1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::ZeroOrMore, 152 cl::desc("Maximum number of iterations SCEV will " 153 "symbolically execute a constant " 154 "derived loop"), 155 cl::init(100)); 156 157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 158 static cl::opt<bool> VerifySCEV( 159 "verify-scev", cl::Hidden, 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 //===----------------------------------------------------------------------===// 235 // SCEV class definitions 236 //===----------------------------------------------------------------------===// 237 238 //===----------------------------------------------------------------------===// 239 // Implementation of the SCEV class. 240 // 241 242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 243 LLVM_DUMP_METHOD void SCEV::dump() const { 244 print(dbgs()); 245 dbgs() << '\n'; 246 } 247 #endif 248 249 void SCEV::print(raw_ostream &OS) const { 250 switch (getSCEVType()) { 251 case scConstant: 252 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 253 return; 254 case scPtrToInt: { 255 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 256 const SCEV *Op = PtrToInt->getOperand(); 257 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 258 << *PtrToInt->getType() << ")"; 259 return; 260 } 261 case scTruncate: { 262 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 263 const SCEV *Op = Trunc->getOperand(); 264 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 265 << *Trunc->getType() << ")"; 266 return; 267 } 268 case scZeroExtend: { 269 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 270 const SCEV *Op = ZExt->getOperand(); 271 OS << "(zext " << *Op->getType() << " " << *Op << " to " 272 << *ZExt->getType() << ")"; 273 return; 274 } 275 case scSignExtend: { 276 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 277 const SCEV *Op = SExt->getOperand(); 278 OS << "(sext " << *Op->getType() << " " << *Op << " to " 279 << *SExt->getType() << ")"; 280 return; 281 } 282 case scAddRecExpr: { 283 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 284 OS << "{" << *AR->getOperand(0); 285 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 286 OS << ",+," << *AR->getOperand(i); 287 OS << "}<"; 288 if (AR->hasNoUnsignedWrap()) 289 OS << "nuw><"; 290 if (AR->hasNoSignedWrap()) 291 OS << "nsw><"; 292 if (AR->hasNoSelfWrap() && 293 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 294 OS << "nw><"; 295 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 296 OS << ">"; 297 return; 298 } 299 case scAddExpr: 300 case scMulExpr: 301 case scUMaxExpr: 302 case scSMaxExpr: 303 case scUMinExpr: 304 case scSMinExpr: 305 case scSequentialUMinExpr: { 306 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 307 const char *OpStr = nullptr; 308 switch (NAry->getSCEVType()) { 309 case scAddExpr: OpStr = " + "; break; 310 case scMulExpr: OpStr = " * "; break; 311 case scUMaxExpr: OpStr = " umax "; break; 312 case scSMaxExpr: OpStr = " smax "; break; 313 case scUMinExpr: 314 OpStr = " umin "; 315 break; 316 case scSMinExpr: 317 OpStr = " smin "; 318 break; 319 case scSequentialUMinExpr: 320 OpStr = " umin_seq "; 321 break; 322 default: 323 llvm_unreachable("There are no other nary expression types."); 324 } 325 OS << "("; 326 ListSeparator LS(OpStr); 327 for (const SCEV *Op : NAry->operands()) 328 OS << LS << *Op; 329 OS << ")"; 330 switch (NAry->getSCEVType()) { 331 case scAddExpr: 332 case scMulExpr: 333 if (NAry->hasNoUnsignedWrap()) 334 OS << "<nuw>"; 335 if (NAry->hasNoSignedWrap()) 336 OS << "<nsw>"; 337 break; 338 default: 339 // Nothing to print for other nary expressions. 340 break; 341 } 342 return; 343 } 344 case scUDivExpr: { 345 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 346 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 347 return; 348 } 349 case scUnknown: { 350 const SCEVUnknown *U = cast<SCEVUnknown>(this); 351 Type *AllocTy; 352 if (U->isSizeOf(AllocTy)) { 353 OS << "sizeof(" << *AllocTy << ")"; 354 return; 355 } 356 if (U->isAlignOf(AllocTy)) { 357 OS << "alignof(" << *AllocTy << ")"; 358 return; 359 } 360 361 Type *CTy; 362 Constant *FieldNo; 363 if (U->isOffsetOf(CTy, FieldNo)) { 364 OS << "offsetof(" << *CTy << ", "; 365 FieldNo->printAsOperand(OS, false); 366 OS << ")"; 367 return; 368 } 369 370 // Otherwise just print it normally. 371 U->getValue()->printAsOperand(OS, false); 372 return; 373 } 374 case scCouldNotCompute: 375 OS << "***COULDNOTCOMPUTE***"; 376 return; 377 } 378 llvm_unreachable("Unknown SCEV kind!"); 379 } 380 381 Type *SCEV::getType() const { 382 switch (getSCEVType()) { 383 case scConstant: 384 return cast<SCEVConstant>(this)->getType(); 385 case scPtrToInt: 386 case scTruncate: 387 case scZeroExtend: 388 case scSignExtend: 389 return cast<SCEVCastExpr>(this)->getType(); 390 case scAddRecExpr: 391 return cast<SCEVAddRecExpr>(this)->getType(); 392 case scMulExpr: 393 return cast<SCEVMulExpr>(this)->getType(); 394 case scUMaxExpr: 395 case scSMaxExpr: 396 case scUMinExpr: 397 case scSMinExpr: 398 return cast<SCEVMinMaxExpr>(this)->getType(); 399 case scSequentialUMinExpr: 400 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 401 case scAddExpr: 402 return cast<SCEVAddExpr>(this)->getType(); 403 case scUDivExpr: 404 return cast<SCEVUDivExpr>(this)->getType(); 405 case scUnknown: 406 return cast<SCEVUnknown>(this)->getType(); 407 case scCouldNotCompute: 408 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 409 } 410 llvm_unreachable("Unknown SCEV kind!"); 411 } 412 413 bool SCEV::isZero() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isZero(); 416 return false; 417 } 418 419 bool SCEV::isOne() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isOne(); 422 return false; 423 } 424 425 bool SCEV::isAllOnesValue() const { 426 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 427 return SC->getValue()->isMinusOne(); 428 return false; 429 } 430 431 bool SCEV::isNonConstantNegative() const { 432 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 433 if (!Mul) return false; 434 435 // If there is a constant factor, it will be first. 436 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 437 if (!SC) return false; 438 439 // Return true if the value is negative, this matches things like (-42 * V). 440 return SC->getAPInt().isNegative(); 441 } 442 443 SCEVCouldNotCompute::SCEVCouldNotCompute() : 444 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 445 446 bool SCEVCouldNotCompute::classof(const SCEV *S) { 447 return S->getSCEVType() == scCouldNotCompute; 448 } 449 450 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 451 FoldingSetNodeID ID; 452 ID.AddInteger(scConstant); 453 ID.AddPointer(V); 454 void *IP = nullptr; 455 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 456 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 457 UniqueSCEVs.InsertNode(S, IP); 458 return S; 459 } 460 461 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 462 return getConstant(ConstantInt::get(getContext(), Val)); 463 } 464 465 const SCEV * 466 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 467 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 468 return getConstant(ConstantInt::get(ITy, V, isSigned)); 469 } 470 471 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 472 const SCEV *op, Type *ty) 473 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 474 Operands[0] = op; 475 } 476 477 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 478 Type *ITy) 479 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 480 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 481 "Must be a non-bit-width-changing pointer-to-integer cast!"); 482 } 483 484 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 485 SCEVTypes SCEVTy, const SCEV *op, 486 Type *ty) 487 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 488 489 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 490 Type *ty) 491 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 492 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 493 "Cannot truncate non-integer value!"); 494 } 495 496 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 497 const SCEV *op, Type *ty) 498 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 499 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 500 "Cannot zero extend non-integer value!"); 501 } 502 503 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 504 const SCEV *op, Type *ty) 505 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 506 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 507 "Cannot sign extend non-integer value!"); 508 } 509 510 void SCEVUnknown::deleted() { 511 // Clear this SCEVUnknown from various maps. 512 SE->forgetMemoizedResults(this); 513 514 // Remove this SCEVUnknown from the uniquing map. 515 SE->UniqueSCEVs.RemoveNode(this); 516 517 // Release the value. 518 setValPtr(nullptr); 519 } 520 521 void SCEVUnknown::allUsesReplacedWith(Value *New) { 522 // Remove this SCEVUnknown from the uniquing map. 523 SE->UniqueSCEVs.RemoveNode(this); 524 525 // Update this SCEVUnknown to point to the new value. This is needed 526 // because there may still be outstanding SCEVs which still point to 527 // this SCEVUnknown. 528 setValPtr(New); 529 } 530 531 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 532 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 533 if (VCE->getOpcode() == Instruction::PtrToInt) 534 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 535 if (CE->getOpcode() == Instruction::GetElementPtr && 536 CE->getOperand(0)->isNullValue() && 537 CE->getNumOperands() == 2) 538 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 539 if (CI->isOne()) { 540 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 541 return true; 542 } 543 544 return false; 545 } 546 547 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 548 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 549 if (VCE->getOpcode() == Instruction::PtrToInt) 550 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 551 if (CE->getOpcode() == Instruction::GetElementPtr && 552 CE->getOperand(0)->isNullValue()) { 553 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 554 if (StructType *STy = dyn_cast<StructType>(Ty)) 555 if (!STy->isPacked() && 556 CE->getNumOperands() == 3 && 557 CE->getOperand(1)->isNullValue()) { 558 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 559 if (CI->isOne() && 560 STy->getNumElements() == 2 && 561 STy->getElementType(0)->isIntegerTy(1)) { 562 AllocTy = STy->getElementType(1); 563 return true; 564 } 565 } 566 } 567 568 return false; 569 } 570 571 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 572 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 573 if (VCE->getOpcode() == Instruction::PtrToInt) 574 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 575 if (CE->getOpcode() == Instruction::GetElementPtr && 576 CE->getNumOperands() == 3 && 577 CE->getOperand(0)->isNullValue() && 578 CE->getOperand(1)->isNullValue()) { 579 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 580 // Ignore vector types here so that ScalarEvolutionExpander doesn't 581 // emit getelementptrs that index into vectors. 582 if (Ty->isStructTy() || Ty->isArrayTy()) { 583 CTy = Ty; 584 FieldNo = CE->getOperand(2); 585 return true; 586 } 587 } 588 589 return false; 590 } 591 592 //===----------------------------------------------------------------------===// 593 // SCEV Utilities 594 //===----------------------------------------------------------------------===// 595 596 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 597 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 598 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 599 /// have been previously deemed to be "equally complex" by this routine. It is 600 /// intended to avoid exponential time complexity in cases like: 601 /// 602 /// %a = f(%x, %y) 603 /// %b = f(%a, %a) 604 /// %c = f(%b, %b) 605 /// 606 /// %d = f(%x, %y) 607 /// %e = f(%d, %d) 608 /// %f = f(%e, %e) 609 /// 610 /// CompareValueComplexity(%f, %c) 611 /// 612 /// Since we do not continue running this routine on expression trees once we 613 /// have seen unequal values, there is no need to track them in the cache. 614 static int 615 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 616 const LoopInfo *const LI, Value *LV, Value *RV, 617 unsigned Depth) { 618 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 619 return 0; 620 621 // Order pointer values after integer values. This helps SCEVExpander form 622 // GEPs. 623 bool LIsPointer = LV->getType()->isPointerTy(), 624 RIsPointer = RV->getType()->isPointerTy(); 625 if (LIsPointer != RIsPointer) 626 return (int)LIsPointer - (int)RIsPointer; 627 628 // Compare getValueID values. 629 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 630 if (LID != RID) 631 return (int)LID - (int)RID; 632 633 // Sort arguments by their position. 634 if (const auto *LA = dyn_cast<Argument>(LV)) { 635 const auto *RA = cast<Argument>(RV); 636 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 637 return (int)LArgNo - (int)RArgNo; 638 } 639 640 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 641 const auto *RGV = cast<GlobalValue>(RV); 642 643 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 644 auto LT = GV->getLinkage(); 645 return !(GlobalValue::isPrivateLinkage(LT) || 646 GlobalValue::isInternalLinkage(LT)); 647 }; 648 649 // Use the names to distinguish the two values, but only if the 650 // names are semantically important. 651 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 652 return LGV->getName().compare(RGV->getName()); 653 } 654 655 // For instructions, compare their loop depth, and their operand count. This 656 // is pretty loose. 657 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 658 const auto *RInst = cast<Instruction>(RV); 659 660 // Compare loop depths. 661 const BasicBlock *LParent = LInst->getParent(), 662 *RParent = RInst->getParent(); 663 if (LParent != RParent) { 664 unsigned LDepth = LI->getLoopDepth(LParent), 665 RDepth = LI->getLoopDepth(RParent); 666 if (LDepth != RDepth) 667 return (int)LDepth - (int)RDepth; 668 } 669 670 // Compare the number of operands. 671 unsigned LNumOps = LInst->getNumOperands(), 672 RNumOps = RInst->getNumOperands(); 673 if (LNumOps != RNumOps) 674 return (int)LNumOps - (int)RNumOps; 675 676 for (unsigned Idx : seq(0u, LNumOps)) { 677 int Result = 678 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 679 RInst->getOperand(Idx), Depth + 1); 680 if (Result != 0) 681 return Result; 682 } 683 } 684 685 EqCacheValue.unionSets(LV, RV); 686 return 0; 687 } 688 689 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 690 // than RHS, respectively. A three-way result allows recursive comparisons to be 691 // more efficient. 692 // If the max analysis depth was reached, return None, assuming we do not know 693 // if they are equivalent for sure. 694 static Optional<int> 695 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 696 EquivalenceClasses<const Value *> &EqCacheValue, 697 const LoopInfo *const LI, const SCEV *LHS, 698 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 699 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 700 if (LHS == RHS) 701 return 0; 702 703 // Primarily, sort the SCEVs by their getSCEVType(). 704 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 705 if (LType != RType) 706 return (int)LType - (int)RType; 707 708 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 709 return 0; 710 711 if (Depth > MaxSCEVCompareDepth) 712 return None; 713 714 // Aside from the getSCEVType() ordering, the particular ordering 715 // isn't very important except that it's beneficial to be consistent, 716 // so that (a + b) and (b + a) don't end up as different expressions. 717 switch (LType) { 718 case scUnknown: { 719 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 720 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 721 722 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 723 RU->getValue(), Depth + 1); 724 if (X == 0) 725 EqCacheSCEV.unionSets(LHS, RHS); 726 return X; 727 } 728 729 case scConstant: { 730 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 731 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 732 733 // Compare constant values. 734 const APInt &LA = LC->getAPInt(); 735 const APInt &RA = RC->getAPInt(); 736 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 737 if (LBitWidth != RBitWidth) 738 return (int)LBitWidth - (int)RBitWidth; 739 return LA.ult(RA) ? -1 : 1; 740 } 741 742 case scAddRecExpr: { 743 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 744 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 745 746 // There is always a dominance between two recs that are used by one SCEV, 747 // so we can safely sort recs by loop header dominance. We require such 748 // order in getAddExpr. 749 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 750 if (LLoop != RLoop) { 751 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 752 assert(LHead != RHead && "Two loops share the same header?"); 753 if (DT.dominates(LHead, RHead)) 754 return 1; 755 else 756 assert(DT.dominates(RHead, LHead) && 757 "No dominance between recurrences used by one SCEV?"); 758 return -1; 759 } 760 761 // Addrec complexity grows with operand count. 762 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 763 if (LNumOps != RNumOps) 764 return (int)LNumOps - (int)RNumOps; 765 766 // Lexicographically compare. 767 for (unsigned i = 0; i != LNumOps; ++i) { 768 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 769 LA->getOperand(i), RA->getOperand(i), DT, 770 Depth + 1); 771 if (X != 0) 772 return X; 773 } 774 EqCacheSCEV.unionSets(LHS, RHS); 775 return 0; 776 } 777 778 case scAddExpr: 779 case scMulExpr: 780 case scSMaxExpr: 781 case scUMaxExpr: 782 case scSMinExpr: 783 case scUMinExpr: 784 case scSequentialUMinExpr: { 785 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 786 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 787 788 // Lexicographically compare n-ary expressions. 789 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 790 if (LNumOps != RNumOps) 791 return (int)LNumOps - (int)RNumOps; 792 793 for (unsigned i = 0; i != LNumOps; ++i) { 794 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 795 LC->getOperand(i), RC->getOperand(i), DT, 796 Depth + 1); 797 if (X != 0) 798 return X; 799 } 800 EqCacheSCEV.unionSets(LHS, RHS); 801 return 0; 802 } 803 804 case scUDivExpr: { 805 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 806 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 807 808 // Lexicographically compare udiv expressions. 809 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 810 RC->getLHS(), DT, Depth + 1); 811 if (X != 0) 812 return X; 813 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 814 RC->getRHS(), DT, Depth + 1); 815 if (X == 0) 816 EqCacheSCEV.unionSets(LHS, RHS); 817 return X; 818 } 819 820 case scPtrToInt: 821 case scTruncate: 822 case scZeroExtend: 823 case scSignExtend: { 824 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 825 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 826 827 // Compare cast expressions by operand. 828 auto X = 829 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 830 RC->getOperand(), DT, Depth + 1); 831 if (X == 0) 832 EqCacheSCEV.unionSets(LHS, RHS); 833 return X; 834 } 835 836 case scCouldNotCompute: 837 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 838 } 839 llvm_unreachable("Unknown SCEV kind!"); 840 } 841 842 /// Given a list of SCEV objects, order them by their complexity, and group 843 /// objects of the same complexity together by value. When this routine is 844 /// finished, we know that any duplicates in the vector are consecutive and that 845 /// complexity is monotonically increasing. 846 /// 847 /// Note that we go take special precautions to ensure that we get deterministic 848 /// results from this routine. In other words, we don't want the results of 849 /// this to depend on where the addresses of various SCEV objects happened to 850 /// land in memory. 851 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 852 LoopInfo *LI, DominatorTree &DT) { 853 if (Ops.size() < 2) return; // Noop 854 855 EquivalenceClasses<const SCEV *> EqCacheSCEV; 856 EquivalenceClasses<const Value *> EqCacheValue; 857 858 // Whether LHS has provably less complexity than RHS. 859 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 860 auto Complexity = 861 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 862 return Complexity && *Complexity < 0; 863 }; 864 if (Ops.size() == 2) { 865 // This is the common case, which also happens to be trivially simple. 866 // Special case it. 867 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 868 if (IsLessComplex(RHS, LHS)) 869 std::swap(LHS, RHS); 870 return; 871 } 872 873 // Do the rough sort by complexity. 874 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 875 return IsLessComplex(LHS, RHS); 876 }); 877 878 // Now that we are sorted by complexity, group elements of the same 879 // complexity. Note that this is, at worst, N^2, but the vector is likely to 880 // be extremely short in practice. Note that we take this approach because we 881 // do not want to depend on the addresses of the objects we are grouping. 882 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 883 const SCEV *S = Ops[i]; 884 unsigned Complexity = S->getSCEVType(); 885 886 // If there are any objects of the same complexity and same value as this 887 // one, group them. 888 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 889 if (Ops[j] == S) { // Found a duplicate. 890 // Move it to immediately after i'th element. 891 std::swap(Ops[i+1], Ops[j]); 892 ++i; // no need to rescan it. 893 if (i == e-2) return; // Done! 894 } 895 } 896 } 897 } 898 899 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 900 /// least HugeExprThreshold nodes). 901 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 902 return any_of(Ops, [](const SCEV *S) { 903 return S->getExpressionSize() >= HugeExprThreshold; 904 }); 905 } 906 907 //===----------------------------------------------------------------------===// 908 // Simple SCEV method implementations 909 //===----------------------------------------------------------------------===// 910 911 /// Compute BC(It, K). The result has width W. Assume, K > 0. 912 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 913 ScalarEvolution &SE, 914 Type *ResultTy) { 915 // Handle the simplest case efficiently. 916 if (K == 1) 917 return SE.getTruncateOrZeroExtend(It, ResultTy); 918 919 // We are using the following formula for BC(It, K): 920 // 921 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 922 // 923 // Suppose, W is the bitwidth of the return value. We must be prepared for 924 // overflow. Hence, we must assure that the result of our computation is 925 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 926 // safe in modular arithmetic. 927 // 928 // However, this code doesn't use exactly that formula; the formula it uses 929 // is something like the following, where T is the number of factors of 2 in 930 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 931 // exponentiation: 932 // 933 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 934 // 935 // This formula is trivially equivalent to the previous formula. However, 936 // this formula can be implemented much more efficiently. The trick is that 937 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 938 // arithmetic. To do exact division in modular arithmetic, all we have 939 // to do is multiply by the inverse. Therefore, this step can be done at 940 // width W. 941 // 942 // The next issue is how to safely do the division by 2^T. The way this 943 // is done is by doing the multiplication step at a width of at least W + T 944 // bits. This way, the bottom W+T bits of the product are accurate. Then, 945 // when we perform the division by 2^T (which is equivalent to a right shift 946 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 947 // truncated out after the division by 2^T. 948 // 949 // In comparison to just directly using the first formula, this technique 950 // is much more efficient; using the first formula requires W * K bits, 951 // but this formula less than W + K bits. Also, the first formula requires 952 // a division step, whereas this formula only requires multiplies and shifts. 953 // 954 // It doesn't matter whether the subtraction step is done in the calculation 955 // width or the input iteration count's width; if the subtraction overflows, 956 // the result must be zero anyway. We prefer here to do it in the width of 957 // the induction variable because it helps a lot for certain cases; CodeGen 958 // isn't smart enough to ignore the overflow, which leads to much less 959 // efficient code if the width of the subtraction is wider than the native 960 // register width. 961 // 962 // (It's possible to not widen at all by pulling out factors of 2 before 963 // the multiplication; for example, K=2 can be calculated as 964 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 965 // extra arithmetic, so it's not an obvious win, and it gets 966 // much more complicated for K > 3.) 967 968 // Protection from insane SCEVs; this bound is conservative, 969 // but it probably doesn't matter. 970 if (K > 1000) 971 return SE.getCouldNotCompute(); 972 973 unsigned W = SE.getTypeSizeInBits(ResultTy); 974 975 // Calculate K! / 2^T and T; we divide out the factors of two before 976 // multiplying for calculating K! / 2^T to avoid overflow. 977 // Other overflow doesn't matter because we only care about the bottom 978 // W bits of the result. 979 APInt OddFactorial(W, 1); 980 unsigned T = 1; 981 for (unsigned i = 3; i <= K; ++i) { 982 APInt Mult(W, i); 983 unsigned TwoFactors = Mult.countTrailingZeros(); 984 T += TwoFactors; 985 Mult.lshrInPlace(TwoFactors); 986 OddFactorial *= Mult; 987 } 988 989 // We need at least W + T bits for the multiplication step 990 unsigned CalculationBits = W + T; 991 992 // Calculate 2^T, at width T+W. 993 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 994 995 // Calculate the multiplicative inverse of K! / 2^T; 996 // this multiplication factor will perform the exact division by 997 // K! / 2^T. 998 APInt Mod = APInt::getSignedMinValue(W+1); 999 APInt MultiplyFactor = OddFactorial.zext(W+1); 1000 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1001 MultiplyFactor = MultiplyFactor.trunc(W); 1002 1003 // Calculate the product, at width T+W 1004 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1005 CalculationBits); 1006 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1007 for (unsigned i = 1; i != K; ++i) { 1008 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1009 Dividend = SE.getMulExpr(Dividend, 1010 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1011 } 1012 1013 // Divide by 2^T 1014 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1015 1016 // Truncate the result, and divide by K! / 2^T. 1017 1018 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1019 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1020 } 1021 1022 /// Return the value of this chain of recurrences at the specified iteration 1023 /// number. We can evaluate this recurrence by multiplying each element in the 1024 /// chain by the binomial coefficient corresponding to it. In other words, we 1025 /// can evaluate {A,+,B,+,C,+,D} as: 1026 /// 1027 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1028 /// 1029 /// where BC(It, k) stands for binomial coefficient. 1030 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1031 ScalarEvolution &SE) const { 1032 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1033 } 1034 1035 const SCEV * 1036 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1037 const SCEV *It, ScalarEvolution &SE) { 1038 assert(Operands.size() > 0); 1039 const SCEV *Result = Operands[0]; 1040 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1041 // The computation is correct in the face of overflow provided that the 1042 // multiplication is performed _after_ the evaluation of the binomial 1043 // coefficient. 1044 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1045 if (isa<SCEVCouldNotCompute>(Coeff)) 1046 return Coeff; 1047 1048 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1049 } 1050 return Result; 1051 } 1052 1053 //===----------------------------------------------------------------------===// 1054 // SCEV Expression folder implementations 1055 //===----------------------------------------------------------------------===// 1056 1057 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1058 unsigned Depth) { 1059 assert(Depth <= 1 && 1060 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1061 1062 // We could be called with an integer-typed operands during SCEV rewrites. 1063 // Since the operand is an integer already, just perform zext/trunc/self cast. 1064 if (!Op->getType()->isPointerTy()) 1065 return Op; 1066 1067 // What would be an ID for such a SCEV cast expression? 1068 FoldingSetNodeID ID; 1069 ID.AddInteger(scPtrToInt); 1070 ID.AddPointer(Op); 1071 1072 void *IP = nullptr; 1073 1074 // Is there already an expression for such a cast? 1075 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1076 return S; 1077 1078 // It isn't legal for optimizations to construct new ptrtoint expressions 1079 // for non-integral pointers. 1080 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1081 return getCouldNotCompute(); 1082 1083 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1084 1085 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1086 // is sufficiently wide to represent all possible pointer values. 1087 // We could theoretically teach SCEV to truncate wider pointers, but 1088 // that isn't implemented for now. 1089 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1090 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1091 return getCouldNotCompute(); 1092 1093 // If not, is this expression something we can't reduce any further? 1094 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1095 // Perform some basic constant folding. If the operand of the ptr2int cast 1096 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1097 // left as-is), but produce a zero constant. 1098 // NOTE: We could handle a more general case, but lack motivational cases. 1099 if (isa<ConstantPointerNull>(U->getValue())) 1100 return getZero(IntPtrTy); 1101 1102 // Create an explicit cast node. 1103 // We can reuse the existing insert position since if we get here, 1104 // we won't have made any changes which would invalidate it. 1105 SCEV *S = new (SCEVAllocator) 1106 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1107 UniqueSCEVs.InsertNode(S, IP); 1108 registerUser(S, Op); 1109 return S; 1110 } 1111 1112 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1113 "non-SCEVUnknown's."); 1114 1115 // Otherwise, we've got some expression that is more complex than just a 1116 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1117 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1118 // only, and the expressions must otherwise be integer-typed. 1119 // So sink the cast down to the SCEVUnknown's. 1120 1121 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1122 /// which computes a pointer-typed value, and rewrites the whole expression 1123 /// tree so that *all* the computations are done on integers, and the only 1124 /// pointer-typed operands in the expression are SCEVUnknown. 1125 class SCEVPtrToIntSinkingRewriter 1126 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1127 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1128 1129 public: 1130 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1131 1132 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1133 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1134 return Rewriter.visit(Scev); 1135 } 1136 1137 const SCEV *visit(const SCEV *S) { 1138 Type *STy = S->getType(); 1139 // If the expression is not pointer-typed, just keep it as-is. 1140 if (!STy->isPointerTy()) 1141 return S; 1142 // Else, recursively sink the cast down into it. 1143 return Base::visit(S); 1144 } 1145 1146 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1147 SmallVector<const SCEV *, 2> Operands; 1148 bool Changed = false; 1149 for (auto *Op : Expr->operands()) { 1150 Operands.push_back(visit(Op)); 1151 Changed |= Op != Operands.back(); 1152 } 1153 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1154 } 1155 1156 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1157 SmallVector<const SCEV *, 2> Operands; 1158 bool Changed = false; 1159 for (auto *Op : Expr->operands()) { 1160 Operands.push_back(visit(Op)); 1161 Changed |= Op != Operands.back(); 1162 } 1163 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1164 } 1165 1166 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1167 assert(Expr->getType()->isPointerTy() && 1168 "Should only reach pointer-typed SCEVUnknown's."); 1169 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1170 } 1171 }; 1172 1173 // And actually perform the cast sinking. 1174 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1175 assert(IntOp->getType()->isIntegerTy() && 1176 "We must have succeeded in sinking the cast, " 1177 "and ending up with an integer-typed expression!"); 1178 return IntOp; 1179 } 1180 1181 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1182 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1183 1184 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1185 if (isa<SCEVCouldNotCompute>(IntOp)) 1186 return IntOp; 1187 1188 return getTruncateOrZeroExtend(IntOp, Ty); 1189 } 1190 1191 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1192 unsigned Depth) { 1193 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1194 "This is not a truncating conversion!"); 1195 assert(isSCEVable(Ty) && 1196 "This is not a conversion to a SCEVable type!"); 1197 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1198 Ty = getEffectiveSCEVType(Ty); 1199 1200 FoldingSetNodeID ID; 1201 ID.AddInteger(scTruncate); 1202 ID.AddPointer(Op); 1203 ID.AddPointer(Ty); 1204 void *IP = nullptr; 1205 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1206 1207 // Fold if the operand is constant. 1208 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1209 return getConstant( 1210 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1211 1212 // trunc(trunc(x)) --> trunc(x) 1213 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1214 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1215 1216 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1217 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1218 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1219 1220 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1221 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1222 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1223 1224 if (Depth > MaxCastDepth) { 1225 SCEV *S = 1226 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1227 UniqueSCEVs.InsertNode(S, IP); 1228 registerUser(S, Op); 1229 return S; 1230 } 1231 1232 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1233 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1234 // if after transforming we have at most one truncate, not counting truncates 1235 // that replace other casts. 1236 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1237 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1238 SmallVector<const SCEV *, 4> Operands; 1239 unsigned numTruncs = 0; 1240 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1241 ++i) { 1242 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1243 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1244 isa<SCEVTruncateExpr>(S)) 1245 numTruncs++; 1246 Operands.push_back(S); 1247 } 1248 if (numTruncs < 2) { 1249 if (isa<SCEVAddExpr>(Op)) 1250 return getAddExpr(Operands); 1251 else if (isa<SCEVMulExpr>(Op)) 1252 return getMulExpr(Operands); 1253 else 1254 llvm_unreachable("Unexpected SCEV type for Op."); 1255 } 1256 // Although we checked in the beginning that ID is not in the cache, it is 1257 // possible that during recursion and different modification ID was inserted 1258 // into the cache. So if we find it, just return it. 1259 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1260 return S; 1261 } 1262 1263 // If the input value is a chrec scev, truncate the chrec's operands. 1264 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1265 SmallVector<const SCEV *, 4> Operands; 1266 for (const SCEV *Op : AddRec->operands()) 1267 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1268 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1269 } 1270 1271 // Return zero if truncating to known zeros. 1272 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1273 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1274 return getZero(Ty); 1275 1276 // The cast wasn't folded; create an explicit cast node. We can reuse 1277 // the existing insert position since if we get here, we won't have 1278 // made any changes which would invalidate it. 1279 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1280 Op, Ty); 1281 UniqueSCEVs.InsertNode(S, IP); 1282 registerUser(S, Op); 1283 return S; 1284 } 1285 1286 // Get the limit of a recurrence such that incrementing by Step cannot cause 1287 // signed overflow as long as the value of the recurrence within the 1288 // loop does not exceed this limit before incrementing. 1289 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1290 ICmpInst::Predicate *Pred, 1291 ScalarEvolution *SE) { 1292 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1293 if (SE->isKnownPositive(Step)) { 1294 *Pred = ICmpInst::ICMP_SLT; 1295 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1296 SE->getSignedRangeMax(Step)); 1297 } 1298 if (SE->isKnownNegative(Step)) { 1299 *Pred = ICmpInst::ICMP_SGT; 1300 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1301 SE->getSignedRangeMin(Step)); 1302 } 1303 return nullptr; 1304 } 1305 1306 // Get the limit of a recurrence such that incrementing by Step cannot cause 1307 // unsigned overflow as long as the value of the recurrence within the loop does 1308 // not exceed this limit before incrementing. 1309 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1310 ICmpInst::Predicate *Pred, 1311 ScalarEvolution *SE) { 1312 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1313 *Pred = ICmpInst::ICMP_ULT; 1314 1315 return SE->getConstant(APInt::getMinValue(BitWidth) - 1316 SE->getUnsignedRangeMax(Step)); 1317 } 1318 1319 namespace { 1320 1321 struct ExtendOpTraitsBase { 1322 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1323 unsigned); 1324 }; 1325 1326 // Used to make code generic over signed and unsigned overflow. 1327 template <typename ExtendOp> struct ExtendOpTraits { 1328 // Members present: 1329 // 1330 // static const SCEV::NoWrapFlags WrapType; 1331 // 1332 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1333 // 1334 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1335 // ICmpInst::Predicate *Pred, 1336 // ScalarEvolution *SE); 1337 }; 1338 1339 template <> 1340 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1341 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1342 1343 static const GetExtendExprTy GetExtendExpr; 1344 1345 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1346 ICmpInst::Predicate *Pred, 1347 ScalarEvolution *SE) { 1348 return getSignedOverflowLimitForStep(Step, Pred, SE); 1349 } 1350 }; 1351 1352 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1353 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1354 1355 template <> 1356 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1357 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1358 1359 static const GetExtendExprTy GetExtendExpr; 1360 1361 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1362 ICmpInst::Predicate *Pred, 1363 ScalarEvolution *SE) { 1364 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1365 } 1366 }; 1367 1368 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1369 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1370 1371 } // end anonymous namespace 1372 1373 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1374 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1375 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1376 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1377 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1378 // expression "Step + sext/zext(PreIncAR)" is congruent with 1379 // "sext/zext(PostIncAR)" 1380 template <typename ExtendOpTy> 1381 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1382 ScalarEvolution *SE, unsigned Depth) { 1383 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1384 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1385 1386 const Loop *L = AR->getLoop(); 1387 const SCEV *Start = AR->getStart(); 1388 const SCEV *Step = AR->getStepRecurrence(*SE); 1389 1390 // Check for a simple looking step prior to loop entry. 1391 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1392 if (!SA) 1393 return nullptr; 1394 1395 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1396 // subtraction is expensive. For this purpose, perform a quick and dirty 1397 // difference, by checking for Step in the operand list. 1398 SmallVector<const SCEV *, 4> DiffOps; 1399 for (const SCEV *Op : SA->operands()) 1400 if (Op != Step) 1401 DiffOps.push_back(Op); 1402 1403 if (DiffOps.size() == SA->getNumOperands()) 1404 return nullptr; 1405 1406 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1407 // `Step`: 1408 1409 // 1. NSW/NUW flags on the step increment. 1410 auto PreStartFlags = 1411 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1412 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1413 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1414 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1415 1416 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1417 // "S+X does not sign/unsign-overflow". 1418 // 1419 1420 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1421 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1422 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1423 return PreStart; 1424 1425 // 2. Direct overflow check on the step operation's expression. 1426 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1427 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1428 const SCEV *OperandExtendedStart = 1429 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1430 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1431 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1432 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1433 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1434 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1435 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1436 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1437 } 1438 return PreStart; 1439 } 1440 1441 // 3. Loop precondition. 1442 ICmpInst::Predicate Pred; 1443 const SCEV *OverflowLimit = 1444 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1445 1446 if (OverflowLimit && 1447 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1448 return PreStart; 1449 1450 return nullptr; 1451 } 1452 1453 // Get the normalized zero or sign extended expression for this AddRec's Start. 1454 template <typename ExtendOpTy> 1455 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1456 ScalarEvolution *SE, 1457 unsigned Depth) { 1458 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1459 1460 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1461 if (!PreStart) 1462 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1463 1464 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1465 Depth), 1466 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1467 } 1468 1469 // Try to prove away overflow by looking at "nearby" add recurrences. A 1470 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1471 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1472 // 1473 // Formally: 1474 // 1475 // {S,+,X} == {S-T,+,X} + T 1476 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1477 // 1478 // If ({S-T,+,X} + T) does not overflow ... (1) 1479 // 1480 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1481 // 1482 // If {S-T,+,X} does not overflow ... (2) 1483 // 1484 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1485 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1486 // 1487 // If (S-T)+T does not overflow ... (3) 1488 // 1489 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1490 // == {Ext(S),+,Ext(X)} == LHS 1491 // 1492 // Thus, if (1), (2) and (3) are true for some T, then 1493 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1494 // 1495 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1496 // does not overflow" restricted to the 0th iteration. Therefore we only need 1497 // to check for (1) and (2). 1498 // 1499 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1500 // is `Delta` (defined below). 1501 template <typename ExtendOpTy> 1502 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1503 const SCEV *Step, 1504 const Loop *L) { 1505 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1506 1507 // We restrict `Start` to a constant to prevent SCEV from spending too much 1508 // time here. It is correct (but more expensive) to continue with a 1509 // non-constant `Start` and do a general SCEV subtraction to compute 1510 // `PreStart` below. 1511 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1512 if (!StartC) 1513 return false; 1514 1515 APInt StartAI = StartC->getAPInt(); 1516 1517 for (unsigned Delta : {-2, -1, 1, 2}) { 1518 const SCEV *PreStart = getConstant(StartAI - Delta); 1519 1520 FoldingSetNodeID ID; 1521 ID.AddInteger(scAddRecExpr); 1522 ID.AddPointer(PreStart); 1523 ID.AddPointer(Step); 1524 ID.AddPointer(L); 1525 void *IP = nullptr; 1526 const auto *PreAR = 1527 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1528 1529 // Give up if we don't already have the add recurrence we need because 1530 // actually constructing an add recurrence is relatively expensive. 1531 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1532 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1533 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1534 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1535 DeltaS, &Pred, this); 1536 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1537 return true; 1538 } 1539 } 1540 1541 return false; 1542 } 1543 1544 // Finds an integer D for an expression (C + x + y + ...) such that the top 1545 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1546 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1547 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1548 // the (C + x + y + ...) expression is \p WholeAddExpr. 1549 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1550 const SCEVConstant *ConstantTerm, 1551 const SCEVAddExpr *WholeAddExpr) { 1552 const APInt &C = ConstantTerm->getAPInt(); 1553 const unsigned BitWidth = C.getBitWidth(); 1554 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1555 uint32_t TZ = BitWidth; 1556 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1557 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1558 if (TZ) { 1559 // Set D to be as many least significant bits of C as possible while still 1560 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1561 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1562 } 1563 return APInt(BitWidth, 0); 1564 } 1565 1566 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1567 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1568 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1569 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1570 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1571 const APInt &ConstantStart, 1572 const SCEV *Step) { 1573 const unsigned BitWidth = ConstantStart.getBitWidth(); 1574 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1575 if (TZ) 1576 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1577 : ConstantStart; 1578 return APInt(BitWidth, 0); 1579 } 1580 1581 const SCEV * 1582 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1583 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1584 "This is not an extending conversion!"); 1585 assert(isSCEVable(Ty) && 1586 "This is not a conversion to a SCEVable type!"); 1587 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1588 Ty = getEffectiveSCEVType(Ty); 1589 1590 // Fold if the operand is constant. 1591 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1592 return getConstant( 1593 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1594 1595 // zext(zext(x)) --> zext(x) 1596 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1597 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1598 1599 // Before doing any expensive analysis, check to see if we've already 1600 // computed a SCEV for this Op and Ty. 1601 FoldingSetNodeID ID; 1602 ID.AddInteger(scZeroExtend); 1603 ID.AddPointer(Op); 1604 ID.AddPointer(Ty); 1605 void *IP = nullptr; 1606 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1607 if (Depth > MaxCastDepth) { 1608 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1609 Op, Ty); 1610 UniqueSCEVs.InsertNode(S, IP); 1611 registerUser(S, Op); 1612 return S; 1613 } 1614 1615 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1616 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1617 // It's possible the bits taken off by the truncate were all zero bits. If 1618 // so, we should be able to simplify this further. 1619 const SCEV *X = ST->getOperand(); 1620 ConstantRange CR = getUnsignedRange(X); 1621 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1622 unsigned NewBits = getTypeSizeInBits(Ty); 1623 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1624 CR.zextOrTrunc(NewBits))) 1625 return getTruncateOrZeroExtend(X, Ty, Depth); 1626 } 1627 1628 // If the input value is a chrec scev, and we can prove that the value 1629 // did not overflow the old, smaller, value, we can zero extend all of the 1630 // operands (often constants). This allows analysis of something like 1631 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1633 if (AR->isAffine()) { 1634 const SCEV *Start = AR->getStart(); 1635 const SCEV *Step = AR->getStepRecurrence(*this); 1636 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1637 const Loop *L = AR->getLoop(); 1638 1639 if (!AR->hasNoUnsignedWrap()) { 1640 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1641 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1642 } 1643 1644 // If we have special knowledge that this addrec won't overflow, 1645 // we don't need to do any further analysis. 1646 if (AR->hasNoUnsignedWrap()) 1647 return getAddRecExpr( 1648 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1649 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1650 1651 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1652 // Note that this serves two purposes: It filters out loops that are 1653 // simply not analyzable, and it covers the case where this code is 1654 // being called from within backedge-taken count analysis, such that 1655 // attempting to ask for the backedge-taken count would likely result 1656 // in infinite recursion. In the later case, the analysis code will 1657 // cope with a conservative value, and it will take care to purge 1658 // that value once it has finished. 1659 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1660 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1661 // Manually compute the final value for AR, checking for overflow. 1662 1663 // Check whether the backedge-taken count can be losslessly casted to 1664 // the addrec's type. The count is always unsigned. 1665 const SCEV *CastedMaxBECount = 1666 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1667 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1668 CastedMaxBECount, MaxBECount->getType(), Depth); 1669 if (MaxBECount == RecastedMaxBECount) { 1670 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1671 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1672 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1673 SCEV::FlagAnyWrap, Depth + 1); 1674 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1675 SCEV::FlagAnyWrap, 1676 Depth + 1), 1677 WideTy, Depth + 1); 1678 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1679 const SCEV *WideMaxBECount = 1680 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1681 const SCEV *OperandExtendedAdd = 1682 getAddExpr(WideStart, 1683 getMulExpr(WideMaxBECount, 1684 getZeroExtendExpr(Step, WideTy, Depth + 1), 1685 SCEV::FlagAnyWrap, Depth + 1), 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 if (ZAdd == OperandExtendedAdd) { 1688 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1689 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1690 // Return the expression with the addrec on the outside. 1691 return getAddRecExpr( 1692 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1693 Depth + 1), 1694 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1695 AR->getNoWrapFlags()); 1696 } 1697 // Similar to above, only this time treat the step value as signed. 1698 // This covers loops that count down. 1699 OperandExtendedAdd = 1700 getAddExpr(WideStart, 1701 getMulExpr(WideMaxBECount, 1702 getSignExtendExpr(Step, WideTy, Depth + 1), 1703 SCEV::FlagAnyWrap, Depth + 1), 1704 SCEV::FlagAnyWrap, Depth + 1); 1705 if (ZAdd == OperandExtendedAdd) { 1706 // Cache knowledge of AR NW, which is propagated to this AddRec. 1707 // Negative step causes unsigned wrap, but it still can't self-wrap. 1708 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1712 Depth + 1), 1713 getSignExtendExpr(Step, Ty, Depth + 1), L, 1714 AR->getNoWrapFlags()); 1715 } 1716 } 1717 } 1718 1719 // Normally, in the cases we can prove no-overflow via a 1720 // backedge guarding condition, we can also compute a backedge 1721 // taken count for the loop. The exceptions are assumptions and 1722 // guards present in the loop -- SCEV is not great at exploiting 1723 // these to compute max backedge taken counts, but can still use 1724 // these to prove lack of overflow. Use this fact to avoid 1725 // doing extra work that may not pay off. 1726 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1727 !AC.assumptions().empty()) { 1728 1729 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1730 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1731 if (AR->hasNoUnsignedWrap()) { 1732 // Same as nuw case above - duplicated here to avoid a compile time 1733 // issue. It's not clear that the order of checks does matter, but 1734 // it's one of two issue possible causes for a change which was 1735 // reverted. Be conservative for the moment. 1736 return getAddRecExpr( 1737 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1738 Depth + 1), 1739 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1740 AR->getNoWrapFlags()); 1741 } 1742 1743 // For a negative step, we can extend the operands iff doing so only 1744 // traverses values in the range zext([0,UINT_MAX]). 1745 if (isKnownNegative(Step)) { 1746 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1747 getSignedRangeMin(Step)); 1748 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1749 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1750 // Cache knowledge of AR NW, which is propagated to this 1751 // AddRec. Negative step causes unsigned wrap, but it 1752 // still can't self-wrap. 1753 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1754 // Return the expression with the addrec on the outside. 1755 return getAddRecExpr( 1756 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1757 Depth + 1), 1758 getSignExtendExpr(Step, Ty, Depth + 1), L, 1759 AR->getNoWrapFlags()); 1760 } 1761 } 1762 } 1763 1764 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1765 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1766 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1767 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1768 const APInt &C = SC->getAPInt(); 1769 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1770 if (D != 0) { 1771 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1772 const SCEV *SResidual = 1773 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1774 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1775 return getAddExpr(SZExtD, SZExtR, 1776 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1777 Depth + 1); 1778 } 1779 } 1780 1781 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1782 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1783 return getAddRecExpr( 1784 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1785 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1786 } 1787 } 1788 1789 // zext(A % B) --> zext(A) % zext(B) 1790 { 1791 const SCEV *LHS; 1792 const SCEV *RHS; 1793 if (matchURem(Op, LHS, RHS)) 1794 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1795 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1796 } 1797 1798 // zext(A / B) --> zext(A) / zext(B). 1799 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1800 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1801 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1802 1803 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1804 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1805 if (SA->hasNoUnsignedWrap()) { 1806 // If the addition does not unsign overflow then we can, by definition, 1807 // commute the zero extension with the addition operation. 1808 SmallVector<const SCEV *, 4> Ops; 1809 for (const auto *Op : SA->operands()) 1810 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1811 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1812 } 1813 1814 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1815 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1816 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1817 // 1818 // Often address arithmetics contain expressions like 1819 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1820 // This transformation is useful while proving that such expressions are 1821 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1822 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1823 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1824 if (D != 0) { 1825 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1826 const SCEV *SResidual = 1827 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1828 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1829 return getAddExpr(SZExtD, SZExtR, 1830 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1831 Depth + 1); 1832 } 1833 } 1834 } 1835 1836 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1837 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1838 if (SM->hasNoUnsignedWrap()) { 1839 // If the multiply does not unsign overflow then we can, by definition, 1840 // commute the zero extension with the multiply operation. 1841 SmallVector<const SCEV *, 4> Ops; 1842 for (const auto *Op : SM->operands()) 1843 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1844 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1845 } 1846 1847 // zext(2^K * (trunc X to iN)) to iM -> 1848 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1849 // 1850 // Proof: 1851 // 1852 // zext(2^K * (trunc X to iN)) to iM 1853 // = zext((trunc X to iN) << K) to iM 1854 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1855 // (because shl removes the top K bits) 1856 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1857 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1858 // 1859 if (SM->getNumOperands() == 2) 1860 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1861 if (MulLHS->getAPInt().isPowerOf2()) 1862 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1863 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1864 MulLHS->getAPInt().logBase2(); 1865 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1866 return getMulExpr( 1867 getZeroExtendExpr(MulLHS, Ty), 1868 getZeroExtendExpr( 1869 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1870 SCEV::FlagNUW, Depth + 1); 1871 } 1872 } 1873 1874 // The cast wasn't folded; create an explicit cast node. 1875 // Recompute the insert position, as it may have been invalidated. 1876 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1877 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1878 Op, Ty); 1879 UniqueSCEVs.InsertNode(S, IP); 1880 registerUser(S, Op); 1881 return S; 1882 } 1883 1884 const SCEV * 1885 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1886 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1887 "This is not an extending conversion!"); 1888 assert(isSCEVable(Ty) && 1889 "This is not a conversion to a SCEVable type!"); 1890 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1891 Ty = getEffectiveSCEVType(Ty); 1892 1893 // Fold if the operand is constant. 1894 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1895 return getConstant( 1896 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1897 1898 // sext(sext(x)) --> sext(x) 1899 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1900 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1901 1902 // sext(zext(x)) --> zext(x) 1903 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1904 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1905 1906 // Before doing any expensive analysis, check to see if we've already 1907 // computed a SCEV for this Op and Ty. 1908 FoldingSetNodeID ID; 1909 ID.AddInteger(scSignExtend); 1910 ID.AddPointer(Op); 1911 ID.AddPointer(Ty); 1912 void *IP = nullptr; 1913 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1914 // Limit recursion depth. 1915 if (Depth > MaxCastDepth) { 1916 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1917 Op, Ty); 1918 UniqueSCEVs.InsertNode(S, IP); 1919 registerUser(S, Op); 1920 return S; 1921 } 1922 1923 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1924 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1925 // It's possible the bits taken off by the truncate were all sign bits. If 1926 // so, we should be able to simplify this further. 1927 const SCEV *X = ST->getOperand(); 1928 ConstantRange CR = getSignedRange(X); 1929 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1930 unsigned NewBits = getTypeSizeInBits(Ty); 1931 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1932 CR.sextOrTrunc(NewBits))) 1933 return getTruncateOrSignExtend(X, Ty, Depth); 1934 } 1935 1936 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1937 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1938 if (SA->hasNoSignedWrap()) { 1939 // If the addition does not sign overflow then we can, by definition, 1940 // commute the sign extension with the addition operation. 1941 SmallVector<const SCEV *, 4> Ops; 1942 for (const auto *Op : SA->operands()) 1943 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1944 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1945 } 1946 1947 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1948 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1949 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1950 // 1951 // For instance, this will bring two seemingly different expressions: 1952 // 1 + sext(5 + 20 * %x + 24 * %y) and 1953 // sext(6 + 20 * %x + 24 * %y) 1954 // to the same form: 1955 // 2 + sext(4 + 20 * %x + 24 * %y) 1956 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1957 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1958 if (D != 0) { 1959 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1960 const SCEV *SResidual = 1961 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1962 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1963 return getAddExpr(SSExtD, SSExtR, 1964 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1965 Depth + 1); 1966 } 1967 } 1968 } 1969 // If the input value is a chrec scev, and we can prove that the value 1970 // did not overflow the old, smaller, value, we can sign extend all of the 1971 // operands (often constants). This allows analysis of something like 1972 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1973 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1974 if (AR->isAffine()) { 1975 const SCEV *Start = AR->getStart(); 1976 const SCEV *Step = AR->getStepRecurrence(*this); 1977 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1978 const Loop *L = AR->getLoop(); 1979 1980 if (!AR->hasNoSignedWrap()) { 1981 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1982 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1983 } 1984 1985 // If we have special knowledge that this addrec won't overflow, 1986 // we don't need to do any further analysis. 1987 if (AR->hasNoSignedWrap()) 1988 return getAddRecExpr( 1989 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1990 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1991 1992 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1993 // Note that this serves two purposes: It filters out loops that are 1994 // simply not analyzable, and it covers the case where this code is 1995 // being called from within backedge-taken count analysis, such that 1996 // attempting to ask for the backedge-taken count would likely result 1997 // in infinite recursion. In the later case, the analysis code will 1998 // cope with a conservative value, and it will take care to purge 1999 // that value once it has finished. 2000 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2001 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2002 // Manually compute the final value for AR, checking for 2003 // overflow. 2004 2005 // Check whether the backedge-taken count can be losslessly casted to 2006 // the addrec's type. The count is always unsigned. 2007 const SCEV *CastedMaxBECount = 2008 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2009 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2010 CastedMaxBECount, MaxBECount->getType(), Depth); 2011 if (MaxBECount == RecastedMaxBECount) { 2012 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2013 // Check whether Start+Step*MaxBECount has no signed overflow. 2014 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2015 SCEV::FlagAnyWrap, Depth + 1); 2016 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2017 SCEV::FlagAnyWrap, 2018 Depth + 1), 2019 WideTy, Depth + 1); 2020 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2021 const SCEV *WideMaxBECount = 2022 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2023 const SCEV *OperandExtendedAdd = 2024 getAddExpr(WideStart, 2025 getMulExpr(WideMaxBECount, 2026 getSignExtendExpr(Step, WideTy, Depth + 1), 2027 SCEV::FlagAnyWrap, Depth + 1), 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 if (SAdd == OperandExtendedAdd) { 2030 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2031 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2032 // Return the expression with the addrec on the outside. 2033 return getAddRecExpr( 2034 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2035 Depth + 1), 2036 getSignExtendExpr(Step, Ty, Depth + 1), L, 2037 AR->getNoWrapFlags()); 2038 } 2039 // Similar to above, only this time treat the step value as unsigned. 2040 // This covers loops that count up with an unsigned step. 2041 OperandExtendedAdd = 2042 getAddExpr(WideStart, 2043 getMulExpr(WideMaxBECount, 2044 getZeroExtendExpr(Step, WideTy, Depth + 1), 2045 SCEV::FlagAnyWrap, Depth + 1), 2046 SCEV::FlagAnyWrap, Depth + 1); 2047 if (SAdd == OperandExtendedAdd) { 2048 // If AR wraps around then 2049 // 2050 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2051 // => SAdd != OperandExtendedAdd 2052 // 2053 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2054 // (SAdd == OperandExtendedAdd => AR is NW) 2055 2056 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2057 2058 // Return the expression with the addrec on the outside. 2059 return getAddRecExpr( 2060 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2061 Depth + 1), 2062 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2063 AR->getNoWrapFlags()); 2064 } 2065 } 2066 } 2067 2068 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2070 if (AR->hasNoSignedWrap()) { 2071 // Same as nsw case above - duplicated here to avoid a compile time 2072 // issue. It's not clear that the order of checks does matter, but 2073 // it's one of two issue possible causes for a change which was 2074 // reverted. Be conservative for the moment. 2075 return getAddRecExpr( 2076 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2077 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2078 } 2079 2080 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2081 // if D + (C - D + Step * n) could be proven to not signed wrap 2082 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2083 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2084 const APInt &C = SC->getAPInt(); 2085 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2086 if (D != 0) { 2087 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2088 const SCEV *SResidual = 2089 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2090 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2091 return getAddExpr(SSExtD, SSExtR, 2092 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2093 Depth + 1); 2094 } 2095 } 2096 2097 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2098 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2099 return getAddRecExpr( 2100 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2101 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2102 } 2103 } 2104 2105 // If the input value is provably positive and we could not simplify 2106 // away the sext build a zext instead. 2107 if (isKnownNonNegative(Op)) 2108 return getZeroExtendExpr(Op, Ty, Depth + 1); 2109 2110 // The cast wasn't folded; create an explicit cast node. 2111 // Recompute the insert position, as it may have been invalidated. 2112 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2113 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2114 Op, Ty); 2115 UniqueSCEVs.InsertNode(S, IP); 2116 registerUser(S, { Op }); 2117 return S; 2118 } 2119 2120 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2121 Type *Ty) { 2122 switch (Kind) { 2123 case scTruncate: 2124 return getTruncateExpr(Op, Ty); 2125 case scZeroExtend: 2126 return getZeroExtendExpr(Op, Ty); 2127 case scSignExtend: 2128 return getSignExtendExpr(Op, Ty); 2129 case scPtrToInt: 2130 return getPtrToIntExpr(Op, Ty); 2131 default: 2132 llvm_unreachable("Not a SCEV cast expression!"); 2133 } 2134 } 2135 2136 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2137 /// unspecified bits out to the given type. 2138 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2139 Type *Ty) { 2140 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2141 "This is not an extending conversion!"); 2142 assert(isSCEVable(Ty) && 2143 "This is not a conversion to a SCEVable type!"); 2144 Ty = getEffectiveSCEVType(Ty); 2145 2146 // Sign-extend negative constants. 2147 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2148 if (SC->getAPInt().isNegative()) 2149 return getSignExtendExpr(Op, Ty); 2150 2151 // Peel off a truncate cast. 2152 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2153 const SCEV *NewOp = T->getOperand(); 2154 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2155 return getAnyExtendExpr(NewOp, Ty); 2156 return getTruncateOrNoop(NewOp, Ty); 2157 } 2158 2159 // Next try a zext cast. If the cast is folded, use it. 2160 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2161 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2162 return ZExt; 2163 2164 // Next try a sext cast. If the cast is folded, use it. 2165 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2166 if (!isa<SCEVSignExtendExpr>(SExt)) 2167 return SExt; 2168 2169 // Force the cast to be folded into the operands of an addrec. 2170 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2171 SmallVector<const SCEV *, 4> Ops; 2172 for (const SCEV *Op : AR->operands()) 2173 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2174 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2175 } 2176 2177 // If the expression is obviously signed, use the sext cast value. 2178 if (isa<SCEVSMaxExpr>(Op)) 2179 return SExt; 2180 2181 // Absent any other information, use the zext cast value. 2182 return ZExt; 2183 } 2184 2185 /// Process the given Ops list, which is a list of operands to be added under 2186 /// the given scale, update the given map. This is a helper function for 2187 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2188 /// that would form an add expression like this: 2189 /// 2190 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2191 /// 2192 /// where A and B are constants, update the map with these values: 2193 /// 2194 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2195 /// 2196 /// and add 13 + A*B*29 to AccumulatedConstant. 2197 /// This will allow getAddRecExpr to produce this: 2198 /// 2199 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2200 /// 2201 /// This form often exposes folding opportunities that are hidden in 2202 /// the original operand list. 2203 /// 2204 /// Return true iff it appears that any interesting folding opportunities 2205 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2206 /// the common case where no interesting opportunities are present, and 2207 /// is also used as a check to avoid infinite recursion. 2208 static bool 2209 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2210 SmallVectorImpl<const SCEV *> &NewOps, 2211 APInt &AccumulatedConstant, 2212 const SCEV *const *Ops, size_t NumOperands, 2213 const APInt &Scale, 2214 ScalarEvolution &SE) { 2215 bool Interesting = false; 2216 2217 // Iterate over the add operands. They are sorted, with constants first. 2218 unsigned i = 0; 2219 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2220 ++i; 2221 // Pull a buried constant out to the outside. 2222 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2223 Interesting = true; 2224 AccumulatedConstant += Scale * C->getAPInt(); 2225 } 2226 2227 // Next comes everything else. We're especially interested in multiplies 2228 // here, but they're in the middle, so just visit the rest with one loop. 2229 for (; i != NumOperands; ++i) { 2230 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2231 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2232 APInt NewScale = 2233 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2234 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2235 // A multiplication of a constant with another add; recurse. 2236 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2237 Interesting |= 2238 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2239 Add->op_begin(), Add->getNumOperands(), 2240 NewScale, SE); 2241 } else { 2242 // A multiplication of a constant with some other value. Update 2243 // the map. 2244 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2245 const SCEV *Key = SE.getMulExpr(MulOps); 2246 auto Pair = M.insert({Key, NewScale}); 2247 if (Pair.second) { 2248 NewOps.push_back(Pair.first->first); 2249 } else { 2250 Pair.first->second += NewScale; 2251 // The map already had an entry for this value, which may indicate 2252 // a folding opportunity. 2253 Interesting = true; 2254 } 2255 } 2256 } else { 2257 // An ordinary operand. Update the map. 2258 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2259 M.insert({Ops[i], Scale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += Scale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } 2270 2271 return Interesting; 2272 } 2273 2274 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2275 const SCEV *LHS, const SCEV *RHS) { 2276 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2277 SCEV::NoWrapFlags, unsigned); 2278 switch (BinOp) { 2279 default: 2280 llvm_unreachable("Unsupported binary op"); 2281 case Instruction::Add: 2282 Operation = &ScalarEvolution::getAddExpr; 2283 break; 2284 case Instruction::Sub: 2285 Operation = &ScalarEvolution::getMinusSCEV; 2286 break; 2287 case Instruction::Mul: 2288 Operation = &ScalarEvolution::getMulExpr; 2289 break; 2290 } 2291 2292 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2293 Signed ? &ScalarEvolution::getSignExtendExpr 2294 : &ScalarEvolution::getZeroExtendExpr; 2295 2296 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2297 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2298 auto *WideTy = 2299 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2300 2301 const SCEV *A = (this->*Extension)( 2302 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2303 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2304 (this->*Extension)(RHS, WideTy, 0), 2305 SCEV::FlagAnyWrap, 0); 2306 return A == B; 2307 } 2308 2309 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2310 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2311 const OverflowingBinaryOperator *OBO) { 2312 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2313 2314 if (OBO->hasNoUnsignedWrap()) 2315 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2316 if (OBO->hasNoSignedWrap()) 2317 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2318 2319 bool Deduced = false; 2320 2321 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2322 return {Flags, Deduced}; 2323 2324 if (OBO->getOpcode() != Instruction::Add && 2325 OBO->getOpcode() != Instruction::Sub && 2326 OBO->getOpcode() != Instruction::Mul) 2327 return {Flags, Deduced}; 2328 2329 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2330 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2331 2332 if (!OBO->hasNoUnsignedWrap() && 2333 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2334 /* Signed */ false, LHS, RHS)) { 2335 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2336 Deduced = true; 2337 } 2338 2339 if (!OBO->hasNoSignedWrap() && 2340 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2341 /* Signed */ true, LHS, RHS)) { 2342 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2343 Deduced = true; 2344 } 2345 2346 return {Flags, Deduced}; 2347 } 2348 2349 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2350 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2351 // can't-overflow flags for the operation if possible. 2352 static SCEV::NoWrapFlags 2353 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2354 const ArrayRef<const SCEV *> Ops, 2355 SCEV::NoWrapFlags Flags) { 2356 using namespace std::placeholders; 2357 2358 using OBO = OverflowingBinaryOperator; 2359 2360 bool CanAnalyze = 2361 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2362 (void)CanAnalyze; 2363 assert(CanAnalyze && "don't call from other places!"); 2364 2365 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2366 SCEV::NoWrapFlags SignOrUnsignWrap = 2367 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2368 2369 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2370 auto IsKnownNonNegative = [&](const SCEV *S) { 2371 return SE->isKnownNonNegative(S); 2372 }; 2373 2374 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2375 Flags = 2376 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2377 2378 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2379 2380 if (SignOrUnsignWrap != SignOrUnsignMask && 2381 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2382 isa<SCEVConstant>(Ops[0])) { 2383 2384 auto Opcode = [&] { 2385 switch (Type) { 2386 case scAddExpr: 2387 return Instruction::Add; 2388 case scMulExpr: 2389 return Instruction::Mul; 2390 default: 2391 llvm_unreachable("Unexpected SCEV op."); 2392 } 2393 }(); 2394 2395 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2396 2397 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2398 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2399 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2400 Opcode, C, OBO::NoSignedWrap); 2401 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2402 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2403 } 2404 2405 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2406 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2407 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2408 Opcode, C, OBO::NoUnsignedWrap); 2409 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2410 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2411 } 2412 } 2413 2414 // <0,+,nonnegative><nw> is also nuw 2415 // TODO: Add corresponding nsw case 2416 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2417 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2418 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2419 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2420 2421 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2422 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2423 Ops.size() == 2) { 2424 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2425 if (UDiv->getOperand(1) == Ops[1]) 2426 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2427 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2428 if (UDiv->getOperand(1) == Ops[0]) 2429 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2430 } 2431 2432 return Flags; 2433 } 2434 2435 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2436 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2437 } 2438 2439 /// Get a canonical add expression, or something simpler if possible. 2440 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2441 SCEV::NoWrapFlags OrigFlags, 2442 unsigned Depth) { 2443 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2444 "only nuw or nsw allowed"); 2445 assert(!Ops.empty() && "Cannot get empty add!"); 2446 if (Ops.size() == 1) return Ops[0]; 2447 #ifndef NDEBUG 2448 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2449 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2450 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2451 "SCEVAddExpr operand types don't match!"); 2452 unsigned NumPtrs = count_if( 2453 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2454 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2455 #endif 2456 2457 // Sort by complexity, this groups all similar expression types together. 2458 GroupByComplexity(Ops, &LI, DT); 2459 2460 // If there are any constants, fold them together. 2461 unsigned Idx = 0; 2462 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2463 ++Idx; 2464 assert(Idx < Ops.size()); 2465 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2466 // We found two constants, fold them together! 2467 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2468 if (Ops.size() == 2) return Ops[0]; 2469 Ops.erase(Ops.begin()+1); // Erase the folded element 2470 LHSC = cast<SCEVConstant>(Ops[0]); 2471 } 2472 2473 // If we are left with a constant zero being added, strip it off. 2474 if (LHSC->getValue()->isZero()) { 2475 Ops.erase(Ops.begin()); 2476 --Idx; 2477 } 2478 2479 if (Ops.size() == 1) return Ops[0]; 2480 } 2481 2482 // Delay expensive flag strengthening until necessary. 2483 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2484 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2485 }; 2486 2487 // Limit recursion calls depth. 2488 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2489 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2490 2491 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2492 // Don't strengthen flags if we have no new information. 2493 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2494 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2495 Add->setNoWrapFlags(ComputeFlags(Ops)); 2496 return S; 2497 } 2498 2499 // Okay, check to see if the same value occurs in the operand list more than 2500 // once. If so, merge them together into an multiply expression. Since we 2501 // sorted the list, these values are required to be adjacent. 2502 Type *Ty = Ops[0]->getType(); 2503 bool FoundMatch = false; 2504 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2505 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2506 // Scan ahead to count how many equal operands there are. 2507 unsigned Count = 2; 2508 while (i+Count != e && Ops[i+Count] == Ops[i]) 2509 ++Count; 2510 // Merge the values into a multiply. 2511 const SCEV *Scale = getConstant(Ty, Count); 2512 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2513 if (Ops.size() == Count) 2514 return Mul; 2515 Ops[i] = Mul; 2516 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2517 --i; e -= Count - 1; 2518 FoundMatch = true; 2519 } 2520 if (FoundMatch) 2521 return getAddExpr(Ops, OrigFlags, Depth + 1); 2522 2523 // Check for truncates. If all the operands are truncated from the same 2524 // type, see if factoring out the truncate would permit the result to be 2525 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2526 // if the contents of the resulting outer trunc fold to something simple. 2527 auto FindTruncSrcType = [&]() -> Type * { 2528 // We're ultimately looking to fold an addrec of truncs and muls of only 2529 // constants and truncs, so if we find any other types of SCEV 2530 // as operands of the addrec then we bail and return nullptr here. 2531 // Otherwise, we return the type of the operand of a trunc that we find. 2532 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2533 return T->getOperand()->getType(); 2534 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2535 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2536 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2537 return T->getOperand()->getType(); 2538 } 2539 return nullptr; 2540 }; 2541 if (auto *SrcType = FindTruncSrcType()) { 2542 SmallVector<const SCEV *, 8> LargeOps; 2543 bool Ok = true; 2544 // Check all the operands to see if they can be represented in the 2545 // source type of the truncate. 2546 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2547 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2548 if (T->getOperand()->getType() != SrcType) { 2549 Ok = false; 2550 break; 2551 } 2552 LargeOps.push_back(T->getOperand()); 2553 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2554 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2555 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2556 SmallVector<const SCEV *, 8> LargeMulOps; 2557 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2558 if (const SCEVTruncateExpr *T = 2559 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2560 if (T->getOperand()->getType() != SrcType) { 2561 Ok = false; 2562 break; 2563 } 2564 LargeMulOps.push_back(T->getOperand()); 2565 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2566 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2567 } else { 2568 Ok = false; 2569 break; 2570 } 2571 } 2572 if (Ok) 2573 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2574 } else { 2575 Ok = false; 2576 break; 2577 } 2578 } 2579 if (Ok) { 2580 // Evaluate the expression in the larger type. 2581 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2582 // If it folds to something simple, use it. Otherwise, don't. 2583 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2584 return getTruncateExpr(Fold, Ty); 2585 } 2586 } 2587 2588 if (Ops.size() == 2) { 2589 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2590 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2591 // C1). 2592 const SCEV *A = Ops[0]; 2593 const SCEV *B = Ops[1]; 2594 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2595 auto *C = dyn_cast<SCEVConstant>(A); 2596 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2597 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2598 auto C2 = C->getAPInt(); 2599 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2600 2601 APInt ConstAdd = C1 + C2; 2602 auto AddFlags = AddExpr->getNoWrapFlags(); 2603 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2604 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2605 ConstAdd.ule(C1)) { 2606 PreservedFlags = 2607 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2608 } 2609 2610 // Adding a constant with the same sign and small magnitude is NSW, if the 2611 // original AddExpr was NSW. 2612 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2613 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2614 ConstAdd.abs().ule(C1.abs())) { 2615 PreservedFlags = 2616 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2617 } 2618 2619 if (PreservedFlags != SCEV::FlagAnyWrap) { 2620 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2621 NewOps[0] = getConstant(ConstAdd); 2622 return getAddExpr(NewOps, PreservedFlags); 2623 } 2624 } 2625 } 2626 2627 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2628 if (Ops.size() == 2) { 2629 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2630 if (Mul && Mul->getNumOperands() == 2 && 2631 Mul->getOperand(0)->isAllOnesValue()) { 2632 const SCEV *X; 2633 const SCEV *Y; 2634 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2635 return getMulExpr(Y, getUDivExpr(X, Y)); 2636 } 2637 } 2638 } 2639 2640 // Skip past any other cast SCEVs. 2641 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2642 ++Idx; 2643 2644 // If there are add operands they would be next. 2645 if (Idx < Ops.size()) { 2646 bool DeletedAdd = false; 2647 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2648 // common NUW flag for expression after inlining. Other flags cannot be 2649 // preserved, because they may depend on the original order of operations. 2650 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2651 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2652 if (Ops.size() > AddOpsInlineThreshold || 2653 Add->getNumOperands() > AddOpsInlineThreshold) 2654 break; 2655 // If we have an add, expand the add operands onto the end of the operands 2656 // list. 2657 Ops.erase(Ops.begin()+Idx); 2658 Ops.append(Add->op_begin(), Add->op_end()); 2659 DeletedAdd = true; 2660 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2661 } 2662 2663 // If we deleted at least one add, we added operands to the end of the list, 2664 // and they are not necessarily sorted. Recurse to resort and resimplify 2665 // any operands we just acquired. 2666 if (DeletedAdd) 2667 return getAddExpr(Ops, CommonFlags, Depth + 1); 2668 } 2669 2670 // Skip over the add expression until we get to a multiply. 2671 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2672 ++Idx; 2673 2674 // Check to see if there are any folding opportunities present with 2675 // operands multiplied by constant values. 2676 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2677 uint64_t BitWidth = getTypeSizeInBits(Ty); 2678 DenseMap<const SCEV *, APInt> M; 2679 SmallVector<const SCEV *, 8> NewOps; 2680 APInt AccumulatedConstant(BitWidth, 0); 2681 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2682 Ops.data(), Ops.size(), 2683 APInt(BitWidth, 1), *this)) { 2684 struct APIntCompare { 2685 bool operator()(const APInt &LHS, const APInt &RHS) const { 2686 return LHS.ult(RHS); 2687 } 2688 }; 2689 2690 // Some interesting folding opportunity is present, so its worthwhile to 2691 // re-generate the operands list. Group the operands by constant scale, 2692 // to avoid multiplying by the same constant scale multiple times. 2693 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2694 for (const SCEV *NewOp : NewOps) 2695 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2696 // Re-generate the operands list. 2697 Ops.clear(); 2698 if (AccumulatedConstant != 0) 2699 Ops.push_back(getConstant(AccumulatedConstant)); 2700 for (auto &MulOp : MulOpLists) { 2701 if (MulOp.first == 1) { 2702 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2703 } else if (MulOp.first != 0) { 2704 Ops.push_back(getMulExpr( 2705 getConstant(MulOp.first), 2706 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2707 SCEV::FlagAnyWrap, Depth + 1)); 2708 } 2709 } 2710 if (Ops.empty()) 2711 return getZero(Ty); 2712 if (Ops.size() == 1) 2713 return Ops[0]; 2714 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2715 } 2716 } 2717 2718 // If we are adding something to a multiply expression, make sure the 2719 // something is not already an operand of the multiply. If so, merge it into 2720 // the multiply. 2721 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2722 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2723 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2724 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2725 if (isa<SCEVConstant>(MulOpSCEV)) 2726 continue; 2727 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2728 if (MulOpSCEV == Ops[AddOp]) { 2729 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2730 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2731 if (Mul->getNumOperands() != 2) { 2732 // If the multiply has more than two operands, we must get the 2733 // Y*Z term. 2734 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2735 Mul->op_begin()+MulOp); 2736 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2737 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2738 } 2739 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2740 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2741 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2742 SCEV::FlagAnyWrap, Depth + 1); 2743 if (Ops.size() == 2) return OuterMul; 2744 if (AddOp < Idx) { 2745 Ops.erase(Ops.begin()+AddOp); 2746 Ops.erase(Ops.begin()+Idx-1); 2747 } else { 2748 Ops.erase(Ops.begin()+Idx); 2749 Ops.erase(Ops.begin()+AddOp-1); 2750 } 2751 Ops.push_back(OuterMul); 2752 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2753 } 2754 2755 // Check this multiply against other multiplies being added together. 2756 for (unsigned OtherMulIdx = Idx+1; 2757 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2758 ++OtherMulIdx) { 2759 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2760 // If MulOp occurs in OtherMul, we can fold the two multiplies 2761 // together. 2762 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2763 OMulOp != e; ++OMulOp) 2764 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2765 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2766 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2767 if (Mul->getNumOperands() != 2) { 2768 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2769 Mul->op_begin()+MulOp); 2770 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2771 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2772 } 2773 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2774 if (OtherMul->getNumOperands() != 2) { 2775 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2776 OtherMul->op_begin()+OMulOp); 2777 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2778 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2779 } 2780 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2781 const SCEV *InnerMulSum = 2782 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2783 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2784 SCEV::FlagAnyWrap, Depth + 1); 2785 if (Ops.size() == 2) return OuterMul; 2786 Ops.erase(Ops.begin()+Idx); 2787 Ops.erase(Ops.begin()+OtherMulIdx-1); 2788 Ops.push_back(OuterMul); 2789 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2790 } 2791 } 2792 } 2793 } 2794 2795 // If there are any add recurrences in the operands list, see if any other 2796 // added values are loop invariant. If so, we can fold them into the 2797 // recurrence. 2798 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2799 ++Idx; 2800 2801 // Scan over all recurrences, trying to fold loop invariants into them. 2802 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2803 // Scan all of the other operands to this add and add them to the vector if 2804 // they are loop invariant w.r.t. the recurrence. 2805 SmallVector<const SCEV *, 8> LIOps; 2806 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2807 const Loop *AddRecLoop = AddRec->getLoop(); 2808 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2809 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2810 LIOps.push_back(Ops[i]); 2811 Ops.erase(Ops.begin()+i); 2812 --i; --e; 2813 } 2814 2815 // If we found some loop invariants, fold them into the recurrence. 2816 if (!LIOps.empty()) { 2817 // Compute nowrap flags for the addition of the loop-invariant ops and 2818 // the addrec. Temporarily push it as an operand for that purpose. These 2819 // flags are valid in the scope of the addrec only. 2820 LIOps.push_back(AddRec); 2821 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2822 LIOps.pop_back(); 2823 2824 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2825 LIOps.push_back(AddRec->getStart()); 2826 2827 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2828 2829 // It is not in general safe to propagate flags valid on an add within 2830 // the addrec scope to one outside it. We must prove that the inner 2831 // scope is guaranteed to execute if the outer one does to be able to 2832 // safely propagate. We know the program is undefined if poison is 2833 // produced on the inner scoped addrec. We also know that *for this use* 2834 // the outer scoped add can't overflow (because of the flags we just 2835 // computed for the inner scoped add) without the program being undefined. 2836 // Proving that entry to the outer scope neccesitates entry to the inner 2837 // scope, thus proves the program undefined if the flags would be violated 2838 // in the outer scope. 2839 SCEV::NoWrapFlags AddFlags = Flags; 2840 if (AddFlags != SCEV::FlagAnyWrap) { 2841 auto *DefI = getDefiningScopeBound(LIOps); 2842 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2843 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2844 AddFlags = SCEV::FlagAnyWrap; 2845 } 2846 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2847 2848 // Build the new addrec. Propagate the NUW and NSW flags if both the 2849 // outer add and the inner addrec are guaranteed to have no overflow. 2850 // Always propagate NW. 2851 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2852 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2853 2854 // If all of the other operands were loop invariant, we are done. 2855 if (Ops.size() == 1) return NewRec; 2856 2857 // Otherwise, add the folded AddRec by the non-invariant parts. 2858 for (unsigned i = 0;; ++i) 2859 if (Ops[i] == AddRec) { 2860 Ops[i] = NewRec; 2861 break; 2862 } 2863 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2864 } 2865 2866 // Okay, if there weren't any loop invariants to be folded, check to see if 2867 // there are multiple AddRec's with the same loop induction variable being 2868 // added together. If so, we can fold them. 2869 for (unsigned OtherIdx = Idx+1; 2870 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2871 ++OtherIdx) { 2872 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2873 // so that the 1st found AddRecExpr is dominated by all others. 2874 assert(DT.dominates( 2875 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2876 AddRec->getLoop()->getHeader()) && 2877 "AddRecExprs are not sorted in reverse dominance order?"); 2878 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2879 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2880 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2881 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2882 ++OtherIdx) { 2883 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 if (OtherAddRec->getLoop() == AddRecLoop) { 2885 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2886 i != e; ++i) { 2887 if (i >= AddRecOps.size()) { 2888 AddRecOps.append(OtherAddRec->op_begin()+i, 2889 OtherAddRec->op_end()); 2890 break; 2891 } 2892 SmallVector<const SCEV *, 2> TwoOps = { 2893 AddRecOps[i], OtherAddRec->getOperand(i)}; 2894 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2895 } 2896 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2897 } 2898 } 2899 // Step size has changed, so we cannot guarantee no self-wraparound. 2900 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2901 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2902 } 2903 } 2904 2905 // Otherwise couldn't fold anything into this recurrence. Move onto the 2906 // next one. 2907 } 2908 2909 // Okay, it looks like we really DO need an add expr. Check to see if we 2910 // already have one, otherwise create a new one. 2911 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2912 } 2913 2914 const SCEV * 2915 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2916 SCEV::NoWrapFlags Flags) { 2917 FoldingSetNodeID ID; 2918 ID.AddInteger(scAddExpr); 2919 for (const SCEV *Op : Ops) 2920 ID.AddPointer(Op); 2921 void *IP = nullptr; 2922 SCEVAddExpr *S = 2923 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2924 if (!S) { 2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2926 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2927 S = new (SCEVAllocator) 2928 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2929 UniqueSCEVs.InsertNode(S, IP); 2930 registerUser(S, Ops); 2931 } 2932 S->setNoWrapFlags(Flags); 2933 return S; 2934 } 2935 2936 const SCEV * 2937 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2938 const Loop *L, SCEV::NoWrapFlags Flags) { 2939 FoldingSetNodeID ID; 2940 ID.AddInteger(scAddRecExpr); 2941 for (const SCEV *Op : Ops) 2942 ID.AddPointer(Op); 2943 ID.AddPointer(L); 2944 void *IP = nullptr; 2945 SCEVAddRecExpr *S = 2946 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2947 if (!S) { 2948 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2949 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2950 S = new (SCEVAllocator) 2951 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2952 UniqueSCEVs.InsertNode(S, IP); 2953 LoopUsers[L].push_back(S); 2954 registerUser(S, Ops); 2955 } 2956 setNoWrapFlags(S, Flags); 2957 return S; 2958 } 2959 2960 const SCEV * 2961 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2962 SCEV::NoWrapFlags Flags) { 2963 FoldingSetNodeID ID; 2964 ID.AddInteger(scMulExpr); 2965 for (const SCEV *Op : Ops) 2966 ID.AddPointer(Op); 2967 void *IP = nullptr; 2968 SCEVMulExpr *S = 2969 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2970 if (!S) { 2971 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2972 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2973 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2974 O, Ops.size()); 2975 UniqueSCEVs.InsertNode(S, IP); 2976 registerUser(S, Ops); 2977 } 2978 S->setNoWrapFlags(Flags); 2979 return S; 2980 } 2981 2982 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2983 uint64_t k = i*j; 2984 if (j > 1 && k / j != i) Overflow = true; 2985 return k; 2986 } 2987 2988 /// Compute the result of "n choose k", the binomial coefficient. If an 2989 /// intermediate computation overflows, Overflow will be set and the return will 2990 /// be garbage. Overflow is not cleared on absence of overflow. 2991 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2992 // We use the multiplicative formula: 2993 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2994 // At each iteration, we take the n-th term of the numeral and divide by the 2995 // (k-n)th term of the denominator. This division will always produce an 2996 // integral result, and helps reduce the chance of overflow in the 2997 // intermediate computations. However, we can still overflow even when the 2998 // final result would fit. 2999 3000 if (n == 0 || n == k) return 1; 3001 if (k > n) return 0; 3002 3003 if (k > n/2) 3004 k = n-k; 3005 3006 uint64_t r = 1; 3007 for (uint64_t i = 1; i <= k; ++i) { 3008 r = umul_ov(r, n-(i-1), Overflow); 3009 r /= i; 3010 } 3011 return r; 3012 } 3013 3014 /// Determine if any of the operands in this SCEV are a constant or if 3015 /// any of the add or multiply expressions in this SCEV contain a constant. 3016 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3017 struct FindConstantInAddMulChain { 3018 bool FoundConstant = false; 3019 3020 bool follow(const SCEV *S) { 3021 FoundConstant |= isa<SCEVConstant>(S); 3022 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3023 } 3024 3025 bool isDone() const { 3026 return FoundConstant; 3027 } 3028 }; 3029 3030 FindConstantInAddMulChain F; 3031 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3032 ST.visitAll(StartExpr); 3033 return F.FoundConstant; 3034 } 3035 3036 /// Get a canonical multiply expression, or something simpler if possible. 3037 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3038 SCEV::NoWrapFlags OrigFlags, 3039 unsigned Depth) { 3040 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3041 "only nuw or nsw allowed"); 3042 assert(!Ops.empty() && "Cannot get empty mul!"); 3043 if (Ops.size() == 1) return Ops[0]; 3044 #ifndef NDEBUG 3045 Type *ETy = Ops[0]->getType(); 3046 assert(!ETy->isPointerTy()); 3047 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3048 assert(Ops[i]->getType() == ETy && 3049 "SCEVMulExpr operand types don't match!"); 3050 #endif 3051 3052 // Sort by complexity, this groups all similar expression types together. 3053 GroupByComplexity(Ops, &LI, DT); 3054 3055 // If there are any constants, fold them together. 3056 unsigned Idx = 0; 3057 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3058 ++Idx; 3059 assert(Idx < Ops.size()); 3060 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3061 // We found two constants, fold them together! 3062 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3063 if (Ops.size() == 2) return Ops[0]; 3064 Ops.erase(Ops.begin()+1); // Erase the folded element 3065 LHSC = cast<SCEVConstant>(Ops[0]); 3066 } 3067 3068 // If we have a multiply of zero, it will always be zero. 3069 if (LHSC->getValue()->isZero()) 3070 return LHSC; 3071 3072 // If we are left with a constant one being multiplied, strip it off. 3073 if (LHSC->getValue()->isOne()) { 3074 Ops.erase(Ops.begin()); 3075 --Idx; 3076 } 3077 3078 if (Ops.size() == 1) 3079 return Ops[0]; 3080 } 3081 3082 // Delay expensive flag strengthening until necessary. 3083 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3084 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3085 }; 3086 3087 // Limit recursion calls depth. 3088 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3089 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3090 3091 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3092 // Don't strengthen flags if we have no new information. 3093 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3094 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3095 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3096 return S; 3097 } 3098 3099 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3100 if (Ops.size() == 2) { 3101 // C1*(C2+V) -> C1*C2 + C1*V 3102 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3103 // If any of Add's ops are Adds or Muls with a constant, apply this 3104 // transformation as well. 3105 // 3106 // TODO: There are some cases where this transformation is not 3107 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3108 // this transformation should be narrowed down. 3109 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3110 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3111 SCEV::FlagAnyWrap, Depth + 1), 3112 getMulExpr(LHSC, Add->getOperand(1), 3113 SCEV::FlagAnyWrap, Depth + 1), 3114 SCEV::FlagAnyWrap, Depth + 1); 3115 3116 if (Ops[0]->isAllOnesValue()) { 3117 // If we have a mul by -1 of an add, try distributing the -1 among the 3118 // add operands. 3119 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3120 SmallVector<const SCEV *, 4> NewOps; 3121 bool AnyFolded = false; 3122 for (const SCEV *AddOp : Add->operands()) { 3123 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3124 Depth + 1); 3125 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3126 NewOps.push_back(Mul); 3127 } 3128 if (AnyFolded) 3129 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3130 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3131 // Negation preserves a recurrence's no self-wrap property. 3132 SmallVector<const SCEV *, 4> Operands; 3133 for (const SCEV *AddRecOp : AddRec->operands()) 3134 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3135 Depth + 1)); 3136 3137 return getAddRecExpr(Operands, AddRec->getLoop(), 3138 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3139 } 3140 } 3141 } 3142 } 3143 3144 // Skip over the add expression until we get to a multiply. 3145 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3146 ++Idx; 3147 3148 // If there are mul operands inline them all into this expression. 3149 if (Idx < Ops.size()) { 3150 bool DeletedMul = false; 3151 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3152 if (Ops.size() > MulOpsInlineThreshold) 3153 break; 3154 // If we have an mul, expand the mul operands onto the end of the 3155 // operands list. 3156 Ops.erase(Ops.begin()+Idx); 3157 Ops.append(Mul->op_begin(), Mul->op_end()); 3158 DeletedMul = true; 3159 } 3160 3161 // If we deleted at least one mul, we added operands to the end of the 3162 // list, and they are not necessarily sorted. Recurse to resort and 3163 // resimplify any operands we just acquired. 3164 if (DeletedMul) 3165 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3166 } 3167 3168 // If there are any add recurrences in the operands list, see if any other 3169 // added values are loop invariant. If so, we can fold them into the 3170 // recurrence. 3171 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3172 ++Idx; 3173 3174 // Scan over all recurrences, trying to fold loop invariants into them. 3175 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3176 // Scan all of the other operands to this mul and add them to the vector 3177 // if they are loop invariant w.r.t. the recurrence. 3178 SmallVector<const SCEV *, 8> LIOps; 3179 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3180 const Loop *AddRecLoop = AddRec->getLoop(); 3181 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3182 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3183 LIOps.push_back(Ops[i]); 3184 Ops.erase(Ops.begin()+i); 3185 --i; --e; 3186 } 3187 3188 // If we found some loop invariants, fold them into the recurrence. 3189 if (!LIOps.empty()) { 3190 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3191 SmallVector<const SCEV *, 4> NewOps; 3192 NewOps.reserve(AddRec->getNumOperands()); 3193 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3194 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3195 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3196 SCEV::FlagAnyWrap, Depth + 1)); 3197 3198 // Build the new addrec. Propagate the NUW and NSW flags if both the 3199 // outer mul and the inner addrec are guaranteed to have no overflow. 3200 // 3201 // No self-wrap cannot be guaranteed after changing the step size, but 3202 // will be inferred if either NUW or NSW is true. 3203 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3204 const SCEV *NewRec = getAddRecExpr( 3205 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3206 3207 // If all of the other operands were loop invariant, we are done. 3208 if (Ops.size() == 1) return NewRec; 3209 3210 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3211 for (unsigned i = 0;; ++i) 3212 if (Ops[i] == AddRec) { 3213 Ops[i] = NewRec; 3214 break; 3215 } 3216 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3217 } 3218 3219 // Okay, if there weren't any loop invariants to be folded, check to see 3220 // if there are multiple AddRec's with the same loop induction variable 3221 // being multiplied together. If so, we can fold them. 3222 3223 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3224 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3225 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3226 // ]]],+,...up to x=2n}. 3227 // Note that the arguments to choose() are always integers with values 3228 // known at compile time, never SCEV objects. 3229 // 3230 // The implementation avoids pointless extra computations when the two 3231 // addrec's are of different length (mathematically, it's equivalent to 3232 // an infinite stream of zeros on the right). 3233 bool OpsModified = false; 3234 for (unsigned OtherIdx = Idx+1; 3235 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3236 ++OtherIdx) { 3237 const SCEVAddRecExpr *OtherAddRec = 3238 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3239 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3240 continue; 3241 3242 // Limit max number of arguments to avoid creation of unreasonably big 3243 // SCEVAddRecs with very complex operands. 3244 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3245 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3246 continue; 3247 3248 bool Overflow = false; 3249 Type *Ty = AddRec->getType(); 3250 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3251 SmallVector<const SCEV*, 7> AddRecOps; 3252 for (int x = 0, xe = AddRec->getNumOperands() + 3253 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3254 SmallVector <const SCEV *, 7> SumOps; 3255 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3256 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3257 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3258 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3259 z < ze && !Overflow; ++z) { 3260 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3261 uint64_t Coeff; 3262 if (LargerThan64Bits) 3263 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3264 else 3265 Coeff = Coeff1*Coeff2; 3266 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3267 const SCEV *Term1 = AddRec->getOperand(y-z); 3268 const SCEV *Term2 = OtherAddRec->getOperand(z); 3269 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3270 SCEV::FlagAnyWrap, Depth + 1)); 3271 } 3272 } 3273 if (SumOps.empty()) 3274 SumOps.push_back(getZero(Ty)); 3275 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3276 } 3277 if (!Overflow) { 3278 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3279 SCEV::FlagAnyWrap); 3280 if (Ops.size() == 2) return NewAddRec; 3281 Ops[Idx] = NewAddRec; 3282 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3283 OpsModified = true; 3284 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3285 if (!AddRec) 3286 break; 3287 } 3288 } 3289 if (OpsModified) 3290 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3291 3292 // Otherwise couldn't fold anything into this recurrence. Move onto the 3293 // next one. 3294 } 3295 3296 // Okay, it looks like we really DO need an mul expr. Check to see if we 3297 // already have one, otherwise create a new one. 3298 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3299 } 3300 3301 /// Represents an unsigned remainder expression based on unsigned division. 3302 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3303 const SCEV *RHS) { 3304 assert(getEffectiveSCEVType(LHS->getType()) == 3305 getEffectiveSCEVType(RHS->getType()) && 3306 "SCEVURemExpr operand types don't match!"); 3307 3308 // Short-circuit easy cases 3309 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3310 // If constant is one, the result is trivial 3311 if (RHSC->getValue()->isOne()) 3312 return getZero(LHS->getType()); // X urem 1 --> 0 3313 3314 // If constant is a power of two, fold into a zext(trunc(LHS)). 3315 if (RHSC->getAPInt().isPowerOf2()) { 3316 Type *FullTy = LHS->getType(); 3317 Type *TruncTy = 3318 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3319 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3320 } 3321 } 3322 3323 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3324 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3325 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3326 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3327 } 3328 3329 /// Get a canonical unsigned division expression, or something simpler if 3330 /// possible. 3331 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3332 const SCEV *RHS) { 3333 assert(!LHS->getType()->isPointerTy() && 3334 "SCEVUDivExpr operand can't be pointer!"); 3335 assert(LHS->getType() == RHS->getType() && 3336 "SCEVUDivExpr operand types don't match!"); 3337 3338 FoldingSetNodeID ID; 3339 ID.AddInteger(scUDivExpr); 3340 ID.AddPointer(LHS); 3341 ID.AddPointer(RHS); 3342 void *IP = nullptr; 3343 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3344 return S; 3345 3346 // 0 udiv Y == 0 3347 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3348 if (LHSC->getValue()->isZero()) 3349 return LHS; 3350 3351 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3352 if (RHSC->getValue()->isOne()) 3353 return LHS; // X udiv 1 --> x 3354 // If the denominator is zero, the result of the udiv is undefined. Don't 3355 // try to analyze it, because the resolution chosen here may differ from 3356 // the resolution chosen in other parts of the compiler. 3357 if (!RHSC->getValue()->isZero()) { 3358 // Determine if the division can be folded into the operands of 3359 // its operands. 3360 // TODO: Generalize this to non-constants by using known-bits information. 3361 Type *Ty = LHS->getType(); 3362 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3363 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3364 // For non-power-of-two values, effectively round the value up to the 3365 // nearest power of two. 3366 if (!RHSC->getAPInt().isPowerOf2()) 3367 ++MaxShiftAmt; 3368 IntegerType *ExtTy = 3369 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3370 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3371 if (const SCEVConstant *Step = 3372 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3373 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3374 const APInt &StepInt = Step->getAPInt(); 3375 const APInt &DivInt = RHSC->getAPInt(); 3376 if (!StepInt.urem(DivInt) && 3377 getZeroExtendExpr(AR, ExtTy) == 3378 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3379 getZeroExtendExpr(Step, ExtTy), 3380 AR->getLoop(), SCEV::FlagAnyWrap)) { 3381 SmallVector<const SCEV *, 4> Operands; 3382 for (const SCEV *Op : AR->operands()) 3383 Operands.push_back(getUDivExpr(Op, RHS)); 3384 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3385 } 3386 /// Get a canonical UDivExpr for a recurrence. 3387 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3388 // We can currently only fold X%N if X is constant. 3389 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3390 if (StartC && !DivInt.urem(StepInt) && 3391 getZeroExtendExpr(AR, ExtTy) == 3392 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3393 getZeroExtendExpr(Step, ExtTy), 3394 AR->getLoop(), SCEV::FlagAnyWrap)) { 3395 const APInt &StartInt = StartC->getAPInt(); 3396 const APInt &StartRem = StartInt.urem(StepInt); 3397 if (StartRem != 0) { 3398 const SCEV *NewLHS = 3399 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3400 AR->getLoop(), SCEV::FlagNW); 3401 if (LHS != NewLHS) { 3402 LHS = NewLHS; 3403 3404 // Reset the ID to include the new LHS, and check if it is 3405 // already cached. 3406 ID.clear(); 3407 ID.AddInteger(scUDivExpr); 3408 ID.AddPointer(LHS); 3409 ID.AddPointer(RHS); 3410 IP = nullptr; 3411 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3412 return S; 3413 } 3414 } 3415 } 3416 } 3417 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3418 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3419 SmallVector<const SCEV *, 4> Operands; 3420 for (const SCEV *Op : M->operands()) 3421 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3422 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3423 // Find an operand that's safely divisible. 3424 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3425 const SCEV *Op = M->getOperand(i); 3426 const SCEV *Div = getUDivExpr(Op, RHSC); 3427 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3428 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3429 Operands[i] = Div; 3430 return getMulExpr(Operands); 3431 } 3432 } 3433 } 3434 3435 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3436 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3437 if (auto *DivisorConstant = 3438 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3439 bool Overflow = false; 3440 APInt NewRHS = 3441 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3442 if (Overflow) { 3443 return getConstant(RHSC->getType(), 0, false); 3444 } 3445 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3446 } 3447 } 3448 3449 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3450 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3451 SmallVector<const SCEV *, 4> Operands; 3452 for (const SCEV *Op : A->operands()) 3453 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3454 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3455 Operands.clear(); 3456 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3457 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3458 if (isa<SCEVUDivExpr>(Op) || 3459 getMulExpr(Op, RHS) != A->getOperand(i)) 3460 break; 3461 Operands.push_back(Op); 3462 } 3463 if (Operands.size() == A->getNumOperands()) 3464 return getAddExpr(Operands); 3465 } 3466 } 3467 3468 // Fold if both operands are constant. 3469 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3470 Constant *LHSCV = LHSC->getValue(); 3471 Constant *RHSCV = RHSC->getValue(); 3472 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3473 RHSCV))); 3474 } 3475 } 3476 } 3477 3478 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3479 // changes). Make sure we get a new one. 3480 IP = nullptr; 3481 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3482 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3483 LHS, RHS); 3484 UniqueSCEVs.InsertNode(S, IP); 3485 registerUser(S, {LHS, RHS}); 3486 return S; 3487 } 3488 3489 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3490 APInt A = C1->getAPInt().abs(); 3491 APInt B = C2->getAPInt().abs(); 3492 uint32_t ABW = A.getBitWidth(); 3493 uint32_t BBW = B.getBitWidth(); 3494 3495 if (ABW > BBW) 3496 B = B.zext(ABW); 3497 else if (ABW < BBW) 3498 A = A.zext(BBW); 3499 3500 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3501 } 3502 3503 /// Get a canonical unsigned division expression, or something simpler if 3504 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3505 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3506 /// it's not exact because the udiv may be clearing bits. 3507 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3508 const SCEV *RHS) { 3509 // TODO: we could try to find factors in all sorts of things, but for now we 3510 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3511 // end of this file for inspiration. 3512 3513 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3514 if (!Mul || !Mul->hasNoUnsignedWrap()) 3515 return getUDivExpr(LHS, RHS); 3516 3517 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3518 // If the mulexpr multiplies by a constant, then that constant must be the 3519 // first element of the mulexpr. 3520 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3521 if (LHSCst == RHSCst) { 3522 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3523 return getMulExpr(Operands); 3524 } 3525 3526 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3527 // that there's a factor provided by one of the other terms. We need to 3528 // check. 3529 APInt Factor = gcd(LHSCst, RHSCst); 3530 if (!Factor.isIntN(1)) { 3531 LHSCst = 3532 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3533 RHSCst = 3534 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3535 SmallVector<const SCEV *, 2> Operands; 3536 Operands.push_back(LHSCst); 3537 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3538 LHS = getMulExpr(Operands); 3539 RHS = RHSCst; 3540 Mul = dyn_cast<SCEVMulExpr>(LHS); 3541 if (!Mul) 3542 return getUDivExactExpr(LHS, RHS); 3543 } 3544 } 3545 } 3546 3547 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3548 if (Mul->getOperand(i) == RHS) { 3549 SmallVector<const SCEV *, 2> Operands; 3550 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3551 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3552 return getMulExpr(Operands); 3553 } 3554 } 3555 3556 return getUDivExpr(LHS, RHS); 3557 } 3558 3559 /// Get an add recurrence expression for the specified loop. Simplify the 3560 /// expression as much as possible. 3561 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3562 const Loop *L, 3563 SCEV::NoWrapFlags Flags) { 3564 SmallVector<const SCEV *, 4> Operands; 3565 Operands.push_back(Start); 3566 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3567 if (StepChrec->getLoop() == L) { 3568 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3569 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3570 } 3571 3572 Operands.push_back(Step); 3573 return getAddRecExpr(Operands, L, Flags); 3574 } 3575 3576 /// Get an add recurrence expression for the specified loop. Simplify the 3577 /// expression as much as possible. 3578 const SCEV * 3579 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3580 const Loop *L, SCEV::NoWrapFlags Flags) { 3581 if (Operands.size() == 1) return Operands[0]; 3582 #ifndef NDEBUG 3583 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3584 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3585 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3586 "SCEVAddRecExpr operand types don't match!"); 3587 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3588 } 3589 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3590 assert(isLoopInvariant(Operands[i], L) && 3591 "SCEVAddRecExpr operand is not loop-invariant!"); 3592 #endif 3593 3594 if (Operands.back()->isZero()) { 3595 Operands.pop_back(); 3596 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3597 } 3598 3599 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3600 // use that information to infer NUW and NSW flags. However, computing a 3601 // BE count requires calling getAddRecExpr, so we may not yet have a 3602 // meaningful BE count at this point (and if we don't, we'd be stuck 3603 // with a SCEVCouldNotCompute as the cached BE count). 3604 3605 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3606 3607 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3608 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3609 const Loop *NestedLoop = NestedAR->getLoop(); 3610 if (L->contains(NestedLoop) 3611 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3612 : (!NestedLoop->contains(L) && 3613 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3614 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3615 Operands[0] = NestedAR->getStart(); 3616 // AddRecs require their operands be loop-invariant with respect to their 3617 // loops. Don't perform this transformation if it would break this 3618 // requirement. 3619 bool AllInvariant = all_of( 3620 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3621 3622 if (AllInvariant) { 3623 // Create a recurrence for the outer loop with the same step size. 3624 // 3625 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3626 // inner recurrence has the same property. 3627 SCEV::NoWrapFlags OuterFlags = 3628 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3629 3630 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3631 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3632 return isLoopInvariant(Op, NestedLoop); 3633 }); 3634 3635 if (AllInvariant) { 3636 // Ok, both add recurrences are valid after the transformation. 3637 // 3638 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3639 // the outer recurrence has the same property. 3640 SCEV::NoWrapFlags InnerFlags = 3641 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3642 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3643 } 3644 } 3645 // Reset Operands to its original state. 3646 Operands[0] = NestedAR; 3647 } 3648 } 3649 3650 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3651 // already have one, otherwise create a new one. 3652 return getOrCreateAddRecExpr(Operands, L, Flags); 3653 } 3654 3655 const SCEV * 3656 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3657 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3658 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3659 // getSCEV(Base)->getType() has the same address space as Base->getType() 3660 // because SCEV::getType() preserves the address space. 3661 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3662 const bool AssumeInBoundsFlags = [&]() { 3663 if (!GEP->isInBounds()) 3664 return false; 3665 3666 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3667 // but to do that, we have to ensure that said flag is valid in the entire 3668 // defined scope of the SCEV. 3669 auto *GEPI = dyn_cast<Instruction>(GEP); 3670 // TODO: non-instructions have global scope. We might be able to prove 3671 // some global scope cases 3672 return GEPI && isSCEVExprNeverPoison(GEPI); 3673 }(); 3674 3675 SCEV::NoWrapFlags OffsetWrap = 3676 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3677 3678 Type *CurTy = GEP->getType(); 3679 bool FirstIter = true; 3680 SmallVector<const SCEV *, 4> Offsets; 3681 for (const SCEV *IndexExpr : IndexExprs) { 3682 // Compute the (potentially symbolic) offset in bytes for this index. 3683 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3684 // For a struct, add the member offset. 3685 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3686 unsigned FieldNo = Index->getZExtValue(); 3687 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3688 Offsets.push_back(FieldOffset); 3689 3690 // Update CurTy to the type of the field at Index. 3691 CurTy = STy->getTypeAtIndex(Index); 3692 } else { 3693 // Update CurTy to its element type. 3694 if (FirstIter) { 3695 assert(isa<PointerType>(CurTy) && 3696 "The first index of a GEP indexes a pointer"); 3697 CurTy = GEP->getSourceElementType(); 3698 FirstIter = false; 3699 } else { 3700 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3701 } 3702 // For an array, add the element offset, explicitly scaled. 3703 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3704 // Getelementptr indices are signed. 3705 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3706 3707 // Multiply the index by the element size to compute the element offset. 3708 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3709 Offsets.push_back(LocalOffset); 3710 } 3711 } 3712 3713 // Handle degenerate case of GEP without offsets. 3714 if (Offsets.empty()) 3715 return BaseExpr; 3716 3717 // Add the offsets together, assuming nsw if inbounds. 3718 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3719 // Add the base address and the offset. We cannot use the nsw flag, as the 3720 // base address is unsigned. However, if we know that the offset is 3721 // non-negative, we can use nuw. 3722 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3723 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3724 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3725 assert(BaseExpr->getType() == GEPExpr->getType() && 3726 "GEP should not change type mid-flight."); 3727 return GEPExpr; 3728 } 3729 3730 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3731 ArrayRef<const SCEV *> Ops) { 3732 FoldingSetNodeID ID; 3733 ID.AddInteger(SCEVType); 3734 for (const SCEV *Op : Ops) 3735 ID.AddPointer(Op); 3736 void *IP = nullptr; 3737 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3738 } 3739 3740 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3741 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3742 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3743 } 3744 3745 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3746 SmallVectorImpl<const SCEV *> &Ops) { 3747 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3748 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3749 if (Ops.size() == 1) return Ops[0]; 3750 #ifndef NDEBUG 3751 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3752 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3753 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3754 "Operand types don't match!"); 3755 assert(Ops[0]->getType()->isPointerTy() == 3756 Ops[i]->getType()->isPointerTy() && 3757 "min/max should be consistently pointerish"); 3758 } 3759 #endif 3760 3761 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3762 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3763 3764 // Sort by complexity, this groups all similar expression types together. 3765 GroupByComplexity(Ops, &LI, DT); 3766 3767 // Check if we have created the same expression before. 3768 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3769 return S; 3770 } 3771 3772 // If there are any constants, fold them together. 3773 unsigned Idx = 0; 3774 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3775 ++Idx; 3776 assert(Idx < Ops.size()); 3777 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3778 if (Kind == scSMaxExpr) 3779 return APIntOps::smax(LHS, RHS); 3780 else if (Kind == scSMinExpr) 3781 return APIntOps::smin(LHS, RHS); 3782 else if (Kind == scUMaxExpr) 3783 return APIntOps::umax(LHS, RHS); 3784 else if (Kind == scUMinExpr) 3785 return APIntOps::umin(LHS, RHS); 3786 llvm_unreachable("Unknown SCEV min/max opcode"); 3787 }; 3788 3789 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3790 // We found two constants, fold them together! 3791 ConstantInt *Fold = ConstantInt::get( 3792 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3793 Ops[0] = getConstant(Fold); 3794 Ops.erase(Ops.begin()+1); // Erase the folded element 3795 if (Ops.size() == 1) return Ops[0]; 3796 LHSC = cast<SCEVConstant>(Ops[0]); 3797 } 3798 3799 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3800 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3801 3802 if (IsMax ? IsMinV : IsMaxV) { 3803 // If we are left with a constant minimum(/maximum)-int, strip it off. 3804 Ops.erase(Ops.begin()); 3805 --Idx; 3806 } else if (IsMax ? IsMaxV : IsMinV) { 3807 // If we have a max(/min) with a constant maximum(/minimum)-int, 3808 // it will always be the extremum. 3809 return LHSC; 3810 } 3811 3812 if (Ops.size() == 1) return Ops[0]; 3813 } 3814 3815 // Find the first operation of the same kind 3816 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3817 ++Idx; 3818 3819 // Check to see if one of the operands is of the same kind. If so, expand its 3820 // operands onto our operand list, and recurse to simplify. 3821 if (Idx < Ops.size()) { 3822 bool DeletedAny = false; 3823 while (Ops[Idx]->getSCEVType() == Kind) { 3824 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3825 Ops.erase(Ops.begin()+Idx); 3826 Ops.append(SMME->op_begin(), SMME->op_end()); 3827 DeletedAny = true; 3828 } 3829 3830 if (DeletedAny) 3831 return getMinMaxExpr(Kind, Ops); 3832 } 3833 3834 // Okay, check to see if the same value occurs in the operand list twice. If 3835 // so, delete one. Since we sorted the list, these values are required to 3836 // be adjacent. 3837 llvm::CmpInst::Predicate GEPred = 3838 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3839 llvm::CmpInst::Predicate LEPred = 3840 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3841 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3842 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3843 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3844 if (Ops[i] == Ops[i + 1] || 3845 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3846 // X op Y op Y --> X op Y 3847 // X op Y --> X, if we know X, Y are ordered appropriately 3848 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3849 --i; 3850 --e; 3851 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3852 Ops[i + 1])) { 3853 // X op Y --> Y, if we know X, Y are ordered appropriately 3854 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3855 --i; 3856 --e; 3857 } 3858 } 3859 3860 if (Ops.size() == 1) return Ops[0]; 3861 3862 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3863 3864 // Okay, it looks like we really DO need an expr. Check to see if we 3865 // already have one, otherwise create a new one. 3866 FoldingSetNodeID ID; 3867 ID.AddInteger(Kind); 3868 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3869 ID.AddPointer(Ops[i]); 3870 void *IP = nullptr; 3871 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3872 if (ExistingSCEV) 3873 return ExistingSCEV; 3874 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3875 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3876 SCEV *S = new (SCEVAllocator) 3877 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3878 3879 UniqueSCEVs.InsertNode(S, IP); 3880 registerUser(S, Ops); 3881 return S; 3882 } 3883 3884 namespace { 3885 3886 class SCEVSequentialMinMaxDeduplicatingVisitor final 3887 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3888 Optional<const SCEV *>> { 3889 using RetVal = Optional<const SCEV *>; 3890 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3891 3892 ScalarEvolution &SE; 3893 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3894 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3895 SmallPtrSet<const SCEV *, 16> SeenOps; 3896 3897 bool canRecurseInto(SCEVTypes Kind) const { 3898 // We can only recurse into the SCEV expression of the same effective type 3899 // as the type of our root SCEV expression. 3900 return RootKind == Kind || NonSequentialRootKind == Kind; 3901 }; 3902 3903 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3904 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3905 "Only for min/max expressions."); 3906 SCEVTypes Kind = S->getSCEVType(); 3907 3908 if (!canRecurseInto(Kind)) 3909 return S; 3910 3911 auto *NAry = cast<SCEVNAryExpr>(S); 3912 SmallVector<const SCEV *> NewOps; 3913 bool Changed = 3914 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3915 3916 if (!Changed) 3917 return S; 3918 if (NewOps.empty()) 3919 return None; 3920 3921 return isa<SCEVSequentialMinMaxExpr>(S) 3922 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3923 : SE.getMinMaxExpr(Kind, NewOps); 3924 } 3925 3926 RetVal visit(const SCEV *S) { 3927 // Has the whole operand been seen already? 3928 if (!SeenOps.insert(S).second) 3929 return None; 3930 return Base::visit(S); 3931 } 3932 3933 public: 3934 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3935 SCEVTypes RootKind) 3936 : SE(SE), RootKind(RootKind), 3937 NonSequentialRootKind( 3938 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3939 RootKind)) {} 3940 3941 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3942 SmallVectorImpl<const SCEV *> &NewOps) { 3943 bool Changed = false; 3944 SmallVector<const SCEV *> Ops; 3945 Ops.reserve(OrigOps.size()); 3946 3947 for (const SCEV *Op : OrigOps) { 3948 RetVal NewOp = visit(Op); 3949 if (NewOp != Op) 3950 Changed = true; 3951 if (NewOp) 3952 Ops.emplace_back(*NewOp); 3953 } 3954 3955 if (Changed) 3956 NewOps = std::move(Ops); 3957 return Changed; 3958 } 3959 3960 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3961 3962 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3963 3964 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3965 3966 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3967 3968 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3969 3970 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3971 3972 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3973 3974 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3975 3976 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3977 3978 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3979 return visitAnyMinMaxExpr(Expr); 3980 } 3981 3982 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3983 return visitAnyMinMaxExpr(Expr); 3984 } 3985 3986 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 3987 return visitAnyMinMaxExpr(Expr); 3988 } 3989 3990 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 3991 return visitAnyMinMaxExpr(Expr); 3992 } 3993 3994 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 3995 return visitAnyMinMaxExpr(Expr); 3996 } 3997 3998 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 3999 4000 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4001 }; 4002 4003 } // namespace 4004 4005 const SCEV * 4006 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4007 SmallVectorImpl<const SCEV *> &Ops) { 4008 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4009 "Not a SCEVSequentialMinMaxExpr!"); 4010 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4011 if (Ops.size() == 1) 4012 return Ops[0]; 4013 if (Ops.size() == 2 && 4014 any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); })) 4015 return getMinMaxExpr( 4016 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4017 Ops); 4018 #ifndef NDEBUG 4019 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4020 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4021 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4022 "Operand types don't match!"); 4023 assert(Ops[0]->getType()->isPointerTy() == 4024 Ops[i]->getType()->isPointerTy() && 4025 "min/max should be consistently pointerish"); 4026 } 4027 #endif 4028 4029 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4030 // so we can *NOT* do any kind of sorting of the expressions! 4031 4032 // Check if we have created the same expression before. 4033 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4034 return S; 4035 4036 // FIXME: there are *some* simplifications that we can do here. 4037 4038 // Keep only the first instance of an operand. 4039 { 4040 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4041 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4042 if (Changed) 4043 return getSequentialMinMaxExpr(Kind, Ops); 4044 } 4045 4046 // Check to see if one of the operands is of the same kind. If so, expand its 4047 // operands onto our operand list, and recurse to simplify. 4048 { 4049 unsigned Idx = 0; 4050 bool DeletedAny = false; 4051 while (Idx < Ops.size()) { 4052 if (Ops[Idx]->getSCEVType() != Kind) { 4053 ++Idx; 4054 continue; 4055 } 4056 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4057 Ops.erase(Ops.begin() + Idx); 4058 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4059 DeletedAny = true; 4060 } 4061 4062 if (DeletedAny) 4063 return getSequentialMinMaxExpr(Kind, Ops); 4064 } 4065 4066 // Okay, it looks like we really DO need an expr. Check to see if we 4067 // already have one, otherwise create a new one. 4068 FoldingSetNodeID ID; 4069 ID.AddInteger(Kind); 4070 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4071 ID.AddPointer(Ops[i]); 4072 void *IP = nullptr; 4073 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4074 if (ExistingSCEV) 4075 return ExistingSCEV; 4076 4077 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4078 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4079 SCEV *S = new (SCEVAllocator) 4080 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4081 4082 UniqueSCEVs.InsertNode(S, IP); 4083 registerUser(S, Ops); 4084 return S; 4085 } 4086 4087 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4088 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4089 return getSMaxExpr(Ops); 4090 } 4091 4092 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4093 return getMinMaxExpr(scSMaxExpr, Ops); 4094 } 4095 4096 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4097 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4098 return getUMaxExpr(Ops); 4099 } 4100 4101 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4102 return getMinMaxExpr(scUMaxExpr, Ops); 4103 } 4104 4105 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4106 const SCEV *RHS) { 4107 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4108 return getSMinExpr(Ops); 4109 } 4110 4111 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4112 return getMinMaxExpr(scSMinExpr, Ops); 4113 } 4114 4115 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4116 bool Sequential) { 4117 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4118 return getUMinExpr(Ops, Sequential); 4119 } 4120 4121 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4122 bool Sequential) { 4123 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4124 : getMinMaxExpr(scUMinExpr, Ops); 4125 } 4126 4127 const SCEV * 4128 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4129 ScalableVectorType *ScalableTy) { 4130 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4131 Constant *One = ConstantInt::get(IntTy, 1); 4132 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4133 // Note that the expression we created is the final expression, we don't 4134 // want to simplify it any further Also, if we call a normal getSCEV(), 4135 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4136 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4137 } 4138 4139 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4140 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4141 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4142 // We can bypass creating a target-independent constant expression and then 4143 // folding it back into a ConstantInt. This is just a compile-time 4144 // optimization. 4145 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4146 } 4147 4148 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4149 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4150 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4151 // We can bypass creating a target-independent constant expression and then 4152 // folding it back into a ConstantInt. This is just a compile-time 4153 // optimization. 4154 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4155 } 4156 4157 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4158 StructType *STy, 4159 unsigned FieldNo) { 4160 // We can bypass creating a target-independent constant expression and then 4161 // folding it back into a ConstantInt. This is just a compile-time 4162 // optimization. 4163 return getConstant( 4164 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4165 } 4166 4167 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4168 // Don't attempt to do anything other than create a SCEVUnknown object 4169 // here. createSCEV only calls getUnknown after checking for all other 4170 // interesting possibilities, and any other code that calls getUnknown 4171 // is doing so in order to hide a value from SCEV canonicalization. 4172 4173 FoldingSetNodeID ID; 4174 ID.AddInteger(scUnknown); 4175 ID.AddPointer(V); 4176 void *IP = nullptr; 4177 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4178 assert(cast<SCEVUnknown>(S)->getValue() == V && 4179 "Stale SCEVUnknown in uniquing map!"); 4180 return S; 4181 } 4182 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4183 FirstUnknown); 4184 FirstUnknown = cast<SCEVUnknown>(S); 4185 UniqueSCEVs.InsertNode(S, IP); 4186 return S; 4187 } 4188 4189 //===----------------------------------------------------------------------===// 4190 // Basic SCEV Analysis and PHI Idiom Recognition Code 4191 // 4192 4193 /// Test if values of the given type are analyzable within the SCEV 4194 /// framework. This primarily includes integer types, and it can optionally 4195 /// include pointer types if the ScalarEvolution class has access to 4196 /// target-specific information. 4197 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4198 // Integers and pointers are always SCEVable. 4199 return Ty->isIntOrPtrTy(); 4200 } 4201 4202 /// Return the size in bits of the specified type, for which isSCEVable must 4203 /// return true. 4204 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4205 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4206 if (Ty->isPointerTy()) 4207 return getDataLayout().getIndexTypeSizeInBits(Ty); 4208 return getDataLayout().getTypeSizeInBits(Ty); 4209 } 4210 4211 /// Return a type with the same bitwidth as the given type and which represents 4212 /// how SCEV will treat the given type, for which isSCEVable must return 4213 /// true. For pointer types, this is the pointer index sized integer type. 4214 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4215 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4216 4217 if (Ty->isIntegerTy()) 4218 return Ty; 4219 4220 // The only other support type is pointer. 4221 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4222 return getDataLayout().getIndexType(Ty); 4223 } 4224 4225 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4226 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4227 } 4228 4229 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4230 const SCEV *B) { 4231 /// For a valid use point to exist, the defining scope of one operand 4232 /// must dominate the other. 4233 bool PreciseA, PreciseB; 4234 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4235 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4236 if (!PreciseA || !PreciseB) 4237 // Can't tell. 4238 return false; 4239 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4240 DT.dominates(ScopeB, ScopeA); 4241 } 4242 4243 4244 const SCEV *ScalarEvolution::getCouldNotCompute() { 4245 return CouldNotCompute.get(); 4246 } 4247 4248 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4249 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4250 auto *SU = dyn_cast<SCEVUnknown>(S); 4251 return SU && SU->getValue() == nullptr; 4252 }); 4253 4254 return !ContainsNulls; 4255 } 4256 4257 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4258 HasRecMapType::iterator I = HasRecMap.find(S); 4259 if (I != HasRecMap.end()) 4260 return I->second; 4261 4262 bool FoundAddRec = 4263 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4264 HasRecMap.insert({S, FoundAddRec}); 4265 return FoundAddRec; 4266 } 4267 4268 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 4269 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 4270 /// offset I, then return {S', I}, else return {\p S, nullptr}. 4271 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 4272 const auto *Add = dyn_cast<SCEVAddExpr>(S); 4273 if (!Add) 4274 return {S, nullptr}; 4275 4276 if (Add->getNumOperands() != 2) 4277 return {S, nullptr}; 4278 4279 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4280 if (!ConstOp) 4281 return {S, nullptr}; 4282 4283 return {Add->getOperand(1), ConstOp->getValue()}; 4284 } 4285 4286 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4287 /// by the value and offset from any ValueOffsetPair in the set. 4288 ScalarEvolution::ValueOffsetPairSetVector * 4289 ScalarEvolution::getSCEVValues(const SCEV *S) { 4290 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4291 if (SI == ExprValueMap.end()) 4292 return nullptr; 4293 #ifndef NDEBUG 4294 if (VerifySCEVMap) { 4295 // Check there is no dangling Value in the set returned. 4296 for (const auto &VE : SI->second) 4297 assert(ValueExprMap.count(VE.first)); 4298 } 4299 #endif 4300 return &SI->second; 4301 } 4302 4303 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4304 /// cannot be used separately. eraseValueFromMap should be used to remove 4305 /// V from ValueExprMap and ExprValueMap at the same time. 4306 void ScalarEvolution::eraseValueFromMap(Value *V) { 4307 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4308 if (I != ValueExprMap.end()) { 4309 const SCEV *S = I->second; 4310 // Remove {V, 0} from the set of ExprValueMap[S] 4311 if (auto *SV = getSCEVValues(S)) 4312 SV->remove({V, nullptr}); 4313 4314 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4315 const SCEV *Stripped; 4316 ConstantInt *Offset; 4317 std::tie(Stripped, Offset) = splitAddExpr(S); 4318 if (Offset != nullptr) { 4319 if (auto *SV = getSCEVValues(Stripped)) 4320 SV->remove({V, Offset}); 4321 } 4322 ValueExprMap.erase(V); 4323 } 4324 } 4325 4326 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4327 // A recursive query may have already computed the SCEV. It should be 4328 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4329 // inferred nowrap flags. 4330 auto It = ValueExprMap.find_as(V); 4331 if (It == ValueExprMap.end()) { 4332 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4333 ExprValueMap[S].insert({V, nullptr}); 4334 } 4335 } 4336 4337 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4338 /// create a new one. 4339 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4340 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4341 4342 const SCEV *S = getExistingSCEV(V); 4343 if (S == nullptr) { 4344 S = createSCEV(V); 4345 // During PHI resolution, it is possible to create two SCEVs for the same 4346 // V, so it is needed to double check whether V->S is inserted into 4347 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4348 std::pair<ValueExprMapType::iterator, bool> Pair = 4349 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4350 if (Pair.second) { 4351 ExprValueMap[S].insert({V, nullptr}); 4352 4353 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4354 // ExprValueMap. 4355 const SCEV *Stripped = S; 4356 ConstantInt *Offset = nullptr; 4357 std::tie(Stripped, Offset) = splitAddExpr(S); 4358 // If stripped is SCEVUnknown, don't bother to save 4359 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4360 // increase the complexity of the expansion code. 4361 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4362 // because it may generate add/sub instead of GEP in SCEV expansion. 4363 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4364 !isa<GetElementPtrInst>(V)) 4365 ExprValueMap[Stripped].insert({V, Offset}); 4366 } 4367 } 4368 return S; 4369 } 4370 4371 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4372 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4373 4374 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4375 if (I != ValueExprMap.end()) { 4376 const SCEV *S = I->second; 4377 assert(checkValidity(S) && 4378 "existing SCEV has not been properly invalidated"); 4379 return S; 4380 } 4381 return nullptr; 4382 } 4383 4384 /// Return a SCEV corresponding to -V = -1*V 4385 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4386 SCEV::NoWrapFlags Flags) { 4387 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4388 return getConstant( 4389 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4390 4391 Type *Ty = V->getType(); 4392 Ty = getEffectiveSCEVType(Ty); 4393 return getMulExpr(V, getMinusOne(Ty), Flags); 4394 } 4395 4396 /// If Expr computes ~A, return A else return nullptr 4397 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4398 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4399 if (!Add || Add->getNumOperands() != 2 || 4400 !Add->getOperand(0)->isAllOnesValue()) 4401 return nullptr; 4402 4403 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4404 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4405 !AddRHS->getOperand(0)->isAllOnesValue()) 4406 return nullptr; 4407 4408 return AddRHS->getOperand(1); 4409 } 4410 4411 /// Return a SCEV corresponding to ~V = -1-V 4412 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4413 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4414 4415 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4416 return getConstant( 4417 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4418 4419 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4420 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4421 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4422 SmallVector<const SCEV *, 2> MatchedOperands; 4423 for (const SCEV *Operand : MME->operands()) { 4424 const SCEV *Matched = MatchNotExpr(Operand); 4425 if (!Matched) 4426 return (const SCEV *)nullptr; 4427 MatchedOperands.push_back(Matched); 4428 } 4429 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4430 MatchedOperands); 4431 }; 4432 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4433 return Replaced; 4434 } 4435 4436 Type *Ty = V->getType(); 4437 Ty = getEffectiveSCEVType(Ty); 4438 return getMinusSCEV(getMinusOne(Ty), V); 4439 } 4440 4441 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4442 assert(P->getType()->isPointerTy()); 4443 4444 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4445 // The base of an AddRec is the first operand. 4446 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4447 Ops[0] = removePointerBase(Ops[0]); 4448 // Don't try to transfer nowrap flags for now. We could in some cases 4449 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4450 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4451 } 4452 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4453 // The base of an Add is the pointer operand. 4454 SmallVector<const SCEV *> Ops{Add->operands()}; 4455 const SCEV **PtrOp = nullptr; 4456 for (const SCEV *&AddOp : Ops) { 4457 if (AddOp->getType()->isPointerTy()) { 4458 assert(!PtrOp && "Cannot have multiple pointer ops"); 4459 PtrOp = &AddOp; 4460 } 4461 } 4462 *PtrOp = removePointerBase(*PtrOp); 4463 // Don't try to transfer nowrap flags for now. We could in some cases 4464 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4465 return getAddExpr(Ops); 4466 } 4467 // Any other expression must be a pointer base. 4468 return getZero(P->getType()); 4469 } 4470 4471 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4472 SCEV::NoWrapFlags Flags, 4473 unsigned Depth) { 4474 // Fast path: X - X --> 0. 4475 if (LHS == RHS) 4476 return getZero(LHS->getType()); 4477 4478 // If we subtract two pointers with different pointer bases, bail. 4479 // Eventually, we're going to add an assertion to getMulExpr that we 4480 // can't multiply by a pointer. 4481 if (RHS->getType()->isPointerTy()) { 4482 if (!LHS->getType()->isPointerTy() || 4483 getPointerBase(LHS) != getPointerBase(RHS)) 4484 return getCouldNotCompute(); 4485 LHS = removePointerBase(LHS); 4486 RHS = removePointerBase(RHS); 4487 } 4488 4489 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4490 // makes it so that we cannot make much use of NUW. 4491 auto AddFlags = SCEV::FlagAnyWrap; 4492 const bool RHSIsNotMinSigned = 4493 !getSignedRangeMin(RHS).isMinSignedValue(); 4494 if (hasFlags(Flags, SCEV::FlagNSW)) { 4495 // Let M be the minimum representable signed value. Then (-1)*RHS 4496 // signed-wraps if and only if RHS is M. That can happen even for 4497 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4498 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4499 // (-1)*RHS, we need to prove that RHS != M. 4500 // 4501 // If LHS is non-negative and we know that LHS - RHS does not 4502 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4503 // either by proving that RHS > M or that LHS >= 0. 4504 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4505 AddFlags = SCEV::FlagNSW; 4506 } 4507 } 4508 4509 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4510 // RHS is NSW and LHS >= 0. 4511 // 4512 // The difficulty here is that the NSW flag may have been proven 4513 // relative to a loop that is to be found in a recurrence in LHS and 4514 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4515 // larger scope than intended. 4516 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4517 4518 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4519 } 4520 4521 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4522 unsigned Depth) { 4523 Type *SrcTy = V->getType(); 4524 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4525 "Cannot truncate or zero extend with non-integer arguments!"); 4526 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4527 return V; // No conversion 4528 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4529 return getTruncateExpr(V, Ty, Depth); 4530 return getZeroExtendExpr(V, Ty, Depth); 4531 } 4532 4533 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4534 unsigned Depth) { 4535 Type *SrcTy = V->getType(); 4536 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4537 "Cannot truncate or zero extend with non-integer arguments!"); 4538 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4539 return V; // No conversion 4540 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4541 return getTruncateExpr(V, Ty, Depth); 4542 return getSignExtendExpr(V, Ty, Depth); 4543 } 4544 4545 const SCEV * 4546 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4547 Type *SrcTy = V->getType(); 4548 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4549 "Cannot noop or zero extend with non-integer arguments!"); 4550 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4551 "getNoopOrZeroExtend cannot truncate!"); 4552 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4553 return V; // No conversion 4554 return getZeroExtendExpr(V, Ty); 4555 } 4556 4557 const SCEV * 4558 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4559 Type *SrcTy = V->getType(); 4560 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4561 "Cannot noop or sign extend with non-integer arguments!"); 4562 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4563 "getNoopOrSignExtend cannot truncate!"); 4564 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4565 return V; // No conversion 4566 return getSignExtendExpr(V, Ty); 4567 } 4568 4569 const SCEV * 4570 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4571 Type *SrcTy = V->getType(); 4572 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4573 "Cannot noop or any extend with non-integer arguments!"); 4574 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4575 "getNoopOrAnyExtend cannot truncate!"); 4576 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4577 return V; // No conversion 4578 return getAnyExtendExpr(V, Ty); 4579 } 4580 4581 const SCEV * 4582 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4583 Type *SrcTy = V->getType(); 4584 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4585 "Cannot truncate or noop with non-integer arguments!"); 4586 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4587 "getTruncateOrNoop cannot extend!"); 4588 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4589 return V; // No conversion 4590 return getTruncateExpr(V, Ty); 4591 } 4592 4593 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4594 const SCEV *RHS) { 4595 const SCEV *PromotedLHS = LHS; 4596 const SCEV *PromotedRHS = RHS; 4597 4598 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4599 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4600 else 4601 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4602 4603 return getUMaxExpr(PromotedLHS, PromotedRHS); 4604 } 4605 4606 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4607 const SCEV *RHS, 4608 bool Sequential) { 4609 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4610 return getUMinFromMismatchedTypes(Ops, Sequential); 4611 } 4612 4613 const SCEV * 4614 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4615 bool Sequential) { 4616 assert(!Ops.empty() && "At least one operand must be!"); 4617 // Trivial case. 4618 if (Ops.size() == 1) 4619 return Ops[0]; 4620 4621 // Find the max type first. 4622 Type *MaxType = nullptr; 4623 for (auto *S : Ops) 4624 if (MaxType) 4625 MaxType = getWiderType(MaxType, S->getType()); 4626 else 4627 MaxType = S->getType(); 4628 assert(MaxType && "Failed to find maximum type!"); 4629 4630 // Extend all ops to max type. 4631 SmallVector<const SCEV *, 2> PromotedOps; 4632 for (auto *S : Ops) 4633 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4634 4635 // Generate umin. 4636 return getUMinExpr(PromotedOps, Sequential); 4637 } 4638 4639 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4640 // A pointer operand may evaluate to a nonpointer expression, such as null. 4641 if (!V->getType()->isPointerTy()) 4642 return V; 4643 4644 while (true) { 4645 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4646 V = AddRec->getStart(); 4647 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4648 const SCEV *PtrOp = nullptr; 4649 for (const SCEV *AddOp : Add->operands()) { 4650 if (AddOp->getType()->isPointerTy()) { 4651 assert(!PtrOp && "Cannot have multiple pointer ops"); 4652 PtrOp = AddOp; 4653 } 4654 } 4655 assert(PtrOp && "Must have pointer op"); 4656 V = PtrOp; 4657 } else // Not something we can look further into. 4658 return V; 4659 } 4660 } 4661 4662 /// Push users of the given Instruction onto the given Worklist. 4663 static void PushDefUseChildren(Instruction *I, 4664 SmallVectorImpl<Instruction *> &Worklist, 4665 SmallPtrSetImpl<Instruction *> &Visited) { 4666 // Push the def-use children onto the Worklist stack. 4667 for (User *U : I->users()) { 4668 auto *UserInsn = cast<Instruction>(U); 4669 if (Visited.insert(UserInsn).second) 4670 Worklist.push_back(UserInsn); 4671 } 4672 } 4673 4674 namespace { 4675 4676 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4677 /// expression in case its Loop is L. If it is not L then 4678 /// if IgnoreOtherLoops is true then use AddRec itself 4679 /// otherwise rewrite cannot be done. 4680 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4681 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4682 public: 4683 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4684 bool IgnoreOtherLoops = true) { 4685 SCEVInitRewriter Rewriter(L, SE); 4686 const SCEV *Result = Rewriter.visit(S); 4687 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4688 return SE.getCouldNotCompute(); 4689 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4690 ? SE.getCouldNotCompute() 4691 : Result; 4692 } 4693 4694 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4695 if (!SE.isLoopInvariant(Expr, L)) 4696 SeenLoopVariantSCEVUnknown = true; 4697 return Expr; 4698 } 4699 4700 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4701 // Only re-write AddRecExprs for this loop. 4702 if (Expr->getLoop() == L) 4703 return Expr->getStart(); 4704 SeenOtherLoops = true; 4705 return Expr; 4706 } 4707 4708 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4709 4710 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4711 4712 private: 4713 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4714 : SCEVRewriteVisitor(SE), L(L) {} 4715 4716 const Loop *L; 4717 bool SeenLoopVariantSCEVUnknown = false; 4718 bool SeenOtherLoops = false; 4719 }; 4720 4721 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4722 /// increment expression in case its Loop is L. If it is not L then 4723 /// use AddRec itself. 4724 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4725 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4726 public: 4727 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4728 SCEVPostIncRewriter Rewriter(L, SE); 4729 const SCEV *Result = Rewriter.visit(S); 4730 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4731 ? SE.getCouldNotCompute() 4732 : Result; 4733 } 4734 4735 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4736 if (!SE.isLoopInvariant(Expr, L)) 4737 SeenLoopVariantSCEVUnknown = true; 4738 return Expr; 4739 } 4740 4741 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4742 // Only re-write AddRecExprs for this loop. 4743 if (Expr->getLoop() == L) 4744 return Expr->getPostIncExpr(SE); 4745 SeenOtherLoops = true; 4746 return Expr; 4747 } 4748 4749 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4750 4751 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4752 4753 private: 4754 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4755 : SCEVRewriteVisitor(SE), L(L) {} 4756 4757 const Loop *L; 4758 bool SeenLoopVariantSCEVUnknown = false; 4759 bool SeenOtherLoops = false; 4760 }; 4761 4762 /// This class evaluates the compare condition by matching it against the 4763 /// condition of loop latch. If there is a match we assume a true value 4764 /// for the condition while building SCEV nodes. 4765 class SCEVBackedgeConditionFolder 4766 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4767 public: 4768 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4769 ScalarEvolution &SE) { 4770 bool IsPosBECond = false; 4771 Value *BECond = nullptr; 4772 if (BasicBlock *Latch = L->getLoopLatch()) { 4773 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4774 if (BI && BI->isConditional()) { 4775 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4776 "Both outgoing branches should not target same header!"); 4777 BECond = BI->getCondition(); 4778 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4779 } else { 4780 return S; 4781 } 4782 } 4783 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4784 return Rewriter.visit(S); 4785 } 4786 4787 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4788 const SCEV *Result = Expr; 4789 bool InvariantF = SE.isLoopInvariant(Expr, L); 4790 4791 if (!InvariantF) { 4792 Instruction *I = cast<Instruction>(Expr->getValue()); 4793 switch (I->getOpcode()) { 4794 case Instruction::Select: { 4795 SelectInst *SI = cast<SelectInst>(I); 4796 Optional<const SCEV *> Res = 4797 compareWithBackedgeCondition(SI->getCondition()); 4798 if (Res.hasValue()) { 4799 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4800 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4801 } 4802 break; 4803 } 4804 default: { 4805 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4806 if (Res.hasValue()) 4807 Result = Res.getValue(); 4808 break; 4809 } 4810 } 4811 } 4812 return Result; 4813 } 4814 4815 private: 4816 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4817 bool IsPosBECond, ScalarEvolution &SE) 4818 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4819 IsPositiveBECond(IsPosBECond) {} 4820 4821 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4822 4823 const Loop *L; 4824 /// Loop back condition. 4825 Value *BackedgeCond = nullptr; 4826 /// Set to true if loop back is on positive branch condition. 4827 bool IsPositiveBECond; 4828 }; 4829 4830 Optional<const SCEV *> 4831 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4832 4833 // If value matches the backedge condition for loop latch, 4834 // then return a constant evolution node based on loopback 4835 // branch taken. 4836 if (BackedgeCond == IC) 4837 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4838 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4839 return None; 4840 } 4841 4842 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4843 public: 4844 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4845 ScalarEvolution &SE) { 4846 SCEVShiftRewriter Rewriter(L, SE); 4847 const SCEV *Result = Rewriter.visit(S); 4848 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4849 } 4850 4851 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4852 // Only allow AddRecExprs for this loop. 4853 if (!SE.isLoopInvariant(Expr, L)) 4854 Valid = false; 4855 return Expr; 4856 } 4857 4858 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4859 if (Expr->getLoop() == L && Expr->isAffine()) 4860 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4861 Valid = false; 4862 return Expr; 4863 } 4864 4865 bool isValid() { return Valid; } 4866 4867 private: 4868 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4869 : SCEVRewriteVisitor(SE), L(L) {} 4870 4871 const Loop *L; 4872 bool Valid = true; 4873 }; 4874 4875 } // end anonymous namespace 4876 4877 SCEV::NoWrapFlags 4878 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4879 if (!AR->isAffine()) 4880 return SCEV::FlagAnyWrap; 4881 4882 using OBO = OverflowingBinaryOperator; 4883 4884 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4885 4886 if (!AR->hasNoSignedWrap()) { 4887 ConstantRange AddRecRange = getSignedRange(AR); 4888 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4889 4890 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4891 Instruction::Add, IncRange, OBO::NoSignedWrap); 4892 if (NSWRegion.contains(AddRecRange)) 4893 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4894 } 4895 4896 if (!AR->hasNoUnsignedWrap()) { 4897 ConstantRange AddRecRange = getUnsignedRange(AR); 4898 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4899 4900 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4901 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4902 if (NUWRegion.contains(AddRecRange)) 4903 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4904 } 4905 4906 return Result; 4907 } 4908 4909 SCEV::NoWrapFlags 4910 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4911 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4912 4913 if (AR->hasNoSignedWrap()) 4914 return Result; 4915 4916 if (!AR->isAffine()) 4917 return Result; 4918 4919 const SCEV *Step = AR->getStepRecurrence(*this); 4920 const Loop *L = AR->getLoop(); 4921 4922 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4923 // Note that this serves two purposes: It filters out loops that are 4924 // simply not analyzable, and it covers the case where this code is 4925 // being called from within backedge-taken count analysis, such that 4926 // attempting to ask for the backedge-taken count would likely result 4927 // in infinite recursion. In the later case, the analysis code will 4928 // cope with a conservative value, and it will take care to purge 4929 // that value once it has finished. 4930 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4931 4932 // Normally, in the cases we can prove no-overflow via a 4933 // backedge guarding condition, we can also compute a backedge 4934 // taken count for the loop. The exceptions are assumptions and 4935 // guards present in the loop -- SCEV is not great at exploiting 4936 // these to compute max backedge taken counts, but can still use 4937 // these to prove lack of overflow. Use this fact to avoid 4938 // doing extra work that may not pay off. 4939 4940 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4941 AC.assumptions().empty()) 4942 return Result; 4943 4944 // If the backedge is guarded by a comparison with the pre-inc value the 4945 // addrec is safe. Also, if the entry is guarded by a comparison with the 4946 // start value and the backedge is guarded by a comparison with the post-inc 4947 // value, the addrec is safe. 4948 ICmpInst::Predicate Pred; 4949 const SCEV *OverflowLimit = 4950 getSignedOverflowLimitForStep(Step, &Pred, this); 4951 if (OverflowLimit && 4952 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4953 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4954 Result = setFlags(Result, SCEV::FlagNSW); 4955 } 4956 return Result; 4957 } 4958 SCEV::NoWrapFlags 4959 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4960 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4961 4962 if (AR->hasNoUnsignedWrap()) 4963 return Result; 4964 4965 if (!AR->isAffine()) 4966 return Result; 4967 4968 const SCEV *Step = AR->getStepRecurrence(*this); 4969 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4970 const Loop *L = AR->getLoop(); 4971 4972 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4973 // Note that this serves two purposes: It filters out loops that are 4974 // simply not analyzable, and it covers the case where this code is 4975 // being called from within backedge-taken count analysis, such that 4976 // attempting to ask for the backedge-taken count would likely result 4977 // in infinite recursion. In the later case, the analysis code will 4978 // cope with a conservative value, and it will take care to purge 4979 // that value once it has finished. 4980 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4981 4982 // Normally, in the cases we can prove no-overflow via a 4983 // backedge guarding condition, we can also compute a backedge 4984 // taken count for the loop. The exceptions are assumptions and 4985 // guards present in the loop -- SCEV is not great at exploiting 4986 // these to compute max backedge taken counts, but can still use 4987 // these to prove lack of overflow. Use this fact to avoid 4988 // doing extra work that may not pay off. 4989 4990 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4991 AC.assumptions().empty()) 4992 return Result; 4993 4994 // If the backedge is guarded by a comparison with the pre-inc value the 4995 // addrec is safe. Also, if the entry is guarded by a comparison with the 4996 // start value and the backedge is guarded by a comparison with the post-inc 4997 // value, the addrec is safe. 4998 if (isKnownPositive(Step)) { 4999 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5000 getUnsignedRangeMax(Step)); 5001 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5002 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5003 Result = setFlags(Result, SCEV::FlagNUW); 5004 } 5005 } 5006 5007 return Result; 5008 } 5009 5010 namespace { 5011 5012 /// Represents an abstract binary operation. This may exist as a 5013 /// normal instruction or constant expression, or may have been 5014 /// derived from an expression tree. 5015 struct BinaryOp { 5016 unsigned Opcode; 5017 Value *LHS; 5018 Value *RHS; 5019 bool IsNSW = false; 5020 bool IsNUW = false; 5021 5022 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5023 /// constant expression. 5024 Operator *Op = nullptr; 5025 5026 explicit BinaryOp(Operator *Op) 5027 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5028 Op(Op) { 5029 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5030 IsNSW = OBO->hasNoSignedWrap(); 5031 IsNUW = OBO->hasNoUnsignedWrap(); 5032 } 5033 } 5034 5035 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5036 bool IsNUW = false) 5037 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5038 }; 5039 5040 } // end anonymous namespace 5041 5042 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5043 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5044 auto *Op = dyn_cast<Operator>(V); 5045 if (!Op) 5046 return None; 5047 5048 // Implementation detail: all the cleverness here should happen without 5049 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5050 // SCEV expressions when possible, and we should not break that. 5051 5052 switch (Op->getOpcode()) { 5053 case Instruction::Add: 5054 case Instruction::Sub: 5055 case Instruction::Mul: 5056 case Instruction::UDiv: 5057 case Instruction::URem: 5058 case Instruction::And: 5059 case Instruction::Or: 5060 case Instruction::AShr: 5061 case Instruction::Shl: 5062 return BinaryOp(Op); 5063 5064 case Instruction::Xor: 5065 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5066 // If the RHS of the xor is a signmask, then this is just an add. 5067 // Instcombine turns add of signmask into xor as a strength reduction step. 5068 if (RHSC->getValue().isSignMask()) 5069 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5070 // Binary `xor` is a bit-wise `add`. 5071 if (V->getType()->isIntegerTy(1)) 5072 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5073 return BinaryOp(Op); 5074 5075 case Instruction::LShr: 5076 // Turn logical shift right of a constant into a unsigned divide. 5077 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5078 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5079 5080 // If the shift count is not less than the bitwidth, the result of 5081 // the shift is undefined. Don't try to analyze it, because the 5082 // resolution chosen here may differ from the resolution chosen in 5083 // other parts of the compiler. 5084 if (SA->getValue().ult(BitWidth)) { 5085 Constant *X = 5086 ConstantInt::get(SA->getContext(), 5087 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5088 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5089 } 5090 } 5091 return BinaryOp(Op); 5092 5093 case Instruction::ExtractValue: { 5094 auto *EVI = cast<ExtractValueInst>(Op); 5095 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5096 break; 5097 5098 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5099 if (!WO) 5100 break; 5101 5102 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5103 bool Signed = WO->isSigned(); 5104 // TODO: Should add nuw/nsw flags for mul as well. 5105 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5106 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5107 5108 // Now that we know that all uses of the arithmetic-result component of 5109 // CI are guarded by the overflow check, we can go ahead and pretend 5110 // that the arithmetic is non-overflowing. 5111 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5112 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5113 } 5114 5115 default: 5116 break; 5117 } 5118 5119 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5120 // semantics as a Sub, return a binary sub expression. 5121 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5122 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5123 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5124 5125 return None; 5126 } 5127 5128 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5129 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5130 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5131 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5132 /// follows one of the following patterns: 5133 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5134 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5135 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5136 /// we return the type of the truncation operation, and indicate whether the 5137 /// truncated type should be treated as signed/unsigned by setting 5138 /// \p Signed to true/false, respectively. 5139 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5140 bool &Signed, ScalarEvolution &SE) { 5141 // The case where Op == SymbolicPHI (that is, with no type conversions on 5142 // the way) is handled by the regular add recurrence creating logic and 5143 // would have already been triggered in createAddRecForPHI. Reaching it here 5144 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5145 // because one of the other operands of the SCEVAddExpr updating this PHI is 5146 // not invariant). 5147 // 5148 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5149 // this case predicates that allow us to prove that Op == SymbolicPHI will 5150 // be added. 5151 if (Op == SymbolicPHI) 5152 return nullptr; 5153 5154 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5155 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5156 if (SourceBits != NewBits) 5157 return nullptr; 5158 5159 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5160 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5161 if (!SExt && !ZExt) 5162 return nullptr; 5163 const SCEVTruncateExpr *Trunc = 5164 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5165 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5166 if (!Trunc) 5167 return nullptr; 5168 const SCEV *X = Trunc->getOperand(); 5169 if (X != SymbolicPHI) 5170 return nullptr; 5171 Signed = SExt != nullptr; 5172 return Trunc->getType(); 5173 } 5174 5175 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5176 if (!PN->getType()->isIntegerTy()) 5177 return nullptr; 5178 const Loop *L = LI.getLoopFor(PN->getParent()); 5179 if (!L || L->getHeader() != PN->getParent()) 5180 return nullptr; 5181 return L; 5182 } 5183 5184 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5185 // computation that updates the phi follows the following pattern: 5186 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5187 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5188 // If so, try to see if it can be rewritten as an AddRecExpr under some 5189 // Predicates. If successful, return them as a pair. Also cache the results 5190 // of the analysis. 5191 // 5192 // Example usage scenario: 5193 // Say the Rewriter is called for the following SCEV: 5194 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5195 // where: 5196 // %X = phi i64 (%Start, %BEValue) 5197 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5198 // and call this function with %SymbolicPHI = %X. 5199 // 5200 // The analysis will find that the value coming around the backedge has 5201 // the following SCEV: 5202 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5203 // Upon concluding that this matches the desired pattern, the function 5204 // will return the pair {NewAddRec, SmallPredsVec} where: 5205 // NewAddRec = {%Start,+,%Step} 5206 // SmallPredsVec = {P1, P2, P3} as follows: 5207 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5208 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5209 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5210 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5211 // under the predicates {P1,P2,P3}. 5212 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5213 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5214 // 5215 // TODO's: 5216 // 5217 // 1) Extend the Induction descriptor to also support inductions that involve 5218 // casts: When needed (namely, when we are called in the context of the 5219 // vectorizer induction analysis), a Set of cast instructions will be 5220 // populated by this method, and provided back to isInductionPHI. This is 5221 // needed to allow the vectorizer to properly record them to be ignored by 5222 // the cost model and to avoid vectorizing them (otherwise these casts, 5223 // which are redundant under the runtime overflow checks, will be 5224 // vectorized, which can be costly). 5225 // 5226 // 2) Support additional induction/PHISCEV patterns: We also want to support 5227 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5228 // after the induction update operation (the induction increment): 5229 // 5230 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5231 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5232 // 5233 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5234 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5235 // 5236 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5237 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5238 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5239 SmallVector<const SCEVPredicate *, 3> Predicates; 5240 5241 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5242 // return an AddRec expression under some predicate. 5243 5244 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5245 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5246 assert(L && "Expecting an integer loop header phi"); 5247 5248 // The loop may have multiple entrances or multiple exits; we can analyze 5249 // this phi as an addrec if it has a unique entry value and a unique 5250 // backedge value. 5251 Value *BEValueV = nullptr, *StartValueV = nullptr; 5252 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5253 Value *V = PN->getIncomingValue(i); 5254 if (L->contains(PN->getIncomingBlock(i))) { 5255 if (!BEValueV) { 5256 BEValueV = V; 5257 } else if (BEValueV != V) { 5258 BEValueV = nullptr; 5259 break; 5260 } 5261 } else if (!StartValueV) { 5262 StartValueV = V; 5263 } else if (StartValueV != V) { 5264 StartValueV = nullptr; 5265 break; 5266 } 5267 } 5268 if (!BEValueV || !StartValueV) 5269 return None; 5270 5271 const SCEV *BEValue = getSCEV(BEValueV); 5272 5273 // If the value coming around the backedge is an add with the symbolic 5274 // value we just inserted, possibly with casts that we can ignore under 5275 // an appropriate runtime guard, then we found a simple induction variable! 5276 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5277 if (!Add) 5278 return None; 5279 5280 // If there is a single occurrence of the symbolic value, possibly 5281 // casted, replace it with a recurrence. 5282 unsigned FoundIndex = Add->getNumOperands(); 5283 Type *TruncTy = nullptr; 5284 bool Signed; 5285 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5286 if ((TruncTy = 5287 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5288 if (FoundIndex == e) { 5289 FoundIndex = i; 5290 break; 5291 } 5292 5293 if (FoundIndex == Add->getNumOperands()) 5294 return None; 5295 5296 // Create an add with everything but the specified operand. 5297 SmallVector<const SCEV *, 8> Ops; 5298 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5299 if (i != FoundIndex) 5300 Ops.push_back(Add->getOperand(i)); 5301 const SCEV *Accum = getAddExpr(Ops); 5302 5303 // The runtime checks will not be valid if the step amount is 5304 // varying inside the loop. 5305 if (!isLoopInvariant(Accum, L)) 5306 return None; 5307 5308 // *** Part2: Create the predicates 5309 5310 // Analysis was successful: we have a phi-with-cast pattern for which we 5311 // can return an AddRec expression under the following predicates: 5312 // 5313 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5314 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5315 // P2: An Equal predicate that guarantees that 5316 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5317 // P3: An Equal predicate that guarantees that 5318 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5319 // 5320 // As we next prove, the above predicates guarantee that: 5321 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5322 // 5323 // 5324 // More formally, we want to prove that: 5325 // Expr(i+1) = Start + (i+1) * Accum 5326 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5327 // 5328 // Given that: 5329 // 1) Expr(0) = Start 5330 // 2) Expr(1) = Start + Accum 5331 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5332 // 3) Induction hypothesis (step i): 5333 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5334 // 5335 // Proof: 5336 // Expr(i+1) = 5337 // = Start + (i+1)*Accum 5338 // = (Start + i*Accum) + Accum 5339 // = Expr(i) + Accum 5340 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5341 // :: from step i 5342 // 5343 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5344 // 5345 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5346 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5347 // + Accum :: from P3 5348 // 5349 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5350 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5351 // 5352 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5353 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5354 // 5355 // By induction, the same applies to all iterations 1<=i<n: 5356 // 5357 5358 // Create a truncated addrec for which we will add a no overflow check (P1). 5359 const SCEV *StartVal = getSCEV(StartValueV); 5360 const SCEV *PHISCEV = 5361 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5362 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5363 5364 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5365 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5366 // will be constant. 5367 // 5368 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5369 // add P1. 5370 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5371 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5372 Signed ? SCEVWrapPredicate::IncrementNSSW 5373 : SCEVWrapPredicate::IncrementNUSW; 5374 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5375 Predicates.push_back(AddRecPred); 5376 } 5377 5378 // Create the Equal Predicates P2,P3: 5379 5380 // It is possible that the predicates P2 and/or P3 are computable at 5381 // compile time due to StartVal and/or Accum being constants. 5382 // If either one is, then we can check that now and escape if either P2 5383 // or P3 is false. 5384 5385 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5386 // for each of StartVal and Accum 5387 auto getExtendedExpr = [&](const SCEV *Expr, 5388 bool CreateSignExtend) -> const SCEV * { 5389 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5390 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5391 const SCEV *ExtendedExpr = 5392 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5393 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5394 return ExtendedExpr; 5395 }; 5396 5397 // Given: 5398 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5399 // = getExtendedExpr(Expr) 5400 // Determine whether the predicate P: Expr == ExtendedExpr 5401 // is known to be false at compile time 5402 auto PredIsKnownFalse = [&](const SCEV *Expr, 5403 const SCEV *ExtendedExpr) -> bool { 5404 return Expr != ExtendedExpr && 5405 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5406 }; 5407 5408 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5409 if (PredIsKnownFalse(StartVal, StartExtended)) { 5410 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5411 return None; 5412 } 5413 5414 // The Step is always Signed (because the overflow checks are either 5415 // NSSW or NUSW) 5416 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5417 if (PredIsKnownFalse(Accum, AccumExtended)) { 5418 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5419 return None; 5420 } 5421 5422 auto AppendPredicate = [&](const SCEV *Expr, 5423 const SCEV *ExtendedExpr) -> void { 5424 if (Expr != ExtendedExpr && 5425 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5426 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5427 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5428 Predicates.push_back(Pred); 5429 } 5430 }; 5431 5432 AppendPredicate(StartVal, StartExtended); 5433 AppendPredicate(Accum, AccumExtended); 5434 5435 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5436 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5437 // into NewAR if it will also add the runtime overflow checks specified in 5438 // Predicates. 5439 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5440 5441 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5442 std::make_pair(NewAR, Predicates); 5443 // Remember the result of the analysis for this SCEV at this locayyytion. 5444 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5445 return PredRewrite; 5446 } 5447 5448 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5449 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5450 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5451 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5452 if (!L) 5453 return None; 5454 5455 // Check to see if we already analyzed this PHI. 5456 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5457 if (I != PredicatedSCEVRewrites.end()) { 5458 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5459 I->second; 5460 // Analysis was done before and failed to create an AddRec: 5461 if (Rewrite.first == SymbolicPHI) 5462 return None; 5463 // Analysis was done before and succeeded to create an AddRec under 5464 // a predicate: 5465 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5466 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5467 return Rewrite; 5468 } 5469 5470 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5471 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5472 5473 // Record in the cache that the analysis failed 5474 if (!Rewrite) { 5475 SmallVector<const SCEVPredicate *, 3> Predicates; 5476 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5477 return None; 5478 } 5479 5480 return Rewrite; 5481 } 5482 5483 // FIXME: This utility is currently required because the Rewriter currently 5484 // does not rewrite this expression: 5485 // {0, +, (sext ix (trunc iy to ix) to iy)} 5486 // into {0, +, %step}, 5487 // even when the following Equal predicate exists: 5488 // "%step == (sext ix (trunc iy to ix) to iy)". 5489 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5490 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5491 if (AR1 == AR2) 5492 return true; 5493 5494 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5495 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5496 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5497 return false; 5498 return true; 5499 }; 5500 5501 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5502 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5503 return false; 5504 return true; 5505 } 5506 5507 /// A helper function for createAddRecFromPHI to handle simple cases. 5508 /// 5509 /// This function tries to find an AddRec expression for the simplest (yet most 5510 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5511 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5512 /// technique for finding the AddRec expression. 5513 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5514 Value *BEValueV, 5515 Value *StartValueV) { 5516 const Loop *L = LI.getLoopFor(PN->getParent()); 5517 assert(L && L->getHeader() == PN->getParent()); 5518 assert(BEValueV && StartValueV); 5519 5520 auto BO = MatchBinaryOp(BEValueV, DT); 5521 if (!BO) 5522 return nullptr; 5523 5524 if (BO->Opcode != Instruction::Add) 5525 return nullptr; 5526 5527 const SCEV *Accum = nullptr; 5528 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5529 Accum = getSCEV(BO->RHS); 5530 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5531 Accum = getSCEV(BO->LHS); 5532 5533 if (!Accum) 5534 return nullptr; 5535 5536 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5537 if (BO->IsNUW) 5538 Flags = setFlags(Flags, SCEV::FlagNUW); 5539 if (BO->IsNSW) 5540 Flags = setFlags(Flags, SCEV::FlagNSW); 5541 5542 const SCEV *StartVal = getSCEV(StartValueV); 5543 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5544 insertValueToMap(PN, PHISCEV); 5545 5546 // We can add Flags to the post-inc expression only if we 5547 // know that it is *undefined behavior* for BEValueV to 5548 // overflow. 5549 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5550 assert(isLoopInvariant(Accum, L) && 5551 "Accum is defined outside L, but is not invariant?"); 5552 if (isAddRecNeverPoison(BEInst, L)) 5553 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5554 } 5555 5556 return PHISCEV; 5557 } 5558 5559 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5560 const Loop *L = LI.getLoopFor(PN->getParent()); 5561 if (!L || L->getHeader() != PN->getParent()) 5562 return nullptr; 5563 5564 // The loop may have multiple entrances or multiple exits; we can analyze 5565 // this phi as an addrec if it has a unique entry value and a unique 5566 // backedge value. 5567 Value *BEValueV = nullptr, *StartValueV = nullptr; 5568 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5569 Value *V = PN->getIncomingValue(i); 5570 if (L->contains(PN->getIncomingBlock(i))) { 5571 if (!BEValueV) { 5572 BEValueV = V; 5573 } else if (BEValueV != V) { 5574 BEValueV = nullptr; 5575 break; 5576 } 5577 } else if (!StartValueV) { 5578 StartValueV = V; 5579 } else if (StartValueV != V) { 5580 StartValueV = nullptr; 5581 break; 5582 } 5583 } 5584 if (!BEValueV || !StartValueV) 5585 return nullptr; 5586 5587 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5588 "PHI node already processed?"); 5589 5590 // First, try to find AddRec expression without creating a fictituos symbolic 5591 // value for PN. 5592 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5593 return S; 5594 5595 // Handle PHI node value symbolically. 5596 const SCEV *SymbolicName = getUnknown(PN); 5597 insertValueToMap(PN, SymbolicName); 5598 5599 // Using this symbolic name for the PHI, analyze the value coming around 5600 // the back-edge. 5601 const SCEV *BEValue = getSCEV(BEValueV); 5602 5603 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5604 // has a special value for the first iteration of the loop. 5605 5606 // If the value coming around the backedge is an add with the symbolic 5607 // value we just inserted, then we found a simple induction variable! 5608 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5609 // If there is a single occurrence of the symbolic value, replace it 5610 // with a recurrence. 5611 unsigned FoundIndex = Add->getNumOperands(); 5612 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5613 if (Add->getOperand(i) == SymbolicName) 5614 if (FoundIndex == e) { 5615 FoundIndex = i; 5616 break; 5617 } 5618 5619 if (FoundIndex != Add->getNumOperands()) { 5620 // Create an add with everything but the specified operand. 5621 SmallVector<const SCEV *, 8> Ops; 5622 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5623 if (i != FoundIndex) 5624 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5625 L, *this)); 5626 const SCEV *Accum = getAddExpr(Ops); 5627 5628 // This is not a valid addrec if the step amount is varying each 5629 // loop iteration, but is not itself an addrec in this loop. 5630 if (isLoopInvariant(Accum, L) || 5631 (isa<SCEVAddRecExpr>(Accum) && 5632 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5633 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5634 5635 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5636 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5637 if (BO->IsNUW) 5638 Flags = setFlags(Flags, SCEV::FlagNUW); 5639 if (BO->IsNSW) 5640 Flags = setFlags(Flags, SCEV::FlagNSW); 5641 } 5642 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5643 // If the increment is an inbounds GEP, then we know the address 5644 // space cannot be wrapped around. We cannot make any guarantee 5645 // about signed or unsigned overflow because pointers are 5646 // unsigned but we may have a negative index from the base 5647 // pointer. We can guarantee that no unsigned wrap occurs if the 5648 // indices form a positive value. 5649 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5650 Flags = setFlags(Flags, SCEV::FlagNW); 5651 5652 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5653 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5654 Flags = setFlags(Flags, SCEV::FlagNUW); 5655 } 5656 5657 // We cannot transfer nuw and nsw flags from subtraction 5658 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5659 // for instance. 5660 } 5661 5662 const SCEV *StartVal = getSCEV(StartValueV); 5663 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5664 5665 // Okay, for the entire analysis of this edge we assumed the PHI 5666 // to be symbolic. We now need to go back and purge all of the 5667 // entries for the scalars that use the symbolic expression. 5668 forgetMemoizedResults(SymbolicName); 5669 insertValueToMap(PN, PHISCEV); 5670 5671 // We can add Flags to the post-inc expression only if we 5672 // know that it is *undefined behavior* for BEValueV to 5673 // overflow. 5674 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5675 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5676 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5677 5678 return PHISCEV; 5679 } 5680 } 5681 } else { 5682 // Otherwise, this could be a loop like this: 5683 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5684 // In this case, j = {1,+,1} and BEValue is j. 5685 // Because the other in-value of i (0) fits the evolution of BEValue 5686 // i really is an addrec evolution. 5687 // 5688 // We can generalize this saying that i is the shifted value of BEValue 5689 // by one iteration: 5690 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5691 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5692 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5693 if (Shifted != getCouldNotCompute() && 5694 Start != getCouldNotCompute()) { 5695 const SCEV *StartVal = getSCEV(StartValueV); 5696 if (Start == StartVal) { 5697 // Okay, for the entire analysis of this edge we assumed the PHI 5698 // to be symbolic. We now need to go back and purge all of the 5699 // entries for the scalars that use the symbolic expression. 5700 forgetMemoizedResults(SymbolicName); 5701 insertValueToMap(PN, Shifted); 5702 return Shifted; 5703 } 5704 } 5705 } 5706 5707 // Remove the temporary PHI node SCEV that has been inserted while intending 5708 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5709 // as it will prevent later (possibly simpler) SCEV expressions to be added 5710 // to the ValueExprMap. 5711 eraseValueFromMap(PN); 5712 5713 return nullptr; 5714 } 5715 5716 // Checks if the SCEV S is available at BB. S is considered available at BB 5717 // if S can be materialized at BB without introducing a fault. 5718 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5719 BasicBlock *BB) { 5720 struct CheckAvailable { 5721 bool TraversalDone = false; 5722 bool Available = true; 5723 5724 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5725 BasicBlock *BB = nullptr; 5726 DominatorTree &DT; 5727 5728 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5729 : L(L), BB(BB), DT(DT) {} 5730 5731 bool setUnavailable() { 5732 TraversalDone = true; 5733 Available = false; 5734 return false; 5735 } 5736 5737 bool follow(const SCEV *S) { 5738 switch (S->getSCEVType()) { 5739 case scConstant: 5740 case scPtrToInt: 5741 case scTruncate: 5742 case scZeroExtend: 5743 case scSignExtend: 5744 case scAddExpr: 5745 case scMulExpr: 5746 case scUMaxExpr: 5747 case scSMaxExpr: 5748 case scUMinExpr: 5749 case scSMinExpr: 5750 case scSequentialUMinExpr: 5751 // These expressions are available if their operand(s) is/are. 5752 return true; 5753 5754 case scAddRecExpr: { 5755 // We allow add recurrences that are on the loop BB is in, or some 5756 // outer loop. This guarantees availability because the value of the 5757 // add recurrence at BB is simply the "current" value of the induction 5758 // variable. We can relax this in the future; for instance an add 5759 // recurrence on a sibling dominating loop is also available at BB. 5760 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5761 if (L && (ARLoop == L || ARLoop->contains(L))) 5762 return true; 5763 5764 return setUnavailable(); 5765 } 5766 5767 case scUnknown: { 5768 // For SCEVUnknown, we check for simple dominance. 5769 const auto *SU = cast<SCEVUnknown>(S); 5770 Value *V = SU->getValue(); 5771 5772 if (isa<Argument>(V)) 5773 return false; 5774 5775 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5776 return false; 5777 5778 return setUnavailable(); 5779 } 5780 5781 case scUDivExpr: 5782 case scCouldNotCompute: 5783 // We do not try to smart about these at all. 5784 return setUnavailable(); 5785 } 5786 llvm_unreachable("Unknown SCEV kind!"); 5787 } 5788 5789 bool isDone() { return TraversalDone; } 5790 }; 5791 5792 CheckAvailable CA(L, BB, DT); 5793 SCEVTraversal<CheckAvailable> ST(CA); 5794 5795 ST.visitAll(S); 5796 return CA.Available; 5797 } 5798 5799 // Try to match a control flow sequence that branches out at BI and merges back 5800 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5801 // match. 5802 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5803 Value *&C, Value *&LHS, Value *&RHS) { 5804 C = BI->getCondition(); 5805 5806 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5807 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5808 5809 if (!LeftEdge.isSingleEdge()) 5810 return false; 5811 5812 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5813 5814 Use &LeftUse = Merge->getOperandUse(0); 5815 Use &RightUse = Merge->getOperandUse(1); 5816 5817 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5818 LHS = LeftUse; 5819 RHS = RightUse; 5820 return true; 5821 } 5822 5823 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5824 LHS = RightUse; 5825 RHS = LeftUse; 5826 return true; 5827 } 5828 5829 return false; 5830 } 5831 5832 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5833 auto IsReachable = 5834 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5835 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5836 const Loop *L = LI.getLoopFor(PN->getParent()); 5837 5838 // We don't want to break LCSSA, even in a SCEV expression tree. 5839 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5840 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5841 return nullptr; 5842 5843 // Try to match 5844 // 5845 // br %cond, label %left, label %right 5846 // left: 5847 // br label %merge 5848 // right: 5849 // br label %merge 5850 // merge: 5851 // V = phi [ %x, %left ], [ %y, %right ] 5852 // 5853 // as "select %cond, %x, %y" 5854 5855 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5856 assert(IDom && "At least the entry block should dominate PN"); 5857 5858 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5859 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5860 5861 if (BI && BI->isConditional() && 5862 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5863 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5864 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5865 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5866 } 5867 5868 return nullptr; 5869 } 5870 5871 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5872 if (const SCEV *S = createAddRecFromPHI(PN)) 5873 return S; 5874 5875 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5876 return S; 5877 5878 // If the PHI has a single incoming value, follow that value, unless the 5879 // PHI's incoming blocks are in a different loop, in which case doing so 5880 // risks breaking LCSSA form. Instcombine would normally zap these, but 5881 // it doesn't have DominatorTree information, so it may miss cases. 5882 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5883 if (LI.replacementPreservesLCSSAForm(PN, V)) 5884 return getSCEV(V); 5885 5886 // If it's not a loop phi, we can't handle it yet. 5887 return getUnknown(PN); 5888 } 5889 5890 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5891 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5892 // Try to match some simple smax or umax patterns. 5893 auto *ICI = Cond; 5894 5895 Value *LHS = ICI->getOperand(0); 5896 Value *RHS = ICI->getOperand(1); 5897 5898 switch (ICI->getPredicate()) { 5899 case ICmpInst::ICMP_SLT: 5900 case ICmpInst::ICMP_SLE: 5901 case ICmpInst::ICMP_ULT: 5902 case ICmpInst::ICMP_ULE: 5903 std::swap(LHS, RHS); 5904 LLVM_FALLTHROUGH; 5905 case ICmpInst::ICMP_SGT: 5906 case ICmpInst::ICMP_SGE: 5907 case ICmpInst::ICMP_UGT: 5908 case ICmpInst::ICMP_UGE: 5909 // a > b ? a+x : b+x -> max(a, b)+x 5910 // a > b ? b+x : a+x -> min(a, b)+x 5911 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5912 bool Signed = ICI->isSigned(); 5913 const SCEV *LA = getSCEV(TrueVal); 5914 const SCEV *RA = getSCEV(FalseVal); 5915 const SCEV *LS = getSCEV(LHS); 5916 const SCEV *RS = getSCEV(RHS); 5917 if (LA->getType()->isPointerTy()) { 5918 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5919 // Need to make sure we can't produce weird expressions involving 5920 // negated pointers. 5921 if (LA == LS && RA == RS) 5922 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5923 if (LA == RS && RA == LS) 5924 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5925 } 5926 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5927 if (Op->getType()->isPointerTy()) { 5928 Op = getLosslessPtrToIntExpr(Op); 5929 if (isa<SCEVCouldNotCompute>(Op)) 5930 return Op; 5931 } 5932 if (Signed) 5933 Op = getNoopOrSignExtend(Op, I->getType()); 5934 else 5935 Op = getNoopOrZeroExtend(Op, I->getType()); 5936 return Op; 5937 }; 5938 LS = CoerceOperand(LS); 5939 RS = CoerceOperand(RS); 5940 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5941 break; 5942 const SCEV *LDiff = getMinusSCEV(LA, LS); 5943 const SCEV *RDiff = getMinusSCEV(RA, RS); 5944 if (LDiff == RDiff) 5945 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5946 LDiff); 5947 LDiff = getMinusSCEV(LA, RS); 5948 RDiff = getMinusSCEV(RA, LS); 5949 if (LDiff == RDiff) 5950 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5951 LDiff); 5952 } 5953 break; 5954 case ICmpInst::ICMP_NE: 5955 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5956 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5957 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5958 const SCEV *One = getOne(I->getType()); 5959 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5960 const SCEV *LA = getSCEV(TrueVal); 5961 const SCEV *RA = getSCEV(FalseVal); 5962 const SCEV *LDiff = getMinusSCEV(LA, LS); 5963 const SCEV *RDiff = getMinusSCEV(RA, One); 5964 if (LDiff == RDiff) 5965 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5966 } 5967 break; 5968 case ICmpInst::ICMP_EQ: 5969 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5970 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5971 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5972 const SCEV *One = getOne(I->getType()); 5973 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5974 const SCEV *LA = getSCEV(TrueVal); 5975 const SCEV *RA = getSCEV(FalseVal); 5976 const SCEV *LDiff = getMinusSCEV(LA, One); 5977 const SCEV *RDiff = getMinusSCEV(RA, LS); 5978 if (LDiff == RDiff) 5979 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5980 } 5981 break; 5982 default: 5983 break; 5984 } 5985 5986 return getUnknown(I); 5987 } 5988 5989 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 5990 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 5991 // For now, only deal with i1-typed `select`s. 5992 if (!V->getType()->isIntegerTy(1) || !Cond->getType()->isIntegerTy(1) || 5993 !TrueVal->getType()->isIntegerTy(1) || 5994 !FalseVal->getType()->isIntegerTy(1)) 5995 return getUnknown(V); 5996 5997 // i1 cond ? i1 x : i1 0 --> umin_seq cond, x 5998 if (auto *FalseConst = dyn_cast<ConstantInt>(FalseVal)) { 5999 if (FalseConst->isZero()) 6000 return getUMinExpr(getSCEV(Cond), getSCEV(TrueVal), /*Sequential=*/true); 6001 } 6002 6003 return getUnknown(V); 6004 } 6005 6006 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6007 Value *TrueVal, 6008 Value *FalseVal) { 6009 // Handle "constant" branch or select. This can occur for instance when a 6010 // loop pass transforms an inner loop and moves on to process the outer loop. 6011 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6012 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6013 6014 if (auto *I = dyn_cast<Instruction>(V)) { 6015 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6016 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6017 I, ICI, TrueVal, FalseVal); 6018 if (!isa<SCEVUnknown>(S)) 6019 return S; 6020 } 6021 } 6022 6023 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6024 } 6025 6026 /// Expand GEP instructions into add and multiply operations. This allows them 6027 /// to be analyzed by regular SCEV code. 6028 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6029 // Don't attempt to analyze GEPs over unsized objects. 6030 if (!GEP->getSourceElementType()->isSized()) 6031 return getUnknown(GEP); 6032 6033 SmallVector<const SCEV *, 4> IndexExprs; 6034 for (Value *Index : GEP->indices()) 6035 IndexExprs.push_back(getSCEV(Index)); 6036 return getGEPExpr(GEP, IndexExprs); 6037 } 6038 6039 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6040 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6041 return C->getAPInt().countTrailingZeros(); 6042 6043 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6044 return GetMinTrailingZeros(I->getOperand()); 6045 6046 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6047 return std::min(GetMinTrailingZeros(T->getOperand()), 6048 (uint32_t)getTypeSizeInBits(T->getType())); 6049 6050 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6051 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6052 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6053 ? getTypeSizeInBits(E->getType()) 6054 : OpRes; 6055 } 6056 6057 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6058 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6059 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6060 ? getTypeSizeInBits(E->getType()) 6061 : OpRes; 6062 } 6063 6064 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6065 // The result is the min of all operands results. 6066 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6067 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6068 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6069 return MinOpRes; 6070 } 6071 6072 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6073 // The result is the sum of all operands results. 6074 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6075 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6076 for (unsigned i = 1, e = M->getNumOperands(); 6077 SumOpRes != BitWidth && i != e; ++i) 6078 SumOpRes = 6079 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6080 return SumOpRes; 6081 } 6082 6083 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6084 // The result is the min of all operands results. 6085 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6086 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6087 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6088 return MinOpRes; 6089 } 6090 6091 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6092 // The result is the min of all operands results. 6093 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6094 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6095 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6096 return MinOpRes; 6097 } 6098 6099 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6100 // The result is the min of all operands results. 6101 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6102 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6103 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6104 return MinOpRes; 6105 } 6106 6107 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6108 // For a SCEVUnknown, ask ValueTracking. 6109 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6110 return Known.countMinTrailingZeros(); 6111 } 6112 6113 // SCEVUDivExpr 6114 return 0; 6115 } 6116 6117 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6118 auto I = MinTrailingZerosCache.find(S); 6119 if (I != MinTrailingZerosCache.end()) 6120 return I->second; 6121 6122 uint32_t Result = GetMinTrailingZerosImpl(S); 6123 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6124 assert(InsertPair.second && "Should insert a new key"); 6125 return InsertPair.first->second; 6126 } 6127 6128 /// Helper method to assign a range to V from metadata present in the IR. 6129 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6130 if (Instruction *I = dyn_cast<Instruction>(V)) 6131 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6132 return getConstantRangeFromMetadata(*MD); 6133 6134 return None; 6135 } 6136 6137 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6138 SCEV::NoWrapFlags Flags) { 6139 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6140 AddRec->setNoWrapFlags(Flags); 6141 UnsignedRanges.erase(AddRec); 6142 SignedRanges.erase(AddRec); 6143 } 6144 } 6145 6146 ConstantRange ScalarEvolution:: 6147 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6148 const DataLayout &DL = getDataLayout(); 6149 6150 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6151 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6152 6153 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6154 // use information about the trip count to improve our available range. Note 6155 // that the trip count independent cases are already handled by known bits. 6156 // WARNING: The definition of recurrence used here is subtly different than 6157 // the one used by AddRec (and thus most of this file). Step is allowed to 6158 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6159 // and other addrecs in the same loop (for non-affine addrecs). The code 6160 // below intentionally handles the case where step is not loop invariant. 6161 auto *P = dyn_cast<PHINode>(U->getValue()); 6162 if (!P) 6163 return FullSet; 6164 6165 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6166 // even the values that are not available in these blocks may come from them, 6167 // and this leads to false-positive recurrence test. 6168 for (auto *Pred : predecessors(P->getParent())) 6169 if (!DT.isReachableFromEntry(Pred)) 6170 return FullSet; 6171 6172 BinaryOperator *BO; 6173 Value *Start, *Step; 6174 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6175 return FullSet; 6176 6177 // If we found a recurrence in reachable code, we must be in a loop. Note 6178 // that BO might be in some subloop of L, and that's completely okay. 6179 auto *L = LI.getLoopFor(P->getParent()); 6180 assert(L && L->getHeader() == P->getParent()); 6181 if (!L->contains(BO->getParent())) 6182 // NOTE: This bailout should be an assert instead. However, asserting 6183 // the condition here exposes a case where LoopFusion is querying SCEV 6184 // with malformed loop information during the midst of the transform. 6185 // There doesn't appear to be an obvious fix, so for the moment bailout 6186 // until the caller issue can be fixed. PR49566 tracks the bug. 6187 return FullSet; 6188 6189 // TODO: Extend to other opcodes such as mul, and div 6190 switch (BO->getOpcode()) { 6191 default: 6192 return FullSet; 6193 case Instruction::AShr: 6194 case Instruction::LShr: 6195 case Instruction::Shl: 6196 break; 6197 }; 6198 6199 if (BO->getOperand(0) != P) 6200 // TODO: Handle the power function forms some day. 6201 return FullSet; 6202 6203 unsigned TC = getSmallConstantMaxTripCount(L); 6204 if (!TC || TC >= BitWidth) 6205 return FullSet; 6206 6207 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6208 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6209 assert(KnownStart.getBitWidth() == BitWidth && 6210 KnownStep.getBitWidth() == BitWidth); 6211 6212 // Compute total shift amount, being careful of overflow and bitwidths. 6213 auto MaxShiftAmt = KnownStep.getMaxValue(); 6214 APInt TCAP(BitWidth, TC-1); 6215 bool Overflow = false; 6216 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6217 if (Overflow) 6218 return FullSet; 6219 6220 switch (BO->getOpcode()) { 6221 default: 6222 llvm_unreachable("filtered out above"); 6223 case Instruction::AShr: { 6224 // For each ashr, three cases: 6225 // shift = 0 => unchanged value 6226 // saturation => 0 or -1 6227 // other => a value closer to zero (of the same sign) 6228 // Thus, the end value is closer to zero than the start. 6229 auto KnownEnd = KnownBits::ashr(KnownStart, 6230 KnownBits::makeConstant(TotalShift)); 6231 if (KnownStart.isNonNegative()) 6232 // Analogous to lshr (simply not yet canonicalized) 6233 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6234 KnownStart.getMaxValue() + 1); 6235 if (KnownStart.isNegative()) 6236 // End >=u Start && End <=s Start 6237 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6238 KnownEnd.getMaxValue() + 1); 6239 break; 6240 } 6241 case Instruction::LShr: { 6242 // For each lshr, three cases: 6243 // shift = 0 => unchanged value 6244 // saturation => 0 6245 // other => a smaller positive number 6246 // Thus, the low end of the unsigned range is the last value produced. 6247 auto KnownEnd = KnownBits::lshr(KnownStart, 6248 KnownBits::makeConstant(TotalShift)); 6249 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6250 KnownStart.getMaxValue() + 1); 6251 } 6252 case Instruction::Shl: { 6253 // Iff no bits are shifted out, value increases on every shift. 6254 auto KnownEnd = KnownBits::shl(KnownStart, 6255 KnownBits::makeConstant(TotalShift)); 6256 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6257 return ConstantRange(KnownStart.getMinValue(), 6258 KnownEnd.getMaxValue() + 1); 6259 break; 6260 } 6261 }; 6262 return FullSet; 6263 } 6264 6265 /// Determine the range for a particular SCEV. If SignHint is 6266 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6267 /// with a "cleaner" unsigned (resp. signed) representation. 6268 const ConstantRange & 6269 ScalarEvolution::getRangeRef(const SCEV *S, 6270 ScalarEvolution::RangeSignHint SignHint) { 6271 DenseMap<const SCEV *, ConstantRange> &Cache = 6272 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6273 : SignedRanges; 6274 ConstantRange::PreferredRangeType RangeType = 6275 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6276 ? ConstantRange::Unsigned : ConstantRange::Signed; 6277 6278 // See if we've computed this range already. 6279 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6280 if (I != Cache.end()) 6281 return I->second; 6282 6283 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6284 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6285 6286 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6287 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6288 using OBO = OverflowingBinaryOperator; 6289 6290 // If the value has known zeros, the maximum value will have those known zeros 6291 // as well. 6292 uint32_t TZ = GetMinTrailingZeros(S); 6293 if (TZ != 0) { 6294 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6295 ConservativeResult = 6296 ConstantRange(APInt::getMinValue(BitWidth), 6297 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6298 else 6299 ConservativeResult = ConstantRange( 6300 APInt::getSignedMinValue(BitWidth), 6301 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6302 } 6303 6304 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6305 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6306 unsigned WrapType = OBO::AnyWrap; 6307 if (Add->hasNoSignedWrap()) 6308 WrapType |= OBO::NoSignedWrap; 6309 if (Add->hasNoUnsignedWrap()) 6310 WrapType |= OBO::NoUnsignedWrap; 6311 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6312 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6313 WrapType, RangeType); 6314 return setRange(Add, SignHint, 6315 ConservativeResult.intersectWith(X, RangeType)); 6316 } 6317 6318 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6319 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6320 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6321 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6322 return setRange(Mul, SignHint, 6323 ConservativeResult.intersectWith(X, RangeType)); 6324 } 6325 6326 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6327 Intrinsic::ID ID; 6328 switch (S->getSCEVType()) { 6329 case scUMaxExpr: 6330 ID = Intrinsic::umax; 6331 break; 6332 case scSMaxExpr: 6333 ID = Intrinsic::smax; 6334 break; 6335 case scUMinExpr: 6336 case scSequentialUMinExpr: 6337 ID = Intrinsic::umin; 6338 break; 6339 case scSMinExpr: 6340 ID = Intrinsic::smin; 6341 break; 6342 default: 6343 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6344 } 6345 6346 const auto *NAry = cast<SCEVNAryExpr>(S); 6347 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6348 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6349 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6350 return setRange(S, SignHint, 6351 ConservativeResult.intersectWith(X, RangeType)); 6352 } 6353 6354 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6355 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6356 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6357 return setRange(UDiv, SignHint, 6358 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6359 } 6360 6361 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6362 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6363 return setRange(ZExt, SignHint, 6364 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6365 RangeType)); 6366 } 6367 6368 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6369 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6370 return setRange(SExt, SignHint, 6371 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6372 RangeType)); 6373 } 6374 6375 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6376 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6377 return setRange(PtrToInt, SignHint, X); 6378 } 6379 6380 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6381 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6382 return setRange(Trunc, SignHint, 6383 ConservativeResult.intersectWith(X.truncate(BitWidth), 6384 RangeType)); 6385 } 6386 6387 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6388 // If there's no unsigned wrap, the value will never be less than its 6389 // initial value. 6390 if (AddRec->hasNoUnsignedWrap()) { 6391 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6392 if (!UnsignedMinValue.isZero()) 6393 ConservativeResult = ConservativeResult.intersectWith( 6394 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6395 } 6396 6397 // If there's no signed wrap, and all the operands except initial value have 6398 // the same sign or zero, the value won't ever be: 6399 // 1: smaller than initial value if operands are non negative, 6400 // 2: bigger than initial value if operands are non positive. 6401 // For both cases, value can not cross signed min/max boundary. 6402 if (AddRec->hasNoSignedWrap()) { 6403 bool AllNonNeg = true; 6404 bool AllNonPos = true; 6405 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6406 if (!isKnownNonNegative(AddRec->getOperand(i))) 6407 AllNonNeg = false; 6408 if (!isKnownNonPositive(AddRec->getOperand(i))) 6409 AllNonPos = false; 6410 } 6411 if (AllNonNeg) 6412 ConservativeResult = ConservativeResult.intersectWith( 6413 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6414 APInt::getSignedMinValue(BitWidth)), 6415 RangeType); 6416 else if (AllNonPos) 6417 ConservativeResult = ConservativeResult.intersectWith( 6418 ConstantRange::getNonEmpty( 6419 APInt::getSignedMinValue(BitWidth), 6420 getSignedRangeMax(AddRec->getStart()) + 1), 6421 RangeType); 6422 } 6423 6424 // TODO: non-affine addrec 6425 if (AddRec->isAffine()) { 6426 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6427 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6428 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6429 auto RangeFromAffine = getRangeForAffineAR( 6430 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6431 BitWidth); 6432 ConservativeResult = 6433 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6434 6435 auto RangeFromFactoring = getRangeViaFactoring( 6436 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6437 BitWidth); 6438 ConservativeResult = 6439 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6440 } 6441 6442 // Now try symbolic BE count and more powerful methods. 6443 if (UseExpensiveRangeSharpening) { 6444 const SCEV *SymbolicMaxBECount = 6445 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6446 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6447 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6448 AddRec->hasNoSelfWrap()) { 6449 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6450 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6451 ConservativeResult = 6452 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6453 } 6454 } 6455 } 6456 6457 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6458 } 6459 6460 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6461 6462 // Check if the IR explicitly contains !range metadata. 6463 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6464 if (MDRange.hasValue()) 6465 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6466 RangeType); 6467 6468 // Use facts about recurrences in the underlying IR. Note that add 6469 // recurrences are AddRecExprs and thus don't hit this path. This 6470 // primarily handles shift recurrences. 6471 auto CR = getRangeForUnknownRecurrence(U); 6472 ConservativeResult = ConservativeResult.intersectWith(CR); 6473 6474 // See if ValueTracking can give us a useful range. 6475 const DataLayout &DL = getDataLayout(); 6476 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6477 if (Known.getBitWidth() != BitWidth) 6478 Known = Known.zextOrTrunc(BitWidth); 6479 6480 // ValueTracking may be able to compute a tighter result for the number of 6481 // sign bits than for the value of those sign bits. 6482 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6483 if (U->getType()->isPointerTy()) { 6484 // If the pointer size is larger than the index size type, this can cause 6485 // NS to be larger than BitWidth. So compensate for this. 6486 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6487 int ptrIdxDiff = ptrSize - BitWidth; 6488 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6489 NS -= ptrIdxDiff; 6490 } 6491 6492 if (NS > 1) { 6493 // If we know any of the sign bits, we know all of the sign bits. 6494 if (!Known.Zero.getHiBits(NS).isZero()) 6495 Known.Zero.setHighBits(NS); 6496 if (!Known.One.getHiBits(NS).isZero()) 6497 Known.One.setHighBits(NS); 6498 } 6499 6500 if (Known.getMinValue() != Known.getMaxValue() + 1) 6501 ConservativeResult = ConservativeResult.intersectWith( 6502 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6503 RangeType); 6504 if (NS > 1) 6505 ConservativeResult = ConservativeResult.intersectWith( 6506 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6507 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6508 RangeType); 6509 6510 // A range of Phi is a subset of union of all ranges of its input. 6511 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6512 // Make sure that we do not run over cycled Phis. 6513 if (PendingPhiRanges.insert(Phi).second) { 6514 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6515 for (auto &Op : Phi->operands()) { 6516 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6517 RangeFromOps = RangeFromOps.unionWith(OpRange); 6518 // No point to continue if we already have a full set. 6519 if (RangeFromOps.isFullSet()) 6520 break; 6521 } 6522 ConservativeResult = 6523 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6524 bool Erased = PendingPhiRanges.erase(Phi); 6525 assert(Erased && "Failed to erase Phi properly?"); 6526 (void) Erased; 6527 } 6528 } 6529 6530 return setRange(U, SignHint, std::move(ConservativeResult)); 6531 } 6532 6533 return setRange(S, SignHint, std::move(ConservativeResult)); 6534 } 6535 6536 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6537 // values that the expression can take. Initially, the expression has a value 6538 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6539 // argument defines if we treat Step as signed or unsigned. 6540 static ConstantRange getRangeForAffineARHelper(APInt Step, 6541 const ConstantRange &StartRange, 6542 const APInt &MaxBECount, 6543 unsigned BitWidth, bool Signed) { 6544 // If either Step or MaxBECount is 0, then the expression won't change, and we 6545 // just need to return the initial range. 6546 if (Step == 0 || MaxBECount == 0) 6547 return StartRange; 6548 6549 // If we don't know anything about the initial value (i.e. StartRange is 6550 // FullRange), then we don't know anything about the final range either. 6551 // Return FullRange. 6552 if (StartRange.isFullSet()) 6553 return ConstantRange::getFull(BitWidth); 6554 6555 // If Step is signed and negative, then we use its absolute value, but we also 6556 // note that we're moving in the opposite direction. 6557 bool Descending = Signed && Step.isNegative(); 6558 6559 if (Signed) 6560 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6561 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6562 // This equations hold true due to the well-defined wrap-around behavior of 6563 // APInt. 6564 Step = Step.abs(); 6565 6566 // Check if Offset is more than full span of BitWidth. If it is, the 6567 // expression is guaranteed to overflow. 6568 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6569 return ConstantRange::getFull(BitWidth); 6570 6571 // Offset is by how much the expression can change. Checks above guarantee no 6572 // overflow here. 6573 APInt Offset = Step * MaxBECount; 6574 6575 // Minimum value of the final range will match the minimal value of StartRange 6576 // if the expression is increasing and will be decreased by Offset otherwise. 6577 // Maximum value of the final range will match the maximal value of StartRange 6578 // if the expression is decreasing and will be increased by Offset otherwise. 6579 APInt StartLower = StartRange.getLower(); 6580 APInt StartUpper = StartRange.getUpper() - 1; 6581 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6582 : (StartUpper + std::move(Offset)); 6583 6584 // It's possible that the new minimum/maximum value will fall into the initial 6585 // range (due to wrap around). This means that the expression can take any 6586 // value in this bitwidth, and we have to return full range. 6587 if (StartRange.contains(MovedBoundary)) 6588 return ConstantRange::getFull(BitWidth); 6589 6590 APInt NewLower = 6591 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6592 APInt NewUpper = 6593 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6594 NewUpper += 1; 6595 6596 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6597 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6598 } 6599 6600 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6601 const SCEV *Step, 6602 const SCEV *MaxBECount, 6603 unsigned BitWidth) { 6604 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6605 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6606 "Precondition!"); 6607 6608 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6609 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6610 6611 // First, consider step signed. 6612 ConstantRange StartSRange = getSignedRange(Start); 6613 ConstantRange StepSRange = getSignedRange(Step); 6614 6615 // If Step can be both positive and negative, we need to find ranges for the 6616 // maximum absolute step values in both directions and union them. 6617 ConstantRange SR = 6618 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6619 MaxBECountValue, BitWidth, /* Signed = */ true); 6620 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6621 StartSRange, MaxBECountValue, 6622 BitWidth, /* Signed = */ true)); 6623 6624 // Next, consider step unsigned. 6625 ConstantRange UR = getRangeForAffineARHelper( 6626 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6627 MaxBECountValue, BitWidth, /* Signed = */ false); 6628 6629 // Finally, intersect signed and unsigned ranges. 6630 return SR.intersectWith(UR, ConstantRange::Smallest); 6631 } 6632 6633 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6634 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6635 ScalarEvolution::RangeSignHint SignHint) { 6636 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6637 assert(AddRec->hasNoSelfWrap() && 6638 "This only works for non-self-wrapping AddRecs!"); 6639 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6640 const SCEV *Step = AddRec->getStepRecurrence(*this); 6641 // Only deal with constant step to save compile time. 6642 if (!isa<SCEVConstant>(Step)) 6643 return ConstantRange::getFull(BitWidth); 6644 // Let's make sure that we can prove that we do not self-wrap during 6645 // MaxBECount iterations. We need this because MaxBECount is a maximum 6646 // iteration count estimate, and we might infer nw from some exit for which we 6647 // do not know max exit count (or any other side reasoning). 6648 // TODO: Turn into assert at some point. 6649 if (getTypeSizeInBits(MaxBECount->getType()) > 6650 getTypeSizeInBits(AddRec->getType())) 6651 return ConstantRange::getFull(BitWidth); 6652 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6653 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6654 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6655 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6656 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6657 MaxItersWithoutWrap)) 6658 return ConstantRange::getFull(BitWidth); 6659 6660 ICmpInst::Predicate LEPred = 6661 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6662 ICmpInst::Predicate GEPred = 6663 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6664 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6665 6666 // We know that there is no self-wrap. Let's take Start and End values and 6667 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6668 // the iteration. They either lie inside the range [Min(Start, End), 6669 // Max(Start, End)] or outside it: 6670 // 6671 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6672 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6673 // 6674 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6675 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6676 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6677 // Start <= End and step is positive, or Start >= End and step is negative. 6678 const SCEV *Start = AddRec->getStart(); 6679 ConstantRange StartRange = getRangeRef(Start, SignHint); 6680 ConstantRange EndRange = getRangeRef(End, SignHint); 6681 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6682 // If they already cover full iteration space, we will know nothing useful 6683 // even if we prove what we want to prove. 6684 if (RangeBetween.isFullSet()) 6685 return RangeBetween; 6686 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6687 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6688 : RangeBetween.isWrappedSet(); 6689 if (IsWrappedSet) 6690 return ConstantRange::getFull(BitWidth); 6691 6692 if (isKnownPositive(Step) && 6693 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6694 return RangeBetween; 6695 else if (isKnownNegative(Step) && 6696 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6697 return RangeBetween; 6698 return ConstantRange::getFull(BitWidth); 6699 } 6700 6701 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6702 const SCEV *Step, 6703 const SCEV *MaxBECount, 6704 unsigned BitWidth) { 6705 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6706 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6707 6708 struct SelectPattern { 6709 Value *Condition = nullptr; 6710 APInt TrueValue; 6711 APInt FalseValue; 6712 6713 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6714 const SCEV *S) { 6715 Optional<unsigned> CastOp; 6716 APInt Offset(BitWidth, 0); 6717 6718 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6719 "Should be!"); 6720 6721 // Peel off a constant offset: 6722 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6723 // In the future we could consider being smarter here and handle 6724 // {Start+Step,+,Step} too. 6725 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6726 return; 6727 6728 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6729 S = SA->getOperand(1); 6730 } 6731 6732 // Peel off a cast operation 6733 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6734 CastOp = SCast->getSCEVType(); 6735 S = SCast->getOperand(); 6736 } 6737 6738 using namespace llvm::PatternMatch; 6739 6740 auto *SU = dyn_cast<SCEVUnknown>(S); 6741 const APInt *TrueVal, *FalseVal; 6742 if (!SU || 6743 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6744 m_APInt(FalseVal)))) { 6745 Condition = nullptr; 6746 return; 6747 } 6748 6749 TrueValue = *TrueVal; 6750 FalseValue = *FalseVal; 6751 6752 // Re-apply the cast we peeled off earlier 6753 if (CastOp.hasValue()) 6754 switch (*CastOp) { 6755 default: 6756 llvm_unreachable("Unknown SCEV cast type!"); 6757 6758 case scTruncate: 6759 TrueValue = TrueValue.trunc(BitWidth); 6760 FalseValue = FalseValue.trunc(BitWidth); 6761 break; 6762 case scZeroExtend: 6763 TrueValue = TrueValue.zext(BitWidth); 6764 FalseValue = FalseValue.zext(BitWidth); 6765 break; 6766 case scSignExtend: 6767 TrueValue = TrueValue.sext(BitWidth); 6768 FalseValue = FalseValue.sext(BitWidth); 6769 break; 6770 } 6771 6772 // Re-apply the constant offset we peeled off earlier 6773 TrueValue += Offset; 6774 FalseValue += Offset; 6775 } 6776 6777 bool isRecognized() { return Condition != nullptr; } 6778 }; 6779 6780 SelectPattern StartPattern(*this, BitWidth, Start); 6781 if (!StartPattern.isRecognized()) 6782 return ConstantRange::getFull(BitWidth); 6783 6784 SelectPattern StepPattern(*this, BitWidth, Step); 6785 if (!StepPattern.isRecognized()) 6786 return ConstantRange::getFull(BitWidth); 6787 6788 if (StartPattern.Condition != StepPattern.Condition) { 6789 // We don't handle this case today; but we could, by considering four 6790 // possibilities below instead of two. I'm not sure if there are cases where 6791 // that will help over what getRange already does, though. 6792 return ConstantRange::getFull(BitWidth); 6793 } 6794 6795 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6796 // construct arbitrary general SCEV expressions here. This function is called 6797 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6798 // say) can end up caching a suboptimal value. 6799 6800 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6801 // C2352 and C2512 (otherwise it isn't needed). 6802 6803 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6804 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6805 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6806 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6807 6808 ConstantRange TrueRange = 6809 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6810 ConstantRange FalseRange = 6811 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6812 6813 return TrueRange.unionWith(FalseRange); 6814 } 6815 6816 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6817 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6818 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6819 6820 // Return early if there are no flags to propagate to the SCEV. 6821 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6822 if (BinOp->hasNoUnsignedWrap()) 6823 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6824 if (BinOp->hasNoSignedWrap()) 6825 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6826 if (Flags == SCEV::FlagAnyWrap) 6827 return SCEV::FlagAnyWrap; 6828 6829 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6830 } 6831 6832 const Instruction * 6833 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6834 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6835 return &*AddRec->getLoop()->getHeader()->begin(); 6836 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6837 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6838 return I; 6839 return nullptr; 6840 } 6841 6842 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6843 /// \p Ops remains unmodified. 6844 static void collectUniqueOps(const SCEV *S, 6845 SmallVectorImpl<const SCEV *> &Ops) { 6846 SmallPtrSet<const SCEV *, 4> Unique; 6847 auto InsertUnique = [&](const SCEV *S) { 6848 if (Unique.insert(S).second) 6849 Ops.push_back(S); 6850 }; 6851 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6852 for (auto *Op : S2->operands()) 6853 InsertUnique(Op); 6854 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6855 for (auto *Op : S2->operands()) 6856 InsertUnique(Op); 6857 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6858 for (auto *Op : S2->operands()) 6859 InsertUnique(Op); 6860 } 6861 6862 const Instruction * 6863 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6864 bool &Precise) { 6865 Precise = true; 6866 // Do a bounded search of the def relation of the requested SCEVs. 6867 SmallSet<const SCEV *, 16> Visited; 6868 SmallVector<const SCEV *> Worklist; 6869 auto pushOp = [&](const SCEV *S) { 6870 if (!Visited.insert(S).second) 6871 return; 6872 // Threshold of 30 here is arbitrary. 6873 if (Visited.size() > 30) { 6874 Precise = false; 6875 return; 6876 } 6877 Worklist.push_back(S); 6878 }; 6879 6880 for (auto *S : Ops) 6881 pushOp(S); 6882 6883 const Instruction *Bound = nullptr; 6884 while (!Worklist.empty()) { 6885 auto *S = Worklist.pop_back_val(); 6886 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 6887 if (!Bound || DT.dominates(Bound, DefI)) 6888 Bound = DefI; 6889 } else { 6890 SmallVector<const SCEV *, 4> Ops; 6891 collectUniqueOps(S, Ops); 6892 for (auto *Op : Ops) 6893 pushOp(Op); 6894 } 6895 } 6896 return Bound ? Bound : &*F.getEntryBlock().begin(); 6897 } 6898 6899 const Instruction * 6900 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 6901 bool Discard; 6902 return getDefiningScopeBound(Ops, Discard); 6903 } 6904 6905 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 6906 const Instruction *B) { 6907 if (A->getParent() == B->getParent() && 6908 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6909 B->getIterator())) 6910 return true; 6911 6912 auto *BLoop = LI.getLoopFor(B->getParent()); 6913 if (BLoop && BLoop->getHeader() == B->getParent() && 6914 BLoop->getLoopPreheader() == A->getParent() && 6915 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6916 A->getParent()->end()) && 6917 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 6918 B->getIterator())) 6919 return true; 6920 return false; 6921 } 6922 6923 6924 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6925 // Only proceed if we can prove that I does not yield poison. 6926 if (!programUndefinedIfPoison(I)) 6927 return false; 6928 6929 // At this point we know that if I is executed, then it does not wrap 6930 // according to at least one of NSW or NUW. If I is not executed, then we do 6931 // not know if the calculation that I represents would wrap. Multiple 6932 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6933 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6934 // derived from other instructions that map to the same SCEV. We cannot make 6935 // that guarantee for cases where I is not executed. So we need to find a 6936 // upper bound on the defining scope for the SCEV, and prove that I is 6937 // executed every time we enter that scope. When the bounding scope is a 6938 // loop (the common case), this is equivalent to proving I executes on every 6939 // iteration of that loop. 6940 SmallVector<const SCEV *> SCEVOps; 6941 for (const Use &Op : I->operands()) { 6942 // I could be an extractvalue from a call to an overflow intrinsic. 6943 // TODO: We can do better here in some cases. 6944 if (isSCEVable(Op->getType())) 6945 SCEVOps.push_back(getSCEV(Op)); 6946 } 6947 auto *DefI = getDefiningScopeBound(SCEVOps); 6948 return isGuaranteedToTransferExecutionTo(DefI, I); 6949 } 6950 6951 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6952 // If we know that \c I can never be poison period, then that's enough. 6953 if (isSCEVExprNeverPoison(I)) 6954 return true; 6955 6956 // For an add recurrence specifically, we assume that infinite loops without 6957 // side effects are undefined behavior, and then reason as follows: 6958 // 6959 // If the add recurrence is poison in any iteration, it is poison on all 6960 // future iterations (since incrementing poison yields poison). If the result 6961 // of the add recurrence is fed into the loop latch condition and the loop 6962 // does not contain any throws or exiting blocks other than the latch, we now 6963 // have the ability to "choose" whether the backedge is taken or not (by 6964 // choosing a sufficiently evil value for the poison feeding into the branch) 6965 // for every iteration including and after the one in which \p I first became 6966 // poison. There are two possibilities (let's call the iteration in which \p 6967 // I first became poison as K): 6968 // 6969 // 1. In the set of iterations including and after K, the loop body executes 6970 // no side effects. In this case executing the backege an infinte number 6971 // of times will yield undefined behavior. 6972 // 6973 // 2. In the set of iterations including and after K, the loop body executes 6974 // at least one side effect. In this case, that specific instance of side 6975 // effect is control dependent on poison, which also yields undefined 6976 // behavior. 6977 6978 auto *ExitingBB = L->getExitingBlock(); 6979 auto *LatchBB = L->getLoopLatch(); 6980 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6981 return false; 6982 6983 SmallPtrSet<const Instruction *, 16> Pushed; 6984 SmallVector<const Instruction *, 8> PoisonStack; 6985 6986 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6987 // things that are known to be poison under that assumption go on the 6988 // PoisonStack. 6989 Pushed.insert(I); 6990 PoisonStack.push_back(I); 6991 6992 bool LatchControlDependentOnPoison = false; 6993 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6994 const Instruction *Poison = PoisonStack.pop_back_val(); 6995 6996 for (auto *PoisonUser : Poison->users()) { 6997 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6998 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6999 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7000 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7001 assert(BI->isConditional() && "Only possibility!"); 7002 if (BI->getParent() == LatchBB) { 7003 LatchControlDependentOnPoison = true; 7004 break; 7005 } 7006 } 7007 } 7008 } 7009 7010 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7011 } 7012 7013 ScalarEvolution::LoopProperties 7014 ScalarEvolution::getLoopProperties(const Loop *L) { 7015 using LoopProperties = ScalarEvolution::LoopProperties; 7016 7017 auto Itr = LoopPropertiesCache.find(L); 7018 if (Itr == LoopPropertiesCache.end()) { 7019 auto HasSideEffects = [](Instruction *I) { 7020 if (auto *SI = dyn_cast<StoreInst>(I)) 7021 return !SI->isSimple(); 7022 7023 return I->mayThrow() || I->mayWriteToMemory(); 7024 }; 7025 7026 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7027 /*HasNoSideEffects*/ true}; 7028 7029 for (auto *BB : L->getBlocks()) 7030 for (auto &I : *BB) { 7031 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7032 LP.HasNoAbnormalExits = false; 7033 if (HasSideEffects(&I)) 7034 LP.HasNoSideEffects = false; 7035 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7036 break; // We're already as pessimistic as we can get. 7037 } 7038 7039 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7040 assert(InsertPair.second && "We just checked!"); 7041 Itr = InsertPair.first; 7042 } 7043 7044 return Itr->second; 7045 } 7046 7047 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7048 // A mustprogress loop without side effects must be finite. 7049 // TODO: The check used here is very conservative. It's only *specific* 7050 // side effects which are well defined in infinite loops. 7051 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7052 } 7053 7054 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7055 if (!isSCEVable(V->getType())) 7056 return getUnknown(V); 7057 7058 if (Instruction *I = dyn_cast<Instruction>(V)) { 7059 // Don't attempt to analyze instructions in blocks that aren't 7060 // reachable. Such instructions don't matter, and they aren't required 7061 // to obey basic rules for definitions dominating uses which this 7062 // analysis depends on. 7063 if (!DT.isReachableFromEntry(I->getParent())) 7064 return getUnknown(UndefValue::get(V->getType())); 7065 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7066 return getConstant(CI); 7067 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7068 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7069 else if (!isa<ConstantExpr>(V)) 7070 return getUnknown(V); 7071 7072 Operator *U = cast<Operator>(V); 7073 if (auto BO = MatchBinaryOp(U, DT)) { 7074 switch (BO->Opcode) { 7075 case Instruction::Add: { 7076 // The simple thing to do would be to just call getSCEV on both operands 7077 // and call getAddExpr with the result. However if we're looking at a 7078 // bunch of things all added together, this can be quite inefficient, 7079 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7080 // Instead, gather up all the operands and make a single getAddExpr call. 7081 // LLVM IR canonical form means we need only traverse the left operands. 7082 SmallVector<const SCEV *, 4> AddOps; 7083 do { 7084 if (BO->Op) { 7085 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7086 AddOps.push_back(OpSCEV); 7087 break; 7088 } 7089 7090 // If a NUW or NSW flag can be applied to the SCEV for this 7091 // addition, then compute the SCEV for this addition by itself 7092 // with a separate call to getAddExpr. We need to do that 7093 // instead of pushing the operands of the addition onto AddOps, 7094 // since the flags are only known to apply to this particular 7095 // addition - they may not apply to other additions that can be 7096 // formed with operands from AddOps. 7097 const SCEV *RHS = getSCEV(BO->RHS); 7098 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7099 if (Flags != SCEV::FlagAnyWrap) { 7100 const SCEV *LHS = getSCEV(BO->LHS); 7101 if (BO->Opcode == Instruction::Sub) 7102 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7103 else 7104 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7105 break; 7106 } 7107 } 7108 7109 if (BO->Opcode == Instruction::Sub) 7110 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7111 else 7112 AddOps.push_back(getSCEV(BO->RHS)); 7113 7114 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7115 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7116 NewBO->Opcode != Instruction::Sub)) { 7117 AddOps.push_back(getSCEV(BO->LHS)); 7118 break; 7119 } 7120 BO = NewBO; 7121 } while (true); 7122 7123 return getAddExpr(AddOps); 7124 } 7125 7126 case Instruction::Mul: { 7127 SmallVector<const SCEV *, 4> MulOps; 7128 do { 7129 if (BO->Op) { 7130 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7131 MulOps.push_back(OpSCEV); 7132 break; 7133 } 7134 7135 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7136 if (Flags != SCEV::FlagAnyWrap) { 7137 MulOps.push_back( 7138 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7139 break; 7140 } 7141 } 7142 7143 MulOps.push_back(getSCEV(BO->RHS)); 7144 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7145 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7146 MulOps.push_back(getSCEV(BO->LHS)); 7147 break; 7148 } 7149 BO = NewBO; 7150 } while (true); 7151 7152 return getMulExpr(MulOps); 7153 } 7154 case Instruction::UDiv: 7155 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7156 case Instruction::URem: 7157 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7158 case Instruction::Sub: { 7159 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7160 if (BO->Op) 7161 Flags = getNoWrapFlagsFromUB(BO->Op); 7162 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7163 } 7164 case Instruction::And: 7165 // For an expression like x&255 that merely masks off the high bits, 7166 // use zext(trunc(x)) as the SCEV expression. 7167 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7168 if (CI->isZero()) 7169 return getSCEV(BO->RHS); 7170 if (CI->isMinusOne()) 7171 return getSCEV(BO->LHS); 7172 const APInt &A = CI->getValue(); 7173 7174 // Instcombine's ShrinkDemandedConstant may strip bits out of 7175 // constants, obscuring what would otherwise be a low-bits mask. 7176 // Use computeKnownBits to compute what ShrinkDemandedConstant 7177 // knew about to reconstruct a low-bits mask value. 7178 unsigned LZ = A.countLeadingZeros(); 7179 unsigned TZ = A.countTrailingZeros(); 7180 unsigned BitWidth = A.getBitWidth(); 7181 KnownBits Known(BitWidth); 7182 computeKnownBits(BO->LHS, Known, getDataLayout(), 7183 0, &AC, nullptr, &DT); 7184 7185 APInt EffectiveMask = 7186 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7187 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7188 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7189 const SCEV *LHS = getSCEV(BO->LHS); 7190 const SCEV *ShiftedLHS = nullptr; 7191 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7192 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7193 // For an expression like (x * 8) & 8, simplify the multiply. 7194 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7195 unsigned GCD = std::min(MulZeros, TZ); 7196 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7197 SmallVector<const SCEV*, 4> MulOps; 7198 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7199 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7200 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7201 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7202 } 7203 } 7204 if (!ShiftedLHS) 7205 ShiftedLHS = getUDivExpr(LHS, MulCount); 7206 return getMulExpr( 7207 getZeroExtendExpr( 7208 getTruncateExpr(ShiftedLHS, 7209 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7210 BO->LHS->getType()), 7211 MulCount); 7212 } 7213 } 7214 // Binary `and` is a bit-wise `umin`. 7215 if (BO->LHS->getType()->isIntegerTy(1)) 7216 return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7217 break; 7218 7219 case Instruction::Or: 7220 // If the RHS of the Or is a constant, we may have something like: 7221 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7222 // optimizations will transparently handle this case. 7223 // 7224 // In order for this transformation to be safe, the LHS must be of the 7225 // form X*(2^n) and the Or constant must be less than 2^n. 7226 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7227 const SCEV *LHS = getSCEV(BO->LHS); 7228 const APInt &CIVal = CI->getValue(); 7229 if (GetMinTrailingZeros(LHS) >= 7230 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7231 // Build a plain add SCEV. 7232 return getAddExpr(LHS, getSCEV(CI), 7233 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7234 } 7235 } 7236 // Binary `or` is a bit-wise `umax`. 7237 if (BO->LHS->getType()->isIntegerTy(1)) 7238 return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7239 break; 7240 7241 case Instruction::Xor: 7242 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7243 // If the RHS of xor is -1, then this is a not operation. 7244 if (CI->isMinusOne()) 7245 return getNotSCEV(getSCEV(BO->LHS)); 7246 7247 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7248 // This is a variant of the check for xor with -1, and it handles 7249 // the case where instcombine has trimmed non-demanded bits out 7250 // of an xor with -1. 7251 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7252 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7253 if (LBO->getOpcode() == Instruction::And && 7254 LCI->getValue() == CI->getValue()) 7255 if (const SCEVZeroExtendExpr *Z = 7256 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7257 Type *UTy = BO->LHS->getType(); 7258 const SCEV *Z0 = Z->getOperand(); 7259 Type *Z0Ty = Z0->getType(); 7260 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7261 7262 // If C is a low-bits mask, the zero extend is serving to 7263 // mask off the high bits. Complement the operand and 7264 // re-apply the zext. 7265 if (CI->getValue().isMask(Z0TySize)) 7266 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7267 7268 // If C is a single bit, it may be in the sign-bit position 7269 // before the zero-extend. In this case, represent the xor 7270 // using an add, which is equivalent, and re-apply the zext. 7271 APInt Trunc = CI->getValue().trunc(Z0TySize); 7272 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7273 Trunc.isSignMask()) 7274 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7275 UTy); 7276 } 7277 } 7278 break; 7279 7280 case Instruction::Shl: 7281 // Turn shift left of a constant amount into a multiply. 7282 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7283 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7284 7285 // If the shift count is not less than the bitwidth, the result of 7286 // the shift is undefined. Don't try to analyze it, because the 7287 // resolution chosen here may differ from the resolution chosen in 7288 // other parts of the compiler. 7289 if (SA->getValue().uge(BitWidth)) 7290 break; 7291 7292 // We can safely preserve the nuw flag in all cases. It's also safe to 7293 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7294 // requires special handling. It can be preserved as long as we're not 7295 // left shifting by bitwidth - 1. 7296 auto Flags = SCEV::FlagAnyWrap; 7297 if (BO->Op) { 7298 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7299 if ((MulFlags & SCEV::FlagNSW) && 7300 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7301 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7302 if (MulFlags & SCEV::FlagNUW) 7303 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7304 } 7305 7306 Constant *X = ConstantInt::get( 7307 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7308 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7309 } 7310 break; 7311 7312 case Instruction::AShr: { 7313 // AShr X, C, where C is a constant. 7314 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7315 if (!CI) 7316 break; 7317 7318 Type *OuterTy = BO->LHS->getType(); 7319 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7320 // If the shift count is not less than the bitwidth, the result of 7321 // the shift is undefined. Don't try to analyze it, because the 7322 // resolution chosen here may differ from the resolution chosen in 7323 // other parts of the compiler. 7324 if (CI->getValue().uge(BitWidth)) 7325 break; 7326 7327 if (CI->isZero()) 7328 return getSCEV(BO->LHS); // shift by zero --> noop 7329 7330 uint64_t AShrAmt = CI->getZExtValue(); 7331 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7332 7333 Operator *L = dyn_cast<Operator>(BO->LHS); 7334 if (L && L->getOpcode() == Instruction::Shl) { 7335 // X = Shl A, n 7336 // Y = AShr X, m 7337 // Both n and m are constant. 7338 7339 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7340 if (L->getOperand(1) == BO->RHS) 7341 // For a two-shift sext-inreg, i.e. n = m, 7342 // use sext(trunc(x)) as the SCEV expression. 7343 return getSignExtendExpr( 7344 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7345 7346 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7347 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7348 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7349 if (ShlAmt > AShrAmt) { 7350 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7351 // expression. We already checked that ShlAmt < BitWidth, so 7352 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7353 // ShlAmt - AShrAmt < Amt. 7354 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7355 ShlAmt - AShrAmt); 7356 return getSignExtendExpr( 7357 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7358 getConstant(Mul)), OuterTy); 7359 } 7360 } 7361 } 7362 break; 7363 } 7364 } 7365 } 7366 7367 switch (U->getOpcode()) { 7368 case Instruction::Trunc: 7369 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7370 7371 case Instruction::ZExt: 7372 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7373 7374 case Instruction::SExt: 7375 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7376 // The NSW flag of a subtract does not always survive the conversion to 7377 // A + (-1)*B. By pushing sign extension onto its operands we are much 7378 // more likely to preserve NSW and allow later AddRec optimisations. 7379 // 7380 // NOTE: This is effectively duplicating this logic from getSignExtend: 7381 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7382 // but by that point the NSW information has potentially been lost. 7383 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7384 Type *Ty = U->getType(); 7385 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7386 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7387 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7388 } 7389 } 7390 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7391 7392 case Instruction::BitCast: 7393 // BitCasts are no-op casts so we just eliminate the cast. 7394 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7395 return getSCEV(U->getOperand(0)); 7396 break; 7397 7398 case Instruction::PtrToInt: { 7399 // Pointer to integer cast is straight-forward, so do model it. 7400 const SCEV *Op = getSCEV(U->getOperand(0)); 7401 Type *DstIntTy = U->getType(); 7402 // But only if effective SCEV (integer) type is wide enough to represent 7403 // all possible pointer values. 7404 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7405 if (isa<SCEVCouldNotCompute>(IntOp)) 7406 return getUnknown(V); 7407 return IntOp; 7408 } 7409 case Instruction::IntToPtr: 7410 // Just don't deal with inttoptr casts. 7411 return getUnknown(V); 7412 7413 case Instruction::SDiv: 7414 // If both operands are non-negative, this is just an udiv. 7415 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7416 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7417 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7418 break; 7419 7420 case Instruction::SRem: 7421 // If both operands are non-negative, this is just an urem. 7422 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7423 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7424 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7425 break; 7426 7427 case Instruction::GetElementPtr: 7428 return createNodeForGEP(cast<GEPOperator>(U)); 7429 7430 case Instruction::PHI: 7431 return createNodeForPHI(cast<PHINode>(U)); 7432 7433 case Instruction::Select: 7434 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7435 U->getOperand(2)); 7436 7437 case Instruction::Call: 7438 case Instruction::Invoke: 7439 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7440 return getSCEV(RV); 7441 7442 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7443 switch (II->getIntrinsicID()) { 7444 case Intrinsic::abs: 7445 return getAbsExpr( 7446 getSCEV(II->getArgOperand(0)), 7447 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7448 case Intrinsic::umax: 7449 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7450 getSCEV(II->getArgOperand(1))); 7451 case Intrinsic::umin: 7452 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7453 getSCEV(II->getArgOperand(1))); 7454 case Intrinsic::smax: 7455 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7456 getSCEV(II->getArgOperand(1))); 7457 case Intrinsic::smin: 7458 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7459 getSCEV(II->getArgOperand(1))); 7460 case Intrinsic::usub_sat: { 7461 const SCEV *X = getSCEV(II->getArgOperand(0)); 7462 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7463 const SCEV *ClampedY = getUMinExpr(X, Y); 7464 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7465 } 7466 case Intrinsic::uadd_sat: { 7467 const SCEV *X = getSCEV(II->getArgOperand(0)); 7468 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7469 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7470 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7471 } 7472 case Intrinsic::start_loop_iterations: 7473 // A start_loop_iterations is just equivalent to the first operand for 7474 // SCEV purposes. 7475 return getSCEV(II->getArgOperand(0)); 7476 default: 7477 break; 7478 } 7479 } 7480 break; 7481 } 7482 7483 return getUnknown(V); 7484 } 7485 7486 //===----------------------------------------------------------------------===// 7487 // Iteration Count Computation Code 7488 // 7489 7490 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7491 bool Extend) { 7492 if (isa<SCEVCouldNotCompute>(ExitCount)) 7493 return getCouldNotCompute(); 7494 7495 auto *ExitCountType = ExitCount->getType(); 7496 assert(ExitCountType->isIntegerTy()); 7497 7498 if (!Extend) 7499 return getAddExpr(ExitCount, getOne(ExitCountType)); 7500 7501 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7502 1 + ExitCountType->getScalarSizeInBits()); 7503 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7504 getOne(WiderType)); 7505 } 7506 7507 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7508 if (!ExitCount) 7509 return 0; 7510 7511 ConstantInt *ExitConst = ExitCount->getValue(); 7512 7513 // Guard against huge trip counts. 7514 if (ExitConst->getValue().getActiveBits() > 32) 7515 return 0; 7516 7517 // In case of integer overflow, this returns 0, which is correct. 7518 return ((unsigned)ExitConst->getZExtValue()) + 1; 7519 } 7520 7521 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7522 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7523 return getConstantTripCount(ExitCount); 7524 } 7525 7526 unsigned 7527 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7528 const BasicBlock *ExitingBlock) { 7529 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7530 assert(L->isLoopExiting(ExitingBlock) && 7531 "Exiting block must actually branch out of the loop!"); 7532 const SCEVConstant *ExitCount = 7533 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7534 return getConstantTripCount(ExitCount); 7535 } 7536 7537 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7538 const auto *MaxExitCount = 7539 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7540 return getConstantTripCount(MaxExitCount); 7541 } 7542 7543 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7544 // We can't infer from Array in Irregular Loop. 7545 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7546 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7547 return getCouldNotCompute(); 7548 7549 // FIXME: To make the scene more typical, we only analysis loops that have 7550 // one exiting block and that block must be the latch. To make it easier to 7551 // capture loops that have memory access and memory access will be executed 7552 // in each iteration. 7553 const BasicBlock *LoopLatch = L->getLoopLatch(); 7554 assert(LoopLatch && "See defination of simplify form loop."); 7555 if (L->getExitingBlock() != LoopLatch) 7556 return getCouldNotCompute(); 7557 7558 const DataLayout &DL = getDataLayout(); 7559 SmallVector<const SCEV *> InferCountColl; 7560 for (auto *BB : L->getBlocks()) { 7561 // Go here, we can know that Loop is a single exiting and simplified form 7562 // loop. Make sure that infer from Memory Operation in those BBs must be 7563 // executed in loop. First step, we can make sure that max execution time 7564 // of MemAccessBB in loop represents latch max excution time. 7565 // If MemAccessBB does not dom Latch, skip. 7566 // Entry 7567 // │ 7568 // ┌─────▼─────┐ 7569 // │Loop Header◄─────┐ 7570 // └──┬──────┬─┘ │ 7571 // │ │ │ 7572 // ┌────────▼──┐ ┌─▼─────┐ │ 7573 // │MemAccessBB│ │OtherBB│ │ 7574 // └────────┬──┘ └─┬─────┘ │ 7575 // │ │ │ 7576 // ┌─▼──────▼─┐ │ 7577 // │Loop Latch├─────┘ 7578 // └────┬─────┘ 7579 // ▼ 7580 // Exit 7581 if (!DT.dominates(BB, LoopLatch)) 7582 continue; 7583 7584 for (Instruction &Inst : *BB) { 7585 // Find Memory Operation Instruction. 7586 auto *GEP = getLoadStorePointerOperand(&Inst); 7587 if (!GEP) 7588 continue; 7589 7590 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7591 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7592 if (!ElemSize) 7593 continue; 7594 7595 // Use a existing polynomial recurrence on the trip count. 7596 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7597 if (!AddRec) 7598 continue; 7599 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7600 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7601 if (!ArrBase || !Step) 7602 continue; 7603 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7604 7605 // Only handle { %array + step }, 7606 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7607 if (AddRec->getStart() != ArrBase) 7608 continue; 7609 7610 // Memory operation pattern which have gaps. 7611 // Or repeat memory opreation. 7612 // And index of GEP wraps arround. 7613 if (Step->getAPInt().getActiveBits() > 32 || 7614 Step->getAPInt().getZExtValue() != 7615 ElemSize->getAPInt().getZExtValue() || 7616 Step->isZero() || Step->getAPInt().isNegative()) 7617 continue; 7618 7619 // Only infer from stack array which has certain size. 7620 // Make sure alloca instruction is not excuted in loop. 7621 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7622 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7623 continue; 7624 7625 // Make sure only handle normal array. 7626 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7627 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7628 if (!Ty || !ArrSize || !ArrSize->isOne()) 7629 continue; 7630 7631 // FIXME: Since gep indices are silently zext to the indexing type, 7632 // we will have a narrow gep index which wraps around rather than 7633 // increasing strictly, we shoule ensure that step is increasing 7634 // strictly by the loop iteration. 7635 // Now we can infer a max execution time by MemLength/StepLength. 7636 const SCEV *MemSize = 7637 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7638 auto *MaxExeCount = 7639 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7640 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7641 continue; 7642 7643 // If the loop reaches the maximum number of executions, we can not 7644 // access bytes starting outside the statically allocated size without 7645 // being immediate UB. But it is allowed to enter loop header one more 7646 // time. 7647 auto *InferCount = dyn_cast<SCEVConstant>( 7648 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7649 // Discard the maximum number of execution times under 32bits. 7650 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7651 continue; 7652 7653 InferCountColl.push_back(InferCount); 7654 } 7655 } 7656 7657 if (InferCountColl.size() == 0) 7658 return getCouldNotCompute(); 7659 7660 return getUMinFromMismatchedTypes(InferCountColl); 7661 } 7662 7663 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7664 SmallVector<BasicBlock *, 8> ExitingBlocks; 7665 L->getExitingBlocks(ExitingBlocks); 7666 7667 Optional<unsigned> Res = None; 7668 for (auto *ExitingBB : ExitingBlocks) { 7669 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7670 if (!Res) 7671 Res = Multiple; 7672 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7673 } 7674 return Res.getValueOr(1); 7675 } 7676 7677 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7678 const SCEV *ExitCount) { 7679 if (ExitCount == getCouldNotCompute()) 7680 return 1; 7681 7682 // Get the trip count 7683 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7684 7685 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7686 if (!TC) 7687 // Attempt to factor more general cases. Returns the greatest power of 7688 // two divisor. If overflow happens, the trip count expression is still 7689 // divisible by the greatest power of 2 divisor returned. 7690 return 1U << std::min((uint32_t)31, 7691 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7692 7693 ConstantInt *Result = TC->getValue(); 7694 7695 // Guard against huge trip counts (this requires checking 7696 // for zero to handle the case where the trip count == -1 and the 7697 // addition wraps). 7698 if (!Result || Result->getValue().getActiveBits() > 32 || 7699 Result->getValue().getActiveBits() == 0) 7700 return 1; 7701 7702 return (unsigned)Result->getZExtValue(); 7703 } 7704 7705 /// Returns the largest constant divisor of the trip count of this loop as a 7706 /// normal unsigned value, if possible. This means that the actual trip count is 7707 /// always a multiple of the returned value (don't forget the trip count could 7708 /// very well be zero as well!). 7709 /// 7710 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7711 /// multiple of a constant (which is also the case if the trip count is simply 7712 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7713 /// if the trip count is very large (>= 2^32). 7714 /// 7715 /// As explained in the comments for getSmallConstantTripCount, this assumes 7716 /// that control exits the loop via ExitingBlock. 7717 unsigned 7718 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7719 const BasicBlock *ExitingBlock) { 7720 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7721 assert(L->isLoopExiting(ExitingBlock) && 7722 "Exiting block must actually branch out of the loop!"); 7723 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7724 return getSmallConstantTripMultiple(L, ExitCount); 7725 } 7726 7727 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7728 const BasicBlock *ExitingBlock, 7729 ExitCountKind Kind) { 7730 switch (Kind) { 7731 case Exact: 7732 case SymbolicMaximum: 7733 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7734 case ConstantMaximum: 7735 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7736 }; 7737 llvm_unreachable("Invalid ExitCountKind!"); 7738 } 7739 7740 const SCEV * 7741 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7742 SmallVector<const SCEVPredicate *, 4> &Preds) { 7743 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7744 } 7745 7746 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7747 ExitCountKind Kind) { 7748 switch (Kind) { 7749 case Exact: 7750 return getBackedgeTakenInfo(L).getExact(L, this); 7751 case ConstantMaximum: 7752 return getBackedgeTakenInfo(L).getConstantMax(this); 7753 case SymbolicMaximum: 7754 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7755 }; 7756 llvm_unreachable("Invalid ExitCountKind!"); 7757 } 7758 7759 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7760 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7761 } 7762 7763 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7764 static void PushLoopPHIs(const Loop *L, 7765 SmallVectorImpl<Instruction *> &Worklist, 7766 SmallPtrSetImpl<Instruction *> &Visited) { 7767 BasicBlock *Header = L->getHeader(); 7768 7769 // Push all Loop-header PHIs onto the Worklist stack. 7770 for (PHINode &PN : Header->phis()) 7771 if (Visited.insert(&PN).second) 7772 Worklist.push_back(&PN); 7773 } 7774 7775 const ScalarEvolution::BackedgeTakenInfo & 7776 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7777 auto &BTI = getBackedgeTakenInfo(L); 7778 if (BTI.hasFullInfo()) 7779 return BTI; 7780 7781 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7782 7783 if (!Pair.second) 7784 return Pair.first->second; 7785 7786 BackedgeTakenInfo Result = 7787 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7788 7789 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7790 } 7791 7792 ScalarEvolution::BackedgeTakenInfo & 7793 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7794 // Initially insert an invalid entry for this loop. If the insertion 7795 // succeeds, proceed to actually compute a backedge-taken count and 7796 // update the value. The temporary CouldNotCompute value tells SCEV 7797 // code elsewhere that it shouldn't attempt to request a new 7798 // backedge-taken count, which could result in infinite recursion. 7799 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7800 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7801 if (!Pair.second) 7802 return Pair.first->second; 7803 7804 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7805 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7806 // must be cleared in this scope. 7807 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7808 7809 // In product build, there are no usage of statistic. 7810 (void)NumTripCountsComputed; 7811 (void)NumTripCountsNotComputed; 7812 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7813 const SCEV *BEExact = Result.getExact(L, this); 7814 if (BEExact != getCouldNotCompute()) { 7815 assert(isLoopInvariant(BEExact, L) && 7816 isLoopInvariant(Result.getConstantMax(this), L) && 7817 "Computed backedge-taken count isn't loop invariant for loop!"); 7818 ++NumTripCountsComputed; 7819 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7820 isa<PHINode>(L->getHeader()->begin())) { 7821 // Only count loops that have phi nodes as not being computable. 7822 ++NumTripCountsNotComputed; 7823 } 7824 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7825 7826 // Now that we know more about the trip count for this loop, forget any 7827 // existing SCEV values for PHI nodes in this loop since they are only 7828 // conservative estimates made without the benefit of trip count 7829 // information. This invalidation is not necessary for correctness, and is 7830 // only done to produce more precise results. 7831 if (Result.hasAnyInfo()) { 7832 // Invalidate any expression using an addrec in this loop. 7833 SmallVector<const SCEV *, 8> ToForget; 7834 auto LoopUsersIt = LoopUsers.find(L); 7835 if (LoopUsersIt != LoopUsers.end()) 7836 append_range(ToForget, LoopUsersIt->second); 7837 forgetMemoizedResults(ToForget); 7838 7839 // Invalidate constant-evolved loop header phis. 7840 for (PHINode &PN : L->getHeader()->phis()) 7841 ConstantEvolutionLoopExitValue.erase(&PN); 7842 } 7843 7844 // Re-lookup the insert position, since the call to 7845 // computeBackedgeTakenCount above could result in a 7846 // recusive call to getBackedgeTakenInfo (on a different 7847 // loop), which would invalidate the iterator computed 7848 // earlier. 7849 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7850 } 7851 7852 void ScalarEvolution::forgetAllLoops() { 7853 // This method is intended to forget all info about loops. It should 7854 // invalidate caches as if the following happened: 7855 // - The trip counts of all loops have changed arbitrarily 7856 // - Every llvm::Value has been updated in place to produce a different 7857 // result. 7858 BackedgeTakenCounts.clear(); 7859 PredicatedBackedgeTakenCounts.clear(); 7860 BECountUsers.clear(); 7861 LoopPropertiesCache.clear(); 7862 ConstantEvolutionLoopExitValue.clear(); 7863 ValueExprMap.clear(); 7864 ValuesAtScopes.clear(); 7865 ValuesAtScopesUsers.clear(); 7866 LoopDispositions.clear(); 7867 BlockDispositions.clear(); 7868 UnsignedRanges.clear(); 7869 SignedRanges.clear(); 7870 ExprValueMap.clear(); 7871 HasRecMap.clear(); 7872 MinTrailingZerosCache.clear(); 7873 PredicatedSCEVRewrites.clear(); 7874 } 7875 7876 void ScalarEvolution::forgetLoop(const Loop *L) { 7877 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7878 SmallVector<Instruction *, 32> Worklist; 7879 SmallPtrSet<Instruction *, 16> Visited; 7880 SmallVector<const SCEV *, 16> ToForget; 7881 7882 // Iterate over all the loops and sub-loops to drop SCEV information. 7883 while (!LoopWorklist.empty()) { 7884 auto *CurrL = LoopWorklist.pop_back_val(); 7885 7886 // Drop any stored trip count value. 7887 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 7888 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 7889 7890 // Drop information about predicated SCEV rewrites for this loop. 7891 for (auto I = PredicatedSCEVRewrites.begin(); 7892 I != PredicatedSCEVRewrites.end();) { 7893 std::pair<const SCEV *, const Loop *> Entry = I->first; 7894 if (Entry.second == CurrL) 7895 PredicatedSCEVRewrites.erase(I++); 7896 else 7897 ++I; 7898 } 7899 7900 auto LoopUsersItr = LoopUsers.find(CurrL); 7901 if (LoopUsersItr != LoopUsers.end()) { 7902 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 7903 LoopUsersItr->second.end()); 7904 LoopUsers.erase(LoopUsersItr); 7905 } 7906 7907 // Drop information about expressions based on loop-header PHIs. 7908 PushLoopPHIs(CurrL, Worklist, Visited); 7909 7910 while (!Worklist.empty()) { 7911 Instruction *I = Worklist.pop_back_val(); 7912 7913 ValueExprMapType::iterator It = 7914 ValueExprMap.find_as(static_cast<Value *>(I)); 7915 if (It != ValueExprMap.end()) { 7916 eraseValueFromMap(It->first); 7917 ToForget.push_back(It->second); 7918 if (PHINode *PN = dyn_cast<PHINode>(I)) 7919 ConstantEvolutionLoopExitValue.erase(PN); 7920 } 7921 7922 PushDefUseChildren(I, Worklist, Visited); 7923 } 7924 7925 LoopPropertiesCache.erase(CurrL); 7926 // Forget all contained loops too, to avoid dangling entries in the 7927 // ValuesAtScopes map. 7928 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7929 } 7930 forgetMemoizedResults(ToForget); 7931 } 7932 7933 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7934 while (Loop *Parent = L->getParentLoop()) 7935 L = Parent; 7936 forgetLoop(L); 7937 } 7938 7939 void ScalarEvolution::forgetValue(Value *V) { 7940 Instruction *I = dyn_cast<Instruction>(V); 7941 if (!I) return; 7942 7943 // Drop information about expressions based on loop-header PHIs. 7944 SmallVector<Instruction *, 16> Worklist; 7945 SmallPtrSet<Instruction *, 8> Visited; 7946 SmallVector<const SCEV *, 8> ToForget; 7947 Worklist.push_back(I); 7948 Visited.insert(I); 7949 7950 while (!Worklist.empty()) { 7951 I = Worklist.pop_back_val(); 7952 ValueExprMapType::iterator It = 7953 ValueExprMap.find_as(static_cast<Value *>(I)); 7954 if (It != ValueExprMap.end()) { 7955 eraseValueFromMap(It->first); 7956 ToForget.push_back(It->second); 7957 if (PHINode *PN = dyn_cast<PHINode>(I)) 7958 ConstantEvolutionLoopExitValue.erase(PN); 7959 } 7960 7961 PushDefUseChildren(I, Worklist, Visited); 7962 } 7963 forgetMemoizedResults(ToForget); 7964 } 7965 7966 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7967 LoopDispositions.clear(); 7968 } 7969 7970 /// Get the exact loop backedge taken count considering all loop exits. A 7971 /// computable result can only be returned for loops with all exiting blocks 7972 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7973 /// is never skipped. This is a valid assumption as long as the loop exits via 7974 /// that test. For precise results, it is the caller's responsibility to specify 7975 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7976 const SCEV * 7977 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7978 SmallVector<const SCEVPredicate *, 4> *Preds) const { 7979 // If any exits were not computable, the loop is not computable. 7980 if (!isComplete() || ExitNotTaken.empty()) 7981 return SE->getCouldNotCompute(); 7982 7983 const BasicBlock *Latch = L->getLoopLatch(); 7984 // All exiting blocks we have collected must dominate the only backedge. 7985 if (!Latch) 7986 return SE->getCouldNotCompute(); 7987 7988 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7989 // count is simply a minimum out of all these calculated exit counts. 7990 SmallVector<const SCEV *, 2> Ops; 7991 for (auto &ENT : ExitNotTaken) { 7992 const SCEV *BECount = ENT.ExactNotTaken; 7993 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7994 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7995 "We should only have known counts for exiting blocks that dominate " 7996 "latch!"); 7997 7998 Ops.push_back(BECount); 7999 8000 if (Preds) 8001 for (auto *P : ENT.Predicates) 8002 Preds->push_back(P); 8003 8004 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8005 "Predicate should be always true!"); 8006 } 8007 8008 return SE->getUMinFromMismatchedTypes(Ops); 8009 } 8010 8011 /// Get the exact not taken count for this loop exit. 8012 const SCEV * 8013 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8014 ScalarEvolution *SE) const { 8015 for (auto &ENT : ExitNotTaken) 8016 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8017 return ENT.ExactNotTaken; 8018 8019 return SE->getCouldNotCompute(); 8020 } 8021 8022 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8023 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8024 for (auto &ENT : ExitNotTaken) 8025 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8026 return ENT.MaxNotTaken; 8027 8028 return SE->getCouldNotCompute(); 8029 } 8030 8031 /// getConstantMax - Get the constant max backedge taken count for the loop. 8032 const SCEV * 8033 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8034 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8035 return !ENT.hasAlwaysTruePredicate(); 8036 }; 8037 8038 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8039 return SE->getCouldNotCompute(); 8040 8041 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8042 isa<SCEVConstant>(getConstantMax())) && 8043 "No point in having a non-constant max backedge taken count!"); 8044 return getConstantMax(); 8045 } 8046 8047 const SCEV * 8048 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8049 ScalarEvolution *SE) { 8050 if (!SymbolicMax) 8051 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8052 return SymbolicMax; 8053 } 8054 8055 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8056 ScalarEvolution *SE) const { 8057 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8058 return !ENT.hasAlwaysTruePredicate(); 8059 }; 8060 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8061 } 8062 8063 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8064 : ExitLimit(E, E, false, None) { 8065 } 8066 8067 ScalarEvolution::ExitLimit::ExitLimit( 8068 const SCEV *E, const SCEV *M, bool MaxOrZero, 8069 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8070 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8071 // If we prove the max count is zero, so is the symbolic bound. This happens 8072 // in practice due to differences in a) how context sensitive we've chosen 8073 // to be and b) how we reason about bounds impied by UB. 8074 if (MaxNotTaken->isZero()) 8075 ExactNotTaken = MaxNotTaken; 8076 8077 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8078 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8079 "Exact is not allowed to be less precise than Max"); 8080 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8081 isa<SCEVConstant>(MaxNotTaken)) && 8082 "No point in having a non-constant max backedge taken count!"); 8083 for (auto *PredSet : PredSetList) 8084 for (auto *P : *PredSet) 8085 addPredicate(P); 8086 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8087 "Backedge count should be int"); 8088 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8089 "Max backedge count should be int"); 8090 } 8091 8092 ScalarEvolution::ExitLimit::ExitLimit( 8093 const SCEV *E, const SCEV *M, bool MaxOrZero, 8094 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8095 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8096 } 8097 8098 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8099 bool MaxOrZero) 8100 : ExitLimit(E, M, MaxOrZero, None) { 8101 } 8102 8103 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8104 /// computable exit into a persistent ExitNotTakenInfo array. 8105 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8106 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8107 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8108 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8109 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8110 8111 ExitNotTaken.reserve(ExitCounts.size()); 8112 std::transform( 8113 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8114 [&](const EdgeExitInfo &EEI) { 8115 BasicBlock *ExitBB = EEI.first; 8116 const ExitLimit &EL = EEI.second; 8117 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8118 EL.Predicates); 8119 }); 8120 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8121 isa<SCEVConstant>(ConstantMax)) && 8122 "No point in having a non-constant max backedge taken count!"); 8123 } 8124 8125 /// Compute the number of times the backedge of the specified loop will execute. 8126 ScalarEvolution::BackedgeTakenInfo 8127 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8128 bool AllowPredicates) { 8129 SmallVector<BasicBlock *, 8> ExitingBlocks; 8130 L->getExitingBlocks(ExitingBlocks); 8131 8132 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8133 8134 SmallVector<EdgeExitInfo, 4> ExitCounts; 8135 bool CouldComputeBECount = true; 8136 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8137 const SCEV *MustExitMaxBECount = nullptr; 8138 const SCEV *MayExitMaxBECount = nullptr; 8139 bool MustExitMaxOrZero = false; 8140 8141 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8142 // and compute maxBECount. 8143 // Do a union of all the predicates here. 8144 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8145 BasicBlock *ExitBB = ExitingBlocks[i]; 8146 8147 // We canonicalize untaken exits to br (constant), ignore them so that 8148 // proving an exit untaken doesn't negatively impact our ability to reason 8149 // about the loop as whole. 8150 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8151 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8152 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8153 if (ExitIfTrue == CI->isZero()) 8154 continue; 8155 } 8156 8157 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8158 8159 assert((AllowPredicates || EL.Predicates.empty()) && 8160 "Predicated exit limit when predicates are not allowed!"); 8161 8162 // 1. For each exit that can be computed, add an entry to ExitCounts. 8163 // CouldComputeBECount is true only if all exits can be computed. 8164 if (EL.ExactNotTaken == getCouldNotCompute()) 8165 // We couldn't compute an exact value for this exit, so 8166 // we won't be able to compute an exact value for the loop. 8167 CouldComputeBECount = false; 8168 else 8169 ExitCounts.emplace_back(ExitBB, EL); 8170 8171 // 2. Derive the loop's MaxBECount from each exit's max number of 8172 // non-exiting iterations. Partition the loop exits into two kinds: 8173 // LoopMustExits and LoopMayExits. 8174 // 8175 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8176 // is a LoopMayExit. If any computable LoopMustExit is found, then 8177 // MaxBECount is the minimum EL.MaxNotTaken of computable 8178 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8179 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8180 // computable EL.MaxNotTaken. 8181 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8182 DT.dominates(ExitBB, Latch)) { 8183 if (!MustExitMaxBECount) { 8184 MustExitMaxBECount = EL.MaxNotTaken; 8185 MustExitMaxOrZero = EL.MaxOrZero; 8186 } else { 8187 MustExitMaxBECount = 8188 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8189 } 8190 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8191 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8192 MayExitMaxBECount = EL.MaxNotTaken; 8193 else { 8194 MayExitMaxBECount = 8195 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8196 } 8197 } 8198 } 8199 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8200 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8201 // The loop backedge will be taken the maximum or zero times if there's 8202 // a single exit that must be taken the maximum or zero times. 8203 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8204 8205 // Remember which SCEVs are used in exit limits for invalidation purposes. 8206 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8207 // and MaxBECount, which must be SCEVConstant. 8208 for (const auto &Pair : ExitCounts) 8209 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8210 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8211 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8212 MaxBECount, MaxOrZero); 8213 } 8214 8215 ScalarEvolution::ExitLimit 8216 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8217 bool AllowPredicates) { 8218 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8219 // If our exiting block does not dominate the latch, then its connection with 8220 // loop's exit limit may be far from trivial. 8221 const BasicBlock *Latch = L->getLoopLatch(); 8222 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8223 return getCouldNotCompute(); 8224 8225 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8226 Instruction *Term = ExitingBlock->getTerminator(); 8227 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8228 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8229 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8230 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8231 "It should have one successor in loop and one exit block!"); 8232 // Proceed to the next level to examine the exit condition expression. 8233 return computeExitLimitFromCond( 8234 L, BI->getCondition(), ExitIfTrue, 8235 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8236 } 8237 8238 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8239 // For switch, make sure that there is a single exit from the loop. 8240 BasicBlock *Exit = nullptr; 8241 for (auto *SBB : successors(ExitingBlock)) 8242 if (!L->contains(SBB)) { 8243 if (Exit) // Multiple exit successors. 8244 return getCouldNotCompute(); 8245 Exit = SBB; 8246 } 8247 assert(Exit && "Exiting block must have at least one exit"); 8248 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8249 /*ControlsExit=*/IsOnlyExit); 8250 } 8251 8252 return getCouldNotCompute(); 8253 } 8254 8255 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8256 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8257 bool ControlsExit, bool AllowPredicates) { 8258 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8259 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8260 ControlsExit, AllowPredicates); 8261 } 8262 8263 Optional<ScalarEvolution::ExitLimit> 8264 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8265 bool ExitIfTrue, bool ControlsExit, 8266 bool AllowPredicates) { 8267 (void)this->L; 8268 (void)this->ExitIfTrue; 8269 (void)this->AllowPredicates; 8270 8271 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8272 this->AllowPredicates == AllowPredicates && 8273 "Variance in assumed invariant key components!"); 8274 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8275 if (Itr == TripCountMap.end()) 8276 return None; 8277 return Itr->second; 8278 } 8279 8280 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8281 bool ExitIfTrue, 8282 bool ControlsExit, 8283 bool AllowPredicates, 8284 const ExitLimit &EL) { 8285 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8286 this->AllowPredicates == AllowPredicates && 8287 "Variance in assumed invariant key components!"); 8288 8289 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8290 assert(InsertResult.second && "Expected successful insertion!"); 8291 (void)InsertResult; 8292 (void)ExitIfTrue; 8293 } 8294 8295 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8296 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8297 bool ControlsExit, bool AllowPredicates) { 8298 8299 if (auto MaybeEL = 8300 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8301 return *MaybeEL; 8302 8303 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8304 ControlsExit, AllowPredicates); 8305 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8306 return EL; 8307 } 8308 8309 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8310 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8311 bool ControlsExit, bool AllowPredicates) { 8312 // Handle BinOp conditions (And, Or). 8313 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8314 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8315 return *LimitFromBinOp; 8316 8317 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8318 // Proceed to the next level to examine the icmp. 8319 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8320 ExitLimit EL = 8321 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8322 if (EL.hasFullInfo() || !AllowPredicates) 8323 return EL; 8324 8325 // Try again, but use SCEV predicates this time. 8326 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8327 /*AllowPredicates=*/true); 8328 } 8329 8330 // Check for a constant condition. These are normally stripped out by 8331 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8332 // preserve the CFG and is temporarily leaving constant conditions 8333 // in place. 8334 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8335 if (ExitIfTrue == !CI->getZExtValue()) 8336 // The backedge is always taken. 8337 return getCouldNotCompute(); 8338 else 8339 // The backedge is never taken. 8340 return getZero(CI->getType()); 8341 } 8342 8343 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8344 // with a constant step, we can form an equivalent icmp predicate and figure 8345 // out how many iterations will be taken before we exit. 8346 const WithOverflowInst *WO; 8347 const APInt *C; 8348 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8349 match(WO->getRHS(), m_APInt(C))) { 8350 ConstantRange NWR = 8351 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8352 WO->getNoWrapKind()); 8353 CmpInst::Predicate Pred; 8354 APInt NewRHSC, Offset; 8355 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8356 if (!ExitIfTrue) 8357 Pred = ICmpInst::getInversePredicate(Pred); 8358 auto *LHS = getSCEV(WO->getLHS()); 8359 if (Offset != 0) 8360 LHS = getAddExpr(LHS, getConstant(Offset)); 8361 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8362 ControlsExit, AllowPredicates); 8363 if (EL.hasAnyInfo()) return EL; 8364 } 8365 8366 // If it's not an integer or pointer comparison then compute it the hard way. 8367 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8368 } 8369 8370 Optional<ScalarEvolution::ExitLimit> 8371 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8372 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8373 bool ControlsExit, bool AllowPredicates) { 8374 // Check if the controlling expression for this loop is an And or Or. 8375 Value *Op0, *Op1; 8376 bool IsAnd = false; 8377 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8378 IsAnd = true; 8379 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8380 IsAnd = false; 8381 else 8382 return None; 8383 8384 // EitherMayExit is true in these two cases: 8385 // br (and Op0 Op1), loop, exit 8386 // br (or Op0 Op1), exit, loop 8387 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8388 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8389 ControlsExit && !EitherMayExit, 8390 AllowPredicates); 8391 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8392 ControlsExit && !EitherMayExit, 8393 AllowPredicates); 8394 8395 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8396 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8397 if (isa<ConstantInt>(Op1)) 8398 return Op1 == NeutralElement ? EL0 : EL1; 8399 if (isa<ConstantInt>(Op0)) 8400 return Op0 == NeutralElement ? EL1 : EL0; 8401 8402 const SCEV *BECount = getCouldNotCompute(); 8403 const SCEV *MaxBECount = getCouldNotCompute(); 8404 if (EitherMayExit) { 8405 // Both conditions must be same for the loop to continue executing. 8406 // Choose the less conservative count. 8407 if (EL0.ExactNotTaken != getCouldNotCompute() && 8408 EL1.ExactNotTaken != getCouldNotCompute()) { 8409 BECount = getUMinFromMismatchedTypes( 8410 EL0.ExactNotTaken, EL1.ExactNotTaken, 8411 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8412 8413 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8414 // it should have been simplified to zero (see the condition (3) above) 8415 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8416 BECount->isZero()); 8417 } 8418 if (EL0.MaxNotTaken == getCouldNotCompute()) 8419 MaxBECount = EL1.MaxNotTaken; 8420 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8421 MaxBECount = EL0.MaxNotTaken; 8422 else 8423 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8424 } else { 8425 // Both conditions must be same at the same time for the loop to exit. 8426 // For now, be conservative. 8427 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8428 BECount = EL0.ExactNotTaken; 8429 } 8430 8431 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8432 // to be more aggressive when computing BECount than when computing 8433 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8434 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8435 // to not. 8436 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8437 !isa<SCEVCouldNotCompute>(BECount)) 8438 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8439 8440 return ExitLimit(BECount, MaxBECount, false, 8441 { &EL0.Predicates, &EL1.Predicates }); 8442 } 8443 8444 ScalarEvolution::ExitLimit 8445 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8446 ICmpInst *ExitCond, 8447 bool ExitIfTrue, 8448 bool ControlsExit, 8449 bool AllowPredicates) { 8450 // If the condition was exit on true, convert the condition to exit on false 8451 ICmpInst::Predicate Pred; 8452 if (!ExitIfTrue) 8453 Pred = ExitCond->getPredicate(); 8454 else 8455 Pred = ExitCond->getInversePredicate(); 8456 const ICmpInst::Predicate OriginalPred = Pred; 8457 8458 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8459 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8460 8461 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8462 AllowPredicates); 8463 if (EL.hasAnyInfo()) return EL; 8464 8465 auto *ExhaustiveCount = 8466 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8467 8468 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8469 return ExhaustiveCount; 8470 8471 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8472 ExitCond->getOperand(1), L, OriginalPred); 8473 } 8474 ScalarEvolution::ExitLimit 8475 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8476 ICmpInst::Predicate Pred, 8477 const SCEV *LHS, const SCEV *RHS, 8478 bool ControlsExit, 8479 bool AllowPredicates) { 8480 8481 // Try to evaluate any dependencies out of the loop. 8482 LHS = getSCEVAtScope(LHS, L); 8483 RHS = getSCEVAtScope(RHS, L); 8484 8485 // At this point, we would like to compute how many iterations of the 8486 // loop the predicate will return true for these inputs. 8487 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8488 // If there is a loop-invariant, force it into the RHS. 8489 std::swap(LHS, RHS); 8490 Pred = ICmpInst::getSwappedPredicate(Pred); 8491 } 8492 8493 bool ControllingFiniteLoop = 8494 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8495 // Simplify the operands before analyzing them. 8496 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8497 ControllingFiniteLoop); 8498 8499 // If we have a comparison of a chrec against a constant, try to use value 8500 // ranges to answer this query. 8501 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8502 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8503 if (AddRec->getLoop() == L) { 8504 // Form the constant range. 8505 ConstantRange CompRange = 8506 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8507 8508 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8509 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8510 } 8511 8512 // If this loop must exit based on this condition (or execute undefined 8513 // behaviour), and we can prove the test sequence produced must repeat 8514 // the same values on self-wrap of the IV, then we can infer that IV 8515 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8516 // loop. 8517 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8518 // TODO: We can peel off any functions which are invertible *in L*. Loop 8519 // invariant terms are effectively constants for our purposes here. 8520 auto *InnerLHS = LHS; 8521 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8522 InnerLHS = ZExt->getOperand(); 8523 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8524 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8525 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8526 StrideC && StrideC->getAPInt().isPowerOf2()) { 8527 auto Flags = AR->getNoWrapFlags(); 8528 Flags = setFlags(Flags, SCEV::FlagNW); 8529 SmallVector<const SCEV*> Operands{AR->operands()}; 8530 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8531 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8532 } 8533 } 8534 } 8535 8536 switch (Pred) { 8537 case ICmpInst::ICMP_NE: { // while (X != Y) 8538 // Convert to: while (X-Y != 0) 8539 if (LHS->getType()->isPointerTy()) { 8540 LHS = getLosslessPtrToIntExpr(LHS); 8541 if (isa<SCEVCouldNotCompute>(LHS)) 8542 return LHS; 8543 } 8544 if (RHS->getType()->isPointerTy()) { 8545 RHS = getLosslessPtrToIntExpr(RHS); 8546 if (isa<SCEVCouldNotCompute>(RHS)) 8547 return RHS; 8548 } 8549 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8550 AllowPredicates); 8551 if (EL.hasAnyInfo()) return EL; 8552 break; 8553 } 8554 case ICmpInst::ICMP_EQ: { // while (X == Y) 8555 // Convert to: while (X-Y == 0) 8556 if (LHS->getType()->isPointerTy()) { 8557 LHS = getLosslessPtrToIntExpr(LHS); 8558 if (isa<SCEVCouldNotCompute>(LHS)) 8559 return LHS; 8560 } 8561 if (RHS->getType()->isPointerTy()) { 8562 RHS = getLosslessPtrToIntExpr(RHS); 8563 if (isa<SCEVCouldNotCompute>(RHS)) 8564 return RHS; 8565 } 8566 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8567 if (EL.hasAnyInfo()) return EL; 8568 break; 8569 } 8570 case ICmpInst::ICMP_SLT: 8571 case ICmpInst::ICMP_ULT: { // while (X < Y) 8572 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8573 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8574 AllowPredicates); 8575 if (EL.hasAnyInfo()) return EL; 8576 break; 8577 } 8578 case ICmpInst::ICMP_SGT: 8579 case ICmpInst::ICMP_UGT: { // while (X > Y) 8580 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8581 ExitLimit EL = 8582 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8583 AllowPredicates); 8584 if (EL.hasAnyInfo()) return EL; 8585 break; 8586 } 8587 default: 8588 break; 8589 } 8590 8591 return getCouldNotCompute(); 8592 } 8593 8594 ScalarEvolution::ExitLimit 8595 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8596 SwitchInst *Switch, 8597 BasicBlock *ExitingBlock, 8598 bool ControlsExit) { 8599 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8600 8601 // Give up if the exit is the default dest of a switch. 8602 if (Switch->getDefaultDest() == ExitingBlock) 8603 return getCouldNotCompute(); 8604 8605 assert(L->contains(Switch->getDefaultDest()) && 8606 "Default case must not exit the loop!"); 8607 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8608 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8609 8610 // while (X != Y) --> while (X-Y != 0) 8611 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8612 if (EL.hasAnyInfo()) 8613 return EL; 8614 8615 return getCouldNotCompute(); 8616 } 8617 8618 static ConstantInt * 8619 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8620 ScalarEvolution &SE) { 8621 const SCEV *InVal = SE.getConstant(C); 8622 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8623 assert(isa<SCEVConstant>(Val) && 8624 "Evaluation of SCEV at constant didn't fold correctly?"); 8625 return cast<SCEVConstant>(Val)->getValue(); 8626 } 8627 8628 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8629 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8630 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8631 if (!RHS) 8632 return getCouldNotCompute(); 8633 8634 const BasicBlock *Latch = L->getLoopLatch(); 8635 if (!Latch) 8636 return getCouldNotCompute(); 8637 8638 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8639 if (!Predecessor) 8640 return getCouldNotCompute(); 8641 8642 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8643 // Return LHS in OutLHS and shift_opt in OutOpCode. 8644 auto MatchPositiveShift = 8645 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8646 8647 using namespace PatternMatch; 8648 8649 ConstantInt *ShiftAmt; 8650 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8651 OutOpCode = Instruction::LShr; 8652 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8653 OutOpCode = Instruction::AShr; 8654 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8655 OutOpCode = Instruction::Shl; 8656 else 8657 return false; 8658 8659 return ShiftAmt->getValue().isStrictlyPositive(); 8660 }; 8661 8662 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8663 // 8664 // loop: 8665 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8666 // %iv.shifted = lshr i32 %iv, <positive constant> 8667 // 8668 // Return true on a successful match. Return the corresponding PHI node (%iv 8669 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8670 auto MatchShiftRecurrence = 8671 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8672 Optional<Instruction::BinaryOps> PostShiftOpCode; 8673 8674 { 8675 Instruction::BinaryOps OpC; 8676 Value *V; 8677 8678 // If we encounter a shift instruction, "peel off" the shift operation, 8679 // and remember that we did so. Later when we inspect %iv's backedge 8680 // value, we will make sure that the backedge value uses the same 8681 // operation. 8682 // 8683 // Note: the peeled shift operation does not have to be the same 8684 // instruction as the one feeding into the PHI's backedge value. We only 8685 // really care about it being the same *kind* of shift instruction -- 8686 // that's all that is required for our later inferences to hold. 8687 if (MatchPositiveShift(LHS, V, OpC)) { 8688 PostShiftOpCode = OpC; 8689 LHS = V; 8690 } 8691 } 8692 8693 PNOut = dyn_cast<PHINode>(LHS); 8694 if (!PNOut || PNOut->getParent() != L->getHeader()) 8695 return false; 8696 8697 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8698 Value *OpLHS; 8699 8700 return 8701 // The backedge value for the PHI node must be a shift by a positive 8702 // amount 8703 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8704 8705 // of the PHI node itself 8706 OpLHS == PNOut && 8707 8708 // and the kind of shift should be match the kind of shift we peeled 8709 // off, if any. 8710 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8711 }; 8712 8713 PHINode *PN; 8714 Instruction::BinaryOps OpCode; 8715 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8716 return getCouldNotCompute(); 8717 8718 const DataLayout &DL = getDataLayout(); 8719 8720 // The key rationale for this optimization is that for some kinds of shift 8721 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8722 // within a finite number of iterations. If the condition guarding the 8723 // backedge (in the sense that the backedge is taken if the condition is true) 8724 // is false for the value the shift recurrence stabilizes to, then we know 8725 // that the backedge is taken only a finite number of times. 8726 8727 ConstantInt *StableValue = nullptr; 8728 switch (OpCode) { 8729 default: 8730 llvm_unreachable("Impossible case!"); 8731 8732 case Instruction::AShr: { 8733 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8734 // bitwidth(K) iterations. 8735 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8736 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8737 Predecessor->getTerminator(), &DT); 8738 auto *Ty = cast<IntegerType>(RHS->getType()); 8739 if (Known.isNonNegative()) 8740 StableValue = ConstantInt::get(Ty, 0); 8741 else if (Known.isNegative()) 8742 StableValue = ConstantInt::get(Ty, -1, true); 8743 else 8744 return getCouldNotCompute(); 8745 8746 break; 8747 } 8748 case Instruction::LShr: 8749 case Instruction::Shl: 8750 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8751 // stabilize to 0 in at most bitwidth(K) iterations. 8752 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8753 break; 8754 } 8755 8756 auto *Result = 8757 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8758 assert(Result->getType()->isIntegerTy(1) && 8759 "Otherwise cannot be an operand to a branch instruction"); 8760 8761 if (Result->isZeroValue()) { 8762 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8763 const SCEV *UpperBound = 8764 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8765 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8766 } 8767 8768 return getCouldNotCompute(); 8769 } 8770 8771 /// Return true if we can constant fold an instruction of the specified type, 8772 /// assuming that all operands were constants. 8773 static bool CanConstantFold(const Instruction *I) { 8774 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8775 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8776 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8777 return true; 8778 8779 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8780 if (const Function *F = CI->getCalledFunction()) 8781 return canConstantFoldCallTo(CI, F); 8782 return false; 8783 } 8784 8785 /// Determine whether this instruction can constant evolve within this loop 8786 /// assuming its operands can all constant evolve. 8787 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8788 // An instruction outside of the loop can't be derived from a loop PHI. 8789 if (!L->contains(I)) return false; 8790 8791 if (isa<PHINode>(I)) { 8792 // We don't currently keep track of the control flow needed to evaluate 8793 // PHIs, so we cannot handle PHIs inside of loops. 8794 return L->getHeader() == I->getParent(); 8795 } 8796 8797 // If we won't be able to constant fold this expression even if the operands 8798 // are constants, bail early. 8799 return CanConstantFold(I); 8800 } 8801 8802 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8803 /// recursing through each instruction operand until reaching a loop header phi. 8804 static PHINode * 8805 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8806 DenseMap<Instruction *, PHINode *> &PHIMap, 8807 unsigned Depth) { 8808 if (Depth > MaxConstantEvolvingDepth) 8809 return nullptr; 8810 8811 // Otherwise, we can evaluate this instruction if all of its operands are 8812 // constant or derived from a PHI node themselves. 8813 PHINode *PHI = nullptr; 8814 for (Value *Op : UseInst->operands()) { 8815 if (isa<Constant>(Op)) continue; 8816 8817 Instruction *OpInst = dyn_cast<Instruction>(Op); 8818 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8819 8820 PHINode *P = dyn_cast<PHINode>(OpInst); 8821 if (!P) 8822 // If this operand is already visited, reuse the prior result. 8823 // We may have P != PHI if this is the deepest point at which the 8824 // inconsistent paths meet. 8825 P = PHIMap.lookup(OpInst); 8826 if (!P) { 8827 // Recurse and memoize the results, whether a phi is found or not. 8828 // This recursive call invalidates pointers into PHIMap. 8829 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8830 PHIMap[OpInst] = P; 8831 } 8832 if (!P) 8833 return nullptr; // Not evolving from PHI 8834 if (PHI && PHI != P) 8835 return nullptr; // Evolving from multiple different PHIs. 8836 PHI = P; 8837 } 8838 // This is a expression evolving from a constant PHI! 8839 return PHI; 8840 } 8841 8842 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8843 /// in the loop that V is derived from. We allow arbitrary operations along the 8844 /// way, but the operands of an operation must either be constants or a value 8845 /// derived from a constant PHI. If this expression does not fit with these 8846 /// constraints, return null. 8847 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8848 Instruction *I = dyn_cast<Instruction>(V); 8849 if (!I || !canConstantEvolve(I, L)) return nullptr; 8850 8851 if (PHINode *PN = dyn_cast<PHINode>(I)) 8852 return PN; 8853 8854 // Record non-constant instructions contained by the loop. 8855 DenseMap<Instruction *, PHINode *> PHIMap; 8856 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8857 } 8858 8859 /// EvaluateExpression - Given an expression that passes the 8860 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8861 /// in the loop has the value PHIVal. If we can't fold this expression for some 8862 /// reason, return null. 8863 static Constant *EvaluateExpression(Value *V, const Loop *L, 8864 DenseMap<Instruction *, Constant *> &Vals, 8865 const DataLayout &DL, 8866 const TargetLibraryInfo *TLI) { 8867 // Convenient constant check, but redundant for recursive calls. 8868 if (Constant *C = dyn_cast<Constant>(V)) return C; 8869 Instruction *I = dyn_cast<Instruction>(V); 8870 if (!I) return nullptr; 8871 8872 if (Constant *C = Vals.lookup(I)) return C; 8873 8874 // An instruction inside the loop depends on a value outside the loop that we 8875 // weren't given a mapping for, or a value such as a call inside the loop. 8876 if (!canConstantEvolve(I, L)) return nullptr; 8877 8878 // An unmapped PHI can be due to a branch or another loop inside this loop, 8879 // or due to this not being the initial iteration through a loop where we 8880 // couldn't compute the evolution of this particular PHI last time. 8881 if (isa<PHINode>(I)) return nullptr; 8882 8883 std::vector<Constant*> Operands(I->getNumOperands()); 8884 8885 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8886 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8887 if (!Operand) { 8888 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8889 if (!Operands[i]) return nullptr; 8890 continue; 8891 } 8892 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8893 Vals[Operand] = C; 8894 if (!C) return nullptr; 8895 Operands[i] = C; 8896 } 8897 8898 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8899 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8900 Operands[1], DL, TLI); 8901 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8902 if (!LI->isVolatile()) 8903 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8904 } 8905 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8906 } 8907 8908 8909 // If every incoming value to PN except the one for BB is a specific Constant, 8910 // return that, else return nullptr. 8911 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8912 Constant *IncomingVal = nullptr; 8913 8914 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8915 if (PN->getIncomingBlock(i) == BB) 8916 continue; 8917 8918 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8919 if (!CurrentVal) 8920 return nullptr; 8921 8922 if (IncomingVal != CurrentVal) { 8923 if (IncomingVal) 8924 return nullptr; 8925 IncomingVal = CurrentVal; 8926 } 8927 } 8928 8929 return IncomingVal; 8930 } 8931 8932 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8933 /// in the header of its containing loop, we know the loop executes a 8934 /// constant number of times, and the PHI node is just a recurrence 8935 /// involving constants, fold it. 8936 Constant * 8937 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8938 const APInt &BEs, 8939 const Loop *L) { 8940 auto I = ConstantEvolutionLoopExitValue.find(PN); 8941 if (I != ConstantEvolutionLoopExitValue.end()) 8942 return I->second; 8943 8944 if (BEs.ugt(MaxBruteForceIterations)) 8945 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8946 8947 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8948 8949 DenseMap<Instruction *, Constant *> CurrentIterVals; 8950 BasicBlock *Header = L->getHeader(); 8951 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8952 8953 BasicBlock *Latch = L->getLoopLatch(); 8954 if (!Latch) 8955 return nullptr; 8956 8957 for (PHINode &PHI : Header->phis()) { 8958 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8959 CurrentIterVals[&PHI] = StartCST; 8960 } 8961 if (!CurrentIterVals.count(PN)) 8962 return RetVal = nullptr; 8963 8964 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8965 8966 // Execute the loop symbolically to determine the exit value. 8967 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8968 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8969 8970 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8971 unsigned IterationNum = 0; 8972 const DataLayout &DL = getDataLayout(); 8973 for (; ; ++IterationNum) { 8974 if (IterationNum == NumIterations) 8975 return RetVal = CurrentIterVals[PN]; // Got exit value! 8976 8977 // Compute the value of the PHIs for the next iteration. 8978 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8979 DenseMap<Instruction *, Constant *> NextIterVals; 8980 Constant *NextPHI = 8981 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8982 if (!NextPHI) 8983 return nullptr; // Couldn't evaluate! 8984 NextIterVals[PN] = NextPHI; 8985 8986 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8987 8988 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8989 // cease to be able to evaluate one of them or if they stop evolving, 8990 // because that doesn't necessarily prevent us from computing PN. 8991 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8992 for (const auto &I : CurrentIterVals) { 8993 PHINode *PHI = dyn_cast<PHINode>(I.first); 8994 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8995 PHIsToCompute.emplace_back(PHI, I.second); 8996 } 8997 // We use two distinct loops because EvaluateExpression may invalidate any 8998 // iterators into CurrentIterVals. 8999 for (const auto &I : PHIsToCompute) { 9000 PHINode *PHI = I.first; 9001 Constant *&NextPHI = NextIterVals[PHI]; 9002 if (!NextPHI) { // Not already computed. 9003 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9004 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9005 } 9006 if (NextPHI != I.second) 9007 StoppedEvolving = false; 9008 } 9009 9010 // If all entries in CurrentIterVals == NextIterVals then we can stop 9011 // iterating, the loop can't continue to change. 9012 if (StoppedEvolving) 9013 return RetVal = CurrentIterVals[PN]; 9014 9015 CurrentIterVals.swap(NextIterVals); 9016 } 9017 } 9018 9019 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9020 Value *Cond, 9021 bool ExitWhen) { 9022 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9023 if (!PN) return getCouldNotCompute(); 9024 9025 // If the loop is canonicalized, the PHI will have exactly two entries. 9026 // That's the only form we support here. 9027 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9028 9029 DenseMap<Instruction *, Constant *> CurrentIterVals; 9030 BasicBlock *Header = L->getHeader(); 9031 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9032 9033 BasicBlock *Latch = L->getLoopLatch(); 9034 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9035 9036 for (PHINode &PHI : Header->phis()) { 9037 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9038 CurrentIterVals[&PHI] = StartCST; 9039 } 9040 if (!CurrentIterVals.count(PN)) 9041 return getCouldNotCompute(); 9042 9043 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9044 // the loop symbolically to determine when the condition gets a value of 9045 // "ExitWhen". 9046 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9047 const DataLayout &DL = getDataLayout(); 9048 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9049 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9050 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9051 9052 // Couldn't symbolically evaluate. 9053 if (!CondVal) return getCouldNotCompute(); 9054 9055 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9056 ++NumBruteForceTripCountsComputed; 9057 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9058 } 9059 9060 // Update all the PHI nodes for the next iteration. 9061 DenseMap<Instruction *, Constant *> NextIterVals; 9062 9063 // Create a list of which PHIs we need to compute. We want to do this before 9064 // calling EvaluateExpression on them because that may invalidate iterators 9065 // into CurrentIterVals. 9066 SmallVector<PHINode *, 8> PHIsToCompute; 9067 for (const auto &I : CurrentIterVals) { 9068 PHINode *PHI = dyn_cast<PHINode>(I.first); 9069 if (!PHI || PHI->getParent() != Header) continue; 9070 PHIsToCompute.push_back(PHI); 9071 } 9072 for (PHINode *PHI : PHIsToCompute) { 9073 Constant *&NextPHI = NextIterVals[PHI]; 9074 if (NextPHI) continue; // Already computed! 9075 9076 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9077 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9078 } 9079 CurrentIterVals.swap(NextIterVals); 9080 } 9081 9082 // Too many iterations were needed to evaluate. 9083 return getCouldNotCompute(); 9084 } 9085 9086 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9087 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9088 ValuesAtScopes[V]; 9089 // Check to see if we've folded this expression at this loop before. 9090 for (auto &LS : Values) 9091 if (LS.first == L) 9092 return LS.second ? LS.second : V; 9093 9094 Values.emplace_back(L, nullptr); 9095 9096 // Otherwise compute it. 9097 const SCEV *C = computeSCEVAtScope(V, L); 9098 for (auto &LS : reverse(ValuesAtScopes[V])) 9099 if (LS.first == L) { 9100 LS.second = C; 9101 if (!isa<SCEVConstant>(C)) 9102 ValuesAtScopesUsers[C].push_back({L, V}); 9103 break; 9104 } 9105 return C; 9106 } 9107 9108 /// This builds up a Constant using the ConstantExpr interface. That way, we 9109 /// will return Constants for objects which aren't represented by a 9110 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9111 /// Returns NULL if the SCEV isn't representable as a Constant. 9112 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9113 switch (V->getSCEVType()) { 9114 case scCouldNotCompute: 9115 case scAddRecExpr: 9116 return nullptr; 9117 case scConstant: 9118 return cast<SCEVConstant>(V)->getValue(); 9119 case scUnknown: 9120 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9121 case scSignExtend: { 9122 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9123 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9124 return ConstantExpr::getSExt(CastOp, SS->getType()); 9125 return nullptr; 9126 } 9127 case scZeroExtend: { 9128 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9129 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9130 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9131 return nullptr; 9132 } 9133 case scPtrToInt: { 9134 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9135 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9136 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9137 9138 return nullptr; 9139 } 9140 case scTruncate: { 9141 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9142 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9143 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9144 return nullptr; 9145 } 9146 case scAddExpr: { 9147 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9148 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9149 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9150 unsigned AS = PTy->getAddressSpace(); 9151 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9152 C = ConstantExpr::getBitCast(C, DestPtrTy); 9153 } 9154 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9155 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9156 if (!C2) 9157 return nullptr; 9158 9159 // First pointer! 9160 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9161 unsigned AS = C2->getType()->getPointerAddressSpace(); 9162 std::swap(C, C2); 9163 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9164 // The offsets have been converted to bytes. We can add bytes to an 9165 // i8* by GEP with the byte count in the first index. 9166 C = ConstantExpr::getBitCast(C, DestPtrTy); 9167 } 9168 9169 // Don't bother trying to sum two pointers. We probably can't 9170 // statically compute a load that results from it anyway. 9171 if (C2->getType()->isPointerTy()) 9172 return nullptr; 9173 9174 if (C->getType()->isPointerTy()) { 9175 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9176 C, C2); 9177 } else { 9178 C = ConstantExpr::getAdd(C, C2); 9179 } 9180 } 9181 return C; 9182 } 9183 return nullptr; 9184 } 9185 case scMulExpr: { 9186 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9187 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9188 // Don't bother with pointers at all. 9189 if (C->getType()->isPointerTy()) 9190 return nullptr; 9191 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9192 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9193 if (!C2 || C2->getType()->isPointerTy()) 9194 return nullptr; 9195 C = ConstantExpr::getMul(C, C2); 9196 } 9197 return C; 9198 } 9199 return nullptr; 9200 } 9201 case scUDivExpr: { 9202 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9203 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9204 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9205 if (LHS->getType() == RHS->getType()) 9206 return ConstantExpr::getUDiv(LHS, RHS); 9207 return nullptr; 9208 } 9209 case scSMaxExpr: 9210 case scUMaxExpr: 9211 case scSMinExpr: 9212 case scUMinExpr: 9213 case scSequentialUMinExpr: 9214 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9215 } 9216 llvm_unreachable("Unknown SCEV kind!"); 9217 } 9218 9219 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9220 if (isa<SCEVConstant>(V)) return V; 9221 9222 // If this instruction is evolved from a constant-evolving PHI, compute the 9223 // exit value from the loop without using SCEVs. 9224 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9225 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9226 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9227 const Loop *CurrLoop = this->LI[I->getParent()]; 9228 // Looking for loop exit value. 9229 if (CurrLoop && CurrLoop->getParentLoop() == L && 9230 PN->getParent() == CurrLoop->getHeader()) { 9231 // Okay, there is no closed form solution for the PHI node. Check 9232 // to see if the loop that contains it has a known backedge-taken 9233 // count. If so, we may be able to force computation of the exit 9234 // value. 9235 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9236 // This trivial case can show up in some degenerate cases where 9237 // the incoming IR has not yet been fully simplified. 9238 if (BackedgeTakenCount->isZero()) { 9239 Value *InitValue = nullptr; 9240 bool MultipleInitValues = false; 9241 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9242 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9243 if (!InitValue) 9244 InitValue = PN->getIncomingValue(i); 9245 else if (InitValue != PN->getIncomingValue(i)) { 9246 MultipleInitValues = true; 9247 break; 9248 } 9249 } 9250 } 9251 if (!MultipleInitValues && InitValue) 9252 return getSCEV(InitValue); 9253 } 9254 // Do we have a loop invariant value flowing around the backedge 9255 // for a loop which must execute the backedge? 9256 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9257 isKnownPositive(BackedgeTakenCount) && 9258 PN->getNumIncomingValues() == 2) { 9259 9260 unsigned InLoopPred = 9261 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9262 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9263 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9264 return getSCEV(BackedgeVal); 9265 } 9266 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9267 // Okay, we know how many times the containing loop executes. If 9268 // this is a constant evolving PHI node, get the final value at 9269 // the specified iteration number. 9270 Constant *RV = getConstantEvolutionLoopExitValue( 9271 PN, BTCC->getAPInt(), CurrLoop); 9272 if (RV) return getSCEV(RV); 9273 } 9274 } 9275 9276 // If there is a single-input Phi, evaluate it at our scope. If we can 9277 // prove that this replacement does not break LCSSA form, use new value. 9278 if (PN->getNumOperands() == 1) { 9279 const SCEV *Input = getSCEV(PN->getOperand(0)); 9280 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9281 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9282 // for the simplest case just support constants. 9283 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9284 } 9285 } 9286 9287 // Okay, this is an expression that we cannot symbolically evaluate 9288 // into a SCEV. Check to see if it's possible to symbolically evaluate 9289 // the arguments into constants, and if so, try to constant propagate the 9290 // result. This is particularly useful for computing loop exit values. 9291 if (CanConstantFold(I)) { 9292 SmallVector<Constant *, 4> Operands; 9293 bool MadeImprovement = false; 9294 for (Value *Op : I->operands()) { 9295 if (Constant *C = dyn_cast<Constant>(Op)) { 9296 Operands.push_back(C); 9297 continue; 9298 } 9299 9300 // If any of the operands is non-constant and if they are 9301 // non-integer and non-pointer, don't even try to analyze them 9302 // with scev techniques. 9303 if (!isSCEVable(Op->getType())) 9304 return V; 9305 9306 const SCEV *OrigV = getSCEV(Op); 9307 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9308 MadeImprovement |= OrigV != OpV; 9309 9310 Constant *C = BuildConstantFromSCEV(OpV); 9311 if (!C) return V; 9312 if (C->getType() != Op->getType()) 9313 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9314 Op->getType(), 9315 false), 9316 C, Op->getType()); 9317 Operands.push_back(C); 9318 } 9319 9320 // Check to see if getSCEVAtScope actually made an improvement. 9321 if (MadeImprovement) { 9322 Constant *C = nullptr; 9323 const DataLayout &DL = getDataLayout(); 9324 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9325 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9326 Operands[1], DL, &TLI); 9327 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9328 if (!Load->isVolatile()) 9329 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9330 DL); 9331 } else 9332 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9333 if (!C) return V; 9334 return getSCEV(C); 9335 } 9336 } 9337 } 9338 9339 // This is some other type of SCEVUnknown, just return it. 9340 return V; 9341 } 9342 9343 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9344 const auto *Comm = cast<SCEVNAryExpr>(V); 9345 // Avoid performing the look-up in the common case where the specified 9346 // expression has no loop-variant portions. 9347 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9348 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9349 if (OpAtScope != Comm->getOperand(i)) { 9350 // Okay, at least one of these operands is loop variant but might be 9351 // foldable. Build a new instance of the folded commutative expression. 9352 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9353 Comm->op_begin()+i); 9354 NewOps.push_back(OpAtScope); 9355 9356 for (++i; i != e; ++i) { 9357 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9358 NewOps.push_back(OpAtScope); 9359 } 9360 if (isa<SCEVAddExpr>(Comm)) 9361 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9362 if (isa<SCEVMulExpr>(Comm)) 9363 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9364 if (isa<SCEVMinMaxExpr>(Comm)) 9365 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9366 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9367 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9368 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9369 } 9370 } 9371 // If we got here, all operands are loop invariant. 9372 return Comm; 9373 } 9374 9375 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9376 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9377 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9378 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9379 return Div; // must be loop invariant 9380 return getUDivExpr(LHS, RHS); 9381 } 9382 9383 // If this is a loop recurrence for a loop that does not contain L, then we 9384 // are dealing with the final value computed by the loop. 9385 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9386 // First, attempt to evaluate each operand. 9387 // Avoid performing the look-up in the common case where the specified 9388 // expression has no loop-variant portions. 9389 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9390 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9391 if (OpAtScope == AddRec->getOperand(i)) 9392 continue; 9393 9394 // Okay, at least one of these operands is loop variant but might be 9395 // foldable. Build a new instance of the folded commutative expression. 9396 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9397 AddRec->op_begin()+i); 9398 NewOps.push_back(OpAtScope); 9399 for (++i; i != e; ++i) 9400 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9401 9402 const SCEV *FoldedRec = 9403 getAddRecExpr(NewOps, AddRec->getLoop(), 9404 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9405 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9406 // The addrec may be folded to a nonrecurrence, for example, if the 9407 // induction variable is multiplied by zero after constant folding. Go 9408 // ahead and return the folded value. 9409 if (!AddRec) 9410 return FoldedRec; 9411 break; 9412 } 9413 9414 // If the scope is outside the addrec's loop, evaluate it by using the 9415 // loop exit value of the addrec. 9416 if (!AddRec->getLoop()->contains(L)) { 9417 // To evaluate this recurrence, we need to know how many times the AddRec 9418 // loop iterates. Compute this now. 9419 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9420 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9421 9422 // Then, evaluate the AddRec. 9423 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9424 } 9425 9426 return AddRec; 9427 } 9428 9429 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9430 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9431 if (Op == Cast->getOperand()) 9432 return Cast; // must be loop invariant 9433 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9434 } 9435 9436 llvm_unreachable("Unknown SCEV type!"); 9437 } 9438 9439 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9440 return getSCEVAtScope(getSCEV(V), L); 9441 } 9442 9443 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9444 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9445 return stripInjectiveFunctions(ZExt->getOperand()); 9446 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9447 return stripInjectiveFunctions(SExt->getOperand()); 9448 return S; 9449 } 9450 9451 /// Finds the minimum unsigned root of the following equation: 9452 /// 9453 /// A * X = B (mod N) 9454 /// 9455 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9456 /// A and B isn't important. 9457 /// 9458 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9459 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9460 ScalarEvolution &SE) { 9461 uint32_t BW = A.getBitWidth(); 9462 assert(BW == SE.getTypeSizeInBits(B->getType())); 9463 assert(A != 0 && "A must be non-zero."); 9464 9465 // 1. D = gcd(A, N) 9466 // 9467 // The gcd of A and N may have only one prime factor: 2. The number of 9468 // trailing zeros in A is its multiplicity 9469 uint32_t Mult2 = A.countTrailingZeros(); 9470 // D = 2^Mult2 9471 9472 // 2. Check if B is divisible by D. 9473 // 9474 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9475 // is not less than multiplicity of this prime factor for D. 9476 if (SE.GetMinTrailingZeros(B) < Mult2) 9477 return SE.getCouldNotCompute(); 9478 9479 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9480 // modulo (N / D). 9481 // 9482 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9483 // (N / D) in general. The inverse itself always fits into BW bits, though, 9484 // so we immediately truncate it. 9485 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9486 APInt Mod(BW + 1, 0); 9487 Mod.setBit(BW - Mult2); // Mod = N / D 9488 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9489 9490 // 4. Compute the minimum unsigned root of the equation: 9491 // I * (B / D) mod (N / D) 9492 // To simplify the computation, we factor out the divide by D: 9493 // (I * B mod N) / D 9494 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9495 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9496 } 9497 9498 /// For a given quadratic addrec, generate coefficients of the corresponding 9499 /// quadratic equation, multiplied by a common value to ensure that they are 9500 /// integers. 9501 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9502 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9503 /// were multiplied by, and BitWidth is the bit width of the original addrec 9504 /// coefficients. 9505 /// This function returns None if the addrec coefficients are not compile- 9506 /// time constants. 9507 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9508 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9509 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9510 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9511 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9512 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9513 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9514 << *AddRec << '\n'); 9515 9516 // We currently can only solve this if the coefficients are constants. 9517 if (!LC || !MC || !NC) { 9518 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9519 return None; 9520 } 9521 9522 APInt L = LC->getAPInt(); 9523 APInt M = MC->getAPInt(); 9524 APInt N = NC->getAPInt(); 9525 assert(!N.isZero() && "This is not a quadratic addrec"); 9526 9527 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9528 unsigned NewWidth = BitWidth + 1; 9529 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9530 << BitWidth << '\n'); 9531 // The sign-extension (as opposed to a zero-extension) here matches the 9532 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9533 N = N.sext(NewWidth); 9534 M = M.sext(NewWidth); 9535 L = L.sext(NewWidth); 9536 9537 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9538 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9539 // L+M, L+2M+N, L+3M+3N, ... 9540 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9541 // 9542 // The equation Acc = 0 is then 9543 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9544 // In a quadratic form it becomes: 9545 // N n^2 + (2M-N) n + 2L = 0. 9546 9547 APInt A = N; 9548 APInt B = 2 * M - A; 9549 APInt C = 2 * L; 9550 APInt T = APInt(NewWidth, 2); 9551 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9552 << "x + " << C << ", coeff bw: " << NewWidth 9553 << ", multiplied by " << T << '\n'); 9554 return std::make_tuple(A, B, C, T, BitWidth); 9555 } 9556 9557 /// Helper function to compare optional APInts: 9558 /// (a) if X and Y both exist, return min(X, Y), 9559 /// (b) if neither X nor Y exist, return None, 9560 /// (c) if exactly one of X and Y exists, return that value. 9561 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9562 if (X.hasValue() && Y.hasValue()) { 9563 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9564 APInt XW = X->sextOrSelf(W); 9565 APInt YW = Y->sextOrSelf(W); 9566 return XW.slt(YW) ? *X : *Y; 9567 } 9568 if (!X.hasValue() && !Y.hasValue()) 9569 return None; 9570 return X.hasValue() ? *X : *Y; 9571 } 9572 9573 /// Helper function to truncate an optional APInt to a given BitWidth. 9574 /// When solving addrec-related equations, it is preferable to return a value 9575 /// that has the same bit width as the original addrec's coefficients. If the 9576 /// solution fits in the original bit width, truncate it (except for i1). 9577 /// Returning a value of a different bit width may inhibit some optimizations. 9578 /// 9579 /// In general, a solution to a quadratic equation generated from an addrec 9580 /// may require BW+1 bits, where BW is the bit width of the addrec's 9581 /// coefficients. The reason is that the coefficients of the quadratic 9582 /// equation are BW+1 bits wide (to avoid truncation when converting from 9583 /// the addrec to the equation). 9584 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9585 if (!X.hasValue()) 9586 return None; 9587 unsigned W = X->getBitWidth(); 9588 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9589 return X->trunc(BitWidth); 9590 return X; 9591 } 9592 9593 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9594 /// iterations. The values L, M, N are assumed to be signed, and they 9595 /// should all have the same bit widths. 9596 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9597 /// where BW is the bit width of the addrec's coefficients. 9598 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9599 /// returned as such, otherwise the bit width of the returned value may 9600 /// be greater than BW. 9601 /// 9602 /// This function returns None if 9603 /// (a) the addrec coefficients are not constant, or 9604 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9605 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9606 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9607 static Optional<APInt> 9608 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9609 APInt A, B, C, M; 9610 unsigned BitWidth; 9611 auto T = GetQuadraticEquation(AddRec); 9612 if (!T.hasValue()) 9613 return None; 9614 9615 std::tie(A, B, C, M, BitWidth) = *T; 9616 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9617 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9618 if (!X.hasValue()) 9619 return None; 9620 9621 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9622 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9623 if (!V->isZero()) 9624 return None; 9625 9626 return TruncIfPossible(X, BitWidth); 9627 } 9628 9629 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9630 /// iterations. The values M, N are assumed to be signed, and they 9631 /// should all have the same bit widths. 9632 /// Find the least n such that c(n) does not belong to the given range, 9633 /// while c(n-1) does. 9634 /// 9635 /// This function returns None if 9636 /// (a) the addrec coefficients are not constant, or 9637 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9638 /// bounds of the range. 9639 static Optional<APInt> 9640 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9641 const ConstantRange &Range, ScalarEvolution &SE) { 9642 assert(AddRec->getOperand(0)->isZero() && 9643 "Starting value of addrec should be 0"); 9644 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9645 << Range << ", addrec " << *AddRec << '\n'); 9646 // This case is handled in getNumIterationsInRange. Here we can assume that 9647 // we start in the range. 9648 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9649 "Addrec's initial value should be in range"); 9650 9651 APInt A, B, C, M; 9652 unsigned BitWidth; 9653 auto T = GetQuadraticEquation(AddRec); 9654 if (!T.hasValue()) 9655 return None; 9656 9657 // Be careful about the return value: there can be two reasons for not 9658 // returning an actual number. First, if no solutions to the equations 9659 // were found, and second, if the solutions don't leave the given range. 9660 // The first case means that the actual solution is "unknown", the second 9661 // means that it's known, but not valid. If the solution is unknown, we 9662 // cannot make any conclusions. 9663 // Return a pair: the optional solution and a flag indicating if the 9664 // solution was found. 9665 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9666 // Solve for signed overflow and unsigned overflow, pick the lower 9667 // solution. 9668 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9669 << Bound << " (before multiplying by " << M << ")\n"); 9670 Bound *= M; // The quadratic equation multiplier. 9671 9672 Optional<APInt> SO = None; 9673 if (BitWidth > 1) { 9674 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9675 "signed overflow\n"); 9676 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9677 } 9678 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9679 "unsigned overflow\n"); 9680 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9681 BitWidth+1); 9682 9683 auto LeavesRange = [&] (const APInt &X) { 9684 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9685 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9686 if (Range.contains(V0->getValue())) 9687 return false; 9688 // X should be at least 1, so X-1 is non-negative. 9689 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9690 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9691 if (Range.contains(V1->getValue())) 9692 return true; 9693 return false; 9694 }; 9695 9696 // If SolveQuadraticEquationWrap returns None, it means that there can 9697 // be a solution, but the function failed to find it. We cannot treat it 9698 // as "no solution". 9699 if (!SO.hasValue() || !UO.hasValue()) 9700 return { None, false }; 9701 9702 // Check the smaller value first to see if it leaves the range. 9703 // At this point, both SO and UO must have values. 9704 Optional<APInt> Min = MinOptional(SO, UO); 9705 if (LeavesRange(*Min)) 9706 return { Min, true }; 9707 Optional<APInt> Max = Min == SO ? UO : SO; 9708 if (LeavesRange(*Max)) 9709 return { Max, true }; 9710 9711 // Solutions were found, but were eliminated, hence the "true". 9712 return { None, true }; 9713 }; 9714 9715 std::tie(A, B, C, M, BitWidth) = *T; 9716 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9717 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9718 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9719 auto SL = SolveForBoundary(Lower); 9720 auto SU = SolveForBoundary(Upper); 9721 // If any of the solutions was unknown, no meaninigful conclusions can 9722 // be made. 9723 if (!SL.second || !SU.second) 9724 return None; 9725 9726 // Claim: The correct solution is not some value between Min and Max. 9727 // 9728 // Justification: Assuming that Min and Max are different values, one of 9729 // them is when the first signed overflow happens, the other is when the 9730 // first unsigned overflow happens. Crossing the range boundary is only 9731 // possible via an overflow (treating 0 as a special case of it, modeling 9732 // an overflow as crossing k*2^W for some k). 9733 // 9734 // The interesting case here is when Min was eliminated as an invalid 9735 // solution, but Max was not. The argument is that if there was another 9736 // overflow between Min and Max, it would also have been eliminated if 9737 // it was considered. 9738 // 9739 // For a given boundary, it is possible to have two overflows of the same 9740 // type (signed/unsigned) without having the other type in between: this 9741 // can happen when the vertex of the parabola is between the iterations 9742 // corresponding to the overflows. This is only possible when the two 9743 // overflows cross k*2^W for the same k. In such case, if the second one 9744 // left the range (and was the first one to do so), the first overflow 9745 // would have to enter the range, which would mean that either we had left 9746 // the range before or that we started outside of it. Both of these cases 9747 // are contradictions. 9748 // 9749 // Claim: In the case where SolveForBoundary returns None, the correct 9750 // solution is not some value between the Max for this boundary and the 9751 // Min of the other boundary. 9752 // 9753 // Justification: Assume that we had such Max_A and Min_B corresponding 9754 // to range boundaries A and B and such that Max_A < Min_B. If there was 9755 // a solution between Max_A and Min_B, it would have to be caused by an 9756 // overflow corresponding to either A or B. It cannot correspond to B, 9757 // since Min_B is the first occurrence of such an overflow. If it 9758 // corresponded to A, it would have to be either a signed or an unsigned 9759 // overflow that is larger than both eliminated overflows for A. But 9760 // between the eliminated overflows and this overflow, the values would 9761 // cover the entire value space, thus crossing the other boundary, which 9762 // is a contradiction. 9763 9764 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9765 } 9766 9767 ScalarEvolution::ExitLimit 9768 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9769 bool AllowPredicates) { 9770 9771 // This is only used for loops with a "x != y" exit test. The exit condition 9772 // is now expressed as a single expression, V = x-y. So the exit test is 9773 // effectively V != 0. We know and take advantage of the fact that this 9774 // expression only being used in a comparison by zero context. 9775 9776 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9777 // If the value is a constant 9778 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9779 // If the value is already zero, the branch will execute zero times. 9780 if (C->getValue()->isZero()) return C; 9781 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9782 } 9783 9784 const SCEVAddRecExpr *AddRec = 9785 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9786 9787 if (!AddRec && AllowPredicates) 9788 // Try to make this an AddRec using runtime tests, in the first X 9789 // iterations of this loop, where X is the SCEV expression found by the 9790 // algorithm below. 9791 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9792 9793 if (!AddRec || AddRec->getLoop() != L) 9794 return getCouldNotCompute(); 9795 9796 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9797 // the quadratic equation to solve it. 9798 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9799 // We can only use this value if the chrec ends up with an exact zero 9800 // value at this index. When solving for "X*X != 5", for example, we 9801 // should not accept a root of 2. 9802 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9803 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9804 return ExitLimit(R, R, false, Predicates); 9805 } 9806 return getCouldNotCompute(); 9807 } 9808 9809 // Otherwise we can only handle this if it is affine. 9810 if (!AddRec->isAffine()) 9811 return getCouldNotCompute(); 9812 9813 // If this is an affine expression, the execution count of this branch is 9814 // the minimum unsigned root of the following equation: 9815 // 9816 // Start + Step*N = 0 (mod 2^BW) 9817 // 9818 // equivalent to: 9819 // 9820 // Step*N = -Start (mod 2^BW) 9821 // 9822 // where BW is the common bit width of Start and Step. 9823 9824 // Get the initial value for the loop. 9825 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9826 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9827 9828 // For now we handle only constant steps. 9829 // 9830 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9831 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9832 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9833 // We have not yet seen any such cases. 9834 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9835 if (!StepC || StepC->getValue()->isZero()) 9836 return getCouldNotCompute(); 9837 9838 // For positive steps (counting up until unsigned overflow): 9839 // N = -Start/Step (as unsigned) 9840 // For negative steps (counting down to zero): 9841 // N = Start/-Step 9842 // First compute the unsigned distance from zero in the direction of Step. 9843 bool CountDown = StepC->getAPInt().isNegative(); 9844 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9845 9846 // Handle unitary steps, which cannot wraparound. 9847 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9848 // N = Distance (as unsigned) 9849 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9850 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9851 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9852 9853 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9854 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9855 // case, and see if we can improve the bound. 9856 // 9857 // Explicitly handling this here is necessary because getUnsignedRange 9858 // isn't context-sensitive; it doesn't know that we only care about the 9859 // range inside the loop. 9860 const SCEV *Zero = getZero(Distance->getType()); 9861 const SCEV *One = getOne(Distance->getType()); 9862 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9863 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9864 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9865 // as "unsigned_max(Distance + 1) - 1". 9866 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9867 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9868 } 9869 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9870 } 9871 9872 // If the condition controls loop exit (the loop exits only if the expression 9873 // is true) and the addition is no-wrap we can use unsigned divide to 9874 // compute the backedge count. In this case, the step may not divide the 9875 // distance, but we don't care because if the condition is "missed" the loop 9876 // will have undefined behavior due to wrapping. 9877 if (ControlsExit && AddRec->hasNoSelfWrap() && 9878 loopHasNoAbnormalExits(AddRec->getLoop())) { 9879 const SCEV *Exact = 9880 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9881 const SCEV *Max = getCouldNotCompute(); 9882 if (Exact != getCouldNotCompute()) { 9883 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9884 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 9885 } 9886 return ExitLimit(Exact, Max, false, Predicates); 9887 } 9888 9889 // Solve the general equation. 9890 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9891 getNegativeSCEV(Start), *this); 9892 9893 const SCEV *M = E; 9894 if (E != getCouldNotCompute()) { 9895 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 9896 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 9897 } 9898 return ExitLimit(E, M, false, Predicates); 9899 } 9900 9901 ScalarEvolution::ExitLimit 9902 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9903 // Loops that look like: while (X == 0) are very strange indeed. We don't 9904 // handle them yet except for the trivial case. This could be expanded in the 9905 // future as needed. 9906 9907 // If the value is a constant, check to see if it is known to be non-zero 9908 // already. If so, the backedge will execute zero times. 9909 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9910 if (!C->getValue()->isZero()) 9911 return getZero(C->getType()); 9912 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9913 } 9914 9915 // We could implement others, but I really doubt anyone writes loops like 9916 // this, and if they did, they would already be constant folded. 9917 return getCouldNotCompute(); 9918 } 9919 9920 std::pair<const BasicBlock *, const BasicBlock *> 9921 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9922 const { 9923 // If the block has a unique predecessor, then there is no path from the 9924 // predecessor to the block that does not go through the direct edge 9925 // from the predecessor to the block. 9926 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9927 return {Pred, BB}; 9928 9929 // A loop's header is defined to be a block that dominates the loop. 9930 // If the header has a unique predecessor outside the loop, it must be 9931 // a block that has exactly one successor that can reach the loop. 9932 if (const Loop *L = LI.getLoopFor(BB)) 9933 return {L->getLoopPredecessor(), L->getHeader()}; 9934 9935 return {nullptr, nullptr}; 9936 } 9937 9938 /// SCEV structural equivalence is usually sufficient for testing whether two 9939 /// expressions are equal, however for the purposes of looking for a condition 9940 /// guarding a loop, it can be useful to be a little more general, since a 9941 /// front-end may have replicated the controlling expression. 9942 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9943 // Quick check to see if they are the same SCEV. 9944 if (A == B) return true; 9945 9946 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9947 // Not all instructions that are "identical" compute the same value. For 9948 // instance, two distinct alloca instructions allocating the same type are 9949 // identical and do not read memory; but compute distinct values. 9950 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9951 }; 9952 9953 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9954 // two different instructions with the same value. Check for this case. 9955 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9956 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9957 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9958 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9959 if (ComputesEqualValues(AI, BI)) 9960 return true; 9961 9962 // Otherwise assume they may have a different value. 9963 return false; 9964 } 9965 9966 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9967 const SCEV *&LHS, const SCEV *&RHS, 9968 unsigned Depth, 9969 bool ControllingFiniteLoop) { 9970 bool Changed = false; 9971 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9972 // '0 != 0'. 9973 auto TrivialCase = [&](bool TriviallyTrue) { 9974 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9975 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9976 return true; 9977 }; 9978 // If we hit the max recursion limit bail out. 9979 if (Depth >= 3) 9980 return false; 9981 9982 // Canonicalize a constant to the right side. 9983 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9984 // Check for both operands constant. 9985 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9986 if (ConstantExpr::getICmp(Pred, 9987 LHSC->getValue(), 9988 RHSC->getValue())->isNullValue()) 9989 return TrivialCase(false); 9990 else 9991 return TrivialCase(true); 9992 } 9993 // Otherwise swap the operands to put the constant on the right. 9994 std::swap(LHS, RHS); 9995 Pred = ICmpInst::getSwappedPredicate(Pred); 9996 Changed = true; 9997 } 9998 9999 // If we're comparing an addrec with a value which is loop-invariant in the 10000 // addrec's loop, put the addrec on the left. Also make a dominance check, 10001 // as both operands could be addrecs loop-invariant in each other's loop. 10002 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10003 const Loop *L = AR->getLoop(); 10004 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10005 std::swap(LHS, RHS); 10006 Pred = ICmpInst::getSwappedPredicate(Pred); 10007 Changed = true; 10008 } 10009 } 10010 10011 // If there's a constant operand, canonicalize comparisons with boundary 10012 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10013 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10014 const APInt &RA = RC->getAPInt(); 10015 10016 bool SimplifiedByConstantRange = false; 10017 10018 if (!ICmpInst::isEquality(Pred)) { 10019 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10020 if (ExactCR.isFullSet()) 10021 return TrivialCase(true); 10022 else if (ExactCR.isEmptySet()) 10023 return TrivialCase(false); 10024 10025 APInt NewRHS; 10026 CmpInst::Predicate NewPred; 10027 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10028 ICmpInst::isEquality(NewPred)) { 10029 // We were able to convert an inequality to an equality. 10030 Pred = NewPred; 10031 RHS = getConstant(NewRHS); 10032 Changed = SimplifiedByConstantRange = true; 10033 } 10034 } 10035 10036 if (!SimplifiedByConstantRange) { 10037 switch (Pred) { 10038 default: 10039 break; 10040 case ICmpInst::ICMP_EQ: 10041 case ICmpInst::ICMP_NE: 10042 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10043 if (!RA) 10044 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10045 if (const SCEVMulExpr *ME = 10046 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10047 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10048 ME->getOperand(0)->isAllOnesValue()) { 10049 RHS = AE->getOperand(1); 10050 LHS = ME->getOperand(1); 10051 Changed = true; 10052 } 10053 break; 10054 10055 10056 // The "Should have been caught earlier!" messages refer to the fact 10057 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10058 // should have fired on the corresponding cases, and canonicalized the 10059 // check to trivial case. 10060 10061 case ICmpInst::ICMP_UGE: 10062 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10063 Pred = ICmpInst::ICMP_UGT; 10064 RHS = getConstant(RA - 1); 10065 Changed = true; 10066 break; 10067 case ICmpInst::ICMP_ULE: 10068 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10069 Pred = ICmpInst::ICMP_ULT; 10070 RHS = getConstant(RA + 1); 10071 Changed = true; 10072 break; 10073 case ICmpInst::ICMP_SGE: 10074 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10075 Pred = ICmpInst::ICMP_SGT; 10076 RHS = getConstant(RA - 1); 10077 Changed = true; 10078 break; 10079 case ICmpInst::ICMP_SLE: 10080 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10081 Pred = ICmpInst::ICMP_SLT; 10082 RHS = getConstant(RA + 1); 10083 Changed = true; 10084 break; 10085 } 10086 } 10087 } 10088 10089 // Check for obvious equality. 10090 if (HasSameValue(LHS, RHS)) { 10091 if (ICmpInst::isTrueWhenEqual(Pred)) 10092 return TrivialCase(true); 10093 if (ICmpInst::isFalseWhenEqual(Pred)) 10094 return TrivialCase(false); 10095 } 10096 10097 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10098 // adding or subtracting 1 from one of the operands. This can be done for 10099 // one of two reasons: 10100 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10101 // 2) The loop is finite, with this comparison controlling the exit. Since the 10102 // loop is finite, the bound cannot include the corresponding boundary 10103 // (otherwise it would loop forever). 10104 switch (Pred) { 10105 case ICmpInst::ICMP_SLE: 10106 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10107 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10108 SCEV::FlagNSW); 10109 Pred = ICmpInst::ICMP_SLT; 10110 Changed = true; 10111 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10112 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10113 SCEV::FlagNSW); 10114 Pred = ICmpInst::ICMP_SLT; 10115 Changed = true; 10116 } 10117 break; 10118 case ICmpInst::ICMP_SGE: 10119 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10120 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10121 SCEV::FlagNSW); 10122 Pred = ICmpInst::ICMP_SGT; 10123 Changed = true; 10124 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10125 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10126 SCEV::FlagNSW); 10127 Pred = ICmpInst::ICMP_SGT; 10128 Changed = true; 10129 } 10130 break; 10131 case ICmpInst::ICMP_ULE: 10132 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10133 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10134 SCEV::FlagNUW); 10135 Pred = ICmpInst::ICMP_ULT; 10136 Changed = true; 10137 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10138 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10139 Pred = ICmpInst::ICMP_ULT; 10140 Changed = true; 10141 } 10142 break; 10143 case ICmpInst::ICMP_UGE: 10144 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10145 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10146 Pred = ICmpInst::ICMP_UGT; 10147 Changed = true; 10148 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10149 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10150 SCEV::FlagNUW); 10151 Pred = ICmpInst::ICMP_UGT; 10152 Changed = true; 10153 } 10154 break; 10155 default: 10156 break; 10157 } 10158 10159 // TODO: More simplifications are possible here. 10160 10161 // Recursively simplify until we either hit a recursion limit or nothing 10162 // changes. 10163 if (Changed) 10164 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10165 ControllingFiniteLoop); 10166 10167 return Changed; 10168 } 10169 10170 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10171 return getSignedRangeMax(S).isNegative(); 10172 } 10173 10174 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10175 return getSignedRangeMin(S).isStrictlyPositive(); 10176 } 10177 10178 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10179 return !getSignedRangeMin(S).isNegative(); 10180 } 10181 10182 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10183 return !getSignedRangeMax(S).isStrictlyPositive(); 10184 } 10185 10186 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10187 return getUnsignedRangeMin(S) != 0; 10188 } 10189 10190 std::pair<const SCEV *, const SCEV *> 10191 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10192 // Compute SCEV on entry of loop L. 10193 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10194 if (Start == getCouldNotCompute()) 10195 return { Start, Start }; 10196 // Compute post increment SCEV for loop L. 10197 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10198 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10199 return { Start, PostInc }; 10200 } 10201 10202 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10203 const SCEV *LHS, const SCEV *RHS) { 10204 // First collect all loops. 10205 SmallPtrSet<const Loop *, 8> LoopsUsed; 10206 getUsedLoops(LHS, LoopsUsed); 10207 getUsedLoops(RHS, LoopsUsed); 10208 10209 if (LoopsUsed.empty()) 10210 return false; 10211 10212 // Domination relationship must be a linear order on collected loops. 10213 #ifndef NDEBUG 10214 for (auto *L1 : LoopsUsed) 10215 for (auto *L2 : LoopsUsed) 10216 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10217 DT.dominates(L2->getHeader(), L1->getHeader())) && 10218 "Domination relationship is not a linear order"); 10219 #endif 10220 10221 const Loop *MDL = 10222 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10223 [&](const Loop *L1, const Loop *L2) { 10224 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10225 }); 10226 10227 // Get init and post increment value for LHS. 10228 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10229 // if LHS contains unknown non-invariant SCEV then bail out. 10230 if (SplitLHS.first == getCouldNotCompute()) 10231 return false; 10232 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10233 // Get init and post increment value for RHS. 10234 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10235 // if RHS contains unknown non-invariant SCEV then bail out. 10236 if (SplitRHS.first == getCouldNotCompute()) 10237 return false; 10238 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10239 // It is possible that init SCEV contains an invariant load but it does 10240 // not dominate MDL and is not available at MDL loop entry, so we should 10241 // check it here. 10242 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10243 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10244 return false; 10245 10246 // It seems backedge guard check is faster than entry one so in some cases 10247 // it can speed up whole estimation by short circuit 10248 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10249 SplitRHS.second) && 10250 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10251 } 10252 10253 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10254 const SCEV *LHS, const SCEV *RHS) { 10255 // Canonicalize the inputs first. 10256 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10257 10258 if (isKnownViaInduction(Pred, LHS, RHS)) 10259 return true; 10260 10261 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10262 return true; 10263 10264 // Otherwise see what can be done with some simple reasoning. 10265 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10266 } 10267 10268 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10269 const SCEV *LHS, 10270 const SCEV *RHS) { 10271 if (isKnownPredicate(Pred, LHS, RHS)) 10272 return true; 10273 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10274 return false; 10275 return None; 10276 } 10277 10278 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10279 const SCEV *LHS, const SCEV *RHS, 10280 const Instruction *CtxI) { 10281 // TODO: Analyze guards and assumes from Context's block. 10282 return isKnownPredicate(Pred, LHS, RHS) || 10283 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10284 } 10285 10286 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10287 const SCEV *LHS, 10288 const SCEV *RHS, 10289 const Instruction *CtxI) { 10290 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10291 if (KnownWithoutContext) 10292 return KnownWithoutContext; 10293 10294 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10295 return true; 10296 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10297 ICmpInst::getInversePredicate(Pred), 10298 LHS, RHS)) 10299 return false; 10300 return None; 10301 } 10302 10303 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10304 const SCEVAddRecExpr *LHS, 10305 const SCEV *RHS) { 10306 const Loop *L = LHS->getLoop(); 10307 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10308 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10309 } 10310 10311 Optional<ScalarEvolution::MonotonicPredicateType> 10312 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10313 ICmpInst::Predicate Pred) { 10314 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10315 10316 #ifndef NDEBUG 10317 // Verify an invariant: inverting the predicate should turn a monotonically 10318 // increasing change to a monotonically decreasing one, and vice versa. 10319 if (Result) { 10320 auto ResultSwapped = 10321 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10322 10323 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10324 assert(ResultSwapped.getValue() != Result.getValue() && 10325 "monotonicity should flip as we flip the predicate"); 10326 } 10327 #endif 10328 10329 return Result; 10330 } 10331 10332 Optional<ScalarEvolution::MonotonicPredicateType> 10333 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10334 ICmpInst::Predicate Pred) { 10335 // A zero step value for LHS means the induction variable is essentially a 10336 // loop invariant value. We don't really depend on the predicate actually 10337 // flipping from false to true (for increasing predicates, and the other way 10338 // around for decreasing predicates), all we care about is that *if* the 10339 // predicate changes then it only changes from false to true. 10340 // 10341 // A zero step value in itself is not very useful, but there may be places 10342 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10343 // as general as possible. 10344 10345 // Only handle LE/LT/GE/GT predicates. 10346 if (!ICmpInst::isRelational(Pred)) 10347 return None; 10348 10349 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10350 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10351 "Should be greater or less!"); 10352 10353 // Check that AR does not wrap. 10354 if (ICmpInst::isUnsigned(Pred)) { 10355 if (!LHS->hasNoUnsignedWrap()) 10356 return None; 10357 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10358 } else { 10359 assert(ICmpInst::isSigned(Pred) && 10360 "Relational predicate is either signed or unsigned!"); 10361 if (!LHS->hasNoSignedWrap()) 10362 return None; 10363 10364 const SCEV *Step = LHS->getStepRecurrence(*this); 10365 10366 if (isKnownNonNegative(Step)) 10367 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10368 10369 if (isKnownNonPositive(Step)) 10370 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10371 10372 return None; 10373 } 10374 } 10375 10376 Optional<ScalarEvolution::LoopInvariantPredicate> 10377 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10378 const SCEV *LHS, const SCEV *RHS, 10379 const Loop *L) { 10380 10381 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10382 if (!isLoopInvariant(RHS, L)) { 10383 if (!isLoopInvariant(LHS, L)) 10384 return None; 10385 10386 std::swap(LHS, RHS); 10387 Pred = ICmpInst::getSwappedPredicate(Pred); 10388 } 10389 10390 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10391 if (!ArLHS || ArLHS->getLoop() != L) 10392 return None; 10393 10394 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10395 if (!MonotonicType) 10396 return None; 10397 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10398 // true as the loop iterates, and the backedge is control dependent on 10399 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10400 // 10401 // * if the predicate was false in the first iteration then the predicate 10402 // is never evaluated again, since the loop exits without taking the 10403 // backedge. 10404 // * if the predicate was true in the first iteration then it will 10405 // continue to be true for all future iterations since it is 10406 // monotonically increasing. 10407 // 10408 // For both the above possibilities, we can replace the loop varying 10409 // predicate with its value on the first iteration of the loop (which is 10410 // loop invariant). 10411 // 10412 // A similar reasoning applies for a monotonically decreasing predicate, by 10413 // replacing true with false and false with true in the above two bullets. 10414 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10415 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10416 10417 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10418 return None; 10419 10420 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10421 } 10422 10423 Optional<ScalarEvolution::LoopInvariantPredicate> 10424 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10425 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10426 const Instruction *CtxI, const SCEV *MaxIter) { 10427 // Try to prove the following set of facts: 10428 // - The predicate is monotonic in the iteration space. 10429 // - If the check does not fail on the 1st iteration: 10430 // - No overflow will happen during first MaxIter iterations; 10431 // - It will not fail on the MaxIter'th iteration. 10432 // If the check does fail on the 1st iteration, we leave the loop and no 10433 // other checks matter. 10434 10435 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10436 if (!isLoopInvariant(RHS, L)) { 10437 if (!isLoopInvariant(LHS, L)) 10438 return None; 10439 10440 std::swap(LHS, RHS); 10441 Pred = ICmpInst::getSwappedPredicate(Pred); 10442 } 10443 10444 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10445 if (!AR || AR->getLoop() != L) 10446 return None; 10447 10448 // The predicate must be relational (i.e. <, <=, >=, >). 10449 if (!ICmpInst::isRelational(Pred)) 10450 return None; 10451 10452 // TODO: Support steps other than +/- 1. 10453 const SCEV *Step = AR->getStepRecurrence(*this); 10454 auto *One = getOne(Step->getType()); 10455 auto *MinusOne = getNegativeSCEV(One); 10456 if (Step != One && Step != MinusOne) 10457 return None; 10458 10459 // Type mismatch here means that MaxIter is potentially larger than max 10460 // unsigned value in start type, which mean we cannot prove no wrap for the 10461 // indvar. 10462 if (AR->getType() != MaxIter->getType()) 10463 return None; 10464 10465 // Value of IV on suggested last iteration. 10466 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10467 // Does it still meet the requirement? 10468 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10469 return None; 10470 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10471 // not exceed max unsigned value of this type), this effectively proves 10472 // that there is no wrap during the iteration. To prove that there is no 10473 // signed/unsigned wrap, we need to check that 10474 // Start <= Last for step = 1 or Start >= Last for step = -1. 10475 ICmpInst::Predicate NoOverflowPred = 10476 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10477 if (Step == MinusOne) 10478 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10479 const SCEV *Start = AR->getStart(); 10480 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10481 return None; 10482 10483 // Everything is fine. 10484 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10485 } 10486 10487 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10488 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10489 if (HasSameValue(LHS, RHS)) 10490 return ICmpInst::isTrueWhenEqual(Pred); 10491 10492 // This code is split out from isKnownPredicate because it is called from 10493 // within isLoopEntryGuardedByCond. 10494 10495 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10496 const ConstantRange &RangeRHS) { 10497 return RangeLHS.icmp(Pred, RangeRHS); 10498 }; 10499 10500 // The check at the top of the function catches the case where the values are 10501 // known to be equal. 10502 if (Pred == CmpInst::ICMP_EQ) 10503 return false; 10504 10505 if (Pred == CmpInst::ICMP_NE) { 10506 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10507 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10508 return true; 10509 auto *Diff = getMinusSCEV(LHS, RHS); 10510 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10511 } 10512 10513 if (CmpInst::isSigned(Pred)) 10514 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10515 10516 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10517 } 10518 10519 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10520 const SCEV *LHS, 10521 const SCEV *RHS) { 10522 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10523 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10524 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10525 // OutC1 and OutC2. 10526 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10527 APInt &OutC1, APInt &OutC2, 10528 SCEV::NoWrapFlags ExpectedFlags) { 10529 const SCEV *XNonConstOp, *XConstOp; 10530 const SCEV *YNonConstOp, *YConstOp; 10531 SCEV::NoWrapFlags XFlagsPresent; 10532 SCEV::NoWrapFlags YFlagsPresent; 10533 10534 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10535 XConstOp = getZero(X->getType()); 10536 XNonConstOp = X; 10537 XFlagsPresent = ExpectedFlags; 10538 } 10539 if (!isa<SCEVConstant>(XConstOp) || 10540 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10541 return false; 10542 10543 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10544 YConstOp = getZero(Y->getType()); 10545 YNonConstOp = Y; 10546 YFlagsPresent = ExpectedFlags; 10547 } 10548 10549 if (!isa<SCEVConstant>(YConstOp) || 10550 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10551 return false; 10552 10553 if (YNonConstOp != XNonConstOp) 10554 return false; 10555 10556 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10557 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10558 10559 return true; 10560 }; 10561 10562 APInt C1; 10563 APInt C2; 10564 10565 switch (Pred) { 10566 default: 10567 break; 10568 10569 case ICmpInst::ICMP_SGE: 10570 std::swap(LHS, RHS); 10571 LLVM_FALLTHROUGH; 10572 case ICmpInst::ICMP_SLE: 10573 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10574 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10575 return true; 10576 10577 break; 10578 10579 case ICmpInst::ICMP_SGT: 10580 std::swap(LHS, RHS); 10581 LLVM_FALLTHROUGH; 10582 case ICmpInst::ICMP_SLT: 10583 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10584 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10585 return true; 10586 10587 break; 10588 10589 case ICmpInst::ICMP_UGE: 10590 std::swap(LHS, RHS); 10591 LLVM_FALLTHROUGH; 10592 case ICmpInst::ICMP_ULE: 10593 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10594 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10595 return true; 10596 10597 break; 10598 10599 case ICmpInst::ICMP_UGT: 10600 std::swap(LHS, RHS); 10601 LLVM_FALLTHROUGH; 10602 case ICmpInst::ICMP_ULT: 10603 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10604 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10605 return true; 10606 break; 10607 } 10608 10609 return false; 10610 } 10611 10612 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10613 const SCEV *LHS, 10614 const SCEV *RHS) { 10615 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10616 return false; 10617 10618 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10619 // the stack can result in exponential time complexity. 10620 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10621 10622 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10623 // 10624 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10625 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10626 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10627 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10628 // use isKnownPredicate later if needed. 10629 return isKnownNonNegative(RHS) && 10630 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10631 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10632 } 10633 10634 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10635 ICmpInst::Predicate Pred, 10636 const SCEV *LHS, const SCEV *RHS) { 10637 // No need to even try if we know the module has no guards. 10638 if (!HasGuards) 10639 return false; 10640 10641 return any_of(*BB, [&](const Instruction &I) { 10642 using namespace llvm::PatternMatch; 10643 10644 Value *Condition; 10645 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10646 m_Value(Condition))) && 10647 isImpliedCond(Pred, LHS, RHS, Condition, false); 10648 }); 10649 } 10650 10651 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10652 /// protected by a conditional between LHS and RHS. This is used to 10653 /// to eliminate casts. 10654 bool 10655 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10656 ICmpInst::Predicate Pred, 10657 const SCEV *LHS, const SCEV *RHS) { 10658 // Interpret a null as meaning no loop, where there is obviously no guard 10659 // (interprocedural conditions notwithstanding). 10660 if (!L) return true; 10661 10662 if (VerifyIR) 10663 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10664 "This cannot be done on broken IR!"); 10665 10666 10667 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10668 return true; 10669 10670 BasicBlock *Latch = L->getLoopLatch(); 10671 if (!Latch) 10672 return false; 10673 10674 BranchInst *LoopContinuePredicate = 10675 dyn_cast<BranchInst>(Latch->getTerminator()); 10676 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10677 isImpliedCond(Pred, LHS, RHS, 10678 LoopContinuePredicate->getCondition(), 10679 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10680 return true; 10681 10682 // We don't want more than one activation of the following loops on the stack 10683 // -- that can lead to O(n!) time complexity. 10684 if (WalkingBEDominatingConds) 10685 return false; 10686 10687 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10688 10689 // See if we can exploit a trip count to prove the predicate. 10690 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10691 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10692 if (LatchBECount != getCouldNotCompute()) { 10693 // We know that Latch branches back to the loop header exactly 10694 // LatchBECount times. This means the backdege condition at Latch is 10695 // equivalent to "{0,+,1} u< LatchBECount". 10696 Type *Ty = LatchBECount->getType(); 10697 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10698 const SCEV *LoopCounter = 10699 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10700 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10701 LatchBECount)) 10702 return true; 10703 } 10704 10705 // Check conditions due to any @llvm.assume intrinsics. 10706 for (auto &AssumeVH : AC.assumptions()) { 10707 if (!AssumeVH) 10708 continue; 10709 auto *CI = cast<CallInst>(AssumeVH); 10710 if (!DT.dominates(CI, Latch->getTerminator())) 10711 continue; 10712 10713 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10714 return true; 10715 } 10716 10717 // If the loop is not reachable from the entry block, we risk running into an 10718 // infinite loop as we walk up into the dom tree. These loops do not matter 10719 // anyway, so we just return a conservative answer when we see them. 10720 if (!DT.isReachableFromEntry(L->getHeader())) 10721 return false; 10722 10723 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10724 return true; 10725 10726 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10727 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10728 assert(DTN && "should reach the loop header before reaching the root!"); 10729 10730 BasicBlock *BB = DTN->getBlock(); 10731 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10732 return true; 10733 10734 BasicBlock *PBB = BB->getSinglePredecessor(); 10735 if (!PBB) 10736 continue; 10737 10738 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10739 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10740 continue; 10741 10742 Value *Condition = ContinuePredicate->getCondition(); 10743 10744 // If we have an edge `E` within the loop body that dominates the only 10745 // latch, the condition guarding `E` also guards the backedge. This 10746 // reasoning works only for loops with a single latch. 10747 10748 BasicBlockEdge DominatingEdge(PBB, BB); 10749 if (DominatingEdge.isSingleEdge()) { 10750 // We're constructively (and conservatively) enumerating edges within the 10751 // loop body that dominate the latch. The dominator tree better agree 10752 // with us on this: 10753 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10754 10755 if (isImpliedCond(Pred, LHS, RHS, Condition, 10756 BB != ContinuePredicate->getSuccessor(0))) 10757 return true; 10758 } 10759 } 10760 10761 return false; 10762 } 10763 10764 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10765 ICmpInst::Predicate Pred, 10766 const SCEV *LHS, 10767 const SCEV *RHS) { 10768 if (VerifyIR) 10769 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10770 "This cannot be done on broken IR!"); 10771 10772 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10773 // the facts (a >= b && a != b) separately. A typical situation is when the 10774 // non-strict comparison is known from ranges and non-equality is known from 10775 // dominating predicates. If we are proving strict comparison, we always try 10776 // to prove non-equality and non-strict comparison separately. 10777 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10778 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10779 bool ProvedNonStrictComparison = false; 10780 bool ProvedNonEquality = false; 10781 10782 auto SplitAndProve = 10783 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10784 if (!ProvedNonStrictComparison) 10785 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10786 if (!ProvedNonEquality) 10787 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10788 if (ProvedNonStrictComparison && ProvedNonEquality) 10789 return true; 10790 return false; 10791 }; 10792 10793 if (ProvingStrictComparison) { 10794 auto ProofFn = [&](ICmpInst::Predicate P) { 10795 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10796 }; 10797 if (SplitAndProve(ProofFn)) 10798 return true; 10799 } 10800 10801 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10802 auto ProveViaGuard = [&](const BasicBlock *Block) { 10803 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10804 return true; 10805 if (ProvingStrictComparison) { 10806 auto ProofFn = [&](ICmpInst::Predicate P) { 10807 return isImpliedViaGuard(Block, P, LHS, RHS); 10808 }; 10809 if (SplitAndProve(ProofFn)) 10810 return true; 10811 } 10812 return false; 10813 }; 10814 10815 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10816 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10817 const Instruction *CtxI = &BB->front(); 10818 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10819 return true; 10820 if (ProvingStrictComparison) { 10821 auto ProofFn = [&](ICmpInst::Predicate P) { 10822 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10823 }; 10824 if (SplitAndProve(ProofFn)) 10825 return true; 10826 } 10827 return false; 10828 }; 10829 10830 // Starting at the block's predecessor, climb up the predecessor chain, as long 10831 // as there are predecessors that can be found that have unique successors 10832 // leading to the original block. 10833 const Loop *ContainingLoop = LI.getLoopFor(BB); 10834 const BasicBlock *PredBB; 10835 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10836 PredBB = ContainingLoop->getLoopPredecessor(); 10837 else 10838 PredBB = BB->getSinglePredecessor(); 10839 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10840 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10841 if (ProveViaGuard(Pair.first)) 10842 return true; 10843 10844 const BranchInst *LoopEntryPredicate = 10845 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10846 if (!LoopEntryPredicate || 10847 LoopEntryPredicate->isUnconditional()) 10848 continue; 10849 10850 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10851 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10852 return true; 10853 } 10854 10855 // Check conditions due to any @llvm.assume intrinsics. 10856 for (auto &AssumeVH : AC.assumptions()) { 10857 if (!AssumeVH) 10858 continue; 10859 auto *CI = cast<CallInst>(AssumeVH); 10860 if (!DT.dominates(CI, BB)) 10861 continue; 10862 10863 if (ProveViaCond(CI->getArgOperand(0), false)) 10864 return true; 10865 } 10866 10867 return false; 10868 } 10869 10870 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10871 ICmpInst::Predicate Pred, 10872 const SCEV *LHS, 10873 const SCEV *RHS) { 10874 // Interpret a null as meaning no loop, where there is obviously no guard 10875 // (interprocedural conditions notwithstanding). 10876 if (!L) 10877 return false; 10878 10879 // Both LHS and RHS must be available at loop entry. 10880 assert(isAvailableAtLoopEntry(LHS, L) && 10881 "LHS is not available at Loop Entry"); 10882 assert(isAvailableAtLoopEntry(RHS, L) && 10883 "RHS is not available at Loop Entry"); 10884 10885 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10886 return true; 10887 10888 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10889 } 10890 10891 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10892 const SCEV *RHS, 10893 const Value *FoundCondValue, bool Inverse, 10894 const Instruction *CtxI) { 10895 // False conditions implies anything. Do not bother analyzing it further. 10896 if (FoundCondValue == 10897 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10898 return true; 10899 10900 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10901 return false; 10902 10903 auto ClearOnExit = 10904 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10905 10906 // Recursively handle And and Or conditions. 10907 const Value *Op0, *Op1; 10908 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10909 if (!Inverse) 10910 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10911 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10912 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10913 if (Inverse) 10914 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10915 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10916 } 10917 10918 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10919 if (!ICI) return false; 10920 10921 // Now that we found a conditional branch that dominates the loop or controls 10922 // the loop latch. Check to see if it is the comparison we are looking for. 10923 ICmpInst::Predicate FoundPred; 10924 if (Inverse) 10925 FoundPred = ICI->getInversePredicate(); 10926 else 10927 FoundPred = ICI->getPredicate(); 10928 10929 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10930 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10931 10932 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10933 } 10934 10935 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10936 const SCEV *RHS, 10937 ICmpInst::Predicate FoundPred, 10938 const SCEV *FoundLHS, const SCEV *FoundRHS, 10939 const Instruction *CtxI) { 10940 // Balance the types. 10941 if (getTypeSizeInBits(LHS->getType()) < 10942 getTypeSizeInBits(FoundLHS->getType())) { 10943 // For unsigned and equality predicates, try to prove that both found 10944 // operands fit into narrow unsigned range. If so, try to prove facts in 10945 // narrow types. 10946 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 10947 !FoundRHS->getType()->isPointerTy()) { 10948 auto *NarrowType = LHS->getType(); 10949 auto *WideType = FoundLHS->getType(); 10950 auto BitWidth = getTypeSizeInBits(NarrowType); 10951 const SCEV *MaxValue = getZeroExtendExpr( 10952 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10953 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 10954 MaxValue) && 10955 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 10956 MaxValue)) { 10957 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10958 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10959 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10960 TruncFoundRHS, CtxI)) 10961 return true; 10962 } 10963 } 10964 10965 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 10966 return false; 10967 if (CmpInst::isSigned(Pred)) { 10968 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10969 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10970 } else { 10971 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10972 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10973 } 10974 } else if (getTypeSizeInBits(LHS->getType()) > 10975 getTypeSizeInBits(FoundLHS->getType())) { 10976 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 10977 return false; 10978 if (CmpInst::isSigned(FoundPred)) { 10979 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10980 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10981 } else { 10982 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10983 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10984 } 10985 } 10986 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10987 FoundRHS, CtxI); 10988 } 10989 10990 bool ScalarEvolution::isImpliedCondBalancedTypes( 10991 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10992 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10993 const Instruction *CtxI) { 10994 assert(getTypeSizeInBits(LHS->getType()) == 10995 getTypeSizeInBits(FoundLHS->getType()) && 10996 "Types should be balanced!"); 10997 // Canonicalize the query to match the way instcombine will have 10998 // canonicalized the comparison. 10999 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11000 if (LHS == RHS) 11001 return CmpInst::isTrueWhenEqual(Pred); 11002 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11003 if (FoundLHS == FoundRHS) 11004 return CmpInst::isFalseWhenEqual(FoundPred); 11005 11006 // Check to see if we can make the LHS or RHS match. 11007 if (LHS == FoundRHS || RHS == FoundLHS) { 11008 if (isa<SCEVConstant>(RHS)) { 11009 std::swap(FoundLHS, FoundRHS); 11010 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11011 } else { 11012 std::swap(LHS, RHS); 11013 Pred = ICmpInst::getSwappedPredicate(Pred); 11014 } 11015 } 11016 11017 // Check whether the found predicate is the same as the desired predicate. 11018 if (FoundPred == Pred) 11019 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11020 11021 // Check whether swapping the found predicate makes it the same as the 11022 // desired predicate. 11023 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11024 // We can write the implication 11025 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11026 // using one of the following ways: 11027 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11028 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11029 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11030 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11031 // Forms 1. and 2. require swapping the operands of one condition. Don't 11032 // do this if it would break canonical constant/addrec ordering. 11033 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11034 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11035 CtxI); 11036 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11037 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11038 11039 // There's no clear preference between forms 3. and 4., try both. Avoid 11040 // forming getNotSCEV of pointer values as the resulting subtract is 11041 // not legal. 11042 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11043 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11044 FoundLHS, FoundRHS, CtxI)) 11045 return true; 11046 11047 if (!FoundLHS->getType()->isPointerTy() && 11048 !FoundRHS->getType()->isPointerTy() && 11049 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11050 getNotSCEV(FoundRHS), CtxI)) 11051 return true; 11052 11053 return false; 11054 } 11055 11056 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11057 CmpInst::Predicate P2) { 11058 assert(P1 != P2 && "Handled earlier!"); 11059 return CmpInst::isRelational(P2) && 11060 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11061 }; 11062 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11063 // Unsigned comparison is the same as signed comparison when both the 11064 // operands are non-negative or negative. 11065 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11066 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11067 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11068 // Create local copies that we can freely swap and canonicalize our 11069 // conditions to "le/lt". 11070 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11071 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11072 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11073 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11074 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11075 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11076 std::swap(CanonicalLHS, CanonicalRHS); 11077 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11078 } 11079 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11080 "Must be!"); 11081 assert((ICmpInst::isLT(CanonicalFoundPred) || 11082 ICmpInst::isLE(CanonicalFoundPred)) && 11083 "Must be!"); 11084 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11085 // Use implication: 11086 // x <u y && y >=s 0 --> x <s y. 11087 // If we can prove the left part, the right part is also proven. 11088 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11089 CanonicalRHS, CanonicalFoundLHS, 11090 CanonicalFoundRHS); 11091 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11092 // Use implication: 11093 // x <s y && y <s 0 --> x <u y. 11094 // If we can prove the left part, the right part is also proven. 11095 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11096 CanonicalRHS, CanonicalFoundLHS, 11097 CanonicalFoundRHS); 11098 } 11099 11100 // Check if we can make progress by sharpening ranges. 11101 if (FoundPred == ICmpInst::ICMP_NE && 11102 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11103 11104 const SCEVConstant *C = nullptr; 11105 const SCEV *V = nullptr; 11106 11107 if (isa<SCEVConstant>(FoundLHS)) { 11108 C = cast<SCEVConstant>(FoundLHS); 11109 V = FoundRHS; 11110 } else { 11111 C = cast<SCEVConstant>(FoundRHS); 11112 V = FoundLHS; 11113 } 11114 11115 // The guarding predicate tells us that C != V. If the known range 11116 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11117 // range we consider has to correspond to same signedness as the 11118 // predicate we're interested in folding. 11119 11120 APInt Min = ICmpInst::isSigned(Pred) ? 11121 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11122 11123 if (Min == C->getAPInt()) { 11124 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11125 // This is true even if (Min + 1) wraps around -- in case of 11126 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11127 11128 APInt SharperMin = Min + 1; 11129 11130 switch (Pred) { 11131 case ICmpInst::ICMP_SGE: 11132 case ICmpInst::ICMP_UGE: 11133 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11134 // RHS, we're done. 11135 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11136 CtxI)) 11137 return true; 11138 LLVM_FALLTHROUGH; 11139 11140 case ICmpInst::ICMP_SGT: 11141 case ICmpInst::ICMP_UGT: 11142 // We know from the range information that (V `Pred` Min || 11143 // V == Min). We know from the guarding condition that !(V 11144 // == Min). This gives us 11145 // 11146 // V `Pred` Min || V == Min && !(V == Min) 11147 // => V `Pred` Min 11148 // 11149 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11150 11151 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11152 return true; 11153 break; 11154 11155 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11156 case ICmpInst::ICMP_SLE: 11157 case ICmpInst::ICMP_ULE: 11158 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11159 LHS, V, getConstant(SharperMin), CtxI)) 11160 return true; 11161 LLVM_FALLTHROUGH; 11162 11163 case ICmpInst::ICMP_SLT: 11164 case ICmpInst::ICMP_ULT: 11165 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11166 LHS, V, getConstant(Min), CtxI)) 11167 return true; 11168 break; 11169 11170 default: 11171 // No change 11172 break; 11173 } 11174 } 11175 } 11176 11177 // Check whether the actual condition is beyond sufficient. 11178 if (FoundPred == ICmpInst::ICMP_EQ) 11179 if (ICmpInst::isTrueWhenEqual(Pred)) 11180 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11181 return true; 11182 if (Pred == ICmpInst::ICMP_NE) 11183 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11184 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11185 return true; 11186 11187 // Otherwise assume the worst. 11188 return false; 11189 } 11190 11191 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11192 const SCEV *&L, const SCEV *&R, 11193 SCEV::NoWrapFlags &Flags) { 11194 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11195 if (!AE || AE->getNumOperands() != 2) 11196 return false; 11197 11198 L = AE->getOperand(0); 11199 R = AE->getOperand(1); 11200 Flags = AE->getNoWrapFlags(); 11201 return true; 11202 } 11203 11204 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11205 const SCEV *Less) { 11206 // We avoid subtracting expressions here because this function is usually 11207 // fairly deep in the call stack (i.e. is called many times). 11208 11209 // X - X = 0. 11210 if (More == Less) 11211 return APInt(getTypeSizeInBits(More->getType()), 0); 11212 11213 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11214 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11215 const auto *MAR = cast<SCEVAddRecExpr>(More); 11216 11217 if (LAR->getLoop() != MAR->getLoop()) 11218 return None; 11219 11220 // We look at affine expressions only; not for correctness but to keep 11221 // getStepRecurrence cheap. 11222 if (!LAR->isAffine() || !MAR->isAffine()) 11223 return None; 11224 11225 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11226 return None; 11227 11228 Less = LAR->getStart(); 11229 More = MAR->getStart(); 11230 11231 // fall through 11232 } 11233 11234 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11235 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11236 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11237 return M - L; 11238 } 11239 11240 SCEV::NoWrapFlags Flags; 11241 const SCEV *LLess = nullptr, *RLess = nullptr; 11242 const SCEV *LMore = nullptr, *RMore = nullptr; 11243 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11244 // Compare (X + C1) vs X. 11245 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11246 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11247 if (RLess == More) 11248 return -(C1->getAPInt()); 11249 11250 // Compare X vs (X + C2). 11251 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11252 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11253 if (RMore == Less) 11254 return C2->getAPInt(); 11255 11256 // Compare (X + C1) vs (X + C2). 11257 if (C1 && C2 && RLess == RMore) 11258 return C2->getAPInt() - C1->getAPInt(); 11259 11260 return None; 11261 } 11262 11263 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11264 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11265 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11266 // Try to recognize the following pattern: 11267 // 11268 // FoundRHS = ... 11269 // ... 11270 // loop: 11271 // FoundLHS = {Start,+,W} 11272 // context_bb: // Basic block from the same loop 11273 // known(Pred, FoundLHS, FoundRHS) 11274 // 11275 // If some predicate is known in the context of a loop, it is also known on 11276 // each iteration of this loop, including the first iteration. Therefore, in 11277 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11278 // prove the original pred using this fact. 11279 if (!CtxI) 11280 return false; 11281 const BasicBlock *ContextBB = CtxI->getParent(); 11282 // Make sure AR varies in the context block. 11283 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11284 const Loop *L = AR->getLoop(); 11285 // Make sure that context belongs to the loop and executes on 1st iteration 11286 // (if it ever executes at all). 11287 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11288 return false; 11289 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11290 return false; 11291 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11292 } 11293 11294 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11295 const Loop *L = AR->getLoop(); 11296 // Make sure that context belongs to the loop and executes on 1st iteration 11297 // (if it ever executes at all). 11298 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11299 return false; 11300 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11301 return false; 11302 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11303 } 11304 11305 return false; 11306 } 11307 11308 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11309 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11310 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11311 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11312 return false; 11313 11314 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11315 if (!AddRecLHS) 11316 return false; 11317 11318 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11319 if (!AddRecFoundLHS) 11320 return false; 11321 11322 // We'd like to let SCEV reason about control dependencies, so we constrain 11323 // both the inequalities to be about add recurrences on the same loop. This 11324 // way we can use isLoopEntryGuardedByCond later. 11325 11326 const Loop *L = AddRecFoundLHS->getLoop(); 11327 if (L != AddRecLHS->getLoop()) 11328 return false; 11329 11330 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11331 // 11332 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11333 // ... (2) 11334 // 11335 // Informal proof for (2), assuming (1) [*]: 11336 // 11337 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11338 // 11339 // Then 11340 // 11341 // FoundLHS s< FoundRHS s< INT_MIN - C 11342 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11343 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11344 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11345 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11346 // <=> FoundLHS + C s< FoundRHS + C 11347 // 11348 // [*]: (1) can be proved by ruling out overflow. 11349 // 11350 // [**]: This can be proved by analyzing all the four possibilities: 11351 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11352 // (A s>= 0, B s>= 0). 11353 // 11354 // Note: 11355 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11356 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11357 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11358 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11359 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11360 // C)". 11361 11362 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11363 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11364 if (!LDiff || !RDiff || *LDiff != *RDiff) 11365 return false; 11366 11367 if (LDiff->isMinValue()) 11368 return true; 11369 11370 APInt FoundRHSLimit; 11371 11372 if (Pred == CmpInst::ICMP_ULT) { 11373 FoundRHSLimit = -(*RDiff); 11374 } else { 11375 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11376 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11377 } 11378 11379 // Try to prove (1) or (2), as needed. 11380 return isAvailableAtLoopEntry(FoundRHS, L) && 11381 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11382 getConstant(FoundRHSLimit)); 11383 } 11384 11385 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11386 const SCEV *LHS, const SCEV *RHS, 11387 const SCEV *FoundLHS, 11388 const SCEV *FoundRHS, unsigned Depth) { 11389 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11390 11391 auto ClearOnExit = make_scope_exit([&]() { 11392 if (LPhi) { 11393 bool Erased = PendingMerges.erase(LPhi); 11394 assert(Erased && "Failed to erase LPhi!"); 11395 (void)Erased; 11396 } 11397 if (RPhi) { 11398 bool Erased = PendingMerges.erase(RPhi); 11399 assert(Erased && "Failed to erase RPhi!"); 11400 (void)Erased; 11401 } 11402 }); 11403 11404 // Find respective Phis and check that they are not being pending. 11405 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11406 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11407 if (!PendingMerges.insert(Phi).second) 11408 return false; 11409 LPhi = Phi; 11410 } 11411 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11412 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11413 // If we detect a loop of Phi nodes being processed by this method, for 11414 // example: 11415 // 11416 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11417 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11418 // 11419 // we don't want to deal with a case that complex, so return conservative 11420 // answer false. 11421 if (!PendingMerges.insert(Phi).second) 11422 return false; 11423 RPhi = Phi; 11424 } 11425 11426 // If none of LHS, RHS is a Phi, nothing to do here. 11427 if (!LPhi && !RPhi) 11428 return false; 11429 11430 // If there is a SCEVUnknown Phi we are interested in, make it left. 11431 if (!LPhi) { 11432 std::swap(LHS, RHS); 11433 std::swap(FoundLHS, FoundRHS); 11434 std::swap(LPhi, RPhi); 11435 Pred = ICmpInst::getSwappedPredicate(Pred); 11436 } 11437 11438 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11439 const BasicBlock *LBB = LPhi->getParent(); 11440 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11441 11442 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11443 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11444 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11445 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11446 }; 11447 11448 if (RPhi && RPhi->getParent() == LBB) { 11449 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11450 // If we compare two Phis from the same block, and for each entry block 11451 // the predicate is true for incoming values from this block, then the 11452 // predicate is also true for the Phis. 11453 for (const BasicBlock *IncBB : predecessors(LBB)) { 11454 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11455 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11456 if (!ProvedEasily(L, R)) 11457 return false; 11458 } 11459 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11460 // Case two: RHS is also a Phi from the same basic block, and it is an 11461 // AddRec. It means that there is a loop which has both AddRec and Unknown 11462 // PHIs, for it we can compare incoming values of AddRec from above the loop 11463 // and latch with their respective incoming values of LPhi. 11464 // TODO: Generalize to handle loops with many inputs in a header. 11465 if (LPhi->getNumIncomingValues() != 2) return false; 11466 11467 auto *RLoop = RAR->getLoop(); 11468 auto *Predecessor = RLoop->getLoopPredecessor(); 11469 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11470 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11471 if (!ProvedEasily(L1, RAR->getStart())) 11472 return false; 11473 auto *Latch = RLoop->getLoopLatch(); 11474 assert(Latch && "Loop with AddRec with no latch?"); 11475 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11476 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11477 return false; 11478 } else { 11479 // In all other cases go over inputs of LHS and compare each of them to RHS, 11480 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11481 // At this point RHS is either a non-Phi, or it is a Phi from some block 11482 // different from LBB. 11483 for (const BasicBlock *IncBB : predecessors(LBB)) { 11484 // Check that RHS is available in this block. 11485 if (!dominates(RHS, IncBB)) 11486 return false; 11487 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11488 // Make sure L does not refer to a value from a potentially previous 11489 // iteration of a loop. 11490 if (!properlyDominates(L, IncBB)) 11491 return false; 11492 if (!ProvedEasily(L, RHS)) 11493 return false; 11494 } 11495 } 11496 return true; 11497 } 11498 11499 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11500 const SCEV *LHS, 11501 const SCEV *RHS, 11502 const SCEV *FoundLHS, 11503 const SCEV *FoundRHS) { 11504 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11505 // sure that we are dealing with same LHS. 11506 if (RHS == FoundRHS) { 11507 std::swap(LHS, RHS); 11508 std::swap(FoundLHS, FoundRHS); 11509 Pred = ICmpInst::getSwappedPredicate(Pred); 11510 } 11511 if (LHS != FoundLHS) 11512 return false; 11513 11514 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11515 if (!SUFoundRHS) 11516 return false; 11517 11518 Value *Shiftee, *ShiftValue; 11519 11520 using namespace PatternMatch; 11521 if (match(SUFoundRHS->getValue(), 11522 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11523 auto *ShifteeS = getSCEV(Shiftee); 11524 // Prove one of the following: 11525 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11526 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11527 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11528 // ---> LHS <s RHS 11529 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11530 // ---> LHS <=s RHS 11531 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11532 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11533 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11534 if (isKnownNonNegative(ShifteeS)) 11535 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11536 } 11537 11538 return false; 11539 } 11540 11541 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11542 const SCEV *LHS, const SCEV *RHS, 11543 const SCEV *FoundLHS, 11544 const SCEV *FoundRHS, 11545 const Instruction *CtxI) { 11546 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11547 return true; 11548 11549 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11550 return true; 11551 11552 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11553 return true; 11554 11555 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11556 CtxI)) 11557 return true; 11558 11559 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11560 FoundLHS, FoundRHS); 11561 } 11562 11563 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11564 template <typename MinMaxExprType> 11565 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11566 const SCEV *Candidate) { 11567 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11568 if (!MinMaxExpr) 11569 return false; 11570 11571 return is_contained(MinMaxExpr->operands(), Candidate); 11572 } 11573 11574 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11575 ICmpInst::Predicate Pred, 11576 const SCEV *LHS, const SCEV *RHS) { 11577 // If both sides are affine addrecs for the same loop, with equal 11578 // steps, and we know the recurrences don't wrap, then we only 11579 // need to check the predicate on the starting values. 11580 11581 if (!ICmpInst::isRelational(Pred)) 11582 return false; 11583 11584 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11585 if (!LAR) 11586 return false; 11587 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11588 if (!RAR) 11589 return false; 11590 if (LAR->getLoop() != RAR->getLoop()) 11591 return false; 11592 if (!LAR->isAffine() || !RAR->isAffine()) 11593 return false; 11594 11595 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11596 return false; 11597 11598 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11599 SCEV::FlagNSW : SCEV::FlagNUW; 11600 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11601 return false; 11602 11603 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11604 } 11605 11606 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11607 /// expression? 11608 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11609 ICmpInst::Predicate Pred, 11610 const SCEV *LHS, const SCEV *RHS) { 11611 switch (Pred) { 11612 default: 11613 return false; 11614 11615 case ICmpInst::ICMP_SGE: 11616 std::swap(LHS, RHS); 11617 LLVM_FALLTHROUGH; 11618 case ICmpInst::ICMP_SLE: 11619 return 11620 // min(A, ...) <= A 11621 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11622 // A <= max(A, ...) 11623 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11624 11625 case ICmpInst::ICMP_UGE: 11626 std::swap(LHS, RHS); 11627 LLVM_FALLTHROUGH; 11628 case ICmpInst::ICMP_ULE: 11629 return 11630 // min(A, ...) <= A 11631 // FIXME: what about umin_seq? 11632 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11633 // A <= max(A, ...) 11634 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11635 } 11636 11637 llvm_unreachable("covered switch fell through?!"); 11638 } 11639 11640 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11641 const SCEV *LHS, const SCEV *RHS, 11642 const SCEV *FoundLHS, 11643 const SCEV *FoundRHS, 11644 unsigned Depth) { 11645 assert(getTypeSizeInBits(LHS->getType()) == 11646 getTypeSizeInBits(RHS->getType()) && 11647 "LHS and RHS have different sizes?"); 11648 assert(getTypeSizeInBits(FoundLHS->getType()) == 11649 getTypeSizeInBits(FoundRHS->getType()) && 11650 "FoundLHS and FoundRHS have different sizes?"); 11651 // We want to avoid hurting the compile time with analysis of too big trees. 11652 if (Depth > MaxSCEVOperationsImplicationDepth) 11653 return false; 11654 11655 // We only want to work with GT comparison so far. 11656 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11657 Pred = CmpInst::getSwappedPredicate(Pred); 11658 std::swap(LHS, RHS); 11659 std::swap(FoundLHS, FoundRHS); 11660 } 11661 11662 // For unsigned, try to reduce it to corresponding signed comparison. 11663 if (Pred == ICmpInst::ICMP_UGT) 11664 // We can replace unsigned predicate with its signed counterpart if all 11665 // involved values are non-negative. 11666 // TODO: We could have better support for unsigned. 11667 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11668 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11669 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11670 // use this fact to prove that LHS and RHS are non-negative. 11671 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11672 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11673 FoundRHS) && 11674 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11675 FoundRHS)) 11676 Pred = ICmpInst::ICMP_SGT; 11677 } 11678 11679 if (Pred != ICmpInst::ICMP_SGT) 11680 return false; 11681 11682 auto GetOpFromSExt = [&](const SCEV *S) { 11683 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11684 return Ext->getOperand(); 11685 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11686 // the constant in some cases. 11687 return S; 11688 }; 11689 11690 // Acquire values from extensions. 11691 auto *OrigLHS = LHS; 11692 auto *OrigFoundLHS = FoundLHS; 11693 LHS = GetOpFromSExt(LHS); 11694 FoundLHS = GetOpFromSExt(FoundLHS); 11695 11696 // Is the SGT predicate can be proved trivially or using the found context. 11697 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11698 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11699 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11700 FoundRHS, Depth + 1); 11701 }; 11702 11703 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11704 // We want to avoid creation of any new non-constant SCEV. Since we are 11705 // going to compare the operands to RHS, we should be certain that we don't 11706 // need any size extensions for this. So let's decline all cases when the 11707 // sizes of types of LHS and RHS do not match. 11708 // TODO: Maybe try to get RHS from sext to catch more cases? 11709 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11710 return false; 11711 11712 // Should not overflow. 11713 if (!LHSAddExpr->hasNoSignedWrap()) 11714 return false; 11715 11716 auto *LL = LHSAddExpr->getOperand(0); 11717 auto *LR = LHSAddExpr->getOperand(1); 11718 auto *MinusOne = getMinusOne(RHS->getType()); 11719 11720 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11721 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11722 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11723 }; 11724 // Try to prove the following rule: 11725 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11726 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11727 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11728 return true; 11729 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11730 Value *LL, *LR; 11731 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11732 11733 using namespace llvm::PatternMatch; 11734 11735 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11736 // Rules for division. 11737 // We are going to perform some comparisons with Denominator and its 11738 // derivative expressions. In general case, creating a SCEV for it may 11739 // lead to a complex analysis of the entire graph, and in particular it 11740 // can request trip count recalculation for the same loop. This would 11741 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11742 // this, we only want to create SCEVs that are constants in this section. 11743 // So we bail if Denominator is not a constant. 11744 if (!isa<ConstantInt>(LR)) 11745 return false; 11746 11747 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11748 11749 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11750 // then a SCEV for the numerator already exists and matches with FoundLHS. 11751 auto *Numerator = getExistingSCEV(LL); 11752 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11753 return false; 11754 11755 // Make sure that the numerator matches with FoundLHS and the denominator 11756 // is positive. 11757 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11758 return false; 11759 11760 auto *DTy = Denominator->getType(); 11761 auto *FRHSTy = FoundRHS->getType(); 11762 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11763 // One of types is a pointer and another one is not. We cannot extend 11764 // them properly to a wider type, so let us just reject this case. 11765 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11766 // to avoid this check. 11767 return false; 11768 11769 // Given that: 11770 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11771 auto *WTy = getWiderType(DTy, FRHSTy); 11772 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11773 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11774 11775 // Try to prove the following rule: 11776 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11777 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11778 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11779 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11780 if (isKnownNonPositive(RHS) && 11781 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11782 return true; 11783 11784 // Try to prove the following rule: 11785 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11786 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11787 // If we divide it by Denominator > 2, then: 11788 // 1. If FoundLHS is negative, then the result is 0. 11789 // 2. If FoundLHS is non-negative, then the result is non-negative. 11790 // Anyways, the result is non-negative. 11791 auto *MinusOne = getMinusOne(WTy); 11792 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11793 if (isKnownNegative(RHS) && 11794 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11795 return true; 11796 } 11797 } 11798 11799 // If our expression contained SCEVUnknown Phis, and we split it down and now 11800 // need to prove something for them, try to prove the predicate for every 11801 // possible incoming values of those Phis. 11802 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11803 return true; 11804 11805 return false; 11806 } 11807 11808 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11809 const SCEV *LHS, const SCEV *RHS) { 11810 // zext x u<= sext x, sext x s<= zext x 11811 switch (Pred) { 11812 case ICmpInst::ICMP_SGE: 11813 std::swap(LHS, RHS); 11814 LLVM_FALLTHROUGH; 11815 case ICmpInst::ICMP_SLE: { 11816 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11817 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11818 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11819 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11820 return true; 11821 break; 11822 } 11823 case ICmpInst::ICMP_UGE: 11824 std::swap(LHS, RHS); 11825 LLVM_FALLTHROUGH; 11826 case ICmpInst::ICMP_ULE: { 11827 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11828 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11829 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11830 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11831 return true; 11832 break; 11833 } 11834 default: 11835 break; 11836 }; 11837 return false; 11838 } 11839 11840 bool 11841 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11842 const SCEV *LHS, const SCEV *RHS) { 11843 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11844 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11845 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11846 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11847 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11848 } 11849 11850 bool 11851 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11852 const SCEV *LHS, const SCEV *RHS, 11853 const SCEV *FoundLHS, 11854 const SCEV *FoundRHS) { 11855 switch (Pred) { 11856 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11857 case ICmpInst::ICMP_EQ: 11858 case ICmpInst::ICMP_NE: 11859 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11860 return true; 11861 break; 11862 case ICmpInst::ICMP_SLT: 11863 case ICmpInst::ICMP_SLE: 11864 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11865 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11866 return true; 11867 break; 11868 case ICmpInst::ICMP_SGT: 11869 case ICmpInst::ICMP_SGE: 11870 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11871 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11872 return true; 11873 break; 11874 case ICmpInst::ICMP_ULT: 11875 case ICmpInst::ICMP_ULE: 11876 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11877 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11878 return true; 11879 break; 11880 case ICmpInst::ICMP_UGT: 11881 case ICmpInst::ICMP_UGE: 11882 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11883 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11884 return true; 11885 break; 11886 } 11887 11888 // Maybe it can be proved via operations? 11889 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11890 return true; 11891 11892 return false; 11893 } 11894 11895 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11896 const SCEV *LHS, 11897 const SCEV *RHS, 11898 const SCEV *FoundLHS, 11899 const SCEV *FoundRHS) { 11900 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11901 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11902 // reduce the compile time impact of this optimization. 11903 return false; 11904 11905 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11906 if (!Addend) 11907 return false; 11908 11909 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11910 11911 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11912 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11913 ConstantRange FoundLHSRange = 11914 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11915 11916 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11917 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11918 11919 // We can also compute the range of values for `LHS` that satisfy the 11920 // consequent, "`LHS` `Pred` `RHS`": 11921 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11922 // The antecedent implies the consequent if every value of `LHS` that 11923 // satisfies the antecedent also satisfies the consequent. 11924 return LHSRange.icmp(Pred, ConstRHS); 11925 } 11926 11927 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11928 bool IsSigned) { 11929 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11930 11931 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11932 const SCEV *One = getOne(Stride->getType()); 11933 11934 if (IsSigned) { 11935 APInt MaxRHS = getSignedRangeMax(RHS); 11936 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11937 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11938 11939 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11940 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11941 } 11942 11943 APInt MaxRHS = getUnsignedRangeMax(RHS); 11944 APInt MaxValue = APInt::getMaxValue(BitWidth); 11945 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11946 11947 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11948 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11949 } 11950 11951 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11952 bool IsSigned) { 11953 11954 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11955 const SCEV *One = getOne(Stride->getType()); 11956 11957 if (IsSigned) { 11958 APInt MinRHS = getSignedRangeMin(RHS); 11959 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11960 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11961 11962 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11963 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11964 } 11965 11966 APInt MinRHS = getUnsignedRangeMin(RHS); 11967 APInt MinValue = APInt::getMinValue(BitWidth); 11968 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11969 11970 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11971 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11972 } 11973 11974 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11975 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11976 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11977 // expression fixes the case of N=0. 11978 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11979 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11980 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11981 } 11982 11983 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11984 const SCEV *Stride, 11985 const SCEV *End, 11986 unsigned BitWidth, 11987 bool IsSigned) { 11988 // The logic in this function assumes we can represent a positive stride. 11989 // If we can't, the backedge-taken count must be zero. 11990 if (IsSigned && BitWidth == 1) 11991 return getZero(Stride->getType()); 11992 11993 // This code has only been closely audited for negative strides in the 11994 // unsigned comparison case, it may be correct for signed comparison, but 11995 // that needs to be established. 11996 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11997 "Stride is expected strictly positive for signed case!"); 11998 11999 // Calculate the maximum backedge count based on the range of values 12000 // permitted by Start, End, and Stride. 12001 APInt MinStart = 12002 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12003 12004 APInt MinStride = 12005 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12006 12007 // We assume either the stride is positive, or the backedge-taken count 12008 // is zero. So force StrideForMaxBECount to be at least one. 12009 APInt One(BitWidth, 1); 12010 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12011 : APIntOps::umax(One, MinStride); 12012 12013 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12014 : APInt::getMaxValue(BitWidth); 12015 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12016 12017 // Although End can be a MAX expression we estimate MaxEnd considering only 12018 // the case End = RHS of the loop termination condition. This is safe because 12019 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12020 // taken count. 12021 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12022 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12023 12024 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12025 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12026 : APIntOps::umax(MaxEnd, MinStart); 12027 12028 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12029 getConstant(StrideForMaxBECount) /* Step */); 12030 } 12031 12032 ScalarEvolution::ExitLimit 12033 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12034 const Loop *L, bool IsSigned, 12035 bool ControlsExit, bool AllowPredicates) { 12036 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12037 12038 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12039 bool PredicatedIV = false; 12040 12041 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12042 // Can we prove this loop *must* be UB if overflow of IV occurs? 12043 // Reasoning goes as follows: 12044 // * Suppose the IV did self wrap. 12045 // * If Stride evenly divides the iteration space, then once wrap 12046 // occurs, the loop must revisit the same values. 12047 // * We know that RHS is invariant, and that none of those values 12048 // caused this exit to be taken previously. Thus, this exit is 12049 // dynamically dead. 12050 // * If this is the sole exit, then a dead exit implies the loop 12051 // must be infinite if there are no abnormal exits. 12052 // * If the loop were infinite, then it must either not be mustprogress 12053 // or have side effects. Otherwise, it must be UB. 12054 // * It can't (by assumption), be UB so we have contradicted our 12055 // premise and can conclude the IV did not in fact self-wrap. 12056 if (!isLoopInvariant(RHS, L)) 12057 return false; 12058 12059 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12060 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12061 return false; 12062 12063 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12064 return false; 12065 12066 return loopIsFiniteByAssumption(L); 12067 }; 12068 12069 if (!IV) { 12070 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12071 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12072 if (AR && AR->getLoop() == L && AR->isAffine()) { 12073 auto canProveNUW = [&]() { 12074 if (!isLoopInvariant(RHS, L)) 12075 return false; 12076 12077 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12078 // We need the sequence defined by AR to strictly increase in the 12079 // unsigned integer domain for the logic below to hold. 12080 return false; 12081 12082 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12083 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12084 // If RHS <=u Limit, then there must exist a value V in the sequence 12085 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12086 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12087 // overflow occurs. This limit also implies that a signed comparison 12088 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12089 // the high bits on both sides must be zero. 12090 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12091 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12092 Limit = Limit.zext(OuterBitWidth); 12093 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12094 }; 12095 auto Flags = AR->getNoWrapFlags(); 12096 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12097 Flags = setFlags(Flags, SCEV::FlagNUW); 12098 12099 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12100 if (AR->hasNoUnsignedWrap()) { 12101 // Emulate what getZeroExtendExpr would have done during construction 12102 // if we'd been able to infer the fact just above at that time. 12103 const SCEV *Step = AR->getStepRecurrence(*this); 12104 Type *Ty = ZExt->getType(); 12105 auto *S = getAddRecExpr( 12106 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12107 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12108 IV = dyn_cast<SCEVAddRecExpr>(S); 12109 } 12110 } 12111 } 12112 } 12113 12114 12115 if (!IV && AllowPredicates) { 12116 // Try to make this an AddRec using runtime tests, in the first X 12117 // iterations of this loop, where X is the SCEV expression found by the 12118 // algorithm below. 12119 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12120 PredicatedIV = true; 12121 } 12122 12123 // Avoid weird loops 12124 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12125 return getCouldNotCompute(); 12126 12127 // A precondition of this method is that the condition being analyzed 12128 // reaches an exiting branch which dominates the latch. Given that, we can 12129 // assume that an increment which violates the nowrap specification and 12130 // produces poison must cause undefined behavior when the resulting poison 12131 // value is branched upon and thus we can conclude that the backedge is 12132 // taken no more often than would be required to produce that poison value. 12133 // Note that a well defined loop can exit on the iteration which violates 12134 // the nowrap specification if there is another exit (either explicit or 12135 // implicit/exceptional) which causes the loop to execute before the 12136 // exiting instruction we're analyzing would trigger UB. 12137 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12138 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12139 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12140 12141 const SCEV *Stride = IV->getStepRecurrence(*this); 12142 12143 bool PositiveStride = isKnownPositive(Stride); 12144 12145 // Avoid negative or zero stride values. 12146 if (!PositiveStride) { 12147 // We can compute the correct backedge taken count for loops with unknown 12148 // strides if we can prove that the loop is not an infinite loop with side 12149 // effects. Here's the loop structure we are trying to handle - 12150 // 12151 // i = start 12152 // do { 12153 // A[i] = i; 12154 // i += s; 12155 // } while (i < end); 12156 // 12157 // The backedge taken count for such loops is evaluated as - 12158 // (max(end, start + stride) - start - 1) /u stride 12159 // 12160 // The additional preconditions that we need to check to prove correctness 12161 // of the above formula is as follows - 12162 // 12163 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12164 // NoWrap flag). 12165 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12166 // no side effects within the loop) 12167 // c) loop has a single static exit (with no abnormal exits) 12168 // 12169 // Precondition a) implies that if the stride is negative, this is a single 12170 // trip loop. The backedge taken count formula reduces to zero in this case. 12171 // 12172 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12173 // then a zero stride means the backedge can't be taken without executing 12174 // undefined behavior. 12175 // 12176 // The positive stride case is the same as isKnownPositive(Stride) returning 12177 // true (original behavior of the function). 12178 // 12179 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12180 !loopHasNoAbnormalExits(L)) 12181 return getCouldNotCompute(); 12182 12183 // This bailout is protecting the logic in computeMaxBECountForLT which 12184 // has not yet been sufficiently auditted or tested with negative strides. 12185 // We used to filter out all known-non-positive cases here, we're in the 12186 // process of being less restrictive bit by bit. 12187 if (IsSigned && isKnownNonPositive(Stride)) 12188 return getCouldNotCompute(); 12189 12190 if (!isKnownNonZero(Stride)) { 12191 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12192 // if it might eventually be greater than start and if so, on which 12193 // iteration. We can't even produce a useful upper bound. 12194 if (!isLoopInvariant(RHS, L)) 12195 return getCouldNotCompute(); 12196 12197 // We allow a potentially zero stride, but we need to divide by stride 12198 // below. Since the loop can't be infinite and this check must control 12199 // the sole exit, we can infer the exit must be taken on the first 12200 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12201 // we know the numerator in the divides below must be zero, so we can 12202 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12203 // and produce the right result. 12204 // FIXME: Handle the case where Stride is poison? 12205 auto wouldZeroStrideBeUB = [&]() { 12206 // Proof by contradiction. Suppose the stride were zero. If we can 12207 // prove that the backedge *is* taken on the first iteration, then since 12208 // we know this condition controls the sole exit, we must have an 12209 // infinite loop. We can't have a (well defined) infinite loop per 12210 // check just above. 12211 // Note: The (Start - Stride) term is used to get the start' term from 12212 // (start' + stride,+,stride). Remember that we only care about the 12213 // result of this expression when stride == 0 at runtime. 12214 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12215 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12216 }; 12217 if (!wouldZeroStrideBeUB()) { 12218 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12219 } 12220 } 12221 } else if (!Stride->isOne() && !NoWrap) { 12222 auto isUBOnWrap = [&]() { 12223 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12224 // follows trivially from the fact that every (un)signed-wrapped, but 12225 // not self-wrapped value must be LT than the last value before 12226 // (un)signed wrap. Since we know that last value didn't exit, nor 12227 // will any smaller one. 12228 return canAssumeNoSelfWrap(IV); 12229 }; 12230 12231 // Avoid proven overflow cases: this will ensure that the backedge taken 12232 // count will not generate any unsigned overflow. Relaxed no-overflow 12233 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12234 // undefined behaviors like the case of C language. 12235 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12236 return getCouldNotCompute(); 12237 } 12238 12239 // On all paths just preceeding, we established the following invariant: 12240 // IV can be assumed not to overflow up to and including the exiting 12241 // iteration. We proved this in one of two ways: 12242 // 1) We can show overflow doesn't occur before the exiting iteration 12243 // 1a) canIVOverflowOnLT, and b) step of one 12244 // 2) We can show that if overflow occurs, the loop must execute UB 12245 // before any possible exit. 12246 // Note that we have not yet proved RHS invariant (in general). 12247 12248 const SCEV *Start = IV->getStart(); 12249 12250 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12251 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12252 // Use integer-typed versions for actual computation; we can't subtract 12253 // pointers in general. 12254 const SCEV *OrigStart = Start; 12255 const SCEV *OrigRHS = RHS; 12256 if (Start->getType()->isPointerTy()) { 12257 Start = getLosslessPtrToIntExpr(Start); 12258 if (isa<SCEVCouldNotCompute>(Start)) 12259 return Start; 12260 } 12261 if (RHS->getType()->isPointerTy()) { 12262 RHS = getLosslessPtrToIntExpr(RHS); 12263 if (isa<SCEVCouldNotCompute>(RHS)) 12264 return RHS; 12265 } 12266 12267 // When the RHS is not invariant, we do not know the end bound of the loop and 12268 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12269 // calculate the MaxBECount, given the start, stride and max value for the end 12270 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12271 // checked above). 12272 if (!isLoopInvariant(RHS, L)) { 12273 const SCEV *MaxBECount = computeMaxBECountForLT( 12274 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12275 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12276 false /*MaxOrZero*/, Predicates); 12277 } 12278 12279 // We use the expression (max(End,Start)-Start)/Stride to describe the 12280 // backedge count, as if the backedge is taken at least once max(End,Start) 12281 // is End and so the result is as above, and if not max(End,Start) is Start 12282 // so we get a backedge count of zero. 12283 const SCEV *BECount = nullptr; 12284 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12285 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12286 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12287 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12288 // Can we prove (max(RHS,Start) > Start - Stride? 12289 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12290 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12291 // In this case, we can use a refined formula for computing backedge taken 12292 // count. The general formula remains: 12293 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12294 // We want to use the alternate formula: 12295 // "((End - 1) - (Start - Stride)) /u Stride" 12296 // Let's do a quick case analysis to show these are equivalent under 12297 // our precondition that max(RHS,Start) > Start - Stride. 12298 // * For RHS <= Start, the backedge-taken count must be zero. 12299 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12300 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12301 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12302 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12303 // this to the stride of 1 case. 12304 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12305 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12306 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12307 // "((RHS - (Start - Stride) - 1) /u Stride". 12308 // Our preconditions trivially imply no overflow in that form. 12309 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12310 const SCEV *Numerator = 12311 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12312 BECount = getUDivExpr(Numerator, Stride); 12313 } 12314 12315 const SCEV *BECountIfBackedgeTaken = nullptr; 12316 if (!BECount) { 12317 auto canProveRHSGreaterThanEqualStart = [&]() { 12318 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12319 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12320 return true; 12321 12322 // (RHS > Start - 1) implies RHS >= Start. 12323 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12324 // "Start - 1" doesn't overflow. 12325 // * For signed comparison, if Start - 1 does overflow, it's equal 12326 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12327 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12328 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12329 // 12330 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12331 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12332 auto *StartMinusOne = getAddExpr(OrigStart, 12333 getMinusOne(OrigStart->getType())); 12334 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12335 }; 12336 12337 // If we know that RHS >= Start in the context of loop, then we know that 12338 // max(RHS, Start) = RHS at this point. 12339 const SCEV *End; 12340 if (canProveRHSGreaterThanEqualStart()) { 12341 End = RHS; 12342 } else { 12343 // If RHS < Start, the backedge will be taken zero times. So in 12344 // general, we can write the backedge-taken count as: 12345 // 12346 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12347 // 12348 // We convert it to the following to make it more convenient for SCEV: 12349 // 12350 // ceil(max(RHS, Start) - Start) / Stride 12351 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12352 12353 // See what would happen if we assume the backedge is taken. This is 12354 // used to compute MaxBECount. 12355 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12356 } 12357 12358 // At this point, we know: 12359 // 12360 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12361 // 2. The index variable doesn't overflow. 12362 // 12363 // Therefore, we know N exists such that 12364 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12365 // doesn't overflow. 12366 // 12367 // Using this information, try to prove whether the addition in 12368 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12369 const SCEV *One = getOne(Stride->getType()); 12370 bool MayAddOverflow = [&] { 12371 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12372 if (StrideC->getAPInt().isPowerOf2()) { 12373 // Suppose Stride is a power of two, and Start/End are unsigned 12374 // integers. Let UMAX be the largest representable unsigned 12375 // integer. 12376 // 12377 // By the preconditions of this function, we know 12378 // "(Start + Stride * N) >= End", and this doesn't overflow. 12379 // As a formula: 12380 // 12381 // End <= (Start + Stride * N) <= UMAX 12382 // 12383 // Subtracting Start from all the terms: 12384 // 12385 // End - Start <= Stride * N <= UMAX - Start 12386 // 12387 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12388 // 12389 // End - Start <= Stride * N <= UMAX 12390 // 12391 // Stride * N is a multiple of Stride. Therefore, 12392 // 12393 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12394 // 12395 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12396 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12397 // 12398 // End - Start <= Stride * N <= UMAX - Stride - 1 12399 // 12400 // Dropping the middle term: 12401 // 12402 // End - Start <= UMAX - Stride - 1 12403 // 12404 // Adding Stride - 1 to both sides: 12405 // 12406 // (End - Start) + (Stride - 1) <= UMAX 12407 // 12408 // In other words, the addition doesn't have unsigned overflow. 12409 // 12410 // A similar proof works if we treat Start/End as signed values. 12411 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12412 // use signed max instead of unsigned max. Note that we're trying 12413 // to prove a lack of unsigned overflow in either case. 12414 return false; 12415 } 12416 } 12417 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12418 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12419 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12420 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12421 // 12422 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12423 return false; 12424 } 12425 return true; 12426 }(); 12427 12428 const SCEV *Delta = getMinusSCEV(End, Start); 12429 if (!MayAddOverflow) { 12430 // floor((D + (S - 1)) / S) 12431 // We prefer this formulation if it's legal because it's fewer operations. 12432 BECount = 12433 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12434 } else { 12435 BECount = getUDivCeilSCEV(Delta, Stride); 12436 } 12437 } 12438 12439 const SCEV *MaxBECount; 12440 bool MaxOrZero = false; 12441 if (isa<SCEVConstant>(BECount)) { 12442 MaxBECount = BECount; 12443 } else if (BECountIfBackedgeTaken && 12444 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12445 // If we know exactly how many times the backedge will be taken if it's 12446 // taken at least once, then the backedge count will either be that or 12447 // zero. 12448 MaxBECount = BECountIfBackedgeTaken; 12449 MaxOrZero = true; 12450 } else { 12451 MaxBECount = computeMaxBECountForLT( 12452 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12453 } 12454 12455 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12456 !isa<SCEVCouldNotCompute>(BECount)) 12457 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12458 12459 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12460 } 12461 12462 ScalarEvolution::ExitLimit 12463 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12464 const Loop *L, bool IsSigned, 12465 bool ControlsExit, bool AllowPredicates) { 12466 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12467 // We handle only IV > Invariant 12468 if (!isLoopInvariant(RHS, L)) 12469 return getCouldNotCompute(); 12470 12471 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12472 if (!IV && AllowPredicates) 12473 // Try to make this an AddRec using runtime tests, in the first X 12474 // iterations of this loop, where X is the SCEV expression found by the 12475 // algorithm below. 12476 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12477 12478 // Avoid weird loops 12479 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12480 return getCouldNotCompute(); 12481 12482 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12483 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12484 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12485 12486 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12487 12488 // Avoid negative or zero stride values 12489 if (!isKnownPositive(Stride)) 12490 return getCouldNotCompute(); 12491 12492 // Avoid proven overflow cases: this will ensure that the backedge taken count 12493 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12494 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12495 // behaviors like the case of C language. 12496 if (!Stride->isOne() && !NoWrap) 12497 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12498 return getCouldNotCompute(); 12499 12500 const SCEV *Start = IV->getStart(); 12501 const SCEV *End = RHS; 12502 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12503 // If we know that Start >= RHS in the context of loop, then we know that 12504 // min(RHS, Start) = RHS at this point. 12505 if (isLoopEntryGuardedByCond( 12506 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12507 End = RHS; 12508 else 12509 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12510 } 12511 12512 if (Start->getType()->isPointerTy()) { 12513 Start = getLosslessPtrToIntExpr(Start); 12514 if (isa<SCEVCouldNotCompute>(Start)) 12515 return Start; 12516 } 12517 if (End->getType()->isPointerTy()) { 12518 End = getLosslessPtrToIntExpr(End); 12519 if (isa<SCEVCouldNotCompute>(End)) 12520 return End; 12521 } 12522 12523 // Compute ((Start - End) + (Stride - 1)) / Stride. 12524 // FIXME: This can overflow. Holding off on fixing this for now; 12525 // howManyGreaterThans will hopefully be gone soon. 12526 const SCEV *One = getOne(Stride->getType()); 12527 const SCEV *BECount = getUDivExpr( 12528 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12529 12530 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12531 : getUnsignedRangeMax(Start); 12532 12533 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12534 : getUnsignedRangeMin(Stride); 12535 12536 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12537 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12538 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12539 12540 // Although End can be a MIN expression we estimate MinEnd considering only 12541 // the case End = RHS. This is safe because in the other case (Start - End) 12542 // is zero, leading to a zero maximum backedge taken count. 12543 APInt MinEnd = 12544 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12545 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12546 12547 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12548 ? BECount 12549 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12550 getConstant(MinStride)); 12551 12552 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12553 MaxBECount = BECount; 12554 12555 return ExitLimit(BECount, MaxBECount, false, Predicates); 12556 } 12557 12558 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12559 ScalarEvolution &SE) const { 12560 if (Range.isFullSet()) // Infinite loop. 12561 return SE.getCouldNotCompute(); 12562 12563 // If the start is a non-zero constant, shift the range to simplify things. 12564 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12565 if (!SC->getValue()->isZero()) { 12566 SmallVector<const SCEV *, 4> Operands(operands()); 12567 Operands[0] = SE.getZero(SC->getType()); 12568 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12569 getNoWrapFlags(FlagNW)); 12570 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12571 return ShiftedAddRec->getNumIterationsInRange( 12572 Range.subtract(SC->getAPInt()), SE); 12573 // This is strange and shouldn't happen. 12574 return SE.getCouldNotCompute(); 12575 } 12576 12577 // The only time we can solve this is when we have all constant indices. 12578 // Otherwise, we cannot determine the overflow conditions. 12579 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12580 return SE.getCouldNotCompute(); 12581 12582 // Okay at this point we know that all elements of the chrec are constants and 12583 // that the start element is zero. 12584 12585 // First check to see if the range contains zero. If not, the first 12586 // iteration exits. 12587 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12588 if (!Range.contains(APInt(BitWidth, 0))) 12589 return SE.getZero(getType()); 12590 12591 if (isAffine()) { 12592 // If this is an affine expression then we have this situation: 12593 // Solve {0,+,A} in Range === Ax in Range 12594 12595 // We know that zero is in the range. If A is positive then we know that 12596 // the upper value of the range must be the first possible exit value. 12597 // If A is negative then the lower of the range is the last possible loop 12598 // value. Also note that we already checked for a full range. 12599 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12600 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12601 12602 // The exit value should be (End+A)/A. 12603 APInt ExitVal = (End + A).udiv(A); 12604 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12605 12606 // Evaluate at the exit value. If we really did fall out of the valid 12607 // range, then we computed our trip count, otherwise wrap around or other 12608 // things must have happened. 12609 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12610 if (Range.contains(Val->getValue())) 12611 return SE.getCouldNotCompute(); // Something strange happened 12612 12613 // Ensure that the previous value is in the range. 12614 assert(Range.contains( 12615 EvaluateConstantChrecAtConstant(this, 12616 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12617 "Linear scev computation is off in a bad way!"); 12618 return SE.getConstant(ExitValue); 12619 } 12620 12621 if (isQuadratic()) { 12622 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12623 return SE.getConstant(S.getValue()); 12624 } 12625 12626 return SE.getCouldNotCompute(); 12627 } 12628 12629 const SCEVAddRecExpr * 12630 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12631 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12632 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12633 // but in this case we cannot guarantee that the value returned will be an 12634 // AddRec because SCEV does not have a fixed point where it stops 12635 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12636 // may happen if we reach arithmetic depth limit while simplifying. So we 12637 // construct the returned value explicitly. 12638 SmallVector<const SCEV *, 3> Ops; 12639 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12640 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12641 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12642 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12643 // We know that the last operand is not a constant zero (otherwise it would 12644 // have been popped out earlier). This guarantees us that if the result has 12645 // the same last operand, then it will also not be popped out, meaning that 12646 // the returned value will be an AddRec. 12647 const SCEV *Last = getOperand(getNumOperands() - 1); 12648 assert(!Last->isZero() && "Recurrency with zero step?"); 12649 Ops.push_back(Last); 12650 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12651 SCEV::FlagAnyWrap)); 12652 } 12653 12654 // Return true when S contains at least an undef value. 12655 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12656 return SCEVExprContains(S, [](const SCEV *S) { 12657 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12658 return isa<UndefValue>(SU->getValue()); 12659 return false; 12660 }); 12661 } 12662 12663 /// Return the size of an element read or written by Inst. 12664 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12665 Type *Ty; 12666 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12667 Ty = Store->getValueOperand()->getType(); 12668 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12669 Ty = Load->getType(); 12670 else 12671 return nullptr; 12672 12673 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12674 return getSizeOfExpr(ETy, Ty); 12675 } 12676 12677 //===----------------------------------------------------------------------===// 12678 // SCEVCallbackVH Class Implementation 12679 //===----------------------------------------------------------------------===// 12680 12681 void ScalarEvolution::SCEVCallbackVH::deleted() { 12682 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12683 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12684 SE->ConstantEvolutionLoopExitValue.erase(PN); 12685 SE->eraseValueFromMap(getValPtr()); 12686 // this now dangles! 12687 } 12688 12689 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12690 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12691 12692 // Forget all the expressions associated with users of the old value, 12693 // so that future queries will recompute the expressions using the new 12694 // value. 12695 Value *Old = getValPtr(); 12696 SmallVector<User *, 16> Worklist(Old->users()); 12697 SmallPtrSet<User *, 8> Visited; 12698 while (!Worklist.empty()) { 12699 User *U = Worklist.pop_back_val(); 12700 // Deleting the Old value will cause this to dangle. Postpone 12701 // that until everything else is done. 12702 if (U == Old) 12703 continue; 12704 if (!Visited.insert(U).second) 12705 continue; 12706 if (PHINode *PN = dyn_cast<PHINode>(U)) 12707 SE->ConstantEvolutionLoopExitValue.erase(PN); 12708 SE->eraseValueFromMap(U); 12709 llvm::append_range(Worklist, U->users()); 12710 } 12711 // Delete the Old value. 12712 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12713 SE->ConstantEvolutionLoopExitValue.erase(PN); 12714 SE->eraseValueFromMap(Old); 12715 // this now dangles! 12716 } 12717 12718 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12719 : CallbackVH(V), SE(se) {} 12720 12721 //===----------------------------------------------------------------------===// 12722 // ScalarEvolution Class Implementation 12723 //===----------------------------------------------------------------------===// 12724 12725 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12726 AssumptionCache &AC, DominatorTree &DT, 12727 LoopInfo &LI) 12728 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12729 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12730 LoopDispositions(64), BlockDispositions(64) { 12731 // To use guards for proving predicates, we need to scan every instruction in 12732 // relevant basic blocks, and not just terminators. Doing this is a waste of 12733 // time if the IR does not actually contain any calls to 12734 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12735 // 12736 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12737 // to _add_ guards to the module when there weren't any before, and wants 12738 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12739 // efficient in lieu of being smart in that rather obscure case. 12740 12741 auto *GuardDecl = F.getParent()->getFunction( 12742 Intrinsic::getName(Intrinsic::experimental_guard)); 12743 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12744 } 12745 12746 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12747 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12748 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12749 ValueExprMap(std::move(Arg.ValueExprMap)), 12750 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12751 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12752 PendingMerges(std::move(Arg.PendingMerges)), 12753 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12754 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12755 PredicatedBackedgeTakenCounts( 12756 std::move(Arg.PredicatedBackedgeTakenCounts)), 12757 BECountUsers(std::move(Arg.BECountUsers)), 12758 ConstantEvolutionLoopExitValue( 12759 std::move(Arg.ConstantEvolutionLoopExitValue)), 12760 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12761 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12762 LoopDispositions(std::move(Arg.LoopDispositions)), 12763 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12764 BlockDispositions(std::move(Arg.BlockDispositions)), 12765 SCEVUsers(std::move(Arg.SCEVUsers)), 12766 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12767 SignedRanges(std::move(Arg.SignedRanges)), 12768 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12769 UniquePreds(std::move(Arg.UniquePreds)), 12770 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12771 LoopUsers(std::move(Arg.LoopUsers)), 12772 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12773 FirstUnknown(Arg.FirstUnknown) { 12774 Arg.FirstUnknown = nullptr; 12775 } 12776 12777 ScalarEvolution::~ScalarEvolution() { 12778 // Iterate through all the SCEVUnknown instances and call their 12779 // destructors, so that they release their references to their values. 12780 for (SCEVUnknown *U = FirstUnknown; U;) { 12781 SCEVUnknown *Tmp = U; 12782 U = U->Next; 12783 Tmp->~SCEVUnknown(); 12784 } 12785 FirstUnknown = nullptr; 12786 12787 ExprValueMap.clear(); 12788 ValueExprMap.clear(); 12789 HasRecMap.clear(); 12790 BackedgeTakenCounts.clear(); 12791 PredicatedBackedgeTakenCounts.clear(); 12792 12793 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12794 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12795 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12796 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12797 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12798 } 12799 12800 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12801 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12802 } 12803 12804 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12805 const Loop *L) { 12806 // Print all inner loops first 12807 for (Loop *I : *L) 12808 PrintLoopInfo(OS, SE, I); 12809 12810 OS << "Loop "; 12811 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12812 OS << ": "; 12813 12814 SmallVector<BasicBlock *, 8> ExitingBlocks; 12815 L->getExitingBlocks(ExitingBlocks); 12816 if (ExitingBlocks.size() != 1) 12817 OS << "<multiple exits> "; 12818 12819 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12820 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12821 else 12822 OS << "Unpredictable backedge-taken count.\n"; 12823 12824 if (ExitingBlocks.size() > 1) 12825 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12826 OS << " exit count for " << ExitingBlock->getName() << ": " 12827 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12828 } 12829 12830 OS << "Loop "; 12831 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12832 OS << ": "; 12833 12834 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12835 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12836 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12837 OS << ", actual taken count either this or zero."; 12838 } else { 12839 OS << "Unpredictable max backedge-taken count. "; 12840 } 12841 12842 OS << "\n" 12843 "Loop "; 12844 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12845 OS << ": "; 12846 12847 SmallVector<const SCEVPredicate *, 4> Preds; 12848 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 12849 if (!isa<SCEVCouldNotCompute>(PBT)) { 12850 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12851 OS << " Predicates:\n"; 12852 SCEVUnionPredicate Dedup(Preds); 12853 Dedup.print(OS, 4); 12854 } else { 12855 OS << "Unpredictable predicated backedge-taken count. "; 12856 } 12857 OS << "\n"; 12858 12859 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12860 OS << "Loop "; 12861 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12862 OS << ": "; 12863 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12864 } 12865 } 12866 12867 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12868 switch (LD) { 12869 case ScalarEvolution::LoopVariant: 12870 return "Variant"; 12871 case ScalarEvolution::LoopInvariant: 12872 return "Invariant"; 12873 case ScalarEvolution::LoopComputable: 12874 return "Computable"; 12875 } 12876 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12877 } 12878 12879 void ScalarEvolution::print(raw_ostream &OS) const { 12880 // ScalarEvolution's implementation of the print method is to print 12881 // out SCEV values of all instructions that are interesting. Doing 12882 // this potentially causes it to create new SCEV objects though, 12883 // which technically conflicts with the const qualifier. This isn't 12884 // observable from outside the class though, so casting away the 12885 // const isn't dangerous. 12886 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12887 12888 if (ClassifyExpressions) { 12889 OS << "Classifying expressions for: "; 12890 F.printAsOperand(OS, /*PrintType=*/false); 12891 OS << "\n"; 12892 for (Instruction &I : instructions(F)) 12893 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12894 OS << I << '\n'; 12895 OS << " --> "; 12896 const SCEV *SV = SE.getSCEV(&I); 12897 SV->print(OS); 12898 if (!isa<SCEVCouldNotCompute>(SV)) { 12899 OS << " U: "; 12900 SE.getUnsignedRange(SV).print(OS); 12901 OS << " S: "; 12902 SE.getSignedRange(SV).print(OS); 12903 } 12904 12905 const Loop *L = LI.getLoopFor(I.getParent()); 12906 12907 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12908 if (AtUse != SV) { 12909 OS << " --> "; 12910 AtUse->print(OS); 12911 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12912 OS << " U: "; 12913 SE.getUnsignedRange(AtUse).print(OS); 12914 OS << " S: "; 12915 SE.getSignedRange(AtUse).print(OS); 12916 } 12917 } 12918 12919 if (L) { 12920 OS << "\t\t" "Exits: "; 12921 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12922 if (!SE.isLoopInvariant(ExitValue, L)) { 12923 OS << "<<Unknown>>"; 12924 } else { 12925 OS << *ExitValue; 12926 } 12927 12928 bool First = true; 12929 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12930 if (First) { 12931 OS << "\t\t" "LoopDispositions: { "; 12932 First = false; 12933 } else { 12934 OS << ", "; 12935 } 12936 12937 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12938 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12939 } 12940 12941 for (auto *InnerL : depth_first(L)) { 12942 if (InnerL == L) 12943 continue; 12944 if (First) { 12945 OS << "\t\t" "LoopDispositions: { "; 12946 First = false; 12947 } else { 12948 OS << ", "; 12949 } 12950 12951 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12952 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12953 } 12954 12955 OS << " }"; 12956 } 12957 12958 OS << "\n"; 12959 } 12960 } 12961 12962 OS << "Determining loop execution counts for: "; 12963 F.printAsOperand(OS, /*PrintType=*/false); 12964 OS << "\n"; 12965 for (Loop *I : LI) 12966 PrintLoopInfo(OS, &SE, I); 12967 } 12968 12969 ScalarEvolution::LoopDisposition 12970 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12971 auto &Values = LoopDispositions[S]; 12972 for (auto &V : Values) { 12973 if (V.getPointer() == L) 12974 return V.getInt(); 12975 } 12976 Values.emplace_back(L, LoopVariant); 12977 LoopDisposition D = computeLoopDisposition(S, L); 12978 auto &Values2 = LoopDispositions[S]; 12979 for (auto &V : llvm::reverse(Values2)) { 12980 if (V.getPointer() == L) { 12981 V.setInt(D); 12982 break; 12983 } 12984 } 12985 return D; 12986 } 12987 12988 ScalarEvolution::LoopDisposition 12989 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12990 switch (S->getSCEVType()) { 12991 case scConstant: 12992 return LoopInvariant; 12993 case scPtrToInt: 12994 case scTruncate: 12995 case scZeroExtend: 12996 case scSignExtend: 12997 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12998 case scAddRecExpr: { 12999 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13000 13001 // If L is the addrec's loop, it's computable. 13002 if (AR->getLoop() == L) 13003 return LoopComputable; 13004 13005 // Add recurrences are never invariant in the function-body (null loop). 13006 if (!L) 13007 return LoopVariant; 13008 13009 // Everything that is not defined at loop entry is variant. 13010 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13011 return LoopVariant; 13012 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13013 " dominate the contained loop's header?"); 13014 13015 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13016 if (AR->getLoop()->contains(L)) 13017 return LoopInvariant; 13018 13019 // This recurrence is variant w.r.t. L if any of its operands 13020 // are variant. 13021 for (auto *Op : AR->operands()) 13022 if (!isLoopInvariant(Op, L)) 13023 return LoopVariant; 13024 13025 // Otherwise it's loop-invariant. 13026 return LoopInvariant; 13027 } 13028 case scAddExpr: 13029 case scMulExpr: 13030 case scUMaxExpr: 13031 case scSMaxExpr: 13032 case scUMinExpr: 13033 case scSMinExpr: 13034 case scSequentialUMinExpr: { 13035 bool HasVarying = false; 13036 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13037 LoopDisposition D = getLoopDisposition(Op, L); 13038 if (D == LoopVariant) 13039 return LoopVariant; 13040 if (D == LoopComputable) 13041 HasVarying = true; 13042 } 13043 return HasVarying ? LoopComputable : LoopInvariant; 13044 } 13045 case scUDivExpr: { 13046 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13047 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13048 if (LD == LoopVariant) 13049 return LoopVariant; 13050 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13051 if (RD == LoopVariant) 13052 return LoopVariant; 13053 return (LD == LoopInvariant && RD == LoopInvariant) ? 13054 LoopInvariant : LoopComputable; 13055 } 13056 case scUnknown: 13057 // All non-instruction values are loop invariant. All instructions are loop 13058 // invariant if they are not contained in the specified loop. 13059 // Instructions are never considered invariant in the function body 13060 // (null loop) because they are defined within the "loop". 13061 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13062 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13063 return LoopInvariant; 13064 case scCouldNotCompute: 13065 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13066 } 13067 llvm_unreachable("Unknown SCEV kind!"); 13068 } 13069 13070 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13071 return getLoopDisposition(S, L) == LoopInvariant; 13072 } 13073 13074 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13075 return getLoopDisposition(S, L) == LoopComputable; 13076 } 13077 13078 ScalarEvolution::BlockDisposition 13079 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13080 auto &Values = BlockDispositions[S]; 13081 for (auto &V : Values) { 13082 if (V.getPointer() == BB) 13083 return V.getInt(); 13084 } 13085 Values.emplace_back(BB, DoesNotDominateBlock); 13086 BlockDisposition D = computeBlockDisposition(S, BB); 13087 auto &Values2 = BlockDispositions[S]; 13088 for (auto &V : llvm::reverse(Values2)) { 13089 if (V.getPointer() == BB) { 13090 V.setInt(D); 13091 break; 13092 } 13093 } 13094 return D; 13095 } 13096 13097 ScalarEvolution::BlockDisposition 13098 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13099 switch (S->getSCEVType()) { 13100 case scConstant: 13101 return ProperlyDominatesBlock; 13102 case scPtrToInt: 13103 case scTruncate: 13104 case scZeroExtend: 13105 case scSignExtend: 13106 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13107 case scAddRecExpr: { 13108 // This uses a "dominates" query instead of "properly dominates" query 13109 // to test for proper dominance too, because the instruction which 13110 // produces the addrec's value is a PHI, and a PHI effectively properly 13111 // dominates its entire containing block. 13112 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13113 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13114 return DoesNotDominateBlock; 13115 13116 // Fall through into SCEVNAryExpr handling. 13117 LLVM_FALLTHROUGH; 13118 } 13119 case scAddExpr: 13120 case scMulExpr: 13121 case scUMaxExpr: 13122 case scSMaxExpr: 13123 case scUMinExpr: 13124 case scSMinExpr: 13125 case scSequentialUMinExpr: { 13126 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13127 bool Proper = true; 13128 for (const SCEV *NAryOp : NAry->operands()) { 13129 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13130 if (D == DoesNotDominateBlock) 13131 return DoesNotDominateBlock; 13132 if (D == DominatesBlock) 13133 Proper = false; 13134 } 13135 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13136 } 13137 case scUDivExpr: { 13138 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13139 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13140 BlockDisposition LD = getBlockDisposition(LHS, BB); 13141 if (LD == DoesNotDominateBlock) 13142 return DoesNotDominateBlock; 13143 BlockDisposition RD = getBlockDisposition(RHS, BB); 13144 if (RD == DoesNotDominateBlock) 13145 return DoesNotDominateBlock; 13146 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13147 ProperlyDominatesBlock : DominatesBlock; 13148 } 13149 case scUnknown: 13150 if (Instruction *I = 13151 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13152 if (I->getParent() == BB) 13153 return DominatesBlock; 13154 if (DT.properlyDominates(I->getParent(), BB)) 13155 return ProperlyDominatesBlock; 13156 return DoesNotDominateBlock; 13157 } 13158 return ProperlyDominatesBlock; 13159 case scCouldNotCompute: 13160 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13161 } 13162 llvm_unreachable("Unknown SCEV kind!"); 13163 } 13164 13165 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13166 return getBlockDisposition(S, BB) >= DominatesBlock; 13167 } 13168 13169 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13170 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13171 } 13172 13173 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13174 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13175 } 13176 13177 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13178 bool Predicated) { 13179 auto &BECounts = 13180 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13181 auto It = BECounts.find(L); 13182 if (It != BECounts.end()) { 13183 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13184 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13185 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13186 assert(UserIt != BECountUsers.end()); 13187 UserIt->second.erase({L, Predicated}); 13188 } 13189 } 13190 BECounts.erase(It); 13191 } 13192 } 13193 13194 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13195 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13196 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13197 13198 while (!Worklist.empty()) { 13199 const SCEV *Curr = Worklist.pop_back_val(); 13200 auto Users = SCEVUsers.find(Curr); 13201 if (Users != SCEVUsers.end()) 13202 for (auto *User : Users->second) 13203 if (ToForget.insert(User).second) 13204 Worklist.push_back(User); 13205 } 13206 13207 for (auto *S : ToForget) 13208 forgetMemoizedResultsImpl(S); 13209 13210 for (auto I = PredicatedSCEVRewrites.begin(); 13211 I != PredicatedSCEVRewrites.end();) { 13212 std::pair<const SCEV *, const Loop *> Entry = I->first; 13213 if (ToForget.count(Entry.first)) 13214 PredicatedSCEVRewrites.erase(I++); 13215 else 13216 ++I; 13217 } 13218 } 13219 13220 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13221 LoopDispositions.erase(S); 13222 BlockDispositions.erase(S); 13223 UnsignedRanges.erase(S); 13224 SignedRanges.erase(S); 13225 HasRecMap.erase(S); 13226 MinTrailingZerosCache.erase(S); 13227 13228 auto ExprIt = ExprValueMap.find(S); 13229 if (ExprIt != ExprValueMap.end()) { 13230 for (auto &ValueAndOffset : ExprIt->second) { 13231 if (ValueAndOffset.second == nullptr) { 13232 auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first); 13233 if (ValueIt != ValueExprMap.end()) 13234 ValueExprMap.erase(ValueIt); 13235 } 13236 } 13237 ExprValueMap.erase(ExprIt); 13238 } 13239 13240 auto ScopeIt = ValuesAtScopes.find(S); 13241 if (ScopeIt != ValuesAtScopes.end()) { 13242 for (const auto &Pair : ScopeIt->second) 13243 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13244 erase_value(ValuesAtScopesUsers[Pair.second], 13245 std::make_pair(Pair.first, S)); 13246 ValuesAtScopes.erase(ScopeIt); 13247 } 13248 13249 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13250 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13251 for (const auto &Pair : ScopeUserIt->second) 13252 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13253 ValuesAtScopesUsers.erase(ScopeUserIt); 13254 } 13255 13256 auto BEUsersIt = BECountUsers.find(S); 13257 if (BEUsersIt != BECountUsers.end()) { 13258 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13259 auto Copy = BEUsersIt->second; 13260 for (const auto &Pair : Copy) 13261 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13262 BECountUsers.erase(BEUsersIt); 13263 } 13264 } 13265 13266 void 13267 ScalarEvolution::getUsedLoops(const SCEV *S, 13268 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13269 struct FindUsedLoops { 13270 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13271 : LoopsUsed(LoopsUsed) {} 13272 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13273 bool follow(const SCEV *S) { 13274 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13275 LoopsUsed.insert(AR->getLoop()); 13276 return true; 13277 } 13278 13279 bool isDone() const { return false; } 13280 }; 13281 13282 FindUsedLoops F(LoopsUsed); 13283 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13284 } 13285 13286 void ScalarEvolution::verify() const { 13287 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13288 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13289 13290 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13291 13292 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13293 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13294 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13295 13296 const SCEV *visitConstant(const SCEVConstant *Constant) { 13297 return SE.getConstant(Constant->getAPInt()); 13298 } 13299 13300 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13301 return SE.getUnknown(Expr->getValue()); 13302 } 13303 13304 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13305 return SE.getCouldNotCompute(); 13306 } 13307 }; 13308 13309 SCEVMapper SCM(SE2); 13310 13311 while (!LoopStack.empty()) { 13312 auto *L = LoopStack.pop_back_val(); 13313 llvm::append_range(LoopStack, *L); 13314 13315 auto *CurBECount = SCM.visit( 13316 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13317 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13318 13319 if (CurBECount == SE2.getCouldNotCompute() || 13320 NewBECount == SE2.getCouldNotCompute()) { 13321 // NB! This situation is legal, but is very suspicious -- whatever pass 13322 // change the loop to make a trip count go from could not compute to 13323 // computable or vice-versa *should have* invalidated SCEV. However, we 13324 // choose not to assert here (for now) since we don't want false 13325 // positives. 13326 continue; 13327 } 13328 13329 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13330 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13331 // not propagate undef aggressively). This means we can (and do) fail 13332 // verification in cases where a transform makes the trip count of a loop 13333 // go from "undef" to "undef+1" (say). The transform is fine, since in 13334 // both cases the loop iterates "undef" times, but SCEV thinks we 13335 // increased the trip count of the loop by 1 incorrectly. 13336 continue; 13337 } 13338 13339 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13340 SE.getTypeSizeInBits(NewBECount->getType())) 13341 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13342 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13343 SE.getTypeSizeInBits(NewBECount->getType())) 13344 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13345 13346 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13347 13348 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13349 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13350 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13351 dbgs() << "Old: " << *CurBECount << "\n"; 13352 dbgs() << "New: " << *NewBECount << "\n"; 13353 dbgs() << "Delta: " << *Delta << "\n"; 13354 std::abort(); 13355 } 13356 } 13357 13358 // Collect all valid loops currently in LoopInfo. 13359 SmallPtrSet<Loop *, 32> ValidLoops; 13360 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13361 while (!Worklist.empty()) { 13362 Loop *L = Worklist.pop_back_val(); 13363 if (ValidLoops.contains(L)) 13364 continue; 13365 ValidLoops.insert(L); 13366 Worklist.append(L->begin(), L->end()); 13367 } 13368 for (auto &KV : ValueExprMap) { 13369 #ifndef NDEBUG 13370 // Check for SCEV expressions referencing invalid/deleted loops. 13371 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13372 assert(ValidLoops.contains(AR->getLoop()) && 13373 "AddRec references invalid loop"); 13374 } 13375 #endif 13376 13377 // Check that the value is also part of the reverse map. 13378 auto It = ExprValueMap.find(KV.second); 13379 if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) { 13380 dbgs() << "Value " << *KV.first 13381 << " is in ValueExprMap but not in ExprValueMap\n"; 13382 std::abort(); 13383 } 13384 } 13385 13386 for (const auto &KV : ExprValueMap) { 13387 for (const auto &ValueAndOffset : KV.second) { 13388 if (ValueAndOffset.second != nullptr) 13389 continue; 13390 13391 auto It = ValueExprMap.find_as(ValueAndOffset.first); 13392 if (It == ValueExprMap.end()) { 13393 dbgs() << "Value " << *ValueAndOffset.first 13394 << " is in ExprValueMap but not in ValueExprMap\n"; 13395 std::abort(); 13396 } 13397 if (It->second != KV.first) { 13398 dbgs() << "Value " << *ValueAndOffset.first 13399 << " mapped to " << *It->second 13400 << " rather than " << *KV.first << "\n"; 13401 std::abort(); 13402 } 13403 } 13404 } 13405 13406 // Verify integrity of SCEV users. 13407 for (const auto &S : UniqueSCEVs) { 13408 SmallVector<const SCEV *, 4> Ops; 13409 collectUniqueOps(&S, Ops); 13410 for (const auto *Op : Ops) { 13411 // We do not store dependencies of constants. 13412 if (isa<SCEVConstant>(Op)) 13413 continue; 13414 auto It = SCEVUsers.find(Op); 13415 if (It != SCEVUsers.end() && It->second.count(&S)) 13416 continue; 13417 dbgs() << "Use of operand " << *Op << " by user " << S 13418 << " is not being tracked!\n"; 13419 std::abort(); 13420 } 13421 } 13422 13423 // Verify integrity of ValuesAtScopes users. 13424 for (const auto &ValueAndVec : ValuesAtScopes) { 13425 const SCEV *Value = ValueAndVec.first; 13426 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13427 const Loop *L = LoopAndValueAtScope.first; 13428 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13429 if (!isa<SCEVConstant>(ValueAtScope)) { 13430 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13431 if (It != ValuesAtScopesUsers.end() && 13432 is_contained(It->second, std::make_pair(L, Value))) 13433 continue; 13434 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13435 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13436 std::abort(); 13437 } 13438 } 13439 } 13440 13441 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13442 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13443 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13444 const Loop *L = LoopAndValue.first; 13445 const SCEV *Value = LoopAndValue.second; 13446 assert(!isa<SCEVConstant>(Value)); 13447 auto It = ValuesAtScopes.find(Value); 13448 if (It != ValuesAtScopes.end() && 13449 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13450 continue; 13451 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13452 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13453 std::abort(); 13454 } 13455 } 13456 13457 // Verify integrity of BECountUsers. 13458 auto VerifyBECountUsers = [&](bool Predicated) { 13459 auto &BECounts = 13460 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13461 for (const auto &LoopAndBEInfo : BECounts) { 13462 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13463 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13464 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13465 if (UserIt != BECountUsers.end() && 13466 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13467 continue; 13468 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13469 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13470 std::abort(); 13471 } 13472 } 13473 } 13474 }; 13475 VerifyBECountUsers(/* Predicated */ false); 13476 VerifyBECountUsers(/* Predicated */ true); 13477 } 13478 13479 bool ScalarEvolution::invalidate( 13480 Function &F, const PreservedAnalyses &PA, 13481 FunctionAnalysisManager::Invalidator &Inv) { 13482 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13483 // of its dependencies is invalidated. 13484 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13485 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13486 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13487 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13488 Inv.invalidate<LoopAnalysis>(F, PA); 13489 } 13490 13491 AnalysisKey ScalarEvolutionAnalysis::Key; 13492 13493 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13494 FunctionAnalysisManager &AM) { 13495 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13496 AM.getResult<AssumptionAnalysis>(F), 13497 AM.getResult<DominatorTreeAnalysis>(F), 13498 AM.getResult<LoopAnalysis>(F)); 13499 } 13500 13501 PreservedAnalyses 13502 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13503 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13504 return PreservedAnalyses::all(); 13505 } 13506 13507 PreservedAnalyses 13508 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13509 // For compatibility with opt's -analyze feature under legacy pass manager 13510 // which was not ported to NPM. This keeps tests using 13511 // update_analyze_test_checks.py working. 13512 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13513 << F.getName() << "':\n"; 13514 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13515 return PreservedAnalyses::all(); 13516 } 13517 13518 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13519 "Scalar Evolution Analysis", false, true) 13520 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13521 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13522 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13523 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13524 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13525 "Scalar Evolution Analysis", false, true) 13526 13527 char ScalarEvolutionWrapperPass::ID = 0; 13528 13529 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13530 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13531 } 13532 13533 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13534 SE.reset(new ScalarEvolution( 13535 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13536 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13537 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13538 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13539 return false; 13540 } 13541 13542 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13543 13544 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13545 SE->print(OS); 13546 } 13547 13548 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13549 if (!VerifySCEV) 13550 return; 13551 13552 SE->verify(); 13553 } 13554 13555 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13556 AU.setPreservesAll(); 13557 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13558 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13559 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13560 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13561 } 13562 13563 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13564 const SCEV *RHS) { 13565 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13566 } 13567 13568 const SCEVPredicate * 13569 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13570 const SCEV *LHS, const SCEV *RHS) { 13571 FoldingSetNodeID ID; 13572 assert(LHS->getType() == RHS->getType() && 13573 "Type mismatch between LHS and RHS"); 13574 // Unique this node based on the arguments 13575 ID.AddInteger(SCEVPredicate::P_Compare); 13576 ID.AddInteger(Pred); 13577 ID.AddPointer(LHS); 13578 ID.AddPointer(RHS); 13579 void *IP = nullptr; 13580 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13581 return S; 13582 SCEVComparePredicate *Eq = new (SCEVAllocator) 13583 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13584 UniquePreds.InsertNode(Eq, IP); 13585 return Eq; 13586 } 13587 13588 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13589 const SCEVAddRecExpr *AR, 13590 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13591 FoldingSetNodeID ID; 13592 // Unique this node based on the arguments 13593 ID.AddInteger(SCEVPredicate::P_Wrap); 13594 ID.AddPointer(AR); 13595 ID.AddInteger(AddedFlags); 13596 void *IP = nullptr; 13597 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13598 return S; 13599 auto *OF = new (SCEVAllocator) 13600 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13601 UniquePreds.InsertNode(OF, IP); 13602 return OF; 13603 } 13604 13605 namespace { 13606 13607 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13608 public: 13609 13610 /// Rewrites \p S in the context of a loop L and the SCEV predication 13611 /// infrastructure. 13612 /// 13613 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13614 /// equivalences present in \p Pred. 13615 /// 13616 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13617 /// \p NewPreds such that the result will be an AddRecExpr. 13618 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13619 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13620 SCEVUnionPredicate *Pred) { 13621 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13622 return Rewriter.visit(S); 13623 } 13624 13625 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13626 if (Pred) { 13627 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13628 for (auto *Pred : ExprPreds) 13629 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13630 if (IPred->getLHS() == Expr && 13631 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13632 return IPred->getRHS(); 13633 } 13634 return convertToAddRecWithPreds(Expr); 13635 } 13636 13637 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13638 const SCEV *Operand = visit(Expr->getOperand()); 13639 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13640 if (AR && AR->getLoop() == L && AR->isAffine()) { 13641 // This couldn't be folded because the operand didn't have the nuw 13642 // flag. Add the nusw flag as an assumption that we could make. 13643 const SCEV *Step = AR->getStepRecurrence(SE); 13644 Type *Ty = Expr->getType(); 13645 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13646 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13647 SE.getSignExtendExpr(Step, Ty), L, 13648 AR->getNoWrapFlags()); 13649 } 13650 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13651 } 13652 13653 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13654 const SCEV *Operand = visit(Expr->getOperand()); 13655 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13656 if (AR && AR->getLoop() == L && AR->isAffine()) { 13657 // This couldn't be folded because the operand didn't have the nsw 13658 // flag. Add the nssw flag as an assumption that we could make. 13659 const SCEV *Step = AR->getStepRecurrence(SE); 13660 Type *Ty = Expr->getType(); 13661 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13662 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13663 SE.getSignExtendExpr(Step, Ty), L, 13664 AR->getNoWrapFlags()); 13665 } 13666 return SE.getSignExtendExpr(Operand, Expr->getType()); 13667 } 13668 13669 private: 13670 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13671 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13672 SCEVUnionPredicate *Pred) 13673 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13674 13675 bool addOverflowAssumption(const SCEVPredicate *P) { 13676 if (!NewPreds) { 13677 // Check if we've already made this assumption. 13678 return Pred && Pred->implies(P); 13679 } 13680 NewPreds->insert(P); 13681 return true; 13682 } 13683 13684 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13685 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13686 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13687 return addOverflowAssumption(A); 13688 } 13689 13690 // If \p Expr represents a PHINode, we try to see if it can be represented 13691 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13692 // to add this predicate as a runtime overflow check, we return the AddRec. 13693 // If \p Expr does not meet these conditions (is not a PHI node, or we 13694 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13695 // return \p Expr. 13696 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13697 if (!isa<PHINode>(Expr->getValue())) 13698 return Expr; 13699 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13700 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13701 if (!PredicatedRewrite) 13702 return Expr; 13703 for (auto *P : PredicatedRewrite->second){ 13704 // Wrap predicates from outer loops are not supported. 13705 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13706 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13707 if (L != AR->getLoop()) 13708 return Expr; 13709 } 13710 if (!addOverflowAssumption(P)) 13711 return Expr; 13712 } 13713 return PredicatedRewrite->first; 13714 } 13715 13716 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13717 SCEVUnionPredicate *Pred; 13718 const Loop *L; 13719 }; 13720 13721 } // end anonymous namespace 13722 13723 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13724 SCEVUnionPredicate &Preds) { 13725 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13726 } 13727 13728 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13729 const SCEV *S, const Loop *L, 13730 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13731 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13732 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13733 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13734 13735 if (!AddRec) 13736 return nullptr; 13737 13738 // Since the transformation was successful, we can now transfer the SCEV 13739 // predicates. 13740 for (auto *P : TransformPreds) 13741 Preds.insert(P); 13742 13743 return AddRec; 13744 } 13745 13746 /// SCEV predicates 13747 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13748 SCEVPredicateKind Kind) 13749 : FastID(ID), Kind(Kind) {} 13750 13751 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13752 const ICmpInst::Predicate Pred, 13753 const SCEV *LHS, const SCEV *RHS) 13754 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13755 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13756 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13757 } 13758 13759 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13760 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13761 13762 if (!Op) 13763 return false; 13764 13765 if (Pred != ICmpInst::ICMP_EQ) 13766 return false; 13767 13768 return Op->LHS == LHS && Op->RHS == RHS; 13769 } 13770 13771 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 13772 13773 const SCEV *SCEVComparePredicate::getExpr() const { return LHS; } 13774 13775 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 13776 if (Pred == ICmpInst::ICMP_EQ) 13777 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13778 else 13779 OS.indent(Depth) << "Compare predicate: " << *LHS 13780 << " " << CmpInst::getPredicateName(Pred) << ") " 13781 << *RHS << "\n"; 13782 13783 } 13784 13785 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13786 const SCEVAddRecExpr *AR, 13787 IncrementWrapFlags Flags) 13788 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13789 13790 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13791 13792 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13793 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13794 13795 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13796 } 13797 13798 bool SCEVWrapPredicate::isAlwaysTrue() const { 13799 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13800 IncrementWrapFlags IFlags = Flags; 13801 13802 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13803 IFlags = clearFlags(IFlags, IncrementNSSW); 13804 13805 return IFlags == IncrementAnyWrap; 13806 } 13807 13808 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13809 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13810 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13811 OS << "<nusw>"; 13812 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13813 OS << "<nssw>"; 13814 OS << "\n"; 13815 } 13816 13817 SCEVWrapPredicate::IncrementWrapFlags 13818 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13819 ScalarEvolution &SE) { 13820 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13821 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13822 13823 // We can safely transfer the NSW flag as NSSW. 13824 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13825 ImpliedFlags = IncrementNSSW; 13826 13827 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13828 // If the increment is positive, the SCEV NUW flag will also imply the 13829 // WrapPredicate NUSW flag. 13830 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13831 if (Step->getValue()->getValue().isNonNegative()) 13832 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13833 } 13834 13835 return ImpliedFlags; 13836 } 13837 13838 /// Union predicates don't get cached so create a dummy set ID for it. 13839 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 13840 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 13841 for (auto *P : Preds) 13842 add(P); 13843 } 13844 13845 bool SCEVUnionPredicate::isAlwaysTrue() const { 13846 return all_of(Preds, 13847 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13848 } 13849 13850 ArrayRef<const SCEVPredicate *> 13851 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13852 auto I = SCEVToPreds.find(Expr); 13853 if (I == SCEVToPreds.end()) 13854 return ArrayRef<const SCEVPredicate *>(); 13855 return I->second; 13856 } 13857 13858 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13859 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13860 return all_of(Set->Preds, 13861 [this](const SCEVPredicate *I) { return this->implies(I); }); 13862 13863 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13864 if (ScevPredsIt == SCEVToPreds.end()) 13865 return false; 13866 auto &SCEVPreds = ScevPredsIt->second; 13867 13868 return any_of(SCEVPreds, 13869 [N](const SCEVPredicate *I) { return I->implies(N); }); 13870 } 13871 13872 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13873 13874 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13875 for (auto Pred : Preds) 13876 Pred->print(OS, Depth); 13877 } 13878 13879 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13880 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13881 for (auto Pred : Set->Preds) 13882 add(Pred); 13883 return; 13884 } 13885 13886 if (implies(N)) 13887 return; 13888 13889 const SCEV *Key = N->getExpr(); 13890 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13891 " associated expression!"); 13892 13893 SCEVToPreds[Key].push_back(N); 13894 Preds.push_back(N); 13895 } 13896 13897 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13898 Loop &L) 13899 : SE(SE), L(L) { 13900 SmallVector<const SCEVPredicate*, 4> Empty; 13901 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 13902 } 13903 13904 void ScalarEvolution::registerUser(const SCEV *User, 13905 ArrayRef<const SCEV *> Ops) { 13906 for (auto *Op : Ops) 13907 // We do not expect that forgetting cached data for SCEVConstants will ever 13908 // open any prospects for sharpening or introduce any correctness issues, 13909 // so we don't bother storing their dependencies. 13910 if (!isa<SCEVConstant>(Op)) 13911 SCEVUsers[Op].insert(User); 13912 } 13913 13914 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13915 const SCEV *Expr = SE.getSCEV(V); 13916 RewriteEntry &Entry = RewriteMap[Expr]; 13917 13918 // If we already have an entry and the version matches, return it. 13919 if (Entry.second && Generation == Entry.first) 13920 return Entry.second; 13921 13922 // We found an entry but it's stale. Rewrite the stale entry 13923 // according to the current predicate. 13924 if (Entry.second) 13925 Expr = Entry.second; 13926 13927 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 13928 Entry = {Generation, NewSCEV}; 13929 13930 return NewSCEV; 13931 } 13932 13933 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13934 if (!BackedgeCount) { 13935 SmallVector<const SCEVPredicate *, 4> Preds; 13936 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 13937 for (auto *P : Preds) 13938 addPredicate(*P); 13939 } 13940 return BackedgeCount; 13941 } 13942 13943 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13944 if (Preds->implies(&Pred)) 13945 return; 13946 13947 auto &OldPreds = Preds->getPredicates(); 13948 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 13949 NewPreds.push_back(&Pred); 13950 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 13951 updateGeneration(); 13952 } 13953 13954 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13955 return *Preds; 13956 } 13957 13958 void PredicatedScalarEvolution::updateGeneration() { 13959 // If the generation number wrapped recompute everything. 13960 if (++Generation == 0) { 13961 for (auto &II : RewriteMap) { 13962 const SCEV *Rewritten = II.second.second; 13963 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 13964 } 13965 } 13966 } 13967 13968 void PredicatedScalarEvolution::setNoOverflow( 13969 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13970 const SCEV *Expr = getSCEV(V); 13971 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13972 13973 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13974 13975 // Clear the statically implied flags. 13976 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13977 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13978 13979 auto II = FlagsMap.insert({V, Flags}); 13980 if (!II.second) 13981 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13982 } 13983 13984 bool PredicatedScalarEvolution::hasNoOverflow( 13985 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13986 const SCEV *Expr = getSCEV(V); 13987 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13988 13989 Flags = SCEVWrapPredicate::clearFlags( 13990 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13991 13992 auto II = FlagsMap.find(V); 13993 13994 if (II != FlagsMap.end()) 13995 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13996 13997 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13998 } 13999 14000 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14001 const SCEV *Expr = this->getSCEV(V); 14002 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14003 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14004 14005 if (!New) 14006 return nullptr; 14007 14008 for (auto *P : NewPreds) 14009 addPredicate(*P); 14010 14011 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14012 return New; 14013 } 14014 14015 PredicatedScalarEvolution::PredicatedScalarEvolution( 14016 const PredicatedScalarEvolution &Init) 14017 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14018 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14019 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14020 for (auto I : Init.FlagsMap) 14021 FlagsMap.insert(I); 14022 } 14023 14024 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14025 // For each block. 14026 for (auto *BB : L.getBlocks()) 14027 for (auto &I : *BB) { 14028 if (!SE.isSCEVable(I.getType())) 14029 continue; 14030 14031 auto *Expr = SE.getSCEV(&I); 14032 auto II = RewriteMap.find(Expr); 14033 14034 if (II == RewriteMap.end()) 14035 continue; 14036 14037 // Don't print things that are not interesting. 14038 if (II->second.second == Expr) 14039 continue; 14040 14041 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14042 OS.indent(Depth + 2) << *Expr << "\n"; 14043 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14044 } 14045 } 14046 14047 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14048 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14049 // for URem with constant power-of-2 second operands. 14050 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14051 // 4, A / B becomes X / 8). 14052 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14053 const SCEV *&RHS) { 14054 // Try to match 'zext (trunc A to iB) to iY', which is used 14055 // for URem with constant power-of-2 second operands. Make sure the size of 14056 // the operand A matches the size of the whole expressions. 14057 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14058 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14059 LHS = Trunc->getOperand(); 14060 // Bail out if the type of the LHS is larger than the type of the 14061 // expression for now. 14062 if (getTypeSizeInBits(LHS->getType()) > 14063 getTypeSizeInBits(Expr->getType())) 14064 return false; 14065 if (LHS->getType() != Expr->getType()) 14066 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14067 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14068 << getTypeSizeInBits(Trunc->getType())); 14069 return true; 14070 } 14071 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14072 if (Add == nullptr || Add->getNumOperands() != 2) 14073 return false; 14074 14075 const SCEV *A = Add->getOperand(1); 14076 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14077 14078 if (Mul == nullptr) 14079 return false; 14080 14081 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14082 // (SomeExpr + (-(SomeExpr / B) * B)). 14083 if (Expr == getURemExpr(A, B)) { 14084 LHS = A; 14085 RHS = B; 14086 return true; 14087 } 14088 return false; 14089 }; 14090 14091 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14092 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14093 return MatchURemWithDivisor(Mul->getOperand(1)) || 14094 MatchURemWithDivisor(Mul->getOperand(2)); 14095 14096 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14097 if (Mul->getNumOperands() == 2) 14098 return MatchURemWithDivisor(Mul->getOperand(1)) || 14099 MatchURemWithDivisor(Mul->getOperand(0)) || 14100 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14101 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14102 return false; 14103 } 14104 14105 const SCEV * 14106 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14107 SmallVector<BasicBlock*, 16> ExitingBlocks; 14108 L->getExitingBlocks(ExitingBlocks); 14109 14110 // Form an expression for the maximum exit count possible for this loop. We 14111 // merge the max and exact information to approximate a version of 14112 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14113 SmallVector<const SCEV*, 4> ExitCounts; 14114 for (BasicBlock *ExitingBB : ExitingBlocks) { 14115 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14116 if (isa<SCEVCouldNotCompute>(ExitCount)) 14117 ExitCount = getExitCount(L, ExitingBB, 14118 ScalarEvolution::ConstantMaximum); 14119 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14120 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14121 "We should only have known counts for exiting blocks that " 14122 "dominate latch!"); 14123 ExitCounts.push_back(ExitCount); 14124 } 14125 } 14126 if (ExitCounts.empty()) 14127 return getCouldNotCompute(); 14128 return getUMinFromMismatchedTypes(ExitCounts); 14129 } 14130 14131 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14132 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14133 /// replacement is loop invariant in the loop of the AddRec. 14134 /// 14135 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14136 /// supported. 14137 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14138 const DenseMap<const SCEV *, const SCEV *> ⤅ 14139 14140 public: 14141 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14142 DenseMap<const SCEV *, const SCEV *> &M) 14143 : SCEVRewriteVisitor(SE), Map(M) {} 14144 14145 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14146 14147 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14148 auto I = Map.find(Expr); 14149 if (I == Map.end()) 14150 return Expr; 14151 return I->second; 14152 } 14153 14154 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14155 auto I = Map.find(Expr); 14156 if (I == Map.end()) 14157 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14158 Expr); 14159 return I->second; 14160 } 14161 }; 14162 14163 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14164 SmallVector<const SCEV *> ExprsToRewrite; 14165 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14166 const SCEV *RHS, 14167 DenseMap<const SCEV *, const SCEV *> 14168 &RewriteMap) { 14169 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14170 // replacement SCEV which isn't directly implied by the structure of that 14171 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14172 // legal. See the scoping rules for flags in the header to understand why. 14173 14174 // If LHS is a constant, apply information to the other expression. 14175 if (isa<SCEVConstant>(LHS)) { 14176 std::swap(LHS, RHS); 14177 Predicate = CmpInst::getSwappedPredicate(Predicate); 14178 } 14179 14180 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14181 // create this form when combining two checks of the form (X u< C2 + C1) and 14182 // (X >=u C1). 14183 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14184 &ExprsToRewrite]() { 14185 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14186 if (!AddExpr || AddExpr->getNumOperands() != 2) 14187 return false; 14188 14189 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14190 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14191 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14192 if (!C1 || !C2 || !LHSUnknown) 14193 return false; 14194 14195 auto ExactRegion = 14196 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14197 .sub(C1->getAPInt()); 14198 14199 // Bail out, unless we have a non-wrapping, monotonic range. 14200 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14201 return false; 14202 auto I = RewriteMap.find(LHSUnknown); 14203 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14204 RewriteMap[LHSUnknown] = getUMaxExpr( 14205 getConstant(ExactRegion.getUnsignedMin()), 14206 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14207 ExprsToRewrite.push_back(LHSUnknown); 14208 return true; 14209 }; 14210 if (MatchRangeCheckIdiom()) 14211 return; 14212 14213 // If we have LHS == 0, check if LHS is computing a property of some unknown 14214 // SCEV %v which we can rewrite %v to express explicitly. 14215 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14216 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14217 RHSC->getValue()->isNullValue()) { 14218 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14219 // explicitly express that. 14220 const SCEV *URemLHS = nullptr; 14221 const SCEV *URemRHS = nullptr; 14222 if (matchURem(LHS, URemLHS, URemRHS)) { 14223 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14224 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14225 RewriteMap[LHSUnknown] = Multiple; 14226 ExprsToRewrite.push_back(LHSUnknown); 14227 return; 14228 } 14229 } 14230 } 14231 14232 // Do not apply information for constants or if RHS contains an AddRec. 14233 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14234 return; 14235 14236 // If RHS is SCEVUnknown, make sure the information is applied to it. 14237 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14238 std::swap(LHS, RHS); 14239 Predicate = CmpInst::getSwappedPredicate(Predicate); 14240 } 14241 14242 // Limit to expressions that can be rewritten. 14243 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14244 return; 14245 14246 // Check whether LHS has already been rewritten. In that case we want to 14247 // chain further rewrites onto the already rewritten value. 14248 auto I = RewriteMap.find(LHS); 14249 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14250 14251 const SCEV *RewrittenRHS = nullptr; 14252 switch (Predicate) { 14253 case CmpInst::ICMP_ULT: 14254 RewrittenRHS = 14255 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14256 break; 14257 case CmpInst::ICMP_SLT: 14258 RewrittenRHS = 14259 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14260 break; 14261 case CmpInst::ICMP_ULE: 14262 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14263 break; 14264 case CmpInst::ICMP_SLE: 14265 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14266 break; 14267 case CmpInst::ICMP_UGT: 14268 RewrittenRHS = 14269 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14270 break; 14271 case CmpInst::ICMP_SGT: 14272 RewrittenRHS = 14273 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14274 break; 14275 case CmpInst::ICMP_UGE: 14276 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14277 break; 14278 case CmpInst::ICMP_SGE: 14279 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14280 break; 14281 case CmpInst::ICMP_EQ: 14282 if (isa<SCEVConstant>(RHS)) 14283 RewrittenRHS = RHS; 14284 break; 14285 case CmpInst::ICMP_NE: 14286 if (isa<SCEVConstant>(RHS) && 14287 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14288 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14289 break; 14290 default: 14291 break; 14292 } 14293 14294 if (RewrittenRHS) { 14295 RewriteMap[LHS] = RewrittenRHS; 14296 if (LHS == RewrittenLHS) 14297 ExprsToRewrite.push_back(LHS); 14298 } 14299 }; 14300 // First, collect conditions from dominating branches. Starting at the loop 14301 // predecessor, climb up the predecessor chain, as long as there are 14302 // predecessors that can be found that have unique successors leading to the 14303 // original header. 14304 // TODO: share this logic with isLoopEntryGuardedByCond. 14305 SmallVector<std::pair<Value *, bool>> Terms; 14306 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14307 L->getLoopPredecessor(), L->getHeader()); 14308 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14309 14310 const BranchInst *LoopEntryPredicate = 14311 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14312 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14313 continue; 14314 14315 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14316 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14317 } 14318 14319 // Now apply the information from the collected conditions to RewriteMap. 14320 // Conditions are processed in reverse order, so the earliest conditions is 14321 // processed first. This ensures the SCEVs with the shortest dependency chains 14322 // are constructed first. 14323 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14324 for (auto &E : reverse(Terms)) { 14325 bool EnterIfTrue = E.second; 14326 SmallVector<Value *, 8> Worklist; 14327 SmallPtrSet<Value *, 8> Visited; 14328 Worklist.push_back(E.first); 14329 while (!Worklist.empty()) { 14330 Value *Cond = Worklist.pop_back_val(); 14331 if (!Visited.insert(Cond).second) 14332 continue; 14333 14334 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14335 auto Predicate = 14336 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14337 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14338 getSCEV(Cmp->getOperand(1)), RewriteMap); 14339 continue; 14340 } 14341 14342 Value *L, *R; 14343 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14344 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14345 Worklist.push_back(L); 14346 Worklist.push_back(R); 14347 } 14348 } 14349 } 14350 14351 // Also collect information from assumptions dominating the loop. 14352 for (auto &AssumeVH : AC.assumptions()) { 14353 if (!AssumeVH) 14354 continue; 14355 auto *AssumeI = cast<CallInst>(AssumeVH); 14356 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14357 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14358 continue; 14359 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14360 getSCEV(Cmp->getOperand(1)), RewriteMap); 14361 } 14362 14363 if (RewriteMap.empty()) 14364 return Expr; 14365 14366 // Now that all rewrite information is collect, rewrite the collected 14367 // expressions with the information in the map. This applies information to 14368 // sub-expressions. 14369 if (ExprsToRewrite.size() > 1) { 14370 for (const SCEV *Expr : ExprsToRewrite) { 14371 const SCEV *RewriteTo = RewriteMap[Expr]; 14372 RewriteMap.erase(Expr); 14373 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14374 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14375 } 14376 } 14377 14378 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14379 return Rewriter.visit(Expr); 14380 } 14381