PN.
8991     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8992     for (const auto &I : CurrentIterVals) {
8993       PHINode *PHI = dyn_cast<PHINode>(I.first);
8994       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8995       PHIsToCompute.emplace_back(PHI, I.second);
8996     }
8997     // We use two distinct loops because EvaluateExpression may invalidate any
8998     // iterators into CurrentIterVals.
8999     for (const auto &I : PHIsToCompute) {
9000       PHINode *PHI = I.first;
9001       Constant *&NextPHI = NextIterVals[PHI];
9002       if (!NextPHI) {   // Not already computed.
9003         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9004         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9005       }
9006       if (NextPHI != I.second)
9007         StoppedEvolving = false;
9008     }
9009 
9010     // If all entries in CurrentIterVals == NextIterVals then we can stop
9011     // iterating, the loop can't continue to change.
9012     if (StoppedEvolving)
9013       return RetVal = CurrentIterVals[PN];
9014 
9015     CurrentIterVals.swap(NextIterVals);
9016   }
9017 }
9018 
9019 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9020                                                           Value *Cond,
9021                                                           bool ExitWhen) {
9022   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9023   if (!PN) return getCouldNotCompute();
9024 
9025   // If the loop is canonicalized, the PHI will have exactly two entries.
9026   // That's the only form we support here.
9027   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9028 
9029   DenseMap<Instruction *, Constant *> CurrentIterVals;
9030   BasicBlock *Header = L->getHeader();
9031   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9032 
9033   BasicBlock *Latch = L->getLoopLatch();
9034   assert(Latch && "Should follow from NumIncomingValues == 2!");
9035 
9036   for (PHINode &PHI : Header->phis()) {
9037     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9038       CurrentIterVals[&PHI] = StartCST;
9039   }
9040   if (!CurrentIterVals.count(PN))
9041     return getCouldNotCompute();
9042 
9043   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9044   // the loop symbolically to determine when the condition gets a value of
9045   // "ExitWhen".
9046   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9047   const DataLayout &DL = getDataLayout();
9048   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9049     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9050         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9051 
9052     // Couldn't symbolically evaluate.
9053     if (!CondVal) return getCouldNotCompute();
9054 
9055     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9056       ++NumBruteForceTripCountsComputed;
9057       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9058     }
9059 
9060     // Update all the PHI nodes for the next iteration.
9061     DenseMap<Instruction *, Constant *> NextIterVals;
9062 
9063     // Create a list of which PHIs we need to compute. We want to do this before
9064     // calling EvaluateExpression on them because that may invalidate iterators
9065     // into CurrentIterVals.
9066     SmallVector<PHINode *, 8> PHIsToCompute;
9067     for (const auto &I : CurrentIterVals) {
9068       PHINode *PHI = dyn_cast<PHINode>(I.first);
9069       if (!PHI || PHI->getParent() != Header) continue;
9070       PHIsToCompute.push_back(PHI);
9071     }
9072     for (PHINode *PHI : PHIsToCompute) {
9073       Constant *&NextPHI = NextIterVals[PHI];
9074       if (NextPHI) continue;    // Already computed!
9075 
9076       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9077       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9078     }
9079     CurrentIterVals.swap(NextIterVals);
9080   }
9081 
9082   // Too many iterations were needed to evaluate.
9083   return getCouldNotCompute();
9084 }
9085 
9086 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9087   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9088       ValuesAtScopes[V];
9089   // Check to see if we've folded this expression at this loop before.
9090   for (auto &LS : Values)
9091     if (LS.first == L)
9092       return LS.second ? LS.second : V;
9093 
9094   Values.emplace_back(L, nullptr);
9095 
9096   // Otherwise compute it.
9097   const SCEV *C = computeSCEVAtScope(V, L);
9098   for (auto &LS : reverse(ValuesAtScopes[V]))
9099     if (LS.first == L) {
9100       LS.second = C;
9101       if (!isa<SCEVConstant>(C))
9102         ValuesAtScopesUsers[C].push_back({L, V});
9103       break;
9104     }
9105   return C;
9106 }
9107 
9108 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9109 /// will return Constants for objects which aren't represented by a
9110 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9111 /// Returns NULL if the SCEV isn't representable as a Constant.
9112 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9113   switch (V->getSCEVType()) {
9114   case scCouldNotCompute:
9115   case scAddRecExpr:
9116     return nullptr;
9117   case scConstant:
9118     return cast<SCEVConstant>(V)->getValue();
9119   case scUnknown:
9120     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9121   case scSignExtend: {
9122     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
9123     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
9124       return ConstantExpr::getSExt(CastOp, SS->getType());
9125     return nullptr;
9126   }
9127   case scZeroExtend: {
9128     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
9129     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
9130       return ConstantExpr::getZExt(CastOp, SZ->getType());
9131     return nullptr;
9132   }
9133   case scPtrToInt: {
9134     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9135     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9136       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9137 
9138     return nullptr;
9139   }
9140   case scTruncate: {
9141     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9142     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9143       return ConstantExpr::getTrunc(CastOp, ST->getType());
9144     return nullptr;
9145   }
9146   case scAddExpr: {
9147     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9148     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
9149       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
9150         unsigned AS = PTy->getAddressSpace();
9151         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9152         C = ConstantExpr::getBitCast(C, DestPtrTy);
9153       }
9154       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
9155         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
9156         if (!C2)
9157           return nullptr;
9158 
9159         // First pointer!
9160         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
9161           unsigned AS = C2->getType()->getPointerAddressSpace();
9162           std::swap(C, C2);
9163           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9164           // The offsets have been converted to bytes.  We can add bytes to an
9165           // i8* by GEP with the byte count in the first index.
9166           C = ConstantExpr::getBitCast(C, DestPtrTy);
9167         }
9168 
9169         // Don't bother trying to sum two pointers. We probably can't
9170         // statically compute a load that results from it anyway.
9171         if (C2->getType()->isPointerTy())
9172           return nullptr;
9173 
9174         if (C->getType()->isPointerTy()) {
9175           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9176                                              C, C2);
9177         } else {
9178           C = ConstantExpr::getAdd(C, C2);
9179         }
9180       }
9181       return C;
9182     }
9183     return nullptr;
9184   }
9185   case scMulExpr: {
9186     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
9187     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
9188       // Don't bother with pointers at all.
9189       if (C->getType()->isPointerTy())
9190         return nullptr;
9191       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
9192         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
9193         if (!C2 || C2->getType()->isPointerTy())
9194           return nullptr;
9195         C = ConstantExpr::getMul(C, C2);
9196       }
9197       return C;
9198     }
9199     return nullptr;
9200   }
9201   case scUDivExpr: {
9202     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
9203     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
9204       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
9205         if (LHS->getType() == RHS->getType())
9206           return ConstantExpr::getUDiv(LHS, RHS);
9207     return nullptr;
9208   }
9209   case scSMaxExpr:
9210   case scUMaxExpr:
9211   case scSMinExpr:
9212   case scUMinExpr:
9213   case scSequentialUMinExpr:
9214     return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
9215   }
9216   llvm_unreachable("Unknown SCEV kind!");
9217 }
9218 
9219 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9220   if (isa<SCEVConstant>(V)) return V;
9221 
9222   // If this instruction is evolved from a constant-evolving PHI, compute the
9223   // exit value from the loop without using SCEVs.
9224   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
9225     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
9226       if (PHINode *PN = dyn_cast<PHINode>(I)) {
9227         const Loop *CurrLoop = this->LI[I->getParent()];
9228         // Looking for loop exit value.
9229         if (CurrLoop && CurrLoop->getParentLoop() == L &&
9230             PN->getParent() == CurrLoop->getHeader()) {
9231           // Okay, there is no closed form solution for the PHI node.  Check
9232           // to see if the loop that contains it has a known backedge-taken
9233           // count.  If so, we may be able to force computation of the exit
9234           // value.
9235           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9236           // This trivial case can show up in some degenerate cases where
9237           // the incoming IR has not yet been fully simplified.
9238           if (BackedgeTakenCount->isZero()) {
9239             Value *InitValue = nullptr;
9240             bool MultipleInitValues = false;
9241             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9242               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9243                 if (!InitValue)
9244                   InitValue = PN->getIncomingValue(i);
9245                 else if (InitValue != PN->getIncomingValue(i)) {
9246                   MultipleInitValues = true;
9247                   break;
9248                 }
9249               }
9250             }
9251             if (!MultipleInitValues && InitValue)
9252               return getSCEV(InitValue);
9253           }
9254           // Do we have a loop invariant value flowing around the backedge
9255           // for a loop which must execute the backedge?
9256           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9257               isKnownPositive(BackedgeTakenCount) &&
9258               PN->getNumIncomingValues() == 2) {
9259 
9260             unsigned InLoopPred =
9261                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9262             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9263             if (CurrLoop->isLoopInvariant(BackedgeVal))
9264               return getSCEV(BackedgeVal);
9265           }
9266           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9267             // Okay, we know how many times the containing loop executes.  If
9268             // this is a constant evolving PHI node, get the final value at
9269             // the specified iteration number.
9270             Constant *RV = getConstantEvolutionLoopExitValue(
9271                 PN, BTCC->getAPInt(), CurrLoop);
9272             if (RV) return getSCEV(RV);
9273           }
9274         }
9275 
9276         // If there is a single-input Phi, evaluate it at our scope. If we can
9277         // prove that this replacement does not break LCSSA form, use new value.
9278         if (PN->getNumOperands() == 1) {
9279           const SCEV *Input = getSCEV(PN->getOperand(0));
9280           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
9281           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
9282           // for the simplest case just support constants.
9283           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
9284         }
9285       }
9286 
9287       // Okay, this is an expression that we cannot symbolically evaluate
9288       // into a SCEV.  Check to see if it's possible to symbolically evaluate
9289       // the arguments into constants, and if so, try to constant propagate the
9290       // result.  This is particularly useful for computing loop exit values.
9291       if (CanConstantFold(I)) {
9292         SmallVector<Constant *, 4> Operands;
9293         bool MadeImprovement = false;
9294         for (Value *Op : I->operands()) {
9295           if (Constant *C = dyn_cast<Constant>(Op)) {
9296             Operands.push_back(C);
9297             continue;
9298           }
9299 
9300           // If any of the operands is non-constant and if they are
9301           // non-integer and non-pointer, don't even try to analyze them
9302           // with scev techniques.
9303           if (!isSCEVable(Op->getType()))
9304             return V;
9305 
9306           const SCEV *OrigV = getSCEV(Op);
9307           const SCEV *OpV = getSCEVAtScope(OrigV, L);
9308           MadeImprovement |= OrigV != OpV;
9309 
9310           Constant *C = BuildConstantFromSCEV(OpV);
9311           if (!C) return V;
9312           if (C->getType() != Op->getType())
9313             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9314                                                               Op->getType(),
9315                                                               false),
9316                                       C, Op->getType());
9317           Operands.push_back(C);
9318         }
9319 
9320         // Check to see if getSCEVAtScope actually made an improvement.
9321         if (MadeImprovement) {
9322           Constant *C = nullptr;
9323           const DataLayout &DL = getDataLayout();
9324           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
9325             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9326                                                 Operands[1], DL, &TLI);
9327           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
9328             if (!Load->isVolatile())
9329               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
9330                                                DL);
9331           } else
9332             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9333           if (!C) return V;
9334           return getSCEV(C);
9335         }
9336       }
9337     }
9338 
9339     // This is some other type of SCEVUnknown, just return it.
9340     return V;
9341   }
9342 
9343   if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) {
9344     const auto *Comm = cast<SCEVNAryExpr>(V);
9345     // Avoid performing the look-up in the common case where the specified
9346     // expression has no loop-variant portions.
9347     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9348       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9349       if (OpAtScope != Comm->getOperand(i)) {
9350         // Okay, at least one of these operands is loop variant but might be
9351         // foldable.  Build a new instance of the folded commutative expression.
9352         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9353                                             Comm->op_begin()+i);
9354         NewOps.push_back(OpAtScope);
9355 
9356         for (++i; i != e; ++i) {
9357           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9358           NewOps.push_back(OpAtScope);
9359         }
9360         if (isa<SCEVAddExpr>(Comm))
9361           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9362         if (isa<SCEVMulExpr>(Comm))
9363           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9364         if (isa<SCEVMinMaxExpr>(Comm))
9365           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9366         if (isa<SCEVSequentialMinMaxExpr>(Comm))
9367           return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps);
9368         llvm_unreachable("Unknown commutative / sequential min/max SCEV type!");
9369       }
9370     }
9371     // If we got here, all operands are loop invariant.
9372     return Comm;
9373   }
9374 
9375   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9376     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9377     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9378     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9379       return Div;   // must be loop invariant
9380     return getUDivExpr(LHS, RHS);
9381   }
9382 
9383   // If this is a loop recurrence for a loop that does not contain L, then we
9384   // are dealing with the final value computed by the loop.
9385   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9386     // First, attempt to evaluate each operand.
9387     // Avoid performing the look-up in the common case where the specified
9388     // expression has no loop-variant portions.
9389     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9390       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9391       if (OpAtScope == AddRec->getOperand(i))
9392         continue;
9393 
9394       // Okay, at least one of these operands is loop variant but might be
9395       // foldable.  Build a new instance of the folded commutative expression.
9396       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9397                                           AddRec->op_begin()+i);
9398       NewOps.push_back(OpAtScope);
9399       for (++i; i != e; ++i)
9400         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9401 
9402       const SCEV *FoldedRec =
9403         getAddRecExpr(NewOps, AddRec->getLoop(),
9404                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9405       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9406       // The addrec may be folded to a nonrecurrence, for example, if the
9407       // induction variable is multiplied by zero after constant folding. Go
9408       // ahead and return the folded value.
9409       if (!AddRec)
9410         return FoldedRec;
9411       break;
9412     }
9413 
9414     // If the scope is outside the addrec's loop, evaluate it by using the
9415     // loop exit value of the addrec.
9416     if (!AddRec->getLoop()->contains(L)) {
9417       // To evaluate this recurrence, we need to know how many times the AddRec
9418       // loop iterates.  Compute this now.
9419       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9420       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9421 
9422       // Then, evaluate the AddRec.
9423       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9424     }
9425 
9426     return AddRec;
9427   }
9428 
9429   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
9430     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9431     if (Op == Cast->getOperand())
9432       return Cast;  // must be loop invariant
9433     return getCastExpr(Cast->getSCEVType(), Op, Cast->getType());
9434   }
9435 
9436   llvm_unreachable("Unknown SCEV type!");
9437 }
9438 
9439 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9440   return getSCEVAtScope(getSCEV(V), L);
9441 }
9442 
9443 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9444   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9445     return stripInjectiveFunctions(ZExt->getOperand());
9446   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9447     return stripInjectiveFunctions(SExt->getOperand());
9448   return S;
9449 }
9450 
9451 /// Finds the minimum unsigned root of the following equation:
9452 ///
9453 ///     A * X = B (mod N)
9454 ///
9455 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9456 /// A and B isn't important.
9457 ///
9458 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9459 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9460                                                ScalarEvolution &SE) {
9461   uint32_t BW = A.getBitWidth();
9462   assert(BW == SE.getTypeSizeInBits(B->getType()));
9463   assert(A != 0 && "A must be non-zero.");
9464 
9465   // 1. D = gcd(A, N)
9466   //
9467   // The gcd of A and N may have only one prime factor: 2. The number of
9468   // trailing zeros in A is its multiplicity
9469   uint32_t Mult2 = A.countTrailingZeros();
9470   // D = 2^Mult2
9471 
9472   // 2. Check if B is divisible by D.
9473   //
9474   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9475   // is not less than multiplicity of this prime factor for D.
9476   if (SE.GetMinTrailingZeros(B) < Mult2)
9477     return SE.getCouldNotCompute();
9478 
9479   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9480   // modulo (N / D).
9481   //
9482   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9483   // (N / D) in general. The inverse itself always fits into BW bits, though,
9484   // so we immediately truncate it.
9485   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9486   APInt Mod(BW + 1, 0);
9487   Mod.setBit(BW - Mult2);  // Mod = N / D
9488   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9489 
9490   // 4. Compute the minimum unsigned root of the equation:
9491   // I * (B / D) mod (N / D)
9492   // To simplify the computation, we factor out the divide by D:
9493   // (I * B mod N) / D
9494   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9495   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9496 }
9497 
9498 /// For a given quadratic addrec, generate coefficients of the corresponding
9499 /// quadratic equation, multiplied by a common value to ensure that they are
9500 /// integers.
9501 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9502 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9503 /// were multiplied by, and BitWidth is the bit width of the original addrec
9504 /// coefficients.
9505 /// This function returns None if the addrec coefficients are not compile-
9506 /// time constants.
9507 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9508 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9509   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9510   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9511   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9512   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9513   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9514                     << *AddRec << '\n');
9515 
9516   // We currently can only solve this if the coefficients are constants.
9517   if (!LC || !MC || !NC) {
9518     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9519     return None;
9520   }
9521 
9522   APInt L = LC->getAPInt();
9523   APInt M = MC->getAPInt();
9524   APInt N = NC->getAPInt();
9525   assert(!N.isZero() && "This is not a quadratic addrec");
9526 
9527   unsigned BitWidth = LC->getAPInt().getBitWidth();
9528   unsigned NewWidth = BitWidth + 1;
9529   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9530                     << BitWidth << '\n');
9531   // The sign-extension (as opposed to a zero-extension) here matches the
9532   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9533   N = N.sext(NewWidth);
9534   M = M.sext(NewWidth);
9535   L = L.sext(NewWidth);
9536 
9537   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9538   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9539   //   L+M, L+2M+N, L+3M+3N, ...
9540   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9541   //
9542   // The equation Acc = 0 is then
9543   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9544   // In a quadratic form it becomes:
9545   //   N n^2 + (2M-N) n + 2L = 0.
9546 
9547   APInt A = N;
9548   APInt B = 2 * M - A;
9549   APInt C = 2 * L;
9550   APInt T = APInt(NewWidth, 2);
9551   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9552                     << "x + " << C << ", coeff bw: " << NewWidth
9553                     << ", multiplied by " << T << '\n');
9554   return std::make_tuple(A, B, C, T, BitWidth);
9555 }
9556 
9557 /// Helper function to compare optional APInts:
9558 /// (a) if X and Y both exist, return min(X, Y),
9559 /// (b) if neither X nor Y exist, return None,
9560 /// (c) if exactly one of X and Y exists, return that value.
9561 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9562   if (X.hasValue() && Y.hasValue()) {
9563     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9564     APInt XW = X->sextOrSelf(W);
9565     APInt YW = Y->sextOrSelf(W);
9566     return XW.slt(YW) ? *X : *Y;
9567   }
9568   if (!X.hasValue() && !Y.hasValue())
9569     return None;
9570   return X.hasValue() ? *X : *Y;
9571 }
9572 
9573 /// Helper function to truncate an optional APInt to a given BitWidth.
9574 /// When solving addrec-related equations, it is preferable to return a value
9575 /// that has the same bit width as the original addrec's coefficients. If the
9576 /// solution fits in the original bit width, truncate it (except for i1).
9577 /// Returning a value of a different bit width may inhibit some optimizations.
9578 ///
9579 /// In general, a solution to a quadratic equation generated from an addrec
9580 /// may require BW+1 bits, where BW is the bit width of the addrec's
9581 /// coefficients. The reason is that the coefficients of the quadratic
9582 /// equation are BW+1 bits wide (to avoid truncation when converting from
9583 /// the addrec to the equation).
9584 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9585   if (!X.hasValue())
9586     return None;
9587   unsigned W = X->getBitWidth();
9588   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9589     return X->trunc(BitWidth);
9590   return X;
9591 }
9592 
9593 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9594 /// iterations. The values L, M, N are assumed to be signed, and they
9595 /// should all have the same bit widths.
9596 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9597 /// where BW is the bit width of the addrec's coefficients.
9598 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9599 /// returned as such, otherwise the bit width of the returned value may
9600 /// be greater than BW.
9601 ///
9602 /// This function returns None if
9603 /// (a) the addrec coefficients are not constant, or
9604 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9605 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9606 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9607 static Optional<APInt>
9608 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9609   APInt A, B, C, M;
9610   unsigned BitWidth;
9611   auto T = GetQuadraticEquation(AddRec);
9612   if (!T.hasValue())
9613     return None;
9614 
9615   std::tie(A, B, C, M, BitWidth) = *T;
9616   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9617   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9618   if (!X.hasValue())
9619     return None;
9620 
9621   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9622   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9623   if (!V->isZero())
9624     return None;
9625 
9626   return TruncIfPossible(X, BitWidth);
9627 }
9628 
9629 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9630 /// iterations. The values M, N are assumed to be signed, and they
9631 /// should all have the same bit widths.
9632 /// Find the least n such that c(n) does not belong to the given range,
9633 /// while c(n-1) does.
9634 ///
9635 /// This function returns None if
9636 /// (a) the addrec coefficients are not constant, or
9637 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9638 ///     bounds of the range.
9639 static Optional<APInt>
9640 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9641                           const ConstantRange &Range, ScalarEvolution &SE) {
9642   assert(AddRec->getOperand(0)->isZero() &&
9643          "Starting value of addrec should be 0");
9644   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9645                     << Range << ", addrec " << *AddRec << '\n');
9646   // This case is handled in getNumIterationsInRange. Here we can assume that
9647   // we start in the range.
9648   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9649          "Addrec's initial value should be in range");
9650 
9651   APInt A, B, C, M;
9652   unsigned BitWidth;
9653   auto T = GetQuadraticEquation(AddRec);
9654   if (!T.hasValue())
9655     return None;
9656 
9657   // Be careful about the return value: there can be two reasons for not
9658   // returning an actual number. First, if no solutions to the equations
9659   // were found, and second, if the solutions don't leave the given range.
9660   // The first case means that the actual solution is "unknown", the second
9661   // means that it's known, but not valid. If the solution is unknown, we
9662   // cannot make any conclusions.
9663   // Return a pair: the optional solution and a flag indicating if the
9664   // solution was found.
9665   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9666     // Solve for signed overflow and unsigned overflow, pick the lower
9667     // solution.
9668     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9669                       << Bound << " (before multiplying by " << M << ")\n");
9670     Bound *= M; // The quadratic equation multiplier.
9671 
9672     Optional<APInt> SO = None;
9673     if (BitWidth > 1) {
9674       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9675                            "signed overflow\n");
9676       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9677     }
9678     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9679                          "unsigned overflow\n");
9680     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9681                                                               BitWidth+1);
9682 
9683     auto LeavesRange = [&] (const APInt &X) {
9684       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9685       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9686       if (Range.contains(V0->getValue()))
9687         return false;
9688       // X should be at least 1, so X-1 is non-negative.
9689       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9690       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9691       if (Range.contains(V1->getValue()))
9692         return true;
9693       return false;
9694     };
9695 
9696     // If SolveQuadraticEquationWrap returns None, it means that there can
9697     // be a solution, but the function failed to find it. We cannot treat it
9698     // as "no solution".
9699     if (!SO.hasValue() || !UO.hasValue())
9700       return { None, false };
9701 
9702     // Check the smaller value first to see if it leaves the range.
9703     // At this point, both SO and UO must have values.
9704     Optional<APInt> Min = MinOptional(SO, UO);
9705     if (LeavesRange(*Min))
9706       return { Min, true };
9707     Optional<APInt> Max = Min == SO ? UO : SO;
9708     if (LeavesRange(*Max))
9709       return { Max, true };
9710 
9711     // Solutions were found, but were eliminated, hence the "true".
9712     return { None, true };
9713   };
9714 
9715   std::tie(A, B, C, M, BitWidth) = *T;
9716   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9717   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9718   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9719   auto SL = SolveForBoundary(Lower);
9720   auto SU = SolveForBoundary(Upper);
9721   // If any of the solutions was unknown, no meaninigful conclusions can
9722   // be made.
9723   if (!SL.second || !SU.second)
9724     return None;
9725 
9726   // Claim: The correct solution is not some value between Min and Max.
9727   //
9728   // Justification: Assuming that Min and Max are different values, one of
9729   // them is when the first signed overflow happens, the other is when the
9730   // first unsigned overflow happens. Crossing the range boundary is only
9731   // possible via an overflow (treating 0 as a special case of it, modeling
9732   // an overflow as crossing k*2^W for some k).
9733   //
9734   // The interesting case here is when Min was eliminated as an invalid
9735   // solution, but Max was not. The argument is that if there was another
9736   // overflow between Min and Max, it would also have been eliminated if
9737   // it was considered.
9738   //
9739   // For a given boundary, it is possible to have two overflows of the same
9740   // type (signed/unsigned) without having the other type in between: this
9741   // can happen when the vertex of the parabola is between the iterations
9742   // corresponding to the overflows. This is only possible when the two
9743   // overflows cross k*2^W for the same k. In such case, if the second one
9744   // left the range (and was the first one to do so), the first overflow
9745   // would have to enter the range, which would mean that either we had left
9746   // the range before or that we started outside of it. Both of these cases
9747   // are contradictions.
9748   //
9749   // Claim: In the case where SolveForBoundary returns None, the correct
9750   // solution is not some value between the Max for this boundary and the
9751   // Min of the other boundary.
9752   //
9753   // Justification: Assume that we had such Max_A and Min_B corresponding
9754   // to range boundaries A and B and such that Max_A < Min_B. If there was
9755   // a solution between Max_A and Min_B, it would have to be caused by an
9756   // overflow corresponding to either A or B. It cannot correspond to B,
9757   // since Min_B is the first occurrence of such an overflow. If it
9758   // corresponded to A, it would have to be either a signed or an unsigned
9759   // overflow that is larger than both eliminated overflows for A. But
9760   // between the eliminated overflows and this overflow, the values would
9761   // cover the entire value space, thus crossing the other boundary, which
9762   // is a contradiction.
9763 
9764   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9765 }
9766 
9767 ScalarEvolution::ExitLimit
9768 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9769                               bool AllowPredicates) {
9770 
9771   // This is only used for loops with a "x != y" exit test. The exit condition
9772   // is now expressed as a single expression, V = x-y. So the exit test is
9773   // effectively V != 0.  We know and take advantage of the fact that this
9774   // expression only being used in a comparison by zero context.
9775 
9776   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9777   // If the value is a constant
9778   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9779     // If the value is already zero, the branch will execute zero times.
9780     if (C->getValue()->isZero()) return C;
9781     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9782   }
9783 
9784   const SCEVAddRecExpr *AddRec =
9785       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9786 
9787   if (!AddRec && AllowPredicates)
9788     // Try to make this an AddRec using runtime tests, in the first X
9789     // iterations of this loop, where X is the SCEV expression found by the
9790     // algorithm below.
9791     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9792 
9793   if (!AddRec || AddRec->getLoop() != L)
9794     return getCouldNotCompute();
9795 
9796   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9797   // the quadratic equation to solve it.
9798   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9799     // We can only use this value if the chrec ends up with an exact zero
9800     // value at this index.  When solving for "X*X != 5", for example, we
9801     // should not accept a root of 2.
9802     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9803       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9804       return ExitLimit(R, R, false, Predicates);
9805     }
9806     return getCouldNotCompute();
9807   }
9808 
9809   // Otherwise we can only handle this if it is affine.
9810   if (!AddRec->isAffine())
9811     return getCouldNotCompute();
9812 
9813   // If this is an affine expression, the execution count of this branch is
9814   // the minimum unsigned root of the following equation:
9815   //
9816   //     Start + Step*N = 0 (mod 2^BW)
9817   //
9818   // equivalent to:
9819   //
9820   //             Step*N = -Start (mod 2^BW)
9821   //
9822   // where BW is the common bit width of Start and Step.
9823 
9824   // Get the initial value for the loop.
9825   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9826   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9827 
9828   // For now we handle only constant steps.
9829   //
9830   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9831   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9832   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9833   // We have not yet seen any such cases.
9834   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9835   if (!StepC || StepC->getValue()->isZero())
9836     return getCouldNotCompute();
9837 
9838   // For positive steps (counting up until unsigned overflow):
9839   //   N = -Start/Step (as unsigned)
9840   // For negative steps (counting down to zero):
9841   //   N = Start/-Step
9842   // First compute the unsigned distance from zero in the direction of Step.
9843   bool CountDown = StepC->getAPInt().isNegative();
9844   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9845 
9846   // Handle unitary steps, which cannot wraparound.
9847   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9848   //   N = Distance (as unsigned)
9849   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9850     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9851     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
9852 
9853     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9854     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9855     // case, and see if we can improve the bound.
9856     //
9857     // Explicitly handling this here is necessary because getUnsignedRange
9858     // isn't context-sensitive; it doesn't know that we only care about the
9859     // range inside the loop.
9860     const SCEV *Zero = getZero(Distance->getType());
9861     const SCEV *One = getOne(Distance->getType());
9862     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9863     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9864       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9865       // as "unsigned_max(Distance + 1) - 1".
9866       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9867       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9868     }
9869     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9870   }
9871 
9872   // If the condition controls loop exit (the loop exits only if the expression
9873   // is true) and the addition is no-wrap we can use unsigned divide to
9874   // compute the backedge count.  In this case, the step may not divide the
9875   // distance, but we don't care because if the condition is "missed" the loop
9876   // will have undefined behavior due to wrapping.
9877   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9878       loopHasNoAbnormalExits(AddRec->getLoop())) {
9879     const SCEV *Exact =
9880         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9881     const SCEV *Max = getCouldNotCompute();
9882     if (Exact != getCouldNotCompute()) {
9883       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9884       Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
9885     }
9886     return ExitLimit(Exact, Max, false, Predicates);
9887   }
9888 
9889   // Solve the general equation.
9890   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9891                                                getNegativeSCEV(Start), *this);
9892 
9893   const SCEV *M = E;
9894   if (E != getCouldNotCompute()) {
9895     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
9896     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
9897   }
9898   return ExitLimit(E, M, false, Predicates);
9899 }
9900 
9901 ScalarEvolution::ExitLimit
9902 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9903   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9904   // handle them yet except for the trivial case.  This could be expanded in the
9905   // future as needed.
9906 
9907   // If the value is a constant, check to see if it is known to be non-zero
9908   // already.  If so, the backedge will execute zero times.
9909   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9910     if (!C->getValue()->isZero())
9911       return getZero(C->getType());
9912     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9913   }
9914 
9915   // We could implement others, but I really doubt anyone writes loops like
9916   // this, and if they did, they would already be constant folded.
9917   return getCouldNotCompute();
9918 }
9919 
9920 std::pair<const BasicBlock *, const BasicBlock *>
9921 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9922     const {
9923   // If the block has a unique predecessor, then there is no path from the
9924   // predecessor to the block that does not go through the direct edge
9925   // from the predecessor to the block.
9926   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9927     return {Pred, BB};
9928 
9929   // A loop's header is defined to be a block that dominates the loop.
9930   // If the header has a unique predecessor outside the loop, it must be
9931   // a block that has exactly one successor that can reach the loop.
9932   if (const Loop *L = LI.getLoopFor(BB))
9933     return {L->getLoopPredecessor(), L->getHeader()};
9934 
9935   return {nullptr, nullptr};
9936 }
9937 
9938 /// SCEV structural equivalence is usually sufficient for testing whether two
9939 /// expressions are equal, however for the purposes of looking for a condition
9940 /// guarding a loop, it can be useful to be a little more general, since a
9941 /// front-end may have replicated the controlling expression.
9942 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9943   // Quick check to see if they are the same SCEV.
9944   if (A == B) return true;
9945 
9946   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9947     // Not all instructions that are "identical" compute the same value.  For
9948     // instance, two distinct alloca instructions allocating the same type are
9949     // identical and do not read memory; but compute distinct values.
9950     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9951   };
9952 
9953   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9954   // two different instructions with the same value. Check for this case.
9955   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9956     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9957       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9958         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9959           if (ComputesEqualValues(AI, BI))
9960             return true;
9961 
9962   // Otherwise assume they may have a different value.
9963   return false;
9964 }
9965 
9966 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9967                                            const SCEV *&LHS, const SCEV *&RHS,
9968                                            unsigned Depth,
9969                                            bool ControllingFiniteLoop) {
9970   bool Changed = false;
9971   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9972   // '0 != 0'.
9973   auto TrivialCase = [&](bool TriviallyTrue) {
9974     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9975     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9976     return true;
9977   };
9978   // If we hit the max recursion limit bail out.
9979   if (Depth >= 3)
9980     return false;
9981 
9982   // Canonicalize a constant to the right side.
9983   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9984     // Check for both operands constant.
9985     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9986       if (ConstantExpr::getICmp(Pred,
9987                                 LHSC->getValue(),
9988                                 RHSC->getValue())->isNullValue())
9989         return TrivialCase(false);
9990       else
9991         return TrivialCase(true);
9992     }
9993     // Otherwise swap the operands to put the constant on the right.
9994     std::swap(LHS, RHS);
9995     Pred = ICmpInst::getSwappedPredicate(Pred);
9996     Changed = true;
9997   }
9998 
9999   // If we're comparing an addrec with a value which is loop-invariant in the
10000   // addrec's loop, put the addrec on the left. Also make a dominance check,
10001   // as both operands could be addrecs loop-invariant in each other's loop.
10002   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10003     const Loop *L = AR->getLoop();
10004     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10005       std::swap(LHS, RHS);
10006       Pred = ICmpInst::getSwappedPredicate(Pred);
10007       Changed = true;
10008     }
10009   }
10010 
10011   // If there's a constant operand, canonicalize comparisons with boundary
10012   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10013   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10014     const APInt &RA = RC->getAPInt();
10015 
10016     bool SimplifiedByConstantRange = false;
10017 
10018     if (!ICmpInst::isEquality(Pred)) {
10019       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10020       if (ExactCR.isFullSet())
10021         return TrivialCase(true);
10022       else if (ExactCR.isEmptySet())
10023         return TrivialCase(false);
10024 
10025       APInt NewRHS;
10026       CmpInst::Predicate NewPred;
10027       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10028           ICmpInst::isEquality(NewPred)) {
10029         // We were able to convert an inequality to an equality.
10030         Pred = NewPred;
10031         RHS = getConstant(NewRHS);
10032         Changed = SimplifiedByConstantRange = true;
10033       }
10034     }
10035 
10036     if (!SimplifiedByConstantRange) {
10037       switch (Pred) {
10038       default:
10039         break;
10040       case ICmpInst::ICMP_EQ:
10041       case ICmpInst::ICMP_NE:
10042         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10043         if (!RA)
10044           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10045             if (const SCEVMulExpr *ME =
10046                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10047               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10048                   ME->getOperand(0)->isAllOnesValue()) {
10049                 RHS = AE->getOperand(1);
10050                 LHS = ME->getOperand(1);
10051                 Changed = true;
10052               }
10053         break;
10054 
10055 
10056         // The "Should have been caught earlier!" messages refer to the fact
10057         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10058         // should have fired on the corresponding cases, and canonicalized the
10059         // check to trivial case.
10060 
10061       case ICmpInst::ICMP_UGE:
10062         assert(!RA.isMinValue() && "Should have been caught earlier!");
10063         Pred = ICmpInst::ICMP_UGT;
10064         RHS = getConstant(RA - 1);
10065         Changed = true;
10066         break;
10067       case ICmpInst::ICMP_ULE:
10068         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10069         Pred = ICmpInst::ICMP_ULT;
10070         RHS = getConstant(RA + 1);
10071         Changed = true;
10072         break;
10073       case ICmpInst::ICMP_SGE:
10074         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10075         Pred = ICmpInst::ICMP_SGT;
10076         RHS = getConstant(RA - 1);
10077         Changed = true;
10078         break;
10079       case ICmpInst::ICMP_SLE:
10080         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10081         Pred = ICmpInst::ICMP_SLT;
10082         RHS = getConstant(RA + 1);
10083         Changed = true;
10084         break;
10085       }
10086     }
10087   }
10088 
10089   // Check for obvious equality.
10090   if (HasSameValue(LHS, RHS)) {
10091     if (ICmpInst::isTrueWhenEqual(Pred))
10092       return TrivialCase(true);
10093     if (ICmpInst::isFalseWhenEqual(Pred))
10094       return TrivialCase(false);
10095   }
10096 
10097   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10098   // adding or subtracting 1 from one of the operands. This can be done for
10099   // one of two reasons:
10100   // 1) The range of the RHS does not include the (signed/unsigned) boundaries
10101   // 2) The loop is finite, with this comparison controlling the exit. Since the
10102   // loop is finite, the bound cannot include the corresponding boundary
10103   // (otherwise it would loop forever).
10104   switch (Pred) {
10105   case ICmpInst::ICMP_SLE:
10106     if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) {
10107       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10108                        SCEV::FlagNSW);
10109       Pred = ICmpInst::ICMP_SLT;
10110       Changed = true;
10111     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10112       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10113                        SCEV::FlagNSW);
10114       Pred = ICmpInst::ICMP_SLT;
10115       Changed = true;
10116     }
10117     break;
10118   case ICmpInst::ICMP_SGE:
10119     if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) {
10120       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10121                        SCEV::FlagNSW);
10122       Pred = ICmpInst::ICMP_SGT;
10123       Changed = true;
10124     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10125       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10126                        SCEV::FlagNSW);
10127       Pred = ICmpInst::ICMP_SGT;
10128       Changed = true;
10129     }
10130     break;
10131   case ICmpInst::ICMP_ULE:
10132     if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) {
10133       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10134                        SCEV::FlagNUW);
10135       Pred = ICmpInst::ICMP_ULT;
10136       Changed = true;
10137     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10138       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10139       Pred = ICmpInst::ICMP_ULT;
10140       Changed = true;
10141     }
10142     break;
10143   case ICmpInst::ICMP_UGE:
10144     if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) {
10145       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10146       Pred = ICmpInst::ICMP_UGT;
10147       Changed = true;
10148     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10149       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10150                        SCEV::FlagNUW);
10151       Pred = ICmpInst::ICMP_UGT;
10152       Changed = true;
10153     }
10154     break;
10155   default:
10156     break;
10157   }
10158 
10159   // TODO: More simplifications are possible here.
10160 
10161   // Recursively simplify until we either hit a recursion limit or nothing
10162   // changes.
10163   if (Changed)
10164     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1,
10165                                 ControllingFiniteLoop);
10166 
10167   return Changed;
10168 }
10169 
10170 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10171   return getSignedRangeMax(S).isNegative();
10172 }
10173 
10174 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10175   return getSignedRangeMin(S).isStrictlyPositive();
10176 }
10177 
10178 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10179   return !getSignedRangeMin(S).isNegative();
10180 }
10181 
10182 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10183   return !getSignedRangeMax(S).isStrictlyPositive();
10184 }
10185 
10186 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10187   return getUnsignedRangeMin(S) != 0;
10188 }
10189 
10190 std::pair<const SCEV *, const SCEV *>
10191 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10192   // Compute SCEV on entry of loop L.
10193   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10194   if (Start == getCouldNotCompute())
10195     return { Start, Start };
10196   // Compute post increment SCEV for loop L.
10197   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10198   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10199   return { Start, PostInc };
10200 }
10201 
10202 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10203                                           const SCEV *LHS, const SCEV *RHS) {
10204   // First collect all loops.
10205   SmallPtrSet<const Loop *, 8> LoopsUsed;
10206   getUsedLoops(LHS, LoopsUsed);
10207   getUsedLoops(RHS, LoopsUsed);
10208 
10209   if (LoopsUsed.empty())
10210     return false;
10211 
10212   // Domination relationship must be a linear order on collected loops.
10213 #ifndef NDEBUG
10214   for (auto *L1 : LoopsUsed)
10215     for (auto *L2 : LoopsUsed)
10216       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10217               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10218              "Domination relationship is not a linear order");
10219 #endif
10220 
10221   const Loop *MDL =
10222       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10223                         [&](const Loop *L1, const Loop *L2) {
10224          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10225        });
10226 
10227   // Get init and post increment value for LHS.
10228   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10229   // if LHS contains unknown non-invariant SCEV then bail out.
10230   if (SplitLHS.first == getCouldNotCompute())
10231     return false;
10232   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10233   // Get init and post increment value for RHS.
10234   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10235   // if RHS contains unknown non-invariant SCEV then bail out.
10236   if (SplitRHS.first == getCouldNotCompute())
10237     return false;
10238   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10239   // It is possible that init SCEV contains an invariant load but it does
10240   // not dominate MDL and is not available at MDL loop entry, so we should
10241   // check it here.
10242   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10243       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10244     return false;
10245 
10246   // It seems backedge guard check is faster than entry one so in some cases
10247   // it can speed up whole estimation by short circuit
10248   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10249                                      SplitRHS.second) &&
10250          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10251 }
10252 
10253 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10254                                        const SCEV *LHS, const SCEV *RHS) {
10255   // Canonicalize the inputs first.
10256   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10257 
10258   if (isKnownViaInduction(Pred, LHS, RHS))
10259     return true;
10260 
10261   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10262     return true;
10263 
10264   // Otherwise see what can be done with some simple reasoning.
10265   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10266 }
10267 
10268 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10269                                                   const SCEV *LHS,
10270                                                   const SCEV *RHS) {
10271   if (isKnownPredicate(Pred, LHS, RHS))
10272     return true;
10273   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10274     return false;
10275   return None;
10276 }
10277 
10278 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10279                                          const SCEV *LHS, const SCEV *RHS,
10280                                          const Instruction *CtxI) {
10281   // TODO: Analyze guards and assumes from Context's block.
10282   return isKnownPredicate(Pred, LHS, RHS) ||
10283          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10284 }
10285 
10286 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10287                                                     const SCEV *LHS,
10288                                                     const SCEV *RHS,
10289                                                     const Instruction *CtxI) {
10290   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10291   if (KnownWithoutContext)
10292     return KnownWithoutContext;
10293 
10294   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10295     return true;
10296   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10297                                           ICmpInst::getInversePredicate(Pred),
10298                                           LHS, RHS))
10299     return false;
10300   return None;
10301 }
10302 
10303 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10304                                               const SCEVAddRecExpr *LHS,
10305                                               const SCEV *RHS) {
10306   const Loop *L = LHS->getLoop();
10307   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10308          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10309 }
10310 
10311 Optional<ScalarEvolution::MonotonicPredicateType>
10312 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10313                                            ICmpInst::Predicate Pred) {
10314   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10315 
10316 #ifndef NDEBUG
10317   // Verify an invariant: inverting the predicate should turn a monotonically
10318   // increasing change to a monotonically decreasing one, and vice versa.
10319   if (Result) {
10320     auto ResultSwapped =
10321         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10322 
10323     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
10324     assert(ResultSwapped.getValue() != Result.getValue() &&
10325            "monotonicity should flip as we flip the predicate");
10326   }
10327 #endif
10328 
10329   return Result;
10330 }
10331 
10332 Optional<ScalarEvolution::MonotonicPredicateType>
10333 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10334                                                ICmpInst::Predicate Pred) {
10335   // A zero step value for LHS means the induction variable is essentially a
10336   // loop invariant value. We don't really depend on the predicate actually
10337   // flipping from false to true (for increasing predicates, and the other way
10338   // around for decreasing predicates), all we care about is that *if* the
10339   // predicate changes then it only changes from false to true.
10340   //
10341   // A zero step value in itself is not very useful, but there may be places
10342   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10343   // as general as possible.
10344 
10345   // Only handle LE/LT/GE/GT predicates.
10346   if (!ICmpInst::isRelational(Pred))
10347     return None;
10348 
10349   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10350   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10351          "Should be greater or less!");
10352 
10353   // Check that AR does not wrap.
10354   if (ICmpInst::isUnsigned(Pred)) {
10355     if (!LHS->hasNoUnsignedWrap())
10356       return None;
10357     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10358   } else {
10359     assert(ICmpInst::isSigned(Pred) &&
10360            "Relational predicate is either signed or unsigned!");
10361     if (!LHS->hasNoSignedWrap())
10362       return None;
10363 
10364     const SCEV *Step = LHS->getStepRecurrence(*this);
10365 
10366     if (isKnownNonNegative(Step))
10367       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10368 
10369     if (isKnownNonPositive(Step))
10370       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10371 
10372     return None;
10373   }
10374 }
10375 
10376 Optional<ScalarEvolution::LoopInvariantPredicate>
10377 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10378                                            const SCEV *LHS, const SCEV *RHS,
10379                                            const Loop *L) {
10380 
10381   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10382   if (!isLoopInvariant(RHS, L)) {
10383     if (!isLoopInvariant(LHS, L))
10384       return None;
10385 
10386     std::swap(LHS, RHS);
10387     Pred = ICmpInst::getSwappedPredicate(Pred);
10388   }
10389 
10390   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10391   if (!ArLHS || ArLHS->getLoop() != L)
10392     return None;
10393 
10394   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10395   if (!MonotonicType)
10396     return None;
10397   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10398   // true as the loop iterates, and the backedge is control dependent on
10399   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10400   //
10401   //   * if the predicate was false in the first iteration then the predicate
10402   //     is never evaluated again, since the loop exits without taking the
10403   //     backedge.
10404   //   * if the predicate was true in the first iteration then it will
10405   //     continue to be true for all future iterations since it is
10406   //     monotonically increasing.
10407   //
10408   // For both the above possibilities, we can replace the loop varying
10409   // predicate with its value on the first iteration of the loop (which is
10410   // loop invariant).
10411   //
10412   // A similar reasoning applies for a monotonically decreasing predicate, by
10413   // replacing true with false and false with true in the above two bullets.
10414   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10415   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10416 
10417   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10418     return None;
10419 
10420   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10421 }
10422 
10423 Optional<ScalarEvolution::LoopInvariantPredicate>
10424 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10425     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10426     const Instruction *CtxI, const SCEV *MaxIter) {
10427   // Try to prove the following set of facts:
10428   // - The predicate is monotonic in the iteration space.
10429   // - If the check does not fail on the 1st iteration:
10430   //   - No overflow will happen during first MaxIter iterations;
10431   //   - It will not fail on the MaxIter'th iteration.
10432   // If the check does fail on the 1st iteration, we leave the loop and no
10433   // other checks matter.
10434 
10435   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10436   if (!isLoopInvariant(RHS, L)) {
10437     if (!isLoopInvariant(LHS, L))
10438       return None;
10439 
10440     std::swap(LHS, RHS);
10441     Pred = ICmpInst::getSwappedPredicate(Pred);
10442   }
10443 
10444   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10445   if (!AR || AR->getLoop() != L)
10446     return None;
10447 
10448   // The predicate must be relational (i.e. <, <=, >=, >).
10449   if (!ICmpInst::isRelational(Pred))
10450     return None;
10451 
10452   // TODO: Support steps other than +/- 1.
10453   const SCEV *Step = AR->getStepRecurrence(*this);
10454   auto *One = getOne(Step->getType());
10455   auto *MinusOne = getNegativeSCEV(One);
10456   if (Step != One && Step != MinusOne)
10457     return None;
10458 
10459   // Type mismatch here means that MaxIter is potentially larger than max
10460   // unsigned value in start type, which mean we cannot prove no wrap for the
10461   // indvar.
10462   if (AR->getType() != MaxIter->getType())
10463     return None;
10464 
10465   // Value of IV on suggested last iteration.
10466   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10467   // Does it still meet the requirement?
10468   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10469     return None;
10470   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10471   // not exceed max unsigned value of this type), this effectively proves
10472   // that there is no wrap during the iteration. To prove that there is no
10473   // signed/unsigned wrap, we need to check that
10474   // Start <= Last for step = 1 or Start >= Last for step = -1.
10475   ICmpInst::Predicate NoOverflowPred =
10476       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10477   if (Step == MinusOne)
10478     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10479   const SCEV *Start = AR->getStart();
10480   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10481     return None;
10482 
10483   // Everything is fine.
10484   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10485 }
10486 
10487 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10488     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10489   if (HasSameValue(LHS, RHS))
10490     return ICmpInst::isTrueWhenEqual(Pred);
10491 
10492   // This code is split out from isKnownPredicate because it is called from
10493   // within isLoopEntryGuardedByCond.
10494 
10495   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10496                          const ConstantRange &RangeRHS) {
10497     return RangeLHS.icmp(Pred, RangeRHS);
10498   };
10499 
10500   // The check at the top of the function catches the case where the values are
10501   // known to be equal.
10502   if (Pred == CmpInst::ICMP_EQ)
10503     return false;
10504 
10505   if (Pred == CmpInst::ICMP_NE) {
10506     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10507         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10508       return true;
10509     auto *Diff = getMinusSCEV(LHS, RHS);
10510     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10511   }
10512 
10513   if (CmpInst::isSigned(Pred))
10514     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10515 
10516   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10517 }
10518 
10519 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10520                                                     const SCEV *LHS,
10521                                                     const SCEV *RHS) {
10522   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10523   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10524   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10525   // OutC1 and OutC2.
10526   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10527                                       APInt &OutC1, APInt &OutC2,
10528                                       SCEV::NoWrapFlags ExpectedFlags) {
10529     const SCEV *XNonConstOp, *XConstOp;
10530     const SCEV *YNonConstOp, *YConstOp;
10531     SCEV::NoWrapFlags XFlagsPresent;
10532     SCEV::NoWrapFlags YFlagsPresent;
10533 
10534     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10535       XConstOp = getZero(X->getType());
10536       XNonConstOp = X;
10537       XFlagsPresent = ExpectedFlags;
10538     }
10539     if (!isa<SCEVConstant>(XConstOp) ||
10540         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10541       return false;
10542 
10543     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10544       YConstOp = getZero(Y->getType());
10545       YNonConstOp = Y;
10546       YFlagsPresent = ExpectedFlags;
10547     }
10548 
10549     if (!isa<SCEVConstant>(YConstOp) ||
10550         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10551       return false;
10552 
10553     if (YNonConstOp != XNonConstOp)
10554       return false;
10555 
10556     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10557     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10558 
10559     return true;
10560   };
10561 
10562   APInt C1;
10563   APInt C2;
10564 
10565   switch (Pred) {
10566   default:
10567     break;
10568 
10569   case ICmpInst::ICMP_SGE:
10570     std::swap(LHS, RHS);
10571     LLVM_FALLTHROUGH;
10572   case ICmpInst::ICMP_SLE:
10573     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10574     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10575       return true;
10576 
10577     break;
10578 
10579   case ICmpInst::ICMP_SGT:
10580     std::swap(LHS, RHS);
10581     LLVM_FALLTHROUGH;
10582   case ICmpInst::ICMP_SLT:
10583     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10584     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10585       return true;
10586 
10587     break;
10588 
10589   case ICmpInst::ICMP_UGE:
10590     std::swap(LHS, RHS);
10591     LLVM_FALLTHROUGH;
10592   case ICmpInst::ICMP_ULE:
10593     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10594     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10595       return true;
10596 
10597     break;
10598 
10599   case ICmpInst::ICMP_UGT:
10600     std::swap(LHS, RHS);
10601     LLVM_FALLTHROUGH;
10602   case ICmpInst::ICMP_ULT:
10603     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10604     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10605       return true;
10606     break;
10607   }
10608 
10609   return false;
10610 }
10611 
10612 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10613                                                    const SCEV *LHS,
10614                                                    const SCEV *RHS) {
10615   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10616     return false;
10617 
10618   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10619   // the stack can result in exponential time complexity.
10620   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10621 
10622   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10623   //
10624   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10625   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10626   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10627   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10628   // use isKnownPredicate later if needed.
10629   return isKnownNonNegative(RHS) &&
10630          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10631          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10632 }
10633 
10634 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10635                                         ICmpInst::Predicate Pred,
10636                                         const SCEV *LHS, const SCEV *RHS) {
10637   // No need to even try if we know the module has no guards.
10638   if (!HasGuards)
10639     return false;
10640 
10641   return any_of(*BB, [&](const Instruction &I) {
10642     using namespace llvm::PatternMatch;
10643 
10644     Value *Condition;
10645     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10646                          m_Value(Condition))) &&
10647            isImpliedCond(Pred, LHS, RHS, Condition, false);
10648   });
10649 }
10650 
10651 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10652 /// protected by a conditional between LHS and RHS.  This is used to
10653 /// to eliminate casts.
10654 bool
10655 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10656                                              ICmpInst::Predicate Pred,
10657                                              const SCEV *LHS, const SCEV *RHS) {
10658   // Interpret a null as meaning no loop, where there is obviously no guard
10659   // (interprocedural conditions notwithstanding).
10660   if (!L) return true;
10661 
10662   if (VerifyIR)
10663     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10664            "This cannot be done on broken IR!");
10665 
10666 
10667   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10668     return true;
10669 
10670   BasicBlock *Latch = L->getLoopLatch();
10671   if (!Latch)
10672     return false;
10673 
10674   BranchInst *LoopContinuePredicate =
10675     dyn_cast<BranchInst>(Latch->getTerminator());
10676   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10677       isImpliedCond(Pred, LHS, RHS,
10678                     LoopContinuePredicate->getCondition(),
10679                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10680     return true;
10681 
10682   // We don't want more than one activation of the following loops on the stack
10683   // -- that can lead to O(n!) time complexity.
10684   if (WalkingBEDominatingConds)
10685     return false;
10686 
10687   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10688 
10689   // See if we can exploit a trip count to prove the predicate.
10690   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10691   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10692   if (LatchBECount != getCouldNotCompute()) {
10693     // We know that Latch branches back to the loop header exactly
10694     // LatchBECount times.  This means the backdege condition at Latch is
10695     // equivalent to  "{0,+,1} u< LatchBECount".
10696     Type *Ty = LatchBECount->getType();
10697     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10698     const SCEV *LoopCounter =
10699       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10700     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10701                       LatchBECount))
10702       return true;
10703   }
10704 
10705   // Check conditions due to any @llvm.assume intrinsics.
10706   for (auto &AssumeVH : AC.assumptions()) {
10707     if (!AssumeVH)
10708       continue;
10709     auto *CI = cast<CallInst>(AssumeVH);
10710     if (!DT.dominates(CI, Latch->getTerminator()))
10711       continue;
10712 
10713     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10714       return true;
10715   }
10716 
10717   // If the loop is not reachable from the entry block, we risk running into an
10718   // infinite loop as we walk up into the dom tree.  These loops do not matter
10719   // anyway, so we just return a conservative answer when we see them.
10720   if (!DT.isReachableFromEntry(L->getHeader()))
10721     return false;
10722 
10723   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10724     return true;
10725 
10726   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10727        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10728     assert(DTN && "should reach the loop header before reaching the root!");
10729 
10730     BasicBlock *BB = DTN->getBlock();
10731     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10732       return true;
10733 
10734     BasicBlock *PBB = BB->getSinglePredecessor();
10735     if (!PBB)
10736       continue;
10737 
10738     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10739     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10740       continue;
10741 
10742     Value *Condition = ContinuePredicate->getCondition();
10743 
10744     // If we have an edge `E` within the loop body that dominates the only
10745     // latch, the condition guarding `E` also guards the backedge.  This
10746     // reasoning works only for loops with a single latch.
10747 
10748     BasicBlockEdge DominatingEdge(PBB, BB);
10749     if (DominatingEdge.isSingleEdge()) {
10750       // We're constructively (and conservatively) enumerating edges within the
10751       // loop body that dominate the latch.  The dominator tree better agree
10752       // with us on this:
10753       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10754 
10755       if (isImpliedCond(Pred, LHS, RHS, Condition,
10756                         BB != ContinuePredicate->getSuccessor(0)))
10757         return true;
10758     }
10759   }
10760 
10761   return false;
10762 }
10763 
10764 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10765                                                      ICmpInst::Predicate Pred,
10766                                                      const SCEV *LHS,
10767                                                      const SCEV *RHS) {
10768   if (VerifyIR)
10769     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10770            "This cannot be done on broken IR!");
10771 
10772   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10773   // the facts (a >= b && a != b) separately. A typical situation is when the
10774   // non-strict comparison is known from ranges and non-equality is known from
10775   // dominating predicates. If we are proving strict comparison, we always try
10776   // to prove non-equality and non-strict comparison separately.
10777   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10778   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10779   bool ProvedNonStrictComparison = false;
10780   bool ProvedNonEquality = false;
10781 
10782   auto SplitAndProve =
10783     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10784     if (!ProvedNonStrictComparison)
10785       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10786     if (!ProvedNonEquality)
10787       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10788     if (ProvedNonStrictComparison && ProvedNonEquality)
10789       return true;
10790     return false;
10791   };
10792 
10793   if (ProvingStrictComparison) {
10794     auto ProofFn = [&](ICmpInst::Predicate P) {
10795       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10796     };
10797     if (SplitAndProve(ProofFn))
10798       return true;
10799   }
10800 
10801   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10802   auto ProveViaGuard = [&](const BasicBlock *Block) {
10803     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10804       return true;
10805     if (ProvingStrictComparison) {
10806       auto ProofFn = [&](ICmpInst::Predicate P) {
10807         return isImpliedViaGuard(Block, P, LHS, RHS);
10808       };
10809       if (SplitAndProve(ProofFn))
10810         return true;
10811     }
10812     return false;
10813   };
10814 
10815   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10816   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10817     const Instruction *CtxI = &BB->front();
10818     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10819       return true;
10820     if (ProvingStrictComparison) {
10821       auto ProofFn = [&](ICmpInst::Predicate P) {
10822         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10823       };
10824       if (SplitAndProve(ProofFn))
10825         return true;
10826     }
10827     return false;
10828   };
10829 
10830   // Starting at the block's predecessor, climb up the predecessor chain, as long
10831   // as there are predecessors that can be found that have unique successors
10832   // leading to the original block.
10833   const Loop *ContainingLoop = LI.getLoopFor(BB);
10834   const BasicBlock *PredBB;
10835   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10836     PredBB = ContainingLoop->getLoopPredecessor();
10837   else
10838     PredBB = BB->getSinglePredecessor();
10839   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10840        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10841     if (ProveViaGuard(Pair.first))
10842       return true;
10843 
10844     const BranchInst *LoopEntryPredicate =
10845         dyn_cast<BranchInst>(Pair.first->getTerminator());
10846     if (!LoopEntryPredicate ||
10847         LoopEntryPredicate->isUnconditional())
10848       continue;
10849 
10850     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10851                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10852       return true;
10853   }
10854 
10855   // Check conditions due to any @llvm.assume intrinsics.
10856   for (auto &AssumeVH : AC.assumptions()) {
10857     if (!AssumeVH)
10858       continue;
10859     auto *CI = cast<CallInst>(AssumeVH);
10860     if (!DT.dominates(CI, BB))
10861       continue;
10862 
10863     if (ProveViaCond(CI->getArgOperand(0), false))
10864       return true;
10865   }
10866 
10867   return false;
10868 }
10869 
10870 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10871                                                ICmpInst::Predicate Pred,
10872                                                const SCEV *LHS,
10873                                                const SCEV *RHS) {
10874   // Interpret a null as meaning no loop, where there is obviously no guard
10875   // (interprocedural conditions notwithstanding).
10876   if (!L)
10877     return false;
10878 
10879   // Both LHS and RHS must be available at loop entry.
10880   assert(isAvailableAtLoopEntry(LHS, L) &&
10881          "LHS is not available at Loop Entry");
10882   assert(isAvailableAtLoopEntry(RHS, L) &&
10883          "RHS is not available at Loop Entry");
10884 
10885   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10886     return true;
10887 
10888   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10889 }
10890 
10891 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10892                                     const SCEV *RHS,
10893                                     const Value *FoundCondValue, bool Inverse,
10894                                     const Instruction *CtxI) {
10895   // False conditions implies anything. Do not bother analyzing it further.
10896   if (FoundCondValue ==
10897       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10898     return true;
10899 
10900   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10901     return false;
10902 
10903   auto ClearOnExit =
10904       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10905 
10906   // Recursively handle And and Or conditions.
10907   const Value *Op0, *Op1;
10908   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10909     if (!Inverse)
10910       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10911              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10912   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10913     if (Inverse)
10914       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10915              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10916   }
10917 
10918   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10919   if (!ICI) return false;
10920 
10921   // Now that we found a conditional branch that dominates the loop or controls
10922   // the loop latch. Check to see if it is the comparison we are looking for.
10923   ICmpInst::Predicate FoundPred;
10924   if (Inverse)
10925     FoundPred = ICI->getInversePredicate();
10926   else
10927     FoundPred = ICI->getPredicate();
10928 
10929   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10930   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10931 
10932   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10933 }
10934 
10935 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10936                                     const SCEV *RHS,
10937                                     ICmpInst::Predicate FoundPred,
10938                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10939                                     const Instruction *CtxI) {
10940   // Balance the types.
10941   if (getTypeSizeInBits(LHS->getType()) <
10942       getTypeSizeInBits(FoundLHS->getType())) {
10943     // For unsigned and equality predicates, try to prove that both found
10944     // operands fit into narrow unsigned range. If so, try to prove facts in
10945     // narrow types.
10946     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
10947         !FoundRHS->getType()->isPointerTy()) {
10948       auto *NarrowType = LHS->getType();
10949       auto *WideType = FoundLHS->getType();
10950       auto BitWidth = getTypeSizeInBits(NarrowType);
10951       const SCEV *MaxValue = getZeroExtendExpr(
10952           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10953       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
10954                                           MaxValue) &&
10955           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
10956                                           MaxValue)) {
10957         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10958         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10959         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10960                                        TruncFoundRHS, CtxI))
10961           return true;
10962       }
10963     }
10964 
10965     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
10966       return false;
10967     if (CmpInst::isSigned(Pred)) {
10968       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10969       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10970     } else {
10971       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10972       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10973     }
10974   } else if (getTypeSizeInBits(LHS->getType()) >
10975       getTypeSizeInBits(FoundLHS->getType())) {
10976     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
10977       return false;
10978     if (CmpInst::isSigned(FoundPred)) {
10979       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10980       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10981     } else {
10982       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10983       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10984     }
10985   }
10986   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10987                                     FoundRHS, CtxI);
10988 }
10989 
10990 bool ScalarEvolution::isImpliedCondBalancedTypes(
10991     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10992     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10993     const Instruction *CtxI) {
10994   assert(getTypeSizeInBits(LHS->getType()) ==
10995              getTypeSizeInBits(FoundLHS->getType()) &&
10996          "Types should be balanced!");
10997   // Canonicalize the query to match the way instcombine will have
10998   // canonicalized the comparison.
10999   if (SimplifyICmpOperands(Pred, LHS, RHS))
11000     if (LHS == RHS)
11001       return CmpInst::isTrueWhenEqual(Pred);
11002   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11003     if (FoundLHS == FoundRHS)
11004       return CmpInst::isFalseWhenEqual(FoundPred);
11005 
11006   // Check to see if we can make the LHS or RHS match.
11007   if (LHS == FoundRHS || RHS == FoundLHS) {
11008     if (isa<SCEVConstant>(RHS)) {
11009       std::swap(FoundLHS, FoundRHS);
11010       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11011     } else {
11012       std::swap(LHS, RHS);
11013       Pred = ICmpInst::getSwappedPredicate(Pred);
11014     }
11015   }
11016 
11017   // Check whether the found predicate is the same as the desired predicate.
11018   if (FoundPred == Pred)
11019     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11020 
11021   // Check whether swapping the found predicate makes it the same as the
11022   // desired predicate.
11023   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11024     // We can write the implication
11025     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11026     // using one of the following ways:
11027     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11028     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11029     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11030     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11031     // Forms 1. and 2. require swapping the operands of one condition. Don't
11032     // do this if it would break canonical constant/addrec ordering.
11033     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11034       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11035                                    CtxI);
11036     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11037       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11038 
11039     // There's no clear preference between forms 3. and 4., try both.  Avoid
11040     // forming getNotSCEV of pointer values as the resulting subtract is
11041     // not legal.
11042     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11043         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11044                               FoundLHS, FoundRHS, CtxI))
11045       return true;
11046 
11047     if (!FoundLHS->getType()->isPointerTy() &&
11048         !FoundRHS->getType()->isPointerTy() &&
11049         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11050                               getNotSCEV(FoundRHS), CtxI))
11051       return true;
11052 
11053     return false;
11054   }
11055 
11056   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11057                                    CmpInst::Predicate P2) {
11058     assert(P1 != P2 && "Handled earlier!");
11059     return CmpInst::isRelational(P2) &&
11060            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11061   };
11062   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11063     // Unsigned comparison is the same as signed comparison when both the
11064     // operands are non-negative or negative.
11065     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11066         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11067       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11068     // Create local copies that we can freely swap and canonicalize our
11069     // conditions to "le/lt".
11070     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11071     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11072                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11073     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11074       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11075       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11076       std::swap(CanonicalLHS, CanonicalRHS);
11077       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11078     }
11079     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11080            "Must be!");
11081     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11082             ICmpInst::isLE(CanonicalFoundPred)) &&
11083            "Must be!");
11084     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11085       // Use implication:
11086       // x <u y && y >=s 0 --> x <s y.
11087       // If we can prove the left part, the right part is also proven.
11088       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11089                                    CanonicalRHS, CanonicalFoundLHS,
11090                                    CanonicalFoundRHS);
11091     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11092       // Use implication:
11093       // x <s y && y <s 0 --> x <u y.
11094       // If we can prove the left part, the right part is also proven.
11095       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11096                                    CanonicalRHS, CanonicalFoundLHS,
11097                                    CanonicalFoundRHS);
11098   }
11099 
11100   // Check if we can make progress by sharpening ranges.
11101   if (FoundPred == ICmpInst::ICMP_NE &&
11102       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11103 
11104     const SCEVConstant *C = nullptr;
11105     const SCEV *V = nullptr;
11106 
11107     if (isa<SCEVConstant>(FoundLHS)) {
11108       C = cast<SCEVConstant>(FoundLHS);
11109       V = FoundRHS;
11110     } else {
11111       C = cast<SCEVConstant>(FoundRHS);
11112       V = FoundLHS;
11113     }
11114 
11115     // The guarding predicate tells us that C != V. If the known range
11116     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11117     // range we consider has to correspond to same signedness as the
11118     // predicate we're interested in folding.
11119 
11120     APInt Min = ICmpInst::isSigned(Pred) ?
11121         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11122 
11123     if (Min == C->getAPInt()) {
11124       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11125       // This is true even if (Min + 1) wraps around -- in case of
11126       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11127 
11128       APInt SharperMin = Min + 1;
11129 
11130       switch (Pred) {
11131         case ICmpInst::ICMP_SGE:
11132         case ICmpInst::ICMP_UGE:
11133           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11134           // RHS, we're done.
11135           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11136                                     CtxI))
11137             return true;
11138           LLVM_FALLTHROUGH;
11139 
11140         case ICmpInst::ICMP_SGT:
11141         case ICmpInst::ICMP_UGT:
11142           // We know from the range information that (V `Pred` Min ||
11143           // V == Min).  We know from the guarding condition that !(V
11144           // == Min).  This gives us
11145           //
11146           //       V `Pred` Min || V == Min && !(V == Min)
11147           //   =>  V `Pred` Min
11148           //
11149           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11150 
11151           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11152             return true;
11153           break;
11154 
11155         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11156         case ICmpInst::ICMP_SLE:
11157         case ICmpInst::ICMP_ULE:
11158           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11159                                     LHS, V, getConstant(SharperMin), CtxI))
11160             return true;
11161           LLVM_FALLTHROUGH;
11162 
11163         case ICmpInst::ICMP_SLT:
11164         case ICmpInst::ICMP_ULT:
11165           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11166                                     LHS, V, getConstant(Min), CtxI))
11167             return true;
11168           break;
11169 
11170         default:
11171           // No change
11172           break;
11173       }
11174     }
11175   }
11176 
11177   // Check whether the actual condition is beyond sufficient.
11178   if (FoundPred == ICmpInst::ICMP_EQ)
11179     if (ICmpInst::isTrueWhenEqual(Pred))
11180       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11181         return true;
11182   if (Pred == ICmpInst::ICMP_NE)
11183     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11184       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11185         return true;
11186 
11187   // Otherwise assume the worst.
11188   return false;
11189 }
11190 
11191 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11192                                      const SCEV *&L, const SCEV *&R,
11193                                      SCEV::NoWrapFlags &Flags) {
11194   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11195   if (!AE || AE->getNumOperands() != 2)
11196     return false;
11197 
11198   L = AE->getOperand(0);
11199   R = AE->getOperand(1);
11200   Flags = AE->getNoWrapFlags();
11201   return true;
11202 }
11203 
11204 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
11205                                                            const SCEV *Less) {
11206   // We avoid subtracting expressions here because this function is usually
11207   // fairly deep in the call stack (i.e. is called many times).
11208 
11209   // X - X = 0.
11210   if (More == Less)
11211     return APInt(getTypeSizeInBits(More->getType()), 0);
11212 
11213   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11214     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11215     const auto *MAR = cast<SCEVAddRecExpr>(More);
11216 
11217     if (LAR->getLoop() != MAR->getLoop())
11218       return None;
11219 
11220     // We look at affine expressions only; not for correctness but to keep
11221     // getStepRecurrence cheap.
11222     if (!LAR->isAffine() || !MAR->isAffine())
11223       return None;
11224 
11225     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11226       return None;
11227 
11228     Less = LAR->getStart();
11229     More = MAR->getStart();
11230 
11231     // fall through
11232   }
11233 
11234   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11235     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11236     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11237     return M - L;
11238   }
11239 
11240   SCEV::NoWrapFlags Flags;
11241   const SCEV *LLess = nullptr, *RLess = nullptr;
11242   const SCEV *LMore = nullptr, *RMore = nullptr;
11243   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11244   // Compare (X + C1) vs X.
11245   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11246     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11247       if (RLess == More)
11248         return -(C1->getAPInt());
11249 
11250   // Compare X vs (X + C2).
11251   if (splitBinaryAdd(More, LMore, RMore, Flags))
11252     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11253       if (RMore == Less)
11254         return C2->getAPInt();
11255 
11256   // Compare (X + C1) vs (X + C2).
11257   if (C1 && C2 && RLess == RMore)
11258     return C2->getAPInt() - C1->getAPInt();
11259 
11260   return None;
11261 }
11262 
11263 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11264     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11265     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11266   // Try to recognize the following pattern:
11267   //
11268   //   FoundRHS = ...
11269   // ...
11270   // loop:
11271   //   FoundLHS = {Start,+,W}
11272   // context_bb: // Basic block from the same loop
11273   //   known(Pred, FoundLHS, FoundRHS)
11274   //
11275   // If some predicate is known in the context of a loop, it is also known on
11276   // each iteration of this loop, including the first iteration. Therefore, in
11277   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11278   // prove the original pred using this fact.
11279   if (!CtxI)
11280     return false;
11281   const BasicBlock *ContextBB = CtxI->getParent();
11282   // Make sure AR varies in the context block.
11283   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11284     const Loop *L = AR->getLoop();
11285     // Make sure that context belongs to the loop and executes on 1st iteration
11286     // (if it ever executes at all).
11287     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11288       return false;
11289     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11290       return false;
11291     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11292   }
11293 
11294   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11295     const Loop *L = AR->getLoop();
11296     // Make sure that context belongs to the loop and executes on 1st iteration
11297     // (if it ever executes at all).
11298     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11299       return false;
11300     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11301       return false;
11302     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11303   }
11304 
11305   return false;
11306 }
11307 
11308 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11309     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11310     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11311   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11312     return false;
11313 
11314   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11315   if (!AddRecLHS)
11316     return false;
11317 
11318   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11319   if (!AddRecFoundLHS)
11320     return false;
11321 
11322   // We'd like to let SCEV reason about control dependencies, so we constrain
11323   // both the inequalities to be about add recurrences on the same loop.  This
11324   // way we can use isLoopEntryGuardedByCond later.
11325 
11326   const Loop *L = AddRecFoundLHS->getLoop();
11327   if (L != AddRecLHS->getLoop())
11328     return false;
11329 
11330   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11331   //
11332   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11333   //                                                                  ... (2)
11334   //
11335   // Informal proof for (2), assuming (1) [*]:
11336   //
11337   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11338   //
11339   // Then
11340   //
11341   //       FoundLHS s< FoundRHS s< INT_MIN - C
11342   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11343   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11344   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11345   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11346   // <=>  FoundLHS + C s< FoundRHS + C
11347   //
11348   // [*]: (1) can be proved by ruling out overflow.
11349   //
11350   // [**]: This can be proved by analyzing all the four possibilities:
11351   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11352   //    (A s>= 0, B s>= 0).
11353   //
11354   // Note:
11355   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11356   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11357   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11358   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11359   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11360   // C)".
11361 
11362   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11363   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11364   if (!LDiff || !RDiff || *LDiff != *RDiff)
11365     return false;
11366 
11367   if (LDiff->isMinValue())
11368     return true;
11369 
11370   APInt FoundRHSLimit;
11371 
11372   if (Pred == CmpInst::ICMP_ULT) {
11373     FoundRHSLimit = -(*RDiff);
11374   } else {
11375     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11376     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11377   }
11378 
11379   // Try to prove (1) or (2), as needed.
11380   return isAvailableAtLoopEntry(FoundRHS, L) &&
11381          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11382                                   getConstant(FoundRHSLimit));
11383 }
11384 
11385 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11386                                         const SCEV *LHS, const SCEV *RHS,
11387                                         const SCEV *FoundLHS,
11388                                         const SCEV *FoundRHS, unsigned Depth) {
11389   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11390 
11391   auto ClearOnExit = make_scope_exit([&]() {
11392     if (LPhi) {
11393       bool Erased = PendingMerges.erase(LPhi);
11394       assert(Erased && "Failed to erase LPhi!");
11395       (void)Erased;
11396     }
11397     if (RPhi) {
11398       bool Erased = PendingMerges.erase(RPhi);
11399       assert(Erased && "Failed to erase RPhi!");
11400       (void)Erased;
11401     }
11402   });
11403 
11404   // Find respective Phis and check that they are not being pending.
11405   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11406     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11407       if (!PendingMerges.insert(Phi).second)
11408         return false;
11409       LPhi = Phi;
11410     }
11411   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11412     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11413       // If we detect a loop of Phi nodes being processed by this method, for
11414       // example:
11415       //
11416       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11417       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11418       //
11419       // we don't want to deal with a case that complex, so return conservative
11420       // answer false.
11421       if (!PendingMerges.insert(Phi).second)
11422         return false;
11423       RPhi = Phi;
11424     }
11425 
11426   // If none of LHS, RHS is a Phi, nothing to do here.
11427   if (!LPhi && !RPhi)
11428     return false;
11429 
11430   // If there is a SCEVUnknown Phi we are interested in, make it left.
11431   if (!LPhi) {
11432     std::swap(LHS, RHS);
11433     std::swap(FoundLHS, FoundRHS);
11434     std::swap(LPhi, RPhi);
11435     Pred = ICmpInst::getSwappedPredicate(Pred);
11436   }
11437 
11438   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11439   const BasicBlock *LBB = LPhi->getParent();
11440   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11441 
11442   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11443     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11444            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11445            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11446   };
11447 
11448   if (RPhi && RPhi->getParent() == LBB) {
11449     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11450     // If we compare two Phis from the same block, and for each entry block
11451     // the predicate is true for incoming values from this block, then the
11452     // predicate is also true for the Phis.
11453     for (const BasicBlock *IncBB : predecessors(LBB)) {
11454       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11455       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11456       if (!ProvedEasily(L, R))
11457         return false;
11458     }
11459   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11460     // Case two: RHS is also a Phi from the same basic block, and it is an
11461     // AddRec. It means that there is a loop which has both AddRec and Unknown
11462     // PHIs, for it we can compare incoming values of AddRec from above the loop
11463     // and latch with their respective incoming values of LPhi.
11464     // TODO: Generalize to handle loops with many inputs in a header.
11465     if (LPhi->getNumIncomingValues() != 2) return false;
11466 
11467     auto *RLoop = RAR->getLoop();
11468     auto *Predecessor = RLoop->getLoopPredecessor();
11469     assert(Predecessor && "Loop with AddRec with no predecessor?");
11470     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11471     if (!ProvedEasily(L1, RAR->getStart()))
11472       return false;
11473     auto *Latch = RLoop->getLoopLatch();
11474     assert(Latch && "Loop with AddRec with no latch?");
11475     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11476     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11477       return false;
11478   } else {
11479     // In all other cases go over inputs of LHS and compare each of them to RHS,
11480     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11481     // At this point RHS is either a non-Phi, or it is a Phi from some block
11482     // different from LBB.
11483     for (const BasicBlock *IncBB : predecessors(LBB)) {
11484       // Check that RHS is available in this block.
11485       if (!dominates(RHS, IncBB))
11486         return false;
11487       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11488       // Make sure L does not refer to a value from a potentially previous
11489       // iteration of a loop.
11490       if (!properlyDominates(L, IncBB))
11491         return false;
11492       if (!ProvedEasily(L, RHS))
11493         return false;
11494     }
11495   }
11496   return true;
11497 }
11498 
11499 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
11500                                                     const SCEV *LHS,
11501                                                     const SCEV *RHS,
11502                                                     const SCEV *FoundLHS,
11503                                                     const SCEV *FoundRHS) {
11504   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
11505   // sure that we are dealing with same LHS.
11506   if (RHS == FoundRHS) {
11507     std::swap(LHS, RHS);
11508     std::swap(FoundLHS, FoundRHS);
11509     Pred = ICmpInst::getSwappedPredicate(Pred);
11510   }
11511   if (LHS != FoundLHS)
11512     return false;
11513 
11514   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
11515   if (!SUFoundRHS)
11516     return false;
11517 
11518   Value *Shiftee, *ShiftValue;
11519 
11520   using namespace PatternMatch;
11521   if (match(SUFoundRHS->getValue(),
11522             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
11523     auto *ShifteeS = getSCEV(Shiftee);
11524     // Prove one of the following:
11525     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
11526     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
11527     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11528     //   ---> LHS <s RHS
11529     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11530     //   ---> LHS <=s RHS
11531     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
11532       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
11533     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
11534       if (isKnownNonNegative(ShifteeS))
11535         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
11536   }
11537 
11538   return false;
11539 }
11540 
11541 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11542                                             const SCEV *LHS, const SCEV *RHS,
11543                                             const SCEV *FoundLHS,
11544                                             const SCEV *FoundRHS,
11545                                             const Instruction *CtxI) {
11546   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11547     return true;
11548 
11549   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11550     return true;
11551 
11552   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
11553     return true;
11554 
11555   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11556                                           CtxI))
11557     return true;
11558 
11559   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11560                                      FoundLHS, FoundRHS);
11561 }
11562 
11563 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11564 template <typename MinMaxExprType>
11565 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11566                                  const SCEV *Candidate) {
11567   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11568   if (!MinMaxExpr)
11569     return false;
11570 
11571   return is_contained(MinMaxExpr->operands(), Candidate);
11572 }
11573 
11574 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11575                                            ICmpInst::Predicate Pred,
11576                                            const SCEV *LHS, const SCEV *RHS) {
11577   // If both sides are affine addrecs for the same loop, with equal
11578   // steps, and we know the recurrences don't wrap, then we only
11579   // need to check the predicate on the starting values.
11580 
11581   if (!ICmpInst::isRelational(Pred))
11582     return false;
11583 
11584   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11585   if (!LAR)
11586     return false;
11587   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11588   if (!RAR)
11589     return false;
11590   if (LAR->getLoop() != RAR->getLoop())
11591     return false;
11592   if (!LAR->isAffine() || !RAR->isAffine())
11593     return false;
11594 
11595   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11596     return false;
11597 
11598   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11599                          SCEV::FlagNSW : SCEV::FlagNUW;
11600   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11601     return false;
11602 
11603   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11604 }
11605 
11606 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11607 /// expression?
11608 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11609                                         ICmpInst::Predicate Pred,
11610                                         const SCEV *LHS, const SCEV *RHS) {
11611   switch (Pred) {
11612   default:
11613     return false;
11614 
11615   case ICmpInst::ICMP_SGE:
11616     std::swap(LHS, RHS);
11617     LLVM_FALLTHROUGH;
11618   case ICmpInst::ICMP_SLE:
11619     return
11620         // min(A, ...) <= A
11621         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11622         // A <= max(A, ...)
11623         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11624 
11625   case ICmpInst::ICMP_UGE:
11626     std::swap(LHS, RHS);
11627     LLVM_FALLTHROUGH;
11628   case ICmpInst::ICMP_ULE:
11629     return
11630         // min(A, ...) <= A
11631         // FIXME: what about umin_seq?
11632         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11633         // A <= max(A, ...)
11634         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11635   }
11636 
11637   llvm_unreachable("covered switch fell through?!");
11638 }
11639 
11640 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11641                                              const SCEV *LHS, const SCEV *RHS,
11642                                              const SCEV *FoundLHS,
11643                                              const SCEV *FoundRHS,
11644                                              unsigned Depth) {
11645   assert(getTypeSizeInBits(LHS->getType()) ==
11646              getTypeSizeInBits(RHS->getType()) &&
11647          "LHS and RHS have different sizes?");
11648   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11649              getTypeSizeInBits(FoundRHS->getType()) &&
11650          "FoundLHS and FoundRHS have different sizes?");
11651   // We want to avoid hurting the compile time with analysis of too big trees.
11652   if (Depth > MaxSCEVOperationsImplicationDepth)
11653     return false;
11654 
11655   // We only want to work with GT comparison so far.
11656   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11657     Pred = CmpInst::getSwappedPredicate(Pred);
11658     std::swap(LHS, RHS);
11659     std::swap(FoundLHS, FoundRHS);
11660   }
11661 
11662   // For unsigned, try to reduce it to corresponding signed comparison.
11663   if (Pred == ICmpInst::ICMP_UGT)
11664     // We can replace unsigned predicate with its signed counterpart if all
11665     // involved values are non-negative.
11666     // TODO: We could have better support for unsigned.
11667     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11668       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11669       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11670       // use this fact to prove that LHS and RHS are non-negative.
11671       const SCEV *MinusOne = getMinusOne(LHS->getType());
11672       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11673                                 FoundRHS) &&
11674           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11675                                 FoundRHS))
11676         Pred = ICmpInst::ICMP_SGT;
11677     }
11678 
11679   if (Pred != ICmpInst::ICMP_SGT)
11680     return false;
11681 
11682   auto GetOpFromSExt = [&](const SCEV *S) {
11683     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11684       return Ext->getOperand();
11685     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11686     // the constant in some cases.
11687     return S;
11688   };
11689 
11690   // Acquire values from extensions.
11691   auto *OrigLHS = LHS;
11692   auto *OrigFoundLHS = FoundLHS;
11693   LHS = GetOpFromSExt(LHS);
11694   FoundLHS = GetOpFromSExt(FoundLHS);
11695 
11696   // Is the SGT predicate can be proved trivially or using the found context.
11697   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11698     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11699            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11700                                   FoundRHS, Depth + 1);
11701   };
11702 
11703   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11704     // We want to avoid creation of any new non-constant SCEV. Since we are
11705     // going to compare the operands to RHS, we should be certain that we don't
11706     // need any size extensions for this. So let's decline all cases when the
11707     // sizes of types of LHS and RHS do not match.
11708     // TODO: Maybe try to get RHS from sext to catch more cases?
11709     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11710       return false;
11711 
11712     // Should not overflow.
11713     if (!LHSAddExpr->hasNoSignedWrap())
11714       return false;
11715 
11716     auto *LL = LHSAddExpr->getOperand(0);
11717     auto *LR = LHSAddExpr->getOperand(1);
11718     auto *MinusOne = getMinusOne(RHS->getType());
11719 
11720     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11721     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11722       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11723     };
11724     // Try to prove the following rule:
11725     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11726     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11727     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11728       return true;
11729   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11730     Value *LL, *LR;
11731     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11732 
11733     using namespace llvm::PatternMatch;
11734 
11735     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11736       // Rules for division.
11737       // We are going to perform some comparisons with Denominator and its
11738       // derivative expressions. In general case, creating a SCEV for it may
11739       // lead to a complex analysis of the entire graph, and in particular it
11740       // can request trip count recalculation for the same loop. This would
11741       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11742       // this, we only want to create SCEVs that are constants in this section.
11743       // So we bail if Denominator is not a constant.
11744       if (!isa<ConstantInt>(LR))
11745         return false;
11746 
11747       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11748 
11749       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11750       // then a SCEV for the numerator already exists and matches with FoundLHS.
11751       auto *Numerator = getExistingSCEV(LL);
11752       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11753         return false;
11754 
11755       // Make sure that the numerator matches with FoundLHS and the denominator
11756       // is positive.
11757       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11758         return false;
11759 
11760       auto *DTy = Denominator->getType();
11761       auto *FRHSTy = FoundRHS->getType();
11762       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11763         // One of types is a pointer and another one is not. We cannot extend
11764         // them properly to a wider type, so let us just reject this case.
11765         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11766         // to avoid this check.
11767         return false;
11768 
11769       // Given that:
11770       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11771       auto *WTy = getWiderType(DTy, FRHSTy);
11772       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11773       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11774 
11775       // Try to prove the following rule:
11776       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11777       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11778       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11779       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11780       if (isKnownNonPositive(RHS) &&
11781           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11782         return true;
11783 
11784       // Try to prove the following rule:
11785       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11786       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11787       // If we divide it by Denominator > 2, then:
11788       // 1. If FoundLHS is negative, then the result is 0.
11789       // 2. If FoundLHS is non-negative, then the result is non-negative.
11790       // Anyways, the result is non-negative.
11791       auto *MinusOne = getMinusOne(WTy);
11792       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11793       if (isKnownNegative(RHS) &&
11794           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11795         return true;
11796     }
11797   }
11798 
11799   // If our expression contained SCEVUnknown Phis, and we split it down and now
11800   // need to prove something for them, try to prove the predicate for every
11801   // possible incoming values of those Phis.
11802   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11803     return true;
11804 
11805   return false;
11806 }
11807 
11808 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11809                                         const SCEV *LHS, const SCEV *RHS) {
11810   // zext x u<= sext x, sext x s<= zext x
11811   switch (Pred) {
11812   case ICmpInst::ICMP_SGE:
11813     std::swap(LHS, RHS);
11814     LLVM_FALLTHROUGH;
11815   case ICmpInst::ICMP_SLE: {
11816     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11817     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11818     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11819     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11820       return true;
11821     break;
11822   }
11823   case ICmpInst::ICMP_UGE:
11824     std::swap(LHS, RHS);
11825     LLVM_FALLTHROUGH;
11826   case ICmpInst::ICMP_ULE: {
11827     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11828     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11829     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11830     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11831       return true;
11832     break;
11833   }
11834   default:
11835     break;
11836   };
11837   return false;
11838 }
11839 
11840 bool
11841 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11842                                            const SCEV *LHS, const SCEV *RHS) {
11843   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11844          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11845          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11846          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11847          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11848 }
11849 
11850 bool
11851 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11852                                              const SCEV *LHS, const SCEV *RHS,
11853                                              const SCEV *FoundLHS,
11854                                              const SCEV *FoundRHS) {
11855   switch (Pred) {
11856   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11857   case ICmpInst::ICMP_EQ:
11858   case ICmpInst::ICMP_NE:
11859     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11860       return true;
11861     break;
11862   case ICmpInst::ICMP_SLT:
11863   case ICmpInst::ICMP_SLE:
11864     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11865         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11866       return true;
11867     break;
11868   case ICmpInst::ICMP_SGT:
11869   case ICmpInst::ICMP_SGE:
11870     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11871         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11872       return true;
11873     break;
11874   case ICmpInst::ICMP_ULT:
11875   case ICmpInst::ICMP_ULE:
11876     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11877         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11878       return true;
11879     break;
11880   case ICmpInst::ICMP_UGT:
11881   case ICmpInst::ICMP_UGE:
11882     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11883         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11884       return true;
11885     break;
11886   }
11887 
11888   // Maybe it can be proved via operations?
11889   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11890     return true;
11891 
11892   return false;
11893 }
11894 
11895 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11896                                                      const SCEV *LHS,
11897                                                      const SCEV *RHS,
11898                                                      const SCEV *FoundLHS,
11899                                                      const SCEV *FoundRHS) {
11900   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11901     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11902     // reduce the compile time impact of this optimization.
11903     return false;
11904 
11905   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11906   if (!Addend)
11907     return false;
11908 
11909   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11910 
11911   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11912   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11913   ConstantRange FoundLHSRange =
11914       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11915 
11916   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11917   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11918 
11919   // We can also compute the range of values for `LHS` that satisfy the
11920   // consequent, "`LHS` `Pred` `RHS`":
11921   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11922   // The antecedent implies the consequent if every value of `LHS` that
11923   // satisfies the antecedent also satisfies the consequent.
11924   return LHSRange.icmp(Pred, ConstRHS);
11925 }
11926 
11927 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11928                                         bool IsSigned) {
11929   assert(isKnownPositive(Stride) && "Positive stride expected!");
11930 
11931   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11932   const SCEV *One = getOne(Stride->getType());
11933 
11934   if (IsSigned) {
11935     APInt MaxRHS = getSignedRangeMax(RHS);
11936     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11937     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11938 
11939     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11940     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11941   }
11942 
11943   APInt MaxRHS = getUnsignedRangeMax(RHS);
11944   APInt MaxValue = APInt::getMaxValue(BitWidth);
11945   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11946 
11947   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11948   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11949 }
11950 
11951 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11952                                         bool IsSigned) {
11953 
11954   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11955   const SCEV *One = getOne(Stride->getType());
11956 
11957   if (IsSigned) {
11958     APInt MinRHS = getSignedRangeMin(RHS);
11959     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11960     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11961 
11962     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11963     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11964   }
11965 
11966   APInt MinRHS = getUnsignedRangeMin(RHS);
11967   APInt MinValue = APInt::getMinValue(BitWidth);
11968   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11969 
11970   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11971   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11972 }
11973 
11974 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11975   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11976   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11977   // expression fixes the case of N=0.
11978   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11979   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11980   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11981 }
11982 
11983 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11984                                                     const SCEV *Stride,
11985                                                     const SCEV *End,
11986                                                     unsigned BitWidth,
11987                                                     bool IsSigned) {
11988   // The logic in this function assumes we can represent a positive stride.
11989   // If we can't, the backedge-taken count must be zero.
11990   if (IsSigned && BitWidth == 1)
11991     return getZero(Stride->getType());
11992 
11993   // This code has only been closely audited for negative strides in the
11994   // unsigned comparison case, it may be correct for signed comparison, but
11995   // that needs to be established.
11996   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11997          "Stride is expected strictly positive for signed case!");
11998 
11999   // Calculate the maximum backedge count based on the range of values
12000   // permitted by Start, End, and Stride.
12001   APInt MinStart =
12002       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12003 
12004   APInt MinStride =
12005       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12006 
12007   // We assume either the stride is positive, or the backedge-taken count
12008   // is zero. So force StrideForMaxBECount to be at least one.
12009   APInt One(BitWidth, 1);
12010   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12011                                        : APIntOps::umax(One, MinStride);
12012 
12013   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12014                             : APInt::getMaxValue(BitWidth);
12015   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12016 
12017   // Although End can be a MAX expression we estimate MaxEnd considering only
12018   // the case End = RHS of the loop termination condition. This is safe because
12019   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12020   // taken count.
12021   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12022                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12023 
12024   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12025   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12026                     : APIntOps::umax(MaxEnd, MinStart);
12027 
12028   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12029                          getConstant(StrideForMaxBECount) /* Step */);
12030 }
12031 
12032 ScalarEvolution::ExitLimit
12033 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12034                                   const Loop *L, bool IsSigned,
12035                                   bool ControlsExit, bool AllowPredicates) {
12036   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12037 
12038   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12039   bool PredicatedIV = false;
12040 
12041   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12042     // Can we prove this loop *must* be UB if overflow of IV occurs?
12043     // Reasoning goes as follows:
12044     // * Suppose the IV did self wrap.
12045     // * If Stride evenly divides the iteration space, then once wrap
12046     //   occurs, the loop must revisit the same values.
12047     // * We know that RHS is invariant, and that none of those values
12048     //   caused this exit to be taken previously.  Thus, this exit is
12049     //   dynamically dead.
12050     // * If this is the sole exit, then a dead exit implies the loop
12051     //   must be infinite if there are no abnormal exits.
12052     // * If the loop were infinite, then it must either not be mustprogress
12053     //   or have side effects. Otherwise, it must be UB.
12054     // * It can't (by assumption), be UB so we have contradicted our
12055     //   premise and can conclude the IV did not in fact self-wrap.
12056     if (!isLoopInvariant(RHS, L))
12057       return false;
12058 
12059     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12060     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12061       return false;
12062 
12063     if (!ControlsExit || !loopHasNoAbnormalExits(L))
12064       return false;
12065 
12066     return loopIsFiniteByAssumption(L);
12067   };
12068 
12069   if (!IV) {
12070     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12071       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12072       if (AR && AR->getLoop() == L && AR->isAffine()) {
12073         auto canProveNUW = [&]() {
12074           if (!isLoopInvariant(RHS, L))
12075             return false;
12076 
12077           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12078             // We need the sequence defined by AR to strictly increase in the
12079             // unsigned integer domain for the logic below to hold.
12080             return false;
12081 
12082           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12083           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12084           // If RHS <=u Limit, then there must exist a value V in the sequence
12085           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12086           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12087           // overflow occurs.  This limit also implies that a signed comparison
12088           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12089           // the high bits on both sides must be zero.
12090           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12091           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12092           Limit = Limit.zext(OuterBitWidth);
12093           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12094         };
12095         auto Flags = AR->getNoWrapFlags();
12096         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12097           Flags = setFlags(Flags, SCEV::FlagNUW);
12098 
12099         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12100         if (AR->hasNoUnsignedWrap()) {
12101           // Emulate what getZeroExtendExpr would have done during construction
12102           // if we'd been able to infer the fact just above at that time.
12103           const SCEV *Step = AR->getStepRecurrence(*this);
12104           Type *Ty = ZExt->getType();
12105           auto *S = getAddRecExpr(
12106             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12107             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12108           IV = dyn_cast<SCEVAddRecExpr>(S);
12109         }
12110       }
12111     }
12112   }
12113 
12114 
12115   if (!IV && AllowPredicates) {
12116     // Try to make this an AddRec using runtime tests, in the first X
12117     // iterations of this loop, where X is the SCEV expression found by the
12118     // algorithm below.
12119     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12120     PredicatedIV = true;
12121   }
12122 
12123   // Avoid weird loops
12124   if (!IV || IV->getLoop() != L || !IV->isAffine())
12125     return getCouldNotCompute();
12126 
12127   // A precondition of this method is that the condition being analyzed
12128   // reaches an exiting branch which dominates the latch.  Given that, we can
12129   // assume that an increment which violates the nowrap specification and
12130   // produces poison must cause undefined behavior when the resulting poison
12131   // value is branched upon and thus we can conclude that the backedge is
12132   // taken no more often than would be required to produce that poison value.
12133   // Note that a well defined loop can exit on the iteration which violates
12134   // the nowrap specification if there is another exit (either explicit or
12135   // implicit/exceptional) which causes the loop to execute before the
12136   // exiting instruction we're analyzing would trigger UB.
12137   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12138   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12139   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12140 
12141   const SCEV *Stride = IV->getStepRecurrence(*this);
12142 
12143   bool PositiveStride = isKnownPositive(Stride);
12144 
12145   // Avoid negative or zero stride values.
12146   if (!PositiveStride) {
12147     // We can compute the correct backedge taken count for loops with unknown
12148     // strides if we can prove that the loop is not an infinite loop with side
12149     // effects. Here's the loop structure we are trying to handle -
12150     //
12151     // i = start
12152     // do {
12153     //   A[i] = i;
12154     //   i += s;
12155     // } while (i < end);
12156     //
12157     // The backedge taken count for such loops is evaluated as -
12158     // (max(end, start + stride) - start - 1) /u stride
12159     //
12160     // The additional preconditions that we need to check to prove correctness
12161     // of the above formula is as follows -
12162     //
12163     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12164     //    NoWrap flag).
12165     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12166     //    no side effects within the loop)
12167     // c) loop has a single static exit (with no abnormal exits)
12168     //
12169     // Precondition a) implies that if the stride is negative, this is a single
12170     // trip loop. The backedge taken count formula reduces to zero in this case.
12171     //
12172     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12173     // then a zero stride means the backedge can't be taken without executing
12174     // undefined behavior.
12175     //
12176     // The positive stride case is the same as isKnownPositive(Stride) returning
12177     // true (original behavior of the function).
12178     //
12179     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12180         !loopHasNoAbnormalExits(L))
12181       return getCouldNotCompute();
12182 
12183     // This bailout is protecting the logic in computeMaxBECountForLT which
12184     // has not yet been sufficiently auditted or tested with negative strides.
12185     // We used to filter out all known-non-positive cases here, we're in the
12186     // process of being less restrictive bit by bit.
12187     if (IsSigned && isKnownNonPositive(Stride))
12188       return getCouldNotCompute();
12189 
12190     if (!isKnownNonZero(Stride)) {
12191       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12192       // if it might eventually be greater than start and if so, on which
12193       // iteration.  We can't even produce a useful upper bound.
12194       if (!isLoopInvariant(RHS, L))
12195         return getCouldNotCompute();
12196 
12197       // We allow a potentially zero stride, but we need to divide by stride
12198       // below.  Since the loop can't be infinite and this check must control
12199       // the sole exit, we can infer the exit must be taken on the first
12200       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12201       // we know the numerator in the divides below must be zero, so we can
12202       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12203       // and produce the right result.
12204       // FIXME: Handle the case where Stride is poison?
12205       auto wouldZeroStrideBeUB = [&]() {
12206         // Proof by contradiction.  Suppose the stride were zero.  If we can
12207         // prove that the backedge *is* taken on the first iteration, then since
12208         // we know this condition controls the sole exit, we must have an
12209         // infinite loop.  We can't have a (well defined) infinite loop per
12210         // check just above.
12211         // Note: The (Start - Stride) term is used to get the start' term from
12212         // (start' + stride,+,stride). Remember that we only care about the
12213         // result of this expression when stride == 0 at runtime.
12214         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12215         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12216       };
12217       if (!wouldZeroStrideBeUB()) {
12218         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12219       }
12220     }
12221   } else if (!Stride->isOne() && !NoWrap) {
12222     auto isUBOnWrap = [&]() {
12223       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12224       // follows trivially from the fact that every (un)signed-wrapped, but
12225       // not self-wrapped value must be LT than the last value before
12226       // (un)signed wrap.  Since we know that last value didn't exit, nor
12227       // will any smaller one.
12228       return canAssumeNoSelfWrap(IV);
12229     };
12230 
12231     // Avoid proven overflow cases: this will ensure that the backedge taken
12232     // count will not generate any unsigned overflow. Relaxed no-overflow
12233     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12234     // undefined behaviors like the case of C language.
12235     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12236       return getCouldNotCompute();
12237   }
12238 
12239   // On all paths just preceeding, we established the following invariant:
12240   //   IV can be assumed not to overflow up to and including the exiting
12241   //   iteration.  We proved this in one of two ways:
12242   //   1) We can show overflow doesn't occur before the exiting iteration
12243   //      1a) canIVOverflowOnLT, and b) step of one
12244   //   2) We can show that if overflow occurs, the loop must execute UB
12245   //      before any possible exit.
12246   // Note that we have not yet proved RHS invariant (in general).
12247 
12248   const SCEV *Start = IV->getStart();
12249 
12250   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12251   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12252   // Use integer-typed versions for actual computation; we can't subtract
12253   // pointers in general.
12254   const SCEV *OrigStart = Start;
12255   const SCEV *OrigRHS = RHS;
12256   if (Start->getType()->isPointerTy()) {
12257     Start = getLosslessPtrToIntExpr(Start);
12258     if (isa<SCEVCouldNotCompute>(Start))
12259       return Start;
12260   }
12261   if (RHS->getType()->isPointerTy()) {
12262     RHS = getLosslessPtrToIntExpr(RHS);
12263     if (isa<SCEVCouldNotCompute>(RHS))
12264       return RHS;
12265   }
12266 
12267   // When the RHS is not invariant, we do not know the end bound of the loop and
12268   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12269   // calculate the MaxBECount, given the start, stride and max value for the end
12270   // bound of the loop (RHS), and the fact that IV does not overflow (which is
12271   // checked above).
12272   if (!isLoopInvariant(RHS, L)) {
12273     const SCEV *MaxBECount = computeMaxBECountForLT(
12274         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12275     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12276                      false /*MaxOrZero*/, Predicates);
12277   }
12278 
12279   // We use the expression (max(End,Start)-Start)/Stride to describe the
12280   // backedge count, as if the backedge is taken at least once max(End,Start)
12281   // is End and so the result is as above, and if not max(End,Start) is Start
12282   // so we get a backedge count of zero.
12283   const SCEV *BECount = nullptr;
12284   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12285   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12286   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12287   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12288   // Can we prove (max(RHS,Start) > Start - Stride?
12289   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12290       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12291     // In this case, we can use a refined formula for computing backedge taken
12292     // count.  The general formula remains:
12293     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12294     // We want to use the alternate formula:
12295     //   "((End - 1) - (Start - Stride)) /u Stride"
12296     // Let's do a quick case analysis to show these are equivalent under
12297     // our precondition that max(RHS,Start) > Start - Stride.
12298     // * For RHS <= Start, the backedge-taken count must be zero.
12299     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12300     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12301     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12302     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12303     //     this to the stride of 1 case.
12304     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12305     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12306     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12307     //   "((RHS - (Start - Stride) - 1) /u Stride".
12308     //   Our preconditions trivially imply no overflow in that form.
12309     const SCEV *MinusOne = getMinusOne(Stride->getType());
12310     const SCEV *Numerator =
12311         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12312     BECount = getUDivExpr(Numerator, Stride);
12313   }
12314 
12315   const SCEV *BECountIfBackedgeTaken = nullptr;
12316   if (!BECount) {
12317     auto canProveRHSGreaterThanEqualStart = [&]() {
12318       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12319       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12320         return true;
12321 
12322       // (RHS > Start - 1) implies RHS >= Start.
12323       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12324       //   "Start - 1" doesn't overflow.
12325       // * For signed comparison, if Start - 1 does overflow, it's equal
12326       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12327       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12328       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12329       //
12330       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12331       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12332       auto *StartMinusOne = getAddExpr(OrigStart,
12333                                        getMinusOne(OrigStart->getType()));
12334       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12335     };
12336 
12337     // If we know that RHS >= Start in the context of loop, then we know that
12338     // max(RHS, Start) = RHS at this point.
12339     const SCEV *End;
12340     if (canProveRHSGreaterThanEqualStart()) {
12341       End = RHS;
12342     } else {
12343       // If RHS < Start, the backedge will be taken zero times.  So in
12344       // general, we can write the backedge-taken count as:
12345       //
12346       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
12347       //
12348       // We convert it to the following to make it more convenient for SCEV:
12349       //
12350       //     ceil(max(RHS, Start) - Start) / Stride
12351       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12352 
12353       // See what would happen if we assume the backedge is taken. This is
12354       // used to compute MaxBECount.
12355       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12356     }
12357 
12358     // At this point, we know:
12359     //
12360     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12361     // 2. The index variable doesn't overflow.
12362     //
12363     // Therefore, we know N exists such that
12364     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12365     // doesn't overflow.
12366     //
12367     // Using this information, try to prove whether the addition in
12368     // "(Start - End) + (Stride - 1)" has unsigned overflow.
12369     const SCEV *One = getOne(Stride->getType());
12370     bool MayAddOverflow = [&] {
12371       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12372         if (StrideC->getAPInt().isPowerOf2()) {
12373           // Suppose Stride is a power of two, and Start/End are unsigned
12374           // integers.  Let UMAX be the largest representable unsigned
12375           // integer.
12376           //
12377           // By the preconditions of this function, we know
12378           // "(Start + Stride * N) >= End", and this doesn't overflow.
12379           // As a formula:
12380           //
12381           //   End <= (Start + Stride * N) <= UMAX
12382           //
12383           // Subtracting Start from all the terms:
12384           //
12385           //   End - Start <= Stride * N <= UMAX - Start
12386           //
12387           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12388           //
12389           //   End - Start <= Stride * N <= UMAX
12390           //
12391           // Stride * N is a multiple of Stride. Therefore,
12392           //
12393           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12394           //
12395           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12396           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12397           //
12398           //   End - Start <= Stride * N <= UMAX - Stride - 1
12399           //
12400           // Dropping the middle term:
12401           //
12402           //   End - Start <= UMAX - Stride - 1
12403           //
12404           // Adding Stride - 1 to both sides:
12405           //
12406           //   (End - Start) + (Stride - 1) <= UMAX
12407           //
12408           // In other words, the addition doesn't have unsigned overflow.
12409           //
12410           // A similar proof works if we treat Start/End as signed values.
12411           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12412           // use signed max instead of unsigned max. Note that we're trying
12413           // to prove a lack of unsigned overflow in either case.
12414           return false;
12415         }
12416       }
12417       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12418         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12419         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12420         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12421         //
12422         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12423         return false;
12424       }
12425       return true;
12426     }();
12427 
12428     const SCEV *Delta = getMinusSCEV(End, Start);
12429     if (!MayAddOverflow) {
12430       // floor((D + (S - 1)) / S)
12431       // We prefer this formulation if it's legal because it's fewer operations.
12432       BECount =
12433           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12434     } else {
12435       BECount = getUDivCeilSCEV(Delta, Stride);
12436     }
12437   }
12438 
12439   const SCEV *MaxBECount;
12440   bool MaxOrZero = false;
12441   if (isa<SCEVConstant>(BECount)) {
12442     MaxBECount = BECount;
12443   } else if (BECountIfBackedgeTaken &&
12444              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12445     // If we know exactly how many times the backedge will be taken if it's
12446     // taken at least once, then the backedge count will either be that or
12447     // zero.
12448     MaxBECount = BECountIfBackedgeTaken;
12449     MaxOrZero = true;
12450   } else {
12451     MaxBECount = computeMaxBECountForLT(
12452         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12453   }
12454 
12455   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12456       !isa<SCEVCouldNotCompute>(BECount))
12457     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12458 
12459   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12460 }
12461 
12462 ScalarEvolution::ExitLimit
12463 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12464                                      const Loop *L, bool IsSigned,
12465                                      bool ControlsExit, bool AllowPredicates) {
12466   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12467   // We handle only IV > Invariant
12468   if (!isLoopInvariant(RHS, L))
12469     return getCouldNotCompute();
12470 
12471   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12472   if (!IV && AllowPredicates)
12473     // Try to make this an AddRec using runtime tests, in the first X
12474     // iterations of this loop, where X is the SCEV expression found by the
12475     // algorithm below.
12476     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12477 
12478   // Avoid weird loops
12479   if (!IV || IV->getLoop() != L || !IV->isAffine())
12480     return getCouldNotCompute();
12481 
12482   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12483   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12484   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12485 
12486   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12487 
12488   // Avoid negative or zero stride values
12489   if (!isKnownPositive(Stride))
12490     return getCouldNotCompute();
12491 
12492   // Avoid proven overflow cases: this will ensure that the backedge taken count
12493   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12494   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12495   // behaviors like the case of C language.
12496   if (!Stride->isOne() && !NoWrap)
12497     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12498       return getCouldNotCompute();
12499 
12500   const SCEV *Start = IV->getStart();
12501   const SCEV *End = RHS;
12502   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12503     // If we know that Start >= RHS in the context of loop, then we know that
12504     // min(RHS, Start) = RHS at this point.
12505     if (isLoopEntryGuardedByCond(
12506             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12507       End = RHS;
12508     else
12509       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12510   }
12511 
12512   if (Start->getType()->isPointerTy()) {
12513     Start = getLosslessPtrToIntExpr(Start);
12514     if (isa<SCEVCouldNotCompute>(Start))
12515       return Start;
12516   }
12517   if (End->getType()->isPointerTy()) {
12518     End = getLosslessPtrToIntExpr(End);
12519     if (isa<SCEVCouldNotCompute>(End))
12520       return End;
12521   }
12522 
12523   // Compute ((Start - End) + (Stride - 1)) / Stride.
12524   // FIXME: This can overflow. Holding off on fixing this for now;
12525   // howManyGreaterThans will hopefully be gone soon.
12526   const SCEV *One = getOne(Stride->getType());
12527   const SCEV *BECount = getUDivExpr(
12528       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12529 
12530   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12531                             : getUnsignedRangeMax(Start);
12532 
12533   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12534                              : getUnsignedRangeMin(Stride);
12535 
12536   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12537   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12538                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12539 
12540   // Although End can be a MIN expression we estimate MinEnd considering only
12541   // the case End = RHS. This is safe because in the other case (Start - End)
12542   // is zero, leading to a zero maximum backedge taken count.
12543   APInt MinEnd =
12544     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12545              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12546 
12547   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12548                                ? BECount
12549                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12550                                                  getConstant(MinStride));
12551 
12552   if (isa<SCEVCouldNotCompute>(MaxBECount))
12553     MaxBECount = BECount;
12554 
12555   return ExitLimit(BECount, MaxBECount, false, Predicates);
12556 }
12557 
12558 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12559                                                     ScalarEvolution &SE) const {
12560   if (Range.isFullSet())  // Infinite loop.
12561     return SE.getCouldNotCompute();
12562 
12563   // If the start is a non-zero constant, shift the range to simplify things.
12564   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12565     if (!SC->getValue()->isZero()) {
12566       SmallVector<const SCEV *, 4> Operands(operands());
12567       Operands[0] = SE.getZero(SC->getType());
12568       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12569                                              getNoWrapFlags(FlagNW));
12570       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12571         return ShiftedAddRec->getNumIterationsInRange(
12572             Range.subtract(SC->getAPInt()), SE);
12573       // This is strange and shouldn't happen.
12574       return SE.getCouldNotCompute();
12575     }
12576 
12577   // The only time we can solve this is when we have all constant indices.
12578   // Otherwise, we cannot determine the overflow conditions.
12579   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12580     return SE.getCouldNotCompute();
12581 
12582   // Okay at this point we know that all elements of the chrec are constants and
12583   // that the start element is zero.
12584 
12585   // First check to see if the range contains zero.  If not, the first
12586   // iteration exits.
12587   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12588   if (!Range.contains(APInt(BitWidth, 0)))
12589     return SE.getZero(getType());
12590 
12591   if (isAffine()) {
12592     // If this is an affine expression then we have this situation:
12593     //   Solve {0,+,A} in Range  ===  Ax in Range
12594 
12595     // We know that zero is in the range.  If A is positive then we know that
12596     // the upper value of the range must be the first possible exit value.
12597     // If A is negative then the lower of the range is the last possible loop
12598     // value.  Also note that we already checked for a full range.
12599     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12600     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12601 
12602     // The exit value should be (End+A)/A.
12603     APInt ExitVal = (End + A).udiv(A);
12604     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12605 
12606     // Evaluate at the exit value.  If we really did fall out of the valid
12607     // range, then we computed our trip count, otherwise wrap around or other
12608     // things must have happened.
12609     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12610     if (Range.contains(Val->getValue()))
12611       return SE.getCouldNotCompute();  // Something strange happened
12612 
12613     // Ensure that the previous value is in the range.
12614     assert(Range.contains(
12615            EvaluateConstantChrecAtConstant(this,
12616            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12617            "Linear scev computation is off in a bad way!");
12618     return SE.getConstant(ExitValue);
12619   }
12620 
12621   if (isQuadratic()) {
12622     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12623       return SE.getConstant(S.getValue());
12624   }
12625 
12626   return SE.getCouldNotCompute();
12627 }
12628 
12629 const SCEVAddRecExpr *
12630 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12631   assert(getNumOperands() > 1 && "AddRec with zero step?");
12632   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12633   // but in this case we cannot guarantee that the value returned will be an
12634   // AddRec because SCEV does not have a fixed point where it stops
12635   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12636   // may happen if we reach arithmetic depth limit while simplifying. So we
12637   // construct the returned value explicitly.
12638   SmallVector<const SCEV *, 3> Ops;
12639   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12640   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12641   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12642     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12643   // We know that the last operand is not a constant zero (otherwise it would
12644   // have been popped out earlier). This guarantees us that if the result has
12645   // the same last operand, then it will also not be popped out, meaning that
12646   // the returned value will be an AddRec.
12647   const SCEV *Last = getOperand(getNumOperands() - 1);
12648   assert(!Last->isZero() && "Recurrency with zero step?");
12649   Ops.push_back(Last);
12650   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12651                                                SCEV::FlagAnyWrap));
12652 }
12653 
12654 // Return true when S contains at least an undef value.
12655 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
12656   return SCEVExprContains(S, [](const SCEV *S) {
12657     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12658       return isa<UndefValue>(SU->getValue());
12659     return false;
12660   });
12661 }
12662 
12663 /// Return the size of an element read or written by Inst.
12664 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12665   Type *Ty;
12666   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12667     Ty = Store->getValueOperand()->getType();
12668   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12669     Ty = Load->getType();
12670   else
12671     return nullptr;
12672 
12673   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12674   return getSizeOfExpr(ETy, Ty);
12675 }
12676 
12677 //===----------------------------------------------------------------------===//
12678 //                   SCEVCallbackVH Class Implementation
12679 //===----------------------------------------------------------------------===//
12680 
12681 void ScalarEvolution::SCEVCallbackVH::deleted() {
12682   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12683   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12684     SE->ConstantEvolutionLoopExitValue.erase(PN);
12685   SE->eraseValueFromMap(getValPtr());
12686   // this now dangles!
12687 }
12688 
12689 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12690   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12691 
12692   // Forget all the expressions associated with users of the old value,
12693   // so that future queries will recompute the expressions using the new
12694   // value.
12695   Value *Old = getValPtr();
12696   SmallVector<User *, 16> Worklist(Old->users());
12697   SmallPtrSet<User *, 8> Visited;
12698   while (!Worklist.empty()) {
12699     User *U = Worklist.pop_back_val();
12700     // Deleting the Old value will cause this to dangle. Postpone
12701     // that until everything else is done.
12702     if (U == Old)
12703       continue;
12704     if (!Visited.insert(U).second)
12705       continue;
12706     if (PHINode *PN = dyn_cast<PHINode>(U))
12707       SE->ConstantEvolutionLoopExitValue.erase(PN);
12708     SE->eraseValueFromMap(U);
12709     llvm::append_range(Worklist, U->users());
12710   }
12711   // Delete the Old value.
12712   if (PHINode *PN = dyn_cast<PHINode>(Old))
12713     SE->ConstantEvolutionLoopExitValue.erase(PN);
12714   SE->eraseValueFromMap(Old);
12715   // this now dangles!
12716 }
12717 
12718 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12719   : CallbackVH(V), SE(se) {}
12720 
12721 //===----------------------------------------------------------------------===//
12722 //                   ScalarEvolution Class Implementation
12723 //===----------------------------------------------------------------------===//
12724 
12725 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12726                                  AssumptionCache &AC, DominatorTree &DT,
12727                                  LoopInfo &LI)
12728     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12729       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12730       LoopDispositions(64), BlockDispositions(64) {
12731   // To use guards for proving predicates, we need to scan every instruction in
12732   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12733   // time if the IR does not actually contain any calls to
12734   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12735   //
12736   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12737   // to _add_ guards to the module when there weren't any before, and wants
12738   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12739   // efficient in lieu of being smart in that rather obscure case.
12740 
12741   auto *GuardDecl = F.getParent()->getFunction(
12742       Intrinsic::getName(Intrinsic::experimental_guard));
12743   HasGuards = GuardDecl && !GuardDecl->use_empty();
12744 }
12745 
12746 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12747     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12748       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12749       ValueExprMap(std::move(Arg.ValueExprMap)),
12750       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12751       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12752       PendingMerges(std::move(Arg.PendingMerges)),
12753       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12754       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12755       PredicatedBackedgeTakenCounts(
12756           std::move(Arg.PredicatedBackedgeTakenCounts)),
12757       BECountUsers(std::move(Arg.BECountUsers)),
12758       ConstantEvolutionLoopExitValue(
12759           std::move(Arg.ConstantEvolutionLoopExitValue)),
12760       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12761       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
12762       LoopDispositions(std::move(Arg.LoopDispositions)),
12763       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12764       BlockDispositions(std::move(Arg.BlockDispositions)),
12765       SCEVUsers(std::move(Arg.SCEVUsers)),
12766       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12767       SignedRanges(std::move(Arg.SignedRanges)),
12768       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12769       UniquePreds(std::move(Arg.UniquePreds)),
12770       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12771       LoopUsers(std::move(Arg.LoopUsers)),
12772       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12773       FirstUnknown(Arg.FirstUnknown) {
12774   Arg.FirstUnknown = nullptr;
12775 }
12776 
12777 ScalarEvolution::~ScalarEvolution() {
12778   // Iterate through all the SCEVUnknown instances and call their
12779   // destructors, so that they release their references to their values.
12780   for (SCEVUnknown *U = FirstUnknown; U;) {
12781     SCEVUnknown *Tmp = U;
12782     U = U->Next;
12783     Tmp->~SCEVUnknown();
12784   }
12785   FirstUnknown = nullptr;
12786 
12787   ExprValueMap.clear();
12788   ValueExprMap.clear();
12789   HasRecMap.clear();
12790   BackedgeTakenCounts.clear();
12791   PredicatedBackedgeTakenCounts.clear();
12792 
12793   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12794   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12795   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12796   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12797   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12798 }
12799 
12800 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12801   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12802 }
12803 
12804 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12805                           const Loop *L) {
12806   // Print all inner loops first
12807   for (Loop *I : *L)
12808     PrintLoopInfo(OS, SE, I);
12809 
12810   OS << "Loop ";
12811   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12812   OS << ": ";
12813 
12814   SmallVector<BasicBlock *, 8> ExitingBlocks;
12815   L->getExitingBlocks(ExitingBlocks);
12816   if (ExitingBlocks.size() != 1)
12817     OS << "<multiple exits> ";
12818 
12819   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12820     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12821   else
12822     OS << "Unpredictable backedge-taken count.\n";
12823 
12824   if (ExitingBlocks.size() > 1)
12825     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12826       OS << "  exit count for " << ExitingBlock->getName() << ": "
12827          << *SE->getExitCount(L, ExitingBlock) << "\n";
12828     }
12829 
12830   OS << "Loop ";
12831   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12832   OS << ": ";
12833 
12834   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12835     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12836     if (SE->isBackedgeTakenCountMaxOrZero(L))
12837       OS << ", actual taken count either this or zero.";
12838   } else {
12839     OS << "Unpredictable max backedge-taken count. ";
12840   }
12841 
12842   OS << "\n"
12843         "Loop ";
12844   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12845   OS << ": ";
12846 
12847   SmallVector<const SCEVPredicate *, 4> Preds;
12848   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
12849   if (!isa<SCEVCouldNotCompute>(PBT)) {
12850     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12851     OS << " Predicates:\n";
12852     SCEVUnionPredicate Dedup(Preds);
12853     Dedup.print(OS, 4);
12854   } else {
12855     OS << "Unpredictable predicated backedge-taken count. ";
12856   }
12857   OS << "\n";
12858 
12859   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12860     OS << "Loop ";
12861     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12862     OS << ": ";
12863     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12864   }
12865 }
12866 
12867 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12868   switch (LD) {
12869   case ScalarEvolution::LoopVariant:
12870     return "Variant";
12871   case ScalarEvolution::LoopInvariant:
12872     return "Invariant";
12873   case ScalarEvolution::LoopComputable:
12874     return "Computable";
12875   }
12876   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12877 }
12878 
12879 void ScalarEvolution::print(raw_ostream &OS) const {
12880   // ScalarEvolution's implementation of the print method is to print
12881   // out SCEV values of all instructions that are interesting. Doing
12882   // this potentially causes it to create new SCEV objects though,
12883   // which technically conflicts with the const qualifier. This isn't
12884   // observable from outside the class though, so casting away the
12885   // const isn't dangerous.
12886   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12887 
12888   if (ClassifyExpressions) {
12889     OS << "Classifying expressions for: ";
12890     F.printAsOperand(OS, /*PrintType=*/false);
12891     OS << "\n";
12892     for (Instruction &I : instructions(F))
12893       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12894         OS << I << '\n';
12895         OS << "  -->  ";
12896         const SCEV *SV = SE.getSCEV(&I);
12897         SV->print(OS);
12898         if (!isa<SCEVCouldNotCompute>(SV)) {
12899           OS << " U: ";
12900           SE.getUnsignedRange(SV).print(OS);
12901           OS << " S: ";
12902           SE.getSignedRange(SV).print(OS);
12903         }
12904 
12905         const Loop *L = LI.getLoopFor(I.getParent());
12906 
12907         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12908         if (AtUse != SV) {
12909           OS << "  -->  ";
12910           AtUse->print(OS);
12911           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12912             OS << " U: ";
12913             SE.getUnsignedRange(AtUse).print(OS);
12914             OS << " S: ";
12915             SE.getSignedRange(AtUse).print(OS);
12916           }
12917         }
12918 
12919         if (L) {
12920           OS << "\t\t" "Exits: ";
12921           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12922           if (!SE.isLoopInvariant(ExitValue, L)) {
12923             OS << "<<Unknown>>";
12924           } else {
12925             OS << *ExitValue;
12926           }
12927 
12928           bool First = true;
12929           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12930             if (First) {
12931               OS << "\t\t" "LoopDispositions: { ";
12932               First = false;
12933             } else {
12934               OS << ", ";
12935             }
12936 
12937             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12938             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12939           }
12940 
12941           for (auto *InnerL : depth_first(L)) {
12942             if (InnerL == L)
12943               continue;
12944             if (First) {
12945               OS << "\t\t" "LoopDispositions: { ";
12946               First = false;
12947             } else {
12948               OS << ", ";
12949             }
12950 
12951             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12952             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12953           }
12954 
12955           OS << " }";
12956         }
12957 
12958         OS << "\n";
12959       }
12960   }
12961 
12962   OS << "Determining loop execution counts for: ";
12963   F.printAsOperand(OS, /*PrintType=*/false);
12964   OS << "\n";
12965   for (Loop *I : LI)
12966     PrintLoopInfo(OS, &SE, I);
12967 }
12968 
12969 ScalarEvolution::LoopDisposition
12970 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12971   auto &Values = LoopDispositions[S];
12972   for (auto &V : Values) {
12973     if (V.getPointer() == L)
12974       return V.getInt();
12975   }
12976   Values.emplace_back(L, LoopVariant);
12977   LoopDisposition D = computeLoopDisposition(S, L);
12978   auto &Values2 = LoopDispositions[S];
12979   for (auto &V : llvm::reverse(Values2)) {
12980     if (V.getPointer() == L) {
12981       V.setInt(D);
12982       break;
12983     }
12984   }
12985   return D;
12986 }
12987 
12988 ScalarEvolution::LoopDisposition
12989 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12990   switch (S->getSCEVType()) {
12991   case scConstant:
12992     return LoopInvariant;
12993   case scPtrToInt:
12994   case scTruncate:
12995   case scZeroExtend:
12996   case scSignExtend:
12997     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12998   case scAddRecExpr: {
12999     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13000 
13001     // If L is the addrec's loop, it's computable.
13002     if (AR->getLoop() == L)
13003       return LoopComputable;
13004 
13005     // Add recurrences are never invariant in the function-body (null loop).
13006     if (!L)
13007       return LoopVariant;
13008 
13009     // Everything that is not defined at loop entry is variant.
13010     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13011       return LoopVariant;
13012     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13013            " dominate the contained loop's header?");
13014 
13015     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13016     if (AR->getLoop()->contains(L))
13017       return LoopInvariant;
13018 
13019     // This recurrence is variant w.r.t. L if any of its operands
13020     // are variant.
13021     for (auto *Op : AR->operands())
13022       if (!isLoopInvariant(Op, L))
13023         return LoopVariant;
13024 
13025     // Otherwise it's loop-invariant.
13026     return LoopInvariant;
13027   }
13028   case scAddExpr:
13029   case scMulExpr:
13030   case scUMaxExpr:
13031   case scSMaxExpr:
13032   case scUMinExpr:
13033   case scSMinExpr:
13034   case scSequentialUMinExpr: {
13035     bool HasVarying = false;
13036     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
13037       LoopDisposition D = getLoopDisposition(Op, L);
13038       if (D == LoopVariant)
13039         return LoopVariant;
13040       if (D == LoopComputable)
13041         HasVarying = true;
13042     }
13043     return HasVarying ? LoopComputable : LoopInvariant;
13044   }
13045   case scUDivExpr: {
13046     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13047     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13048     if (LD == LoopVariant)
13049       return LoopVariant;
13050     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13051     if (RD == LoopVariant)
13052       return LoopVariant;
13053     return (LD == LoopInvariant && RD == LoopInvariant) ?
13054            LoopInvariant : LoopComputable;
13055   }
13056   case scUnknown:
13057     // All non-instruction values are loop invariant.  All instructions are loop
13058     // invariant if they are not contained in the specified loop.
13059     // Instructions are never considered invariant in the function body
13060     // (null loop) because they are defined within the "loop".
13061     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13062       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13063     return LoopInvariant;
13064   case scCouldNotCompute:
13065     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13066   }
13067   llvm_unreachable("Unknown SCEV kind!");
13068 }
13069 
13070 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13071   return getLoopDisposition(S, L) == LoopInvariant;
13072 }
13073 
13074 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13075   return getLoopDisposition(S, L) == LoopComputable;
13076 }
13077 
13078 ScalarEvolution::BlockDisposition
13079 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13080   auto &Values = BlockDispositions[S];
13081   for (auto &V : Values) {
13082     if (V.getPointer() == BB)
13083       return V.getInt();
13084   }
13085   Values.emplace_back(BB, DoesNotDominateBlock);
13086   BlockDisposition D = computeBlockDisposition(S, BB);
13087   auto &Values2 = BlockDispositions[S];
13088   for (auto &V : llvm::reverse(Values2)) {
13089     if (V.getPointer() == BB) {
13090       V.setInt(D);
13091       break;
13092     }
13093   }
13094   return D;
13095 }
13096 
13097 ScalarEvolution::BlockDisposition
13098 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13099   switch (S->getSCEVType()) {
13100   case scConstant:
13101     return ProperlyDominatesBlock;
13102   case scPtrToInt:
13103   case scTruncate:
13104   case scZeroExtend:
13105   case scSignExtend:
13106     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13107   case scAddRecExpr: {
13108     // This uses a "dominates" query instead of "properly dominates" query
13109     // to test for proper dominance too, because the instruction which
13110     // produces the addrec's value is a PHI, and a PHI effectively properly
13111     // dominates its entire containing block.
13112     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13113     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13114       return DoesNotDominateBlock;
13115 
13116     // Fall through into SCEVNAryExpr handling.
13117     LLVM_FALLTHROUGH;
13118   }
13119   case scAddExpr:
13120   case scMulExpr:
13121   case scUMaxExpr:
13122   case scSMaxExpr:
13123   case scUMinExpr:
13124   case scSMinExpr:
13125   case scSequentialUMinExpr: {
13126     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13127     bool Proper = true;
13128     for (const SCEV *NAryOp : NAry->operands()) {
13129       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13130       if (D == DoesNotDominateBlock)
13131         return DoesNotDominateBlock;
13132       if (D == DominatesBlock)
13133         Proper = false;
13134     }
13135     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13136   }
13137   case scUDivExpr: {
13138     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13139     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13140     BlockDisposition LD = getBlockDisposition(LHS, BB);
13141     if (LD == DoesNotDominateBlock)
13142       return DoesNotDominateBlock;
13143     BlockDisposition RD = getBlockDisposition(RHS, BB);
13144     if (RD == DoesNotDominateBlock)
13145       return DoesNotDominateBlock;
13146     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13147       ProperlyDominatesBlock : DominatesBlock;
13148   }
13149   case scUnknown:
13150     if (Instruction *I =
13151           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13152       if (I->getParent() == BB)
13153         return DominatesBlock;
13154       if (DT.properlyDominates(I->getParent(), BB))
13155         return ProperlyDominatesBlock;
13156       return DoesNotDominateBlock;
13157     }
13158     return ProperlyDominatesBlock;
13159   case scCouldNotCompute:
13160     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13161   }
13162   llvm_unreachable("Unknown SCEV kind!");
13163 }
13164 
13165 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13166   return getBlockDisposition(S, BB) >= DominatesBlock;
13167 }
13168 
13169 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13170   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13171 }
13172 
13173 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13174   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13175 }
13176 
13177 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13178                                                 bool Predicated) {
13179   auto &BECounts =
13180       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13181   auto It = BECounts.find(L);
13182   if (It != BECounts.end()) {
13183     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13184       if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13185         auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13186         assert(UserIt != BECountUsers.end());
13187         UserIt->second.erase({L, Predicated});
13188       }
13189     }
13190     BECounts.erase(It);
13191   }
13192 }
13193 
13194 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13195   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13196   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13197 
13198   while (!Worklist.empty()) {
13199     const SCEV *Curr = Worklist.pop_back_val();
13200     auto Users = SCEVUsers.find(Curr);
13201     if (Users != SCEVUsers.end())
13202       for (auto *User : Users->second)
13203         if (ToForget.insert(User).second)
13204           Worklist.push_back(User);
13205   }
13206 
13207   for (auto *S : ToForget)
13208     forgetMemoizedResultsImpl(S);
13209 
13210   for (auto I = PredicatedSCEVRewrites.begin();
13211        I != PredicatedSCEVRewrites.end();) {
13212     std::pair<const SCEV *, const Loop *> Entry = I->first;
13213     if (ToForget.count(Entry.first))
13214       PredicatedSCEVRewrites.erase(I++);
13215     else
13216       ++I;
13217   }
13218 }
13219 
13220 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13221   LoopDispositions.erase(S);
13222   BlockDispositions.erase(S);
13223   UnsignedRanges.erase(S);
13224   SignedRanges.erase(S);
13225   HasRecMap.erase(S);
13226   MinTrailingZerosCache.erase(S);
13227 
13228   auto ExprIt = ExprValueMap.find(S);
13229   if (ExprIt != ExprValueMap.end()) {
13230     for (auto &ValueAndOffset : ExprIt->second) {
13231       if (ValueAndOffset.second == nullptr) {
13232         auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first);
13233         if (ValueIt != ValueExprMap.end())
13234           ValueExprMap.erase(ValueIt);
13235       }
13236     }
13237     ExprValueMap.erase(ExprIt);
13238   }
13239 
13240   auto ScopeIt = ValuesAtScopes.find(S);
13241   if (ScopeIt != ValuesAtScopes.end()) {
13242     for (const auto &Pair : ScopeIt->second)
13243       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13244         erase_value(ValuesAtScopesUsers[Pair.second],
13245                     std::make_pair(Pair.first, S));
13246     ValuesAtScopes.erase(ScopeIt);
13247   }
13248 
13249   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13250   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13251     for (const auto &Pair : ScopeUserIt->second)
13252       erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13253     ValuesAtScopesUsers.erase(ScopeUserIt);
13254   }
13255 
13256   auto BEUsersIt = BECountUsers.find(S);
13257   if (BEUsersIt != BECountUsers.end()) {
13258     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13259     auto Copy = BEUsersIt->second;
13260     for (const auto &Pair : Copy)
13261       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13262     BECountUsers.erase(BEUsersIt);
13263   }
13264 }
13265 
13266 void
13267 ScalarEvolution::getUsedLoops(const SCEV *S,
13268                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13269   struct FindUsedLoops {
13270     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13271         : LoopsUsed(LoopsUsed) {}
13272     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13273     bool follow(const SCEV *S) {
13274       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13275         LoopsUsed.insert(AR->getLoop());
13276       return true;
13277     }
13278 
13279     bool isDone() const { return false; }
13280   };
13281 
13282   FindUsedLoops F(LoopsUsed);
13283   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13284 }
13285 
13286 void ScalarEvolution::verify() const {
13287   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13288   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13289 
13290   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13291 
13292   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13293   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13294     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13295 
13296     const SCEV *visitConstant(const SCEVConstant *Constant) {
13297       return SE.getConstant(Constant->getAPInt());
13298     }
13299 
13300     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13301       return SE.getUnknown(Expr->getValue());
13302     }
13303 
13304     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13305       return SE.getCouldNotCompute();
13306     }
13307   };
13308 
13309   SCEVMapper SCM(SE2);
13310 
13311   while (!LoopStack.empty()) {
13312     auto *L = LoopStack.pop_back_val();
13313     llvm::append_range(LoopStack, *L);
13314 
13315     auto *CurBECount = SCM.visit(
13316         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
13317     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13318 
13319     if (CurBECount == SE2.getCouldNotCompute() ||
13320         NewBECount == SE2.getCouldNotCompute()) {
13321       // NB! This situation is legal, but is very suspicious -- whatever pass
13322       // change the loop to make a trip count go from could not compute to
13323       // computable or vice-versa *should have* invalidated SCEV.  However, we
13324       // choose not to assert here (for now) since we don't want false
13325       // positives.
13326       continue;
13327     }
13328 
13329     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13330       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13331       // not propagate undef aggressively).  This means we can (and do) fail
13332       // verification in cases where a transform makes the trip count of a loop
13333       // go from "undef" to "undef+1" (say).  The transform is fine, since in
13334       // both cases the loop iterates "undef" times, but SCEV thinks we
13335       // increased the trip count of the loop by 1 incorrectly.
13336       continue;
13337     }
13338 
13339     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13340         SE.getTypeSizeInBits(NewBECount->getType()))
13341       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13342     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13343              SE.getTypeSizeInBits(NewBECount->getType()))
13344       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13345 
13346     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13347 
13348     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13349     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13350       dbgs() << "Trip Count for " << *L << " Changed!\n";
13351       dbgs() << "Old: " << *CurBECount << "\n";
13352       dbgs() << "New: " << *NewBECount << "\n";
13353       dbgs() << "Delta: " << *Delta << "\n";
13354       std::abort();
13355     }
13356   }
13357 
13358   // Collect all valid loops currently in LoopInfo.
13359   SmallPtrSet<Loop *, 32> ValidLoops;
13360   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13361   while (!Worklist.empty()) {
13362     Loop *L = Worklist.pop_back_val();
13363     if (ValidLoops.contains(L))
13364       continue;
13365     ValidLoops.insert(L);
13366     Worklist.append(L->begin(), L->end());
13367   }
13368   for (auto &KV : ValueExprMap) {
13369 #ifndef NDEBUG
13370     // Check for SCEV expressions referencing invalid/deleted loops.
13371     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
13372       assert(ValidLoops.contains(AR->getLoop()) &&
13373              "AddRec references invalid loop");
13374     }
13375 #endif
13376 
13377     // Check that the value is also part of the reverse map.
13378     auto It = ExprValueMap.find(KV.second);
13379     if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) {
13380       dbgs() << "Value " << *KV.first
13381              << " is in ValueExprMap but not in ExprValueMap\n";
13382       std::abort();
13383     }
13384   }
13385 
13386   for (const auto &KV : ExprValueMap) {
13387     for (const auto &ValueAndOffset : KV.second) {
13388       if (ValueAndOffset.second != nullptr)
13389         continue;
13390 
13391       auto It = ValueExprMap.find_as(ValueAndOffset.first);
13392       if (It == ValueExprMap.end()) {
13393         dbgs() << "Value " << *ValueAndOffset.first
13394                << " is in ExprValueMap but not in ValueExprMap\n";
13395         std::abort();
13396       }
13397       if (It->second != KV.first) {
13398         dbgs() << "Value " << *ValueAndOffset.first
13399                << " mapped to " << *It->second
13400                << " rather than " << *KV.first << "\n";
13401         std::abort();
13402       }
13403     }
13404   }
13405 
13406   // Verify integrity of SCEV users.
13407   for (const auto &S : UniqueSCEVs) {
13408     SmallVector<const SCEV *, 4> Ops;
13409     collectUniqueOps(&S, Ops);
13410     for (const auto *Op : Ops) {
13411       // We do not store dependencies of constants.
13412       if (isa<SCEVConstant>(Op))
13413         continue;
13414       auto It = SCEVUsers.find(Op);
13415       if (It != SCEVUsers.end() && It->second.count(&S))
13416         continue;
13417       dbgs() << "Use of operand  " << *Op << " by user " << S
13418              << " is not being tracked!\n";
13419       std::abort();
13420     }
13421   }
13422 
13423   // Verify integrity of ValuesAtScopes users.
13424   for (const auto &ValueAndVec : ValuesAtScopes) {
13425     const SCEV *Value = ValueAndVec.first;
13426     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
13427       const Loop *L = LoopAndValueAtScope.first;
13428       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
13429       if (!isa<SCEVConstant>(ValueAtScope)) {
13430         auto It = ValuesAtScopesUsers.find(ValueAtScope);
13431         if (It != ValuesAtScopesUsers.end() &&
13432             is_contained(It->second, std::make_pair(L, Value)))
13433           continue;
13434         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13435                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
13436         std::abort();
13437       }
13438     }
13439   }
13440 
13441   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
13442     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
13443     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
13444       const Loop *L = LoopAndValue.first;
13445       const SCEV *Value = LoopAndValue.second;
13446       assert(!isa<SCEVConstant>(Value));
13447       auto It = ValuesAtScopes.find(Value);
13448       if (It != ValuesAtScopes.end() &&
13449           is_contained(It->second, std::make_pair(L, ValueAtScope)))
13450         continue;
13451       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13452              << *ValueAtScope << " missing in ValuesAtScopes\n";
13453       std::abort();
13454     }
13455   }
13456 
13457   // Verify integrity of BECountUsers.
13458   auto VerifyBECountUsers = [&](bool Predicated) {
13459     auto &BECounts =
13460         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13461     for (const auto &LoopAndBEInfo : BECounts) {
13462       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
13463         if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13464           auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13465           if (UserIt != BECountUsers.end() &&
13466               UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
13467             continue;
13468           dbgs() << "Value " << *ENT.ExactNotTaken << " for loop "
13469                  << *LoopAndBEInfo.first << " missing from BECountUsers\n";
13470           std::abort();
13471         }
13472       }
13473     }
13474   };
13475   VerifyBECountUsers(/* Predicated */ false);
13476   VerifyBECountUsers(/* Predicated */ true);
13477 }
13478 
13479 bool ScalarEvolution::invalidate(
13480     Function &F, const PreservedAnalyses &PA,
13481     FunctionAnalysisManager::Invalidator &Inv) {
13482   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13483   // of its dependencies is invalidated.
13484   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13485   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13486          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13487          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13488          Inv.invalidate<LoopAnalysis>(F, PA);
13489 }
13490 
13491 AnalysisKey ScalarEvolutionAnalysis::Key;
13492 
13493 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13494                                              FunctionAnalysisManager &AM) {
13495   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13496                          AM.getResult<AssumptionAnalysis>(F),
13497                          AM.getResult<DominatorTreeAnalysis>(F),
13498                          AM.getResult<LoopAnalysis>(F));
13499 }
13500 
13501 PreservedAnalyses
13502 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13503   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13504   return PreservedAnalyses::all();
13505 }
13506 
13507 PreservedAnalyses
13508 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13509   // For compatibility with opt's -analyze feature under legacy pass manager
13510   // which was not ported to NPM. This keeps tests using
13511   // update_analyze_test_checks.py working.
13512   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13513      << F.getName() << "':\n";
13514   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13515   return PreservedAnalyses::all();
13516 }
13517 
13518 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13519                       "Scalar Evolution Analysis", false, true)
13520 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13521 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13522 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13523 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13524 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13525                     "Scalar Evolution Analysis", false, true)
13526 
13527 char ScalarEvolutionWrapperPass::ID = 0;
13528 
13529 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13530   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13531 }
13532 
13533 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13534   SE.reset(new ScalarEvolution(
13535       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13536       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13537       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13538       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13539   return false;
13540 }
13541 
13542 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13543 
13544 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13545   SE->print(OS);
13546 }
13547 
13548 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13549   if (!VerifySCEV)
13550     return;
13551 
13552   SE->verify();
13553 }
13554 
13555 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13556   AU.setPreservesAll();
13557   AU.addRequiredTransitive<AssumptionCacheTracker>();
13558   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13559   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13560   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13561 }
13562 
13563 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13564                                                         const SCEV *RHS) {
13565   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
13566 }
13567 
13568 const SCEVPredicate *
13569 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
13570                                      const SCEV *LHS, const SCEV *RHS) {
13571   FoldingSetNodeID ID;
13572   assert(LHS->getType() == RHS->getType() &&
13573          "Type mismatch between LHS and RHS");
13574   // Unique this node based on the arguments
13575   ID.AddInteger(SCEVPredicate::P_Compare);
13576   ID.AddInteger(Pred);
13577   ID.AddPointer(LHS);
13578   ID.AddPointer(RHS);
13579   void *IP = nullptr;
13580   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13581     return S;
13582   SCEVComparePredicate *Eq = new (SCEVAllocator)
13583     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
13584   UniquePreds.InsertNode(Eq, IP);
13585   return Eq;
13586 }
13587 
13588 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13589     const SCEVAddRecExpr *AR,
13590     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13591   FoldingSetNodeID ID;
13592   // Unique this node based on the arguments
13593   ID.AddInteger(SCEVPredicate::P_Wrap);
13594   ID.AddPointer(AR);
13595   ID.AddInteger(AddedFlags);
13596   void *IP = nullptr;
13597   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13598     return S;
13599   auto *OF = new (SCEVAllocator)
13600       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13601   UniquePreds.InsertNode(OF, IP);
13602   return OF;
13603 }
13604 
13605 namespace {
13606 
13607 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13608 public:
13609 
13610   /// Rewrites \p S in the context of a loop L and the SCEV predication
13611   /// infrastructure.
13612   ///
13613   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13614   /// equivalences present in \p Pred.
13615   ///
13616   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13617   /// \p NewPreds such that the result will be an AddRecExpr.
13618   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13619                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13620                              SCEVUnionPredicate *Pred) {
13621     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13622     return Rewriter.visit(S);
13623   }
13624 
13625   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13626     if (Pred) {
13627       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13628       for (auto *Pred : ExprPreds)
13629         if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
13630           if (IPred->getLHS() == Expr &&
13631               IPred->getPredicate() == ICmpInst::ICMP_EQ)
13632             return IPred->getRHS();
13633     }
13634     return convertToAddRecWithPreds(Expr);
13635   }
13636 
13637   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13638     const SCEV *Operand = visit(Expr->getOperand());
13639     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13640     if (AR && AR->getLoop() == L && AR->isAffine()) {
13641       // This couldn't be folded because the operand didn't have the nuw
13642       // flag. Add the nusw flag as an assumption that we could make.
13643       const SCEV *Step = AR->getStepRecurrence(SE);
13644       Type *Ty = Expr->getType();
13645       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13646         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13647                                 SE.getSignExtendExpr(Step, Ty), L,
13648                                 AR->getNoWrapFlags());
13649     }
13650     return SE.getZeroExtendExpr(Operand, Expr->getType());
13651   }
13652 
13653   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13654     const SCEV *Operand = visit(Expr->getOperand());
13655     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13656     if (AR && AR->getLoop() == L && AR->isAffine()) {
13657       // This couldn't be folded because the operand didn't have the nsw
13658       // flag. Add the nssw flag as an assumption that we could make.
13659       const SCEV *Step = AR->getStepRecurrence(SE);
13660       Type *Ty = Expr->getType();
13661       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13662         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13663                                 SE.getSignExtendExpr(Step, Ty), L,
13664                                 AR->getNoWrapFlags());
13665     }
13666     return SE.getSignExtendExpr(Operand, Expr->getType());
13667   }
13668 
13669 private:
13670   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13671                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13672                         SCEVUnionPredicate *Pred)
13673       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13674 
13675   bool addOverflowAssumption(const SCEVPredicate *P) {
13676     if (!NewPreds) {
13677       // Check if we've already made this assumption.
13678       return Pred && Pred->implies(P);
13679     }
13680     NewPreds->insert(P);
13681     return true;
13682   }
13683 
13684   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13685                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13686     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13687     return addOverflowAssumption(A);
13688   }
13689 
13690   // If \p Expr represents a PHINode, we try to see if it can be represented
13691   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13692   // to add this predicate as a runtime overflow check, we return the AddRec.
13693   // If \p Expr does not meet these conditions (is not a PHI node, or we
13694   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13695   // return \p Expr.
13696   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13697     if (!isa<PHINode>(Expr->getValue()))
13698       return Expr;
13699     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13700     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13701     if (!PredicatedRewrite)
13702       return Expr;
13703     for (auto *P : PredicatedRewrite->second){
13704       // Wrap predicates from outer loops are not supported.
13705       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13706         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13707         if (L != AR->getLoop())
13708           return Expr;
13709       }
13710       if (!addOverflowAssumption(P))
13711         return Expr;
13712     }
13713     return PredicatedRewrite->first;
13714   }
13715 
13716   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13717   SCEVUnionPredicate *Pred;
13718   const Loop *L;
13719 };
13720 
13721 } // end anonymous namespace
13722 
13723 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13724                                                    SCEVUnionPredicate &Preds) {
13725   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13726 }
13727 
13728 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13729     const SCEV *S, const Loop *L,
13730     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13731   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13732   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13733   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13734 
13735   if (!AddRec)
13736     return nullptr;
13737 
13738   // Since the transformation was successful, we can now transfer the SCEV
13739   // predicates.
13740   for (auto *P : TransformPreds)
13741     Preds.insert(P);
13742 
13743   return AddRec;
13744 }
13745 
13746 /// SCEV predicates
13747 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13748                              SCEVPredicateKind Kind)
13749     : FastID(ID), Kind(Kind) {}
13750 
13751 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
13752                                    const ICmpInst::Predicate Pred,
13753                                    const SCEV *LHS, const SCEV *RHS)
13754   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
13755   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13756   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13757 }
13758 
13759 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
13760   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
13761 
13762   if (!Op)
13763     return false;
13764 
13765   if (Pred != ICmpInst::ICMP_EQ)
13766     return false;
13767 
13768   return Op->LHS == LHS && Op->RHS == RHS;
13769 }
13770 
13771 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
13772 
13773 const SCEV *SCEVComparePredicate::getExpr() const { return LHS; }
13774 
13775 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
13776   if (Pred == ICmpInst::ICMP_EQ)
13777     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13778   else
13779     OS.indent(Depth) << "Compare predicate: " << *LHS
13780                      << " " << CmpInst::getPredicateName(Pred) << ") "
13781                      << *RHS << "\n";
13782 
13783 }
13784 
13785 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13786                                      const SCEVAddRecExpr *AR,
13787                                      IncrementWrapFlags Flags)
13788     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13789 
13790 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13791 
13792 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13793   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13794 
13795   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13796 }
13797 
13798 bool SCEVWrapPredicate::isAlwaysTrue() const {
13799   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13800   IncrementWrapFlags IFlags = Flags;
13801 
13802   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13803     IFlags = clearFlags(IFlags, IncrementNSSW);
13804 
13805   return IFlags == IncrementAnyWrap;
13806 }
13807 
13808 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13809   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13810   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13811     OS << "<nusw>";
13812   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13813     OS << "<nssw>";
13814   OS << "\n";
13815 }
13816 
13817 SCEVWrapPredicate::IncrementWrapFlags
13818 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13819                                    ScalarEvolution &SE) {
13820   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13821   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13822 
13823   // We can safely transfer the NSW flag as NSSW.
13824   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13825     ImpliedFlags = IncrementNSSW;
13826 
13827   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13828     // If the increment is positive, the SCEV NUW flag will also imply the
13829     // WrapPredicate NUSW flag.
13830     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13831       if (Step->getValue()->getValue().isNonNegative())
13832         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13833   }
13834 
13835   return ImpliedFlags;
13836 }
13837 
13838 /// Union predicates don't get cached so create a dummy set ID for it.
13839 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
13840   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
13841   for (auto *P : Preds)
13842     add(P);
13843 }
13844 
13845 bool SCEVUnionPredicate::isAlwaysTrue() const {
13846   return all_of(Preds,
13847                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13848 }
13849 
13850 ArrayRef<const SCEVPredicate *>
13851 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13852   auto I = SCEVToPreds.find(Expr);
13853   if (I == SCEVToPreds.end())
13854     return ArrayRef<const SCEVPredicate *>();
13855   return I->second;
13856 }
13857 
13858 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13859   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13860     return all_of(Set->Preds,
13861                   [this](const SCEVPredicate *I) { return this->implies(I); });
13862 
13863   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13864   if (ScevPredsIt == SCEVToPreds.end())
13865     return false;
13866   auto &SCEVPreds = ScevPredsIt->second;
13867 
13868   return any_of(SCEVPreds,
13869                 [N](const SCEVPredicate *I) { return I->implies(N); });
13870 }
13871 
13872 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13873 
13874 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13875   for (auto Pred : Preds)
13876     Pred->print(OS, Depth);
13877 }
13878 
13879 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13880   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13881     for (auto Pred : Set->Preds)
13882       add(Pred);
13883     return;
13884   }
13885 
13886   if (implies(N))
13887     return;
13888 
13889   const SCEV *Key = N->getExpr();
13890   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13891                 " associated expression!");
13892 
13893   SCEVToPreds[Key].push_back(N);
13894   Preds.push_back(N);
13895 }
13896 
13897 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13898                                                      Loop &L)
13899     : SE(SE), L(L) {
13900   SmallVector<const SCEVPredicate*, 4> Empty;
13901   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
13902 }
13903 
13904 void ScalarEvolution::registerUser(const SCEV *User,
13905                                    ArrayRef<const SCEV *> Ops) {
13906   for (auto *Op : Ops)
13907     // We do not expect that forgetting cached data for SCEVConstants will ever
13908     // open any prospects for sharpening or introduce any correctness issues,
13909     // so we don't bother storing their dependencies.
13910     if (!isa<SCEVConstant>(Op))
13911       SCEVUsers[Op].insert(User);
13912 }
13913 
13914 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13915   const SCEV *Expr = SE.getSCEV(V);
13916   RewriteEntry &Entry = RewriteMap[Expr];
13917 
13918   // If we already have an entry and the version matches, return it.
13919   if (Entry.second && Generation == Entry.first)
13920     return Entry.second;
13921 
13922   // We found an entry but it's stale. Rewrite the stale entry
13923   // according to the current predicate.
13924   if (Entry.second)
13925     Expr = Entry.second;
13926 
13927   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
13928   Entry = {Generation, NewSCEV};
13929 
13930   return NewSCEV;
13931 }
13932 
13933 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13934   if (!BackedgeCount) {
13935     SmallVector<const SCEVPredicate *, 4> Preds;
13936     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
13937     for (auto *P : Preds)
13938       addPredicate(*P);
13939   }
13940   return BackedgeCount;
13941 }
13942 
13943 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13944   if (Preds->implies(&Pred))
13945     return;
13946 
13947   auto &OldPreds = Preds->getPredicates();
13948   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
13949   NewPreds.push_back(&Pred);
13950   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
13951   updateGeneration();
13952 }
13953 
13954 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13955   return *Preds;
13956 }
13957 
13958 void PredicatedScalarEvolution::updateGeneration() {
13959   // If the generation number wrapped recompute everything.
13960   if (++Generation == 0) {
13961     for (auto &II : RewriteMap) {
13962       const SCEV *Rewritten = II.second.second;
13963       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
13964     }
13965   }
13966 }
13967 
13968 void PredicatedScalarEvolution::setNoOverflow(
13969     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13970   const SCEV *Expr = getSCEV(V);
13971   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13972 
13973   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13974 
13975   // Clear the statically implied flags.
13976   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13977   addPredicate(*SE.getWrapPredicate(AR, Flags));
13978 
13979   auto II = FlagsMap.insert({V, Flags});
13980   if (!II.second)
13981     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13982 }
13983 
13984 bool PredicatedScalarEvolution::hasNoOverflow(
13985     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13986   const SCEV *Expr = getSCEV(V);
13987   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13988 
13989   Flags = SCEVWrapPredicate::clearFlags(
13990       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13991 
13992   auto II = FlagsMap.find(V);
13993 
13994   if (II != FlagsMap.end())
13995     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13996 
13997   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13998 }
13999 
14000 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14001   const SCEV *Expr = this->getSCEV(V);
14002   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14003   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14004 
14005   if (!New)
14006     return nullptr;
14007 
14008   for (auto *P : NewPreds)
14009     addPredicate(*P);
14010 
14011   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14012   return New;
14013 }
14014 
14015 PredicatedScalarEvolution::PredicatedScalarEvolution(
14016     const PredicatedScalarEvolution &Init)
14017   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14018     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14019     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14020   for (auto I : Init.FlagsMap)
14021     FlagsMap.insert(I);
14022 }
14023 
14024 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14025   // For each block.
14026   for (auto *BB : L.getBlocks())
14027     for (auto &I : *BB) {
14028       if (!SE.isSCEVable(I.getType()))
14029         continue;
14030 
14031       auto *Expr = SE.getSCEV(&I);
14032       auto II = RewriteMap.find(Expr);
14033 
14034       if (II == RewriteMap.end())
14035         continue;
14036 
14037       // Don't print things that are not interesting.
14038       if (II->second.second == Expr)
14039         continue;
14040 
14041       OS.indent(Depth) << "[PSE]" << I << ":\n";
14042       OS.indent(Depth + 2) << *Expr << "\n";
14043       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14044     }
14045 }
14046 
14047 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14048 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14049 // for URem with constant power-of-2 second operands.
14050 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14051 // 4, A / B becomes X / 8).
14052 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14053                                 const SCEV *&RHS) {
14054   // Try to match 'zext (trunc A to iB) to iY', which is used
14055   // for URem with constant power-of-2 second operands. Make sure the size of
14056   // the operand A matches the size of the whole expressions.
14057   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14058     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14059       LHS = Trunc->getOperand();
14060       // Bail out if the type of the LHS is larger than the type of the
14061       // expression for now.
14062       if (getTypeSizeInBits(LHS->getType()) >
14063           getTypeSizeInBits(Expr->getType()))
14064         return false;
14065       if (LHS->getType() != Expr->getType())
14066         LHS = getZeroExtendExpr(LHS, Expr->getType());
14067       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14068                         << getTypeSizeInBits(Trunc->getType()));
14069       return true;
14070     }
14071   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14072   if (Add == nullptr || Add->getNumOperands() != 2)
14073     return false;
14074 
14075   const SCEV *A = Add->getOperand(1);
14076   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14077 
14078   if (Mul == nullptr)
14079     return false;
14080 
14081   const auto MatchURemWithDivisor = [&](const SCEV *B) {
14082     // (SomeExpr + (-(SomeExpr / B) * B)).
14083     if (Expr == getURemExpr(A, B)) {
14084       LHS = A;
14085       RHS = B;
14086       return true;
14087     }
14088     return false;
14089   };
14090 
14091   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14092   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14093     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14094            MatchURemWithDivisor(Mul->getOperand(2));
14095 
14096   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14097   if (Mul->getNumOperands() == 2)
14098     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14099            MatchURemWithDivisor(Mul->getOperand(0)) ||
14100            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14101            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14102   return false;
14103 }
14104 
14105 const SCEV *
14106 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14107   SmallVector<BasicBlock*, 16> ExitingBlocks;
14108   L->getExitingBlocks(ExitingBlocks);
14109 
14110   // Form an expression for the maximum exit count possible for this loop. We
14111   // merge the max and exact information to approximate a version of
14112   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14113   SmallVector<const SCEV*, 4> ExitCounts;
14114   for (BasicBlock *ExitingBB : ExitingBlocks) {
14115     const SCEV *ExitCount = getExitCount(L, ExitingBB);
14116     if (isa<SCEVCouldNotCompute>(ExitCount))
14117       ExitCount = getExitCount(L, ExitingBB,
14118                                   ScalarEvolution::ConstantMaximum);
14119     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14120       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14121              "We should only have known counts for exiting blocks that "
14122              "dominate latch!");
14123       ExitCounts.push_back(ExitCount);
14124     }
14125   }
14126   if (ExitCounts.empty())
14127     return getCouldNotCompute();
14128   return getUMinFromMismatchedTypes(ExitCounts);
14129 }
14130 
14131 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14132 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14133 /// replacement is loop invariant in the loop of the AddRec.
14134 ///
14135 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is
14136 /// supported.
14137 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14138   const DenseMap<const SCEV *, const SCEV *> &Map;
14139 
14140 public:
14141   SCEVLoopGuardRewriter(ScalarEvolution &SE,
14142                         DenseMap<const SCEV *, const SCEV *> &M)
14143       : SCEVRewriteVisitor(SE), Map(M) {}
14144 
14145   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14146 
14147   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14148     auto I = Map.find(Expr);
14149     if (I == Map.end())
14150       return Expr;
14151     return I->second;
14152   }
14153 
14154   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14155     auto I = Map.find(Expr);
14156     if (I == Map.end())
14157       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14158           Expr);
14159     return I->second;
14160   }
14161 };
14162 
14163 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14164   SmallVector<const SCEV *> ExprsToRewrite;
14165   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14166                               const SCEV *RHS,
14167                               DenseMap<const SCEV *, const SCEV *>
14168                                   &RewriteMap) {
14169     // WARNING: It is generally unsound to apply any wrap flags to the proposed
14170     // replacement SCEV which isn't directly implied by the structure of that
14171     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
14172     // legal.  See the scoping rules for flags in the header to understand why.
14173 
14174     // If LHS is a constant, apply information to the other expression.
14175     if (isa<SCEVConstant>(LHS)) {
14176       std::swap(LHS, RHS);
14177       Predicate = CmpInst::getSwappedPredicate(Predicate);
14178     }
14179 
14180     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
14181     // create this form when combining two checks of the form (X u< C2 + C1) and
14182     // (X >=u C1).
14183     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14184                                  &ExprsToRewrite]() {
14185       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14186       if (!AddExpr || AddExpr->getNumOperands() != 2)
14187         return false;
14188 
14189       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14190       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14191       auto *C2 = dyn_cast<SCEVConstant>(RHS);
14192       if (!C1 || !C2 || !LHSUnknown)
14193         return false;
14194 
14195       auto ExactRegion =
14196           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14197               .sub(C1->getAPInt());
14198 
14199       // Bail out, unless we have a non-wrapping, monotonic range.
14200       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
14201         return false;
14202       auto I = RewriteMap.find(LHSUnknown);
14203       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
14204       RewriteMap[LHSUnknown] = getUMaxExpr(
14205           getConstant(ExactRegion.getUnsignedMin()),
14206           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
14207       ExprsToRewrite.push_back(LHSUnknown);
14208       return true;
14209     };
14210     if (MatchRangeCheckIdiom())
14211       return;
14212 
14213     // If we have LHS == 0, check if LHS is computing a property of some unknown
14214     // SCEV %v which we can rewrite %v to express explicitly.
14215     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
14216     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
14217         RHSC->getValue()->isNullValue()) {
14218       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
14219       // explicitly express that.
14220       const SCEV *URemLHS = nullptr;
14221       const SCEV *URemRHS = nullptr;
14222       if (matchURem(LHS, URemLHS, URemRHS)) {
14223         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
14224           auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
14225           RewriteMap[LHSUnknown] = Multiple;
14226           ExprsToRewrite.push_back(LHSUnknown);
14227           return;
14228         }
14229       }
14230     }
14231 
14232     // Do not apply information for constants or if RHS contains an AddRec.
14233     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
14234       return;
14235 
14236     // If RHS is SCEVUnknown, make sure the information is applied to it.
14237     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
14238       std::swap(LHS, RHS);
14239       Predicate = CmpInst::getSwappedPredicate(Predicate);
14240     }
14241 
14242     // Limit to expressions that can be rewritten.
14243     if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS))
14244       return;
14245 
14246     // Check whether LHS has already been rewritten. In that case we want to
14247     // chain further rewrites onto the already rewritten value.
14248     auto I = RewriteMap.find(LHS);
14249     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
14250 
14251     const SCEV *RewrittenRHS = nullptr;
14252     switch (Predicate) {
14253     case CmpInst::ICMP_ULT:
14254       RewrittenRHS =
14255           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14256       break;
14257     case CmpInst::ICMP_SLT:
14258       RewrittenRHS =
14259           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14260       break;
14261     case CmpInst::ICMP_ULE:
14262       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14263       break;
14264     case CmpInst::ICMP_SLE:
14265       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14266       break;
14267     case CmpInst::ICMP_UGT:
14268       RewrittenRHS =
14269           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14270       break;
14271     case CmpInst::ICMP_SGT:
14272       RewrittenRHS =
14273           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14274       break;
14275     case CmpInst::ICMP_UGE:
14276       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14277       break;
14278     case CmpInst::ICMP_SGE:
14279       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14280       break;
14281     case CmpInst::ICMP_EQ:
14282       if (isa<SCEVConstant>(RHS))
14283         RewrittenRHS = RHS;
14284       break;
14285     case CmpInst::ICMP_NE:
14286       if (isa<SCEVConstant>(RHS) &&
14287           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14288         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14289       break;
14290     default:
14291       break;
14292     }
14293 
14294     if (RewrittenRHS) {
14295       RewriteMap[LHS] = RewrittenRHS;
14296       if (LHS == RewrittenLHS)
14297         ExprsToRewrite.push_back(LHS);
14298     }
14299   };
14300   // First, collect conditions from dominating branches. Starting at the loop
14301   // predecessor, climb up the predecessor chain, as long as there are
14302   // predecessors that can be found that have unique successors leading to the
14303   // original header.
14304   // TODO: share this logic with isLoopEntryGuardedByCond.
14305   SmallVector<std::pair<Value *, bool>> Terms;
14306   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14307            L->getLoopPredecessor(), L->getHeader());
14308        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14309 
14310     const BranchInst *LoopEntryPredicate =
14311         dyn_cast<BranchInst>(Pair.first->getTerminator());
14312     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14313       continue;
14314 
14315     Terms.emplace_back(LoopEntryPredicate->getCondition(),
14316                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
14317   }
14318 
14319   // Now apply the information from the collected conditions to RewriteMap.
14320   // Conditions are processed in reverse order, so the earliest conditions is
14321   // processed first. This ensures the SCEVs with the shortest dependency chains
14322   // are constructed first.
14323   DenseMap<const SCEV *, const SCEV *> RewriteMap;
14324   for (auto &E : reverse(Terms)) {
14325     bool EnterIfTrue = E.second;
14326     SmallVector<Value *, 8> Worklist;
14327     SmallPtrSet<Value *, 8> Visited;
14328     Worklist.push_back(E.first);
14329     while (!Worklist.empty()) {
14330       Value *Cond = Worklist.pop_back_val();
14331       if (!Visited.insert(Cond).second)
14332         continue;
14333 
14334       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14335         auto Predicate =
14336             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14337         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
14338                          getSCEV(Cmp->getOperand(1)), RewriteMap);
14339         continue;
14340       }
14341 
14342       Value *L, *R;
14343       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14344                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14345         Worklist.push_back(L);
14346         Worklist.push_back(R);
14347       }
14348     }
14349   }
14350 
14351   // Also collect information from assumptions dominating the loop.
14352   for (auto &AssumeVH : AC.assumptions()) {
14353     if (!AssumeVH)
14354       continue;
14355     auto *AssumeI = cast<CallInst>(AssumeVH);
14356     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14357     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14358       continue;
14359     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14360                      getSCEV(Cmp->getOperand(1)), RewriteMap);
14361   }
14362 
14363   if (RewriteMap.empty())
14364     return Expr;
14365 
14366   // Now that all rewrite information is collect, rewrite the collected
14367   // expressions with the information in the map. This applies information to
14368   // sub-expressions.
14369   if (ExprsToRewrite.size() > 1) {
14370     for (const SCEV *Expr : ExprsToRewrite) {
14371       const SCEV *RewriteTo = RewriteMap[Expr];
14372       RewriteMap.erase(Expr);
14373       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14374       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
14375     }
14376   }
14377 
14378   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14379   return Rewriter.visit(Expr);
14380 }
14381