1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. These classes are reference counted, managed by the SCEVHandle 18 // class. We only create one SCEV of a particular shape, so pointer-comparisons 19 // for equality are legal. 20 // 21 // One important aspect of the SCEV objects is that they are never cyclic, even 22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 24 // recurrence) then we represent it directly as a recurrence node, otherwise we 25 // represent it as a SCEVUnknown node. 26 // 27 // In addition to being able to represent expressions of various types, we also 28 // have folders that are used to build the *canonical* representation for a 29 // particular expression. These folders are capable of using a variety of 30 // rewrite rules to simplify the expressions. 31 // 32 // Once the folders are defined, we can implement the more interesting 33 // higher-level code, such as the code that recognizes PHI nodes of various 34 // types, computes the execution count of a loop, etc. 35 // 36 // TODO: We should use these routines and value representations to implement 37 // dependence analysis! 38 // 39 //===----------------------------------------------------------------------===// 40 // 41 // There are several good references for the techniques used in this analysis. 42 // 43 // Chains of recurrences -- a method to expedite the evaluation 44 // of closed-form functions 45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 46 // 47 // On computational properties of chains of recurrences 48 // Eugene V. Zima 49 // 50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 51 // Robert A. van Engelen 52 // 53 // Efficient Symbolic Analysis for Optimizing Compilers 54 // Robert A. van Engelen 55 // 56 // Using the chains of recurrences algebra for data dependence testing and 57 // induction variable substitution 58 // MS Thesis, Johnie Birch 59 // 60 //===----------------------------------------------------------------------===// 61 62 #define DEBUG_TYPE "scalar-evolution" 63 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 64 #include "llvm/Constants.h" 65 #include "llvm/DerivedTypes.h" 66 #include "llvm/GlobalVariable.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/Analysis/ConstantFolding.h" 69 #include "llvm/Analysis/Dominators.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Assembly/Writer.h" 72 #include "llvm/Target/TargetData.h" 73 #include "llvm/Transforms/Scalar.h" 74 #include "llvm/Support/CFG.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/GetElementPtrTypeIterator.h" 79 #include "llvm/Support/InstIterator.h" 80 #include "llvm/Support/ManagedStatic.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/Streams.h" 83 #include "llvm/ADT/Statistic.h" 84 #include "llvm/ADT/STLExtras.h" 85 #include <ostream> 86 #include <algorithm> 87 #include <cmath> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant derived loop"), 103 cl::init(100)); 104 105 static RegisterPass<ScalarEvolution> 106 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 107 char ScalarEvolution::ID = 0; 108 109 //===----------------------------------------------------------------------===// 110 // SCEV class definitions 111 //===----------------------------------------------------------------------===// 112 113 //===----------------------------------------------------------------------===// 114 // Implementation of the SCEV class. 115 // 116 SCEV::~SCEV() {} 117 void SCEV::dump() const { 118 print(cerr); 119 cerr << '\n'; 120 } 121 122 bool SCEV::isZero() const { 123 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 124 return SC->getValue()->isZero(); 125 return false; 126 } 127 128 129 SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {} 130 131 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 132 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 133 return false; 134 } 135 136 const Type *SCEVCouldNotCompute::getType() const { 137 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 138 return 0; 139 } 140 141 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 142 assert(0 && "Attempt to use a SCEVCouldNotCompute object!"); 143 return false; 144 } 145 146 SCEVHandle SCEVCouldNotCompute:: 147 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 148 const SCEVHandle &Conc, 149 ScalarEvolution &SE) const { 150 return this; 151 } 152 153 void SCEVCouldNotCompute::print(std::ostream &OS) const { 154 OS << "***COULDNOTCOMPUTE***"; 155 } 156 157 bool SCEVCouldNotCompute::classof(const SCEV *S) { 158 return S->getSCEVType() == scCouldNotCompute; 159 } 160 161 162 // SCEVConstants - Only allow the creation of one SCEVConstant for any 163 // particular value. Don't use a SCEVHandle here, or else the object will 164 // never be deleted! 165 static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants; 166 167 168 SCEVConstant::~SCEVConstant() { 169 SCEVConstants->erase(V); 170 } 171 172 SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) { 173 SCEVConstant *&R = (*SCEVConstants)[V]; 174 if (R == 0) R = new SCEVConstant(V); 175 return R; 176 } 177 178 SCEVHandle ScalarEvolution::getConstant(const APInt& Val) { 179 return getConstant(ConstantInt::get(Val)); 180 } 181 182 const Type *SCEVConstant::getType() const { return V->getType(); } 183 184 void SCEVConstant::print(std::ostream &OS) const { 185 WriteAsOperand(OS, V, false); 186 } 187 188 // SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any 189 // particular input. Don't use a SCEVHandle here, or else the object will 190 // never be deleted! 191 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 192 SCEVTruncateExpr*> > SCEVTruncates; 193 194 SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty) 195 : SCEV(scTruncate), Op(op), Ty(ty) { 196 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 197 (Ty->isInteger() || isa<PointerType>(Ty)) && 198 "Cannot truncate non-integer value!"); 199 assert((!Op->getType()->isInteger() || !Ty->isInteger() || 200 Op->getType()->getPrimitiveSizeInBits() > 201 Ty->getPrimitiveSizeInBits()) && 202 "This is not a truncating conversion!"); 203 } 204 205 SCEVTruncateExpr::~SCEVTruncateExpr() { 206 SCEVTruncates->erase(std::make_pair(Op, Ty)); 207 } 208 209 bool SCEVTruncateExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 210 return Op->dominates(BB, DT); 211 } 212 213 void SCEVTruncateExpr::print(std::ostream &OS) const { 214 OS << "(truncate " << *Op << " to " << *Ty << ")"; 215 } 216 217 // SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any 218 // particular input. Don't use a SCEVHandle here, or else the object will never 219 // be deleted! 220 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 221 SCEVZeroExtendExpr*> > SCEVZeroExtends; 222 223 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty) 224 : SCEV(scZeroExtend), Op(op), Ty(ty) { 225 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 226 (Ty->isInteger() || isa<PointerType>(Ty)) && 227 "Cannot zero extend non-integer value!"); 228 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 229 && "This is not an extending conversion!"); 230 } 231 232 SCEVZeroExtendExpr::~SCEVZeroExtendExpr() { 233 SCEVZeroExtends->erase(std::make_pair(Op, Ty)); 234 } 235 236 bool SCEVZeroExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 237 return Op->dominates(BB, DT); 238 } 239 240 void SCEVZeroExtendExpr::print(std::ostream &OS) const { 241 OS << "(zeroextend " << *Op << " to " << *Ty << ")"; 242 } 243 244 // SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any 245 // particular input. Don't use a SCEVHandle here, or else the object will never 246 // be deleted! 247 static ManagedStatic<std::map<std::pair<SCEV*, const Type*>, 248 SCEVSignExtendExpr*> > SCEVSignExtends; 249 250 SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty) 251 : SCEV(scSignExtend), Op(op), Ty(ty) { 252 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) && 253 (Ty->isInteger() || isa<PointerType>(Ty)) && 254 "Cannot sign extend non-integer value!"); 255 assert(Op->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits() 256 && "This is not an extending conversion!"); 257 } 258 259 SCEVSignExtendExpr::~SCEVSignExtendExpr() { 260 SCEVSignExtends->erase(std::make_pair(Op, Ty)); 261 } 262 263 bool SCEVSignExtendExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 264 return Op->dominates(BB, DT); 265 } 266 267 void SCEVSignExtendExpr::print(std::ostream &OS) const { 268 OS << "(signextend " << *Op << " to " << *Ty << ")"; 269 } 270 271 // SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any 272 // particular input. Don't use a SCEVHandle here, or else the object will never 273 // be deleted! 274 static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >, 275 SCEVCommutativeExpr*> > SCEVCommExprs; 276 277 SCEVCommutativeExpr::~SCEVCommutativeExpr() { 278 SCEVCommExprs->erase(std::make_pair(getSCEVType(), 279 std::vector<SCEV*>(Operands.begin(), 280 Operands.end()))); 281 } 282 283 void SCEVCommutativeExpr::print(std::ostream &OS) const { 284 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 285 const char *OpStr = getOperationStr(); 286 OS << "(" << *Operands[0]; 287 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 288 OS << OpStr << *Operands[i]; 289 OS << ")"; 290 } 291 292 SCEVHandle SCEVCommutativeExpr:: 293 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 294 const SCEVHandle &Conc, 295 ScalarEvolution &SE) const { 296 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 297 SCEVHandle H = 298 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 299 if (H != getOperand(i)) { 300 std::vector<SCEVHandle> NewOps; 301 NewOps.reserve(getNumOperands()); 302 for (unsigned j = 0; j != i; ++j) 303 NewOps.push_back(getOperand(j)); 304 NewOps.push_back(H); 305 for (++i; i != e; ++i) 306 NewOps.push_back(getOperand(i)-> 307 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 308 309 if (isa<SCEVAddExpr>(this)) 310 return SE.getAddExpr(NewOps); 311 else if (isa<SCEVMulExpr>(this)) 312 return SE.getMulExpr(NewOps); 313 else if (isa<SCEVSMaxExpr>(this)) 314 return SE.getSMaxExpr(NewOps); 315 else if (isa<SCEVUMaxExpr>(this)) 316 return SE.getUMaxExpr(NewOps); 317 else 318 assert(0 && "Unknown commutative expr!"); 319 } 320 } 321 return this; 322 } 323 324 bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 325 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 326 if (!getOperand(i)->dominates(BB, DT)) 327 return false; 328 } 329 return true; 330 } 331 332 333 // SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular 334 // input. Don't use a SCEVHandle here, or else the object will never be 335 // deleted! 336 static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>, 337 SCEVUDivExpr*> > SCEVUDivs; 338 339 SCEVUDivExpr::~SCEVUDivExpr() { 340 SCEVUDivs->erase(std::make_pair(LHS, RHS)); 341 } 342 343 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 344 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 345 } 346 347 void SCEVUDivExpr::print(std::ostream &OS) const { 348 OS << "(" << *LHS << " /u " << *RHS << ")"; 349 } 350 351 const Type *SCEVUDivExpr::getType() const { 352 return LHS->getType(); 353 } 354 355 // SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any 356 // particular input. Don't use a SCEVHandle here, or else the object will never 357 // be deleted! 358 static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >, 359 SCEVAddRecExpr*> > SCEVAddRecExprs; 360 361 SCEVAddRecExpr::~SCEVAddRecExpr() { 362 SCEVAddRecExprs->erase(std::make_pair(L, 363 std::vector<SCEV*>(Operands.begin(), 364 Operands.end()))); 365 } 366 367 bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 368 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 369 if (!getOperand(i)->dominates(BB, DT)) 370 return false; 371 } 372 return true; 373 } 374 375 376 SCEVHandle SCEVAddRecExpr:: 377 replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym, 378 const SCEVHandle &Conc, 379 ScalarEvolution &SE) const { 380 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 381 SCEVHandle H = 382 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE); 383 if (H != getOperand(i)) { 384 std::vector<SCEVHandle> NewOps; 385 NewOps.reserve(getNumOperands()); 386 for (unsigned j = 0; j != i; ++j) 387 NewOps.push_back(getOperand(j)); 388 NewOps.push_back(H); 389 for (++i; i != e; ++i) 390 NewOps.push_back(getOperand(i)-> 391 replaceSymbolicValuesWithConcrete(Sym, Conc, SE)); 392 393 return SE.getAddRecExpr(NewOps, L); 394 } 395 } 396 return this; 397 } 398 399 400 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 401 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't 402 // contain L and if the start is invariant. 403 return !QueryLoop->contains(L->getHeader()) && 404 getOperand(0)->isLoopInvariant(QueryLoop); 405 } 406 407 408 void SCEVAddRecExpr::print(std::ostream &OS) const { 409 OS << "{" << *Operands[0]; 410 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 411 OS << ",+," << *Operands[i]; 412 OS << "}<" << L->getHeader()->getName() + ">"; 413 } 414 415 // SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular 416 // value. Don't use a SCEVHandle here, or else the object will never be 417 // deleted! 418 static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns; 419 420 SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); } 421 422 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 423 // All non-instruction values are loop invariant. All instructions are loop 424 // invariant if they are not contained in the specified loop. 425 if (Instruction *I = dyn_cast<Instruction>(V)) 426 return !L->contains(I->getParent()); 427 return true; 428 } 429 430 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 431 if (Instruction *I = dyn_cast<Instruction>(getValue())) 432 return DT->dominates(I->getParent(), BB); 433 return true; 434 } 435 436 const Type *SCEVUnknown::getType() const { 437 return V->getType(); 438 } 439 440 void SCEVUnknown::print(std::ostream &OS) const { 441 if (isa<PointerType>(V->getType())) 442 OS << "(ptrtoint " << *V->getType() << " "; 443 WriteAsOperand(OS, V, false); 444 if (isa<PointerType>(V->getType())) 445 OS << " to iPTR)"; 446 } 447 448 //===----------------------------------------------------------------------===// 449 // SCEV Utilities 450 //===----------------------------------------------------------------------===// 451 452 namespace { 453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 454 /// than the complexity of the RHS. This comparator is used to canonicalize 455 /// expressions. 456 struct VISIBILITY_HIDDEN SCEVComplexityCompare { 457 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 458 return LHS->getSCEVType() < RHS->getSCEVType(); 459 } 460 }; 461 } 462 463 /// GroupByComplexity - Given a list of SCEV objects, order them by their 464 /// complexity, and group objects of the same complexity together by value. 465 /// When this routine is finished, we know that any duplicates in the vector are 466 /// consecutive and that complexity is monotonically increasing. 467 /// 468 /// Note that we go take special precautions to ensure that we get determinstic 469 /// results from this routine. In other words, we don't want the results of 470 /// this to depend on where the addresses of various SCEV objects happened to 471 /// land in memory. 472 /// 473 static void GroupByComplexity(std::vector<SCEVHandle> &Ops) { 474 if (Ops.size() < 2) return; // Noop 475 if (Ops.size() == 2) { 476 // This is the common case, which also happens to be trivially simple. 477 // Special case it. 478 if (SCEVComplexityCompare()(Ops[1], Ops[0])) 479 std::swap(Ops[0], Ops[1]); 480 return; 481 } 482 483 // Do the rough sort by complexity. 484 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare()); 485 486 // Now that we are sorted by complexity, group elements of the same 487 // complexity. Note that this is, at worst, N^2, but the vector is likely to 488 // be extremely short in practice. Note that we take this approach because we 489 // do not want to depend on the addresses of the objects we are grouping. 490 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 491 SCEV *S = Ops[i]; 492 unsigned Complexity = S->getSCEVType(); 493 494 // If there are any objects of the same complexity and same value as this 495 // one, group them. 496 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 497 if (Ops[j] == S) { // Found a duplicate. 498 // Move it to immediately after i'th element. 499 std::swap(Ops[i+1], Ops[j]); 500 ++i; // no need to rescan it. 501 if (i == e-2) return; // Done! 502 } 503 } 504 } 505 } 506 507 508 509 //===----------------------------------------------------------------------===// 510 // Simple SCEV method implementations 511 //===----------------------------------------------------------------------===// 512 513 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 514 // Assume, K > 0. 515 static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K, 516 ScalarEvolution &SE, 517 const Type* ResultTy) { 518 // Handle the simplest case efficiently. 519 if (K == 1) 520 return SE.getTruncateOrZeroExtend(It, ResultTy); 521 522 // We are using the following formula for BC(It, K): 523 // 524 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 525 // 526 // Suppose, W is the bitwidth of the return value. We must be prepared for 527 // overflow. Hence, we must assure that the result of our computation is 528 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 529 // safe in modular arithmetic. 530 // 531 // However, this code doesn't use exactly that formula; the formula it uses 532 // is something like the following, where T is the number of factors of 2 in 533 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 534 // exponentiation: 535 // 536 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 537 // 538 // This formula is trivially equivalent to the previous formula. However, 539 // this formula can be implemented much more efficiently. The trick is that 540 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 541 // arithmetic. To do exact division in modular arithmetic, all we have 542 // to do is multiply by the inverse. Therefore, this step can be done at 543 // width W. 544 // 545 // The next issue is how to safely do the division by 2^T. The way this 546 // is done is by doing the multiplication step at a width of at least W + T 547 // bits. This way, the bottom W+T bits of the product are accurate. Then, 548 // when we perform the division by 2^T (which is equivalent to a right shift 549 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 550 // truncated out after the division by 2^T. 551 // 552 // In comparison to just directly using the first formula, this technique 553 // is much more efficient; using the first formula requires W * K bits, 554 // but this formula less than W + K bits. Also, the first formula requires 555 // a division step, whereas this formula only requires multiplies and shifts. 556 // 557 // It doesn't matter whether the subtraction step is done in the calculation 558 // width or the input iteration count's width; if the subtraction overflows, 559 // the result must be zero anyway. We prefer here to do it in the width of 560 // the induction variable because it helps a lot for certain cases; CodeGen 561 // isn't smart enough to ignore the overflow, which leads to much less 562 // efficient code if the width of the subtraction is wider than the native 563 // register width. 564 // 565 // (It's possible to not widen at all by pulling out factors of 2 before 566 // the multiplication; for example, K=2 can be calculated as 567 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 568 // extra arithmetic, so it's not an obvious win, and it gets 569 // much more complicated for K > 3.) 570 571 // Protection from insane SCEVs; this bound is conservative, 572 // but it probably doesn't matter. 573 if (K > 1000) 574 return new SCEVCouldNotCompute(); 575 576 unsigned W = SE.getTargetData().getTypeSizeInBits(ResultTy); 577 578 // Calculate K! / 2^T and T; we divide out the factors of two before 579 // multiplying for calculating K! / 2^T to avoid overflow. 580 // Other overflow doesn't matter because we only care about the bottom 581 // W bits of the result. 582 APInt OddFactorial(W, 1); 583 unsigned T = 1; 584 for (unsigned i = 3; i <= K; ++i) { 585 APInt Mult(W, i); 586 unsigned TwoFactors = Mult.countTrailingZeros(); 587 T += TwoFactors; 588 Mult = Mult.lshr(TwoFactors); 589 OddFactorial *= Mult; 590 } 591 592 // We need at least W + T bits for the multiplication step 593 unsigned CalculationBits = W + T; 594 595 // Calcuate 2^T, at width T+W. 596 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 597 598 // Calculate the multiplicative inverse of K! / 2^T; 599 // this multiplication factor will perform the exact division by 600 // K! / 2^T. 601 APInt Mod = APInt::getSignedMinValue(W+1); 602 APInt MultiplyFactor = OddFactorial.zext(W+1); 603 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 604 MultiplyFactor = MultiplyFactor.trunc(W); 605 606 // Calculate the product, at width T+W 607 const IntegerType *CalculationTy = IntegerType::get(CalculationBits); 608 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 609 for (unsigned i = 1; i != K; ++i) { 610 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 611 Dividend = SE.getMulExpr(Dividend, 612 SE.getTruncateOrZeroExtend(S, CalculationTy)); 613 } 614 615 // Divide by 2^T 616 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 617 618 // Truncate the result, and divide by K! / 2^T. 619 620 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 621 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 622 } 623 624 /// evaluateAtIteration - Return the value of this chain of recurrences at 625 /// the specified iteration number. We can evaluate this recurrence by 626 /// multiplying each element in the chain by the binomial coefficient 627 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 628 /// 629 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 630 /// 631 /// where BC(It, k) stands for binomial coefficient. 632 /// 633 SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It, 634 ScalarEvolution &SE) const { 635 SCEVHandle Result = getStart(); 636 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 637 // The computation is correct in the face of overflow provided that the 638 // multiplication is performed _after_ the evaluation of the binomial 639 // coefficient. 640 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType()); 641 if (isa<SCEVCouldNotCompute>(Coeff)) 642 return Coeff; 643 644 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 645 } 646 return Result; 647 } 648 649 //===----------------------------------------------------------------------===// 650 // SCEV Expression folder implementations 651 //===----------------------------------------------------------------------===// 652 653 SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) { 654 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 655 return getUnknown( 656 ConstantExpr::getTrunc(SC->getValue(), Ty)); 657 658 // If the input value is a chrec scev made out of constants, truncate 659 // all of the constants. 660 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 661 std::vector<SCEVHandle> Operands; 662 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 663 // FIXME: This should allow truncation of other expression types! 664 if (isa<SCEVConstant>(AddRec->getOperand(i))) 665 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 666 else 667 break; 668 if (Operands.size() == AddRec->getNumOperands()) 669 return getAddRecExpr(Operands, AddRec->getLoop()); 670 } 671 672 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)]; 673 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty); 674 return Result; 675 } 676 677 SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op, const Type *Ty) { 678 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 679 const Type *IntTy = Ty; 680 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType(); 681 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 682 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 683 return getUnknown(C); 684 } 685 686 // FIXME: If the input value is a chrec scev, and we can prove that the value 687 // did not overflow the old, smaller, value, we can zero extend all of the 688 // operands (often constants). This would allow analysis of something like 689 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 690 691 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)]; 692 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty); 693 return Result; 694 } 695 696 SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op, const Type *Ty) { 697 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 698 const Type *IntTy = Ty; 699 if (isa<PointerType>(IntTy)) IntTy = getTargetData().getIntPtrType(); 700 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 701 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 702 return getUnknown(C); 703 } 704 705 // FIXME: If the input value is a chrec scev, and we can prove that the value 706 // did not overflow the old, smaller, value, we can sign extend all of the 707 // operands (often constants). This would allow analysis of something like 708 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 709 710 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)]; 711 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty); 712 return Result; 713 } 714 715 // get - Get a canonical add expression, or something simpler if possible. 716 SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) { 717 assert(!Ops.empty() && "Cannot get empty add!"); 718 if (Ops.size() == 1) return Ops[0]; 719 720 // Sort by complexity, this groups all similar expression types together. 721 GroupByComplexity(Ops); 722 723 // If there are any constants, fold them together. 724 unsigned Idx = 0; 725 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 726 ++Idx; 727 assert(Idx < Ops.size()); 728 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 729 // We found two constants, fold them together! 730 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() + 731 RHSC->getValue()->getValue()); 732 Ops[0] = getConstant(Fold); 733 Ops.erase(Ops.begin()+1); // Erase the folded element 734 if (Ops.size() == 1) return Ops[0]; 735 LHSC = cast<SCEVConstant>(Ops[0]); 736 } 737 738 // If we are left with a constant zero being added, strip it off. 739 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 740 Ops.erase(Ops.begin()); 741 --Idx; 742 } 743 } 744 745 if (Ops.size() == 1) return Ops[0]; 746 747 // Okay, check to see if the same value occurs in the operand list twice. If 748 // so, merge them together into an multiply expression. Since we sorted the 749 // list, these values are required to be adjacent. 750 const Type *Ty = Ops[0]->getType(); 751 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 752 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 753 // Found a match, merge the two values into a multiply, and add any 754 // remaining values to the result. 755 SCEVHandle Two = getIntegerSCEV(2, Ty); 756 SCEVHandle Mul = getMulExpr(Ops[i], Two); 757 if (Ops.size() == 2) 758 return Mul; 759 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 760 Ops.push_back(Mul); 761 return getAddExpr(Ops); 762 } 763 764 // Now we know the first non-constant operand. Skip past any cast SCEVs. 765 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 766 ++Idx; 767 768 // If there are add operands they would be next. 769 if (Idx < Ops.size()) { 770 bool DeletedAdd = false; 771 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 772 // If we have an add, expand the add operands onto the end of the operands 773 // list. 774 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 775 Ops.erase(Ops.begin()+Idx); 776 DeletedAdd = true; 777 } 778 779 // If we deleted at least one add, we added operands to the end of the list, 780 // and they are not necessarily sorted. Recurse to resort and resimplify 781 // any operands we just aquired. 782 if (DeletedAdd) 783 return getAddExpr(Ops); 784 } 785 786 // Skip over the add expression until we get to a multiply. 787 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 788 ++Idx; 789 790 // If we are adding something to a multiply expression, make sure the 791 // something is not already an operand of the multiply. If so, merge it into 792 // the multiply. 793 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 794 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 795 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 796 SCEV *MulOpSCEV = Mul->getOperand(MulOp); 797 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 798 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) { 799 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 800 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0); 801 if (Mul->getNumOperands() != 2) { 802 // If the multiply has more than two operands, we must get the 803 // Y*Z term. 804 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 805 MulOps.erase(MulOps.begin()+MulOp); 806 InnerMul = getMulExpr(MulOps); 807 } 808 SCEVHandle One = getIntegerSCEV(1, Ty); 809 SCEVHandle AddOne = getAddExpr(InnerMul, One); 810 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]); 811 if (Ops.size() == 2) return OuterMul; 812 if (AddOp < Idx) { 813 Ops.erase(Ops.begin()+AddOp); 814 Ops.erase(Ops.begin()+Idx-1); 815 } else { 816 Ops.erase(Ops.begin()+Idx); 817 Ops.erase(Ops.begin()+AddOp-1); 818 } 819 Ops.push_back(OuterMul); 820 return getAddExpr(Ops); 821 } 822 823 // Check this multiply against other multiplies being added together. 824 for (unsigned OtherMulIdx = Idx+1; 825 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 826 ++OtherMulIdx) { 827 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 828 // If MulOp occurs in OtherMul, we can fold the two multiplies 829 // together. 830 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 831 OMulOp != e; ++OMulOp) 832 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 833 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 834 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0); 835 if (Mul->getNumOperands() != 2) { 836 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end()); 837 MulOps.erase(MulOps.begin()+MulOp); 838 InnerMul1 = getMulExpr(MulOps); 839 } 840 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0); 841 if (OtherMul->getNumOperands() != 2) { 842 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(), 843 OtherMul->op_end()); 844 MulOps.erase(MulOps.begin()+OMulOp); 845 InnerMul2 = getMulExpr(MulOps); 846 } 847 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 848 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 849 if (Ops.size() == 2) return OuterMul; 850 Ops.erase(Ops.begin()+Idx); 851 Ops.erase(Ops.begin()+OtherMulIdx-1); 852 Ops.push_back(OuterMul); 853 return getAddExpr(Ops); 854 } 855 } 856 } 857 } 858 859 // If there are any add recurrences in the operands list, see if any other 860 // added values are loop invariant. If so, we can fold them into the 861 // recurrence. 862 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 863 ++Idx; 864 865 // Scan over all recurrences, trying to fold loop invariants into them. 866 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 867 // Scan all of the other operands to this add and add them to the vector if 868 // they are loop invariant w.r.t. the recurrence. 869 std::vector<SCEVHandle> LIOps; 870 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 871 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 872 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 873 LIOps.push_back(Ops[i]); 874 Ops.erase(Ops.begin()+i); 875 --i; --e; 876 } 877 878 // If we found some loop invariants, fold them into the recurrence. 879 if (!LIOps.empty()) { 880 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 881 LIOps.push_back(AddRec->getStart()); 882 883 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end()); 884 AddRecOps[0] = getAddExpr(LIOps); 885 886 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 887 // If all of the other operands were loop invariant, we are done. 888 if (Ops.size() == 1) return NewRec; 889 890 // Otherwise, add the folded AddRec by the non-liv parts. 891 for (unsigned i = 0;; ++i) 892 if (Ops[i] == AddRec) { 893 Ops[i] = NewRec; 894 break; 895 } 896 return getAddExpr(Ops); 897 } 898 899 // Okay, if there weren't any loop invariants to be folded, check to see if 900 // there are multiple AddRec's with the same loop induction variable being 901 // added together. If so, we can fold them. 902 for (unsigned OtherIdx = Idx+1; 903 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 904 if (OtherIdx != Idx) { 905 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 906 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 907 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 908 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end()); 909 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 910 if (i >= NewOps.size()) { 911 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 912 OtherAddRec->op_end()); 913 break; 914 } 915 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 916 } 917 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 918 919 if (Ops.size() == 2) return NewAddRec; 920 921 Ops.erase(Ops.begin()+Idx); 922 Ops.erase(Ops.begin()+OtherIdx-1); 923 Ops.push_back(NewAddRec); 924 return getAddExpr(Ops); 925 } 926 } 927 928 // Otherwise couldn't fold anything into this recurrence. Move onto the 929 // next one. 930 } 931 932 // Okay, it looks like we really DO need an add expr. Check to see if we 933 // already have one, otherwise create a new one. 934 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 935 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr, 936 SCEVOps)]; 937 if (Result == 0) Result = new SCEVAddExpr(Ops); 938 return Result; 939 } 940 941 942 SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) { 943 assert(!Ops.empty() && "Cannot get empty mul!"); 944 945 // Sort by complexity, this groups all similar expression types together. 946 GroupByComplexity(Ops); 947 948 // If there are any constants, fold them together. 949 unsigned Idx = 0; 950 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 951 952 // C1*(C2+V) -> C1*C2 + C1*V 953 if (Ops.size() == 2) 954 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 955 if (Add->getNumOperands() == 2 && 956 isa<SCEVConstant>(Add->getOperand(0))) 957 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 958 getMulExpr(LHSC, Add->getOperand(1))); 959 960 961 ++Idx; 962 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 963 // We found two constants, fold them together! 964 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() * 965 RHSC->getValue()->getValue()); 966 Ops[0] = getConstant(Fold); 967 Ops.erase(Ops.begin()+1); // Erase the folded element 968 if (Ops.size() == 1) return Ops[0]; 969 LHSC = cast<SCEVConstant>(Ops[0]); 970 } 971 972 // If we are left with a constant one being multiplied, strip it off. 973 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 974 Ops.erase(Ops.begin()); 975 --Idx; 976 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 977 // If we have a multiply of zero, it will always be zero. 978 return Ops[0]; 979 } 980 } 981 982 // Skip over the add expression until we get to a multiply. 983 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 984 ++Idx; 985 986 if (Ops.size() == 1) 987 return Ops[0]; 988 989 // If there are mul operands inline them all into this expression. 990 if (Idx < Ops.size()) { 991 bool DeletedMul = false; 992 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 993 // If we have an mul, expand the mul operands onto the end of the operands 994 // list. 995 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 996 Ops.erase(Ops.begin()+Idx); 997 DeletedMul = true; 998 } 999 1000 // If we deleted at least one mul, we added operands to the end of the list, 1001 // and they are not necessarily sorted. Recurse to resort and resimplify 1002 // any operands we just aquired. 1003 if (DeletedMul) 1004 return getMulExpr(Ops); 1005 } 1006 1007 // If there are any add recurrences in the operands list, see if any other 1008 // added values are loop invariant. If so, we can fold them into the 1009 // recurrence. 1010 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1011 ++Idx; 1012 1013 // Scan over all recurrences, trying to fold loop invariants into them. 1014 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1015 // Scan all of the other operands to this mul and add them to the vector if 1016 // they are loop invariant w.r.t. the recurrence. 1017 std::vector<SCEVHandle> LIOps; 1018 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1019 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1020 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1021 LIOps.push_back(Ops[i]); 1022 Ops.erase(Ops.begin()+i); 1023 --i; --e; 1024 } 1025 1026 // If we found some loop invariants, fold them into the recurrence. 1027 if (!LIOps.empty()) { 1028 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1029 std::vector<SCEVHandle> NewOps; 1030 NewOps.reserve(AddRec->getNumOperands()); 1031 if (LIOps.size() == 1) { 1032 SCEV *Scale = LIOps[0]; 1033 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1034 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1035 } else { 1036 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1037 std::vector<SCEVHandle> MulOps(LIOps); 1038 MulOps.push_back(AddRec->getOperand(i)); 1039 NewOps.push_back(getMulExpr(MulOps)); 1040 } 1041 } 1042 1043 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1044 1045 // If all of the other operands were loop invariant, we are done. 1046 if (Ops.size() == 1) return NewRec; 1047 1048 // Otherwise, multiply the folded AddRec by the non-liv parts. 1049 for (unsigned i = 0;; ++i) 1050 if (Ops[i] == AddRec) { 1051 Ops[i] = NewRec; 1052 break; 1053 } 1054 return getMulExpr(Ops); 1055 } 1056 1057 // Okay, if there weren't any loop invariants to be folded, check to see if 1058 // there are multiple AddRec's with the same loop induction variable being 1059 // multiplied together. If so, we can fold them. 1060 for (unsigned OtherIdx = Idx+1; 1061 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1062 if (OtherIdx != Idx) { 1063 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1064 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1065 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1066 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1067 SCEVHandle NewStart = getMulExpr(F->getStart(), 1068 G->getStart()); 1069 SCEVHandle B = F->getStepRecurrence(*this); 1070 SCEVHandle D = G->getStepRecurrence(*this); 1071 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D), 1072 getMulExpr(G, B), 1073 getMulExpr(B, D)); 1074 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep, 1075 F->getLoop()); 1076 if (Ops.size() == 2) return NewAddRec; 1077 1078 Ops.erase(Ops.begin()+Idx); 1079 Ops.erase(Ops.begin()+OtherIdx-1); 1080 Ops.push_back(NewAddRec); 1081 return getMulExpr(Ops); 1082 } 1083 } 1084 1085 // Otherwise couldn't fold anything into this recurrence. Move onto the 1086 // next one. 1087 } 1088 1089 // Okay, it looks like we really DO need an mul expr. Check to see if we 1090 // already have one, otherwise create a new one. 1091 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1092 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr, 1093 SCEVOps)]; 1094 if (Result == 0) 1095 Result = new SCEVMulExpr(Ops); 1096 return Result; 1097 } 1098 1099 SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) { 1100 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1101 if (RHSC->getValue()->equalsInt(1)) 1102 return LHS; // X udiv 1 --> x 1103 1104 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1105 Constant *LHSCV = LHSC->getValue(); 1106 Constant *RHSCV = RHSC->getValue(); 1107 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV)); 1108 } 1109 } 1110 1111 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow. 1112 1113 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)]; 1114 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS); 1115 return Result; 1116 } 1117 1118 1119 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1120 /// specified loop. Simplify the expression as much as possible. 1121 SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start, 1122 const SCEVHandle &Step, const Loop *L) { 1123 std::vector<SCEVHandle> Operands; 1124 Operands.push_back(Start); 1125 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1126 if (StepChrec->getLoop() == L) { 1127 Operands.insert(Operands.end(), StepChrec->op_begin(), 1128 StepChrec->op_end()); 1129 return getAddRecExpr(Operands, L); 1130 } 1131 1132 Operands.push_back(Step); 1133 return getAddRecExpr(Operands, L); 1134 } 1135 1136 /// SCEVAddRecExpr::get - Get a add recurrence expression for the 1137 /// specified loop. Simplify the expression as much as possible. 1138 SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands, 1139 const Loop *L) { 1140 if (Operands.size() == 1) return Operands[0]; 1141 1142 if (Operands.back()->isZero()) { 1143 Operands.pop_back(); 1144 return getAddRecExpr(Operands, L); // {X,+,0} --> X 1145 } 1146 1147 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1148 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1149 const Loop* NestedLoop = NestedAR->getLoop(); 1150 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) { 1151 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(), 1152 NestedAR->op_end()); 1153 SCEVHandle NestedARHandle(NestedAR); 1154 Operands[0] = NestedAR->getStart(); 1155 NestedOperands[0] = getAddRecExpr(Operands, L); 1156 return getAddRecExpr(NestedOperands, NestedLoop); 1157 } 1158 } 1159 1160 SCEVAddRecExpr *&Result = 1161 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(), 1162 Operands.end()))]; 1163 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L); 1164 return Result; 1165 } 1166 1167 SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS, 1168 const SCEVHandle &RHS) { 1169 std::vector<SCEVHandle> Ops; 1170 Ops.push_back(LHS); 1171 Ops.push_back(RHS); 1172 return getSMaxExpr(Ops); 1173 } 1174 1175 SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) { 1176 assert(!Ops.empty() && "Cannot get empty smax!"); 1177 if (Ops.size() == 1) return Ops[0]; 1178 1179 // Sort by complexity, this groups all similar expression types together. 1180 GroupByComplexity(Ops); 1181 1182 // If there are any constants, fold them together. 1183 unsigned Idx = 0; 1184 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1185 ++Idx; 1186 assert(Idx < Ops.size()); 1187 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1188 // We found two constants, fold them together! 1189 ConstantInt *Fold = ConstantInt::get( 1190 APIntOps::smax(LHSC->getValue()->getValue(), 1191 RHSC->getValue()->getValue())); 1192 Ops[0] = getConstant(Fold); 1193 Ops.erase(Ops.begin()+1); // Erase the folded element 1194 if (Ops.size() == 1) return Ops[0]; 1195 LHSC = cast<SCEVConstant>(Ops[0]); 1196 } 1197 1198 // If we are left with a constant -inf, strip it off. 1199 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 1200 Ops.erase(Ops.begin()); 1201 --Idx; 1202 } 1203 } 1204 1205 if (Ops.size() == 1) return Ops[0]; 1206 1207 // Find the first SMax 1208 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 1209 ++Idx; 1210 1211 // Check to see if one of the operands is an SMax. If so, expand its operands 1212 // onto our operand list, and recurse to simplify. 1213 if (Idx < Ops.size()) { 1214 bool DeletedSMax = false; 1215 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 1216 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 1217 Ops.erase(Ops.begin()+Idx); 1218 DeletedSMax = true; 1219 } 1220 1221 if (DeletedSMax) 1222 return getSMaxExpr(Ops); 1223 } 1224 1225 // Okay, check to see if the same value occurs in the operand list twice. If 1226 // so, delete one. Since we sorted the list, these values are required to 1227 // be adjacent. 1228 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1229 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 1230 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1231 --i; --e; 1232 } 1233 1234 if (Ops.size() == 1) return Ops[0]; 1235 1236 assert(!Ops.empty() && "Reduced smax down to nothing!"); 1237 1238 // Okay, it looks like we really DO need an smax expr. Check to see if we 1239 // already have one, otherwise create a new one. 1240 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1241 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr, 1242 SCEVOps)]; 1243 if (Result == 0) Result = new SCEVSMaxExpr(Ops); 1244 return Result; 1245 } 1246 1247 SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS, 1248 const SCEVHandle &RHS) { 1249 std::vector<SCEVHandle> Ops; 1250 Ops.push_back(LHS); 1251 Ops.push_back(RHS); 1252 return getUMaxExpr(Ops); 1253 } 1254 1255 SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) { 1256 assert(!Ops.empty() && "Cannot get empty umax!"); 1257 if (Ops.size() == 1) return Ops[0]; 1258 1259 // Sort by complexity, this groups all similar expression types together. 1260 GroupByComplexity(Ops); 1261 1262 // If there are any constants, fold them together. 1263 unsigned Idx = 0; 1264 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1265 ++Idx; 1266 assert(Idx < Ops.size()); 1267 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1268 // We found two constants, fold them together! 1269 ConstantInt *Fold = ConstantInt::get( 1270 APIntOps::umax(LHSC->getValue()->getValue(), 1271 RHSC->getValue()->getValue())); 1272 Ops[0] = getConstant(Fold); 1273 Ops.erase(Ops.begin()+1); // Erase the folded element 1274 if (Ops.size() == 1) return Ops[0]; 1275 LHSC = cast<SCEVConstant>(Ops[0]); 1276 } 1277 1278 // If we are left with a constant zero, strip it off. 1279 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 1280 Ops.erase(Ops.begin()); 1281 --Idx; 1282 } 1283 } 1284 1285 if (Ops.size() == 1) return Ops[0]; 1286 1287 // Find the first UMax 1288 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 1289 ++Idx; 1290 1291 // Check to see if one of the operands is a UMax. If so, expand its operands 1292 // onto our operand list, and recurse to simplify. 1293 if (Idx < Ops.size()) { 1294 bool DeletedUMax = false; 1295 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 1296 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 1297 Ops.erase(Ops.begin()+Idx); 1298 DeletedUMax = true; 1299 } 1300 1301 if (DeletedUMax) 1302 return getUMaxExpr(Ops); 1303 } 1304 1305 // Okay, check to see if the same value occurs in the operand list twice. If 1306 // so, delete one. Since we sorted the list, these values are required to 1307 // be adjacent. 1308 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1309 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 1310 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 1311 --i; --e; 1312 } 1313 1314 if (Ops.size() == 1) return Ops[0]; 1315 1316 assert(!Ops.empty() && "Reduced umax down to nothing!"); 1317 1318 // Okay, it looks like we really DO need a umax expr. Check to see if we 1319 // already have one, otherwise create a new one. 1320 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end()); 1321 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr, 1322 SCEVOps)]; 1323 if (Result == 0) Result = new SCEVUMaxExpr(Ops); 1324 return Result; 1325 } 1326 1327 SCEVHandle ScalarEvolution::getUnknown(Value *V) { 1328 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 1329 return getConstant(CI); 1330 if (isa<ConstantPointerNull>(V)) 1331 return getIntegerSCEV(0, V->getType()); 1332 SCEVUnknown *&Result = (*SCEVUnknowns)[V]; 1333 if (Result == 0) Result = new SCEVUnknown(V); 1334 return Result; 1335 } 1336 1337 1338 //===----------------------------------------------------------------------===// 1339 // ScalarEvolutionsImpl Definition and Implementation 1340 //===----------------------------------------------------------------------===// 1341 // 1342 /// ScalarEvolutionsImpl - This class implements the main driver for the scalar 1343 /// evolution code. 1344 /// 1345 namespace { 1346 struct VISIBILITY_HIDDEN ScalarEvolutionsImpl { 1347 /// SE - A reference to the public ScalarEvolution object. 1348 ScalarEvolution &SE; 1349 1350 /// F - The function we are analyzing. 1351 /// 1352 Function &F; 1353 1354 /// LI - The loop information for the function we are currently analyzing. 1355 /// 1356 LoopInfo &LI; 1357 1358 /// TD - The target data information for the target we are targetting. 1359 /// 1360 TargetData &TD; 1361 1362 /// UnknownValue - This SCEV is used to represent unknown trip counts and 1363 /// things. 1364 SCEVHandle UnknownValue; 1365 1366 /// Scalars - This is a cache of the scalars we have analyzed so far. 1367 /// 1368 std::map<Value*, SCEVHandle> Scalars; 1369 1370 /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for 1371 /// this function as they are computed. 1372 std::map<const Loop*, SCEVHandle> BackedgeTakenCounts; 1373 1374 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 1375 /// the PHI instructions that we attempt to compute constant evolutions for. 1376 /// This allows us to avoid potentially expensive recomputation of these 1377 /// properties. An instruction maps to null if we are unable to compute its 1378 /// exit value. 1379 std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 1380 1381 public: 1382 ScalarEvolutionsImpl(ScalarEvolution &se, Function &f, LoopInfo &li, 1383 TargetData &td) 1384 : SE(se), F(f), LI(li), TD(td), UnknownValue(new SCEVCouldNotCompute()) {} 1385 1386 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1387 /// specified signed integer value and return a SCEV for the constant. 1388 SCEVHandle getIntegerSCEV(int Val, const Type *Ty); 1389 1390 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1391 /// 1392 SCEVHandle getNegativeSCEV(const SCEVHandle &V); 1393 1394 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1395 /// 1396 SCEVHandle getNotSCEV(const SCEVHandle &V); 1397 1398 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1399 /// 1400 SCEVHandle getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS); 1401 1402 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 1403 /// of the input value to the specified type. If the type must be extended, 1404 /// it is zero extended. 1405 SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty); 1406 1407 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion 1408 /// of the input value to the specified type. If the type must be extended, 1409 /// it is sign extended. 1410 SCEVHandle getTruncateOrSignExtend(const SCEVHandle &V, const Type *Ty); 1411 1412 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1413 /// expression and create a new one. 1414 SCEVHandle getSCEV(Value *V); 1415 1416 /// hasSCEV - Return true if the SCEV for this value has already been 1417 /// computed. 1418 bool hasSCEV(Value *V) const { 1419 return Scalars.count(V); 1420 } 1421 1422 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 1423 /// the specified value. 1424 void setSCEV(Value *V, const SCEVHandle &H) { 1425 bool isNew = Scalars.insert(std::make_pair(V, H)).second; 1426 assert(isNew && "This entry already existed!"); 1427 isNew = false; 1428 } 1429 1430 1431 /// getSCEVAtScope - Compute the value of the specified expression within 1432 /// the indicated loop (which may be null to indicate in no loop). If the 1433 /// expression cannot be evaluated, return UnknownValue itself. 1434 SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L); 1435 1436 1437 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 1438 /// a conditional between LHS and RHS. 1439 bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, 1440 SCEV *LHS, SCEV *RHS); 1441 1442 /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop 1443 /// has an analyzable loop-invariant backedge-taken count. 1444 bool hasLoopInvariantBackedgeTakenCount(const Loop *L); 1445 1446 /// forgetLoopBackedgeTakenCount - This method should be called by the 1447 /// client when it has changed a loop in a way that may effect 1448 /// ScalarEvolution's ability to compute a trip count, or if the loop 1449 /// is deleted. 1450 void forgetLoopBackedgeTakenCount(const Loop *L); 1451 1452 /// getBackedgeTakenCount - If the specified loop has a predictable 1453 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 1454 /// object. The backedge-taken count is the number of times the loop header 1455 /// will be branched to from within the loop. This is one less than the 1456 /// trip count of the loop, since it doesn't count the first iteration, 1457 /// when the header is branched to from outside the loop. 1458 /// 1459 /// Note that it is not valid to call this method on a loop without a 1460 /// loop-invariant backedge-taken count (see 1461 /// hasLoopInvariantBackedgeTakenCount). 1462 /// 1463 SCEVHandle getBackedgeTakenCount(const Loop *L); 1464 1465 /// deleteValueFromRecords - This method should be called by the 1466 /// client before it removes a value from the program, to make sure 1467 /// that no dangling references are left around. 1468 void deleteValueFromRecords(Value *V); 1469 1470 /// getTargetData - Return the TargetData. 1471 const TargetData &getTargetData() const; 1472 1473 private: 1474 /// createSCEV - We know that there is no SCEV for the specified value. 1475 /// Analyze the expression. 1476 SCEVHandle createSCEV(Value *V); 1477 1478 /// createNodeForPHI - Provide the special handling we need to analyze PHI 1479 /// SCEVs. 1480 SCEVHandle createNodeForPHI(PHINode *PN); 1481 1482 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value 1483 /// for the specified instruction and replaces any references to the 1484 /// symbolic value SymName with the specified value. This is used during 1485 /// PHI resolution. 1486 void ReplaceSymbolicValueWithConcrete(Instruction *I, 1487 const SCEVHandle &SymName, 1488 const SCEVHandle &NewVal); 1489 1490 /// ComputeBackedgeTakenCount - Compute the number of times the specified 1491 /// loop will iterate. 1492 SCEVHandle ComputeBackedgeTakenCount(const Loop *L); 1493 1494 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition 1495 /// of 'icmp op load X, cst', try to see if we can compute the trip count. 1496 SCEVHandle 1497 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, 1498 Constant *RHS, 1499 const Loop *L, 1500 ICmpInst::Predicate p); 1501 1502 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute 1503 /// a constant number of times (the condition evolves only from constants), 1504 /// try to evaluate a few iterations of the loop until we get the exit 1505 /// condition gets a value of ExitWhen (true or false). If we cannot 1506 /// evaluate the trip count of the loop, return UnknownValue. 1507 SCEVHandle ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, 1508 bool ExitWhen); 1509 1510 /// HowFarToZero - Return the number of times a backedge comparing the 1511 /// specified value to zero will execute. If not computable, return 1512 /// UnknownValue. 1513 SCEVHandle HowFarToZero(SCEV *V, const Loop *L); 1514 1515 /// HowFarToNonZero - Return the number of times a backedge checking the 1516 /// specified value for nonzero will execute. If not computable, return 1517 /// UnknownValue. 1518 SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L); 1519 1520 /// HowManyLessThans - Return the number of times a backedge containing the 1521 /// specified less-than comparison will execute. If not computable, return 1522 /// UnknownValue. isSigned specifies whether the less-than is signed. 1523 SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, 1524 bool isSigned); 1525 1526 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 1527 /// (which may not be an immediate predecessor) which has exactly one 1528 /// successor from which BB is reachable, or null if no such block is 1529 /// found. 1530 BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); 1531 1532 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 1533 /// in the header of its containing loop, we know the loop executes a 1534 /// constant number of times, and the PHI node is just a recurrence 1535 /// involving constants, fold it. 1536 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, 1537 const Loop *L); 1538 }; 1539 } 1540 1541 //===----------------------------------------------------------------------===// 1542 // Basic SCEV Analysis and PHI Idiom Recognition Code 1543 // 1544 1545 /// deleteValueFromRecords - This method should be called by the 1546 /// client before it removes an instruction from the program, to make sure 1547 /// that no dangling references are left around. 1548 void ScalarEvolutionsImpl::deleteValueFromRecords(Value *V) { 1549 SmallVector<Value *, 16> Worklist; 1550 1551 if (Scalars.erase(V)) { 1552 if (PHINode *PN = dyn_cast<PHINode>(V)) 1553 ConstantEvolutionLoopExitValue.erase(PN); 1554 Worklist.push_back(V); 1555 } 1556 1557 while (!Worklist.empty()) { 1558 Value *VV = Worklist.back(); 1559 Worklist.pop_back(); 1560 1561 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end(); 1562 UI != UE; ++UI) { 1563 Instruction *Inst = cast<Instruction>(*UI); 1564 if (Scalars.erase(Inst)) { 1565 if (PHINode *PN = dyn_cast<PHINode>(VV)) 1566 ConstantEvolutionLoopExitValue.erase(PN); 1567 Worklist.push_back(Inst); 1568 } 1569 } 1570 } 1571 } 1572 1573 const TargetData &ScalarEvolutionsImpl::getTargetData() const { 1574 return TD; 1575 } 1576 1577 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 1578 /// expression and create a new one. 1579 SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) { 1580 assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!"); 1581 1582 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V); 1583 if (I != Scalars.end()) return I->second; 1584 SCEVHandle S = createSCEV(V); 1585 Scalars.insert(std::make_pair(V, S)); 1586 return S; 1587 } 1588 1589 /// getIntegerSCEV - Given an integer or FP type, create a constant for the 1590 /// specified signed integer value and return a SCEV for the constant. 1591 SCEVHandle ScalarEvolutionsImpl::getIntegerSCEV(int Val, const Type *Ty) { 1592 if (isa<PointerType>(Ty)) 1593 Ty = TD.getIntPtrType(); 1594 Constant *C; 1595 if (Val == 0) 1596 C = Constant::getNullValue(Ty); 1597 else if (Ty->isFloatingPoint()) 1598 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle : 1599 APFloat::IEEEdouble, Val)); 1600 else 1601 C = ConstantInt::get(Ty, Val); 1602 return SE.getUnknown(C); 1603 } 1604 1605 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 1606 /// 1607 SCEVHandle ScalarEvolutionsImpl::getNegativeSCEV(const SCEVHandle &V) { 1608 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1609 return SE.getUnknown(ConstantExpr::getNeg(VC->getValue())); 1610 1611 const Type *Ty = V->getType(); 1612 if (isa<PointerType>(Ty)) 1613 Ty = TD.getIntPtrType(); 1614 return SE.getMulExpr(V, SE.getConstant(ConstantInt::getAllOnesValue(Ty))); 1615 } 1616 1617 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 1618 SCEVHandle ScalarEvolutionsImpl::getNotSCEV(const SCEVHandle &V) { 1619 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 1620 return SE.getUnknown(ConstantExpr::getNot(VC->getValue())); 1621 1622 const Type *Ty = V->getType(); 1623 if (isa<PointerType>(Ty)) 1624 Ty = TD.getIntPtrType(); 1625 SCEVHandle AllOnes = SE.getConstant(ConstantInt::getAllOnesValue(Ty)); 1626 return getMinusSCEV(AllOnes, V); 1627 } 1628 1629 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 1630 /// 1631 SCEVHandle ScalarEvolutionsImpl::getMinusSCEV(const SCEVHandle &LHS, 1632 const SCEVHandle &RHS) { 1633 // X - Y --> X + -Y 1634 return SE.getAddExpr(LHS, SE.getNegativeSCEV(RHS)); 1635 } 1636 1637 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 1638 /// input value to the specified type. If the type must be extended, it is zero 1639 /// extended. 1640 SCEVHandle 1641 ScalarEvolutionsImpl::getTruncateOrZeroExtend(const SCEVHandle &V, 1642 const Type *Ty) { 1643 const Type *SrcTy = V->getType(); 1644 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 1645 (Ty->isInteger() || isa<PointerType>(Ty)) && 1646 "Cannot truncate or zero extend with non-integer arguments!"); 1647 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty)) 1648 return V; // No conversion 1649 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty)) 1650 return SE.getTruncateExpr(V, Ty); 1651 return SE.getZeroExtendExpr(V, Ty); 1652 } 1653 1654 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 1655 /// input value to the specified type. If the type must be extended, it is sign 1656 /// extended. 1657 SCEVHandle 1658 ScalarEvolutionsImpl::getTruncateOrSignExtend(const SCEVHandle &V, 1659 const Type *Ty) { 1660 const Type *SrcTy = V->getType(); 1661 assert((SrcTy->isInteger() || isa<PointerType>(SrcTy)) && 1662 (Ty->isInteger() || isa<PointerType>(Ty)) && 1663 "Cannot truncate or zero extend with non-integer arguments!"); 1664 if (TD.getTypeSizeInBits(SrcTy) == TD.getTypeSizeInBits(Ty)) 1665 return V; // No conversion 1666 if (TD.getTypeSizeInBits(SrcTy) > TD.getTypeSizeInBits(Ty)) 1667 return SE.getTruncateExpr(V, Ty); 1668 return SE.getSignExtendExpr(V, Ty); 1669 } 1670 1671 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for 1672 /// the specified instruction and replaces any references to the symbolic value 1673 /// SymName with the specified value. This is used during PHI resolution. 1674 void ScalarEvolutionsImpl:: 1675 ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName, 1676 const SCEVHandle &NewVal) { 1677 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I); 1678 if (SI == Scalars.end()) return; 1679 1680 SCEVHandle NV = 1681 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, SE); 1682 if (NV == SI->second) return; // No change. 1683 1684 SI->second = NV; // Update the scalars map! 1685 1686 // Any instruction values that use this instruction might also need to be 1687 // updated! 1688 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1689 UI != E; ++UI) 1690 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal); 1691 } 1692 1693 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 1694 /// a loop header, making it a potential recurrence, or it doesn't. 1695 /// 1696 SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) { 1697 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 1698 if (const Loop *L = LI.getLoopFor(PN->getParent())) 1699 if (L->getHeader() == PN->getParent()) { 1700 // If it lives in the loop header, it has two incoming values, one 1701 // from outside the loop, and one from inside. 1702 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1703 unsigned BackEdge = IncomingEdge^1; 1704 1705 // While we are analyzing this PHI node, handle its value symbolically. 1706 SCEVHandle SymbolicName = SE.getUnknown(PN); 1707 assert(Scalars.find(PN) == Scalars.end() && 1708 "PHI node already processed?"); 1709 Scalars.insert(std::make_pair(PN, SymbolicName)); 1710 1711 // Using this symbolic name for the PHI, analyze the value coming around 1712 // the back-edge. 1713 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge)); 1714 1715 // NOTE: If BEValue is loop invariant, we know that the PHI node just 1716 // has a special value for the first iteration of the loop. 1717 1718 // If the value coming around the backedge is an add with the symbolic 1719 // value we just inserted, then we found a simple induction variable! 1720 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 1721 // If there is a single occurrence of the symbolic value, replace it 1722 // with a recurrence. 1723 unsigned FoundIndex = Add->getNumOperands(); 1724 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1725 if (Add->getOperand(i) == SymbolicName) 1726 if (FoundIndex == e) { 1727 FoundIndex = i; 1728 break; 1729 } 1730 1731 if (FoundIndex != Add->getNumOperands()) { 1732 // Create an add with everything but the specified operand. 1733 std::vector<SCEVHandle> Ops; 1734 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 1735 if (i != FoundIndex) 1736 Ops.push_back(Add->getOperand(i)); 1737 SCEVHandle Accum = SE.getAddExpr(Ops); 1738 1739 // This is not a valid addrec if the step amount is varying each 1740 // loop iteration, but is not itself an addrec in this loop. 1741 if (Accum->isLoopInvariant(L) || 1742 (isa<SCEVAddRecExpr>(Accum) && 1743 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 1744 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1745 SCEVHandle PHISCEV = SE.getAddRecExpr(StartVal, Accum, L); 1746 1747 // Okay, for the entire analysis of this edge we assumed the PHI 1748 // to be symbolic. We now need to go back and update all of the 1749 // entries for the scalars that use the PHI (except for the PHI 1750 // itself) to use the new analyzed value instead of the "symbolic" 1751 // value. 1752 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1753 return PHISCEV; 1754 } 1755 } 1756 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) { 1757 // Otherwise, this could be a loop like this: 1758 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 1759 // In this case, j = {1,+,1} and BEValue is j. 1760 // Because the other in-value of i (0) fits the evolution of BEValue 1761 // i really is an addrec evolution. 1762 if (AddRec->getLoop() == L && AddRec->isAffine()) { 1763 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 1764 1765 // If StartVal = j.start - j.stride, we can use StartVal as the 1766 // initial step of the addrec evolution. 1767 if (StartVal == SE.getMinusSCEV(AddRec->getOperand(0), 1768 AddRec->getOperand(1))) { 1769 SCEVHandle PHISCEV = 1770 SE.getAddRecExpr(StartVal, AddRec->getOperand(1), L); 1771 1772 // Okay, for the entire analysis of this edge we assumed the PHI 1773 // to be symbolic. We now need to go back and update all of the 1774 // entries for the scalars that use the PHI (except for the PHI 1775 // itself) to use the new analyzed value instead of the "symbolic" 1776 // value. 1777 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV); 1778 return PHISCEV; 1779 } 1780 } 1781 } 1782 1783 return SymbolicName; 1784 } 1785 1786 // If it's not a loop phi, we can't handle it yet. 1787 return SE.getUnknown(PN); 1788 } 1789 1790 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 1791 /// guaranteed to end in (at every loop iteration). It is, at the same time, 1792 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 1793 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 1794 static uint32_t GetMinTrailingZeros(SCEVHandle S, const TargetData &TD) { 1795 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 1796 return C->getValue()->getValue().countTrailingZeros(); 1797 1798 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 1799 return std::min(GetMinTrailingZeros(T->getOperand(), TD), 1800 (uint32_t)TD.getTypeSizeInBits(T->getType())); 1801 1802 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 1803 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD); 1804 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ? 1805 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1806 } 1807 1808 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 1809 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), TD); 1810 return OpRes == TD.getTypeSizeInBits(E->getOperand()->getType()) ? 1811 TD.getTypeSizeInBits(E->getOperand()->getType()) : OpRes; 1812 } 1813 1814 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 1815 // The result is the min of all operands results. 1816 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD); 1817 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1818 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD)); 1819 return MinOpRes; 1820 } 1821 1822 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 1823 // The result is the sum of all operands results. 1824 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), TD); 1825 uint32_t BitWidth = TD.getTypeSizeInBits(M->getType()); 1826 for (unsigned i = 1, e = M->getNumOperands(); 1827 SumOpRes != BitWidth && i != e; ++i) 1828 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), TD), 1829 BitWidth); 1830 return SumOpRes; 1831 } 1832 1833 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 1834 // The result is the min of all operands results. 1835 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), TD); 1836 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 1837 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), TD)); 1838 return MinOpRes; 1839 } 1840 1841 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 1842 // The result is the min of all operands results. 1843 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD); 1844 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1845 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD)); 1846 return MinOpRes; 1847 } 1848 1849 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 1850 // The result is the min of all operands results. 1851 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), TD); 1852 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 1853 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), TD)); 1854 return MinOpRes; 1855 } 1856 1857 // SCEVUDivExpr, SCEVUnknown 1858 return 0; 1859 } 1860 1861 /// createSCEV - We know that there is no SCEV for the specified value. 1862 /// Analyze the expression. 1863 /// 1864 SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) { 1865 if (!isa<IntegerType>(V->getType()) && 1866 !isa<PointerType>(V->getType())) 1867 return SE.getUnknown(V); 1868 1869 unsigned Opcode = Instruction::UserOp1; 1870 if (Instruction *I = dyn_cast<Instruction>(V)) 1871 Opcode = I->getOpcode(); 1872 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 1873 Opcode = CE->getOpcode(); 1874 else 1875 return SE.getUnknown(V); 1876 1877 User *U = cast<User>(V); 1878 switch (Opcode) { 1879 case Instruction::Add: 1880 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1881 getSCEV(U->getOperand(1))); 1882 case Instruction::Mul: 1883 return SE.getMulExpr(getSCEV(U->getOperand(0)), 1884 getSCEV(U->getOperand(1))); 1885 case Instruction::UDiv: 1886 return SE.getUDivExpr(getSCEV(U->getOperand(0)), 1887 getSCEV(U->getOperand(1))); 1888 case Instruction::Sub: 1889 return SE.getMinusSCEV(getSCEV(U->getOperand(0)), 1890 getSCEV(U->getOperand(1))); 1891 case Instruction::Or: 1892 // If the RHS of the Or is a constant, we may have something like: 1893 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 1894 // optimizations will transparently handle this case. 1895 // 1896 // In order for this transformation to be safe, the LHS must be of the 1897 // form X*(2^n) and the Or constant must be less than 2^n. 1898 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1899 SCEVHandle LHS = getSCEV(U->getOperand(0)); 1900 const APInt &CIVal = CI->getValue(); 1901 if (GetMinTrailingZeros(LHS, TD) >= 1902 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) 1903 return SE.getAddExpr(LHS, getSCEV(U->getOperand(1))); 1904 } 1905 break; 1906 case Instruction::Xor: 1907 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 1908 // If the RHS of the xor is a signbit, then this is just an add. 1909 // Instcombine turns add of signbit into xor as a strength reduction step. 1910 if (CI->getValue().isSignBit()) 1911 return SE.getAddExpr(getSCEV(U->getOperand(0)), 1912 getSCEV(U->getOperand(1))); 1913 1914 // If the RHS of xor is -1, then this is a not operation. 1915 else if (CI->isAllOnesValue()) 1916 return SE.getNotSCEV(getSCEV(U->getOperand(0))); 1917 } 1918 break; 1919 1920 case Instruction::Shl: 1921 // Turn shift left of a constant amount into a multiply. 1922 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1923 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1924 Constant *X = ConstantInt::get( 1925 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1926 return SE.getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1927 } 1928 break; 1929 1930 case Instruction::LShr: 1931 // Turn logical shift right of a constant into a unsigned divide. 1932 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 1933 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1934 Constant *X = ConstantInt::get( 1935 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 1936 return SE.getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 1937 } 1938 break; 1939 1940 case Instruction::Trunc: 1941 return SE.getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 1942 1943 case Instruction::ZExt: 1944 return SE.getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1945 1946 case Instruction::SExt: 1947 return SE.getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 1948 1949 case Instruction::BitCast: 1950 // BitCasts are no-op casts so we just eliminate the cast. 1951 if ((U->getType()->isInteger() || 1952 isa<PointerType>(U->getType())) && 1953 (U->getOperand(0)->getType()->isInteger() || 1954 isa<PointerType>(U->getOperand(0)->getType()))) 1955 return getSCEV(U->getOperand(0)); 1956 break; 1957 1958 case Instruction::IntToPtr: 1959 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1960 TD.getIntPtrType()); 1961 1962 case Instruction::PtrToInt: 1963 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)), 1964 U->getType()); 1965 1966 case Instruction::GetElementPtr: { 1967 const Type *IntPtrTy = TD.getIntPtrType(); 1968 Value *Base = U->getOperand(0); 1969 SCEVHandle TotalOffset = SE.getIntegerSCEV(0, IntPtrTy); 1970 gep_type_iterator GTI = gep_type_begin(U); 1971 for (GetElementPtrInst::op_iterator I = next(U->op_begin()), 1972 E = U->op_end(); 1973 I != E; ++I) { 1974 Value *Index = *I; 1975 // Compute the (potentially symbolic) offset in bytes for this index. 1976 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 1977 // For a struct, add the member offset. 1978 const StructLayout &SL = *TD.getStructLayout(STy); 1979 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 1980 uint64_t Offset = SL.getElementOffset(FieldNo); 1981 TotalOffset = SE.getAddExpr(TotalOffset, 1982 SE.getIntegerSCEV(Offset, IntPtrTy)); 1983 } else { 1984 // For an array, add the element offset, explicitly scaled. 1985 SCEVHandle LocalOffset = getSCEV(Index); 1986 if (!isa<PointerType>(LocalOffset->getType())) 1987 // Getelementptr indicies are signed. 1988 LocalOffset = getTruncateOrSignExtend(LocalOffset, 1989 IntPtrTy); 1990 LocalOffset = 1991 SE.getMulExpr(LocalOffset, 1992 SE.getIntegerSCEV(TD.getTypePaddedSize(*GTI), 1993 IntPtrTy)); 1994 TotalOffset = SE.getAddExpr(TotalOffset, LocalOffset); 1995 } 1996 } 1997 return SE.getAddExpr(getSCEV(Base), TotalOffset); 1998 } 1999 2000 case Instruction::PHI: 2001 return createNodeForPHI(cast<PHINode>(U)); 2002 2003 case Instruction::Select: 2004 // This could be a smax or umax that was lowered earlier. 2005 // Try to recover it. 2006 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 2007 Value *LHS = ICI->getOperand(0); 2008 Value *RHS = ICI->getOperand(1); 2009 switch (ICI->getPredicate()) { 2010 case ICmpInst::ICMP_SLT: 2011 case ICmpInst::ICMP_SLE: 2012 std::swap(LHS, RHS); 2013 // fall through 2014 case ICmpInst::ICMP_SGT: 2015 case ICmpInst::ICMP_SGE: 2016 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2017 return SE.getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2018 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2019 // ~smax(~x, ~y) == smin(x, y). 2020 return SE.getNotSCEV(SE.getSMaxExpr( 2021 SE.getNotSCEV(getSCEV(LHS)), 2022 SE.getNotSCEV(getSCEV(RHS)))); 2023 break; 2024 case ICmpInst::ICMP_ULT: 2025 case ICmpInst::ICMP_ULE: 2026 std::swap(LHS, RHS); 2027 // fall through 2028 case ICmpInst::ICMP_UGT: 2029 case ICmpInst::ICMP_UGE: 2030 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 2031 return SE.getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 2032 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 2033 // ~umax(~x, ~y) == umin(x, y) 2034 return SE.getNotSCEV(SE.getUMaxExpr(SE.getNotSCEV(getSCEV(LHS)), 2035 SE.getNotSCEV(getSCEV(RHS)))); 2036 break; 2037 default: 2038 break; 2039 } 2040 } 2041 2042 default: // We cannot analyze this expression. 2043 break; 2044 } 2045 2046 return SE.getUnknown(V); 2047 } 2048 2049 2050 2051 //===----------------------------------------------------------------------===// 2052 // Iteration Count Computation Code 2053 // 2054 2055 /// getBackedgeTakenCount - If the specified loop has a predictable 2056 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 2057 /// object. The backedge-taken count is the number of times the loop header 2058 /// will be branched to from within the loop. This is one less than the 2059 /// trip count of the loop, since it doesn't count the first iteration, 2060 /// when the header is branched to from outside the loop. 2061 /// 2062 /// Note that it is not valid to call this method on a loop without a 2063 /// loop-invariant backedge-taken count (see 2064 /// hasLoopInvariantBackedgeTakenCount). 2065 /// 2066 SCEVHandle ScalarEvolutionsImpl::getBackedgeTakenCount(const Loop *L) { 2067 std::map<const Loop*, SCEVHandle>::iterator I = BackedgeTakenCounts.find(L); 2068 if (I == BackedgeTakenCounts.end()) { 2069 SCEVHandle ItCount = ComputeBackedgeTakenCount(L); 2070 I = BackedgeTakenCounts.insert(std::make_pair(L, ItCount)).first; 2071 if (ItCount != UnknownValue) { 2072 assert(ItCount->isLoopInvariant(L) && 2073 "Computed trip count isn't loop invariant for loop!"); 2074 ++NumTripCountsComputed; 2075 } else if (isa<PHINode>(L->getHeader()->begin())) { 2076 // Only count loops that have phi nodes as not being computable. 2077 ++NumTripCountsNotComputed; 2078 } 2079 } 2080 return I->second; 2081 } 2082 2083 /// forgetLoopBackedgeTakenCount - This method should be called by the 2084 /// client when it has changed a loop in a way that may effect 2085 /// ScalarEvolution's ability to compute a trip count, or if the loop 2086 /// is deleted. 2087 void ScalarEvolutionsImpl::forgetLoopBackedgeTakenCount(const Loop *L) { 2088 BackedgeTakenCounts.erase(L); 2089 } 2090 2091 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 2092 /// of the specified loop will execute. 2093 SCEVHandle ScalarEvolutionsImpl::ComputeBackedgeTakenCount(const Loop *L) { 2094 // If the loop has a non-one exit block count, we can't analyze it. 2095 SmallVector<BasicBlock*, 8> ExitBlocks; 2096 L->getExitBlocks(ExitBlocks); 2097 if (ExitBlocks.size() != 1) return UnknownValue; 2098 2099 // Okay, there is one exit block. Try to find the condition that causes the 2100 // loop to be exited. 2101 BasicBlock *ExitBlock = ExitBlocks[0]; 2102 2103 BasicBlock *ExitingBlock = 0; 2104 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock); 2105 PI != E; ++PI) 2106 if (L->contains(*PI)) { 2107 if (ExitingBlock == 0) 2108 ExitingBlock = *PI; 2109 else 2110 return UnknownValue; // More than one block exiting! 2111 } 2112 assert(ExitingBlock && "No exits from loop, something is broken!"); 2113 2114 // Okay, we've computed the exiting block. See what condition causes us to 2115 // exit. 2116 // 2117 // FIXME: we should be able to handle switch instructions (with a single exit) 2118 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2119 if (ExitBr == 0) return UnknownValue; 2120 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 2121 2122 // At this point, we know we have a conditional branch that determines whether 2123 // the loop is exited. However, we don't know if the branch is executed each 2124 // time through the loop. If not, then the execution count of the branch will 2125 // not be equal to the trip count of the loop. 2126 // 2127 // Currently we check for this by checking to see if the Exit branch goes to 2128 // the loop header. If so, we know it will always execute the same number of 2129 // times as the loop. We also handle the case where the exit block *is* the 2130 // loop header. This is common for un-rotated loops. More extensive analysis 2131 // could be done to handle more cases here. 2132 if (ExitBr->getSuccessor(0) != L->getHeader() && 2133 ExitBr->getSuccessor(1) != L->getHeader() && 2134 ExitBr->getParent() != L->getHeader()) 2135 return UnknownValue; 2136 2137 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition()); 2138 2139 // If it's not an integer comparison then compute it the hard way. 2140 // Note that ICmpInst deals with pointer comparisons too so we must check 2141 // the type of the operand. 2142 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType())) 2143 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(), 2144 ExitBr->getSuccessor(0) == ExitBlock); 2145 2146 // If the condition was exit on true, convert the condition to exit on false 2147 ICmpInst::Predicate Cond; 2148 if (ExitBr->getSuccessor(1) == ExitBlock) 2149 Cond = ExitCond->getPredicate(); 2150 else 2151 Cond = ExitCond->getInversePredicate(); 2152 2153 // Handle common loops like: for (X = "string"; *X; ++X) 2154 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 2155 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 2156 SCEVHandle ItCnt = 2157 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 2158 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt; 2159 } 2160 2161 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0)); 2162 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1)); 2163 2164 // Try to evaluate any dependencies out of the loop. 2165 SCEVHandle Tmp = getSCEVAtScope(LHS, L); 2166 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp; 2167 Tmp = getSCEVAtScope(RHS, L); 2168 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp; 2169 2170 // At this point, we would like to compute how many iterations of the 2171 // loop the predicate will return true for these inputs. 2172 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 2173 // If there is a loop-invariant, force it into the RHS. 2174 std::swap(LHS, RHS); 2175 Cond = ICmpInst::getSwappedPredicate(Cond); 2176 } 2177 2178 // FIXME: think about handling pointer comparisons! i.e.: 2179 // while (P != P+100) ++P; 2180 2181 // If we have a comparison of a chrec against a constant, try to use value 2182 // ranges to answer this query. 2183 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 2184 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 2185 if (AddRec->getLoop() == L) { 2186 // Form the comparison range using the constant of the correct type so 2187 // that the ConstantRange class knows to do a signed or unsigned 2188 // comparison. 2189 ConstantInt *CompVal = RHSC->getValue(); 2190 const Type *RealTy = ExitCond->getOperand(0)->getType(); 2191 CompVal = dyn_cast<ConstantInt>( 2192 ConstantExpr::getBitCast(CompVal, RealTy)); 2193 if (CompVal) { 2194 // Form the constant range. 2195 ConstantRange CompRange( 2196 ICmpInst::makeConstantRange(Cond, CompVal->getValue())); 2197 2198 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, SE); 2199 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 2200 } 2201 } 2202 2203 switch (Cond) { 2204 case ICmpInst::ICMP_NE: { // while (X != Y) 2205 // Convert to: while (X-Y != 0) 2206 SCEVHandle TC = HowFarToZero(SE.getMinusSCEV(LHS, RHS), L); 2207 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2208 break; 2209 } 2210 case ICmpInst::ICMP_EQ: { 2211 // Convert to: while (X-Y == 0) // while (X == Y) 2212 SCEVHandle TC = HowFarToNonZero(SE.getMinusSCEV(LHS, RHS), L); 2213 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2214 break; 2215 } 2216 case ICmpInst::ICMP_SLT: { 2217 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true); 2218 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2219 break; 2220 } 2221 case ICmpInst::ICMP_SGT: { 2222 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2223 SE.getNotSCEV(RHS), L, true); 2224 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2225 break; 2226 } 2227 case ICmpInst::ICMP_ULT: { 2228 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false); 2229 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2230 break; 2231 } 2232 case ICmpInst::ICMP_UGT: { 2233 SCEVHandle TC = HowManyLessThans(SE.getNotSCEV(LHS), 2234 SE.getNotSCEV(RHS), L, false); 2235 if (!isa<SCEVCouldNotCompute>(TC)) return TC; 2236 break; 2237 } 2238 default: 2239 #if 0 2240 cerr << "ComputeBackedgeTakenCount "; 2241 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 2242 cerr << "[unsigned] "; 2243 cerr << *LHS << " " 2244 << Instruction::getOpcodeName(Instruction::ICmp) 2245 << " " << *RHS << "\n"; 2246 #endif 2247 break; 2248 } 2249 return 2250 ComputeBackedgeTakenCountExhaustively(L, ExitCond, 2251 ExitBr->getSuccessor(0) == ExitBlock); 2252 } 2253 2254 static ConstantInt * 2255 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 2256 ScalarEvolution &SE) { 2257 SCEVHandle InVal = SE.getConstant(C); 2258 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE); 2259 assert(isa<SCEVConstant>(Val) && 2260 "Evaluation of SCEV at constant didn't fold correctly?"); 2261 return cast<SCEVConstant>(Val)->getValue(); 2262 } 2263 2264 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 2265 /// and a GEP expression (missing the pointer index) indexing into it, return 2266 /// the addressed element of the initializer or null if the index expression is 2267 /// invalid. 2268 static Constant * 2269 GetAddressedElementFromGlobal(GlobalVariable *GV, 2270 const std::vector<ConstantInt*> &Indices) { 2271 Constant *Init = GV->getInitializer(); 2272 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 2273 uint64_t Idx = Indices[i]->getZExtValue(); 2274 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2275 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 2276 Init = cast<Constant>(CS->getOperand(Idx)); 2277 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2278 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 2279 Init = cast<Constant>(CA->getOperand(Idx)); 2280 } else if (isa<ConstantAggregateZero>(Init)) { 2281 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2282 assert(Idx < STy->getNumElements() && "Bad struct index!"); 2283 Init = Constant::getNullValue(STy->getElementType(Idx)); 2284 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 2285 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 2286 Init = Constant::getNullValue(ATy->getElementType()); 2287 } else { 2288 assert(0 && "Unknown constant aggregate type!"); 2289 } 2290 return 0; 2291 } else { 2292 return 0; // Unknown initializer type 2293 } 2294 } 2295 return Init; 2296 } 2297 2298 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 2299 /// 'icmp op load X, cst', try to see if we can compute the backedge 2300 /// execution count. 2301 SCEVHandle ScalarEvolutionsImpl:: 2302 ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS, 2303 const Loop *L, 2304 ICmpInst::Predicate predicate) { 2305 if (LI->isVolatile()) return UnknownValue; 2306 2307 // Check to see if the loaded pointer is a getelementptr of a global. 2308 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 2309 if (!GEP) return UnknownValue; 2310 2311 // Make sure that it is really a constant global we are gepping, with an 2312 // initializer, and make sure the first IDX is really 0. 2313 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 2314 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 2315 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 2316 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 2317 return UnknownValue; 2318 2319 // Okay, we allow one non-constant index into the GEP instruction. 2320 Value *VarIdx = 0; 2321 std::vector<ConstantInt*> Indexes; 2322 unsigned VarIdxNum = 0; 2323 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 2324 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 2325 Indexes.push_back(CI); 2326 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 2327 if (VarIdx) return UnknownValue; // Multiple non-constant idx's. 2328 VarIdx = GEP->getOperand(i); 2329 VarIdxNum = i-2; 2330 Indexes.push_back(0); 2331 } 2332 2333 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 2334 // Check to see if X is a loop variant variable value now. 2335 SCEVHandle Idx = getSCEV(VarIdx); 2336 SCEVHandle Tmp = getSCEVAtScope(Idx, L); 2337 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp; 2338 2339 // We can only recognize very limited forms of loop index expressions, in 2340 // particular, only affine AddRec's like {C1,+,C2}. 2341 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 2342 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 2343 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 2344 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 2345 return UnknownValue; 2346 2347 unsigned MaxSteps = MaxBruteForceIterations; 2348 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 2349 ConstantInt *ItCst = 2350 ConstantInt::get(IdxExpr->getType(), IterationNum); 2351 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, SE); 2352 2353 // Form the GEP offset. 2354 Indexes[VarIdxNum] = Val; 2355 2356 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 2357 if (Result == 0) break; // Cannot compute! 2358 2359 // Evaluate the condition for this iteration. 2360 Result = ConstantExpr::getICmp(predicate, Result, RHS); 2361 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 2362 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 2363 #if 0 2364 cerr << "\n***\n*** Computed loop count " << *ItCst 2365 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 2366 << "***\n"; 2367 #endif 2368 ++NumArrayLenItCounts; 2369 return SE.getConstant(ItCst); // Found terminating iteration! 2370 } 2371 } 2372 return UnknownValue; 2373 } 2374 2375 2376 /// CanConstantFold - Return true if we can constant fold an instruction of the 2377 /// specified type, assuming that all operands were constants. 2378 static bool CanConstantFold(const Instruction *I) { 2379 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 2380 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 2381 return true; 2382 2383 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2384 if (const Function *F = CI->getCalledFunction()) 2385 return canConstantFoldCallTo(F); 2386 return false; 2387 } 2388 2389 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 2390 /// in the loop that V is derived from. We allow arbitrary operations along the 2391 /// way, but the operands of an operation must either be constants or a value 2392 /// derived from a constant PHI. If this expression does not fit with these 2393 /// constraints, return null. 2394 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 2395 // If this is not an instruction, or if this is an instruction outside of the 2396 // loop, it can't be derived from a loop PHI. 2397 Instruction *I = dyn_cast<Instruction>(V); 2398 if (I == 0 || !L->contains(I->getParent())) return 0; 2399 2400 if (PHINode *PN = dyn_cast<PHINode>(I)) { 2401 if (L->getHeader() == I->getParent()) 2402 return PN; 2403 else 2404 // We don't currently keep track of the control flow needed to evaluate 2405 // PHIs, so we cannot handle PHIs inside of loops. 2406 return 0; 2407 } 2408 2409 // If we won't be able to constant fold this expression even if the operands 2410 // are constants, return early. 2411 if (!CanConstantFold(I)) return 0; 2412 2413 // Otherwise, we can evaluate this instruction if all of its operands are 2414 // constant or derived from a PHI node themselves. 2415 PHINode *PHI = 0; 2416 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 2417 if (!(isa<Constant>(I->getOperand(Op)) || 2418 isa<GlobalValue>(I->getOperand(Op)))) { 2419 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 2420 if (P == 0) return 0; // Not evolving from PHI 2421 if (PHI == 0) 2422 PHI = P; 2423 else if (PHI != P) 2424 return 0; // Evolving from multiple different PHIs. 2425 } 2426 2427 // This is a expression evolving from a constant PHI! 2428 return PHI; 2429 } 2430 2431 /// EvaluateExpression - Given an expression that passes the 2432 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 2433 /// in the loop has the value PHIVal. If we can't fold this expression for some 2434 /// reason, return null. 2435 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) { 2436 if (isa<PHINode>(V)) return PHIVal; 2437 if (Constant *C = dyn_cast<Constant>(V)) return C; 2438 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 2439 Instruction *I = cast<Instruction>(V); 2440 2441 std::vector<Constant*> Operands; 2442 Operands.resize(I->getNumOperands()); 2443 2444 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2445 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal); 2446 if (Operands[i] == 0) return 0; 2447 } 2448 2449 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2450 return ConstantFoldCompareInstOperands(CI->getPredicate(), 2451 &Operands[0], Operands.size()); 2452 else 2453 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2454 &Operands[0], Operands.size()); 2455 } 2456 2457 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 2458 /// in the header of its containing loop, we know the loop executes a 2459 /// constant number of times, and the PHI node is just a recurrence 2460 /// involving constants, fold it. 2461 Constant *ScalarEvolutionsImpl:: 2462 getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){ 2463 std::map<PHINode*, Constant*>::iterator I = 2464 ConstantEvolutionLoopExitValue.find(PN); 2465 if (I != ConstantEvolutionLoopExitValue.end()) 2466 return I->second; 2467 2468 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 2469 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 2470 2471 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 2472 2473 // Since the loop is canonicalized, the PHI node must have two entries. One 2474 // entry must be a constant (coming in from outside of the loop), and the 2475 // second must be derived from the same PHI. 2476 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2477 Constant *StartCST = 2478 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2479 if (StartCST == 0) 2480 return RetVal = 0; // Must be a constant. 2481 2482 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2483 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2484 if (PN2 != PN) 2485 return RetVal = 0; // Not derived from same PHI. 2486 2487 // Execute the loop symbolically to determine the exit value. 2488 if (BEs.getActiveBits() >= 32) 2489 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 2490 2491 unsigned NumIterations = BEs.getZExtValue(); // must be in range 2492 unsigned IterationNum = 0; 2493 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 2494 if (IterationNum == NumIterations) 2495 return RetVal = PHIVal; // Got exit value! 2496 2497 // Compute the value of the PHI node for the next iteration. 2498 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2499 if (NextPHI == PHIVal) 2500 return RetVal = NextPHI; // Stopped evolving! 2501 if (NextPHI == 0) 2502 return 0; // Couldn't evaluate! 2503 PHIVal = NextPHI; 2504 } 2505 } 2506 2507 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a 2508 /// constant number of times (the condition evolves only from constants), 2509 /// try to evaluate a few iterations of the loop until we get the exit 2510 /// condition gets a value of ExitWhen (true or false). If we cannot 2511 /// evaluate the trip count of the loop, return UnknownValue. 2512 SCEVHandle ScalarEvolutionsImpl:: 2513 ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) { 2514 PHINode *PN = getConstantEvolvingPHI(Cond, L); 2515 if (PN == 0) return UnknownValue; 2516 2517 // Since the loop is canonicalized, the PHI node must have two entries. One 2518 // entry must be a constant (coming in from outside of the loop), and the 2519 // second must be derived from the same PHI. 2520 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 2521 Constant *StartCST = 2522 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 2523 if (StartCST == 0) return UnknownValue; // Must be a constant. 2524 2525 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 2526 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 2527 if (PN2 != PN) return UnknownValue; // Not derived from same PHI. 2528 2529 // Okay, we find a PHI node that defines the trip count of this loop. Execute 2530 // the loop symbolically to determine when the condition gets a value of 2531 // "ExitWhen". 2532 unsigned IterationNum = 0; 2533 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 2534 for (Constant *PHIVal = StartCST; 2535 IterationNum != MaxIterations; ++IterationNum) { 2536 ConstantInt *CondVal = 2537 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal)); 2538 2539 // Couldn't symbolically evaluate. 2540 if (!CondVal) return UnknownValue; 2541 2542 if (CondVal->getValue() == uint64_t(ExitWhen)) { 2543 ConstantEvolutionLoopExitValue[PN] = PHIVal; 2544 ++NumBruteForceTripCountsComputed; 2545 return SE.getConstant(ConstantInt::get(Type::Int32Ty, IterationNum)); 2546 } 2547 2548 // Compute the value of the PHI node for the next iteration. 2549 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal); 2550 if (NextPHI == 0 || NextPHI == PHIVal) 2551 return UnknownValue; // Couldn't evaluate or not making progress... 2552 PHIVal = NextPHI; 2553 } 2554 2555 // Too many iterations were needed to evaluate. 2556 return UnknownValue; 2557 } 2558 2559 /// getSCEVAtScope - Compute the value of the specified expression within the 2560 /// indicated loop (which may be null to indicate in no loop). If the 2561 /// expression cannot be evaluated, return UnknownValue. 2562 SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) { 2563 // FIXME: this should be turned into a virtual method on SCEV! 2564 2565 if (isa<SCEVConstant>(V)) return V; 2566 2567 // If this instruction is evolved from a constant-evolving PHI, compute the 2568 // exit value from the loop without using SCEVs. 2569 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 2570 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 2571 const Loop *LI = this->LI[I->getParent()]; 2572 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 2573 if (PHINode *PN = dyn_cast<PHINode>(I)) 2574 if (PN->getParent() == LI->getHeader()) { 2575 // Okay, there is no closed form solution for the PHI node. Check 2576 // to see if the loop that contains it has a known backedge-taken 2577 // count. If so, we may be able to force computation of the exit 2578 // value. 2579 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI); 2580 if (SCEVConstant *BTCC = 2581 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 2582 // Okay, we know how many times the containing loop executes. If 2583 // this is a constant evolving PHI node, get the final value at 2584 // the specified iteration number. 2585 Constant *RV = getConstantEvolutionLoopExitValue(PN, 2586 BTCC->getValue()->getValue(), 2587 LI); 2588 if (RV) return SE.getUnknown(RV); 2589 } 2590 } 2591 2592 // Okay, this is an expression that we cannot symbolically evaluate 2593 // into a SCEV. Check to see if it's possible to symbolically evaluate 2594 // the arguments into constants, and if so, try to constant propagate the 2595 // result. This is particularly useful for computing loop exit values. 2596 if (CanConstantFold(I)) { 2597 std::vector<Constant*> Operands; 2598 Operands.reserve(I->getNumOperands()); 2599 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 2600 Value *Op = I->getOperand(i); 2601 if (Constant *C = dyn_cast<Constant>(Op)) { 2602 Operands.push_back(C); 2603 } else { 2604 // If any of the operands is non-constant and if they are 2605 // non-integer and non-pointer, don't even try to analyze them 2606 // with scev techniques. 2607 if (!isa<IntegerType>(Op->getType()) && 2608 !isa<PointerType>(Op->getType())) 2609 return V; 2610 2611 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L); 2612 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) 2613 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(), 2614 Op->getType(), 2615 false)); 2616 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 2617 if (Constant *C = dyn_cast<Constant>(SU->getValue())) 2618 Operands.push_back(ConstantExpr::getIntegerCast(C, 2619 Op->getType(), 2620 false)); 2621 else 2622 return V; 2623 } else { 2624 return V; 2625 } 2626 } 2627 } 2628 2629 Constant *C; 2630 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 2631 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 2632 &Operands[0], Operands.size()); 2633 else 2634 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 2635 &Operands[0], Operands.size()); 2636 return SE.getUnknown(C); 2637 } 2638 } 2639 2640 // This is some other type of SCEVUnknown, just return it. 2641 return V; 2642 } 2643 2644 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 2645 // Avoid performing the look-up in the common case where the specified 2646 // expression has no loop-variant portions. 2647 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 2648 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2649 if (OpAtScope != Comm->getOperand(i)) { 2650 if (OpAtScope == UnknownValue) return UnknownValue; 2651 // Okay, at least one of these operands is loop variant but might be 2652 // foldable. Build a new instance of the folded commutative expression. 2653 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i); 2654 NewOps.push_back(OpAtScope); 2655 2656 for (++i; i != e; ++i) { 2657 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 2658 if (OpAtScope == UnknownValue) return UnknownValue; 2659 NewOps.push_back(OpAtScope); 2660 } 2661 if (isa<SCEVAddExpr>(Comm)) 2662 return SE.getAddExpr(NewOps); 2663 if (isa<SCEVMulExpr>(Comm)) 2664 return SE.getMulExpr(NewOps); 2665 if (isa<SCEVSMaxExpr>(Comm)) 2666 return SE.getSMaxExpr(NewOps); 2667 if (isa<SCEVUMaxExpr>(Comm)) 2668 return SE.getUMaxExpr(NewOps); 2669 assert(0 && "Unknown commutative SCEV type!"); 2670 } 2671 } 2672 // If we got here, all operands are loop invariant. 2673 return Comm; 2674 } 2675 2676 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 2677 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L); 2678 if (LHS == UnknownValue) return LHS; 2679 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L); 2680 if (RHS == UnknownValue) return RHS; 2681 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 2682 return Div; // must be loop invariant 2683 return SE.getUDivExpr(LHS, RHS); 2684 } 2685 2686 // If this is a loop recurrence for a loop that does not contain L, then we 2687 // are dealing with the final value computed by the loop. 2688 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 2689 if (!L || !AddRec->getLoop()->contains(L->getHeader())) { 2690 // To evaluate this recurrence, we need to know how many times the AddRec 2691 // loop iterates. Compute this now. 2692 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 2693 if (BackedgeTakenCount == UnknownValue) return UnknownValue; 2694 2695 // Then, evaluate the AddRec. 2696 return AddRec->evaluateAtIteration(BackedgeTakenCount, SE); 2697 } 2698 return UnknownValue; 2699 } 2700 2701 //assert(0 && "Unknown SCEV type!"); 2702 return UnknownValue; 2703 } 2704 2705 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 2706 /// following equation: 2707 /// 2708 /// A * X = B (mod N) 2709 /// 2710 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 2711 /// A and B isn't important. 2712 /// 2713 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 2714 static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 2715 ScalarEvolution &SE) { 2716 uint32_t BW = A.getBitWidth(); 2717 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 2718 assert(A != 0 && "A must be non-zero."); 2719 2720 // 1. D = gcd(A, N) 2721 // 2722 // The gcd of A and N may have only one prime factor: 2. The number of 2723 // trailing zeros in A is its multiplicity 2724 uint32_t Mult2 = A.countTrailingZeros(); 2725 // D = 2^Mult2 2726 2727 // 2. Check if B is divisible by D. 2728 // 2729 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 2730 // is not less than multiplicity of this prime factor for D. 2731 if (B.countTrailingZeros() < Mult2) 2732 return new SCEVCouldNotCompute(); 2733 2734 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 2735 // modulo (N / D). 2736 // 2737 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 2738 // bit width during computations. 2739 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 2740 APInt Mod(BW + 1, 0); 2741 Mod.set(BW - Mult2); // Mod = N / D 2742 APInt I = AD.multiplicativeInverse(Mod); 2743 2744 // 4. Compute the minimum unsigned root of the equation: 2745 // I * (B / D) mod (N / D) 2746 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 2747 2748 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 2749 // bits. 2750 return SE.getConstant(Result.trunc(BW)); 2751 } 2752 2753 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 2754 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 2755 /// might be the same) or two SCEVCouldNotCompute objects. 2756 /// 2757 static std::pair<SCEVHandle,SCEVHandle> 2758 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 2759 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 2760 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 2761 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 2762 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 2763 2764 // We currently can only solve this if the coefficients are constants. 2765 if (!LC || !MC || !NC) { 2766 SCEV *CNC = new SCEVCouldNotCompute(); 2767 return std::make_pair(CNC, CNC); 2768 } 2769 2770 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 2771 const APInt &L = LC->getValue()->getValue(); 2772 const APInt &M = MC->getValue()->getValue(); 2773 const APInt &N = NC->getValue()->getValue(); 2774 APInt Two(BitWidth, 2); 2775 APInt Four(BitWidth, 4); 2776 2777 { 2778 using namespace APIntOps; 2779 const APInt& C = L; 2780 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 2781 // The B coefficient is M-N/2 2782 APInt B(M); 2783 B -= sdiv(N,Two); 2784 2785 // The A coefficient is N/2 2786 APInt A(N.sdiv(Two)); 2787 2788 // Compute the B^2-4ac term. 2789 APInt SqrtTerm(B); 2790 SqrtTerm *= B; 2791 SqrtTerm -= Four * (A * C); 2792 2793 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 2794 // integer value or else APInt::sqrt() will assert. 2795 APInt SqrtVal(SqrtTerm.sqrt()); 2796 2797 // Compute the two solutions for the quadratic formula. 2798 // The divisions must be performed as signed divisions. 2799 APInt NegB(-B); 2800 APInt TwoA( A << 1 ); 2801 if (TwoA.isMinValue()) { 2802 SCEV *CNC = new SCEVCouldNotCompute(); 2803 return std::make_pair(CNC, CNC); 2804 } 2805 2806 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA)); 2807 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA)); 2808 2809 return std::make_pair(SE.getConstant(Solution1), 2810 SE.getConstant(Solution2)); 2811 } // end APIntOps namespace 2812 } 2813 2814 /// HowFarToZero - Return the number of times a backedge comparing the specified 2815 /// value to zero will execute. If not computable, return UnknownValue 2816 SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) { 2817 // If the value is a constant 2818 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2819 // If the value is already zero, the branch will execute zero times. 2820 if (C->getValue()->isZero()) return C; 2821 return UnknownValue; // Otherwise it will loop infinitely. 2822 } 2823 2824 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 2825 if (!AddRec || AddRec->getLoop() != L) 2826 return UnknownValue; 2827 2828 if (AddRec->isAffine()) { 2829 // If this is an affine expression, the execution count of this branch is 2830 // the minimum unsigned root of the following equation: 2831 // 2832 // Start + Step*N = 0 (mod 2^BW) 2833 // 2834 // equivalent to: 2835 // 2836 // Step*N = -Start (mod 2^BW) 2837 // 2838 // where BW is the common bit width of Start and Step. 2839 2840 // Get the initial value for the loop. 2841 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 2842 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue; 2843 2844 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 2845 2846 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 2847 // For now we handle only constant steps. 2848 2849 // First, handle unitary steps. 2850 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 2851 return SE.getNegativeSCEV(Start); // N = -Start (as unsigned) 2852 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 2853 return Start; // N = Start (as unsigned) 2854 2855 // Then, try to solve the above equation provided that Start is constant. 2856 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 2857 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 2858 -StartC->getValue()->getValue(),SE); 2859 } 2860 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) { 2861 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 2862 // the quadratic equation to solve it. 2863 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec, SE); 2864 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 2865 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 2866 if (R1) { 2867 #if 0 2868 cerr << "HFTZ: " << *V << " - sol#1: " << *R1 2869 << " sol#2: " << *R2 << "\n"; 2870 #endif 2871 // Pick the smallest positive root value. 2872 if (ConstantInt *CB = 2873 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 2874 R1->getValue(), R2->getValue()))) { 2875 if (CB->getZExtValue() == false) 2876 std::swap(R1, R2); // R1 is the minimum root now. 2877 2878 // We can only use this value if the chrec ends up with an exact zero 2879 // value at this index. When solving for "X*X != 5", for example, we 2880 // should not accept a root of 2. 2881 SCEVHandle Val = AddRec->evaluateAtIteration(R1, SE); 2882 if (Val->isZero()) 2883 return R1; // We found a quadratic root! 2884 } 2885 } 2886 } 2887 2888 return UnknownValue; 2889 } 2890 2891 /// HowFarToNonZero - Return the number of times a backedge checking the 2892 /// specified value for nonzero will execute. If not computable, return 2893 /// UnknownValue 2894 SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) { 2895 // Loops that look like: while (X == 0) are very strange indeed. We don't 2896 // handle them yet except for the trivial case. This could be expanded in the 2897 // future as needed. 2898 2899 // If the value is a constant, check to see if it is known to be non-zero 2900 // already. If so, the backedge will execute zero times. 2901 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 2902 if (!C->getValue()->isNullValue()) 2903 return SE.getIntegerSCEV(0, C->getType()); 2904 return UnknownValue; // Otherwise it will loop infinitely. 2905 } 2906 2907 // We could implement others, but I really doubt anyone writes loops like 2908 // this, and if they did, they would already be constant folded. 2909 return UnknownValue; 2910 } 2911 2912 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 2913 /// (which may not be an immediate predecessor) which has exactly one 2914 /// successor from which BB is reachable, or null if no such block is 2915 /// found. 2916 /// 2917 BasicBlock * 2918 ScalarEvolutionsImpl::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 2919 // If the block has a unique predecessor, the predecessor must have 2920 // no other successors from which BB is reachable. 2921 if (BasicBlock *Pred = BB->getSinglePredecessor()) 2922 return Pred; 2923 2924 // A loop's header is defined to be a block that dominates the loop. 2925 // If the loop has a preheader, it must be a block that has exactly 2926 // one successor that can reach BB. This is slightly more strict 2927 // than necessary, but works if critical edges are split. 2928 if (Loop *L = LI.getLoopFor(BB)) 2929 return L->getLoopPreheader(); 2930 2931 return 0; 2932 } 2933 2934 /// isLoopGuardedByCond - Test whether entry to the loop is protected by 2935 /// a conditional between LHS and RHS. 2936 bool ScalarEvolutionsImpl::isLoopGuardedByCond(const Loop *L, 2937 ICmpInst::Predicate Pred, 2938 SCEV *LHS, SCEV *RHS) { 2939 BasicBlock *Preheader = L->getLoopPreheader(); 2940 BasicBlock *PreheaderDest = L->getHeader(); 2941 2942 // Starting at the preheader, climb up the predecessor chain, as long as 2943 // there are predecessors that can be found that have unique successors 2944 // leading to the original header. 2945 for (; Preheader; 2946 PreheaderDest = Preheader, 2947 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) { 2948 2949 BranchInst *LoopEntryPredicate = 2950 dyn_cast<BranchInst>(Preheader->getTerminator()); 2951 if (!LoopEntryPredicate || 2952 LoopEntryPredicate->isUnconditional()) 2953 continue; 2954 2955 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 2956 if (!ICI) continue; 2957 2958 // Now that we found a conditional branch that dominates the loop, check to 2959 // see if it is the comparison we are looking for. 2960 Value *PreCondLHS = ICI->getOperand(0); 2961 Value *PreCondRHS = ICI->getOperand(1); 2962 ICmpInst::Predicate Cond; 2963 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest) 2964 Cond = ICI->getPredicate(); 2965 else 2966 Cond = ICI->getInversePredicate(); 2967 2968 if (Cond == Pred) 2969 ; // An exact match. 2970 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE) 2971 ; // The actual condition is beyond sufficient. 2972 else 2973 // Check a few special cases. 2974 switch (Cond) { 2975 case ICmpInst::ICMP_UGT: 2976 if (Pred == ICmpInst::ICMP_ULT) { 2977 std::swap(PreCondLHS, PreCondRHS); 2978 Cond = ICmpInst::ICMP_ULT; 2979 break; 2980 } 2981 continue; 2982 case ICmpInst::ICMP_SGT: 2983 if (Pred == ICmpInst::ICMP_SLT) { 2984 std::swap(PreCondLHS, PreCondRHS); 2985 Cond = ICmpInst::ICMP_SLT; 2986 break; 2987 } 2988 continue; 2989 case ICmpInst::ICMP_NE: 2990 // Expressions like (x >u 0) are often canonicalized to (x != 0), 2991 // so check for this case by checking if the NE is comparing against 2992 // a minimum or maximum constant. 2993 if (!ICmpInst::isTrueWhenEqual(Pred)) 2994 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) { 2995 const APInt &A = CI->getValue(); 2996 switch (Pred) { 2997 case ICmpInst::ICMP_SLT: 2998 if (A.isMaxSignedValue()) break; 2999 continue; 3000 case ICmpInst::ICMP_SGT: 3001 if (A.isMinSignedValue()) break; 3002 continue; 3003 case ICmpInst::ICMP_ULT: 3004 if (A.isMaxValue()) break; 3005 continue; 3006 case ICmpInst::ICMP_UGT: 3007 if (A.isMinValue()) break; 3008 continue; 3009 default: 3010 continue; 3011 } 3012 Cond = ICmpInst::ICMP_NE; 3013 // NE is symmetric but the original comparison may not be. Swap 3014 // the operands if necessary so that they match below. 3015 if (isa<SCEVConstant>(LHS)) 3016 std::swap(PreCondLHS, PreCondRHS); 3017 break; 3018 } 3019 continue; 3020 default: 3021 // We weren't able to reconcile the condition. 3022 continue; 3023 } 3024 3025 if (!PreCondLHS->getType()->isInteger()) continue; 3026 3027 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS); 3028 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS); 3029 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) || 3030 (LHS == SE.getNotSCEV(PreCondRHSSCEV) && 3031 RHS == SE.getNotSCEV(PreCondLHSSCEV))) 3032 return true; 3033 } 3034 3035 return false; 3036 } 3037 3038 /// HowManyLessThans - Return the number of times a backedge containing the 3039 /// specified less-than comparison will execute. If not computable, return 3040 /// UnknownValue. 3041 SCEVHandle ScalarEvolutionsImpl:: 3042 HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) { 3043 // Only handle: "ADDREC < LoopInvariant". 3044 if (!RHS->isLoopInvariant(L)) return UnknownValue; 3045 3046 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 3047 if (!AddRec || AddRec->getLoop() != L) 3048 return UnknownValue; 3049 3050 if (AddRec->isAffine()) { 3051 // FORNOW: We only support unit strides. 3052 SCEVHandle One = SE.getIntegerSCEV(1, RHS->getType()); 3053 if (AddRec->getOperand(1) != One) 3054 return UnknownValue; 3055 3056 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant 3057 // m. So, we count the number of iterations in which {n,+,1} < m is true. 3058 // Note that we cannot simply return max(m-n,0) because it's not safe to 3059 // treat m-n as signed nor unsigned due to overflow possibility. 3060 3061 // First, we get the value of the LHS in the first iteration: n 3062 SCEVHandle Start = AddRec->getOperand(0); 3063 3064 if (isLoopGuardedByCond(L, 3065 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 3066 SE.getMinusSCEV(AddRec->getOperand(0), One), RHS)) { 3067 // Since we know that the condition is true in order to enter the loop, 3068 // we know that it will run exactly m-n times. 3069 return SE.getMinusSCEV(RHS, Start); 3070 } else { 3071 // Then, we get the value of the LHS in the first iteration in which the 3072 // above condition doesn't hold. This equals to max(m,n). 3073 SCEVHandle End = isSigned ? SE.getSMaxExpr(RHS, Start) 3074 : SE.getUMaxExpr(RHS, Start); 3075 3076 // Finally, we subtract these two values to get the number of times the 3077 // backedge is executed: max(m,n)-n. 3078 return SE.getMinusSCEV(End, Start); 3079 } 3080 } 3081 3082 return UnknownValue; 3083 } 3084 3085 /// getNumIterationsInRange - Return the number of iterations of this loop that 3086 /// produce values in the specified constant range. Another way of looking at 3087 /// this is that it returns the first iteration number where the value is not in 3088 /// the condition, thus computing the exit count. If the iteration count can't 3089 /// be computed, an instance of SCEVCouldNotCompute is returned. 3090 SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 3091 ScalarEvolution &SE) const { 3092 if (Range.isFullSet()) // Infinite loop. 3093 return new SCEVCouldNotCompute(); 3094 3095 // If the start is a non-zero constant, shift the range to simplify things. 3096 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 3097 if (!SC->getValue()->isZero()) { 3098 std::vector<SCEVHandle> Operands(op_begin(), op_end()); 3099 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 3100 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop()); 3101 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 3102 return ShiftedAddRec->getNumIterationsInRange( 3103 Range.subtract(SC->getValue()->getValue()), SE); 3104 // This is strange and shouldn't happen. 3105 return new SCEVCouldNotCompute(); 3106 } 3107 3108 // The only time we can solve this is when we have all constant indices. 3109 // Otherwise, we cannot determine the overflow conditions. 3110 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 3111 if (!isa<SCEVConstant>(getOperand(i))) 3112 return new SCEVCouldNotCompute(); 3113 3114 3115 // Okay at this point we know that all elements of the chrec are constants and 3116 // that the start element is zero. 3117 3118 // First check to see if the range contains zero. If not, the first 3119 // iteration exits. 3120 unsigned BitWidth = SE.getTargetData().getTypeSizeInBits(getType()); 3121 if (!Range.contains(APInt(BitWidth, 0))) 3122 return SE.getConstant(ConstantInt::get(getType(),0)); 3123 3124 if (isAffine()) { 3125 // If this is an affine expression then we have this situation: 3126 // Solve {0,+,A} in Range === Ax in Range 3127 3128 // We know that zero is in the range. If A is positive then we know that 3129 // the upper value of the range must be the first possible exit value. 3130 // If A is negative then the lower of the range is the last possible loop 3131 // value. Also note that we already checked for a full range. 3132 APInt One(BitWidth,1); 3133 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 3134 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 3135 3136 // The exit value should be (End+A)/A. 3137 APInt ExitVal = (End + A).udiv(A); 3138 ConstantInt *ExitValue = ConstantInt::get(ExitVal); 3139 3140 // Evaluate at the exit value. If we really did fall out of the valid 3141 // range, then we computed our trip count, otherwise wrap around or other 3142 // things must have happened. 3143 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 3144 if (Range.contains(Val->getValue())) 3145 return new SCEVCouldNotCompute(); // Something strange happened 3146 3147 // Ensure that the previous value is in the range. This is a sanity check. 3148 assert(Range.contains( 3149 EvaluateConstantChrecAtConstant(this, 3150 ConstantInt::get(ExitVal - One), SE)->getValue()) && 3151 "Linear scev computation is off in a bad way!"); 3152 return SE.getConstant(ExitValue); 3153 } else if (isQuadratic()) { 3154 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 3155 // quadratic equation to solve it. To do this, we must frame our problem in 3156 // terms of figuring out when zero is crossed, instead of when 3157 // Range.getUpper() is crossed. 3158 std::vector<SCEVHandle> NewOps(op_begin(), op_end()); 3159 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 3160 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 3161 3162 // Next, solve the constructed addrec 3163 std::pair<SCEVHandle,SCEVHandle> Roots = 3164 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 3165 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 3166 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 3167 if (R1) { 3168 // Pick the smallest positive root value. 3169 if (ConstantInt *CB = 3170 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 3171 R1->getValue(), R2->getValue()))) { 3172 if (CB->getZExtValue() == false) 3173 std::swap(R1, R2); // R1 is the minimum root now. 3174 3175 // Make sure the root is not off by one. The returned iteration should 3176 // not be in the range, but the previous one should be. When solving 3177 // for "X*X < 5", for example, we should not return a root of 2. 3178 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 3179 R1->getValue(), 3180 SE); 3181 if (Range.contains(R1Val->getValue())) { 3182 // The next iteration must be out of the range... 3183 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1); 3184 3185 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3186 if (!Range.contains(R1Val->getValue())) 3187 return SE.getConstant(NextVal); 3188 return new SCEVCouldNotCompute(); // Something strange happened 3189 } 3190 3191 // If R1 was not in the range, then it is a good return value. Make 3192 // sure that R1-1 WAS in the range though, just in case. 3193 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1); 3194 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 3195 if (Range.contains(R1Val->getValue())) 3196 return R1; 3197 return new SCEVCouldNotCompute(); // Something strange happened 3198 } 3199 } 3200 } 3201 3202 return new SCEVCouldNotCompute(); 3203 } 3204 3205 3206 3207 //===----------------------------------------------------------------------===// 3208 // ScalarEvolution Class Implementation 3209 //===----------------------------------------------------------------------===// 3210 3211 bool ScalarEvolution::runOnFunction(Function &F) { 3212 Impl = new ScalarEvolutionsImpl(*this, F, 3213 getAnalysis<LoopInfo>(), 3214 getAnalysis<TargetData>()); 3215 return false; 3216 } 3217 3218 void ScalarEvolution::releaseMemory() { 3219 delete (ScalarEvolutionsImpl*)Impl; 3220 Impl = 0; 3221 } 3222 3223 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 3224 AU.setPreservesAll(); 3225 AU.addRequiredTransitive<LoopInfo>(); 3226 AU.addRequiredTransitive<TargetData>(); 3227 } 3228 3229 const TargetData &ScalarEvolution::getTargetData() const { 3230 return ((ScalarEvolutionsImpl*)Impl)->getTargetData(); 3231 } 3232 3233 SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) { 3234 return ((ScalarEvolutionsImpl*)Impl)->getIntegerSCEV(Val, Ty); 3235 } 3236 3237 SCEVHandle ScalarEvolution::getSCEV(Value *V) const { 3238 return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V); 3239 } 3240 3241 /// hasSCEV - Return true if the SCEV for this value has already been 3242 /// computed. 3243 bool ScalarEvolution::hasSCEV(Value *V) const { 3244 return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V); 3245 } 3246 3247 3248 /// setSCEV - Insert the specified SCEV into the map of current SCEVs for 3249 /// the specified value. 3250 void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) { 3251 ((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H); 3252 } 3253 3254 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3255 /// 3256 SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) { 3257 return ((ScalarEvolutionsImpl*)Impl)->getNegativeSCEV(V); 3258 } 3259 3260 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3261 /// 3262 SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) { 3263 return ((ScalarEvolutionsImpl*)Impl)->getNotSCEV(V); 3264 } 3265 3266 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 3267 /// 3268 SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS, 3269 const SCEVHandle &RHS) { 3270 return ((ScalarEvolutionsImpl*)Impl)->getMinusSCEV(LHS, RHS); 3271 } 3272 3273 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 3274 /// of the input value to the specified type. If the type must be 3275 /// extended, it is zero extended. 3276 SCEVHandle ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V, 3277 const Type *Ty) { 3278 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrZeroExtend(V, Ty); 3279 } 3280 3281 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion 3282 /// of the input value to the specified type. If the type must be 3283 /// extended, it is sign extended. 3284 SCEVHandle ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V, 3285 const Type *Ty) { 3286 return ((ScalarEvolutionsImpl*)Impl)->getTruncateOrSignExtend(V, Ty); 3287 } 3288 3289 3290 bool ScalarEvolution::isLoopGuardedByCond(const Loop *L, 3291 ICmpInst::Predicate Pred, 3292 SCEV *LHS, SCEV *RHS) { 3293 return ((ScalarEvolutionsImpl*)Impl)->isLoopGuardedByCond(L, Pred, 3294 LHS, RHS); 3295 } 3296 3297 SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) const { 3298 return ((ScalarEvolutionsImpl*)Impl)->getBackedgeTakenCount(L); 3299 } 3300 3301 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) const { 3302 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 3303 } 3304 3305 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) { 3306 return ((ScalarEvolutionsImpl*)Impl)->forgetLoopBackedgeTakenCount(L); 3307 } 3308 3309 SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const { 3310 return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L); 3311 } 3312 3313 void ScalarEvolution::deleteValueFromRecords(Value *V) const { 3314 return ((ScalarEvolutionsImpl*)Impl)->deleteValueFromRecords(V); 3315 } 3316 3317 static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE, 3318 const Loop *L) { 3319 // Print all inner loops first 3320 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3321 PrintLoopInfo(OS, SE, *I); 3322 3323 OS << "Loop " << L->getHeader()->getName() << ": "; 3324 3325 SmallVector<BasicBlock*, 8> ExitBlocks; 3326 L->getExitBlocks(ExitBlocks); 3327 if (ExitBlocks.size() != 1) 3328 OS << "<multiple exits> "; 3329 3330 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 3331 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 3332 } else { 3333 OS << "Unpredictable backedge-taken count. "; 3334 } 3335 3336 OS << "\n"; 3337 } 3338 3339 void ScalarEvolution::print(std::ostream &OS, const Module* ) const { 3340 Function &F = ((ScalarEvolutionsImpl*)Impl)->F; 3341 LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI; 3342 3343 OS << "Classifying expressions for: " << F.getName() << "\n"; 3344 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 3345 if (I->getType()->isInteger()) { 3346 OS << *I; 3347 OS << " --> "; 3348 SCEVHandle SV = getSCEV(&*I); 3349 SV->print(OS); 3350 OS << "\t\t"; 3351 3352 if (const Loop *L = LI.getLoopFor((*I).getParent())) { 3353 OS << "Exits: "; 3354 SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop()); 3355 if (isa<SCEVCouldNotCompute>(ExitValue)) { 3356 OS << "<<Unknown>>"; 3357 } else { 3358 OS << *ExitValue; 3359 } 3360 } 3361 3362 3363 OS << "\n"; 3364 } 3365 3366 OS << "Determining loop execution counts for: " << F.getName() << "\n"; 3367 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 3368 PrintLoopInfo(OS, this, *I); 3369 } 3370