1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/Instructions.h" 67 #include "llvm/LLVMContext.h" 68 #include "llvm/Operator.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/Dominators.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/Assembly/Writer.h" 74 #include "llvm/Target/TargetData.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/ErrorHandling.h" 79 #include "llvm/Support/GetElementPtrTypeIterator.h" 80 #include "llvm/Support/InstIterator.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/ADT/Statistic.h" 84 #include "llvm/ADT/STLExtras.h" 85 #include "llvm/ADT/SmallPtrSet.h" 86 #include <algorithm> 87 using namespace llvm; 88 89 STATISTIC(NumArrayLenItCounts, 90 "Number of trip counts computed with array length"); 91 STATISTIC(NumTripCountsComputed, 92 "Number of loops with predictable loop counts"); 93 STATISTIC(NumTripCountsNotComputed, 94 "Number of loops without predictable loop counts"); 95 STATISTIC(NumBruteForceTripCountsComputed, 96 "Number of loops with trip counts computed by force"); 97 98 static cl::opt<unsigned> 99 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 100 cl::desc("Maximum number of iterations SCEV will " 101 "symbolically execute a constant " 102 "derived loop"), 103 cl::init(100)); 104 105 static RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 107 char ScalarEvolution::ID = 0; 108 109 //===----------------------------------------------------------------------===// 110 // SCEV class definitions 111 //===----------------------------------------------------------------------===// 112 113 //===----------------------------------------------------------------------===// 114 // Implementation of the SCEV class. 115 // 116 117 SCEV::~SCEV() {} 118 119 void SCEV::dump() const { 120 print(errs()); 121 errs() << '\n'; 122 } 123 124 bool SCEV::isZero() const { 125 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 126 return SC->getValue()->isZero(); 127 return false; 128 } 129 130 bool SCEV::isOne() const { 131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 132 return SC->getValue()->isOne(); 133 return false; 134 } 135 136 bool SCEV::isAllOnesValue() const { 137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 138 return SC->getValue()->isAllOnesValue(); 139 return false; 140 } 141 142 SCEVCouldNotCompute::SCEVCouldNotCompute() : 143 SCEV(FoldingSetNodeID(), scCouldNotCompute) {} 144 145 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 146 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 147 return false; 148 } 149 150 const Type *SCEVCouldNotCompute::getType() const { 151 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 152 return 0; 153 } 154 155 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 156 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 157 return false; 158 } 159 160 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 161 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 162 return false; 163 } 164 165 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 166 OS << "***COULDNOTCOMPUTE***"; 167 } 168 169 bool SCEVCouldNotCompute::classof(const SCEV *S) { 170 return S->getSCEVType() == scCouldNotCompute; 171 } 172 173 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 174 FoldingSetNodeID ID; 175 ID.AddInteger(scConstant); 176 ID.AddPointer(V); 177 void *IP = 0; 178 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 179 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); 180 new (S) SCEVConstant(ID, V); 181 UniqueSCEVs.InsertNode(S, IP); 182 return S; 183 } 184 185 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 186 return getConstant(ConstantInt::get(getContext(), Val)); 187 } 188 189 const SCEV * 190 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 191 return getConstant( 192 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 193 } 194 195 const Type *SCEVConstant::getType() const { return V->getType(); } 196 197 void SCEVConstant::print(raw_ostream &OS) const { 198 WriteAsOperand(OS, V, false); 199 } 200 201 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID, 202 unsigned SCEVTy, const SCEV *op, const Type *ty) 203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 204 205 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 206 return Op->dominates(BB, DT); 207 } 208 209 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID, 210 const SCEV *op, const Type *ty) 211 : SCEVCastExpr(ID, scTruncate, op, ty) { 212 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 213 (Ty->isInteger() || isa<PointerType>(Ty)) && 214 "Cannot truncate non-integer value!"); 215 } 216 217 void SCEVTruncateExpr::print(raw_ostream &OS) const { 218 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 219 } 220 221 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID, 222 const SCEV *op, const Type *ty) 223 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 224 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 225 (Ty->isInteger() || isa<PointerType>(Ty)) && 226 "Cannot zero extend non-integer value!"); 227 } 228 229 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 230 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 231 } 232 233 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID, 234 const SCEV *op, const Type *ty) 235 : SCEVCastExpr(ID, scSignExtend, op, ty) { 236 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 237 (Ty->isInteger() || isa<PointerType>(Ty)) && 238 "Cannot sign extend non-integer value!"); 239 } 240 241 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 242 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 243 } 244 245 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 246 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 247 const char *OpStr = getOperationStr(); 248 OS << "(" << *Operands[0]; 249 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 250 OS << OpStr << *Operands[i]; 251 OS << ")"; 252 } 253 254 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 255 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 256 if (!getOperand(i)->dominates(BB, DT)) 257 return false; 258 } 259 return true; 260 } 261 262 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 263 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 264 } 265 266 void SCEVUDivExpr::print(raw_ostream &OS) const { 267 OS << "(" << *LHS << " /u " << *RHS << ")"; 268 } 269 270 const Type *SCEVUDivExpr::getType() const { 271 // In most cases the types of LHS and RHS will be the same, but in some 272 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 273 // depend on the type for correctness, but handling types carefully can 274 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 275 // a pointer type than the RHS, so use the RHS' type here. 276 return RHS->getType(); 277 } 278 279 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 280 // Add recurrences are never invariant in the function-body (null loop). 281 if (!QueryLoop) 282 return false; 283 284 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 285 if (QueryLoop->contains(L->getHeader())) 286 return false; 287 288 // This recurrence is variant w.r.t. QueryLoop if any of its operands 289 // are variant. 290 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 291 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 292 return false; 293 294 // Otherwise it's loop-invariant. 295 return true; 296 } 297 298 void SCEVAddRecExpr::print(raw_ostream &OS) const { 299 OS << "{" << *Operands[0]; 300 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 301 OS << ",+," << *Operands[i]; 302 OS << "}<" << L->getHeader()->getName() + ">"; 303 } 304 305 void SCEVFieldOffsetExpr::print(raw_ostream &OS) const { 306 // LLVM struct fields don't have names, so just print the field number. 307 OS << "offsetof(" << *STy << ", " << FieldNo << ")"; 308 } 309 310 void SCEVAllocSizeExpr::print(raw_ostream &OS) const { 311 OS << "sizeof(" << *AllocTy << ")"; 312 } 313 314 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 315 // All non-instruction values are loop invariant. All instructions are loop 316 // invariant if they are not contained in the specified loop. 317 // Instructions are never considered invariant in the function body 318 // (null loop) because they are defined within the "loop". 319 if (Instruction *I = dyn_cast<Instruction>(V)) 320 return L && !L->contains(I->getParent()); 321 return true; 322 } 323 324 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 325 if (Instruction *I = dyn_cast<Instruction>(getValue())) 326 return DT->dominates(I->getParent(), BB); 327 return true; 328 } 329 330 const Type *SCEVUnknown::getType() const { 331 return V->getType(); 332 } 333 334 void SCEVUnknown::print(raw_ostream &OS) const { 335 WriteAsOperand(OS, V, false); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // SCEV Utilities 340 //===----------------------------------------------------------------------===// 341 342 static bool CompareTypes(const Type *A, const Type *B) { 343 if (A->getTypeID() != B->getTypeID()) 344 return A->getTypeID() < B->getTypeID(); 345 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 346 const IntegerType *BI = cast<IntegerType>(B); 347 return AI->getBitWidth() < BI->getBitWidth(); 348 } 349 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 350 const PointerType *BI = cast<PointerType>(B); 351 return CompareTypes(AI->getElementType(), BI->getElementType()); 352 } 353 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 354 const ArrayType *BI = cast<ArrayType>(B); 355 if (AI->getNumElements() != BI->getNumElements()) 356 return AI->getNumElements() < BI->getNumElements(); 357 return CompareTypes(AI->getElementType(), BI->getElementType()); 358 } 359 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 360 const VectorType *BI = cast<VectorType>(B); 361 if (AI->getNumElements() != BI->getNumElements()) 362 return AI->getNumElements() < BI->getNumElements(); 363 return CompareTypes(AI->getElementType(), BI->getElementType()); 364 } 365 if (const StructType *AI = dyn_cast<StructType>(A)) { 366 const StructType *BI = cast<StructType>(B); 367 if (AI->getNumElements() != BI->getNumElements()) 368 return AI->getNumElements() < BI->getNumElements(); 369 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 370 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 371 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 372 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 373 } 374 return false; 375 } 376 377 namespace { 378 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 379 /// than the complexity of the RHS. This comparator is used to canonicalize 380 /// expressions. 381 class VISIBILITY_HIDDEN SCEVComplexityCompare { 382 LoopInfo *LI; 383 public: 384 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 385 386 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 387 // Primarily, sort the SCEVs by their getSCEVType(). 388 if (LHS->getSCEVType() != RHS->getSCEVType()) 389 return LHS->getSCEVType() < RHS->getSCEVType(); 390 391 // Aside from the getSCEVType() ordering, the particular ordering 392 // isn't very important except that it's beneficial to be consistent, 393 // so that (a + b) and (b + a) don't end up as different expressions. 394 395 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 396 // not as complete as it could be. 397 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 398 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 399 400 // Order pointer values after integer values. This helps SCEVExpander 401 // form GEPs. 402 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType())) 403 return false; 404 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType())) 405 return true; 406 407 // Compare getValueID values. 408 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 409 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 410 411 // Sort arguments by their position. 412 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 413 const Argument *RA = cast<Argument>(RU->getValue()); 414 return LA->getArgNo() < RA->getArgNo(); 415 } 416 417 // For instructions, compare their loop depth, and their opcode. 418 // This is pretty loose. 419 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 420 Instruction *RV = cast<Instruction>(RU->getValue()); 421 422 // Compare loop depths. 423 if (LI->getLoopDepth(LV->getParent()) != 424 LI->getLoopDepth(RV->getParent())) 425 return LI->getLoopDepth(LV->getParent()) < 426 LI->getLoopDepth(RV->getParent()); 427 428 // Compare opcodes. 429 if (LV->getOpcode() != RV->getOpcode()) 430 return LV->getOpcode() < RV->getOpcode(); 431 432 // Compare the number of operands. 433 if (LV->getNumOperands() != RV->getNumOperands()) 434 return LV->getNumOperands() < RV->getNumOperands(); 435 } 436 437 return false; 438 } 439 440 // Compare constant values. 441 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 442 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 443 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 444 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 445 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 446 } 447 448 // Compare addrec loop depths. 449 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 450 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 451 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 452 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 453 } 454 455 // Lexicographically compare n-ary expressions. 456 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 457 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 458 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 459 if (i >= RC->getNumOperands()) 460 return false; 461 if (operator()(LC->getOperand(i), RC->getOperand(i))) 462 return true; 463 if (operator()(RC->getOperand(i), LC->getOperand(i))) 464 return false; 465 } 466 return LC->getNumOperands() < RC->getNumOperands(); 467 } 468 469 // Lexicographically compare udiv expressions. 470 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 471 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 472 if (operator()(LC->getLHS(), RC->getLHS())) 473 return true; 474 if (operator()(RC->getLHS(), LC->getLHS())) 475 return false; 476 if (operator()(LC->getRHS(), RC->getRHS())) 477 return true; 478 if (operator()(RC->getRHS(), LC->getRHS())) 479 return false; 480 return false; 481 } 482 483 // Compare cast expressions by operand. 484 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 485 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 486 return operator()(LC->getOperand(), RC->getOperand()); 487 } 488 489 // Compare offsetof expressions. 490 if (const SCEVFieldOffsetExpr *LA = dyn_cast<SCEVFieldOffsetExpr>(LHS)) { 491 const SCEVFieldOffsetExpr *RA = cast<SCEVFieldOffsetExpr>(RHS); 492 if (CompareTypes(LA->getStructType(), RA->getStructType()) || 493 CompareTypes(RA->getStructType(), LA->getStructType())) 494 return CompareTypes(LA->getStructType(), RA->getStructType()); 495 return LA->getFieldNo() < RA->getFieldNo(); 496 } 497 498 // Compare sizeof expressions by the allocation type. 499 if (const SCEVAllocSizeExpr *LA = dyn_cast<SCEVAllocSizeExpr>(LHS)) { 500 const SCEVAllocSizeExpr *RA = cast<SCEVAllocSizeExpr>(RHS); 501 return CompareTypes(LA->getAllocType(), RA->getAllocType()); 502 } 503 504 llvm_unreachable("Unknown SCEV kind!"); 505 return false; 506 } 507 }; 508 } 509 510 /// GroupByComplexity - Given a list of SCEV objects, order them by their 511 /// complexity, and group objects of the same complexity together by value. 512 /// When this routine is finished, we know that any duplicates in the vector are 513 /// consecutive and that complexity is monotonically increasing. 514 /// 515 /// Note that we go take special precautions to ensure that we get determinstic 516 /// results from this routine. In other words, we don't want the results of 517 /// this to depend on where the addresses of various SCEV objects happened to 518 /// land in memory. 519 /// 520 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 521 LoopInfo *LI) { 522 if (Ops.size() < 2) return; // Noop 523 if (Ops.size() == 2) { 524 // This is the common case, which also happens to be trivially simple. 525 // Special case it. 526 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 527 std::swap(Ops[0], Ops[1]); 528 return; 529 } 530 531 // Do the rough sort by complexity. 532 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 533 534 // Now that we are sorted by complexity, group elements of the same 535 // complexity. Note that this is, at worst, N^2, but the vector is likely to 536 // be extremely short in practice. Note that we take this approach because we 537 // do not want to depend on the addresses of the objects we are grouping. 538 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 539 const SCEV *S = Ops[i]; 540 unsigned Complexity = S->getSCEVType(); 541 542 // If there are any objects of the same complexity and same value as this 543 // one, group them. 544 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 545 if (Ops[j] == S) { // Found a duplicate. 546 // Move it to immediately after i'th element. 547 std::swap(Ops[i+1], Ops[j]); 548 ++i; // no need to rescan it. 549 if (i == e-2) return; // Done! 550 } 551 } 552 } 553 } 554 555 556 557 //===----------------------------------------------------------------------===// 558 // Simple SCEV method implementations 559 //===----------------------------------------------------------------------===// 560 561 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 562 /// Assume, K > 0. 563 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 564 ScalarEvolution &SE, 565 const Type* ResultTy) { 566 // Handle the simplest case efficiently. 567 if (K == 1) 568 return SE.getTruncateOrZeroExtend(It, ResultTy); 569 570 // We are using the following formula for BC(It, K): 571 // 572 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 573 // 574 // Suppose, W is the bitwidth of the return value. We must be prepared for 575 // overflow. Hence, we must assure that the result of our computation is 576 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 577 // safe in modular arithmetic. 578 // 579 // However, this code doesn't use exactly that formula; the formula it uses 580 // is something like the following, where T is the number of factors of 2 in 581 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 582 // exponentiation: 583 // 584 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 585 // 586 // This formula is trivially equivalent to the previous formula. However, 587 // this formula can be implemented much more efficiently. The trick is that 588 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 589 // arithmetic. To do exact division in modular arithmetic, all we have 590 // to do is multiply by the inverse. Therefore, this step can be done at 591 // width W. 592 // 593 // The next issue is how to safely do the division by 2^T. The way this 594 // is done is by doing the multiplication step at a width of at least W + T 595 // bits. This way, the bottom W+T bits of the product are accurate. Then, 596 // when we perform the division by 2^T (which is equivalent to a right shift 597 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 598 // truncated out after the division by 2^T. 599 // 600 // In comparison to just directly using the first formula, this technique 601 // is much more efficient; using the first formula requires W * K bits, 602 // but this formula less than W + K bits. Also, the first formula requires 603 // a division step, whereas this formula only requires multiplies and shifts. 604 // 605 // It doesn't matter whether the subtraction step is done in the calculation 606 // width or the input iteration count's width; if the subtraction overflows, 607 // the result must be zero anyway. We prefer here to do it in the width of 608 // the induction variable because it helps a lot for certain cases; CodeGen 609 // isn't smart enough to ignore the overflow, which leads to much less 610 // efficient code if the width of the subtraction is wider than the native 611 // register width. 612 // 613 // (It's possible to not widen at all by pulling out factors of 2 before 614 // the multiplication; for example, K=2 can be calculated as 615 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 616 // extra arithmetic, so it's not an obvious win, and it gets 617 // much more complicated for K > 3.) 618 619 // Protection from insane SCEVs; this bound is conservative, 620 // but it probably doesn't matter. 621 if (K > 1000) 622 return SE.getCouldNotCompute(); 623 624 unsigned W = SE.getTypeSizeInBits(ResultTy); 625 626 // Calculate K! / 2^T and T; we divide out the factors of two before 627 // multiplying for calculating K! / 2^T to avoid overflow. 628 // Other overflow doesn't matter because we only care about the bottom 629 // W bits of the result. 630 APInt OddFactorial(W, 1); 631 unsigned T = 1; 632 for (unsigned i = 3; i <= K; ++i) { 633 APInt Mult(W, i); 634 unsigned TwoFactors = Mult.countTrailingZeros(); 635 T += TwoFactors; 636 Mult = Mult.lshr(TwoFactors); 637 OddFactorial *= Mult; 638 } 639 640 // We need at least W + T bits for the multiplication step 641 unsigned CalculationBits = W + T; 642 643 // Calcuate 2^T, at width T+W. 644 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 645 646 // Calculate the multiplicative inverse of K! / 2^T; 647 // this multiplication factor will perform the exact division by 648 // K! / 2^T. 649 APInt Mod = APInt::getSignedMinValue(W+1); 650 APInt MultiplyFactor = OddFactorial.zext(W+1); 651 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 652 MultiplyFactor = MultiplyFactor.trunc(W); 653 654 // Calculate the product, at width T+W 655 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 656 CalculationBits); 657 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 658 for (unsigned i = 1; i != K; ++i) { 659 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 660 Dividend = SE.getMulExpr(Dividend, 661 SE.getTruncateOrZeroExtend(S, CalculationTy)); 662 } 663 664 // Divide by 2^T 665 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 666 667 // Truncate the result, and divide by K! / 2^T. 668 669 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 670 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 671 } 672 673 /// evaluateAtIteration - Return the value of this chain of recurrences at 674 /// the specified iteration number. We can evaluate this recurrence by 675 /// multiplying each element in the chain by the binomial coefficient 676 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 677 /// 678 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 679 /// 680 /// where BC(It, k) stands for binomial coefficient. 681 /// 682 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 683 ScalarEvolution &SE) const { 684 const SCEV *Result = getStart(); 685 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 686 // The computation is correct in the face of overflow provided that the 687 // multiplication is performed _after_ the evaluation of the binomial 688 // coefficient. 689 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 690 if (isa<SCEVCouldNotCompute>(Coeff)) 691 return Coeff; 692 693 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 694 } 695 return Result; 696 } 697 698 //===----------------------------------------------------------------------===// 699 // SCEV Expression folder implementations 700 //===----------------------------------------------------------------------===// 701 702 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 703 const Type *Ty) { 704 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 705 "This is not a truncating conversion!"); 706 assert(isSCEVable(Ty) && 707 "This is not a conversion to a SCEVable type!"); 708 Ty = getEffectiveSCEVType(Ty); 709 710 FoldingSetNodeID ID; 711 ID.AddInteger(scTruncate); 712 ID.AddPointer(Op); 713 ID.AddPointer(Ty); 714 void *IP = 0; 715 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 716 717 // Fold if the operand is constant. 718 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 719 return getConstant( 720 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 721 722 // trunc(trunc(x)) --> trunc(x) 723 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 724 return getTruncateExpr(ST->getOperand(), Ty); 725 726 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 727 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 728 return getTruncateOrSignExtend(SS->getOperand(), Ty); 729 730 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 731 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 732 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 733 734 // If the input value is a chrec scev, truncate the chrec's operands. 735 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 736 SmallVector<const SCEV *, 4> Operands; 737 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 738 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 739 return getAddRecExpr(Operands, AddRec->getLoop()); 740 } 741 742 // The cast wasn't folded; create an explicit cast node. 743 // Recompute the insert position, as it may have been invalidated. 744 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 745 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); 746 new (S) SCEVTruncateExpr(ID, Op, Ty); 747 UniqueSCEVs.InsertNode(S, IP); 748 return S; 749 } 750 751 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 752 const Type *Ty) { 753 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 754 "This is not an extending conversion!"); 755 assert(isSCEVable(Ty) && 756 "This is not a conversion to a SCEVable type!"); 757 Ty = getEffectiveSCEVType(Ty); 758 759 // Fold if the operand is constant. 760 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 761 const Type *IntTy = getEffectiveSCEVType(Ty); 762 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 763 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 764 return getConstant(cast<ConstantInt>(C)); 765 } 766 767 // zext(zext(x)) --> zext(x) 768 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 769 return getZeroExtendExpr(SZ->getOperand(), Ty); 770 771 // Before doing any expensive analysis, check to see if we've already 772 // computed a SCEV for this Op and Ty. 773 FoldingSetNodeID ID; 774 ID.AddInteger(scZeroExtend); 775 ID.AddPointer(Op); 776 ID.AddPointer(Ty); 777 void *IP = 0; 778 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 779 780 // If the input value is a chrec scev, and we can prove that the value 781 // did not overflow the old, smaller, value, we can zero extend all of the 782 // operands (often constants). This allows analysis of something like 783 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 784 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 785 if (AR->isAffine()) { 786 const SCEV *Start = AR->getStart(); 787 const SCEV *Step = AR->getStepRecurrence(*this); 788 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 789 const Loop *L = AR->getLoop(); 790 791 // If we have special knowledge that this addrec won't overflow, 792 // we don't need to do any further analysis. 793 if (AR->hasNoUnsignedWrap()) 794 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 795 getZeroExtendExpr(Step, Ty), 796 L); 797 798 // Check whether the backedge-taken count is SCEVCouldNotCompute. 799 // Note that this serves two purposes: It filters out loops that are 800 // simply not analyzable, and it covers the case where this code is 801 // being called from within backedge-taken count analysis, such that 802 // attempting to ask for the backedge-taken count would likely result 803 // in infinite recursion. In the later case, the analysis code will 804 // cope with a conservative value, and it will take care to purge 805 // that value once it has finished. 806 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 807 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 808 // Manually compute the final value for AR, checking for 809 // overflow. 810 811 // Check whether the backedge-taken count can be losslessly casted to 812 // the addrec's type. The count is always unsigned. 813 const SCEV *CastedMaxBECount = 814 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 815 const SCEV *RecastedMaxBECount = 816 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 817 if (MaxBECount == RecastedMaxBECount) { 818 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 819 // Check whether Start+Step*MaxBECount has no unsigned overflow. 820 const SCEV *ZMul = 821 getMulExpr(CastedMaxBECount, 822 getTruncateOrZeroExtend(Step, Start->getType())); 823 const SCEV *Add = getAddExpr(Start, ZMul); 824 const SCEV *OperandExtendedAdd = 825 getAddExpr(getZeroExtendExpr(Start, WideTy), 826 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 827 getZeroExtendExpr(Step, WideTy))); 828 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 829 // Return the expression with the addrec on the outside. 830 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 831 getZeroExtendExpr(Step, Ty), 832 L); 833 834 // Similar to above, only this time treat the step value as signed. 835 // This covers loops that count down. 836 const SCEV *SMul = 837 getMulExpr(CastedMaxBECount, 838 getTruncateOrSignExtend(Step, Start->getType())); 839 Add = getAddExpr(Start, SMul); 840 OperandExtendedAdd = 841 getAddExpr(getZeroExtendExpr(Start, WideTy), 842 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 843 getSignExtendExpr(Step, WideTy))); 844 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 845 // Return the expression with the addrec on the outside. 846 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 847 getSignExtendExpr(Step, Ty), 848 L); 849 } 850 851 // If the backedge is guarded by a comparison with the pre-inc value 852 // the addrec is safe. Also, if the entry is guarded by a comparison 853 // with the start value and the backedge is guarded by a comparison 854 // with the post-inc value, the addrec is safe. 855 if (isKnownPositive(Step)) { 856 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 857 getUnsignedRange(Step).getUnsignedMax()); 858 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 859 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 860 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 861 AR->getPostIncExpr(*this), N))) 862 // Return the expression with the addrec on the outside. 863 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 864 getZeroExtendExpr(Step, Ty), 865 L); 866 } else if (isKnownNegative(Step)) { 867 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 868 getSignedRange(Step).getSignedMin()); 869 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) && 870 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) || 871 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 872 AR->getPostIncExpr(*this), N))) 873 // Return the expression with the addrec on the outside. 874 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 875 getSignExtendExpr(Step, Ty), 876 L); 877 } 878 } 879 } 880 881 // The cast wasn't folded; create an explicit cast node. 882 // Recompute the insert position, as it may have been invalidated. 883 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 884 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); 885 new (S) SCEVZeroExtendExpr(ID, Op, Ty); 886 UniqueSCEVs.InsertNode(S, IP); 887 return S; 888 } 889 890 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 891 const Type *Ty) { 892 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 893 "This is not an extending conversion!"); 894 assert(isSCEVable(Ty) && 895 "This is not a conversion to a SCEVable type!"); 896 Ty = getEffectiveSCEVType(Ty); 897 898 // Fold if the operand is constant. 899 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 900 const Type *IntTy = getEffectiveSCEVType(Ty); 901 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 902 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 903 return getConstant(cast<ConstantInt>(C)); 904 } 905 906 // sext(sext(x)) --> sext(x) 907 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 908 return getSignExtendExpr(SS->getOperand(), Ty); 909 910 // Before doing any expensive analysis, check to see if we've already 911 // computed a SCEV for this Op and Ty. 912 FoldingSetNodeID ID; 913 ID.AddInteger(scSignExtend); 914 ID.AddPointer(Op); 915 ID.AddPointer(Ty); 916 void *IP = 0; 917 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 918 919 // If the input value is a chrec scev, and we can prove that the value 920 // did not overflow the old, smaller, value, we can sign extend all of the 921 // operands (often constants). This allows analysis of something like 922 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 923 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 924 if (AR->isAffine()) { 925 const SCEV *Start = AR->getStart(); 926 const SCEV *Step = AR->getStepRecurrence(*this); 927 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 928 const Loop *L = AR->getLoop(); 929 930 // If we have special knowledge that this addrec won't overflow, 931 // we don't need to do any further analysis. 932 if (AR->hasNoSignedWrap()) 933 return getAddRecExpr(getSignExtendExpr(Start, Ty), 934 getSignExtendExpr(Step, Ty), 935 L); 936 937 // Check whether the backedge-taken count is SCEVCouldNotCompute. 938 // Note that this serves two purposes: It filters out loops that are 939 // simply not analyzable, and it covers the case where this code is 940 // being called from within backedge-taken count analysis, such that 941 // attempting to ask for the backedge-taken count would likely result 942 // in infinite recursion. In the later case, the analysis code will 943 // cope with a conservative value, and it will take care to purge 944 // that value once it has finished. 945 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 946 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 947 // Manually compute the final value for AR, checking for 948 // overflow. 949 950 // Check whether the backedge-taken count can be losslessly casted to 951 // the addrec's type. The count is always unsigned. 952 const SCEV *CastedMaxBECount = 953 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 954 const SCEV *RecastedMaxBECount = 955 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 956 if (MaxBECount == RecastedMaxBECount) { 957 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 958 // Check whether Start+Step*MaxBECount has no signed overflow. 959 const SCEV *SMul = 960 getMulExpr(CastedMaxBECount, 961 getTruncateOrSignExtend(Step, Start->getType())); 962 const SCEV *Add = getAddExpr(Start, SMul); 963 const SCEV *OperandExtendedAdd = 964 getAddExpr(getSignExtendExpr(Start, WideTy), 965 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 966 getSignExtendExpr(Step, WideTy))); 967 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 968 // Return the expression with the addrec on the outside. 969 return getAddRecExpr(getSignExtendExpr(Start, Ty), 970 getSignExtendExpr(Step, Ty), 971 L); 972 973 // Similar to above, only this time treat the step value as unsigned. 974 // This covers loops that count up with an unsigned step. 975 const SCEV *UMul = 976 getMulExpr(CastedMaxBECount, 977 getTruncateOrZeroExtend(Step, Start->getType())); 978 Add = getAddExpr(Start, UMul); 979 OperandExtendedAdd = 980 getAddExpr(getSignExtendExpr(Start, WideTy), 981 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 982 getZeroExtendExpr(Step, WideTy))); 983 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 984 // Return the expression with the addrec on the outside. 985 return getAddRecExpr(getSignExtendExpr(Start, Ty), 986 getZeroExtendExpr(Step, Ty), 987 L); 988 } 989 990 // If the backedge is guarded by a comparison with the pre-inc value 991 // the addrec is safe. Also, if the entry is guarded by a comparison 992 // with the start value and the backedge is guarded by a comparison 993 // with the post-inc value, the addrec is safe. 994 if (isKnownPositive(Step)) { 995 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 996 getSignedRange(Step).getSignedMax()); 997 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 998 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 999 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1000 AR->getPostIncExpr(*this), N))) 1001 // Return the expression with the addrec on the outside. 1002 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1003 getSignExtendExpr(Step, Ty), 1004 L); 1005 } else if (isKnownNegative(Step)) { 1006 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1007 getSignedRange(Step).getSignedMin()); 1008 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1009 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1010 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1011 AR->getPostIncExpr(*this), N))) 1012 // Return the expression with the addrec on the outside. 1013 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1014 getSignExtendExpr(Step, Ty), 1015 L); 1016 } 1017 } 1018 } 1019 1020 // The cast wasn't folded; create an explicit cast node. 1021 // Recompute the insert position, as it may have been invalidated. 1022 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1023 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); 1024 new (S) SCEVSignExtendExpr(ID, Op, Ty); 1025 UniqueSCEVs.InsertNode(S, IP); 1026 return S; 1027 } 1028 1029 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1030 /// unspecified bits out to the given type. 1031 /// 1032 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1033 const Type *Ty) { 1034 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1035 "This is not an extending conversion!"); 1036 assert(isSCEVable(Ty) && 1037 "This is not a conversion to a SCEVable type!"); 1038 Ty = getEffectiveSCEVType(Ty); 1039 1040 // Sign-extend negative constants. 1041 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1042 if (SC->getValue()->getValue().isNegative()) 1043 return getSignExtendExpr(Op, Ty); 1044 1045 // Peel off a truncate cast. 1046 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1047 const SCEV *NewOp = T->getOperand(); 1048 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1049 return getAnyExtendExpr(NewOp, Ty); 1050 return getTruncateOrNoop(NewOp, Ty); 1051 } 1052 1053 // Next try a zext cast. If the cast is folded, use it. 1054 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1055 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1056 return ZExt; 1057 1058 // Next try a sext cast. If the cast is folded, use it. 1059 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1060 if (!isa<SCEVSignExtendExpr>(SExt)) 1061 return SExt; 1062 1063 // If the expression is obviously signed, use the sext cast value. 1064 if (isa<SCEVSMaxExpr>(Op)) 1065 return SExt; 1066 1067 // Absent any other information, use the zext cast value. 1068 return ZExt; 1069 } 1070 1071 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1072 /// a list of operands to be added under the given scale, update the given 1073 /// map. This is a helper function for getAddRecExpr. As an example of 1074 /// what it does, given a sequence of operands that would form an add 1075 /// expression like this: 1076 /// 1077 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1078 /// 1079 /// where A and B are constants, update the map with these values: 1080 /// 1081 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1082 /// 1083 /// and add 13 + A*B*29 to AccumulatedConstant. 1084 /// This will allow getAddRecExpr to produce this: 1085 /// 1086 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1087 /// 1088 /// This form often exposes folding opportunities that are hidden in 1089 /// the original operand list. 1090 /// 1091 /// Return true iff it appears that any interesting folding opportunities 1092 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1093 /// the common case where no interesting opportunities are present, and 1094 /// is also used as a check to avoid infinite recursion. 1095 /// 1096 static bool 1097 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1098 SmallVector<const SCEV *, 8> &NewOps, 1099 APInt &AccumulatedConstant, 1100 const SmallVectorImpl<const SCEV *> &Ops, 1101 const APInt &Scale, 1102 ScalarEvolution &SE) { 1103 bool Interesting = false; 1104 1105 // Iterate over the add operands. 1106 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1107 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1108 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1109 APInt NewScale = 1110 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1111 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1112 // A multiplication of a constant with another add; recurse. 1113 Interesting |= 1114 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1115 cast<SCEVAddExpr>(Mul->getOperand(1)) 1116 ->getOperands(), 1117 NewScale, SE); 1118 } else { 1119 // A multiplication of a constant with some other value. Update 1120 // the map. 1121 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1122 const SCEV *Key = SE.getMulExpr(MulOps); 1123 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1124 M.insert(std::make_pair(Key, NewScale)); 1125 if (Pair.second) { 1126 NewOps.push_back(Pair.first->first); 1127 } else { 1128 Pair.first->second += NewScale; 1129 // The map already had an entry for this value, which may indicate 1130 // a folding opportunity. 1131 Interesting = true; 1132 } 1133 } 1134 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1135 // Pull a buried constant out to the outside. 1136 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1137 Interesting = true; 1138 AccumulatedConstant += Scale * C->getValue()->getValue(); 1139 } else { 1140 // An ordinary operand. Update the map. 1141 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1142 M.insert(std::make_pair(Ops[i], Scale)); 1143 if (Pair.second) { 1144 NewOps.push_back(Pair.first->first); 1145 } else { 1146 Pair.first->second += Scale; 1147 // The map already had an entry for this value, which may indicate 1148 // a folding opportunity. 1149 Interesting = true; 1150 } 1151 } 1152 } 1153 1154 return Interesting; 1155 } 1156 1157 namespace { 1158 struct APIntCompare { 1159 bool operator()(const APInt &LHS, const APInt &RHS) const { 1160 return LHS.ult(RHS); 1161 } 1162 }; 1163 } 1164 1165 /// getAddExpr - Get a canonical add expression, or something simpler if 1166 /// possible. 1167 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) { 1168 assert(!Ops.empty() && "Cannot get empty add!"); 1169 if (Ops.size() == 1) return Ops[0]; 1170 #ifndef NDEBUG 1171 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1172 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1173 getEffectiveSCEVType(Ops[0]->getType()) && 1174 "SCEVAddExpr operand types don't match!"); 1175 #endif 1176 1177 // Sort by complexity, this groups all similar expression types together. 1178 GroupByComplexity(Ops, LI); 1179 1180 // If there are any constants, fold them together. 1181 unsigned Idx = 0; 1182 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1183 ++Idx; 1184 assert(Idx < Ops.size()); 1185 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1186 // We found two constants, fold them together! 1187 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1188 RHSC->getValue()->getValue()); 1189 if (Ops.size() == 2) return Ops[0]; 1190 Ops.erase(Ops.begin()+1); // Erase the folded element 1191 LHSC = cast<SCEVConstant>(Ops[0]); 1192 } 1193 1194 // If we are left with a constant zero being added, strip it off. 1195 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1196 Ops.erase(Ops.begin()); 1197 --Idx; 1198 } 1199 } 1200 1201 if (Ops.size() == 1) return Ops[0]; 1202 1203 // Okay, check to see if the same value occurs in the operand list twice. If 1204 // so, merge them together into an multiply expression. Since we sorted the 1205 // list, these values are required to be adjacent. 1206 const Type *Ty = Ops[0]->getType(); 1207 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1208 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1209 // Found a match, merge the two values into a multiply, and add any 1210 // remaining values to the result. 1211 const SCEV *Two = getIntegerSCEV(2, Ty); 1212 const SCEV *Mul = getMulExpr(Ops[i], Two); 1213 if (Ops.size() == 2) 1214 return Mul; 1215 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1216 Ops.push_back(Mul); 1217 return getAddExpr(Ops); 1218 } 1219 1220 // Check for truncates. If all the operands are truncated from the same 1221 // type, see if factoring out the truncate would permit the result to be 1222 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1223 // if the contents of the resulting outer trunc fold to something simple. 1224 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1225 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1226 const Type *DstType = Trunc->getType(); 1227 const Type *SrcType = Trunc->getOperand()->getType(); 1228 SmallVector<const SCEV *, 8> LargeOps; 1229 bool Ok = true; 1230 // Check all the operands to see if they can be represented in the 1231 // source type of the truncate. 1232 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1233 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1234 if (T->getOperand()->getType() != SrcType) { 1235 Ok = false; 1236 break; 1237 } 1238 LargeOps.push_back(T->getOperand()); 1239 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1240 // This could be either sign or zero extension, but sign extension 1241 // is much more likely to be foldable here. 1242 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1243 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1244 SmallVector<const SCEV *, 8> LargeMulOps; 1245 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1246 if (const SCEVTruncateExpr *T = 1247 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1248 if (T->getOperand()->getType() != SrcType) { 1249 Ok = false; 1250 break; 1251 } 1252 LargeMulOps.push_back(T->getOperand()); 1253 } else if (const SCEVConstant *C = 1254 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1255 // This could be either sign or zero extension, but sign extension 1256 // is much more likely to be foldable here. 1257 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1258 } else { 1259 Ok = false; 1260 break; 1261 } 1262 } 1263 if (Ok) 1264 LargeOps.push_back(getMulExpr(LargeMulOps)); 1265 } else { 1266 Ok = false; 1267 break; 1268 } 1269 } 1270 if (Ok) { 1271 // Evaluate the expression in the larger type. 1272 const SCEV *Fold = getAddExpr(LargeOps); 1273 // If it folds to something simple, use it. Otherwise, don't. 1274 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1275 return getTruncateExpr(Fold, DstType); 1276 } 1277 } 1278 1279 // Skip past any other cast SCEVs. 1280 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1281 ++Idx; 1282 1283 // If there are add operands they would be next. 1284 if (Idx < Ops.size()) { 1285 bool DeletedAdd = false; 1286 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1287 // If we have an add, expand the add operands onto the end of the operands 1288 // list. 1289 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1290 Ops.erase(Ops.begin()+Idx); 1291 DeletedAdd = true; 1292 } 1293 1294 // If we deleted at least one add, we added operands to the end of the list, 1295 // and they are not necessarily sorted. Recurse to resort and resimplify 1296 // any operands we just aquired. 1297 if (DeletedAdd) 1298 return getAddExpr(Ops); 1299 } 1300 1301 // Skip over the add expression until we get to a multiply. 1302 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1303 ++Idx; 1304 1305 // Check to see if there are any folding opportunities present with 1306 // operands multiplied by constant values. 1307 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1308 uint64_t BitWidth = getTypeSizeInBits(Ty); 1309 DenseMap<const SCEV *, APInt> M; 1310 SmallVector<const SCEV *, 8> NewOps; 1311 APInt AccumulatedConstant(BitWidth, 0); 1312 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1313 Ops, APInt(BitWidth, 1), *this)) { 1314 // Some interesting folding opportunity is present, so its worthwhile to 1315 // re-generate the operands list. Group the operands by constant scale, 1316 // to avoid multiplying by the same constant scale multiple times. 1317 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1318 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1319 E = NewOps.end(); I != E; ++I) 1320 MulOpLists[M.find(*I)->second].push_back(*I); 1321 // Re-generate the operands list. 1322 Ops.clear(); 1323 if (AccumulatedConstant != 0) 1324 Ops.push_back(getConstant(AccumulatedConstant)); 1325 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1326 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1327 if (I->first != 0) 1328 Ops.push_back(getMulExpr(getConstant(I->first), 1329 getAddExpr(I->second))); 1330 if (Ops.empty()) 1331 return getIntegerSCEV(0, Ty); 1332 if (Ops.size() == 1) 1333 return Ops[0]; 1334 return getAddExpr(Ops); 1335 } 1336 } 1337 1338 // If we are adding something to a multiply expression, make sure the 1339 // something is not already an operand of the multiply. If so, merge it into 1340 // the multiply. 1341 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1342 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1343 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1344 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1345 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1346 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1347 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1348 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1349 if (Mul->getNumOperands() != 2) { 1350 // If the multiply has more than two operands, we must get the 1351 // Y*Z term. 1352 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1353 MulOps.erase(MulOps.begin()+MulOp); 1354 InnerMul = getMulExpr(MulOps); 1355 } 1356 const SCEV *One = getIntegerSCEV(1, Ty); 1357 const SCEV *AddOne = getAddExpr(InnerMul, One); 1358 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1359 if (Ops.size() == 2) return OuterMul; 1360 if (AddOp < Idx) { 1361 Ops.erase(Ops.begin()+AddOp); 1362 Ops.erase(Ops.begin()+Idx-1); 1363 } else { 1364 Ops.erase(Ops.begin()+Idx); 1365 Ops.erase(Ops.begin()+AddOp-1); 1366 } 1367 Ops.push_back(OuterMul); 1368 return getAddExpr(Ops); 1369 } 1370 1371 // Check this multiply against other multiplies being added together. 1372 for (unsigned OtherMulIdx = Idx+1; 1373 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1374 ++OtherMulIdx) { 1375 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1376 // If MulOp occurs in OtherMul, we can fold the two multiplies 1377 // together. 1378 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1379 OMulOp != e; ++OMulOp) 1380 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1381 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1382 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1383 if (Mul->getNumOperands() != 2) { 1384 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1385 Mul->op_end()); 1386 MulOps.erase(MulOps.begin()+MulOp); 1387 InnerMul1 = getMulExpr(MulOps); 1388 } 1389 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1390 if (OtherMul->getNumOperands() != 2) { 1391 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1392 OtherMul->op_end()); 1393 MulOps.erase(MulOps.begin()+OMulOp); 1394 InnerMul2 = getMulExpr(MulOps); 1395 } 1396 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1397 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1398 if (Ops.size() == 2) return OuterMul; 1399 Ops.erase(Ops.begin()+Idx); 1400 Ops.erase(Ops.begin()+OtherMulIdx-1); 1401 Ops.push_back(OuterMul); 1402 return getAddExpr(Ops); 1403 } 1404 } 1405 } 1406 } 1407 1408 // If there are any add recurrences in the operands list, see if any other 1409 // added values are loop invariant. If so, we can fold them into the 1410 // recurrence. 1411 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1412 ++Idx; 1413 1414 // Scan over all recurrences, trying to fold loop invariants into them. 1415 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1416 // Scan all of the other operands to this add and add them to the vector if 1417 // they are loop invariant w.r.t. the recurrence. 1418 SmallVector<const SCEV *, 8> LIOps; 1419 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1420 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1421 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1422 LIOps.push_back(Ops[i]); 1423 Ops.erase(Ops.begin()+i); 1424 --i; --e; 1425 } 1426 1427 // If we found some loop invariants, fold them into the recurrence. 1428 if (!LIOps.empty()) { 1429 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1430 LIOps.push_back(AddRec->getStart()); 1431 1432 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1433 AddRec->op_end()); 1434 AddRecOps[0] = getAddExpr(LIOps); 1435 1436 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1437 // If all of the other operands were loop invariant, we are done. 1438 if (Ops.size() == 1) return NewRec; 1439 1440 // Otherwise, add the folded AddRec by the non-liv parts. 1441 for (unsigned i = 0;; ++i) 1442 if (Ops[i] == AddRec) { 1443 Ops[i] = NewRec; 1444 break; 1445 } 1446 return getAddExpr(Ops); 1447 } 1448 1449 // Okay, if there weren't any loop invariants to be folded, check to see if 1450 // there are multiple AddRec's with the same loop induction variable being 1451 // added together. If so, we can fold them. 1452 for (unsigned OtherIdx = Idx+1; 1453 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1454 if (OtherIdx != Idx) { 1455 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1456 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1457 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1458 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1459 AddRec->op_end()); 1460 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1461 if (i >= NewOps.size()) { 1462 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1463 OtherAddRec->op_end()); 1464 break; 1465 } 1466 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1467 } 1468 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1469 1470 if (Ops.size() == 2) return NewAddRec; 1471 1472 Ops.erase(Ops.begin()+Idx); 1473 Ops.erase(Ops.begin()+OtherIdx-1); 1474 Ops.push_back(NewAddRec); 1475 return getAddExpr(Ops); 1476 } 1477 } 1478 1479 // Otherwise couldn't fold anything into this recurrence. Move onto the 1480 // next one. 1481 } 1482 1483 // Okay, it looks like we really DO need an add expr. Check to see if we 1484 // already have one, otherwise create a new one. 1485 FoldingSetNodeID ID; 1486 ID.AddInteger(scAddExpr); 1487 ID.AddInteger(Ops.size()); 1488 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1489 ID.AddPointer(Ops[i]); 1490 void *IP = 0; 1491 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1492 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>(); 1493 new (S) SCEVAddExpr(ID, Ops); 1494 UniqueSCEVs.InsertNode(S, IP); 1495 return S; 1496 } 1497 1498 1499 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1500 /// possible. 1501 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) { 1502 assert(!Ops.empty() && "Cannot get empty mul!"); 1503 #ifndef NDEBUG 1504 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1505 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1506 getEffectiveSCEVType(Ops[0]->getType()) && 1507 "SCEVMulExpr operand types don't match!"); 1508 #endif 1509 1510 // Sort by complexity, this groups all similar expression types together. 1511 GroupByComplexity(Ops, LI); 1512 1513 // If there are any constants, fold them together. 1514 unsigned Idx = 0; 1515 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1516 1517 // C1*(C2+V) -> C1*C2 + C1*V 1518 if (Ops.size() == 2) 1519 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1520 if (Add->getNumOperands() == 2 && 1521 isa<SCEVConstant>(Add->getOperand(0))) 1522 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1523 getMulExpr(LHSC, Add->getOperand(1))); 1524 1525 1526 ++Idx; 1527 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1528 // We found two constants, fold them together! 1529 ConstantInt *Fold = ConstantInt::get(getContext(), 1530 LHSC->getValue()->getValue() * 1531 RHSC->getValue()->getValue()); 1532 Ops[0] = getConstant(Fold); 1533 Ops.erase(Ops.begin()+1); // Erase the folded element 1534 if (Ops.size() == 1) return Ops[0]; 1535 LHSC = cast<SCEVConstant>(Ops[0]); 1536 } 1537 1538 // If we are left with a constant one being multiplied, strip it off. 1539 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1540 Ops.erase(Ops.begin()); 1541 --Idx; 1542 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1543 // If we have a multiply of zero, it will always be zero. 1544 return Ops[0]; 1545 } 1546 } 1547 1548 // Skip over the add expression until we get to a multiply. 1549 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1550 ++Idx; 1551 1552 if (Ops.size() == 1) 1553 return Ops[0]; 1554 1555 // If there are mul operands inline them all into this expression. 1556 if (Idx < Ops.size()) { 1557 bool DeletedMul = false; 1558 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1559 // If we have an mul, expand the mul operands onto the end of the operands 1560 // list. 1561 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1562 Ops.erase(Ops.begin()+Idx); 1563 DeletedMul = true; 1564 } 1565 1566 // If we deleted at least one mul, we added operands to the end of the list, 1567 // and they are not necessarily sorted. Recurse to resort and resimplify 1568 // any operands we just aquired. 1569 if (DeletedMul) 1570 return getMulExpr(Ops); 1571 } 1572 1573 // If there are any add recurrences in the operands list, see if any other 1574 // added values are loop invariant. If so, we can fold them into the 1575 // recurrence. 1576 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1577 ++Idx; 1578 1579 // Scan over all recurrences, trying to fold loop invariants into them. 1580 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1581 // Scan all of the other operands to this mul and add them to the vector if 1582 // they are loop invariant w.r.t. the recurrence. 1583 SmallVector<const SCEV *, 8> LIOps; 1584 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1585 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1586 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1587 LIOps.push_back(Ops[i]); 1588 Ops.erase(Ops.begin()+i); 1589 --i; --e; 1590 } 1591 1592 // If we found some loop invariants, fold them into the recurrence. 1593 if (!LIOps.empty()) { 1594 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1595 SmallVector<const SCEV *, 4> NewOps; 1596 NewOps.reserve(AddRec->getNumOperands()); 1597 if (LIOps.size() == 1) { 1598 const SCEV *Scale = LIOps[0]; 1599 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1600 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1601 } else { 1602 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1603 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end()); 1604 MulOps.push_back(AddRec->getOperand(i)); 1605 NewOps.push_back(getMulExpr(MulOps)); 1606 } 1607 } 1608 1609 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1610 1611 // If all of the other operands were loop invariant, we are done. 1612 if (Ops.size() == 1) return NewRec; 1613 1614 // Otherwise, multiply the folded AddRec by the non-liv parts. 1615 for (unsigned i = 0;; ++i) 1616 if (Ops[i] == AddRec) { 1617 Ops[i] = NewRec; 1618 break; 1619 } 1620 return getMulExpr(Ops); 1621 } 1622 1623 // Okay, if there weren't any loop invariants to be folded, check to see if 1624 // there are multiple AddRec's with the same loop induction variable being 1625 // multiplied together. If so, we can fold them. 1626 for (unsigned OtherIdx = Idx+1; 1627 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1628 if (OtherIdx != Idx) { 1629 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1630 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1631 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1632 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1633 const SCEV *NewStart = getMulExpr(F->getStart(), 1634 G->getStart()); 1635 const SCEV *B = F->getStepRecurrence(*this); 1636 const SCEV *D = G->getStepRecurrence(*this); 1637 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1638 getMulExpr(G, B), 1639 getMulExpr(B, D)); 1640 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1641 F->getLoop()); 1642 if (Ops.size() == 2) return NewAddRec; 1643 1644 Ops.erase(Ops.begin()+Idx); 1645 Ops.erase(Ops.begin()+OtherIdx-1); 1646 Ops.push_back(NewAddRec); 1647 return getMulExpr(Ops); 1648 } 1649 } 1650 1651 // Otherwise couldn't fold anything into this recurrence. Move onto the 1652 // next one. 1653 } 1654 1655 // Okay, it looks like we really DO need an mul expr. Check to see if we 1656 // already have one, otherwise create a new one. 1657 FoldingSetNodeID ID; 1658 ID.AddInteger(scMulExpr); 1659 ID.AddInteger(Ops.size()); 1660 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1661 ID.AddPointer(Ops[i]); 1662 void *IP = 0; 1663 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1664 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>(); 1665 new (S) SCEVMulExpr(ID, Ops); 1666 UniqueSCEVs.InsertNode(S, IP); 1667 return S; 1668 } 1669 1670 /// getUDivExpr - Get a canonical unsigned division expression, or something 1671 /// simpler if possible. 1672 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1673 const SCEV *RHS) { 1674 assert(getEffectiveSCEVType(LHS->getType()) == 1675 getEffectiveSCEVType(RHS->getType()) && 1676 "SCEVUDivExpr operand types don't match!"); 1677 1678 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1679 if (RHSC->getValue()->equalsInt(1)) 1680 return LHS; // X udiv 1 --> x 1681 if (RHSC->isZero()) 1682 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1683 1684 // Determine if the division can be folded into the operands of 1685 // its operands. 1686 // TODO: Generalize this to non-constants by using known-bits information. 1687 const Type *Ty = LHS->getType(); 1688 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1689 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1690 // For non-power-of-two values, effectively round the value up to the 1691 // nearest power of two. 1692 if (!RHSC->getValue()->getValue().isPowerOf2()) 1693 ++MaxShiftAmt; 1694 const IntegerType *ExtTy = 1695 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1696 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1697 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1698 if (const SCEVConstant *Step = 1699 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1700 if (!Step->getValue()->getValue() 1701 .urem(RHSC->getValue()->getValue()) && 1702 getZeroExtendExpr(AR, ExtTy) == 1703 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1704 getZeroExtendExpr(Step, ExtTy), 1705 AR->getLoop())) { 1706 SmallVector<const SCEV *, 4> Operands; 1707 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1708 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1709 return getAddRecExpr(Operands, AR->getLoop()); 1710 } 1711 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1712 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1713 SmallVector<const SCEV *, 4> Operands; 1714 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1715 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1716 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1717 // Find an operand that's safely divisible. 1718 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1719 const SCEV *Op = M->getOperand(i); 1720 const SCEV *Div = getUDivExpr(Op, RHSC); 1721 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1722 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); 1723 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(), 1724 MOperands.end()); 1725 Operands[i] = Div; 1726 return getMulExpr(Operands); 1727 } 1728 } 1729 } 1730 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1731 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1732 SmallVector<const SCEV *, 4> Operands; 1733 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1734 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1735 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1736 Operands.clear(); 1737 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1738 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1739 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1740 break; 1741 Operands.push_back(Op); 1742 } 1743 if (Operands.size() == A->getNumOperands()) 1744 return getAddExpr(Operands); 1745 } 1746 } 1747 1748 // Fold if both operands are constant. 1749 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1750 Constant *LHSCV = LHSC->getValue(); 1751 Constant *RHSCV = RHSC->getValue(); 1752 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1753 RHSCV))); 1754 } 1755 } 1756 1757 FoldingSetNodeID ID; 1758 ID.AddInteger(scUDivExpr); 1759 ID.AddPointer(LHS); 1760 ID.AddPointer(RHS); 1761 void *IP = 0; 1762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1763 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); 1764 new (S) SCEVUDivExpr(ID, LHS, RHS); 1765 UniqueSCEVs.InsertNode(S, IP); 1766 return S; 1767 } 1768 1769 1770 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1771 /// Simplify the expression as much as possible. 1772 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1773 const SCEV *Step, const Loop *L) { 1774 SmallVector<const SCEV *, 4> Operands; 1775 Operands.push_back(Start); 1776 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1777 if (StepChrec->getLoop() == L) { 1778 Operands.insert(Operands.end(), StepChrec->op_begin(), 1779 StepChrec->op_end()); 1780 return getAddRecExpr(Operands, L); 1781 } 1782 1783 Operands.push_back(Step); 1784 return getAddRecExpr(Operands, L); 1785 } 1786 1787 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1788 /// Simplify the expression as much as possible. 1789 const SCEV * 1790 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1791 const Loop *L) { 1792 if (Operands.size() == 1) return Operands[0]; 1793 #ifndef NDEBUG 1794 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1795 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1796 getEffectiveSCEVType(Operands[0]->getType()) && 1797 "SCEVAddRecExpr operand types don't match!"); 1798 #endif 1799 1800 if (Operands.back()->isZero()) { 1801 Operands.pop_back(); 1802 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1803 } 1804 1805 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1806 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1807 const Loop* NestedLoop = NestedAR->getLoop(); 1808 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1809 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 1810 NestedAR->op_end()); 1811 Operands[0] = NestedAR->getStart(); 1812 // AddRecs require their operands be loop-invariant with respect to their 1813 // loops. Don't perform this transformation if it would break this 1814 // requirement. 1815 bool AllInvariant = true; 1816 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1817 if (!Operands[i]->isLoopInvariant(L)) { 1818 AllInvariant = false; 1819 break; 1820 } 1821 if (AllInvariant) { 1822 NestedOperands[0] = getAddRecExpr(Operands, L); 1823 AllInvariant = true; 1824 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 1825 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 1826 AllInvariant = false; 1827 break; 1828 } 1829 if (AllInvariant) 1830 // Ok, both add recurrences are valid after the transformation. 1831 return getAddRecExpr(NestedOperands, NestedLoop); 1832 } 1833 // Reset Operands to its original state. 1834 Operands[0] = NestedAR; 1835 } 1836 } 1837 1838 FoldingSetNodeID ID; 1839 ID.AddInteger(scAddRecExpr); 1840 ID.AddInteger(Operands.size()); 1841 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1842 ID.AddPointer(Operands[i]); 1843 ID.AddPointer(L); 1844 void *IP = 0; 1845 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1846 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); 1847 new (S) SCEVAddRecExpr(ID, Operands, L); 1848 UniqueSCEVs.InsertNode(S, IP); 1849 return S; 1850 } 1851 1852 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 1853 const SCEV *RHS) { 1854 SmallVector<const SCEV *, 2> Ops; 1855 Ops.push_back(LHS); 1856 Ops.push_back(RHS); 1857 return getSMaxExpr(Ops); 1858 } 1859 1860 const SCEV * 1861 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 1862 assert(!Ops.empty() && "Cannot get empty smax!"); 1863 if (Ops.size() == 1) return Ops[0]; 1864 #ifndef NDEBUG 1865 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1866 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1867 getEffectiveSCEVType(Ops[0]->getType()) && 1868 "SCEVSMaxExpr operand types don't match!"); 1869 #endif 1870 1871 // Sort by complexity, this groups all similar expression types together. 1872 GroupByComplexity(Ops, LI); 1873 1874 // If there are any constants, fold them together. 1875 unsigned Idx = 0; 1876 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1877 ++Idx; 1878 assert(Idx < Ops.size()); 1879 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1880 // We found two constants, fold them together! 1881 ConstantInt *Fold = ConstantInt::get(getContext(), 1882 APIntOps::smax(LHSC->getValue()->getValue(), 1883 RHSC->getValue()->getValue())); 1884 Ops[0] = getConstant(Fold); 1885 Ops.erase(Ops.begin()+1); // Erase the folded element 1886 if (Ops.size() == 1) return Ops[0]; 1887 LHSC = cast<SCEVConstant>(Ops[0]); 1888 } 1889 1890 // If we are left with a constant minimum-int, strip it off. 1891 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1892 Ops.erase(Ops.begin()); 1893 --Idx; 1894 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 1895 // If we have an smax with a constant maximum-int, it will always be 1896 // maximum-int. 1897 return Ops[0]; 1898 } 1899 } 1900 1901 if (Ops.size() == 1) return Ops[0]; 1902 1903 // Find the first SMax 1904 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1905 ++Idx; 1906 1907 // Check to see if one of the operands is an SMax. If so, expand its operands 1908 // onto our operand list, and recurse to simplify. 1909 if (Idx < Ops.size()) { 1910 bool DeletedSMax = false; 1911 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1912 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1913 Ops.erase(Ops.begin()+Idx); 1914 DeletedSMax = true; 1915 } 1916 1917 if (DeletedSMax) 1918 return getSMaxExpr(Ops); 1919 } 1920 1921 // Okay, check to see if the same value occurs in the operand list twice. If 1922 // so, delete one. Since we sorted the list, these values are required to 1923 // be adjacent. 1924 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1925 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1926 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1927 --i; --e; 1928 } 1929 1930 if (Ops.size() == 1) return Ops[0]; 1931 1932 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1933 1934 // Okay, it looks like we really DO need an smax expr. Check to see if we 1935 // already have one, otherwise create a new one. 1936 FoldingSetNodeID ID; 1937 ID.AddInteger(scSMaxExpr); 1938 ID.AddInteger(Ops.size()); 1939 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1940 ID.AddPointer(Ops[i]); 1941 void *IP = 0; 1942 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1943 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); 1944 new (S) SCEVSMaxExpr(ID, Ops); 1945 UniqueSCEVs.InsertNode(S, IP); 1946 return S; 1947 } 1948 1949 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 1950 const SCEV *RHS) { 1951 SmallVector<const SCEV *, 2> Ops; 1952 Ops.push_back(LHS); 1953 Ops.push_back(RHS); 1954 return getUMaxExpr(Ops); 1955 } 1956 1957 const SCEV * 1958 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 1959 assert(!Ops.empty() && "Cannot get empty umax!"); 1960 if (Ops.size() == 1) return Ops[0]; 1961 #ifndef NDEBUG 1962 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1963 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1964 getEffectiveSCEVType(Ops[0]->getType()) && 1965 "SCEVUMaxExpr operand types don't match!"); 1966 #endif 1967 1968 // Sort by complexity, this groups all similar expression types together. 1969 GroupByComplexity(Ops, LI); 1970 1971 // If there are any constants, fold them together. 1972 unsigned Idx = 0; 1973 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1974 ++Idx; 1975 assert(Idx < Ops.size()); 1976 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1977 // We found two constants, fold them together! 1978 ConstantInt *Fold = ConstantInt::get(getContext(), 1979 APIntOps::umax(LHSC->getValue()->getValue(), 1980 RHSC->getValue()->getValue())); 1981 Ops[0] = getConstant(Fold); 1982 Ops.erase(Ops.begin()+1); // Erase the folded element 1983 if (Ops.size() == 1) return Ops[0]; 1984 LHSC = cast<SCEVConstant>(Ops[0]); 1985 } 1986 1987 // If we are left with a constant minimum-int, strip it off. 1988 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1989 Ops.erase(Ops.begin()); 1990 --Idx; 1991 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 1992 // If we have an umax with a constant maximum-int, it will always be 1993 // maximum-int. 1994 return Ops[0]; 1995 } 1996 } 1997 1998 if (Ops.size() == 1) return Ops[0]; 1999 2000 // Find the first UMax 2001 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2002 ++Idx; 2003 2004 // Check to see if one of the operands is a UMax. If so, expand its operands 2005 // onto our operand list, and recurse to simplify. 2006 if (Idx < Ops.size()) { 2007 bool DeletedUMax = false; 2008 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2009 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 2010 Ops.erase(Ops.begin()+Idx); 2011 DeletedUMax = true; 2012 } 2013 2014 if (DeletedUMax) 2015 return getUMaxExpr(Ops); 2016 } 2017 2018 // Okay, check to see if the same value occurs in the operand list twice. If 2019 // so, delete one. Since we sorted the list, these values are required to 2020 // be adjacent. 2021 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2022 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 2023 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2024 --i; --e; 2025 } 2026 2027 if (Ops.size() == 1) return Ops[0]; 2028 2029 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2030 2031 // Okay, it looks like we really DO need a umax expr. Check to see if we 2032 // already have one, otherwise create a new one. 2033 FoldingSetNodeID ID; 2034 ID.AddInteger(scUMaxExpr); 2035 ID.AddInteger(Ops.size()); 2036 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2037 ID.AddPointer(Ops[i]); 2038 void *IP = 0; 2039 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2040 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); 2041 new (S) SCEVUMaxExpr(ID, Ops); 2042 UniqueSCEVs.InsertNode(S, IP); 2043 return S; 2044 } 2045 2046 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2047 const SCEV *RHS) { 2048 // ~smax(~x, ~y) == smin(x, y). 2049 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2050 } 2051 2052 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2053 const SCEV *RHS) { 2054 // ~umax(~x, ~y) == umin(x, y) 2055 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2056 } 2057 2058 const SCEV *ScalarEvolution::getFieldOffsetExpr(const StructType *STy, 2059 unsigned FieldNo) { 2060 // If we have TargetData we can determine the constant offset. 2061 if (TD) { 2062 const Type *IntPtrTy = TD->getIntPtrType(getContext()); 2063 const StructLayout &SL = *TD->getStructLayout(STy); 2064 uint64_t Offset = SL.getElementOffset(FieldNo); 2065 return getIntegerSCEV(Offset, IntPtrTy); 2066 } 2067 2068 // Field 0 is always at offset 0. 2069 if (FieldNo == 0) { 2070 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2071 return getIntegerSCEV(0, Ty); 2072 } 2073 2074 // Okay, it looks like we really DO need an offsetof expr. Check to see if we 2075 // already have one, otherwise create a new one. 2076 FoldingSetNodeID ID; 2077 ID.AddInteger(scFieldOffset); 2078 ID.AddPointer(STy); 2079 ID.AddInteger(FieldNo); 2080 void *IP = 0; 2081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2082 SCEV *S = SCEVAllocator.Allocate<SCEVFieldOffsetExpr>(); 2083 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2084 new (S) SCEVFieldOffsetExpr(ID, Ty, STy, FieldNo); 2085 UniqueSCEVs.InsertNode(S, IP); 2086 return S; 2087 } 2088 2089 const SCEV *ScalarEvolution::getAllocSizeExpr(const Type *AllocTy) { 2090 // If we have TargetData we can determine the constant size. 2091 if (TD && AllocTy->isSized()) { 2092 const Type *IntPtrTy = TD->getIntPtrType(getContext()); 2093 return getIntegerSCEV(TD->getTypeAllocSize(AllocTy), IntPtrTy); 2094 } 2095 2096 // Expand an array size into the element size times the number 2097 // of elements. 2098 if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy)) { 2099 const SCEV *E = getAllocSizeExpr(ATy->getElementType()); 2100 return getMulExpr( 2101 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), 2102 ATy->getNumElements()))); 2103 } 2104 2105 // Expand a vector size into the element size times the number 2106 // of elements. 2107 if (const VectorType *VTy = dyn_cast<VectorType>(AllocTy)) { 2108 const SCEV *E = getAllocSizeExpr(VTy->getElementType()); 2109 return getMulExpr( 2110 E, getConstant(ConstantInt::get(cast<IntegerType>(E->getType()), 2111 VTy->getNumElements()))); 2112 } 2113 2114 // Okay, it looks like we really DO need a sizeof expr. Check to see if we 2115 // already have one, otherwise create a new one. 2116 FoldingSetNodeID ID; 2117 ID.AddInteger(scAllocSize); 2118 ID.AddPointer(AllocTy); 2119 void *IP = 0; 2120 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2121 SCEV *S = SCEVAllocator.Allocate<SCEVAllocSizeExpr>(); 2122 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2123 new (S) SCEVAllocSizeExpr(ID, Ty, AllocTy); 2124 UniqueSCEVs.InsertNode(S, IP); 2125 return S; 2126 } 2127 2128 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2129 // Don't attempt to do anything other than create a SCEVUnknown object 2130 // here. createSCEV only calls getUnknown after checking for all other 2131 // interesting possibilities, and any other code that calls getUnknown 2132 // is doing so in order to hide a value from SCEV canonicalization. 2133 2134 FoldingSetNodeID ID; 2135 ID.AddInteger(scUnknown); 2136 ID.AddPointer(V); 2137 void *IP = 0; 2138 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2139 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); 2140 new (S) SCEVUnknown(ID, V); 2141 UniqueSCEVs.InsertNode(S, IP); 2142 return S; 2143 } 2144 2145 //===----------------------------------------------------------------------===// 2146 // Basic SCEV Analysis and PHI Idiom Recognition Code 2147 // 2148 2149 /// isSCEVable - Test if values of the given type are analyzable within 2150 /// the SCEV framework. This primarily includes integer types, and it 2151 /// can optionally include pointer types if the ScalarEvolution class 2152 /// has access to target-specific information. 2153 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2154 // Integers and pointers are always SCEVable. 2155 return Ty->isInteger() || isa<PointerType>(Ty); 2156 } 2157 2158 /// getTypeSizeInBits - Return the size in bits of the specified type, 2159 /// for which isSCEVable must return true. 2160 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2161 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2162 2163 // If we have a TargetData, use it! 2164 if (TD) 2165 return TD->getTypeSizeInBits(Ty); 2166 2167 // Integer types have fixed sizes. 2168 if (Ty->isInteger()) 2169 return Ty->getPrimitiveSizeInBits(); 2170 2171 // The only other support type is pointer. Without TargetData, conservatively 2172 // assume pointers are 64-bit. 2173 assert(isa<PointerType>(Ty) && "isSCEVable permitted a non-SCEVable type!"); 2174 return 64; 2175 } 2176 2177 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2178 /// the given type and which represents how SCEV will treat the given 2179 /// type, for which isSCEVable must return true. For pointer types, 2180 /// this is the pointer-sized integer type. 2181 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2182 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2183 2184 if (Ty->isInteger()) 2185 return Ty; 2186 2187 // The only other support type is pointer. 2188 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!"); 2189 if (TD) return TD->getIntPtrType(getContext()); 2190 2191 // Without TargetData, conservatively assume pointers are 64-bit. 2192 return Type::getInt64Ty(getContext()); 2193 } 2194 2195 const SCEV *ScalarEvolution::getCouldNotCompute() { 2196 return &CouldNotCompute; 2197 } 2198 2199 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2200 /// expression and create a new one. 2201 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2202 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2203 2204 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2205 if (I != Scalars.end()) return I->second; 2206 const SCEV *S = createSCEV(V); 2207 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2208 return S; 2209 } 2210 2211 /// getIntegerSCEV - Given a SCEVable type, create a constant for the 2212 /// specified signed integer value and return a SCEV for the constant. 2213 const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 2214 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 2215 return getConstant(ConstantInt::get(ITy, Val)); 2216 } 2217 2218 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2219 /// 2220 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2221 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2222 return getConstant( 2223 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2224 2225 const Type *Ty = V->getType(); 2226 Ty = getEffectiveSCEVType(Ty); 2227 return getMulExpr(V, 2228 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2229 } 2230 2231 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2232 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2233 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2234 return getConstant( 2235 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2236 2237 const Type *Ty = V->getType(); 2238 Ty = getEffectiveSCEVType(Ty); 2239 const SCEV *AllOnes = 2240 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2241 return getMinusSCEV(AllOnes, V); 2242 } 2243 2244 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2245 /// 2246 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2247 const SCEV *RHS) { 2248 // X - Y --> X + -Y 2249 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2250 } 2251 2252 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2253 /// input value to the specified type. If the type must be extended, it is zero 2254 /// extended. 2255 const SCEV * 2256 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2257 const Type *Ty) { 2258 const Type *SrcTy = V->getType(); 2259 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2260 (Ty->isInteger() || isa<PointerType>(Ty)) && 2261 "Cannot truncate or zero extend with non-integer arguments!"); 2262 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2263 return V; // No conversion 2264 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2265 return getTruncateExpr(V, Ty); 2266 return getZeroExtendExpr(V, Ty); 2267 } 2268 2269 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2270 /// input value to the specified type. If the type must be extended, it is sign 2271 /// extended. 2272 const SCEV * 2273 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2274 const Type *Ty) { 2275 const Type *SrcTy = V->getType(); 2276 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2277 (Ty->isInteger() || isa<PointerType>(Ty)) && 2278 "Cannot truncate or zero extend with non-integer arguments!"); 2279 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2280 return V; // No conversion 2281 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2282 return getTruncateExpr(V, Ty); 2283 return getSignExtendExpr(V, Ty); 2284 } 2285 2286 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2287 /// input value to the specified type. If the type must be extended, it is zero 2288 /// extended. The conversion must not be narrowing. 2289 const SCEV * 2290 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2291 const Type *SrcTy = V->getType(); 2292 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2293 (Ty->isInteger() || isa<PointerType>(Ty)) && 2294 "Cannot noop or zero extend with non-integer arguments!"); 2295 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2296 "getNoopOrZeroExtend cannot truncate!"); 2297 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2298 return V; // No conversion 2299 return getZeroExtendExpr(V, Ty); 2300 } 2301 2302 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2303 /// input value to the specified type. If the type must be extended, it is sign 2304 /// extended. The conversion must not be narrowing. 2305 const SCEV * 2306 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2307 const Type *SrcTy = V->getType(); 2308 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2309 (Ty->isInteger() || isa<PointerType>(Ty)) && 2310 "Cannot noop or sign extend with non-integer arguments!"); 2311 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2312 "getNoopOrSignExtend cannot truncate!"); 2313 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2314 return V; // No conversion 2315 return getSignExtendExpr(V, Ty); 2316 } 2317 2318 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2319 /// the input value to the specified type. If the type must be extended, 2320 /// it is extended with unspecified bits. The conversion must not be 2321 /// narrowing. 2322 const SCEV * 2323 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2324 const Type *SrcTy = V->getType(); 2325 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2326 (Ty->isInteger() || isa<PointerType>(Ty)) && 2327 "Cannot noop or any extend with non-integer arguments!"); 2328 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2329 "getNoopOrAnyExtend cannot truncate!"); 2330 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2331 return V; // No conversion 2332 return getAnyExtendExpr(V, Ty); 2333 } 2334 2335 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2336 /// input value to the specified type. The conversion must not be widening. 2337 const SCEV * 2338 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2339 const Type *SrcTy = V->getType(); 2340 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 2341 (Ty->isInteger() || isa<PointerType>(Ty)) && 2342 "Cannot truncate or noop with non-integer arguments!"); 2343 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2344 "getTruncateOrNoop cannot extend!"); 2345 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2346 return V; // No conversion 2347 return getTruncateExpr(V, Ty); 2348 } 2349 2350 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2351 /// the types using zero-extension, and then perform a umax operation 2352 /// with them. 2353 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2354 const SCEV *RHS) { 2355 const SCEV *PromotedLHS = LHS; 2356 const SCEV *PromotedRHS = RHS; 2357 2358 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2359 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2360 else 2361 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2362 2363 return getUMaxExpr(PromotedLHS, PromotedRHS); 2364 } 2365 2366 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2367 /// the types using zero-extension, and then perform a umin operation 2368 /// with them. 2369 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2370 const SCEV *RHS) { 2371 const SCEV *PromotedLHS = LHS; 2372 const SCEV *PromotedRHS = RHS; 2373 2374 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2375 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2376 else 2377 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2378 2379 return getUMinExpr(PromotedLHS, PromotedRHS); 2380 } 2381 2382 /// PushDefUseChildren - Push users of the given Instruction 2383 /// onto the given Worklist. 2384 static void 2385 PushDefUseChildren(Instruction *I, 2386 SmallVectorImpl<Instruction *> &Worklist) { 2387 // Push the def-use children onto the Worklist stack. 2388 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2389 UI != UE; ++UI) 2390 Worklist.push_back(cast<Instruction>(UI)); 2391 } 2392 2393 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2394 /// instructions that depend on the given instruction and removes them from 2395 /// the Scalars map if they reference SymName. This is used during PHI 2396 /// resolution. 2397 void 2398 ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) { 2399 SmallVector<Instruction *, 16> Worklist; 2400 PushDefUseChildren(I, Worklist); 2401 2402 SmallPtrSet<Instruction *, 8> Visited; 2403 Visited.insert(I); 2404 while (!Worklist.empty()) { 2405 Instruction *I = Worklist.pop_back_val(); 2406 if (!Visited.insert(I)) continue; 2407 2408 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 2409 Scalars.find(static_cast<Value *>(I)); 2410 if (It != Scalars.end()) { 2411 // Short-circuit the def-use traversal if the symbolic name 2412 // ceases to appear in expressions. 2413 if (!It->second->hasOperand(SymName)) 2414 continue; 2415 2416 // SCEVUnknown for a PHI either means that it has an unrecognized 2417 // structure, or it's a PHI that's in the progress of being computed 2418 // by createNodeForPHI. In the former case, additional loop trip 2419 // count information isn't going to change anything. In the later 2420 // case, createNodeForPHI will perform the necessary updates on its 2421 // own when it gets to that point. 2422 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) 2423 Scalars.erase(It); 2424 ValuesAtScopes.erase(I); 2425 } 2426 2427 PushDefUseChildren(I, Worklist); 2428 } 2429 } 2430 2431 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2432 /// a loop header, making it a potential recurrence, or it doesn't. 2433 /// 2434 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2435 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2436 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2437 if (L->getHeader() == PN->getParent()) { 2438 // If it lives in the loop header, it has two incoming values, one 2439 // from outside the loop, and one from inside. 2440 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2441 unsigned BackEdge = IncomingEdge^1; 2442 2443 // While we are analyzing this PHI node, handle its value symbolically. 2444 const SCEV *SymbolicName = getUnknown(PN); 2445 assert(Scalars.find(PN) == Scalars.end() && 2446 "PHI node already processed?"); 2447 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2448 2449 // Using this symbolic name for the PHI, analyze the value coming around 2450 // the back-edge. 2451 Value *BEValueV = PN->getIncomingValue(BackEdge); 2452 const SCEV *BEValue = getSCEV(BEValueV); 2453 2454 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2455 // has a special value for the first iteration of the loop. 2456 2457 // If the value coming around the backedge is an add with the symbolic 2458 // value we just inserted, then we found a simple induction variable! 2459 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2460 // If there is a single occurrence of the symbolic value, replace it 2461 // with a recurrence. 2462 unsigned FoundIndex = Add->getNumOperands(); 2463 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2464 if (Add->getOperand(i) == SymbolicName) 2465 if (FoundIndex == e) { 2466 FoundIndex = i; 2467 break; 2468 } 2469 2470 if (FoundIndex != Add->getNumOperands()) { 2471 // Create an add with everything but the specified operand. 2472 SmallVector<const SCEV *, 8> Ops; 2473 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2474 if (i != FoundIndex) 2475 Ops.push_back(Add->getOperand(i)); 2476 const SCEV *Accum = getAddExpr(Ops); 2477 2478 // This is not a valid addrec if the step amount is varying each 2479 // loop iteration, but is not itself an addrec in this loop. 2480 if (Accum->isLoopInvariant(L) || 2481 (isa<SCEVAddRecExpr>(Accum) && 2482 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2483 const SCEV *StartVal = 2484 getSCEV(PN->getIncomingValue(IncomingEdge)); 2485 const SCEVAddRecExpr *PHISCEV = 2486 cast<SCEVAddRecExpr>(getAddRecExpr(StartVal, Accum, L)); 2487 2488 // If the increment doesn't overflow, then neither the addrec nor the 2489 // post-increment will overflow. 2490 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) 2491 if (OBO->getOperand(0) == PN && 2492 getSCEV(OBO->getOperand(1)) == 2493 PHISCEV->getStepRecurrence(*this)) { 2494 const SCEVAddRecExpr *PostInc = PHISCEV->getPostIncExpr(*this); 2495 if (OBO->hasNoUnsignedWrap()) { 2496 const_cast<SCEVAddRecExpr *>(PHISCEV) 2497 ->setHasNoUnsignedWrap(true); 2498 const_cast<SCEVAddRecExpr *>(PostInc) 2499 ->setHasNoUnsignedWrap(true); 2500 } 2501 if (OBO->hasNoSignedWrap()) { 2502 const_cast<SCEVAddRecExpr *>(PHISCEV) 2503 ->setHasNoSignedWrap(true); 2504 const_cast<SCEVAddRecExpr *>(PostInc) 2505 ->setHasNoSignedWrap(true); 2506 } 2507 } 2508 2509 // Okay, for the entire analysis of this edge we assumed the PHI 2510 // to be symbolic. We now need to go back and purge all of the 2511 // entries for the scalars that use the symbolic expression. 2512 ForgetSymbolicName(PN, SymbolicName); 2513 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2514 return PHISCEV; 2515 } 2516 } 2517 } else if (const SCEVAddRecExpr *AddRec = 2518 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2519 // Otherwise, this could be a loop like this: 2520 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2521 // In this case, j = {1,+,1} and BEValue is j. 2522 // Because the other in-value of i (0) fits the evolution of BEValue 2523 // i really is an addrec evolution. 2524 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2525 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2526 2527 // If StartVal = j.start - j.stride, we can use StartVal as the 2528 // initial step of the addrec evolution. 2529 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2530 AddRec->getOperand(1))) { 2531 const SCEV *PHISCEV = 2532 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2533 2534 // Okay, for the entire analysis of this edge we assumed the PHI 2535 // to be symbolic. We now need to go back and purge all of the 2536 // entries for the scalars that use the symbolic expression. 2537 ForgetSymbolicName(PN, SymbolicName); 2538 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2539 return PHISCEV; 2540 } 2541 } 2542 } 2543 2544 return SymbolicName; 2545 } 2546 2547 // It's tempting to recognize PHIs with a unique incoming value, however 2548 // this leads passes like indvars to break LCSSA form. Fortunately, such 2549 // PHIs are rare, as instcombine zaps them. 2550 2551 // If it's not a loop phi, we can't handle it yet. 2552 return getUnknown(PN); 2553 } 2554 2555 /// createNodeForGEP - Expand GEP instructions into add and multiply 2556 /// operations. This allows them to be analyzed by regular SCEV code. 2557 /// 2558 const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) { 2559 2560 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2561 Value *Base = GEP->getOperand(0); 2562 // Don't attempt to analyze GEPs over unsized objects. 2563 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2564 return getUnknown(GEP); 2565 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy); 2566 gep_type_iterator GTI = gep_type_begin(GEP); 2567 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2568 E = GEP->op_end(); 2569 I != E; ++I) { 2570 Value *Index = *I; 2571 // Compute the (potentially symbolic) offset in bytes for this index. 2572 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2573 // For a struct, add the member offset. 2574 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2575 TotalOffset = getAddExpr(TotalOffset, 2576 getFieldOffsetExpr(STy, FieldNo)); 2577 } else { 2578 // For an array, add the element offset, explicitly scaled. 2579 const SCEV *LocalOffset = getSCEV(Index); 2580 if (!isa<PointerType>(LocalOffset->getType())) 2581 // Getelementptr indicies are signed. 2582 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); 2583 LocalOffset = getMulExpr(LocalOffset, getAllocSizeExpr(*GTI)); 2584 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2585 } 2586 } 2587 return getAddExpr(getSCEV(Base), TotalOffset); 2588 } 2589 2590 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2591 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2592 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2593 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2594 uint32_t 2595 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2596 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2597 return C->getValue()->getValue().countTrailingZeros(); 2598 2599 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2600 return std::min(GetMinTrailingZeros(T->getOperand()), 2601 (uint32_t)getTypeSizeInBits(T->getType())); 2602 2603 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2604 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2605 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2606 getTypeSizeInBits(E->getType()) : OpRes; 2607 } 2608 2609 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2610 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2611 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2612 getTypeSizeInBits(E->getType()) : OpRes; 2613 } 2614 2615 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2616 // The result is the min of all operands results. 2617 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2618 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2619 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2620 return MinOpRes; 2621 } 2622 2623 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2624 // The result is the sum of all operands results. 2625 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2626 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2627 for (unsigned i = 1, e = M->getNumOperands(); 2628 SumOpRes != BitWidth && i != e; ++i) 2629 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2630 BitWidth); 2631 return SumOpRes; 2632 } 2633 2634 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2635 // The result is the min of all operands results. 2636 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2637 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2638 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2639 return MinOpRes; 2640 } 2641 2642 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2643 // The result is the min of all operands results. 2644 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2645 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2646 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2647 return MinOpRes; 2648 } 2649 2650 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2651 // The result is the min of all operands results. 2652 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2653 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2654 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2655 return MinOpRes; 2656 } 2657 2658 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2659 // For a SCEVUnknown, ask ValueTracking. 2660 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2661 APInt Mask = APInt::getAllOnesValue(BitWidth); 2662 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2663 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2664 return Zeros.countTrailingOnes(); 2665 } 2666 2667 // SCEVUDivExpr 2668 return 0; 2669 } 2670 2671 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2672 /// 2673 ConstantRange 2674 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2675 2676 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2677 return ConstantRange(C->getValue()->getValue()); 2678 2679 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2680 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2681 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2682 X = X.add(getUnsignedRange(Add->getOperand(i))); 2683 return X; 2684 } 2685 2686 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2687 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2688 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2689 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2690 return X; 2691 } 2692 2693 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2694 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2695 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2696 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2697 return X; 2698 } 2699 2700 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2701 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2702 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2703 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2704 return X; 2705 } 2706 2707 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2708 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2709 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2710 return X.udiv(Y); 2711 } 2712 2713 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2714 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2715 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); 2716 } 2717 2718 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2719 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2720 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); 2721 } 2722 2723 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2724 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2725 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); 2726 } 2727 2728 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); 2729 2730 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2731 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); 2732 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); 2733 if (!Trip) return FullSet; 2734 2735 // TODO: non-affine addrec 2736 if (AddRec->isAffine()) { 2737 const Type *Ty = AddRec->getType(); 2738 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2739 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { 2740 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2741 2742 const SCEV *Start = AddRec->getStart(); 2743 const SCEV *Step = AddRec->getStepRecurrence(*this); 2744 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2745 2746 // Check for overflow. 2747 // TODO: This is very conservative. 2748 if (!(Step->isOne() && 2749 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) && 2750 !(Step->isAllOnesValue() && 2751 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End))) 2752 return FullSet; 2753 2754 ConstantRange StartRange = getUnsignedRange(Start); 2755 ConstantRange EndRange = getUnsignedRange(End); 2756 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 2757 EndRange.getUnsignedMin()); 2758 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 2759 EndRange.getUnsignedMax()); 2760 if (Min.isMinValue() && Max.isMaxValue()) 2761 return FullSet; 2762 return ConstantRange(Min, Max+1); 2763 } 2764 } 2765 } 2766 2767 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2768 // For a SCEVUnknown, ask ValueTracking. 2769 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2770 APInt Mask = APInt::getAllOnesValue(BitWidth); 2771 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2772 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2773 if (Ones == ~Zeros + 1) 2774 return FullSet; 2775 return ConstantRange(Ones, ~Zeros + 1); 2776 } 2777 2778 return FullSet; 2779 } 2780 2781 /// getSignedRange - Determine the signed range for a particular SCEV. 2782 /// 2783 ConstantRange 2784 ScalarEvolution::getSignedRange(const SCEV *S) { 2785 2786 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2787 return ConstantRange(C->getValue()->getValue()); 2788 2789 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2790 ConstantRange X = getSignedRange(Add->getOperand(0)); 2791 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2792 X = X.add(getSignedRange(Add->getOperand(i))); 2793 return X; 2794 } 2795 2796 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2797 ConstantRange X = getSignedRange(Mul->getOperand(0)); 2798 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2799 X = X.multiply(getSignedRange(Mul->getOperand(i))); 2800 return X; 2801 } 2802 2803 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2804 ConstantRange X = getSignedRange(SMax->getOperand(0)); 2805 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2806 X = X.smax(getSignedRange(SMax->getOperand(i))); 2807 return X; 2808 } 2809 2810 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2811 ConstantRange X = getSignedRange(UMax->getOperand(0)); 2812 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2813 X = X.umax(getSignedRange(UMax->getOperand(i))); 2814 return X; 2815 } 2816 2817 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2818 ConstantRange X = getSignedRange(UDiv->getLHS()); 2819 ConstantRange Y = getSignedRange(UDiv->getRHS()); 2820 return X.udiv(Y); 2821 } 2822 2823 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2824 ConstantRange X = getSignedRange(ZExt->getOperand()); 2825 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); 2826 } 2827 2828 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2829 ConstantRange X = getSignedRange(SExt->getOperand()); 2830 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); 2831 } 2832 2833 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2834 ConstantRange X = getSignedRange(Trunc->getOperand()); 2835 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); 2836 } 2837 2838 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true); 2839 2840 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2841 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop()); 2842 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); 2843 if (!Trip) return FullSet; 2844 2845 // TODO: non-affine addrec 2846 if (AddRec->isAffine()) { 2847 const Type *Ty = AddRec->getType(); 2848 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2849 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) { 2850 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2851 2852 const SCEV *Start = AddRec->getStart(); 2853 const SCEV *Step = AddRec->getStepRecurrence(*this); 2854 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2855 2856 // Check for overflow. 2857 // TODO: This is very conservative. 2858 if (!(Step->isOne() && 2859 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) && 2860 !(Step->isAllOnesValue() && 2861 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End))) 2862 return FullSet; 2863 2864 ConstantRange StartRange = getSignedRange(Start); 2865 ConstantRange EndRange = getSignedRange(End); 2866 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 2867 EndRange.getSignedMin()); 2868 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 2869 EndRange.getSignedMax()); 2870 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 2871 return FullSet; 2872 return ConstantRange(Min, Max+1); 2873 } 2874 } 2875 } 2876 2877 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2878 // For a SCEVUnknown, ask ValueTracking. 2879 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2880 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 2881 if (NS == 1) 2882 return FullSet; 2883 return 2884 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 2885 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1); 2886 } 2887 2888 return FullSet; 2889 } 2890 2891 /// createSCEV - We know that there is no SCEV for the specified value. 2892 /// Analyze the expression. 2893 /// 2894 const SCEV *ScalarEvolution::createSCEV(Value *V) { 2895 if (!isSCEVable(V->getType())) 2896 return getUnknown(V); 2897 2898 unsigned Opcode = Instruction::UserOp1; 2899 if (Instruction *I = dyn_cast<Instruction>(V)) 2900 Opcode = I->getOpcode(); 2901 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2902 Opcode = CE->getOpcode(); 2903 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 2904 return getConstant(CI); 2905 else if (isa<ConstantPointerNull>(V)) 2906 return getIntegerSCEV(0, V->getType()); 2907 else if (isa<UndefValue>(V)) 2908 return getIntegerSCEV(0, V->getType()); 2909 else 2910 return getUnknown(V); 2911 2912 Operator *U = cast<Operator>(V); 2913 switch (Opcode) { 2914 case Instruction::Add: 2915 return getAddExpr(getSCEV(U->getOperand(0)), 2916 getSCEV(U->getOperand(1))); 2917 case Instruction::Mul: 2918 return getMulExpr(getSCEV(U->getOperand(0)), 2919 getSCEV(U->getOperand(1))); 2920 case Instruction::UDiv: 2921 return getUDivExpr(getSCEV(U->getOperand(0)), 2922 getSCEV(U->getOperand(1))); 2923 case Instruction::Sub: 2924 return getMinusSCEV(getSCEV(U->getOperand(0)), 2925 getSCEV(U->getOperand(1))); 2926 case Instruction::And: 2927 // For an expression like x&255 that merely masks off the high bits, 2928 // use zext(trunc(x)) as the SCEV expression. 2929 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2930 if (CI->isNullValue()) 2931 return getSCEV(U->getOperand(1)); 2932 if (CI->isAllOnesValue()) 2933 return getSCEV(U->getOperand(0)); 2934 const APInt &A = CI->getValue(); 2935 2936 // Instcombine's ShrinkDemandedConstant may strip bits out of 2937 // constants, obscuring what would otherwise be a low-bits mask. 2938 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 2939 // knew about to reconstruct a low-bits mask value. 2940 unsigned LZ = A.countLeadingZeros(); 2941 unsigned BitWidth = A.getBitWidth(); 2942 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 2943 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 2944 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 2945 2946 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 2947 2948 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 2949 return 2950 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 2951 IntegerType::get(getContext(), BitWidth - LZ)), 2952 U->getType()); 2953 } 2954 break; 2955 2956 case Instruction::Or: 2957 // If the RHS of the Or is a constant, we may have something like: 2958 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 2959 // optimizations will transparently handle this case. 2960 // 2961 // In order for this transformation to be safe, the LHS must be of the 2962 // form X*(2^n) and the Or constant must be less than 2^n. 2963 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2964 const SCEV *LHS = getSCEV(U->getOperand(0)); 2965 const APInt &CIVal = CI->getValue(); 2966 if (GetMinTrailingZeros(LHS) >= 2967 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 2968 return getAddExpr(LHS, getSCEV(U->getOperand(1))); 2969 } 2970 break; 2971 case Instruction::Xor: 2972 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 2973 // If the RHS of the xor is a signbit, then this is just an add. 2974 // Instcombine turns add of signbit into xor as a strength reduction step. 2975 if (CI->getValue().isSignBit()) 2976 return getAddExpr(getSCEV(U->getOperand(0)), 2977 getSCEV(U->getOperand(1))); 2978 2979 // If the RHS of xor is -1, then this is a not operation. 2980 if (CI->isAllOnesValue()) 2981 return getNotSCEV(getSCEV(U->getOperand(0))); 2982 2983 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 2984 // This is a variant of the check for xor with -1, and it handles 2985 // the case where instcombine has trimmed non-demanded bits out 2986 // of an xor with -1. 2987 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 2988 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 2989 if (BO->getOpcode() == Instruction::And && 2990 LCI->getValue() == CI->getValue()) 2991 if (const SCEVZeroExtendExpr *Z = 2992 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 2993 const Type *UTy = U->getType(); 2994 const SCEV *Z0 = Z->getOperand(); 2995 const Type *Z0Ty = Z0->getType(); 2996 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 2997 2998 // If C is a low-bits mask, the zero extend is zerving to 2999 // mask off the high bits. Complement the operand and 3000 // re-apply the zext. 3001 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3002 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3003 3004 // If C is a single bit, it may be in the sign-bit position 3005 // before the zero-extend. In this case, represent the xor 3006 // using an add, which is equivalent, and re-apply the zext. 3007 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3008 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3009 Trunc.isSignBit()) 3010 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3011 UTy); 3012 } 3013 } 3014 break; 3015 3016 case Instruction::Shl: 3017 // Turn shift left of a constant amount into a multiply. 3018 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3019 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3020 Constant *X = ConstantInt::get(getContext(), 3021 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3022 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3023 } 3024 break; 3025 3026 case Instruction::LShr: 3027 // Turn logical shift right of a constant into a unsigned divide. 3028 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3029 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 3030 Constant *X = ConstantInt::get(getContext(), 3031 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3032 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3033 } 3034 break; 3035 3036 case Instruction::AShr: 3037 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3038 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3039 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 3040 if (L->getOpcode() == Instruction::Shl && 3041 L->getOperand(1) == U->getOperand(1)) { 3042 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3043 uint64_t Amt = BitWidth - CI->getZExtValue(); 3044 if (Amt == BitWidth) 3045 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3046 if (Amt > BitWidth) 3047 return getIntegerSCEV(0, U->getType()); // value is undefined 3048 return 3049 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3050 IntegerType::get(getContext(), Amt)), 3051 U->getType()); 3052 } 3053 break; 3054 3055 case Instruction::Trunc: 3056 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3057 3058 case Instruction::ZExt: 3059 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3060 3061 case Instruction::SExt: 3062 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3063 3064 case Instruction::BitCast: 3065 // BitCasts are no-op casts so we just eliminate the cast. 3066 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3067 return getSCEV(U->getOperand(0)); 3068 break; 3069 3070 // It's tempting to handle inttoptr and ptrtoint, however this can 3071 // lead to pointer expressions which cannot be expanded to GEPs 3072 // (because they may overflow). For now, the only pointer-typed 3073 // expressions we handle are GEPs and address literals. 3074 3075 case Instruction::GetElementPtr: 3076 return createNodeForGEP(U); 3077 3078 case Instruction::PHI: 3079 return createNodeForPHI(cast<PHINode>(U)); 3080 3081 case Instruction::Select: 3082 // This could be a smax or umax that was lowered earlier. 3083 // Try to recover it. 3084 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3085 Value *LHS = ICI->getOperand(0); 3086 Value *RHS = ICI->getOperand(1); 3087 switch (ICI->getPredicate()) { 3088 case ICmpInst::ICMP_SLT: 3089 case ICmpInst::ICMP_SLE: 3090 std::swap(LHS, RHS); 3091 // fall through 3092 case ICmpInst::ICMP_SGT: 3093 case ICmpInst::ICMP_SGE: 3094 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3095 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3096 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3097 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 3098 break; 3099 case ICmpInst::ICMP_ULT: 3100 case ICmpInst::ICMP_ULE: 3101 std::swap(LHS, RHS); 3102 // fall through 3103 case ICmpInst::ICMP_UGT: 3104 case ICmpInst::ICMP_UGE: 3105 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3106 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3107 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3108 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 3109 break; 3110 case ICmpInst::ICMP_NE: 3111 // n != 0 ? n : 1 -> umax(n, 1) 3112 if (LHS == U->getOperand(1) && 3113 isa<ConstantInt>(U->getOperand(2)) && 3114 cast<ConstantInt>(U->getOperand(2))->isOne() && 3115 isa<ConstantInt>(RHS) && 3116 cast<ConstantInt>(RHS)->isZero()) 3117 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 3118 break; 3119 case ICmpInst::ICMP_EQ: 3120 // n == 0 ? 1 : n -> umax(n, 1) 3121 if (LHS == U->getOperand(2) && 3122 isa<ConstantInt>(U->getOperand(1)) && 3123 cast<ConstantInt>(U->getOperand(1))->isOne() && 3124 isa<ConstantInt>(RHS) && 3125 cast<ConstantInt>(RHS)->isZero()) 3126 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 3127 break; 3128 default: 3129 break; 3130 } 3131 } 3132 3133 default: // We cannot analyze this expression. 3134 break; 3135 } 3136 3137 return getUnknown(V); 3138 } 3139 3140 3141 3142 //===----------------------------------------------------------------------===// 3143 // Iteration Count Computation Code 3144 // 3145 3146 /// getBackedgeTakenCount - If the specified loop has a predictable 3147 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3148 /// object. The backedge-taken count is the number of times the loop header 3149 /// will be branched to from within the loop. This is one less than the 3150 /// trip count of the loop, since it doesn't count the first iteration, 3151 /// when the header is branched to from outside the loop. 3152 /// 3153 /// Note that it is not valid to call this method on a loop without a 3154 /// loop-invariant backedge-taken count (see 3155 /// hasLoopInvariantBackedgeTakenCount). 3156 /// 3157 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3158 return getBackedgeTakenInfo(L).Exact; 3159 } 3160 3161 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3162 /// return the least SCEV value that is known never to be less than the 3163 /// actual backedge taken count. 3164 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3165 return getBackedgeTakenInfo(L).Max; 3166 } 3167 3168 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3169 /// onto the given Worklist. 3170 static void 3171 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3172 BasicBlock *Header = L->getHeader(); 3173 3174 // Push all Loop-header PHIs onto the Worklist stack. 3175 for (BasicBlock::iterator I = Header->begin(); 3176 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3177 Worklist.push_back(PN); 3178 } 3179 3180 const ScalarEvolution::BackedgeTakenInfo & 3181 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3182 // Initially insert a CouldNotCompute for this loop. If the insertion 3183 // succeeds, procede to actually compute a backedge-taken count and 3184 // update the value. The temporary CouldNotCompute value tells SCEV 3185 // code elsewhere that it shouldn't attempt to request a new 3186 // backedge-taken count, which could result in infinite recursion. 3187 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair = 3188 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3189 if (Pair.second) { 3190 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L); 3191 if (ItCount.Exact != getCouldNotCompute()) { 3192 assert(ItCount.Exact->isLoopInvariant(L) && 3193 ItCount.Max->isLoopInvariant(L) && 3194 "Computed trip count isn't loop invariant for loop!"); 3195 ++NumTripCountsComputed; 3196 3197 // Update the value in the map. 3198 Pair.first->second = ItCount; 3199 } else { 3200 if (ItCount.Max != getCouldNotCompute()) 3201 // Update the value in the map. 3202 Pair.first->second = ItCount; 3203 if (isa<PHINode>(L->getHeader()->begin())) 3204 // Only count loops that have phi nodes as not being computable. 3205 ++NumTripCountsNotComputed; 3206 } 3207 3208 // Now that we know more about the trip count for this loop, forget any 3209 // existing SCEV values for PHI nodes in this loop since they are only 3210 // conservative estimates made without the benefit of trip count 3211 // information. This is similar to the code in 3212 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI 3213 // nodes specially. 3214 if (ItCount.hasAnyInfo()) { 3215 SmallVector<Instruction *, 16> Worklist; 3216 PushLoopPHIs(L, Worklist); 3217 3218 SmallPtrSet<Instruction *, 8> Visited; 3219 while (!Worklist.empty()) { 3220 Instruction *I = Worklist.pop_back_val(); 3221 if (!Visited.insert(I)) continue; 3222 3223 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 3224 Scalars.find(static_cast<Value *>(I)); 3225 if (It != Scalars.end()) { 3226 // SCEVUnknown for a PHI either means that it has an unrecognized 3227 // structure, or it's a PHI that's in the progress of being computed 3228 // by createNodeForPHI. In the former case, additional loop trip 3229 // count information isn't going to change anything. In the later 3230 // case, createNodeForPHI will perform the necessary updates on its 3231 // own when it gets to that point. 3232 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) 3233 Scalars.erase(It); 3234 ValuesAtScopes.erase(I); 3235 if (PHINode *PN = dyn_cast<PHINode>(I)) 3236 ConstantEvolutionLoopExitValue.erase(PN); 3237 } 3238 3239 PushDefUseChildren(I, Worklist); 3240 } 3241 } 3242 } 3243 return Pair.first->second; 3244 } 3245 3246 /// forgetLoopBackedgeTakenCount - This method should be called by the 3247 /// client when it has changed a loop in a way that may effect 3248 /// ScalarEvolution's ability to compute a trip count, or if the loop 3249 /// is deleted. 3250 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 3251 BackedgeTakenCounts.erase(L); 3252 3253 SmallVector<Instruction *, 16> Worklist; 3254 PushLoopPHIs(L, Worklist); 3255 3256 SmallPtrSet<Instruction *, 8> Visited; 3257 while (!Worklist.empty()) { 3258 Instruction *I = Worklist.pop_back_val(); 3259 if (!Visited.insert(I)) continue; 3260 3261 std::map<SCEVCallbackVH, const SCEV*>::iterator It = 3262 Scalars.find(static_cast<Value *>(I)); 3263 if (It != Scalars.end()) { 3264 Scalars.erase(It); 3265 ValuesAtScopes.erase(I); 3266 if (PHINode *PN = dyn_cast<PHINode>(I)) 3267 ConstantEvolutionLoopExitValue.erase(PN); 3268 } 3269 3270 PushDefUseChildren(I, Worklist); 3271 } 3272 } 3273 3274 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3275 /// of the specified loop will execute. 3276 ScalarEvolution::BackedgeTakenInfo 3277 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3278 SmallVector<BasicBlock*, 8> ExitingBlocks; 3279 L->getExitingBlocks(ExitingBlocks); 3280 3281 // Examine all exits and pick the most conservative values. 3282 const SCEV *BECount = getCouldNotCompute(); 3283 const SCEV *MaxBECount = getCouldNotCompute(); 3284 bool CouldNotComputeBECount = false; 3285 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3286 BackedgeTakenInfo NewBTI = 3287 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3288 3289 if (NewBTI.Exact == getCouldNotCompute()) { 3290 // We couldn't compute an exact value for this exit, so 3291 // we won't be able to compute an exact value for the loop. 3292 CouldNotComputeBECount = true; 3293 BECount = getCouldNotCompute(); 3294 } else if (!CouldNotComputeBECount) { 3295 if (BECount == getCouldNotCompute()) 3296 BECount = NewBTI.Exact; 3297 else 3298 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3299 } 3300 if (MaxBECount == getCouldNotCompute()) 3301 MaxBECount = NewBTI.Max; 3302 else if (NewBTI.Max != getCouldNotCompute()) 3303 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3304 } 3305 3306 return BackedgeTakenInfo(BECount, MaxBECount); 3307 } 3308 3309 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3310 /// of the specified loop will execute if it exits via the specified block. 3311 ScalarEvolution::BackedgeTakenInfo 3312 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3313 BasicBlock *ExitingBlock) { 3314 3315 // Okay, we've chosen an exiting block. See what condition causes us to 3316 // exit at this block. 3317 // 3318 // FIXME: we should be able to handle switch instructions (with a single exit) 3319 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3320 if (ExitBr == 0) return getCouldNotCompute(); 3321 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3322 3323 // At this point, we know we have a conditional branch that determines whether 3324 // the loop is exited. However, we don't know if the branch is executed each 3325 // time through the loop. If not, then the execution count of the branch will 3326 // not be equal to the trip count of the loop. 3327 // 3328 // Currently we check for this by checking to see if the Exit branch goes to 3329 // the loop header. If so, we know it will always execute the same number of 3330 // times as the loop. We also handle the case where the exit block *is* the 3331 // loop header. This is common for un-rotated loops. 3332 // 3333 // If both of those tests fail, walk up the unique predecessor chain to the 3334 // header, stopping if there is an edge that doesn't exit the loop. If the 3335 // header is reached, the execution count of the branch will be equal to the 3336 // trip count of the loop. 3337 // 3338 // More extensive analysis could be done to handle more cases here. 3339 // 3340 if (ExitBr->getSuccessor(0) != L->getHeader() && 3341 ExitBr->getSuccessor(1) != L->getHeader() && 3342 ExitBr->getParent() != L->getHeader()) { 3343 // The simple checks failed, try climbing the unique predecessor chain 3344 // up to the header. 3345 bool Ok = false; 3346 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3347 BasicBlock *Pred = BB->getUniquePredecessor(); 3348 if (!Pred) 3349 return getCouldNotCompute(); 3350 TerminatorInst *PredTerm = Pred->getTerminator(); 3351 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3352 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3353 if (PredSucc == BB) 3354 continue; 3355 // If the predecessor has a successor that isn't BB and isn't 3356 // outside the loop, assume the worst. 3357 if (L->contains(PredSucc)) 3358 return getCouldNotCompute(); 3359 } 3360 if (Pred == L->getHeader()) { 3361 Ok = true; 3362 break; 3363 } 3364 BB = Pred; 3365 } 3366 if (!Ok) 3367 return getCouldNotCompute(); 3368 } 3369 3370 // Procede to the next level to examine the exit condition expression. 3371 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3372 ExitBr->getSuccessor(0), 3373 ExitBr->getSuccessor(1)); 3374 } 3375 3376 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3377 /// backedge of the specified loop will execute if its exit condition 3378 /// were a conditional branch of ExitCond, TBB, and FBB. 3379 ScalarEvolution::BackedgeTakenInfo 3380 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3381 Value *ExitCond, 3382 BasicBlock *TBB, 3383 BasicBlock *FBB) { 3384 // Check if the controlling expression for this loop is an And or Or. 3385 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3386 if (BO->getOpcode() == Instruction::And) { 3387 // Recurse on the operands of the and. 3388 BackedgeTakenInfo BTI0 = 3389 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3390 BackedgeTakenInfo BTI1 = 3391 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3392 const SCEV *BECount = getCouldNotCompute(); 3393 const SCEV *MaxBECount = getCouldNotCompute(); 3394 if (L->contains(TBB)) { 3395 // Both conditions must be true for the loop to continue executing. 3396 // Choose the less conservative count. 3397 if (BTI0.Exact == getCouldNotCompute() || 3398 BTI1.Exact == getCouldNotCompute()) 3399 BECount = getCouldNotCompute(); 3400 else 3401 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3402 if (BTI0.Max == getCouldNotCompute()) 3403 MaxBECount = BTI1.Max; 3404 else if (BTI1.Max == getCouldNotCompute()) 3405 MaxBECount = BTI0.Max; 3406 else 3407 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3408 } else { 3409 // Both conditions must be true for the loop to exit. 3410 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3411 if (BTI0.Exact != getCouldNotCompute() && 3412 BTI1.Exact != getCouldNotCompute()) 3413 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3414 if (BTI0.Max != getCouldNotCompute() && 3415 BTI1.Max != getCouldNotCompute()) 3416 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3417 } 3418 3419 return BackedgeTakenInfo(BECount, MaxBECount); 3420 } 3421 if (BO->getOpcode() == Instruction::Or) { 3422 // Recurse on the operands of the or. 3423 BackedgeTakenInfo BTI0 = 3424 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3425 BackedgeTakenInfo BTI1 = 3426 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3427 const SCEV *BECount = getCouldNotCompute(); 3428 const SCEV *MaxBECount = getCouldNotCompute(); 3429 if (L->contains(FBB)) { 3430 // Both conditions must be false for the loop to continue executing. 3431 // Choose the less conservative count. 3432 if (BTI0.Exact == getCouldNotCompute() || 3433 BTI1.Exact == getCouldNotCompute()) 3434 BECount = getCouldNotCompute(); 3435 else 3436 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3437 if (BTI0.Max == getCouldNotCompute()) 3438 MaxBECount = BTI1.Max; 3439 else if (BTI1.Max == getCouldNotCompute()) 3440 MaxBECount = BTI0.Max; 3441 else 3442 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3443 } else { 3444 // Both conditions must be false for the loop to exit. 3445 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3446 if (BTI0.Exact != getCouldNotCompute() && 3447 BTI1.Exact != getCouldNotCompute()) 3448 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3449 if (BTI0.Max != getCouldNotCompute() && 3450 BTI1.Max != getCouldNotCompute()) 3451 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3452 } 3453 3454 return BackedgeTakenInfo(BECount, MaxBECount); 3455 } 3456 } 3457 3458 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3459 // Procede to the next level to examine the icmp. 3460 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3461 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3462 3463 // If it's not an integer or pointer comparison then compute it the hard way. 3464 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3465 } 3466 3467 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3468 /// backedge of the specified loop will execute if its exit condition 3469 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3470 ScalarEvolution::BackedgeTakenInfo 3471 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3472 ICmpInst *ExitCond, 3473 BasicBlock *TBB, 3474 BasicBlock *FBB) { 3475 3476 // If the condition was exit on true, convert the condition to exit on false 3477 ICmpInst::Predicate Cond; 3478 if (!L->contains(FBB)) 3479 Cond = ExitCond->getPredicate(); 3480 else 3481 Cond = ExitCond->getInversePredicate(); 3482 3483 // Handle common loops like: for (X = "string"; *X; ++X) 3484 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3485 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3486 const SCEV *ItCnt = 3487 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3488 if (!isa<SCEVCouldNotCompute>(ItCnt)) { 3489 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType()); 3490 return BackedgeTakenInfo(ItCnt, 3491 isa<SCEVConstant>(ItCnt) ? ItCnt : 3492 getConstant(APInt::getMaxValue(BitWidth)-1)); 3493 } 3494 } 3495 3496 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3497 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3498 3499 // Try to evaluate any dependencies out of the loop. 3500 LHS = getSCEVAtScope(LHS, L); 3501 RHS = getSCEVAtScope(RHS, L); 3502 3503 // At this point, we would like to compute how many iterations of the 3504 // loop the predicate will return true for these inputs. 3505 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3506 // If there is a loop-invariant, force it into the RHS. 3507 std::swap(LHS, RHS); 3508 Cond = ICmpInst::getSwappedPredicate(Cond); 3509 } 3510 3511 // If we have a comparison of a chrec against a constant, try to use value 3512 // ranges to answer this query. 3513 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3514 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3515 if (AddRec->getLoop() == L) { 3516 // Form the constant range. 3517 ConstantRange CompRange( 3518 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3519 3520 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3521 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3522 } 3523 3524 switch (Cond) { 3525 case ICmpInst::ICMP_NE: { // while (X != Y) 3526 // Convert to: while (X-Y != 0) 3527 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3528 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3529 break; 3530 } 3531 case ICmpInst::ICMP_EQ: { // while (X == Y) 3532 // Convert to: while (X-Y == 0) 3533 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3534 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 3535 break; 3536 } 3537 case ICmpInst::ICMP_SLT: { 3538 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3539 if (BTI.hasAnyInfo()) return BTI; 3540 break; 3541 } 3542 case ICmpInst::ICMP_SGT: { 3543 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3544 getNotSCEV(RHS), L, true); 3545 if (BTI.hasAnyInfo()) return BTI; 3546 break; 3547 } 3548 case ICmpInst::ICMP_ULT: { 3549 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3550 if (BTI.hasAnyInfo()) return BTI; 3551 break; 3552 } 3553 case ICmpInst::ICMP_UGT: { 3554 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3555 getNotSCEV(RHS), L, false); 3556 if (BTI.hasAnyInfo()) return BTI; 3557 break; 3558 } 3559 default: 3560 #if 0 3561 errs() << "ComputeBackedgeTakenCount "; 3562 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3563 errs() << "[unsigned] "; 3564 errs() << *LHS << " " 3565 << Instruction::getOpcodeName(Instruction::ICmp) 3566 << " " << *RHS << "\n"; 3567 #endif 3568 break; 3569 } 3570 return 3571 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3572 } 3573 3574 static ConstantInt * 3575 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3576 ScalarEvolution &SE) { 3577 const SCEV *InVal = SE.getConstant(C); 3578 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 3579 assert(isa<SCEVConstant>(Val) && 3580 "Evaluation of SCEV at constant didn't fold correctly?"); 3581 return cast<SCEVConstant>(Val)->getValue(); 3582 } 3583 3584 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3585 /// and a GEP expression (missing the pointer index) indexing into it, return 3586 /// the addressed element of the initializer or null if the index expression is 3587 /// invalid. 3588 static Constant * 3589 GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV, 3590 const std::vector<ConstantInt*> &Indices) { 3591 Constant *Init = GV->getInitializer(); 3592 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3593 uint64_t Idx = Indices[i]->getZExtValue(); 3594 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3595 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3596 Init = cast<Constant>(CS->getOperand(Idx)); 3597 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3598 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3599 Init = cast<Constant>(CA->getOperand(Idx)); 3600 } else if (isa<ConstantAggregateZero>(Init)) { 3601 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3602 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3603 Init = Constant::getNullValue(STy->getElementType(Idx)); 3604 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3605 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3606 Init = Constant::getNullValue(ATy->getElementType()); 3607 } else { 3608 llvm_unreachable("Unknown constant aggregate type!"); 3609 } 3610 return 0; 3611 } else { 3612 return 0; // Unknown initializer type 3613 } 3614 } 3615 return Init; 3616 } 3617 3618 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3619 /// 'icmp op load X, cst', try to see if we can compute the backedge 3620 /// execution count. 3621 const SCEV * 3622 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 3623 LoadInst *LI, 3624 Constant *RHS, 3625 const Loop *L, 3626 ICmpInst::Predicate predicate) { 3627 if (LI->isVolatile()) return getCouldNotCompute(); 3628 3629 // Check to see if the loaded pointer is a getelementptr of a global. 3630 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3631 if (!GEP) return getCouldNotCompute(); 3632 3633 // Make sure that it is really a constant global we are gepping, with an 3634 // initializer, and make sure the first IDX is really 0. 3635 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3636 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 3637 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3638 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3639 return getCouldNotCompute(); 3640 3641 // Okay, we allow one non-constant index into the GEP instruction. 3642 Value *VarIdx = 0; 3643 std::vector<ConstantInt*> Indexes; 3644 unsigned VarIdxNum = 0; 3645 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3646 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3647 Indexes.push_back(CI); 3648 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3649 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 3650 VarIdx = GEP->getOperand(i); 3651 VarIdxNum = i-2; 3652 Indexes.push_back(0); 3653 } 3654 3655 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3656 // Check to see if X is a loop variant variable value now. 3657 const SCEV *Idx = getSCEV(VarIdx); 3658 Idx = getSCEVAtScope(Idx, L); 3659 3660 // We can only recognize very limited forms of loop index expressions, in 3661 // particular, only affine AddRec's like {C1,+,C2}. 3662 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3663 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3664 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3665 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3666 return getCouldNotCompute(); 3667 3668 unsigned MaxSteps = MaxBruteForceIterations; 3669 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3670 ConstantInt *ItCst = ConstantInt::get( 3671 cast<IntegerType>(IdxExpr->getType()), IterationNum); 3672 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3673 3674 // Form the GEP offset. 3675 Indexes[VarIdxNum] = Val; 3676 3677 Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes); 3678 if (Result == 0) break; // Cannot compute! 3679 3680 // Evaluate the condition for this iteration. 3681 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3682 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3683 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3684 #if 0 3685 errs() << "\n***\n*** Computed loop count " << *ItCst 3686 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3687 << "***\n"; 3688 #endif 3689 ++NumArrayLenItCounts; 3690 return getConstant(ItCst); // Found terminating iteration! 3691 } 3692 } 3693 return getCouldNotCompute(); 3694 } 3695 3696 3697 /// CanConstantFold - Return true if we can constant fold an instruction of the 3698 /// specified type, assuming that all operands were constants. 3699 static bool CanConstantFold(const Instruction *I) { 3700 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3701 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3702 return true; 3703 3704 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3705 if (const Function *F = CI->getCalledFunction()) 3706 return canConstantFoldCallTo(F); 3707 return false; 3708 } 3709 3710 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3711 /// in the loop that V is derived from. We allow arbitrary operations along the 3712 /// way, but the operands of an operation must either be constants or a value 3713 /// derived from a constant PHI. If this expression does not fit with these 3714 /// constraints, return null. 3715 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3716 // If this is not an instruction, or if this is an instruction outside of the 3717 // loop, it can't be derived from a loop PHI. 3718 Instruction *I = dyn_cast<Instruction>(V); 3719 if (I == 0 || !L->contains(I->getParent())) return 0; 3720 3721 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3722 if (L->getHeader() == I->getParent()) 3723 return PN; 3724 else 3725 // We don't currently keep track of the control flow needed to evaluate 3726 // PHIs, so we cannot handle PHIs inside of loops. 3727 return 0; 3728 } 3729 3730 // If we won't be able to constant fold this expression even if the operands 3731 // are constants, return early. 3732 if (!CanConstantFold(I)) return 0; 3733 3734 // Otherwise, we can evaluate this instruction if all of its operands are 3735 // constant or derived from a PHI node themselves. 3736 PHINode *PHI = 0; 3737 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3738 if (!(isa<Constant>(I->getOperand(Op)) || 3739 isa<GlobalValue>(I->getOperand(Op)))) { 3740 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3741 if (P == 0) return 0; // Not evolving from PHI 3742 if (PHI == 0) 3743 PHI = P; 3744 else if (PHI != P) 3745 return 0; // Evolving from multiple different PHIs. 3746 } 3747 3748 // This is a expression evolving from a constant PHI! 3749 return PHI; 3750 } 3751 3752 /// EvaluateExpression - Given an expression that passes the 3753 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 3754 /// in the loop has the value PHIVal. If we can't fold this expression for some 3755 /// reason, return null. 3756 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 3757 if (isa<PHINode>(V)) return PHIVal; 3758 if (Constant *C = dyn_cast<Constant>(V)) return C; 3759 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 3760 Instruction *I = cast<Instruction>(V); 3761 LLVMContext &Context = I->getParent()->getContext(); 3762 3763 std::vector<Constant*> Operands; 3764 Operands.resize(I->getNumOperands()); 3765 3766 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3767 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 3768 if (Operands[i] == 0) return 0; 3769 } 3770 3771 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3772 return ConstantFoldCompareInstOperands(CI->getPredicate(), 3773 &Operands[0], Operands.size(), 3774 Context); 3775 else 3776 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3777 &Operands[0], Operands.size(), 3778 Context); 3779 } 3780 3781 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 3782 /// in the header of its containing loop, we know the loop executes a 3783 /// constant number of times, and the PHI node is just a recurrence 3784 /// involving constants, fold it. 3785 Constant * 3786 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 3787 const APInt& BEs, 3788 const Loop *L) { 3789 std::map<PHINode*, Constant*>::iterator I = 3790 ConstantEvolutionLoopExitValue.find(PN); 3791 if (I != ConstantEvolutionLoopExitValue.end()) 3792 return I->second; 3793 3794 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 3795 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 3796 3797 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 3798 3799 // Since the loop is canonicalized, the PHI node must have two entries. One 3800 // entry must be a constant (coming in from outside of the loop), and the 3801 // second must be derived from the same PHI. 3802 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3803 Constant *StartCST = 3804 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3805 if (StartCST == 0) 3806 return RetVal = 0; // Must be a constant. 3807 3808 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3809 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3810 if (PN2 != PN) 3811 return RetVal = 0; // Not derived from same PHI. 3812 3813 // Execute the loop symbolically to determine the exit value. 3814 if (BEs.getActiveBits() >= 32) 3815 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 3816 3817 unsigned NumIterations = BEs.getZExtValue(); // must be in range 3818 unsigned IterationNum = 0; 3819 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 3820 if (IterationNum == NumIterations) 3821 return RetVal = PHIVal; // Got exit value! 3822 3823 // Compute the value of the PHI node for the next iteration. 3824 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3825 if (NextPHI == PHIVal) 3826 return RetVal = NextPHI; // Stopped evolving! 3827 if (NextPHI == 0) 3828 return 0; // Couldn't evaluate! 3829 PHIVal = NextPHI; 3830 } 3831 } 3832 3833 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 3834 /// constant number of times (the condition evolves only from constants), 3835 /// try to evaluate a few iterations of the loop until we get the exit 3836 /// condition gets a value of ExitWhen (true or false). If we cannot 3837 /// evaluate the trip count of the loop, return getCouldNotCompute(). 3838 const SCEV * 3839 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 3840 Value *Cond, 3841 bool ExitWhen) { 3842 PHINode *PN = getConstantEvolvingPHI(Cond, L); 3843 if (PN == 0) return getCouldNotCompute(); 3844 3845 // Since the loop is canonicalized, the PHI node must have two entries. One 3846 // entry must be a constant (coming in from outside of the loop), and the 3847 // second must be derived from the same PHI. 3848 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 3849 Constant *StartCST = 3850 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 3851 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 3852 3853 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 3854 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 3855 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI. 3856 3857 // Okay, we find a PHI node that defines the trip count of this loop. Execute 3858 // the loop symbolically to determine when the condition gets a value of 3859 // "ExitWhen". 3860 unsigned IterationNum = 0; 3861 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 3862 for (Constant *PHIVal = StartCST; 3863 IterationNum != MaxIterations; ++IterationNum) { 3864 ConstantInt *CondVal = 3865 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 3866 3867 // Couldn't symbolically evaluate. 3868 if (!CondVal) return getCouldNotCompute(); 3869 3870 if (CondVal->getValue() == uint64_t(ExitWhen)) { 3871 ++NumBruteForceTripCountsComputed; 3872 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 3873 } 3874 3875 // Compute the value of the PHI node for the next iteration. 3876 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 3877 if (NextPHI == 0 || NextPHI == PHIVal) 3878 return getCouldNotCompute();// Couldn't evaluate or not making progress... 3879 PHIVal = NextPHI; 3880 } 3881 3882 // Too many iterations were needed to evaluate. 3883 return getCouldNotCompute(); 3884 } 3885 3886 /// getSCEVAtScope - Return a SCEV expression handle for the specified value 3887 /// at the specified scope in the program. The L value specifies a loop 3888 /// nest to evaluate the expression at, where null is the top-level or a 3889 /// specified loop is immediately inside of the loop. 3890 /// 3891 /// This method can be used to compute the exit value for a variable defined 3892 /// in a loop by querying what the value will hold in the parent loop. 3893 /// 3894 /// In the case that a relevant loop exit value cannot be computed, the 3895 /// original value V is returned. 3896 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 3897 // FIXME: this should be turned into a virtual method on SCEV! 3898 3899 if (isa<SCEVConstant>(V)) return V; 3900 3901 // If this instruction is evolved from a constant-evolving PHI, compute the 3902 // exit value from the loop without using SCEVs. 3903 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 3904 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 3905 const Loop *LI = (*this->LI)[I->getParent()]; 3906 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 3907 if (PHINode *PN = dyn_cast<PHINode>(I)) 3908 if (PN->getParent() == LI->getHeader()) { 3909 // Okay, there is no closed form solution for the PHI node. Check 3910 // to see if the loop that contains it has a known backedge-taken 3911 // count. If so, we may be able to force computation of the exit 3912 // value. 3913 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 3914 if (const SCEVConstant *BTCC = 3915 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 3916 // Okay, we know how many times the containing loop executes. If 3917 // this is a constant evolving PHI node, get the final value at 3918 // the specified iteration number. 3919 Constant *RV = getConstantEvolutionLoopExitValue(PN, 3920 BTCC->getValue()->getValue(), 3921 LI); 3922 if (RV) return getSCEV(RV); 3923 } 3924 } 3925 3926 // Okay, this is an expression that we cannot symbolically evaluate 3927 // into a SCEV. Check to see if it's possible to symbolically evaluate 3928 // the arguments into constants, and if so, try to constant propagate the 3929 // result. This is particularly useful for computing loop exit values. 3930 if (CanConstantFold(I)) { 3931 // Check to see if we've folded this instruction at this loop before. 3932 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I]; 3933 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair = 3934 Values.insert(std::make_pair(L, static_cast<Constant *>(0))); 3935 if (!Pair.second) 3936 return Pair.first->second ? &*getSCEV(Pair.first->second) : V; 3937 3938 std::vector<Constant*> Operands; 3939 Operands.reserve(I->getNumOperands()); 3940 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3941 Value *Op = I->getOperand(i); 3942 if (Constant *C = dyn_cast<Constant>(Op)) { 3943 Operands.push_back(C); 3944 } else { 3945 // If any of the operands is non-constant and if they are 3946 // non-integer and non-pointer, don't even try to analyze them 3947 // with scev techniques. 3948 if (!isSCEVable(Op->getType())) 3949 return V; 3950 3951 const SCEV* OpV = getSCEVAtScope(Op, L); 3952 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 3953 Constant *C = SC->getValue(); 3954 if (C->getType() != Op->getType()) 3955 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3956 Op->getType(), 3957 false), 3958 C, Op->getType()); 3959 Operands.push_back(C); 3960 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 3961 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 3962 if (C->getType() != Op->getType()) 3963 C = 3964 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3965 Op->getType(), 3966 false), 3967 C, Op->getType()); 3968 Operands.push_back(C); 3969 } else 3970 return V; 3971 } else { 3972 return V; 3973 } 3974 } 3975 } 3976 3977 Constant *C; 3978 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 3979 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 3980 &Operands[0], Operands.size(), 3981 getContext()); 3982 else 3983 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 3984 &Operands[0], Operands.size(), 3985 getContext()); 3986 Pair.first->second = C; 3987 return getSCEV(C); 3988 } 3989 } 3990 3991 // This is some other type of SCEVUnknown, just return it. 3992 return V; 3993 } 3994 3995 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 3996 // Avoid performing the look-up in the common case where the specified 3997 // expression has no loop-variant portions. 3998 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 3999 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4000 if (OpAtScope != Comm->getOperand(i)) { 4001 // Okay, at least one of these operands is loop variant but might be 4002 // foldable. Build a new instance of the folded commutative expression. 4003 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4004 Comm->op_begin()+i); 4005 NewOps.push_back(OpAtScope); 4006 4007 for (++i; i != e; ++i) { 4008 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4009 NewOps.push_back(OpAtScope); 4010 } 4011 if (isa<SCEVAddExpr>(Comm)) 4012 return getAddExpr(NewOps); 4013 if (isa<SCEVMulExpr>(Comm)) 4014 return getMulExpr(NewOps); 4015 if (isa<SCEVSMaxExpr>(Comm)) 4016 return getSMaxExpr(NewOps); 4017 if (isa<SCEVUMaxExpr>(Comm)) 4018 return getUMaxExpr(NewOps); 4019 llvm_unreachable("Unknown commutative SCEV type!"); 4020 } 4021 } 4022 // If we got here, all operands are loop invariant. 4023 return Comm; 4024 } 4025 4026 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4027 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4028 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4029 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4030 return Div; // must be loop invariant 4031 return getUDivExpr(LHS, RHS); 4032 } 4033 4034 // If this is a loop recurrence for a loop that does not contain L, then we 4035 // are dealing with the final value computed by the loop. 4036 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4037 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 4038 // To evaluate this recurrence, we need to know how many times the AddRec 4039 // loop iterates. Compute this now. 4040 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4041 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4042 4043 // Then, evaluate the AddRec. 4044 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4045 } 4046 return AddRec; 4047 } 4048 4049 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4050 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4051 if (Op == Cast->getOperand()) 4052 return Cast; // must be loop invariant 4053 return getZeroExtendExpr(Op, Cast->getType()); 4054 } 4055 4056 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4057 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4058 if (Op == Cast->getOperand()) 4059 return Cast; // must be loop invariant 4060 return getSignExtendExpr(Op, Cast->getType()); 4061 } 4062 4063 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4064 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4065 if (Op == Cast->getOperand()) 4066 return Cast; // must be loop invariant 4067 return getTruncateExpr(Op, Cast->getType()); 4068 } 4069 4070 if (isa<SCEVTargetDataConstant>(V)) 4071 return V; 4072 4073 llvm_unreachable("Unknown SCEV type!"); 4074 return 0; 4075 } 4076 4077 /// getSCEVAtScope - This is a convenience function which does 4078 /// getSCEVAtScope(getSCEV(V), L). 4079 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4080 return getSCEVAtScope(getSCEV(V), L); 4081 } 4082 4083 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4084 /// following equation: 4085 /// 4086 /// A * X = B (mod N) 4087 /// 4088 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4089 /// A and B isn't important. 4090 /// 4091 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4092 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4093 ScalarEvolution &SE) { 4094 uint32_t BW = A.getBitWidth(); 4095 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4096 assert(A != 0 && "A must be non-zero."); 4097 4098 // 1. D = gcd(A, N) 4099 // 4100 // The gcd of A and N may have only one prime factor: 2. The number of 4101 // trailing zeros in A is its multiplicity 4102 uint32_t Mult2 = A.countTrailingZeros(); 4103 // D = 2^Mult2 4104 4105 // 2. Check if B is divisible by D. 4106 // 4107 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4108 // is not less than multiplicity of this prime factor for D. 4109 if (B.countTrailingZeros() < Mult2) 4110 return SE.getCouldNotCompute(); 4111 4112 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4113 // modulo (N / D). 4114 // 4115 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4116 // bit width during computations. 4117 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4118 APInt Mod(BW + 1, 0); 4119 Mod.set(BW - Mult2); // Mod = N / D 4120 APInt I = AD.multiplicativeInverse(Mod); 4121 4122 // 4. Compute the minimum unsigned root of the equation: 4123 // I * (B / D) mod (N / D) 4124 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4125 4126 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4127 // bits. 4128 return SE.getConstant(Result.trunc(BW)); 4129 } 4130 4131 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4132 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4133 /// might be the same) or two SCEVCouldNotCompute objects. 4134 /// 4135 static std::pair<const SCEV *,const SCEV *> 4136 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4137 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4138 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4139 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4140 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4141 4142 // We currently can only solve this if the coefficients are constants. 4143 if (!LC || !MC || !NC) { 4144 const SCEV *CNC = SE.getCouldNotCompute(); 4145 return std::make_pair(CNC, CNC); 4146 } 4147 4148 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4149 const APInt &L = LC->getValue()->getValue(); 4150 const APInt &M = MC->getValue()->getValue(); 4151 const APInt &N = NC->getValue()->getValue(); 4152 APInt Two(BitWidth, 2); 4153 APInt Four(BitWidth, 4); 4154 4155 { 4156 using namespace APIntOps; 4157 const APInt& C = L; 4158 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4159 // The B coefficient is M-N/2 4160 APInt B(M); 4161 B -= sdiv(N,Two); 4162 4163 // The A coefficient is N/2 4164 APInt A(N.sdiv(Two)); 4165 4166 // Compute the B^2-4ac term. 4167 APInt SqrtTerm(B); 4168 SqrtTerm *= B; 4169 SqrtTerm -= Four * (A * C); 4170 4171 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4172 // integer value or else APInt::sqrt() will assert. 4173 APInt SqrtVal(SqrtTerm.sqrt()); 4174 4175 // Compute the two solutions for the quadratic formula. 4176 // The divisions must be performed as signed divisions. 4177 APInt NegB(-B); 4178 APInt TwoA( A << 1 ); 4179 if (TwoA.isMinValue()) { 4180 const SCEV *CNC = SE.getCouldNotCompute(); 4181 return std::make_pair(CNC, CNC); 4182 } 4183 4184 LLVMContext &Context = SE.getContext(); 4185 4186 ConstantInt *Solution1 = 4187 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4188 ConstantInt *Solution2 = 4189 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4190 4191 return std::make_pair(SE.getConstant(Solution1), 4192 SE.getConstant(Solution2)); 4193 } // end APIntOps namespace 4194 } 4195 4196 /// HowFarToZero - Return the number of times a backedge comparing the specified 4197 /// value to zero will execute. If not computable, return CouldNotCompute. 4198 const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4199 // If the value is a constant 4200 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4201 // If the value is already zero, the branch will execute zero times. 4202 if (C->getValue()->isZero()) return C; 4203 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4204 } 4205 4206 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4207 if (!AddRec || AddRec->getLoop() != L) 4208 return getCouldNotCompute(); 4209 4210 if (AddRec->isAffine()) { 4211 // If this is an affine expression, the execution count of this branch is 4212 // the minimum unsigned root of the following equation: 4213 // 4214 // Start + Step*N = 0 (mod 2^BW) 4215 // 4216 // equivalent to: 4217 // 4218 // Step*N = -Start (mod 2^BW) 4219 // 4220 // where BW is the common bit width of Start and Step. 4221 4222 // Get the initial value for the loop. 4223 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4224 L->getParentLoop()); 4225 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4226 L->getParentLoop()); 4227 4228 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4229 // For now we handle only constant steps. 4230 4231 // First, handle unitary steps. 4232 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4233 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4234 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4235 return Start; // N = Start (as unsigned) 4236 4237 // Then, try to solve the above equation provided that Start is constant. 4238 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4239 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4240 -StartC->getValue()->getValue(), 4241 *this); 4242 } 4243 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 4244 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4245 // the quadratic equation to solve it. 4246 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4247 *this); 4248 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4249 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4250 if (R1) { 4251 #if 0 4252 errs() << "HFTZ: " << *V << " - sol#1: " << *R1 4253 << " sol#2: " << *R2 << "\n"; 4254 #endif 4255 // Pick the smallest positive root value. 4256 if (ConstantInt *CB = 4257 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4258 R1->getValue(), R2->getValue()))) { 4259 if (CB->getZExtValue() == false) 4260 std::swap(R1, R2); // R1 is the minimum root now. 4261 4262 // We can only use this value if the chrec ends up with an exact zero 4263 // value at this index. When solving for "X*X != 5", for example, we 4264 // should not accept a root of 2. 4265 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4266 if (Val->isZero()) 4267 return R1; // We found a quadratic root! 4268 } 4269 } 4270 } 4271 4272 return getCouldNotCompute(); 4273 } 4274 4275 /// HowFarToNonZero - Return the number of times a backedge checking the 4276 /// specified value for nonzero will execute. If not computable, return 4277 /// CouldNotCompute 4278 const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4279 // Loops that look like: while (X == 0) are very strange indeed. We don't 4280 // handle them yet except for the trivial case. This could be expanded in the 4281 // future as needed. 4282 4283 // If the value is a constant, check to see if it is known to be non-zero 4284 // already. If so, the backedge will execute zero times. 4285 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4286 if (!C->getValue()->isNullValue()) 4287 return getIntegerSCEV(0, C->getType()); 4288 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4289 } 4290 4291 // We could implement others, but I really doubt anyone writes loops like 4292 // this, and if they did, they would already be constant folded. 4293 return getCouldNotCompute(); 4294 } 4295 4296 /// getLoopPredecessor - If the given loop's header has exactly one unique 4297 /// predecessor outside the loop, return it. Otherwise return null. 4298 /// 4299 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 4300 BasicBlock *Header = L->getHeader(); 4301 BasicBlock *Pred = 0; 4302 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 4303 PI != E; ++PI) 4304 if (!L->contains(*PI)) { 4305 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 4306 Pred = *PI; 4307 } 4308 return Pred; 4309 } 4310 4311 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4312 /// (which may not be an immediate predecessor) which has exactly one 4313 /// successor from which BB is reachable, or null if no such block is 4314 /// found. 4315 /// 4316 BasicBlock * 4317 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4318 // If the block has a unique predecessor, then there is no path from the 4319 // predecessor to the block that does not go through the direct edge 4320 // from the predecessor to the block. 4321 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4322 return Pred; 4323 4324 // A loop's header is defined to be a block that dominates the loop. 4325 // If the header has a unique predecessor outside the loop, it must be 4326 // a block that has exactly one successor that can reach the loop. 4327 if (Loop *L = LI->getLoopFor(BB)) 4328 return getLoopPredecessor(L); 4329 4330 return 0; 4331 } 4332 4333 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4334 /// testing whether two expressions are equal, however for the purposes of 4335 /// looking for a condition guarding a loop, it can be useful to be a little 4336 /// more general, since a front-end may have replicated the controlling 4337 /// expression. 4338 /// 4339 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4340 // Quick check to see if they are the same SCEV. 4341 if (A == B) return true; 4342 4343 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4344 // two different instructions with the same value. Check for this case. 4345 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4346 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4347 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4348 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4349 if (AI->isIdenticalTo(BI)) 4350 return true; 4351 4352 // Otherwise assume they may have a different value. 4353 return false; 4354 } 4355 4356 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 4357 return getSignedRange(S).getSignedMax().isNegative(); 4358 } 4359 4360 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 4361 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 4362 } 4363 4364 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 4365 return !getSignedRange(S).getSignedMin().isNegative(); 4366 } 4367 4368 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 4369 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 4370 } 4371 4372 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 4373 return isKnownNegative(S) || isKnownPositive(S); 4374 } 4375 4376 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 4377 const SCEV *LHS, const SCEV *RHS) { 4378 4379 if (HasSameValue(LHS, RHS)) 4380 return ICmpInst::isTrueWhenEqual(Pred); 4381 4382 switch (Pred) { 4383 default: 4384 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4385 break; 4386 case ICmpInst::ICMP_SGT: 4387 Pred = ICmpInst::ICMP_SLT; 4388 std::swap(LHS, RHS); 4389 case ICmpInst::ICMP_SLT: { 4390 ConstantRange LHSRange = getSignedRange(LHS); 4391 ConstantRange RHSRange = getSignedRange(RHS); 4392 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 4393 return true; 4394 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 4395 return false; 4396 break; 4397 } 4398 case ICmpInst::ICMP_SGE: 4399 Pred = ICmpInst::ICMP_SLE; 4400 std::swap(LHS, RHS); 4401 case ICmpInst::ICMP_SLE: { 4402 ConstantRange LHSRange = getSignedRange(LHS); 4403 ConstantRange RHSRange = getSignedRange(RHS); 4404 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 4405 return true; 4406 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 4407 return false; 4408 break; 4409 } 4410 case ICmpInst::ICMP_UGT: 4411 Pred = ICmpInst::ICMP_ULT; 4412 std::swap(LHS, RHS); 4413 case ICmpInst::ICMP_ULT: { 4414 ConstantRange LHSRange = getUnsignedRange(LHS); 4415 ConstantRange RHSRange = getUnsignedRange(RHS); 4416 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 4417 return true; 4418 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 4419 return false; 4420 break; 4421 } 4422 case ICmpInst::ICMP_UGE: 4423 Pred = ICmpInst::ICMP_ULE; 4424 std::swap(LHS, RHS); 4425 case ICmpInst::ICMP_ULE: { 4426 ConstantRange LHSRange = getUnsignedRange(LHS); 4427 ConstantRange RHSRange = getUnsignedRange(RHS); 4428 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 4429 return true; 4430 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 4431 return false; 4432 break; 4433 } 4434 case ICmpInst::ICMP_NE: { 4435 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 4436 return true; 4437 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 4438 return true; 4439 4440 const SCEV *Diff = getMinusSCEV(LHS, RHS); 4441 if (isKnownNonZero(Diff)) 4442 return true; 4443 break; 4444 } 4445 case ICmpInst::ICMP_EQ: 4446 // The check at the top of the function catches the case where 4447 // the values are known to be equal. 4448 break; 4449 } 4450 return false; 4451 } 4452 4453 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 4454 /// protected by a conditional between LHS and RHS. This is used to 4455 /// to eliminate casts. 4456 bool 4457 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 4458 ICmpInst::Predicate Pred, 4459 const SCEV *LHS, const SCEV *RHS) { 4460 // Interpret a null as meaning no loop, where there is obviously no guard 4461 // (interprocedural conditions notwithstanding). 4462 if (!L) return true; 4463 4464 BasicBlock *Latch = L->getLoopLatch(); 4465 if (!Latch) 4466 return false; 4467 4468 BranchInst *LoopContinuePredicate = 4469 dyn_cast<BranchInst>(Latch->getTerminator()); 4470 if (!LoopContinuePredicate || 4471 LoopContinuePredicate->isUnconditional()) 4472 return false; 4473 4474 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 4475 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 4476 } 4477 4478 /// isLoopGuardedByCond - Test whether entry to the loop is protected 4479 /// by a conditional between LHS and RHS. This is used to help avoid max 4480 /// expressions in loop trip counts, and to eliminate casts. 4481 bool 4482 ScalarEvolution::isLoopGuardedByCond(const Loop *L, 4483 ICmpInst::Predicate Pred, 4484 const SCEV *LHS, const SCEV *RHS) { 4485 // Interpret a null as meaning no loop, where there is obviously no guard 4486 // (interprocedural conditions notwithstanding). 4487 if (!L) return false; 4488 4489 BasicBlock *Predecessor = getLoopPredecessor(L); 4490 BasicBlock *PredecessorDest = L->getHeader(); 4491 4492 // Starting at the loop predecessor, climb up the predecessor chain, as long 4493 // as there are predecessors that can be found that have unique successors 4494 // leading to the original header. 4495 for (; Predecessor; 4496 PredecessorDest = Predecessor, 4497 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 4498 4499 BranchInst *LoopEntryPredicate = 4500 dyn_cast<BranchInst>(Predecessor->getTerminator()); 4501 if (!LoopEntryPredicate || 4502 LoopEntryPredicate->isUnconditional()) 4503 continue; 4504 4505 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 4506 LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) 4507 return true; 4508 } 4509 4510 return false; 4511 } 4512 4513 /// isImpliedCond - Test whether the condition described by Pred, LHS, 4514 /// and RHS is true whenever the given Cond value evaluates to true. 4515 bool ScalarEvolution::isImpliedCond(Value *CondValue, 4516 ICmpInst::Predicate Pred, 4517 const SCEV *LHS, const SCEV *RHS, 4518 bool Inverse) { 4519 // Recursivly handle And and Or conditions. 4520 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 4521 if (BO->getOpcode() == Instruction::And) { 4522 if (!Inverse) 4523 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4524 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4525 } else if (BO->getOpcode() == Instruction::Or) { 4526 if (Inverse) 4527 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4528 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4529 } 4530 } 4531 4532 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 4533 if (!ICI) return false; 4534 4535 // Bail if the ICmp's operands' types are wider than the needed type 4536 // before attempting to call getSCEV on them. This avoids infinite 4537 // recursion, since the analysis of widening casts can require loop 4538 // exit condition information for overflow checking, which would 4539 // lead back here. 4540 if (getTypeSizeInBits(LHS->getType()) < 4541 getTypeSizeInBits(ICI->getOperand(0)->getType())) 4542 return false; 4543 4544 // Now that we found a conditional branch that dominates the loop, check to 4545 // see if it is the comparison we are looking for. 4546 ICmpInst::Predicate FoundPred; 4547 if (Inverse) 4548 FoundPred = ICI->getInversePredicate(); 4549 else 4550 FoundPred = ICI->getPredicate(); 4551 4552 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 4553 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 4554 4555 // Balance the types. The case where FoundLHS' type is wider than 4556 // LHS' type is checked for above. 4557 if (getTypeSizeInBits(LHS->getType()) > 4558 getTypeSizeInBits(FoundLHS->getType())) { 4559 if (CmpInst::isSigned(Pred)) { 4560 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 4561 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 4562 } else { 4563 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 4564 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 4565 } 4566 } 4567 4568 // Canonicalize the query to match the way instcombine will have 4569 // canonicalized the comparison. 4570 // First, put a constant operand on the right. 4571 if (isa<SCEVConstant>(LHS)) { 4572 std::swap(LHS, RHS); 4573 Pred = ICmpInst::getSwappedPredicate(Pred); 4574 } 4575 // Then, canonicalize comparisons with boundary cases. 4576 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4577 const APInt &RA = RC->getValue()->getValue(); 4578 switch (Pred) { 4579 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4580 case ICmpInst::ICMP_EQ: 4581 case ICmpInst::ICMP_NE: 4582 break; 4583 case ICmpInst::ICMP_UGE: 4584 if ((RA - 1).isMinValue()) { 4585 Pred = ICmpInst::ICMP_NE; 4586 RHS = getConstant(RA - 1); 4587 break; 4588 } 4589 if (RA.isMaxValue()) { 4590 Pred = ICmpInst::ICMP_EQ; 4591 break; 4592 } 4593 if (RA.isMinValue()) return true; 4594 break; 4595 case ICmpInst::ICMP_ULE: 4596 if ((RA + 1).isMaxValue()) { 4597 Pred = ICmpInst::ICMP_NE; 4598 RHS = getConstant(RA + 1); 4599 break; 4600 } 4601 if (RA.isMinValue()) { 4602 Pred = ICmpInst::ICMP_EQ; 4603 break; 4604 } 4605 if (RA.isMaxValue()) return true; 4606 break; 4607 case ICmpInst::ICMP_SGE: 4608 if ((RA - 1).isMinSignedValue()) { 4609 Pred = ICmpInst::ICMP_NE; 4610 RHS = getConstant(RA - 1); 4611 break; 4612 } 4613 if (RA.isMaxSignedValue()) { 4614 Pred = ICmpInst::ICMP_EQ; 4615 break; 4616 } 4617 if (RA.isMinSignedValue()) return true; 4618 break; 4619 case ICmpInst::ICMP_SLE: 4620 if ((RA + 1).isMaxSignedValue()) { 4621 Pred = ICmpInst::ICMP_NE; 4622 RHS = getConstant(RA + 1); 4623 break; 4624 } 4625 if (RA.isMinSignedValue()) { 4626 Pred = ICmpInst::ICMP_EQ; 4627 break; 4628 } 4629 if (RA.isMaxSignedValue()) return true; 4630 break; 4631 case ICmpInst::ICMP_UGT: 4632 if (RA.isMinValue()) { 4633 Pred = ICmpInst::ICMP_NE; 4634 break; 4635 } 4636 if ((RA + 1).isMaxValue()) { 4637 Pred = ICmpInst::ICMP_EQ; 4638 RHS = getConstant(RA + 1); 4639 break; 4640 } 4641 if (RA.isMaxValue()) return false; 4642 break; 4643 case ICmpInst::ICMP_ULT: 4644 if (RA.isMaxValue()) { 4645 Pred = ICmpInst::ICMP_NE; 4646 break; 4647 } 4648 if ((RA - 1).isMinValue()) { 4649 Pred = ICmpInst::ICMP_EQ; 4650 RHS = getConstant(RA - 1); 4651 break; 4652 } 4653 if (RA.isMinValue()) return false; 4654 break; 4655 case ICmpInst::ICMP_SGT: 4656 if (RA.isMinSignedValue()) { 4657 Pred = ICmpInst::ICMP_NE; 4658 break; 4659 } 4660 if ((RA + 1).isMaxSignedValue()) { 4661 Pred = ICmpInst::ICMP_EQ; 4662 RHS = getConstant(RA + 1); 4663 break; 4664 } 4665 if (RA.isMaxSignedValue()) return false; 4666 break; 4667 case ICmpInst::ICMP_SLT: 4668 if (RA.isMaxSignedValue()) { 4669 Pred = ICmpInst::ICMP_NE; 4670 break; 4671 } 4672 if ((RA - 1).isMinSignedValue()) { 4673 Pred = ICmpInst::ICMP_EQ; 4674 RHS = getConstant(RA - 1); 4675 break; 4676 } 4677 if (RA.isMinSignedValue()) return false; 4678 break; 4679 } 4680 } 4681 4682 // Check to see if we can make the LHS or RHS match. 4683 if (LHS == FoundRHS || RHS == FoundLHS) { 4684 if (isa<SCEVConstant>(RHS)) { 4685 std::swap(FoundLHS, FoundRHS); 4686 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 4687 } else { 4688 std::swap(LHS, RHS); 4689 Pred = ICmpInst::getSwappedPredicate(Pred); 4690 } 4691 } 4692 4693 // Check whether the found predicate is the same as the desired predicate. 4694 if (FoundPred == Pred) 4695 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 4696 4697 // Check whether swapping the found predicate makes it the same as the 4698 // desired predicate. 4699 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 4700 if (isa<SCEVConstant>(RHS)) 4701 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 4702 else 4703 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 4704 RHS, LHS, FoundLHS, FoundRHS); 4705 } 4706 4707 // Check whether the actual condition is beyond sufficient. 4708 if (FoundPred == ICmpInst::ICMP_EQ) 4709 if (ICmpInst::isTrueWhenEqual(Pred)) 4710 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 4711 return true; 4712 if (Pred == ICmpInst::ICMP_NE) 4713 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 4714 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 4715 return true; 4716 4717 // Otherwise assume the worst. 4718 return false; 4719 } 4720 4721 /// isImpliedCondOperands - Test whether the condition described by Pred, 4722 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS, 4723 /// and FoundRHS is true. 4724 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 4725 const SCEV *LHS, const SCEV *RHS, 4726 const SCEV *FoundLHS, 4727 const SCEV *FoundRHS) { 4728 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 4729 FoundLHS, FoundRHS) || 4730 // ~x < ~y --> x > y 4731 isImpliedCondOperandsHelper(Pred, LHS, RHS, 4732 getNotSCEV(FoundRHS), 4733 getNotSCEV(FoundLHS)); 4734 } 4735 4736 /// isImpliedCondOperandsHelper - Test whether the condition described by 4737 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred, 4738 /// FoundLHS, and FoundRHS is true. 4739 bool 4740 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 4741 const SCEV *LHS, const SCEV *RHS, 4742 const SCEV *FoundLHS, 4743 const SCEV *FoundRHS) { 4744 switch (Pred) { 4745 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4746 case ICmpInst::ICMP_EQ: 4747 case ICmpInst::ICMP_NE: 4748 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 4749 return true; 4750 break; 4751 case ICmpInst::ICMP_SLT: 4752 case ICmpInst::ICMP_SLE: 4753 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 4754 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 4755 return true; 4756 break; 4757 case ICmpInst::ICMP_SGT: 4758 case ICmpInst::ICMP_SGE: 4759 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 4760 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 4761 return true; 4762 break; 4763 case ICmpInst::ICMP_ULT: 4764 case ICmpInst::ICMP_ULE: 4765 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 4766 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 4767 return true; 4768 break; 4769 case ICmpInst::ICMP_UGT: 4770 case ICmpInst::ICMP_UGE: 4771 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 4772 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 4773 return true; 4774 break; 4775 } 4776 4777 return false; 4778 } 4779 4780 /// getBECount - Subtract the end and start values and divide by the step, 4781 /// rounding up, to get the number of times the backedge is executed. Return 4782 /// CouldNotCompute if an intermediate computation overflows. 4783 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 4784 const SCEV *End, 4785 const SCEV *Step) { 4786 const Type *Ty = Start->getType(); 4787 const SCEV *NegOne = getIntegerSCEV(-1, Ty); 4788 const SCEV *Diff = getMinusSCEV(End, Start); 4789 const SCEV *RoundUp = getAddExpr(Step, NegOne); 4790 4791 // Add an adjustment to the difference between End and Start so that 4792 // the division will effectively round up. 4793 const SCEV *Add = getAddExpr(Diff, RoundUp); 4794 4795 // Check Add for unsigned overflow. 4796 // TODO: More sophisticated things could be done here. 4797 const Type *WideTy = IntegerType::get(getContext(), 4798 getTypeSizeInBits(Ty) + 1); 4799 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 4800 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 4801 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 4802 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 4803 return getCouldNotCompute(); 4804 4805 return getUDivExpr(Add, Step); 4806 } 4807 4808 /// HowManyLessThans - Return the number of times a backedge containing the 4809 /// specified less-than comparison will execute. If not computable, return 4810 /// CouldNotCompute. 4811 ScalarEvolution::BackedgeTakenInfo 4812 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 4813 const Loop *L, bool isSigned) { 4814 // Only handle: "ADDREC < LoopInvariant". 4815 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 4816 4817 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 4818 if (!AddRec || AddRec->getLoop() != L) 4819 return getCouldNotCompute(); 4820 4821 if (AddRec->isAffine()) { 4822 // FORNOW: We only support unit strides. 4823 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 4824 const SCEV *Step = AddRec->getStepRecurrence(*this); 4825 4826 // TODO: handle non-constant strides. 4827 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step); 4828 if (!CStep || CStep->isZero()) 4829 return getCouldNotCompute(); 4830 if (CStep->isOne()) { 4831 // With unit stride, the iteration never steps past the limit value. 4832 } else if (CStep->getValue()->getValue().isStrictlyPositive()) { 4833 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) { 4834 // Test whether a positive iteration iteration can step past the limit 4835 // value and past the maximum value for its type in a single step. 4836 if (isSigned) { 4837 APInt Max = APInt::getSignedMaxValue(BitWidth); 4838 if ((Max - CStep->getValue()->getValue()) 4839 .slt(CLimit->getValue()->getValue())) 4840 return getCouldNotCompute(); 4841 } else { 4842 APInt Max = APInt::getMaxValue(BitWidth); 4843 if ((Max - CStep->getValue()->getValue()) 4844 .ult(CLimit->getValue()->getValue())) 4845 return getCouldNotCompute(); 4846 } 4847 } else 4848 // TODO: handle non-constant limit values below. 4849 return getCouldNotCompute(); 4850 } else 4851 // TODO: handle negative strides below. 4852 return getCouldNotCompute(); 4853 4854 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 4855 // m. So, we count the number of iterations in which {n,+,s} < m is true. 4856 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 4857 // treat m-n as signed nor unsigned due to overflow possibility. 4858 4859 // First, we get the value of the LHS in the first iteration: n 4860 const SCEV *Start = AddRec->getOperand(0); 4861 4862 // Determine the minimum constant start value. 4863 const SCEV *MinStart = getConstant(isSigned ? 4864 getSignedRange(Start).getSignedMin() : 4865 getUnsignedRange(Start).getUnsignedMin()); 4866 4867 // If we know that the condition is true in order to enter the loop, 4868 // then we know that it will run exactly (m-n)/s times. Otherwise, we 4869 // only know that it will execute (max(m,n)-n)/s times. In both cases, 4870 // the division must round up. 4871 const SCEV *End = RHS; 4872 if (!isLoopGuardedByCond(L, 4873 isSigned ? ICmpInst::ICMP_SLT : 4874 ICmpInst::ICMP_ULT, 4875 getMinusSCEV(Start, Step), RHS)) 4876 End = isSigned ? getSMaxExpr(RHS, Start) 4877 : getUMaxExpr(RHS, Start); 4878 4879 // Determine the maximum constant end value. 4880 const SCEV *MaxEnd = getConstant(isSigned ? 4881 getSignedRange(End).getSignedMax() : 4882 getUnsignedRange(End).getUnsignedMax()); 4883 4884 // Finally, we subtract these two values and divide, rounding up, to get 4885 // the number of times the backedge is executed. 4886 const SCEV *BECount = getBECount(Start, End, Step); 4887 4888 // The maximum backedge count is similar, except using the minimum start 4889 // value and the maximum end value. 4890 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step); 4891 4892 return BackedgeTakenInfo(BECount, MaxBECount); 4893 } 4894 4895 return getCouldNotCompute(); 4896 } 4897 4898 /// getNumIterationsInRange - Return the number of iterations of this loop that 4899 /// produce values in the specified constant range. Another way of looking at 4900 /// this is that it returns the first iteration number where the value is not in 4901 /// the condition, thus computing the exit count. If the iteration count can't 4902 /// be computed, an instance of SCEVCouldNotCompute is returned. 4903 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 4904 ScalarEvolution &SE) const { 4905 if (Range.isFullSet()) // Infinite loop. 4906 return SE.getCouldNotCompute(); 4907 4908 // If the start is a non-zero constant, shift the range to simplify things. 4909 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 4910 if (!SC->getValue()->isZero()) { 4911 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 4912 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 4913 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 4914 if (const SCEVAddRecExpr *ShiftedAddRec = 4915 dyn_cast<SCEVAddRecExpr>(Shifted)) 4916 return ShiftedAddRec->getNumIterationsInRange( 4917 Range.subtract(SC->getValue()->getValue()), SE); 4918 // This is strange and shouldn't happen. 4919 return SE.getCouldNotCompute(); 4920 } 4921 4922 // The only time we can solve this is when we have all constant indices. 4923 // Otherwise, we cannot determine the overflow conditions. 4924 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 4925 if (!isa<SCEVConstant>(getOperand(i))) 4926 return SE.getCouldNotCompute(); 4927 4928 4929 // Okay at this point we know that all elements of the chrec are constants and 4930 // that the start element is zero. 4931 4932 // First check to see if the range contains zero. If not, the first 4933 // iteration exits. 4934 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 4935 if (!Range.contains(APInt(BitWidth, 0))) 4936 return SE.getIntegerSCEV(0, getType()); 4937 4938 if (isAffine()) { 4939 // If this is an affine expression then we have this situation: 4940 // Solve {0,+,A} in Range === Ax in Range 4941 4942 // We know that zero is in the range. If A is positive then we know that 4943 // the upper value of the range must be the first possible exit value. 4944 // If A is negative then the lower of the range is the last possible loop 4945 // value. Also note that we already checked for a full range. 4946 APInt One(BitWidth,1); 4947 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 4948 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 4949 4950 // The exit value should be (End+A)/A. 4951 APInt ExitVal = (End + A).udiv(A); 4952 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 4953 4954 // Evaluate at the exit value. If we really did fall out of the valid 4955 // range, then we computed our trip count, otherwise wrap around or other 4956 // things must have happened. 4957 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 4958 if (Range.contains(Val->getValue())) 4959 return SE.getCouldNotCompute(); // Something strange happened 4960 4961 // Ensure that the previous value is in the range. This is a sanity check. 4962 assert(Range.contains( 4963 EvaluateConstantChrecAtConstant(this, 4964 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 4965 "Linear scev computation is off in a bad way!"); 4966 return SE.getConstant(ExitValue); 4967 } else if (isQuadratic()) { 4968 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 4969 // quadratic equation to solve it. To do this, we must frame our problem in 4970 // terms of figuring out when zero is crossed, instead of when 4971 // Range.getUpper() is crossed. 4972 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 4973 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 4974 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 4975 4976 // Next, solve the constructed addrec 4977 std::pair<const SCEV *,const SCEV *> Roots = 4978 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 4979 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4980 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4981 if (R1) { 4982 // Pick the smallest positive root value. 4983 if (ConstantInt *CB = 4984 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4985 R1->getValue(), R2->getValue()))) { 4986 if (CB->getZExtValue() == false) 4987 std::swap(R1, R2); // R1 is the minimum root now. 4988 4989 // Make sure the root is not off by one. The returned iteration should 4990 // not be in the range, but the previous one should be. When solving 4991 // for "X*X < 5", for example, we should not return a root of 2. 4992 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 4993 R1->getValue(), 4994 SE); 4995 if (Range.contains(R1Val->getValue())) { 4996 // The next iteration must be out of the range... 4997 ConstantInt *NextVal = 4998 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 4999 5000 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5001 if (!Range.contains(R1Val->getValue())) 5002 return SE.getConstant(NextVal); 5003 return SE.getCouldNotCompute(); // Something strange happened 5004 } 5005 5006 // If R1 was not in the range, then it is a good return value. Make 5007 // sure that R1-1 WAS in the range though, just in case. 5008 ConstantInt *NextVal = 5009 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5010 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5011 if (Range.contains(R1Val->getValue())) 5012 return R1; 5013 return SE.getCouldNotCompute(); // Something strange happened 5014 } 5015 } 5016 } 5017 5018 return SE.getCouldNotCompute(); 5019 } 5020 5021 5022 5023 //===----------------------------------------------------------------------===// 5024 // SCEVCallbackVH Class Implementation 5025 //===----------------------------------------------------------------------===// 5026 5027 void ScalarEvolution::SCEVCallbackVH::deleted() { 5028 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5029 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5030 SE->ConstantEvolutionLoopExitValue.erase(PN); 5031 if (Instruction *I = dyn_cast<Instruction>(getValPtr())) 5032 SE->ValuesAtScopes.erase(I); 5033 SE->Scalars.erase(getValPtr()); 5034 // this now dangles! 5035 } 5036 5037 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5038 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5039 5040 // Forget all the expressions associated with users of the old value, 5041 // so that future queries will recompute the expressions using the new 5042 // value. 5043 SmallVector<User *, 16> Worklist; 5044 SmallPtrSet<User *, 8> Visited; 5045 Value *Old = getValPtr(); 5046 bool DeleteOld = false; 5047 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5048 UI != UE; ++UI) 5049 Worklist.push_back(*UI); 5050 while (!Worklist.empty()) { 5051 User *U = Worklist.pop_back_val(); 5052 // Deleting the Old value will cause this to dangle. Postpone 5053 // that until everything else is done. 5054 if (U == Old) { 5055 DeleteOld = true; 5056 continue; 5057 } 5058 if (!Visited.insert(U)) 5059 continue; 5060 if (PHINode *PN = dyn_cast<PHINode>(U)) 5061 SE->ConstantEvolutionLoopExitValue.erase(PN); 5062 if (Instruction *I = dyn_cast<Instruction>(U)) 5063 SE->ValuesAtScopes.erase(I); 5064 SE->Scalars.erase(U); 5065 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5066 UI != UE; ++UI) 5067 Worklist.push_back(*UI); 5068 } 5069 // Delete the Old value if it (indirectly) references itself. 5070 if (DeleteOld) { 5071 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5072 SE->ConstantEvolutionLoopExitValue.erase(PN); 5073 if (Instruction *I = dyn_cast<Instruction>(Old)) 5074 SE->ValuesAtScopes.erase(I); 5075 SE->Scalars.erase(Old); 5076 // this now dangles! 5077 } 5078 // this may dangle! 5079 } 5080 5081 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5082 : CallbackVH(V), SE(se) {} 5083 5084 //===----------------------------------------------------------------------===// 5085 // ScalarEvolution Class Implementation 5086 //===----------------------------------------------------------------------===// 5087 5088 ScalarEvolution::ScalarEvolution() 5089 : FunctionPass(&ID) { 5090 } 5091 5092 bool ScalarEvolution::runOnFunction(Function &F) { 5093 this->F = &F; 5094 LI = &getAnalysis<LoopInfo>(); 5095 TD = getAnalysisIfAvailable<TargetData>(); 5096 return false; 5097 } 5098 5099 void ScalarEvolution::releaseMemory() { 5100 Scalars.clear(); 5101 BackedgeTakenCounts.clear(); 5102 ConstantEvolutionLoopExitValue.clear(); 5103 ValuesAtScopes.clear(); 5104 UniqueSCEVs.clear(); 5105 SCEVAllocator.Reset(); 5106 } 5107 5108 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5109 AU.setPreservesAll(); 5110 AU.addRequiredTransitive<LoopInfo>(); 5111 } 5112 5113 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5114 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5115 } 5116 5117 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5118 const Loop *L) { 5119 // Print all inner loops first 5120 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5121 PrintLoopInfo(OS, SE, *I); 5122 5123 OS << "Loop " << L->getHeader()->getName() << ": "; 5124 5125 SmallVector<BasicBlock*, 8> ExitBlocks; 5126 L->getExitBlocks(ExitBlocks); 5127 if (ExitBlocks.size() != 1) 5128 OS << "<multiple exits> "; 5129 5130 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5131 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5132 } else { 5133 OS << "Unpredictable backedge-taken count. "; 5134 } 5135 5136 OS << "\n"; 5137 OS << "Loop " << L->getHeader()->getName() << ": "; 5138 5139 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5140 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5141 } else { 5142 OS << "Unpredictable max backedge-taken count. "; 5143 } 5144 5145 OS << "\n"; 5146 } 5147 5148 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const { 5149 // ScalarEvolution's implementaiton of the print method is to print 5150 // out SCEV values of all instructions that are interesting. Doing 5151 // this potentially causes it to create new SCEV objects though, 5152 // which technically conflicts with the const qualifier. This isn't 5153 // observable from outside the class though, so casting away the 5154 // const isn't dangerous. 5155 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this); 5156 5157 OS << "Classifying expressions for: " << F->getName() << "\n"; 5158 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5159 if (isSCEVable(I->getType())) { 5160 OS << *I << '\n'; 5161 OS << " --> "; 5162 const SCEV *SV = SE.getSCEV(&*I); 5163 SV->print(OS); 5164 5165 const Loop *L = LI->getLoopFor((*I).getParent()); 5166 5167 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5168 if (AtUse != SV) { 5169 OS << " --> "; 5170 AtUse->print(OS); 5171 } 5172 5173 if (L) { 5174 OS << "\t\t" "Exits: "; 5175 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5176 if (!ExitValue->isLoopInvariant(L)) { 5177 OS << "<<Unknown>>"; 5178 } else { 5179 OS << *ExitValue; 5180 } 5181 } 5182 5183 OS << "\n"; 5184 } 5185 5186 OS << "Determining loop execution counts for: " << F->getName() << "\n"; 5187 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5188 PrintLoopInfo(OS, &SE, *I); 5189 } 5190 5191