1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/CallSite.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 //===----------------------------------------------------------------------===// 225 // SCEV class definitions 226 //===----------------------------------------------------------------------===// 227 228 //===----------------------------------------------------------------------===// 229 // Implementation of the SCEV class. 230 // 231 232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 233 LLVM_DUMP_METHOD void SCEV::dump() const { 234 print(dbgs()); 235 dbgs() << '\n'; 236 } 237 #endif 238 239 void SCEV::print(raw_ostream &OS) const { 240 switch (static_cast<SCEVTypes>(getSCEVType())) { 241 case scConstant: 242 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 243 return; 244 case scTruncate: { 245 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 246 const SCEV *Op = Trunc->getOperand(); 247 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 248 << *Trunc->getType() << ")"; 249 return; 250 } 251 case scZeroExtend: { 252 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 253 const SCEV *Op = ZExt->getOperand(); 254 OS << "(zext " << *Op->getType() << " " << *Op << " to " 255 << *ZExt->getType() << ")"; 256 return; 257 } 258 case scSignExtend: { 259 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 260 const SCEV *Op = SExt->getOperand(); 261 OS << "(sext " << *Op->getType() << " " << *Op << " to " 262 << *SExt->getType() << ")"; 263 return; 264 } 265 case scAddRecExpr: { 266 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 267 OS << "{" << *AR->getOperand(0); 268 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 269 OS << ",+," << *AR->getOperand(i); 270 OS << "}<"; 271 if (AR->hasNoUnsignedWrap()) 272 OS << "nuw><"; 273 if (AR->hasNoSignedWrap()) 274 OS << "nsw><"; 275 if (AR->hasNoSelfWrap() && 276 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 277 OS << "nw><"; 278 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 279 OS << ">"; 280 return; 281 } 282 case scAddExpr: 283 case scMulExpr: 284 case scUMaxExpr: 285 case scSMaxExpr: 286 case scUMinExpr: 287 case scSMinExpr: { 288 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 289 const char *OpStr = nullptr; 290 switch (NAry->getSCEVType()) { 291 case scAddExpr: OpStr = " + "; break; 292 case scMulExpr: OpStr = " * "; break; 293 case scUMaxExpr: OpStr = " umax "; break; 294 case scSMaxExpr: OpStr = " smax "; break; 295 case scUMinExpr: 296 OpStr = " umin "; 297 break; 298 case scSMinExpr: 299 OpStr = " smin "; 300 break; 301 } 302 OS << "("; 303 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 304 I != E; ++I) { 305 OS << **I; 306 if (std::next(I) != E) 307 OS << OpStr; 308 } 309 OS << ")"; 310 switch (NAry->getSCEVType()) { 311 case scAddExpr: 312 case scMulExpr: 313 if (NAry->hasNoUnsignedWrap()) 314 OS << "<nuw>"; 315 if (NAry->hasNoSignedWrap()) 316 OS << "<nsw>"; 317 } 318 return; 319 } 320 case scUDivExpr: { 321 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 322 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 323 return; 324 } 325 case scUnknown: { 326 const SCEVUnknown *U = cast<SCEVUnknown>(this); 327 Type *AllocTy; 328 if (U->isSizeOf(AllocTy)) { 329 OS << "sizeof(" << *AllocTy << ")"; 330 return; 331 } 332 if (U->isAlignOf(AllocTy)) { 333 OS << "alignof(" << *AllocTy << ")"; 334 return; 335 } 336 337 Type *CTy; 338 Constant *FieldNo; 339 if (U->isOffsetOf(CTy, FieldNo)) { 340 OS << "offsetof(" << *CTy << ", "; 341 FieldNo->printAsOperand(OS, false); 342 OS << ")"; 343 return; 344 } 345 346 // Otherwise just print it normally. 347 U->getValue()->printAsOperand(OS, false); 348 return; 349 } 350 case scCouldNotCompute: 351 OS << "***COULDNOTCOMPUTE***"; 352 return; 353 } 354 llvm_unreachable("Unknown SCEV kind!"); 355 } 356 357 Type *SCEV::getType() const { 358 switch (static_cast<SCEVTypes>(getSCEVType())) { 359 case scConstant: 360 return cast<SCEVConstant>(this)->getType(); 361 case scTruncate: 362 case scZeroExtend: 363 case scSignExtend: 364 return cast<SCEVCastExpr>(this)->getType(); 365 case scAddRecExpr: 366 case scMulExpr: 367 case scUMaxExpr: 368 case scSMaxExpr: 369 case scUMinExpr: 370 case scSMinExpr: 371 return cast<SCEVNAryExpr>(this)->getType(); 372 case scAddExpr: 373 return cast<SCEVAddExpr>(this)->getType(); 374 case scUDivExpr: 375 return cast<SCEVUDivExpr>(this)->getType(); 376 case scUnknown: 377 return cast<SCEVUnknown>(this)->getType(); 378 case scCouldNotCompute: 379 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 380 } 381 llvm_unreachable("Unknown SCEV kind!"); 382 } 383 384 bool SCEV::isZero() const { 385 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 386 return SC->getValue()->isZero(); 387 return false; 388 } 389 390 bool SCEV::isOne() const { 391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 392 return SC->getValue()->isOne(); 393 return false; 394 } 395 396 bool SCEV::isAllOnesValue() const { 397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 398 return SC->getValue()->isMinusOne(); 399 return false; 400 } 401 402 bool SCEV::isNonConstantNegative() const { 403 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 404 if (!Mul) return false; 405 406 // If there is a constant factor, it will be first. 407 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 408 if (!SC) return false; 409 410 // Return true if the value is negative, this matches things like (-42 * V). 411 return SC->getAPInt().isNegative(); 412 } 413 414 SCEVCouldNotCompute::SCEVCouldNotCompute() : 415 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 416 417 bool SCEVCouldNotCompute::classof(const SCEV *S) { 418 return S->getSCEVType() == scCouldNotCompute; 419 } 420 421 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 422 FoldingSetNodeID ID; 423 ID.AddInteger(scConstant); 424 ID.AddPointer(V); 425 void *IP = nullptr; 426 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 427 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 428 UniqueSCEVs.InsertNode(S, IP); 429 return S; 430 } 431 432 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 433 return getConstant(ConstantInt::get(getContext(), Val)); 434 } 435 436 const SCEV * 437 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 438 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 439 return getConstant(ConstantInt::get(ITy, V, isSigned)); 440 } 441 442 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 443 unsigned SCEVTy, const SCEV *op, Type *ty) 444 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 445 446 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 447 const SCEV *op, Type *ty) 448 : SCEVCastExpr(ID, scTruncate, op, ty) { 449 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 450 "Cannot truncate non-integer value!"); 451 } 452 453 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 454 const SCEV *op, Type *ty) 455 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 456 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 457 "Cannot zero extend non-integer value!"); 458 } 459 460 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 461 const SCEV *op, Type *ty) 462 : SCEVCastExpr(ID, scSignExtend, op, ty) { 463 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 464 "Cannot sign extend non-integer value!"); 465 } 466 467 void SCEVUnknown::deleted() { 468 // Clear this SCEVUnknown from various maps. 469 SE->forgetMemoizedResults(this); 470 471 // Remove this SCEVUnknown from the uniquing map. 472 SE->UniqueSCEVs.RemoveNode(this); 473 474 // Release the value. 475 setValPtr(nullptr); 476 } 477 478 void SCEVUnknown::allUsesReplacedWith(Value *New) { 479 // Remove this SCEVUnknown from the uniquing map. 480 SE->UniqueSCEVs.RemoveNode(this); 481 482 // Update this SCEVUnknown to point to the new value. This is needed 483 // because there may still be outstanding SCEVs which still point to 484 // this SCEVUnknown. 485 setValPtr(New); 486 } 487 488 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 489 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 490 if (VCE->getOpcode() == Instruction::PtrToInt) 491 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 492 if (CE->getOpcode() == Instruction::GetElementPtr && 493 CE->getOperand(0)->isNullValue() && 494 CE->getNumOperands() == 2) 495 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 496 if (CI->isOne()) { 497 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 498 ->getElementType(); 499 return true; 500 } 501 502 return false; 503 } 504 505 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 506 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 507 if (VCE->getOpcode() == Instruction::PtrToInt) 508 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 509 if (CE->getOpcode() == Instruction::GetElementPtr && 510 CE->getOperand(0)->isNullValue()) { 511 Type *Ty = 512 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 513 if (StructType *STy = dyn_cast<StructType>(Ty)) 514 if (!STy->isPacked() && 515 CE->getNumOperands() == 3 && 516 CE->getOperand(1)->isNullValue()) { 517 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 518 if (CI->isOne() && 519 STy->getNumElements() == 2 && 520 STy->getElementType(0)->isIntegerTy(1)) { 521 AllocTy = STy->getElementType(1); 522 return true; 523 } 524 } 525 } 526 527 return false; 528 } 529 530 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 531 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 532 if (VCE->getOpcode() == Instruction::PtrToInt) 533 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 534 if (CE->getOpcode() == Instruction::GetElementPtr && 535 CE->getNumOperands() == 3 && 536 CE->getOperand(0)->isNullValue() && 537 CE->getOperand(1)->isNullValue()) { 538 Type *Ty = 539 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 540 // Ignore vector types here so that ScalarEvolutionExpander doesn't 541 // emit getelementptrs that index into vectors. 542 if (Ty->isStructTy() || Ty->isArrayTy()) { 543 CTy = Ty; 544 FieldNo = CE->getOperand(2); 545 return true; 546 } 547 } 548 549 return false; 550 } 551 552 //===----------------------------------------------------------------------===// 553 // SCEV Utilities 554 //===----------------------------------------------------------------------===// 555 556 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 557 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 558 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 559 /// have been previously deemed to be "equally complex" by this routine. It is 560 /// intended to avoid exponential time complexity in cases like: 561 /// 562 /// %a = f(%x, %y) 563 /// %b = f(%a, %a) 564 /// %c = f(%b, %b) 565 /// 566 /// %d = f(%x, %y) 567 /// %e = f(%d, %d) 568 /// %f = f(%e, %e) 569 /// 570 /// CompareValueComplexity(%f, %c) 571 /// 572 /// Since we do not continue running this routine on expression trees once we 573 /// have seen unequal values, there is no need to track them in the cache. 574 static int 575 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 576 const LoopInfo *const LI, Value *LV, Value *RV, 577 unsigned Depth) { 578 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 579 return 0; 580 581 // Order pointer values after integer values. This helps SCEVExpander form 582 // GEPs. 583 bool LIsPointer = LV->getType()->isPointerTy(), 584 RIsPointer = RV->getType()->isPointerTy(); 585 if (LIsPointer != RIsPointer) 586 return (int)LIsPointer - (int)RIsPointer; 587 588 // Compare getValueID values. 589 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 590 if (LID != RID) 591 return (int)LID - (int)RID; 592 593 // Sort arguments by their position. 594 if (const auto *LA = dyn_cast<Argument>(LV)) { 595 const auto *RA = cast<Argument>(RV); 596 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 597 return (int)LArgNo - (int)RArgNo; 598 } 599 600 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 601 const auto *RGV = cast<GlobalValue>(RV); 602 603 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 604 auto LT = GV->getLinkage(); 605 return !(GlobalValue::isPrivateLinkage(LT) || 606 GlobalValue::isInternalLinkage(LT)); 607 }; 608 609 // Use the names to distinguish the two values, but only if the 610 // names are semantically important. 611 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 612 return LGV->getName().compare(RGV->getName()); 613 } 614 615 // For instructions, compare their loop depth, and their operand count. This 616 // is pretty loose. 617 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 618 const auto *RInst = cast<Instruction>(RV); 619 620 // Compare loop depths. 621 const BasicBlock *LParent = LInst->getParent(), 622 *RParent = RInst->getParent(); 623 if (LParent != RParent) { 624 unsigned LDepth = LI->getLoopDepth(LParent), 625 RDepth = LI->getLoopDepth(RParent); 626 if (LDepth != RDepth) 627 return (int)LDepth - (int)RDepth; 628 } 629 630 // Compare the number of operands. 631 unsigned LNumOps = LInst->getNumOperands(), 632 RNumOps = RInst->getNumOperands(); 633 if (LNumOps != RNumOps) 634 return (int)LNumOps - (int)RNumOps; 635 636 for (unsigned Idx : seq(0u, LNumOps)) { 637 int Result = 638 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 639 RInst->getOperand(Idx), Depth + 1); 640 if (Result != 0) 641 return Result; 642 } 643 } 644 645 EqCacheValue.unionSets(LV, RV); 646 return 0; 647 } 648 649 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 650 // than RHS, respectively. A three-way result allows recursive comparisons to be 651 // more efficient. 652 static int CompareSCEVComplexity( 653 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 654 EquivalenceClasses<const Value *> &EqCacheValue, 655 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 656 DominatorTree &DT, unsigned Depth = 0) { 657 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 658 if (LHS == RHS) 659 return 0; 660 661 // Primarily, sort the SCEVs by their getSCEVType(). 662 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 663 if (LType != RType) 664 return (int)LType - (int)RType; 665 666 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 667 return 0; 668 // Aside from the getSCEVType() ordering, the particular ordering 669 // isn't very important except that it's beneficial to be consistent, 670 // so that (a + b) and (b + a) don't end up as different expressions. 671 switch (static_cast<SCEVTypes>(LType)) { 672 case scUnknown: { 673 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 674 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 675 676 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 677 RU->getValue(), Depth + 1); 678 if (X == 0) 679 EqCacheSCEV.unionSets(LHS, RHS); 680 return X; 681 } 682 683 case scConstant: { 684 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 685 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 686 687 // Compare constant values. 688 const APInt &LA = LC->getAPInt(); 689 const APInt &RA = RC->getAPInt(); 690 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 691 if (LBitWidth != RBitWidth) 692 return (int)LBitWidth - (int)RBitWidth; 693 return LA.ult(RA) ? -1 : 1; 694 } 695 696 case scAddRecExpr: { 697 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 698 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 699 700 // There is always a dominance between two recs that are used by one SCEV, 701 // so we can safely sort recs by loop header dominance. We require such 702 // order in getAddExpr. 703 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 704 if (LLoop != RLoop) { 705 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 706 assert(LHead != RHead && "Two loops share the same header?"); 707 if (DT.dominates(LHead, RHead)) 708 return 1; 709 else 710 assert(DT.dominates(RHead, LHead) && 711 "No dominance between recurrences used by one SCEV?"); 712 return -1; 713 } 714 715 // Addrec complexity grows with operand count. 716 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 717 if (LNumOps != RNumOps) 718 return (int)LNumOps - (int)RNumOps; 719 720 // Lexicographically compare. 721 for (unsigned i = 0; i != LNumOps; ++i) { 722 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 723 LA->getOperand(i), RA->getOperand(i), DT, 724 Depth + 1); 725 if (X != 0) 726 return X; 727 } 728 EqCacheSCEV.unionSets(LHS, RHS); 729 return 0; 730 } 731 732 case scAddExpr: 733 case scMulExpr: 734 case scSMaxExpr: 735 case scUMaxExpr: 736 case scSMinExpr: 737 case scUMinExpr: { 738 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 739 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 740 741 // Lexicographically compare n-ary expressions. 742 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 743 if (LNumOps != RNumOps) 744 return (int)LNumOps - (int)RNumOps; 745 746 for (unsigned i = 0; i != LNumOps; ++i) { 747 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 748 LC->getOperand(i), RC->getOperand(i), DT, 749 Depth + 1); 750 if (X != 0) 751 return X; 752 } 753 EqCacheSCEV.unionSets(LHS, RHS); 754 return 0; 755 } 756 757 case scUDivExpr: { 758 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 759 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 760 761 // Lexicographically compare udiv expressions. 762 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 763 RC->getLHS(), DT, Depth + 1); 764 if (X != 0) 765 return X; 766 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 767 RC->getRHS(), DT, Depth + 1); 768 if (X == 0) 769 EqCacheSCEV.unionSets(LHS, RHS); 770 return X; 771 } 772 773 case scTruncate: 774 case scZeroExtend: 775 case scSignExtend: { 776 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 777 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 778 779 // Compare cast expressions by operand. 780 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 781 LC->getOperand(), RC->getOperand(), DT, 782 Depth + 1); 783 if (X == 0) 784 EqCacheSCEV.unionSets(LHS, RHS); 785 return X; 786 } 787 788 case scCouldNotCompute: 789 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 790 } 791 llvm_unreachable("Unknown SCEV kind!"); 792 } 793 794 /// Given a list of SCEV objects, order them by their complexity, and group 795 /// objects of the same complexity together by value. When this routine is 796 /// finished, we know that any duplicates in the vector are consecutive and that 797 /// complexity is monotonically increasing. 798 /// 799 /// Note that we go take special precautions to ensure that we get deterministic 800 /// results from this routine. In other words, we don't want the results of 801 /// this to depend on where the addresses of various SCEV objects happened to 802 /// land in memory. 803 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 804 LoopInfo *LI, DominatorTree &DT) { 805 if (Ops.size() < 2) return; // Noop 806 807 EquivalenceClasses<const SCEV *> EqCacheSCEV; 808 EquivalenceClasses<const Value *> EqCacheValue; 809 if (Ops.size() == 2) { 810 // This is the common case, which also happens to be trivially simple. 811 // Special case it. 812 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 813 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 814 std::swap(LHS, RHS); 815 return; 816 } 817 818 // Do the rough sort by complexity. 819 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 820 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 821 0; 822 }); 823 824 // Now that we are sorted by complexity, group elements of the same 825 // complexity. Note that this is, at worst, N^2, but the vector is likely to 826 // be extremely short in practice. Note that we take this approach because we 827 // do not want to depend on the addresses of the objects we are grouping. 828 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 829 const SCEV *S = Ops[i]; 830 unsigned Complexity = S->getSCEVType(); 831 832 // If there are any objects of the same complexity and same value as this 833 // one, group them. 834 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 835 if (Ops[j] == S) { // Found a duplicate. 836 // Move it to immediately after i'th element. 837 std::swap(Ops[i+1], Ops[j]); 838 ++i; // no need to rescan it. 839 if (i == e-2) return; // Done! 840 } 841 } 842 } 843 } 844 845 // Returns the size of the SCEV S. 846 static inline int sizeOfSCEV(const SCEV *S) { 847 struct FindSCEVSize { 848 int Size = 0; 849 850 FindSCEVSize() = default; 851 852 bool follow(const SCEV *S) { 853 ++Size; 854 // Keep looking at all operands of S. 855 return true; 856 } 857 858 bool isDone() const { 859 return false; 860 } 861 }; 862 863 FindSCEVSize F; 864 SCEVTraversal<FindSCEVSize> ST(F); 865 ST.visitAll(S); 866 return F.Size; 867 } 868 869 /// Returns true if the subtree of \p S contains at least HugeExprThreshold 870 /// nodes. 871 static bool isHugeExpression(const SCEV *S) { 872 return S->getExpressionSize() >= HugeExprThreshold; 873 } 874 875 /// Returns true of \p Ops contains a huge SCEV (see definition above). 876 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 877 return any_of(Ops, isHugeExpression); 878 } 879 880 namespace { 881 882 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 883 public: 884 // Computes the Quotient and Remainder of the division of Numerator by 885 // Denominator. 886 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 887 const SCEV *Denominator, const SCEV **Quotient, 888 const SCEV **Remainder) { 889 assert(Numerator && Denominator && "Uninitialized SCEV"); 890 891 SCEVDivision D(SE, Numerator, Denominator); 892 893 // Check for the trivial case here to avoid having to check for it in the 894 // rest of the code. 895 if (Numerator == Denominator) { 896 *Quotient = D.One; 897 *Remainder = D.Zero; 898 return; 899 } 900 901 if (Numerator->isZero()) { 902 *Quotient = D.Zero; 903 *Remainder = D.Zero; 904 return; 905 } 906 907 // A simple case when N/1. The quotient is N. 908 if (Denominator->isOne()) { 909 *Quotient = Numerator; 910 *Remainder = D.Zero; 911 return; 912 } 913 914 // Split the Denominator when it is a product. 915 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 916 const SCEV *Q, *R; 917 *Quotient = Numerator; 918 for (const SCEV *Op : T->operands()) { 919 divide(SE, *Quotient, Op, &Q, &R); 920 *Quotient = Q; 921 922 // Bail out when the Numerator is not divisible by one of the terms of 923 // the Denominator. 924 if (!R->isZero()) { 925 *Quotient = D.Zero; 926 *Remainder = Numerator; 927 return; 928 } 929 } 930 *Remainder = D.Zero; 931 return; 932 } 933 934 D.visit(Numerator); 935 *Quotient = D.Quotient; 936 *Remainder = D.Remainder; 937 } 938 939 // Except in the trivial case described above, we do not know how to divide 940 // Expr by Denominator for the following functions with empty implementation. 941 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 942 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 943 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 944 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 945 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 946 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 947 void visitSMinExpr(const SCEVSMinExpr *Numerator) {} 948 void visitUMinExpr(const SCEVUMinExpr *Numerator) {} 949 void visitUnknown(const SCEVUnknown *Numerator) {} 950 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 951 952 void visitConstant(const SCEVConstant *Numerator) { 953 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 954 APInt NumeratorVal = Numerator->getAPInt(); 955 APInt DenominatorVal = D->getAPInt(); 956 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 957 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 958 959 if (NumeratorBW > DenominatorBW) 960 DenominatorVal = DenominatorVal.sext(NumeratorBW); 961 else if (NumeratorBW < DenominatorBW) 962 NumeratorVal = NumeratorVal.sext(DenominatorBW); 963 964 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 965 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 966 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 967 Quotient = SE.getConstant(QuotientVal); 968 Remainder = SE.getConstant(RemainderVal); 969 return; 970 } 971 } 972 973 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 974 const SCEV *StartQ, *StartR, *StepQ, *StepR; 975 if (!Numerator->isAffine()) 976 return cannotDivide(Numerator); 977 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 978 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 979 // Bail out if the types do not match. 980 Type *Ty = Denominator->getType(); 981 if (Ty != StartQ->getType() || Ty != StartR->getType() || 982 Ty != StepQ->getType() || Ty != StepR->getType()) 983 return cannotDivide(Numerator); 984 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 985 Numerator->getNoWrapFlags()); 986 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 987 Numerator->getNoWrapFlags()); 988 } 989 990 void visitAddExpr(const SCEVAddExpr *Numerator) { 991 SmallVector<const SCEV *, 2> Qs, Rs; 992 Type *Ty = Denominator->getType(); 993 994 for (const SCEV *Op : Numerator->operands()) { 995 const SCEV *Q, *R; 996 divide(SE, Op, Denominator, &Q, &R); 997 998 // Bail out if types do not match. 999 if (Ty != Q->getType() || Ty != R->getType()) 1000 return cannotDivide(Numerator); 1001 1002 Qs.push_back(Q); 1003 Rs.push_back(R); 1004 } 1005 1006 if (Qs.size() == 1) { 1007 Quotient = Qs[0]; 1008 Remainder = Rs[0]; 1009 return; 1010 } 1011 1012 Quotient = SE.getAddExpr(Qs); 1013 Remainder = SE.getAddExpr(Rs); 1014 } 1015 1016 void visitMulExpr(const SCEVMulExpr *Numerator) { 1017 SmallVector<const SCEV *, 2> Qs; 1018 Type *Ty = Denominator->getType(); 1019 1020 bool FoundDenominatorTerm = false; 1021 for (const SCEV *Op : Numerator->operands()) { 1022 // Bail out if types do not match. 1023 if (Ty != Op->getType()) 1024 return cannotDivide(Numerator); 1025 1026 if (FoundDenominatorTerm) { 1027 Qs.push_back(Op); 1028 continue; 1029 } 1030 1031 // Check whether Denominator divides one of the product operands. 1032 const SCEV *Q, *R; 1033 divide(SE, Op, Denominator, &Q, &R); 1034 if (!R->isZero()) { 1035 Qs.push_back(Op); 1036 continue; 1037 } 1038 1039 // Bail out if types do not match. 1040 if (Ty != Q->getType()) 1041 return cannotDivide(Numerator); 1042 1043 FoundDenominatorTerm = true; 1044 Qs.push_back(Q); 1045 } 1046 1047 if (FoundDenominatorTerm) { 1048 Remainder = Zero; 1049 if (Qs.size() == 1) 1050 Quotient = Qs[0]; 1051 else 1052 Quotient = SE.getMulExpr(Qs); 1053 return; 1054 } 1055 1056 if (!isa<SCEVUnknown>(Denominator)) 1057 return cannotDivide(Numerator); 1058 1059 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 1060 ValueToValueMap RewriteMap; 1061 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1062 cast<SCEVConstant>(Zero)->getValue(); 1063 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1064 1065 if (Remainder->isZero()) { 1066 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 1067 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 1068 cast<SCEVConstant>(One)->getValue(); 1069 Quotient = 1070 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 1071 return; 1072 } 1073 1074 // Quotient is (Numerator - Remainder) divided by Denominator. 1075 const SCEV *Q, *R; 1076 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 1077 // This SCEV does not seem to simplify: fail the division here. 1078 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 1079 return cannotDivide(Numerator); 1080 divide(SE, Diff, Denominator, &Q, &R); 1081 if (R != Zero) 1082 return cannotDivide(Numerator); 1083 Quotient = Q; 1084 } 1085 1086 private: 1087 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1088 const SCEV *Denominator) 1089 : SE(S), Denominator(Denominator) { 1090 Zero = SE.getZero(Denominator->getType()); 1091 One = SE.getOne(Denominator->getType()); 1092 1093 // We generally do not know how to divide Expr by Denominator. We 1094 // initialize the division to a "cannot divide" state to simplify the rest 1095 // of the code. 1096 cannotDivide(Numerator); 1097 } 1098 1099 // Convenience function for giving up on the division. We set the quotient to 1100 // be equal to zero and the remainder to be equal to the numerator. 1101 void cannotDivide(const SCEV *Numerator) { 1102 Quotient = Zero; 1103 Remainder = Numerator; 1104 } 1105 1106 ScalarEvolution &SE; 1107 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1108 }; 1109 1110 } // end anonymous namespace 1111 1112 //===----------------------------------------------------------------------===// 1113 // Simple SCEV method implementations 1114 //===----------------------------------------------------------------------===// 1115 1116 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1117 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1118 ScalarEvolution &SE, 1119 Type *ResultTy) { 1120 // Handle the simplest case efficiently. 1121 if (K == 1) 1122 return SE.getTruncateOrZeroExtend(It, ResultTy); 1123 1124 // We are using the following formula for BC(It, K): 1125 // 1126 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1127 // 1128 // Suppose, W is the bitwidth of the return value. We must be prepared for 1129 // overflow. Hence, we must assure that the result of our computation is 1130 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1131 // safe in modular arithmetic. 1132 // 1133 // However, this code doesn't use exactly that formula; the formula it uses 1134 // is something like the following, where T is the number of factors of 2 in 1135 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1136 // exponentiation: 1137 // 1138 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1139 // 1140 // This formula is trivially equivalent to the previous formula. However, 1141 // this formula can be implemented much more efficiently. The trick is that 1142 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1143 // arithmetic. To do exact division in modular arithmetic, all we have 1144 // to do is multiply by the inverse. Therefore, this step can be done at 1145 // width W. 1146 // 1147 // The next issue is how to safely do the division by 2^T. The way this 1148 // is done is by doing the multiplication step at a width of at least W + T 1149 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1150 // when we perform the division by 2^T (which is equivalent to a right shift 1151 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1152 // truncated out after the division by 2^T. 1153 // 1154 // In comparison to just directly using the first formula, this technique 1155 // is much more efficient; using the first formula requires W * K bits, 1156 // but this formula less than W + K bits. Also, the first formula requires 1157 // a division step, whereas this formula only requires multiplies and shifts. 1158 // 1159 // It doesn't matter whether the subtraction step is done in the calculation 1160 // width or the input iteration count's width; if the subtraction overflows, 1161 // the result must be zero anyway. We prefer here to do it in the width of 1162 // the induction variable because it helps a lot for certain cases; CodeGen 1163 // isn't smart enough to ignore the overflow, which leads to much less 1164 // efficient code if the width of the subtraction is wider than the native 1165 // register width. 1166 // 1167 // (It's possible to not widen at all by pulling out factors of 2 before 1168 // the multiplication; for example, K=2 can be calculated as 1169 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1170 // extra arithmetic, so it's not an obvious win, and it gets 1171 // much more complicated for K > 3.) 1172 1173 // Protection from insane SCEVs; this bound is conservative, 1174 // but it probably doesn't matter. 1175 if (K > 1000) 1176 return SE.getCouldNotCompute(); 1177 1178 unsigned W = SE.getTypeSizeInBits(ResultTy); 1179 1180 // Calculate K! / 2^T and T; we divide out the factors of two before 1181 // multiplying for calculating K! / 2^T to avoid overflow. 1182 // Other overflow doesn't matter because we only care about the bottom 1183 // W bits of the result. 1184 APInt OddFactorial(W, 1); 1185 unsigned T = 1; 1186 for (unsigned i = 3; i <= K; ++i) { 1187 APInt Mult(W, i); 1188 unsigned TwoFactors = Mult.countTrailingZeros(); 1189 T += TwoFactors; 1190 Mult.lshrInPlace(TwoFactors); 1191 OddFactorial *= Mult; 1192 } 1193 1194 // We need at least W + T bits for the multiplication step 1195 unsigned CalculationBits = W + T; 1196 1197 // Calculate 2^T, at width T+W. 1198 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1199 1200 // Calculate the multiplicative inverse of K! / 2^T; 1201 // this multiplication factor will perform the exact division by 1202 // K! / 2^T. 1203 APInt Mod = APInt::getSignedMinValue(W+1); 1204 APInt MultiplyFactor = OddFactorial.zext(W+1); 1205 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1206 MultiplyFactor = MultiplyFactor.trunc(W); 1207 1208 // Calculate the product, at width T+W 1209 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1210 CalculationBits); 1211 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1212 for (unsigned i = 1; i != K; ++i) { 1213 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1214 Dividend = SE.getMulExpr(Dividend, 1215 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1216 } 1217 1218 // Divide by 2^T 1219 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1220 1221 // Truncate the result, and divide by K! / 2^T. 1222 1223 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1224 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1225 } 1226 1227 /// Return the value of this chain of recurrences at the specified iteration 1228 /// number. We can evaluate this recurrence by multiplying each element in the 1229 /// chain by the binomial coefficient corresponding to it. In other words, we 1230 /// can evaluate {A,+,B,+,C,+,D} as: 1231 /// 1232 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1233 /// 1234 /// where BC(It, k) stands for binomial coefficient. 1235 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1236 ScalarEvolution &SE) const { 1237 const SCEV *Result = getStart(); 1238 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1239 // The computation is correct in the face of overflow provided that the 1240 // multiplication is performed _after_ the evaluation of the binomial 1241 // coefficient. 1242 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1243 if (isa<SCEVCouldNotCompute>(Coeff)) 1244 return Coeff; 1245 1246 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1247 } 1248 return Result; 1249 } 1250 1251 //===----------------------------------------------------------------------===// 1252 // SCEV Expression folder implementations 1253 //===----------------------------------------------------------------------===// 1254 1255 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1256 unsigned Depth) { 1257 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1258 "This is not a truncating conversion!"); 1259 assert(isSCEVable(Ty) && 1260 "This is not a conversion to a SCEVable type!"); 1261 Ty = getEffectiveSCEVType(Ty); 1262 1263 FoldingSetNodeID ID; 1264 ID.AddInteger(scTruncate); 1265 ID.AddPointer(Op); 1266 ID.AddPointer(Ty); 1267 void *IP = nullptr; 1268 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1269 1270 // Fold if the operand is constant. 1271 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1272 return getConstant( 1273 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1274 1275 // trunc(trunc(x)) --> trunc(x) 1276 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1277 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1278 1279 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1280 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1281 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1282 1283 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1284 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1285 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1286 1287 if (Depth > MaxCastDepth) { 1288 SCEV *S = 1289 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1290 UniqueSCEVs.InsertNode(S, IP); 1291 addToLoopUseLists(S); 1292 return S; 1293 } 1294 1295 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1296 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1297 // if after transforming we have at most one truncate, not counting truncates 1298 // that replace other casts. 1299 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1300 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1301 SmallVector<const SCEV *, 4> Operands; 1302 unsigned numTruncs = 0; 1303 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1304 ++i) { 1305 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1306 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1307 numTruncs++; 1308 Operands.push_back(S); 1309 } 1310 if (numTruncs < 2) { 1311 if (isa<SCEVAddExpr>(Op)) 1312 return getAddExpr(Operands); 1313 else if (isa<SCEVMulExpr>(Op)) 1314 return getMulExpr(Operands); 1315 else 1316 llvm_unreachable("Unexpected SCEV type for Op."); 1317 } 1318 // Although we checked in the beginning that ID is not in the cache, it is 1319 // possible that during recursion and different modification ID was inserted 1320 // into the cache. So if we find it, just return it. 1321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1322 return S; 1323 } 1324 1325 // If the input value is a chrec scev, truncate the chrec's operands. 1326 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1327 SmallVector<const SCEV *, 4> Operands; 1328 for (const SCEV *Op : AddRec->operands()) 1329 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1330 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1331 } 1332 1333 // The cast wasn't folded; create an explicit cast node. We can reuse 1334 // the existing insert position since if we get here, we won't have 1335 // made any changes which would invalidate it. 1336 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1337 Op, Ty); 1338 UniqueSCEVs.InsertNode(S, IP); 1339 addToLoopUseLists(S); 1340 return S; 1341 } 1342 1343 // Get the limit of a recurrence such that incrementing by Step cannot cause 1344 // signed overflow as long as the value of the recurrence within the 1345 // loop does not exceed this limit before incrementing. 1346 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1347 ICmpInst::Predicate *Pred, 1348 ScalarEvolution *SE) { 1349 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1350 if (SE->isKnownPositive(Step)) { 1351 *Pred = ICmpInst::ICMP_SLT; 1352 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1353 SE->getSignedRangeMax(Step)); 1354 } 1355 if (SE->isKnownNegative(Step)) { 1356 *Pred = ICmpInst::ICMP_SGT; 1357 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1358 SE->getSignedRangeMin(Step)); 1359 } 1360 return nullptr; 1361 } 1362 1363 // Get the limit of a recurrence such that incrementing by Step cannot cause 1364 // unsigned overflow as long as the value of the recurrence within the loop does 1365 // not exceed this limit before incrementing. 1366 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1367 ICmpInst::Predicate *Pred, 1368 ScalarEvolution *SE) { 1369 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1370 *Pred = ICmpInst::ICMP_ULT; 1371 1372 return SE->getConstant(APInt::getMinValue(BitWidth) - 1373 SE->getUnsignedRangeMax(Step)); 1374 } 1375 1376 namespace { 1377 1378 struct ExtendOpTraitsBase { 1379 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1380 unsigned); 1381 }; 1382 1383 // Used to make code generic over signed and unsigned overflow. 1384 template <typename ExtendOp> struct ExtendOpTraits { 1385 // Members present: 1386 // 1387 // static const SCEV::NoWrapFlags WrapType; 1388 // 1389 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1390 // 1391 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1392 // ICmpInst::Predicate *Pred, 1393 // ScalarEvolution *SE); 1394 }; 1395 1396 template <> 1397 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1398 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1399 1400 static const GetExtendExprTy GetExtendExpr; 1401 1402 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1403 ICmpInst::Predicate *Pred, 1404 ScalarEvolution *SE) { 1405 return getSignedOverflowLimitForStep(Step, Pred, SE); 1406 } 1407 }; 1408 1409 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1410 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1411 1412 template <> 1413 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1414 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1415 1416 static const GetExtendExprTy GetExtendExpr; 1417 1418 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1419 ICmpInst::Predicate *Pred, 1420 ScalarEvolution *SE) { 1421 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1422 } 1423 }; 1424 1425 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1426 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1427 1428 } // end anonymous namespace 1429 1430 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1431 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1432 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1433 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1434 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1435 // expression "Step + sext/zext(PreIncAR)" is congruent with 1436 // "sext/zext(PostIncAR)" 1437 template <typename ExtendOpTy> 1438 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1439 ScalarEvolution *SE, unsigned Depth) { 1440 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1441 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1442 1443 const Loop *L = AR->getLoop(); 1444 const SCEV *Start = AR->getStart(); 1445 const SCEV *Step = AR->getStepRecurrence(*SE); 1446 1447 // Check for a simple looking step prior to loop entry. 1448 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1449 if (!SA) 1450 return nullptr; 1451 1452 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1453 // subtraction is expensive. For this purpose, perform a quick and dirty 1454 // difference, by checking for Step in the operand list. 1455 SmallVector<const SCEV *, 4> DiffOps; 1456 for (const SCEV *Op : SA->operands()) 1457 if (Op != Step) 1458 DiffOps.push_back(Op); 1459 1460 if (DiffOps.size() == SA->getNumOperands()) 1461 return nullptr; 1462 1463 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1464 // `Step`: 1465 1466 // 1. NSW/NUW flags on the step increment. 1467 auto PreStartFlags = 1468 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1469 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1470 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1471 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1472 1473 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1474 // "S+X does not sign/unsign-overflow". 1475 // 1476 1477 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1478 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1479 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1480 return PreStart; 1481 1482 // 2. Direct overflow check on the step operation's expression. 1483 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1484 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1485 const SCEV *OperandExtendedStart = 1486 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1487 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1488 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1489 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1490 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1491 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1492 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1493 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1494 } 1495 return PreStart; 1496 } 1497 1498 // 3. Loop precondition. 1499 ICmpInst::Predicate Pred; 1500 const SCEV *OverflowLimit = 1501 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1502 1503 if (OverflowLimit && 1504 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1505 return PreStart; 1506 1507 return nullptr; 1508 } 1509 1510 // Get the normalized zero or sign extended expression for this AddRec's Start. 1511 template <typename ExtendOpTy> 1512 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1513 ScalarEvolution *SE, 1514 unsigned Depth) { 1515 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1516 1517 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1518 if (!PreStart) 1519 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1520 1521 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1522 Depth), 1523 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1524 } 1525 1526 // Try to prove away overflow by looking at "nearby" add recurrences. A 1527 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1528 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1529 // 1530 // Formally: 1531 // 1532 // {S,+,X} == {S-T,+,X} + T 1533 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1534 // 1535 // If ({S-T,+,X} + T) does not overflow ... (1) 1536 // 1537 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1538 // 1539 // If {S-T,+,X} does not overflow ... (2) 1540 // 1541 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1542 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1543 // 1544 // If (S-T)+T does not overflow ... (3) 1545 // 1546 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1547 // == {Ext(S),+,Ext(X)} == LHS 1548 // 1549 // Thus, if (1), (2) and (3) are true for some T, then 1550 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1551 // 1552 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1553 // does not overflow" restricted to the 0th iteration. Therefore we only need 1554 // to check for (1) and (2). 1555 // 1556 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1557 // is `Delta` (defined below). 1558 template <typename ExtendOpTy> 1559 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1560 const SCEV *Step, 1561 const Loop *L) { 1562 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1563 1564 // We restrict `Start` to a constant to prevent SCEV from spending too much 1565 // time here. It is correct (but more expensive) to continue with a 1566 // non-constant `Start` and do a general SCEV subtraction to compute 1567 // `PreStart` below. 1568 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1569 if (!StartC) 1570 return false; 1571 1572 APInt StartAI = StartC->getAPInt(); 1573 1574 for (unsigned Delta : {-2, -1, 1, 2}) { 1575 const SCEV *PreStart = getConstant(StartAI - Delta); 1576 1577 FoldingSetNodeID ID; 1578 ID.AddInteger(scAddRecExpr); 1579 ID.AddPointer(PreStart); 1580 ID.AddPointer(Step); 1581 ID.AddPointer(L); 1582 void *IP = nullptr; 1583 const auto *PreAR = 1584 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1585 1586 // Give up if we don't already have the add recurrence we need because 1587 // actually constructing an add recurrence is relatively expensive. 1588 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1589 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1590 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1591 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1592 DeltaS, &Pred, this); 1593 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1594 return true; 1595 } 1596 } 1597 1598 return false; 1599 } 1600 1601 // Finds an integer D for an expression (C + x + y + ...) such that the top 1602 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1603 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1604 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1605 // the (C + x + y + ...) expression is \p WholeAddExpr. 1606 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1607 const SCEVConstant *ConstantTerm, 1608 const SCEVAddExpr *WholeAddExpr) { 1609 const APInt C = ConstantTerm->getAPInt(); 1610 const unsigned BitWidth = C.getBitWidth(); 1611 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1612 uint32_t TZ = BitWidth; 1613 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1614 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1615 if (TZ) { 1616 // Set D to be as many least significant bits of C as possible while still 1617 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1618 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1619 } 1620 return APInt(BitWidth, 0); 1621 } 1622 1623 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1624 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1625 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1626 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1627 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1628 const APInt &ConstantStart, 1629 const SCEV *Step) { 1630 const unsigned BitWidth = ConstantStart.getBitWidth(); 1631 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1632 if (TZ) 1633 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1634 : ConstantStart; 1635 return APInt(BitWidth, 0); 1636 } 1637 1638 const SCEV * 1639 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1640 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1641 "This is not an extending conversion!"); 1642 assert(isSCEVable(Ty) && 1643 "This is not a conversion to a SCEVable type!"); 1644 Ty = getEffectiveSCEVType(Ty); 1645 1646 // Fold if the operand is constant. 1647 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1648 return getConstant( 1649 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1650 1651 // zext(zext(x)) --> zext(x) 1652 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1653 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1654 1655 // Before doing any expensive analysis, check to see if we've already 1656 // computed a SCEV for this Op and Ty. 1657 FoldingSetNodeID ID; 1658 ID.AddInteger(scZeroExtend); 1659 ID.AddPointer(Op); 1660 ID.AddPointer(Ty); 1661 void *IP = nullptr; 1662 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1663 if (Depth > MaxCastDepth) { 1664 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1665 Op, Ty); 1666 UniqueSCEVs.InsertNode(S, IP); 1667 addToLoopUseLists(S); 1668 return S; 1669 } 1670 1671 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1672 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1673 // It's possible the bits taken off by the truncate were all zero bits. If 1674 // so, we should be able to simplify this further. 1675 const SCEV *X = ST->getOperand(); 1676 ConstantRange CR = getUnsignedRange(X); 1677 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1678 unsigned NewBits = getTypeSizeInBits(Ty); 1679 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1680 CR.zextOrTrunc(NewBits))) 1681 return getTruncateOrZeroExtend(X, Ty, Depth); 1682 } 1683 1684 // If the input value is a chrec scev, and we can prove that the value 1685 // did not overflow the old, smaller, value, we can zero extend all of the 1686 // operands (often constants). This allows analysis of something like 1687 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1688 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1689 if (AR->isAffine()) { 1690 const SCEV *Start = AR->getStart(); 1691 const SCEV *Step = AR->getStepRecurrence(*this); 1692 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1693 const Loop *L = AR->getLoop(); 1694 1695 if (!AR->hasNoUnsignedWrap()) { 1696 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1697 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1698 } 1699 1700 // If we have special knowledge that this addrec won't overflow, 1701 // we don't need to do any further analysis. 1702 if (AR->hasNoUnsignedWrap()) 1703 return getAddRecExpr( 1704 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1705 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1706 1707 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1708 // Note that this serves two purposes: It filters out loops that are 1709 // simply not analyzable, and it covers the case where this code is 1710 // being called from within backedge-taken count analysis, such that 1711 // attempting to ask for the backedge-taken count would likely result 1712 // in infinite recursion. In the later case, the analysis code will 1713 // cope with a conservative value, and it will take care to purge 1714 // that value once it has finished. 1715 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1716 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1717 // Manually compute the final value for AR, checking for 1718 // overflow. 1719 1720 // Check whether the backedge-taken count can be losslessly casted to 1721 // the addrec's type. The count is always unsigned. 1722 const SCEV *CastedMaxBECount = 1723 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1724 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1725 CastedMaxBECount, MaxBECount->getType(), Depth); 1726 if (MaxBECount == RecastedMaxBECount) { 1727 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1728 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1729 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1730 SCEV::FlagAnyWrap, Depth + 1); 1731 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1732 SCEV::FlagAnyWrap, 1733 Depth + 1), 1734 WideTy, Depth + 1); 1735 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1736 const SCEV *WideMaxBECount = 1737 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1738 const SCEV *OperandExtendedAdd = 1739 getAddExpr(WideStart, 1740 getMulExpr(WideMaxBECount, 1741 getZeroExtendExpr(Step, WideTy, Depth + 1), 1742 SCEV::FlagAnyWrap, Depth + 1), 1743 SCEV::FlagAnyWrap, Depth + 1); 1744 if (ZAdd == OperandExtendedAdd) { 1745 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1746 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1747 // Return the expression with the addrec on the outside. 1748 return getAddRecExpr( 1749 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1750 Depth + 1), 1751 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1752 AR->getNoWrapFlags()); 1753 } 1754 // Similar to above, only this time treat the step value as signed. 1755 // This covers loops that count down. 1756 OperandExtendedAdd = 1757 getAddExpr(WideStart, 1758 getMulExpr(WideMaxBECount, 1759 getSignExtendExpr(Step, WideTy, Depth + 1), 1760 SCEV::FlagAnyWrap, Depth + 1), 1761 SCEV::FlagAnyWrap, Depth + 1); 1762 if (ZAdd == OperandExtendedAdd) { 1763 // Cache knowledge of AR NW, which is propagated to this AddRec. 1764 // Negative step causes unsigned wrap, but it still can't self-wrap. 1765 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1766 // Return the expression with the addrec on the outside. 1767 return getAddRecExpr( 1768 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1769 Depth + 1), 1770 getSignExtendExpr(Step, Ty, Depth + 1), L, 1771 AR->getNoWrapFlags()); 1772 } 1773 } 1774 } 1775 1776 // Normally, in the cases we can prove no-overflow via a 1777 // backedge guarding condition, we can also compute a backedge 1778 // taken count for the loop. The exceptions are assumptions and 1779 // guards present in the loop -- SCEV is not great at exploiting 1780 // these to compute max backedge taken counts, but can still use 1781 // these to prove lack of overflow. Use this fact to avoid 1782 // doing extra work that may not pay off. 1783 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1784 !AC.assumptions().empty()) { 1785 // If the backedge is guarded by a comparison with the pre-inc 1786 // value the addrec is safe. Also, if the entry is guarded by 1787 // a comparison with the start value and the backedge is 1788 // guarded by a comparison with the post-inc value, the addrec 1789 // is safe. 1790 if (isKnownPositive(Step)) { 1791 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1792 getUnsignedRangeMax(Step)); 1793 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1794 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1795 // Cache knowledge of AR NUW, which is propagated to this 1796 // AddRec. 1797 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1798 // Return the expression with the addrec on the outside. 1799 return getAddRecExpr( 1800 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1801 Depth + 1), 1802 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1803 AR->getNoWrapFlags()); 1804 } 1805 } else if (isKnownNegative(Step)) { 1806 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1807 getSignedRangeMin(Step)); 1808 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1809 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1810 // Cache knowledge of AR NW, which is propagated to this 1811 // AddRec. Negative step causes unsigned wrap, but it 1812 // still can't self-wrap. 1813 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1814 // Return the expression with the addrec on the outside. 1815 return getAddRecExpr( 1816 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1817 Depth + 1), 1818 getSignExtendExpr(Step, Ty, Depth + 1), L, 1819 AR->getNoWrapFlags()); 1820 } 1821 } 1822 } 1823 1824 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1825 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1826 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1827 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1828 const APInt &C = SC->getAPInt(); 1829 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1830 if (D != 0) { 1831 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1832 const SCEV *SResidual = 1833 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1834 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1835 return getAddExpr(SZExtD, SZExtR, 1836 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1837 Depth + 1); 1838 } 1839 } 1840 1841 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1842 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1843 return getAddRecExpr( 1844 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1845 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1846 } 1847 } 1848 1849 // zext(A % B) --> zext(A) % zext(B) 1850 { 1851 const SCEV *LHS; 1852 const SCEV *RHS; 1853 if (matchURem(Op, LHS, RHS)) 1854 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1855 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1856 } 1857 1858 // zext(A / B) --> zext(A) / zext(B). 1859 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1860 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1861 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1862 1863 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1864 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1865 if (SA->hasNoUnsignedWrap()) { 1866 // If the addition does not unsign overflow then we can, by definition, 1867 // commute the zero extension with the addition operation. 1868 SmallVector<const SCEV *, 4> Ops; 1869 for (const auto *Op : SA->operands()) 1870 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1871 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1872 } 1873 1874 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1875 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1876 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1877 // 1878 // Often address arithmetics contain expressions like 1879 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1880 // This transformation is useful while proving that such expressions are 1881 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1882 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1883 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1884 if (D != 0) { 1885 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1886 const SCEV *SResidual = 1887 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1888 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1889 return getAddExpr(SZExtD, SZExtR, 1890 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1891 Depth + 1); 1892 } 1893 } 1894 } 1895 1896 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1897 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1898 if (SM->hasNoUnsignedWrap()) { 1899 // If the multiply does not unsign overflow then we can, by definition, 1900 // commute the zero extension with the multiply operation. 1901 SmallVector<const SCEV *, 4> Ops; 1902 for (const auto *Op : SM->operands()) 1903 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1904 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1905 } 1906 1907 // zext(2^K * (trunc X to iN)) to iM -> 1908 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1909 // 1910 // Proof: 1911 // 1912 // zext(2^K * (trunc X to iN)) to iM 1913 // = zext((trunc X to iN) << K) to iM 1914 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1915 // (because shl removes the top K bits) 1916 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1917 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1918 // 1919 if (SM->getNumOperands() == 2) 1920 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1921 if (MulLHS->getAPInt().isPowerOf2()) 1922 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1923 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1924 MulLHS->getAPInt().logBase2(); 1925 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1926 return getMulExpr( 1927 getZeroExtendExpr(MulLHS, Ty), 1928 getZeroExtendExpr( 1929 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1930 SCEV::FlagNUW, Depth + 1); 1931 } 1932 } 1933 1934 // The cast wasn't folded; create an explicit cast node. 1935 // Recompute the insert position, as it may have been invalidated. 1936 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1937 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1938 Op, Ty); 1939 UniqueSCEVs.InsertNode(S, IP); 1940 addToLoopUseLists(S); 1941 return S; 1942 } 1943 1944 const SCEV * 1945 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1946 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1947 "This is not an extending conversion!"); 1948 assert(isSCEVable(Ty) && 1949 "This is not a conversion to a SCEVable type!"); 1950 Ty = getEffectiveSCEVType(Ty); 1951 1952 // Fold if the operand is constant. 1953 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1954 return getConstant( 1955 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1956 1957 // sext(sext(x)) --> sext(x) 1958 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1959 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1960 1961 // sext(zext(x)) --> zext(x) 1962 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1963 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1964 1965 // Before doing any expensive analysis, check to see if we've already 1966 // computed a SCEV for this Op and Ty. 1967 FoldingSetNodeID ID; 1968 ID.AddInteger(scSignExtend); 1969 ID.AddPointer(Op); 1970 ID.AddPointer(Ty); 1971 void *IP = nullptr; 1972 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1973 // Limit recursion depth. 1974 if (Depth > MaxCastDepth) { 1975 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1976 Op, Ty); 1977 UniqueSCEVs.InsertNode(S, IP); 1978 addToLoopUseLists(S); 1979 return S; 1980 } 1981 1982 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1983 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1984 // It's possible the bits taken off by the truncate were all sign bits. If 1985 // so, we should be able to simplify this further. 1986 const SCEV *X = ST->getOperand(); 1987 ConstantRange CR = getSignedRange(X); 1988 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1989 unsigned NewBits = getTypeSizeInBits(Ty); 1990 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1991 CR.sextOrTrunc(NewBits))) 1992 return getTruncateOrSignExtend(X, Ty, Depth); 1993 } 1994 1995 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1996 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1997 if (SA->hasNoSignedWrap()) { 1998 // If the addition does not sign overflow then we can, by definition, 1999 // commute the sign extension with the addition operation. 2000 SmallVector<const SCEV *, 4> Ops; 2001 for (const auto *Op : SA->operands()) 2002 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 2003 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 2004 } 2005 2006 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 2007 // if D + (C - D + x + y + ...) could be proven to not signed wrap 2008 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 2009 // 2010 // For instance, this will bring two seemingly different expressions: 2011 // 1 + sext(5 + 20 * %x + 24 * %y) and 2012 // sext(6 + 20 * %x + 24 * %y) 2013 // to the same form: 2014 // 2 + sext(4 + 20 * %x + 24 * %y) 2015 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 2016 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 2017 if (D != 0) { 2018 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2019 const SCEV *SResidual = 2020 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 2021 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2022 return getAddExpr(SSExtD, SSExtR, 2023 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2024 Depth + 1); 2025 } 2026 } 2027 } 2028 // If the input value is a chrec scev, and we can prove that the value 2029 // did not overflow the old, smaller, value, we can sign extend all of the 2030 // operands (often constants). This allows analysis of something like 2031 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 2032 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 2033 if (AR->isAffine()) { 2034 const SCEV *Start = AR->getStart(); 2035 const SCEV *Step = AR->getStepRecurrence(*this); 2036 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 2037 const Loop *L = AR->getLoop(); 2038 2039 if (!AR->hasNoSignedWrap()) { 2040 auto NewFlags = proveNoWrapViaConstantRanges(AR); 2041 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 2042 } 2043 2044 // If we have special knowledge that this addrec won't overflow, 2045 // we don't need to do any further analysis. 2046 if (AR->hasNoSignedWrap()) 2047 return getAddRecExpr( 2048 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2049 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2050 2051 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2052 // Note that this serves two purposes: It filters out loops that are 2053 // simply not analyzable, and it covers the case where this code is 2054 // being called from within backedge-taken count analysis, such that 2055 // attempting to ask for the backedge-taken count would likely result 2056 // in infinite recursion. In the later case, the analysis code will 2057 // cope with a conservative value, and it will take care to purge 2058 // that value once it has finished. 2059 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2060 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2061 // Manually compute the final value for AR, checking for 2062 // overflow. 2063 2064 // Check whether the backedge-taken count can be losslessly casted to 2065 // the addrec's type. The count is always unsigned. 2066 const SCEV *CastedMaxBECount = 2067 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2068 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2069 CastedMaxBECount, MaxBECount->getType(), Depth); 2070 if (MaxBECount == RecastedMaxBECount) { 2071 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2072 // Check whether Start+Step*MaxBECount has no signed overflow. 2073 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2074 SCEV::FlagAnyWrap, Depth + 1); 2075 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2076 SCEV::FlagAnyWrap, 2077 Depth + 1), 2078 WideTy, Depth + 1); 2079 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2080 const SCEV *WideMaxBECount = 2081 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2082 const SCEV *OperandExtendedAdd = 2083 getAddExpr(WideStart, 2084 getMulExpr(WideMaxBECount, 2085 getSignExtendExpr(Step, WideTy, Depth + 1), 2086 SCEV::FlagAnyWrap, Depth + 1), 2087 SCEV::FlagAnyWrap, Depth + 1); 2088 if (SAdd == OperandExtendedAdd) { 2089 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2090 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2091 // Return the expression with the addrec on the outside. 2092 return getAddRecExpr( 2093 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2094 Depth + 1), 2095 getSignExtendExpr(Step, Ty, Depth + 1), L, 2096 AR->getNoWrapFlags()); 2097 } 2098 // Similar to above, only this time treat the step value as unsigned. 2099 // This covers loops that count up with an unsigned step. 2100 OperandExtendedAdd = 2101 getAddExpr(WideStart, 2102 getMulExpr(WideMaxBECount, 2103 getZeroExtendExpr(Step, WideTy, Depth + 1), 2104 SCEV::FlagAnyWrap, Depth + 1), 2105 SCEV::FlagAnyWrap, Depth + 1); 2106 if (SAdd == OperandExtendedAdd) { 2107 // If AR wraps around then 2108 // 2109 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2110 // => SAdd != OperandExtendedAdd 2111 // 2112 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2113 // (SAdd == OperandExtendedAdd => AR is NW) 2114 2115 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 2116 2117 // Return the expression with the addrec on the outside. 2118 return getAddRecExpr( 2119 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2120 Depth + 1), 2121 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2122 AR->getNoWrapFlags()); 2123 } 2124 } 2125 } 2126 2127 // Normally, in the cases we can prove no-overflow via a 2128 // backedge guarding condition, we can also compute a backedge 2129 // taken count for the loop. The exceptions are assumptions and 2130 // guards present in the loop -- SCEV is not great at exploiting 2131 // these to compute max backedge taken counts, but can still use 2132 // these to prove lack of overflow. Use this fact to avoid 2133 // doing extra work that may not pay off. 2134 2135 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 2136 !AC.assumptions().empty()) { 2137 // If the backedge is guarded by a comparison with the pre-inc 2138 // value the addrec is safe. Also, if the entry is guarded by 2139 // a comparison with the start value and the backedge is 2140 // guarded by a comparison with the post-inc value, the addrec 2141 // is safe. 2142 ICmpInst::Predicate Pred; 2143 const SCEV *OverflowLimit = 2144 getSignedOverflowLimitForStep(Step, &Pred, this); 2145 if (OverflowLimit && 2146 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 2147 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 2148 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 2149 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2150 return getAddRecExpr( 2151 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2152 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2153 } 2154 } 2155 2156 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2157 // if D + (C - D + Step * n) could be proven to not signed wrap 2158 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2159 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2160 const APInt &C = SC->getAPInt(); 2161 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2162 if (D != 0) { 2163 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2164 const SCEV *SResidual = 2165 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2166 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2167 return getAddExpr(SSExtD, SSExtR, 2168 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2169 Depth + 1); 2170 } 2171 } 2172 2173 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2174 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 2175 return getAddRecExpr( 2176 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2177 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2178 } 2179 } 2180 2181 // If the input value is provably positive and we could not simplify 2182 // away the sext build a zext instead. 2183 if (isKnownNonNegative(Op)) 2184 return getZeroExtendExpr(Op, Ty, Depth + 1); 2185 2186 // The cast wasn't folded; create an explicit cast node. 2187 // Recompute the insert position, as it may have been invalidated. 2188 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2189 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2190 Op, Ty); 2191 UniqueSCEVs.InsertNode(S, IP); 2192 addToLoopUseLists(S); 2193 return S; 2194 } 2195 2196 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2197 /// unspecified bits out to the given type. 2198 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2199 Type *Ty) { 2200 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2201 "This is not an extending conversion!"); 2202 assert(isSCEVable(Ty) && 2203 "This is not a conversion to a SCEVable type!"); 2204 Ty = getEffectiveSCEVType(Ty); 2205 2206 // Sign-extend negative constants. 2207 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2208 if (SC->getAPInt().isNegative()) 2209 return getSignExtendExpr(Op, Ty); 2210 2211 // Peel off a truncate cast. 2212 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2213 const SCEV *NewOp = T->getOperand(); 2214 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2215 return getAnyExtendExpr(NewOp, Ty); 2216 return getTruncateOrNoop(NewOp, Ty); 2217 } 2218 2219 // Next try a zext cast. If the cast is folded, use it. 2220 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2221 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2222 return ZExt; 2223 2224 // Next try a sext cast. If the cast is folded, use it. 2225 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2226 if (!isa<SCEVSignExtendExpr>(SExt)) 2227 return SExt; 2228 2229 // Force the cast to be folded into the operands of an addrec. 2230 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2231 SmallVector<const SCEV *, 4> Ops; 2232 for (const SCEV *Op : AR->operands()) 2233 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2234 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2235 } 2236 2237 // If the expression is obviously signed, use the sext cast value. 2238 if (isa<SCEVSMaxExpr>(Op)) 2239 return SExt; 2240 2241 // Absent any other information, use the zext cast value. 2242 return ZExt; 2243 } 2244 2245 /// Process the given Ops list, which is a list of operands to be added under 2246 /// the given scale, update the given map. This is a helper function for 2247 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2248 /// that would form an add expression like this: 2249 /// 2250 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2251 /// 2252 /// where A and B are constants, update the map with these values: 2253 /// 2254 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2255 /// 2256 /// and add 13 + A*B*29 to AccumulatedConstant. 2257 /// This will allow getAddRecExpr to produce this: 2258 /// 2259 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2260 /// 2261 /// This form often exposes folding opportunities that are hidden in 2262 /// the original operand list. 2263 /// 2264 /// Return true iff it appears that any interesting folding opportunities 2265 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2266 /// the common case where no interesting opportunities are present, and 2267 /// is also used as a check to avoid infinite recursion. 2268 static bool 2269 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2270 SmallVectorImpl<const SCEV *> &NewOps, 2271 APInt &AccumulatedConstant, 2272 const SCEV *const *Ops, size_t NumOperands, 2273 const APInt &Scale, 2274 ScalarEvolution &SE) { 2275 bool Interesting = false; 2276 2277 // Iterate over the add operands. They are sorted, with constants first. 2278 unsigned i = 0; 2279 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2280 ++i; 2281 // Pull a buried constant out to the outside. 2282 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2283 Interesting = true; 2284 AccumulatedConstant += Scale * C->getAPInt(); 2285 } 2286 2287 // Next comes everything else. We're especially interested in multiplies 2288 // here, but they're in the middle, so just visit the rest with one loop. 2289 for (; i != NumOperands; ++i) { 2290 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2291 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2292 APInt NewScale = 2293 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2294 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2295 // A multiplication of a constant with another add; recurse. 2296 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2297 Interesting |= 2298 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2299 Add->op_begin(), Add->getNumOperands(), 2300 NewScale, SE); 2301 } else { 2302 // A multiplication of a constant with some other value. Update 2303 // the map. 2304 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2305 const SCEV *Key = SE.getMulExpr(MulOps); 2306 auto Pair = M.insert({Key, NewScale}); 2307 if (Pair.second) { 2308 NewOps.push_back(Pair.first->first); 2309 } else { 2310 Pair.first->second += NewScale; 2311 // The map already had an entry for this value, which may indicate 2312 // a folding opportunity. 2313 Interesting = true; 2314 } 2315 } 2316 } else { 2317 // An ordinary operand. Update the map. 2318 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2319 M.insert({Ops[i], Scale}); 2320 if (Pair.second) { 2321 NewOps.push_back(Pair.first->first); 2322 } else { 2323 Pair.first->second += Scale; 2324 // The map already had an entry for this value, which may indicate 2325 // a folding opportunity. 2326 Interesting = true; 2327 } 2328 } 2329 } 2330 2331 return Interesting; 2332 } 2333 2334 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2335 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2336 // can't-overflow flags for the operation if possible. 2337 static SCEV::NoWrapFlags 2338 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2339 const ArrayRef<const SCEV *> Ops, 2340 SCEV::NoWrapFlags Flags) { 2341 using namespace std::placeholders; 2342 2343 using OBO = OverflowingBinaryOperator; 2344 2345 bool CanAnalyze = 2346 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2347 (void)CanAnalyze; 2348 assert(CanAnalyze && "don't call from other places!"); 2349 2350 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2351 SCEV::NoWrapFlags SignOrUnsignWrap = 2352 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2353 2354 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2355 auto IsKnownNonNegative = [&](const SCEV *S) { 2356 return SE->isKnownNonNegative(S); 2357 }; 2358 2359 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2360 Flags = 2361 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2362 2363 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2364 2365 if (SignOrUnsignWrap != SignOrUnsignMask && 2366 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2367 isa<SCEVConstant>(Ops[0])) { 2368 2369 auto Opcode = [&] { 2370 switch (Type) { 2371 case scAddExpr: 2372 return Instruction::Add; 2373 case scMulExpr: 2374 return Instruction::Mul; 2375 default: 2376 llvm_unreachable("Unexpected SCEV op."); 2377 } 2378 }(); 2379 2380 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2381 2382 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2383 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2384 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2385 Opcode, C, OBO::NoSignedWrap); 2386 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2387 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2388 } 2389 2390 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2391 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2392 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2393 Opcode, C, OBO::NoUnsignedWrap); 2394 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2395 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2396 } 2397 } 2398 2399 return Flags; 2400 } 2401 2402 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2403 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2404 } 2405 2406 /// Get a canonical add expression, or something simpler if possible. 2407 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2408 SCEV::NoWrapFlags Flags, 2409 unsigned Depth) { 2410 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2411 "only nuw or nsw allowed"); 2412 assert(!Ops.empty() && "Cannot get empty add!"); 2413 if (Ops.size() == 1) return Ops[0]; 2414 #ifndef NDEBUG 2415 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2416 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2417 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2418 "SCEVAddExpr operand types don't match!"); 2419 #endif 2420 2421 // Sort by complexity, this groups all similar expression types together. 2422 GroupByComplexity(Ops, &LI, DT); 2423 2424 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2425 2426 // If there are any constants, fold them together. 2427 unsigned Idx = 0; 2428 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2429 ++Idx; 2430 assert(Idx < Ops.size()); 2431 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2432 // We found two constants, fold them together! 2433 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2434 if (Ops.size() == 2) return Ops[0]; 2435 Ops.erase(Ops.begin()+1); // Erase the folded element 2436 LHSC = cast<SCEVConstant>(Ops[0]); 2437 } 2438 2439 // If we are left with a constant zero being added, strip it off. 2440 if (LHSC->getValue()->isZero()) { 2441 Ops.erase(Ops.begin()); 2442 --Idx; 2443 } 2444 2445 if (Ops.size() == 1) return Ops[0]; 2446 } 2447 2448 // Limit recursion calls depth. 2449 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2450 return getOrCreateAddExpr(Ops, Flags); 2451 2452 // Okay, check to see if the same value occurs in the operand list more than 2453 // once. If so, merge them together into an multiply expression. Since we 2454 // sorted the list, these values are required to be adjacent. 2455 Type *Ty = Ops[0]->getType(); 2456 bool FoundMatch = false; 2457 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2458 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2459 // Scan ahead to count how many equal operands there are. 2460 unsigned Count = 2; 2461 while (i+Count != e && Ops[i+Count] == Ops[i]) 2462 ++Count; 2463 // Merge the values into a multiply. 2464 const SCEV *Scale = getConstant(Ty, Count); 2465 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2466 if (Ops.size() == Count) 2467 return Mul; 2468 Ops[i] = Mul; 2469 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2470 --i; e -= Count - 1; 2471 FoundMatch = true; 2472 } 2473 if (FoundMatch) 2474 return getAddExpr(Ops, Flags, Depth + 1); 2475 2476 // Check for truncates. If all the operands are truncated from the same 2477 // type, see if factoring out the truncate would permit the result to be 2478 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2479 // if the contents of the resulting outer trunc fold to something simple. 2480 auto FindTruncSrcType = [&]() -> Type * { 2481 // We're ultimately looking to fold an addrec of truncs and muls of only 2482 // constants and truncs, so if we find any other types of SCEV 2483 // as operands of the addrec then we bail and return nullptr here. 2484 // Otherwise, we return the type of the operand of a trunc that we find. 2485 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2486 return T->getOperand()->getType(); 2487 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2488 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2489 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2490 return T->getOperand()->getType(); 2491 } 2492 return nullptr; 2493 }; 2494 if (auto *SrcType = FindTruncSrcType()) { 2495 SmallVector<const SCEV *, 8> LargeOps; 2496 bool Ok = true; 2497 // Check all the operands to see if they can be represented in the 2498 // source type of the truncate. 2499 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2500 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2501 if (T->getOperand()->getType() != SrcType) { 2502 Ok = false; 2503 break; 2504 } 2505 LargeOps.push_back(T->getOperand()); 2506 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2507 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2508 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2509 SmallVector<const SCEV *, 8> LargeMulOps; 2510 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2511 if (const SCEVTruncateExpr *T = 2512 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2513 if (T->getOperand()->getType() != SrcType) { 2514 Ok = false; 2515 break; 2516 } 2517 LargeMulOps.push_back(T->getOperand()); 2518 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2519 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2520 } else { 2521 Ok = false; 2522 break; 2523 } 2524 } 2525 if (Ok) 2526 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2527 } else { 2528 Ok = false; 2529 break; 2530 } 2531 } 2532 if (Ok) { 2533 // Evaluate the expression in the larger type. 2534 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2535 // If it folds to something simple, use it. Otherwise, don't. 2536 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2537 return getTruncateExpr(Fold, Ty); 2538 } 2539 } 2540 2541 // Skip past any other cast SCEVs. 2542 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2543 ++Idx; 2544 2545 // If there are add operands they would be next. 2546 if (Idx < Ops.size()) { 2547 bool DeletedAdd = false; 2548 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2549 if (Ops.size() > AddOpsInlineThreshold || 2550 Add->getNumOperands() > AddOpsInlineThreshold) 2551 break; 2552 // If we have an add, expand the add operands onto the end of the operands 2553 // list. 2554 Ops.erase(Ops.begin()+Idx); 2555 Ops.append(Add->op_begin(), Add->op_end()); 2556 DeletedAdd = true; 2557 } 2558 2559 // If we deleted at least one add, we added operands to the end of the list, 2560 // and they are not necessarily sorted. Recurse to resort and resimplify 2561 // any operands we just acquired. 2562 if (DeletedAdd) 2563 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2564 } 2565 2566 // Skip over the add expression until we get to a multiply. 2567 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2568 ++Idx; 2569 2570 // Check to see if there are any folding opportunities present with 2571 // operands multiplied by constant values. 2572 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2573 uint64_t BitWidth = getTypeSizeInBits(Ty); 2574 DenseMap<const SCEV *, APInt> M; 2575 SmallVector<const SCEV *, 8> NewOps; 2576 APInt AccumulatedConstant(BitWidth, 0); 2577 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2578 Ops.data(), Ops.size(), 2579 APInt(BitWidth, 1), *this)) { 2580 struct APIntCompare { 2581 bool operator()(const APInt &LHS, const APInt &RHS) const { 2582 return LHS.ult(RHS); 2583 } 2584 }; 2585 2586 // Some interesting folding opportunity is present, so its worthwhile to 2587 // re-generate the operands list. Group the operands by constant scale, 2588 // to avoid multiplying by the same constant scale multiple times. 2589 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2590 for (const SCEV *NewOp : NewOps) 2591 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2592 // Re-generate the operands list. 2593 Ops.clear(); 2594 if (AccumulatedConstant != 0) 2595 Ops.push_back(getConstant(AccumulatedConstant)); 2596 for (auto &MulOp : MulOpLists) 2597 if (MulOp.first != 0) 2598 Ops.push_back(getMulExpr( 2599 getConstant(MulOp.first), 2600 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2601 SCEV::FlagAnyWrap, Depth + 1)); 2602 if (Ops.empty()) 2603 return getZero(Ty); 2604 if (Ops.size() == 1) 2605 return Ops[0]; 2606 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2607 } 2608 } 2609 2610 // If we are adding something to a multiply expression, make sure the 2611 // something is not already an operand of the multiply. If so, merge it into 2612 // the multiply. 2613 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2614 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2615 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2616 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2617 if (isa<SCEVConstant>(MulOpSCEV)) 2618 continue; 2619 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2620 if (MulOpSCEV == Ops[AddOp]) { 2621 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2622 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2623 if (Mul->getNumOperands() != 2) { 2624 // If the multiply has more than two operands, we must get the 2625 // Y*Z term. 2626 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2627 Mul->op_begin()+MulOp); 2628 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2629 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2630 } 2631 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2632 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2633 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2634 SCEV::FlagAnyWrap, Depth + 1); 2635 if (Ops.size() == 2) return OuterMul; 2636 if (AddOp < Idx) { 2637 Ops.erase(Ops.begin()+AddOp); 2638 Ops.erase(Ops.begin()+Idx-1); 2639 } else { 2640 Ops.erase(Ops.begin()+Idx); 2641 Ops.erase(Ops.begin()+AddOp-1); 2642 } 2643 Ops.push_back(OuterMul); 2644 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2645 } 2646 2647 // Check this multiply against other multiplies being added together. 2648 for (unsigned OtherMulIdx = Idx+1; 2649 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2650 ++OtherMulIdx) { 2651 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2652 // If MulOp occurs in OtherMul, we can fold the two multiplies 2653 // together. 2654 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2655 OMulOp != e; ++OMulOp) 2656 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2657 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2658 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2659 if (Mul->getNumOperands() != 2) { 2660 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2661 Mul->op_begin()+MulOp); 2662 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2663 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2664 } 2665 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2666 if (OtherMul->getNumOperands() != 2) { 2667 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2668 OtherMul->op_begin()+OMulOp); 2669 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2670 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2671 } 2672 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2673 const SCEV *InnerMulSum = 2674 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2675 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2676 SCEV::FlagAnyWrap, Depth + 1); 2677 if (Ops.size() == 2) return OuterMul; 2678 Ops.erase(Ops.begin()+Idx); 2679 Ops.erase(Ops.begin()+OtherMulIdx-1); 2680 Ops.push_back(OuterMul); 2681 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2682 } 2683 } 2684 } 2685 } 2686 2687 // If there are any add recurrences in the operands list, see if any other 2688 // added values are loop invariant. If so, we can fold them into the 2689 // recurrence. 2690 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2691 ++Idx; 2692 2693 // Scan over all recurrences, trying to fold loop invariants into them. 2694 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2695 // Scan all of the other operands to this add and add them to the vector if 2696 // they are loop invariant w.r.t. the recurrence. 2697 SmallVector<const SCEV *, 8> LIOps; 2698 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2699 const Loop *AddRecLoop = AddRec->getLoop(); 2700 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2701 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2702 LIOps.push_back(Ops[i]); 2703 Ops.erase(Ops.begin()+i); 2704 --i; --e; 2705 } 2706 2707 // If we found some loop invariants, fold them into the recurrence. 2708 if (!LIOps.empty()) { 2709 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2710 LIOps.push_back(AddRec->getStart()); 2711 2712 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2713 AddRec->op_end()); 2714 // This follows from the fact that the no-wrap flags on the outer add 2715 // expression are applicable on the 0th iteration, when the add recurrence 2716 // will be equal to its start value. 2717 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2718 2719 // Build the new addrec. Propagate the NUW and NSW flags if both the 2720 // outer add and the inner addrec are guaranteed to have no overflow. 2721 // Always propagate NW. 2722 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2723 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2724 2725 // If all of the other operands were loop invariant, we are done. 2726 if (Ops.size() == 1) return NewRec; 2727 2728 // Otherwise, add the folded AddRec by the non-invariant parts. 2729 for (unsigned i = 0;; ++i) 2730 if (Ops[i] == AddRec) { 2731 Ops[i] = NewRec; 2732 break; 2733 } 2734 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2735 } 2736 2737 // Okay, if there weren't any loop invariants to be folded, check to see if 2738 // there are multiple AddRec's with the same loop induction variable being 2739 // added together. If so, we can fold them. 2740 for (unsigned OtherIdx = Idx+1; 2741 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2742 ++OtherIdx) { 2743 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2744 // so that the 1st found AddRecExpr is dominated by all others. 2745 assert(DT.dominates( 2746 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2747 AddRec->getLoop()->getHeader()) && 2748 "AddRecExprs are not sorted in reverse dominance order?"); 2749 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2750 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2751 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2752 AddRec->op_end()); 2753 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2754 ++OtherIdx) { 2755 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2756 if (OtherAddRec->getLoop() == AddRecLoop) { 2757 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2758 i != e; ++i) { 2759 if (i >= AddRecOps.size()) { 2760 AddRecOps.append(OtherAddRec->op_begin()+i, 2761 OtherAddRec->op_end()); 2762 break; 2763 } 2764 SmallVector<const SCEV *, 2> TwoOps = { 2765 AddRecOps[i], OtherAddRec->getOperand(i)}; 2766 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2767 } 2768 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2769 } 2770 } 2771 // Step size has changed, so we cannot guarantee no self-wraparound. 2772 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2773 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2774 } 2775 } 2776 2777 // Otherwise couldn't fold anything into this recurrence. Move onto the 2778 // next one. 2779 } 2780 2781 // Okay, it looks like we really DO need an add expr. Check to see if we 2782 // already have one, otherwise create a new one. 2783 return getOrCreateAddExpr(Ops, Flags); 2784 } 2785 2786 const SCEV * 2787 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2788 SCEV::NoWrapFlags Flags) { 2789 FoldingSetNodeID ID; 2790 ID.AddInteger(scAddExpr); 2791 for (const SCEV *Op : Ops) 2792 ID.AddPointer(Op); 2793 void *IP = nullptr; 2794 SCEVAddExpr *S = 2795 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2796 if (!S) { 2797 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2798 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2799 S = new (SCEVAllocator) 2800 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2801 UniqueSCEVs.InsertNode(S, IP); 2802 addToLoopUseLists(S); 2803 } 2804 S->setNoWrapFlags(Flags); 2805 return S; 2806 } 2807 2808 const SCEV * 2809 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2810 const Loop *L, SCEV::NoWrapFlags Flags) { 2811 FoldingSetNodeID ID; 2812 ID.AddInteger(scAddRecExpr); 2813 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2814 ID.AddPointer(Ops[i]); 2815 ID.AddPointer(L); 2816 void *IP = nullptr; 2817 SCEVAddRecExpr *S = 2818 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2819 if (!S) { 2820 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2821 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2822 S = new (SCEVAllocator) 2823 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2824 UniqueSCEVs.InsertNode(S, IP); 2825 addToLoopUseLists(S); 2826 } 2827 S->setNoWrapFlags(Flags); 2828 return S; 2829 } 2830 2831 const SCEV * 2832 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2833 SCEV::NoWrapFlags Flags) { 2834 FoldingSetNodeID ID; 2835 ID.AddInteger(scMulExpr); 2836 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2837 ID.AddPointer(Ops[i]); 2838 void *IP = nullptr; 2839 SCEVMulExpr *S = 2840 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2841 if (!S) { 2842 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2843 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2844 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2845 O, Ops.size()); 2846 UniqueSCEVs.InsertNode(S, IP); 2847 addToLoopUseLists(S); 2848 } 2849 S->setNoWrapFlags(Flags); 2850 return S; 2851 } 2852 2853 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2854 uint64_t k = i*j; 2855 if (j > 1 && k / j != i) Overflow = true; 2856 return k; 2857 } 2858 2859 /// Compute the result of "n choose k", the binomial coefficient. If an 2860 /// intermediate computation overflows, Overflow will be set and the return will 2861 /// be garbage. Overflow is not cleared on absence of overflow. 2862 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2863 // We use the multiplicative formula: 2864 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2865 // At each iteration, we take the n-th term of the numeral and divide by the 2866 // (k-n)th term of the denominator. This division will always produce an 2867 // integral result, and helps reduce the chance of overflow in the 2868 // intermediate computations. However, we can still overflow even when the 2869 // final result would fit. 2870 2871 if (n == 0 || n == k) return 1; 2872 if (k > n) return 0; 2873 2874 if (k > n/2) 2875 k = n-k; 2876 2877 uint64_t r = 1; 2878 for (uint64_t i = 1; i <= k; ++i) { 2879 r = umul_ov(r, n-(i-1), Overflow); 2880 r /= i; 2881 } 2882 return r; 2883 } 2884 2885 /// Determine if any of the operands in this SCEV are a constant or if 2886 /// any of the add or multiply expressions in this SCEV contain a constant. 2887 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2888 struct FindConstantInAddMulChain { 2889 bool FoundConstant = false; 2890 2891 bool follow(const SCEV *S) { 2892 FoundConstant |= isa<SCEVConstant>(S); 2893 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2894 } 2895 2896 bool isDone() const { 2897 return FoundConstant; 2898 } 2899 }; 2900 2901 FindConstantInAddMulChain F; 2902 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2903 ST.visitAll(StartExpr); 2904 return F.FoundConstant; 2905 } 2906 2907 /// Get a canonical multiply expression, or something simpler if possible. 2908 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2909 SCEV::NoWrapFlags Flags, 2910 unsigned Depth) { 2911 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2912 "only nuw or nsw allowed"); 2913 assert(!Ops.empty() && "Cannot get empty mul!"); 2914 if (Ops.size() == 1) return Ops[0]; 2915 #ifndef NDEBUG 2916 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2917 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2918 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2919 "SCEVMulExpr operand types don't match!"); 2920 #endif 2921 2922 // Sort by complexity, this groups all similar expression types together. 2923 GroupByComplexity(Ops, &LI, DT); 2924 2925 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2926 2927 // Limit recursion calls depth. 2928 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2929 return getOrCreateMulExpr(Ops, Flags); 2930 2931 // If there are any constants, fold them together. 2932 unsigned Idx = 0; 2933 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2934 2935 if (Ops.size() == 2) 2936 // C1*(C2+V) -> C1*C2 + C1*V 2937 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2938 // If any of Add's ops are Adds or Muls with a constant, apply this 2939 // transformation as well. 2940 // 2941 // TODO: There are some cases where this transformation is not 2942 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2943 // this transformation should be narrowed down. 2944 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2945 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2946 SCEV::FlagAnyWrap, Depth + 1), 2947 getMulExpr(LHSC, Add->getOperand(1), 2948 SCEV::FlagAnyWrap, Depth + 1), 2949 SCEV::FlagAnyWrap, Depth + 1); 2950 2951 ++Idx; 2952 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2953 // We found two constants, fold them together! 2954 ConstantInt *Fold = 2955 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2956 Ops[0] = getConstant(Fold); 2957 Ops.erase(Ops.begin()+1); // Erase the folded element 2958 if (Ops.size() == 1) return Ops[0]; 2959 LHSC = cast<SCEVConstant>(Ops[0]); 2960 } 2961 2962 // If we are left with a constant one being multiplied, strip it off. 2963 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2964 Ops.erase(Ops.begin()); 2965 --Idx; 2966 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2967 // If we have a multiply of zero, it will always be zero. 2968 return Ops[0]; 2969 } else if (Ops[0]->isAllOnesValue()) { 2970 // If we have a mul by -1 of an add, try distributing the -1 among the 2971 // add operands. 2972 if (Ops.size() == 2) { 2973 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2974 SmallVector<const SCEV *, 4> NewOps; 2975 bool AnyFolded = false; 2976 for (const SCEV *AddOp : Add->operands()) { 2977 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2978 Depth + 1); 2979 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2980 NewOps.push_back(Mul); 2981 } 2982 if (AnyFolded) 2983 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2984 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2985 // Negation preserves a recurrence's no self-wrap property. 2986 SmallVector<const SCEV *, 4> Operands; 2987 for (const SCEV *AddRecOp : AddRec->operands()) 2988 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2989 Depth + 1)); 2990 2991 return getAddRecExpr(Operands, AddRec->getLoop(), 2992 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2993 } 2994 } 2995 } 2996 2997 if (Ops.size() == 1) 2998 return Ops[0]; 2999 } 3000 3001 // Skip over the add expression until we get to a multiply. 3002 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3003 ++Idx; 3004 3005 // If there are mul operands inline them all into this expression. 3006 if (Idx < Ops.size()) { 3007 bool DeletedMul = false; 3008 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3009 if (Ops.size() > MulOpsInlineThreshold) 3010 break; 3011 // If we have an mul, expand the mul operands onto the end of the 3012 // operands list. 3013 Ops.erase(Ops.begin()+Idx); 3014 Ops.append(Mul->op_begin(), Mul->op_end()); 3015 DeletedMul = true; 3016 } 3017 3018 // If we deleted at least one mul, we added operands to the end of the 3019 // list, and they are not necessarily sorted. Recurse to resort and 3020 // resimplify any operands we just acquired. 3021 if (DeletedMul) 3022 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3023 } 3024 3025 // If there are any add recurrences in the operands list, see if any other 3026 // added values are loop invariant. If so, we can fold them into the 3027 // recurrence. 3028 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3029 ++Idx; 3030 3031 // Scan over all recurrences, trying to fold loop invariants into them. 3032 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3033 // Scan all of the other operands to this mul and add them to the vector 3034 // if they are loop invariant w.r.t. the recurrence. 3035 SmallVector<const SCEV *, 8> LIOps; 3036 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3037 const Loop *AddRecLoop = AddRec->getLoop(); 3038 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3039 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3040 LIOps.push_back(Ops[i]); 3041 Ops.erase(Ops.begin()+i); 3042 --i; --e; 3043 } 3044 3045 // If we found some loop invariants, fold them into the recurrence. 3046 if (!LIOps.empty()) { 3047 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3048 SmallVector<const SCEV *, 4> NewOps; 3049 NewOps.reserve(AddRec->getNumOperands()); 3050 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3051 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3052 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3053 SCEV::FlagAnyWrap, Depth + 1)); 3054 3055 // Build the new addrec. Propagate the NUW and NSW flags if both the 3056 // outer mul and the inner addrec are guaranteed to have no overflow. 3057 // 3058 // No self-wrap cannot be guaranteed after changing the step size, but 3059 // will be inferred if either NUW or NSW is true. 3060 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 3061 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 3062 3063 // If all of the other operands were loop invariant, we are done. 3064 if (Ops.size() == 1) return NewRec; 3065 3066 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3067 for (unsigned i = 0;; ++i) 3068 if (Ops[i] == AddRec) { 3069 Ops[i] = NewRec; 3070 break; 3071 } 3072 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3073 } 3074 3075 // Okay, if there weren't any loop invariants to be folded, check to see 3076 // if there are multiple AddRec's with the same loop induction variable 3077 // being multiplied together. If so, we can fold them. 3078 3079 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3080 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3081 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3082 // ]]],+,...up to x=2n}. 3083 // Note that the arguments to choose() are always integers with values 3084 // known at compile time, never SCEV objects. 3085 // 3086 // The implementation avoids pointless extra computations when the two 3087 // addrec's are of different length (mathematically, it's equivalent to 3088 // an infinite stream of zeros on the right). 3089 bool OpsModified = false; 3090 for (unsigned OtherIdx = Idx+1; 3091 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3092 ++OtherIdx) { 3093 const SCEVAddRecExpr *OtherAddRec = 3094 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3095 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3096 continue; 3097 3098 // Limit max number of arguments to avoid creation of unreasonably big 3099 // SCEVAddRecs with very complex operands. 3100 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3101 MaxAddRecSize || isHugeExpression(AddRec) || 3102 isHugeExpression(OtherAddRec)) 3103 continue; 3104 3105 bool Overflow = false; 3106 Type *Ty = AddRec->getType(); 3107 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3108 SmallVector<const SCEV*, 7> AddRecOps; 3109 for (int x = 0, xe = AddRec->getNumOperands() + 3110 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3111 SmallVector <const SCEV *, 7> SumOps; 3112 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3113 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3114 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3115 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3116 z < ze && !Overflow; ++z) { 3117 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3118 uint64_t Coeff; 3119 if (LargerThan64Bits) 3120 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3121 else 3122 Coeff = Coeff1*Coeff2; 3123 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3124 const SCEV *Term1 = AddRec->getOperand(y-z); 3125 const SCEV *Term2 = OtherAddRec->getOperand(z); 3126 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3127 SCEV::FlagAnyWrap, Depth + 1)); 3128 } 3129 } 3130 if (SumOps.empty()) 3131 SumOps.push_back(getZero(Ty)); 3132 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3133 } 3134 if (!Overflow) { 3135 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3136 SCEV::FlagAnyWrap); 3137 if (Ops.size() == 2) return NewAddRec; 3138 Ops[Idx] = NewAddRec; 3139 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3140 OpsModified = true; 3141 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3142 if (!AddRec) 3143 break; 3144 } 3145 } 3146 if (OpsModified) 3147 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3148 3149 // Otherwise couldn't fold anything into this recurrence. Move onto the 3150 // next one. 3151 } 3152 3153 // Okay, it looks like we really DO need an mul expr. Check to see if we 3154 // already have one, otherwise create a new one. 3155 return getOrCreateMulExpr(Ops, Flags); 3156 } 3157 3158 /// Represents an unsigned remainder expression based on unsigned division. 3159 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3160 const SCEV *RHS) { 3161 assert(getEffectiveSCEVType(LHS->getType()) == 3162 getEffectiveSCEVType(RHS->getType()) && 3163 "SCEVURemExpr operand types don't match!"); 3164 3165 // Short-circuit easy cases 3166 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3167 // If constant is one, the result is trivial 3168 if (RHSC->getValue()->isOne()) 3169 return getZero(LHS->getType()); // X urem 1 --> 0 3170 3171 // If constant is a power of two, fold into a zext(trunc(LHS)). 3172 if (RHSC->getAPInt().isPowerOf2()) { 3173 Type *FullTy = LHS->getType(); 3174 Type *TruncTy = 3175 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3176 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3177 } 3178 } 3179 3180 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3181 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3182 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3183 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3184 } 3185 3186 /// Get a canonical unsigned division expression, or something simpler if 3187 /// possible. 3188 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3189 const SCEV *RHS) { 3190 assert(getEffectiveSCEVType(LHS->getType()) == 3191 getEffectiveSCEVType(RHS->getType()) && 3192 "SCEVUDivExpr operand types don't match!"); 3193 3194 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3195 if (RHSC->getValue()->isOne()) 3196 return LHS; // X udiv 1 --> x 3197 // If the denominator is zero, the result of the udiv is undefined. Don't 3198 // try to analyze it, because the resolution chosen here may differ from 3199 // the resolution chosen in other parts of the compiler. 3200 if (!RHSC->getValue()->isZero()) { 3201 // Determine if the division can be folded into the operands of 3202 // its operands. 3203 // TODO: Generalize this to non-constants by using known-bits information. 3204 Type *Ty = LHS->getType(); 3205 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3206 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3207 // For non-power-of-two values, effectively round the value up to the 3208 // nearest power of two. 3209 if (!RHSC->getAPInt().isPowerOf2()) 3210 ++MaxShiftAmt; 3211 IntegerType *ExtTy = 3212 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3213 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3214 if (const SCEVConstant *Step = 3215 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3216 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3217 const APInt &StepInt = Step->getAPInt(); 3218 const APInt &DivInt = RHSC->getAPInt(); 3219 if (!StepInt.urem(DivInt) && 3220 getZeroExtendExpr(AR, ExtTy) == 3221 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3222 getZeroExtendExpr(Step, ExtTy), 3223 AR->getLoop(), SCEV::FlagAnyWrap)) { 3224 SmallVector<const SCEV *, 4> Operands; 3225 for (const SCEV *Op : AR->operands()) 3226 Operands.push_back(getUDivExpr(Op, RHS)); 3227 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3228 } 3229 /// Get a canonical UDivExpr for a recurrence. 3230 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3231 // We can currently only fold X%N if X is constant. 3232 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3233 if (StartC && !DivInt.urem(StepInt) && 3234 getZeroExtendExpr(AR, ExtTy) == 3235 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3236 getZeroExtendExpr(Step, ExtTy), 3237 AR->getLoop(), SCEV::FlagAnyWrap)) { 3238 const APInt &StartInt = StartC->getAPInt(); 3239 const APInt &StartRem = StartInt.urem(StepInt); 3240 if (StartRem != 0) 3241 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 3242 AR->getLoop(), SCEV::FlagNW); 3243 } 3244 } 3245 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3246 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3247 SmallVector<const SCEV *, 4> Operands; 3248 for (const SCEV *Op : M->operands()) 3249 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3250 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3251 // Find an operand that's safely divisible. 3252 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3253 const SCEV *Op = M->getOperand(i); 3254 const SCEV *Div = getUDivExpr(Op, RHSC); 3255 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3256 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3257 M->op_end()); 3258 Operands[i] = Div; 3259 return getMulExpr(Operands); 3260 } 3261 } 3262 } 3263 3264 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3265 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3266 if (auto *DivisorConstant = 3267 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3268 bool Overflow = false; 3269 APInt NewRHS = 3270 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3271 if (Overflow) { 3272 return getConstant(RHSC->getType(), 0, false); 3273 } 3274 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3275 } 3276 } 3277 3278 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3279 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3280 SmallVector<const SCEV *, 4> Operands; 3281 for (const SCEV *Op : A->operands()) 3282 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3283 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3284 Operands.clear(); 3285 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3286 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3287 if (isa<SCEVUDivExpr>(Op) || 3288 getMulExpr(Op, RHS) != A->getOperand(i)) 3289 break; 3290 Operands.push_back(Op); 3291 } 3292 if (Operands.size() == A->getNumOperands()) 3293 return getAddExpr(Operands); 3294 } 3295 } 3296 3297 // Fold if both operands are constant. 3298 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3299 Constant *LHSCV = LHSC->getValue(); 3300 Constant *RHSCV = RHSC->getValue(); 3301 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3302 RHSCV))); 3303 } 3304 } 3305 } 3306 3307 FoldingSetNodeID ID; 3308 ID.AddInteger(scUDivExpr); 3309 ID.AddPointer(LHS); 3310 ID.AddPointer(RHS); 3311 void *IP = nullptr; 3312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3313 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3314 LHS, RHS); 3315 UniqueSCEVs.InsertNode(S, IP); 3316 addToLoopUseLists(S); 3317 return S; 3318 } 3319 3320 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3321 APInt A = C1->getAPInt().abs(); 3322 APInt B = C2->getAPInt().abs(); 3323 uint32_t ABW = A.getBitWidth(); 3324 uint32_t BBW = B.getBitWidth(); 3325 3326 if (ABW > BBW) 3327 B = B.zext(ABW); 3328 else if (ABW < BBW) 3329 A = A.zext(BBW); 3330 3331 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3332 } 3333 3334 /// Get a canonical unsigned division expression, or something simpler if 3335 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3336 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3337 /// it's not exact because the udiv may be clearing bits. 3338 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3339 const SCEV *RHS) { 3340 // TODO: we could try to find factors in all sorts of things, but for now we 3341 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3342 // end of this file for inspiration. 3343 3344 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3345 if (!Mul || !Mul->hasNoUnsignedWrap()) 3346 return getUDivExpr(LHS, RHS); 3347 3348 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3349 // If the mulexpr multiplies by a constant, then that constant must be the 3350 // first element of the mulexpr. 3351 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3352 if (LHSCst == RHSCst) { 3353 SmallVector<const SCEV *, 2> Operands; 3354 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3355 return getMulExpr(Operands); 3356 } 3357 3358 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3359 // that there's a factor provided by one of the other terms. We need to 3360 // check. 3361 APInt Factor = gcd(LHSCst, RHSCst); 3362 if (!Factor.isIntN(1)) { 3363 LHSCst = 3364 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3365 RHSCst = 3366 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3367 SmallVector<const SCEV *, 2> Operands; 3368 Operands.push_back(LHSCst); 3369 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3370 LHS = getMulExpr(Operands); 3371 RHS = RHSCst; 3372 Mul = dyn_cast<SCEVMulExpr>(LHS); 3373 if (!Mul) 3374 return getUDivExactExpr(LHS, RHS); 3375 } 3376 } 3377 } 3378 3379 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3380 if (Mul->getOperand(i) == RHS) { 3381 SmallVector<const SCEV *, 2> Operands; 3382 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3383 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3384 return getMulExpr(Operands); 3385 } 3386 } 3387 3388 return getUDivExpr(LHS, RHS); 3389 } 3390 3391 /// Get an add recurrence expression for the specified loop. Simplify the 3392 /// expression as much as possible. 3393 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3394 const Loop *L, 3395 SCEV::NoWrapFlags Flags) { 3396 SmallVector<const SCEV *, 4> Operands; 3397 Operands.push_back(Start); 3398 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3399 if (StepChrec->getLoop() == L) { 3400 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3401 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3402 } 3403 3404 Operands.push_back(Step); 3405 return getAddRecExpr(Operands, L, Flags); 3406 } 3407 3408 /// Get an add recurrence expression for the specified loop. Simplify the 3409 /// expression as much as possible. 3410 const SCEV * 3411 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3412 const Loop *L, SCEV::NoWrapFlags Flags) { 3413 if (Operands.size() == 1) return Operands[0]; 3414 #ifndef NDEBUG 3415 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3416 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3417 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3418 "SCEVAddRecExpr operand types don't match!"); 3419 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3420 assert(isLoopInvariant(Operands[i], L) && 3421 "SCEVAddRecExpr operand is not loop-invariant!"); 3422 #endif 3423 3424 if (Operands.back()->isZero()) { 3425 Operands.pop_back(); 3426 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3427 } 3428 3429 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3430 // use that information to infer NUW and NSW flags. However, computing a 3431 // BE count requires calling getAddRecExpr, so we may not yet have a 3432 // meaningful BE count at this point (and if we don't, we'd be stuck 3433 // with a SCEVCouldNotCompute as the cached BE count). 3434 3435 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3436 3437 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3438 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3439 const Loop *NestedLoop = NestedAR->getLoop(); 3440 if (L->contains(NestedLoop) 3441 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3442 : (!NestedLoop->contains(L) && 3443 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3444 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3445 NestedAR->op_end()); 3446 Operands[0] = NestedAR->getStart(); 3447 // AddRecs require their operands be loop-invariant with respect to their 3448 // loops. Don't perform this transformation if it would break this 3449 // requirement. 3450 bool AllInvariant = all_of( 3451 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3452 3453 if (AllInvariant) { 3454 // Create a recurrence for the outer loop with the same step size. 3455 // 3456 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3457 // inner recurrence has the same property. 3458 SCEV::NoWrapFlags OuterFlags = 3459 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3460 3461 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3462 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3463 return isLoopInvariant(Op, NestedLoop); 3464 }); 3465 3466 if (AllInvariant) { 3467 // Ok, both add recurrences are valid after the transformation. 3468 // 3469 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3470 // the outer recurrence has the same property. 3471 SCEV::NoWrapFlags InnerFlags = 3472 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3473 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3474 } 3475 } 3476 // Reset Operands to its original state. 3477 Operands[0] = NestedAR; 3478 } 3479 } 3480 3481 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3482 // already have one, otherwise create a new one. 3483 return getOrCreateAddRecExpr(Operands, L, Flags); 3484 } 3485 3486 const SCEV * 3487 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3488 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3489 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3490 // getSCEV(Base)->getType() has the same address space as Base->getType() 3491 // because SCEV::getType() preserves the address space. 3492 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3493 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3494 // instruction to its SCEV, because the Instruction may be guarded by control 3495 // flow and the no-overflow bits may not be valid for the expression in any 3496 // context. This can be fixed similarly to how these flags are handled for 3497 // adds. 3498 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3499 : SCEV::FlagAnyWrap; 3500 3501 const SCEV *TotalOffset = getZero(IntPtrTy); 3502 // The array size is unimportant. The first thing we do on CurTy is getting 3503 // its element type. 3504 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3505 for (const SCEV *IndexExpr : IndexExprs) { 3506 // Compute the (potentially symbolic) offset in bytes for this index. 3507 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3508 // For a struct, add the member offset. 3509 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3510 unsigned FieldNo = Index->getZExtValue(); 3511 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3512 3513 // Add the field offset to the running total offset. 3514 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3515 3516 // Update CurTy to the type of the field at Index. 3517 CurTy = STy->getTypeAtIndex(Index); 3518 } else { 3519 // Update CurTy to its element type. 3520 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3521 // For an array, add the element offset, explicitly scaled. 3522 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3523 // Getelementptr indices are signed. 3524 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3525 3526 // Multiply the index by the element size to compute the element offset. 3527 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3528 3529 // Add the element offset to the running total offset. 3530 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3531 } 3532 } 3533 3534 // Add the total offset from all the GEP indices to the base. 3535 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3536 } 3537 3538 std::tuple<const SCEV *, FoldingSetNodeID, void *> 3539 ScalarEvolution::findExistingSCEVInCache(int SCEVType, 3540 ArrayRef<const SCEV *> Ops) { 3541 FoldingSetNodeID ID; 3542 void *IP = nullptr; 3543 ID.AddInteger(SCEVType); 3544 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3545 ID.AddPointer(Ops[i]); 3546 return std::tuple<const SCEV *, FoldingSetNodeID, void *>( 3547 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3548 } 3549 3550 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, 3551 SmallVectorImpl<const SCEV *> &Ops) { 3552 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3553 if (Ops.size() == 1) return Ops[0]; 3554 #ifndef NDEBUG 3555 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3556 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3557 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3558 "Operand types don't match!"); 3559 #endif 3560 3561 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3562 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3563 3564 // Sort by complexity, this groups all similar expression types together. 3565 GroupByComplexity(Ops, &LI, DT); 3566 3567 // Check if we have created the same expression before. 3568 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3569 return S; 3570 } 3571 3572 // If there are any constants, fold them together. 3573 unsigned Idx = 0; 3574 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3575 ++Idx; 3576 assert(Idx < Ops.size()); 3577 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3578 if (Kind == scSMaxExpr) 3579 return APIntOps::smax(LHS, RHS); 3580 else if (Kind == scSMinExpr) 3581 return APIntOps::smin(LHS, RHS); 3582 else if (Kind == scUMaxExpr) 3583 return APIntOps::umax(LHS, RHS); 3584 else if (Kind == scUMinExpr) 3585 return APIntOps::umin(LHS, RHS); 3586 llvm_unreachable("Unknown SCEV min/max opcode"); 3587 }; 3588 3589 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3590 // We found two constants, fold them together! 3591 ConstantInt *Fold = ConstantInt::get( 3592 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3593 Ops[0] = getConstant(Fold); 3594 Ops.erase(Ops.begin()+1); // Erase the folded element 3595 if (Ops.size() == 1) return Ops[0]; 3596 LHSC = cast<SCEVConstant>(Ops[0]); 3597 } 3598 3599 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3600 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3601 3602 if (IsMax ? IsMinV : IsMaxV) { 3603 // If we are left with a constant minimum(/maximum)-int, strip it off. 3604 Ops.erase(Ops.begin()); 3605 --Idx; 3606 } else if (IsMax ? IsMaxV : IsMinV) { 3607 // If we have a max(/min) with a constant maximum(/minimum)-int, 3608 // it will always be the extremum. 3609 return LHSC; 3610 } 3611 3612 if (Ops.size() == 1) return Ops[0]; 3613 } 3614 3615 // Find the first operation of the same kind 3616 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3617 ++Idx; 3618 3619 // Check to see if one of the operands is of the same kind. If so, expand its 3620 // operands onto our operand list, and recurse to simplify. 3621 if (Idx < Ops.size()) { 3622 bool DeletedAny = false; 3623 while (Ops[Idx]->getSCEVType() == Kind) { 3624 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3625 Ops.erase(Ops.begin()+Idx); 3626 Ops.append(SMME->op_begin(), SMME->op_end()); 3627 DeletedAny = true; 3628 } 3629 3630 if (DeletedAny) 3631 return getMinMaxExpr(Kind, Ops); 3632 } 3633 3634 // Okay, check to see if the same value occurs in the operand list twice. If 3635 // so, delete one. Since we sorted the list, these values are required to 3636 // be adjacent. 3637 llvm::CmpInst::Predicate GEPred = 3638 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3639 llvm::CmpInst::Predicate LEPred = 3640 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3641 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3642 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3643 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3644 if (Ops[i] == Ops[i + 1] || 3645 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3646 // X op Y op Y --> X op Y 3647 // X op Y --> X, if we know X, Y are ordered appropriately 3648 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3649 --i; 3650 --e; 3651 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3652 Ops[i + 1])) { 3653 // X op Y --> Y, if we know X, Y are ordered appropriately 3654 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3655 --i; 3656 --e; 3657 } 3658 } 3659 3660 if (Ops.size() == 1) return Ops[0]; 3661 3662 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3663 3664 // Okay, it looks like we really DO need an expr. Check to see if we 3665 // already have one, otherwise create a new one. 3666 const SCEV *ExistingSCEV; 3667 FoldingSetNodeID ID; 3668 void *IP; 3669 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3670 if (ExistingSCEV) 3671 return ExistingSCEV; 3672 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3673 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3674 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( 3675 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); 3676 3677 UniqueSCEVs.InsertNode(S, IP); 3678 addToLoopUseLists(S); 3679 return S; 3680 } 3681 3682 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3683 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3684 return getSMaxExpr(Ops); 3685 } 3686 3687 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3688 return getMinMaxExpr(scSMaxExpr, Ops); 3689 } 3690 3691 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3692 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3693 return getUMaxExpr(Ops); 3694 } 3695 3696 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3697 return getMinMaxExpr(scUMaxExpr, Ops); 3698 } 3699 3700 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3701 const SCEV *RHS) { 3702 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3703 return getSMinExpr(Ops); 3704 } 3705 3706 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3707 return getMinMaxExpr(scSMinExpr, Ops); 3708 } 3709 3710 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3711 const SCEV *RHS) { 3712 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3713 return getUMinExpr(Ops); 3714 } 3715 3716 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3717 return getMinMaxExpr(scUMinExpr, Ops); 3718 } 3719 3720 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3721 // We can bypass creating a target-independent 3722 // constant expression and then folding it back into a ConstantInt. 3723 // This is just a compile-time optimization. 3724 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3725 } 3726 3727 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3728 StructType *STy, 3729 unsigned FieldNo) { 3730 // We can bypass creating a target-independent 3731 // constant expression and then folding it back into a ConstantInt. 3732 // This is just a compile-time optimization. 3733 return getConstant( 3734 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3735 } 3736 3737 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3738 // Don't attempt to do anything other than create a SCEVUnknown object 3739 // here. createSCEV only calls getUnknown after checking for all other 3740 // interesting possibilities, and any other code that calls getUnknown 3741 // is doing so in order to hide a value from SCEV canonicalization. 3742 3743 FoldingSetNodeID ID; 3744 ID.AddInteger(scUnknown); 3745 ID.AddPointer(V); 3746 void *IP = nullptr; 3747 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3748 assert(cast<SCEVUnknown>(S)->getValue() == V && 3749 "Stale SCEVUnknown in uniquing map!"); 3750 return S; 3751 } 3752 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3753 FirstUnknown); 3754 FirstUnknown = cast<SCEVUnknown>(S); 3755 UniqueSCEVs.InsertNode(S, IP); 3756 return S; 3757 } 3758 3759 //===----------------------------------------------------------------------===// 3760 // Basic SCEV Analysis and PHI Idiom Recognition Code 3761 // 3762 3763 /// Test if values of the given type are analyzable within the SCEV 3764 /// framework. This primarily includes integer types, and it can optionally 3765 /// include pointer types if the ScalarEvolution class has access to 3766 /// target-specific information. 3767 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3768 // Integers and pointers are always SCEVable. 3769 return Ty->isIntOrPtrTy(); 3770 } 3771 3772 /// Return the size in bits of the specified type, for which isSCEVable must 3773 /// return true. 3774 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3775 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3776 if (Ty->isPointerTy()) 3777 return getDataLayout().getIndexTypeSizeInBits(Ty); 3778 return getDataLayout().getTypeSizeInBits(Ty); 3779 } 3780 3781 /// Return a type with the same bitwidth as the given type and which represents 3782 /// how SCEV will treat the given type, for which isSCEVable must return 3783 /// true. For pointer types, this is the pointer-sized integer type. 3784 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3785 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3786 3787 if (Ty->isIntegerTy()) 3788 return Ty; 3789 3790 // The only other support type is pointer. 3791 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3792 return getDataLayout().getIntPtrType(Ty); 3793 } 3794 3795 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3796 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3797 } 3798 3799 const SCEV *ScalarEvolution::getCouldNotCompute() { 3800 return CouldNotCompute.get(); 3801 } 3802 3803 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3804 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3805 auto *SU = dyn_cast<SCEVUnknown>(S); 3806 return SU && SU->getValue() == nullptr; 3807 }); 3808 3809 return !ContainsNulls; 3810 } 3811 3812 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3813 HasRecMapType::iterator I = HasRecMap.find(S); 3814 if (I != HasRecMap.end()) 3815 return I->second; 3816 3817 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3818 HasRecMap.insert({S, FoundAddRec}); 3819 return FoundAddRec; 3820 } 3821 3822 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3823 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3824 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3825 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3826 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3827 if (!Add) 3828 return {S, nullptr}; 3829 3830 if (Add->getNumOperands() != 2) 3831 return {S, nullptr}; 3832 3833 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3834 if (!ConstOp) 3835 return {S, nullptr}; 3836 3837 return {Add->getOperand(1), ConstOp->getValue()}; 3838 } 3839 3840 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3841 /// by the value and offset from any ValueOffsetPair in the set. 3842 SetVector<ScalarEvolution::ValueOffsetPair> * 3843 ScalarEvolution::getSCEVValues(const SCEV *S) { 3844 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3845 if (SI == ExprValueMap.end()) 3846 return nullptr; 3847 #ifndef NDEBUG 3848 if (VerifySCEVMap) { 3849 // Check there is no dangling Value in the set returned. 3850 for (const auto &VE : SI->second) 3851 assert(ValueExprMap.count(VE.first)); 3852 } 3853 #endif 3854 return &SI->second; 3855 } 3856 3857 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3858 /// cannot be used separately. eraseValueFromMap should be used to remove 3859 /// V from ValueExprMap and ExprValueMap at the same time. 3860 void ScalarEvolution::eraseValueFromMap(Value *V) { 3861 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3862 if (I != ValueExprMap.end()) { 3863 const SCEV *S = I->second; 3864 // Remove {V, 0} from the set of ExprValueMap[S] 3865 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3866 SV->remove({V, nullptr}); 3867 3868 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3869 const SCEV *Stripped; 3870 ConstantInt *Offset; 3871 std::tie(Stripped, Offset) = splitAddExpr(S); 3872 if (Offset != nullptr) { 3873 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3874 SV->remove({V, Offset}); 3875 } 3876 ValueExprMap.erase(V); 3877 } 3878 } 3879 3880 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3881 /// TODO: In reality it is better to check the poison recursively 3882 /// but this is better than nothing. 3883 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3884 if (auto *I = dyn_cast<Instruction>(V)) { 3885 if (isa<OverflowingBinaryOperator>(I)) { 3886 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3887 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3888 return true; 3889 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3890 return true; 3891 } 3892 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3893 return true; 3894 } 3895 return false; 3896 } 3897 3898 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3899 /// create a new one. 3900 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3901 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3902 3903 const SCEV *S = getExistingSCEV(V); 3904 if (S == nullptr) { 3905 S = createSCEV(V); 3906 // During PHI resolution, it is possible to create two SCEVs for the same 3907 // V, so it is needed to double check whether V->S is inserted into 3908 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3909 std::pair<ValueExprMapType::iterator, bool> Pair = 3910 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3911 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3912 ExprValueMap[S].insert({V, nullptr}); 3913 3914 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3915 // ExprValueMap. 3916 const SCEV *Stripped = S; 3917 ConstantInt *Offset = nullptr; 3918 std::tie(Stripped, Offset) = splitAddExpr(S); 3919 // If stripped is SCEVUnknown, don't bother to save 3920 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3921 // increase the complexity of the expansion code. 3922 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3923 // because it may generate add/sub instead of GEP in SCEV expansion. 3924 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3925 !isa<GetElementPtrInst>(V)) 3926 ExprValueMap[Stripped].insert({V, Offset}); 3927 } 3928 } 3929 return S; 3930 } 3931 3932 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3933 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3934 3935 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3936 if (I != ValueExprMap.end()) { 3937 const SCEV *S = I->second; 3938 if (checkValidity(S)) 3939 return S; 3940 eraseValueFromMap(V); 3941 forgetMemoizedResults(S); 3942 } 3943 return nullptr; 3944 } 3945 3946 /// Return a SCEV corresponding to -V = -1*V 3947 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3948 SCEV::NoWrapFlags Flags) { 3949 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3950 return getConstant( 3951 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3952 3953 Type *Ty = V->getType(); 3954 Ty = getEffectiveSCEVType(Ty); 3955 return getMulExpr( 3956 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3957 } 3958 3959 /// If Expr computes ~A, return A else return nullptr 3960 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3961 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3962 if (!Add || Add->getNumOperands() != 2 || 3963 !Add->getOperand(0)->isAllOnesValue()) 3964 return nullptr; 3965 3966 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3967 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3968 !AddRHS->getOperand(0)->isAllOnesValue()) 3969 return nullptr; 3970 3971 return AddRHS->getOperand(1); 3972 } 3973 3974 /// Return a SCEV corresponding to ~V = -1-V 3975 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3976 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3977 return getConstant( 3978 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3979 3980 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3981 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3982 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3983 SmallVector<const SCEV *, 2> MatchedOperands; 3984 for (const SCEV *Operand : MME->operands()) { 3985 const SCEV *Matched = MatchNotExpr(Operand); 3986 if (!Matched) 3987 return (const SCEV *)nullptr; 3988 MatchedOperands.push_back(Matched); 3989 } 3990 return getMinMaxExpr( 3991 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), 3992 MatchedOperands); 3993 }; 3994 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3995 return Replaced; 3996 } 3997 3998 Type *Ty = V->getType(); 3999 Ty = getEffectiveSCEVType(Ty); 4000 const SCEV *AllOnes = 4001 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 4002 return getMinusSCEV(AllOnes, V); 4003 } 4004 4005 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4006 SCEV::NoWrapFlags Flags, 4007 unsigned Depth) { 4008 // Fast path: X - X --> 0. 4009 if (LHS == RHS) 4010 return getZero(LHS->getType()); 4011 4012 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4013 // makes it so that we cannot make much use of NUW. 4014 auto AddFlags = SCEV::FlagAnyWrap; 4015 const bool RHSIsNotMinSigned = 4016 !getSignedRangeMin(RHS).isMinSignedValue(); 4017 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4018 // Let M be the minimum representable signed value. Then (-1)*RHS 4019 // signed-wraps if and only if RHS is M. That can happen even for 4020 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4021 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4022 // (-1)*RHS, we need to prove that RHS != M. 4023 // 4024 // If LHS is non-negative and we know that LHS - RHS does not 4025 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4026 // either by proving that RHS > M or that LHS >= 0. 4027 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4028 AddFlags = SCEV::FlagNSW; 4029 } 4030 } 4031 4032 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4033 // RHS is NSW and LHS >= 0. 4034 // 4035 // The difficulty here is that the NSW flag may have been proven 4036 // relative to a loop that is to be found in a recurrence in LHS and 4037 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4038 // larger scope than intended. 4039 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4040 4041 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4042 } 4043 4044 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4045 unsigned Depth) { 4046 Type *SrcTy = V->getType(); 4047 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4048 "Cannot truncate or zero extend with non-integer arguments!"); 4049 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4050 return V; // No conversion 4051 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4052 return getTruncateExpr(V, Ty, Depth); 4053 return getZeroExtendExpr(V, Ty, Depth); 4054 } 4055 4056 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4057 unsigned Depth) { 4058 Type *SrcTy = V->getType(); 4059 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4060 "Cannot truncate or zero extend with non-integer arguments!"); 4061 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4062 return V; // No conversion 4063 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4064 return getTruncateExpr(V, Ty, Depth); 4065 return getSignExtendExpr(V, Ty, Depth); 4066 } 4067 4068 const SCEV * 4069 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4070 Type *SrcTy = V->getType(); 4071 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4072 "Cannot noop or zero extend with non-integer arguments!"); 4073 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4074 "getNoopOrZeroExtend cannot truncate!"); 4075 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4076 return V; // No conversion 4077 return getZeroExtendExpr(V, Ty); 4078 } 4079 4080 const SCEV * 4081 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4082 Type *SrcTy = V->getType(); 4083 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4084 "Cannot noop or sign extend with non-integer arguments!"); 4085 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4086 "getNoopOrSignExtend cannot truncate!"); 4087 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4088 return V; // No conversion 4089 return getSignExtendExpr(V, Ty); 4090 } 4091 4092 const SCEV * 4093 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4094 Type *SrcTy = V->getType(); 4095 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4096 "Cannot noop or any extend with non-integer arguments!"); 4097 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4098 "getNoopOrAnyExtend cannot truncate!"); 4099 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4100 return V; // No conversion 4101 return getAnyExtendExpr(V, Ty); 4102 } 4103 4104 const SCEV * 4105 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4106 Type *SrcTy = V->getType(); 4107 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4108 "Cannot truncate or noop with non-integer arguments!"); 4109 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4110 "getTruncateOrNoop cannot extend!"); 4111 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4112 return V; // No conversion 4113 return getTruncateExpr(V, Ty); 4114 } 4115 4116 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4117 const SCEV *RHS) { 4118 const SCEV *PromotedLHS = LHS; 4119 const SCEV *PromotedRHS = RHS; 4120 4121 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4122 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4123 else 4124 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4125 4126 return getUMaxExpr(PromotedLHS, PromotedRHS); 4127 } 4128 4129 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4130 const SCEV *RHS) { 4131 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4132 return getUMinFromMismatchedTypes(Ops); 4133 } 4134 4135 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4136 SmallVectorImpl<const SCEV *> &Ops) { 4137 assert(!Ops.empty() && "At least one operand must be!"); 4138 // Trivial case. 4139 if (Ops.size() == 1) 4140 return Ops[0]; 4141 4142 // Find the max type first. 4143 Type *MaxType = nullptr; 4144 for (auto *S : Ops) 4145 if (MaxType) 4146 MaxType = getWiderType(MaxType, S->getType()); 4147 else 4148 MaxType = S->getType(); 4149 4150 // Extend all ops to max type. 4151 SmallVector<const SCEV *, 2> PromotedOps; 4152 for (auto *S : Ops) 4153 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4154 4155 // Generate umin. 4156 return getUMinExpr(PromotedOps); 4157 } 4158 4159 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4160 // A pointer operand may evaluate to a nonpointer expression, such as null. 4161 if (!V->getType()->isPointerTy()) 4162 return V; 4163 4164 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 4165 return getPointerBase(Cast->getOperand()); 4166 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4167 const SCEV *PtrOp = nullptr; 4168 for (const SCEV *NAryOp : NAry->operands()) { 4169 if (NAryOp->getType()->isPointerTy()) { 4170 // Cannot find the base of an expression with multiple pointer operands. 4171 if (PtrOp) 4172 return V; 4173 PtrOp = NAryOp; 4174 } 4175 } 4176 if (!PtrOp) 4177 return V; 4178 return getPointerBase(PtrOp); 4179 } 4180 return V; 4181 } 4182 4183 /// Push users of the given Instruction onto the given Worklist. 4184 static void 4185 PushDefUseChildren(Instruction *I, 4186 SmallVectorImpl<Instruction *> &Worklist) { 4187 // Push the def-use children onto the Worklist stack. 4188 for (User *U : I->users()) 4189 Worklist.push_back(cast<Instruction>(U)); 4190 } 4191 4192 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4193 SmallVector<Instruction *, 16> Worklist; 4194 PushDefUseChildren(PN, Worklist); 4195 4196 SmallPtrSet<Instruction *, 8> Visited; 4197 Visited.insert(PN); 4198 while (!Worklist.empty()) { 4199 Instruction *I = Worklist.pop_back_val(); 4200 if (!Visited.insert(I).second) 4201 continue; 4202 4203 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4204 if (It != ValueExprMap.end()) { 4205 const SCEV *Old = It->second; 4206 4207 // Short-circuit the def-use traversal if the symbolic name 4208 // ceases to appear in expressions. 4209 if (Old != SymName && !hasOperand(Old, SymName)) 4210 continue; 4211 4212 // SCEVUnknown for a PHI either means that it has an unrecognized 4213 // structure, it's a PHI that's in the progress of being computed 4214 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4215 // additional loop trip count information isn't going to change anything. 4216 // In the second case, createNodeForPHI will perform the necessary 4217 // updates on its own when it gets to that point. In the third, we do 4218 // want to forget the SCEVUnknown. 4219 if (!isa<PHINode>(I) || 4220 !isa<SCEVUnknown>(Old) || 4221 (I != PN && Old == SymName)) { 4222 eraseValueFromMap(It->first); 4223 forgetMemoizedResults(Old); 4224 } 4225 } 4226 4227 PushDefUseChildren(I, Worklist); 4228 } 4229 } 4230 4231 namespace { 4232 4233 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4234 /// expression in case its Loop is L. If it is not L then 4235 /// if IgnoreOtherLoops is true then use AddRec itself 4236 /// otherwise rewrite cannot be done. 4237 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4238 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4239 public: 4240 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4241 bool IgnoreOtherLoops = true) { 4242 SCEVInitRewriter Rewriter(L, SE); 4243 const SCEV *Result = Rewriter.visit(S); 4244 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4245 return SE.getCouldNotCompute(); 4246 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4247 ? SE.getCouldNotCompute() 4248 : Result; 4249 } 4250 4251 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4252 if (!SE.isLoopInvariant(Expr, L)) 4253 SeenLoopVariantSCEVUnknown = true; 4254 return Expr; 4255 } 4256 4257 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4258 // Only re-write AddRecExprs for this loop. 4259 if (Expr->getLoop() == L) 4260 return Expr->getStart(); 4261 SeenOtherLoops = true; 4262 return Expr; 4263 } 4264 4265 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4266 4267 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4268 4269 private: 4270 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4271 : SCEVRewriteVisitor(SE), L(L) {} 4272 4273 const Loop *L; 4274 bool SeenLoopVariantSCEVUnknown = false; 4275 bool SeenOtherLoops = false; 4276 }; 4277 4278 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4279 /// increment expression in case its Loop is L. If it is not L then 4280 /// use AddRec itself. 4281 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4282 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4283 public: 4284 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4285 SCEVPostIncRewriter Rewriter(L, SE); 4286 const SCEV *Result = Rewriter.visit(S); 4287 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4288 ? SE.getCouldNotCompute() 4289 : Result; 4290 } 4291 4292 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4293 if (!SE.isLoopInvariant(Expr, L)) 4294 SeenLoopVariantSCEVUnknown = true; 4295 return Expr; 4296 } 4297 4298 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4299 // Only re-write AddRecExprs for this loop. 4300 if (Expr->getLoop() == L) 4301 return Expr->getPostIncExpr(SE); 4302 SeenOtherLoops = true; 4303 return Expr; 4304 } 4305 4306 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4307 4308 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4309 4310 private: 4311 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4312 : SCEVRewriteVisitor(SE), L(L) {} 4313 4314 const Loop *L; 4315 bool SeenLoopVariantSCEVUnknown = false; 4316 bool SeenOtherLoops = false; 4317 }; 4318 4319 /// This class evaluates the compare condition by matching it against the 4320 /// condition of loop latch. If there is a match we assume a true value 4321 /// for the condition while building SCEV nodes. 4322 class SCEVBackedgeConditionFolder 4323 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4324 public: 4325 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4326 ScalarEvolution &SE) { 4327 bool IsPosBECond = false; 4328 Value *BECond = nullptr; 4329 if (BasicBlock *Latch = L->getLoopLatch()) { 4330 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4331 if (BI && BI->isConditional()) { 4332 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4333 "Both outgoing branches should not target same header!"); 4334 BECond = BI->getCondition(); 4335 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4336 } else { 4337 return S; 4338 } 4339 } 4340 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4341 return Rewriter.visit(S); 4342 } 4343 4344 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4345 const SCEV *Result = Expr; 4346 bool InvariantF = SE.isLoopInvariant(Expr, L); 4347 4348 if (!InvariantF) { 4349 Instruction *I = cast<Instruction>(Expr->getValue()); 4350 switch (I->getOpcode()) { 4351 case Instruction::Select: { 4352 SelectInst *SI = cast<SelectInst>(I); 4353 Optional<const SCEV *> Res = 4354 compareWithBackedgeCondition(SI->getCondition()); 4355 if (Res.hasValue()) { 4356 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4357 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4358 } 4359 break; 4360 } 4361 default: { 4362 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4363 if (Res.hasValue()) 4364 Result = Res.getValue(); 4365 break; 4366 } 4367 } 4368 } 4369 return Result; 4370 } 4371 4372 private: 4373 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4374 bool IsPosBECond, ScalarEvolution &SE) 4375 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4376 IsPositiveBECond(IsPosBECond) {} 4377 4378 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4379 4380 const Loop *L; 4381 /// Loop back condition. 4382 Value *BackedgeCond = nullptr; 4383 /// Set to true if loop back is on positive branch condition. 4384 bool IsPositiveBECond; 4385 }; 4386 4387 Optional<const SCEV *> 4388 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4389 4390 // If value matches the backedge condition for loop latch, 4391 // then return a constant evolution node based on loopback 4392 // branch taken. 4393 if (BackedgeCond == IC) 4394 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4395 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4396 return None; 4397 } 4398 4399 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4400 public: 4401 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4402 ScalarEvolution &SE) { 4403 SCEVShiftRewriter Rewriter(L, SE); 4404 const SCEV *Result = Rewriter.visit(S); 4405 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4406 } 4407 4408 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4409 // Only allow AddRecExprs for this loop. 4410 if (!SE.isLoopInvariant(Expr, L)) 4411 Valid = false; 4412 return Expr; 4413 } 4414 4415 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4416 if (Expr->getLoop() == L && Expr->isAffine()) 4417 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4418 Valid = false; 4419 return Expr; 4420 } 4421 4422 bool isValid() { return Valid; } 4423 4424 private: 4425 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4426 : SCEVRewriteVisitor(SE), L(L) {} 4427 4428 const Loop *L; 4429 bool Valid = true; 4430 }; 4431 4432 } // end anonymous namespace 4433 4434 SCEV::NoWrapFlags 4435 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4436 if (!AR->isAffine()) 4437 return SCEV::FlagAnyWrap; 4438 4439 using OBO = OverflowingBinaryOperator; 4440 4441 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4442 4443 if (!AR->hasNoSignedWrap()) { 4444 ConstantRange AddRecRange = getSignedRange(AR); 4445 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4446 4447 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4448 Instruction::Add, IncRange, OBO::NoSignedWrap); 4449 if (NSWRegion.contains(AddRecRange)) 4450 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4451 } 4452 4453 if (!AR->hasNoUnsignedWrap()) { 4454 ConstantRange AddRecRange = getUnsignedRange(AR); 4455 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4456 4457 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4458 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4459 if (NUWRegion.contains(AddRecRange)) 4460 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4461 } 4462 4463 return Result; 4464 } 4465 4466 namespace { 4467 4468 /// Represents an abstract binary operation. This may exist as a 4469 /// normal instruction or constant expression, or may have been 4470 /// derived from an expression tree. 4471 struct BinaryOp { 4472 unsigned Opcode; 4473 Value *LHS; 4474 Value *RHS; 4475 bool IsNSW = false; 4476 bool IsNUW = false; 4477 4478 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4479 /// constant expression. 4480 Operator *Op = nullptr; 4481 4482 explicit BinaryOp(Operator *Op) 4483 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4484 Op(Op) { 4485 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4486 IsNSW = OBO->hasNoSignedWrap(); 4487 IsNUW = OBO->hasNoUnsignedWrap(); 4488 } 4489 } 4490 4491 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4492 bool IsNUW = false) 4493 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4494 }; 4495 4496 } // end anonymous namespace 4497 4498 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4499 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4500 auto *Op = dyn_cast<Operator>(V); 4501 if (!Op) 4502 return None; 4503 4504 // Implementation detail: all the cleverness here should happen without 4505 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4506 // SCEV expressions when possible, and we should not break that. 4507 4508 switch (Op->getOpcode()) { 4509 case Instruction::Add: 4510 case Instruction::Sub: 4511 case Instruction::Mul: 4512 case Instruction::UDiv: 4513 case Instruction::URem: 4514 case Instruction::And: 4515 case Instruction::Or: 4516 case Instruction::AShr: 4517 case Instruction::Shl: 4518 return BinaryOp(Op); 4519 4520 case Instruction::Xor: 4521 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4522 // If the RHS of the xor is a signmask, then this is just an add. 4523 // Instcombine turns add of signmask into xor as a strength reduction step. 4524 if (RHSC->getValue().isSignMask()) 4525 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4526 return BinaryOp(Op); 4527 4528 case Instruction::LShr: 4529 // Turn logical shift right of a constant into a unsigned divide. 4530 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4531 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4532 4533 // If the shift count is not less than the bitwidth, the result of 4534 // the shift is undefined. Don't try to analyze it, because the 4535 // resolution chosen here may differ from the resolution chosen in 4536 // other parts of the compiler. 4537 if (SA->getValue().ult(BitWidth)) { 4538 Constant *X = 4539 ConstantInt::get(SA->getContext(), 4540 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4541 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4542 } 4543 } 4544 return BinaryOp(Op); 4545 4546 case Instruction::ExtractValue: { 4547 auto *EVI = cast<ExtractValueInst>(Op); 4548 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4549 break; 4550 4551 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4552 if (!WO) 4553 break; 4554 4555 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4556 bool Signed = WO->isSigned(); 4557 // TODO: Should add nuw/nsw flags for mul as well. 4558 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4559 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4560 4561 // Now that we know that all uses of the arithmetic-result component of 4562 // CI are guarded by the overflow check, we can go ahead and pretend 4563 // that the arithmetic is non-overflowing. 4564 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4565 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4566 } 4567 4568 default: 4569 break; 4570 } 4571 4572 return None; 4573 } 4574 4575 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4576 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4577 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4578 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4579 /// follows one of the following patterns: 4580 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4581 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4582 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4583 /// we return the type of the truncation operation, and indicate whether the 4584 /// truncated type should be treated as signed/unsigned by setting 4585 /// \p Signed to true/false, respectively. 4586 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4587 bool &Signed, ScalarEvolution &SE) { 4588 // The case where Op == SymbolicPHI (that is, with no type conversions on 4589 // the way) is handled by the regular add recurrence creating logic and 4590 // would have already been triggered in createAddRecForPHI. Reaching it here 4591 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4592 // because one of the other operands of the SCEVAddExpr updating this PHI is 4593 // not invariant). 4594 // 4595 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4596 // this case predicates that allow us to prove that Op == SymbolicPHI will 4597 // be added. 4598 if (Op == SymbolicPHI) 4599 return nullptr; 4600 4601 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4602 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4603 if (SourceBits != NewBits) 4604 return nullptr; 4605 4606 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4607 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4608 if (!SExt && !ZExt) 4609 return nullptr; 4610 const SCEVTruncateExpr *Trunc = 4611 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4612 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4613 if (!Trunc) 4614 return nullptr; 4615 const SCEV *X = Trunc->getOperand(); 4616 if (X != SymbolicPHI) 4617 return nullptr; 4618 Signed = SExt != nullptr; 4619 return Trunc->getType(); 4620 } 4621 4622 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4623 if (!PN->getType()->isIntegerTy()) 4624 return nullptr; 4625 const Loop *L = LI.getLoopFor(PN->getParent()); 4626 if (!L || L->getHeader() != PN->getParent()) 4627 return nullptr; 4628 return L; 4629 } 4630 4631 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4632 // computation that updates the phi follows the following pattern: 4633 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4634 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4635 // If so, try to see if it can be rewritten as an AddRecExpr under some 4636 // Predicates. If successful, return them as a pair. Also cache the results 4637 // of the analysis. 4638 // 4639 // Example usage scenario: 4640 // Say the Rewriter is called for the following SCEV: 4641 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4642 // where: 4643 // %X = phi i64 (%Start, %BEValue) 4644 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4645 // and call this function with %SymbolicPHI = %X. 4646 // 4647 // The analysis will find that the value coming around the backedge has 4648 // the following SCEV: 4649 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4650 // Upon concluding that this matches the desired pattern, the function 4651 // will return the pair {NewAddRec, SmallPredsVec} where: 4652 // NewAddRec = {%Start,+,%Step} 4653 // SmallPredsVec = {P1, P2, P3} as follows: 4654 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4655 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4656 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4657 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4658 // under the predicates {P1,P2,P3}. 4659 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4660 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4661 // 4662 // TODO's: 4663 // 4664 // 1) Extend the Induction descriptor to also support inductions that involve 4665 // casts: When needed (namely, when we are called in the context of the 4666 // vectorizer induction analysis), a Set of cast instructions will be 4667 // populated by this method, and provided back to isInductionPHI. This is 4668 // needed to allow the vectorizer to properly record them to be ignored by 4669 // the cost model and to avoid vectorizing them (otherwise these casts, 4670 // which are redundant under the runtime overflow checks, will be 4671 // vectorized, which can be costly). 4672 // 4673 // 2) Support additional induction/PHISCEV patterns: We also want to support 4674 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4675 // after the induction update operation (the induction increment): 4676 // 4677 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4678 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4679 // 4680 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4681 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4682 // 4683 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4684 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4685 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4686 SmallVector<const SCEVPredicate *, 3> Predicates; 4687 4688 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4689 // return an AddRec expression under some predicate. 4690 4691 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4692 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4693 assert(L && "Expecting an integer loop header phi"); 4694 4695 // The loop may have multiple entrances or multiple exits; we can analyze 4696 // this phi as an addrec if it has a unique entry value and a unique 4697 // backedge value. 4698 Value *BEValueV = nullptr, *StartValueV = nullptr; 4699 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4700 Value *V = PN->getIncomingValue(i); 4701 if (L->contains(PN->getIncomingBlock(i))) { 4702 if (!BEValueV) { 4703 BEValueV = V; 4704 } else if (BEValueV != V) { 4705 BEValueV = nullptr; 4706 break; 4707 } 4708 } else if (!StartValueV) { 4709 StartValueV = V; 4710 } else if (StartValueV != V) { 4711 StartValueV = nullptr; 4712 break; 4713 } 4714 } 4715 if (!BEValueV || !StartValueV) 4716 return None; 4717 4718 const SCEV *BEValue = getSCEV(BEValueV); 4719 4720 // If the value coming around the backedge is an add with the symbolic 4721 // value we just inserted, possibly with casts that we can ignore under 4722 // an appropriate runtime guard, then we found a simple induction variable! 4723 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4724 if (!Add) 4725 return None; 4726 4727 // If there is a single occurrence of the symbolic value, possibly 4728 // casted, replace it with a recurrence. 4729 unsigned FoundIndex = Add->getNumOperands(); 4730 Type *TruncTy = nullptr; 4731 bool Signed; 4732 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4733 if ((TruncTy = 4734 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4735 if (FoundIndex == e) { 4736 FoundIndex = i; 4737 break; 4738 } 4739 4740 if (FoundIndex == Add->getNumOperands()) 4741 return None; 4742 4743 // Create an add with everything but the specified operand. 4744 SmallVector<const SCEV *, 8> Ops; 4745 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4746 if (i != FoundIndex) 4747 Ops.push_back(Add->getOperand(i)); 4748 const SCEV *Accum = getAddExpr(Ops); 4749 4750 // The runtime checks will not be valid if the step amount is 4751 // varying inside the loop. 4752 if (!isLoopInvariant(Accum, L)) 4753 return None; 4754 4755 // *** Part2: Create the predicates 4756 4757 // Analysis was successful: we have a phi-with-cast pattern for which we 4758 // can return an AddRec expression under the following predicates: 4759 // 4760 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4761 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4762 // P2: An Equal predicate that guarantees that 4763 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4764 // P3: An Equal predicate that guarantees that 4765 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4766 // 4767 // As we next prove, the above predicates guarantee that: 4768 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4769 // 4770 // 4771 // More formally, we want to prove that: 4772 // Expr(i+1) = Start + (i+1) * Accum 4773 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4774 // 4775 // Given that: 4776 // 1) Expr(0) = Start 4777 // 2) Expr(1) = Start + Accum 4778 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4779 // 3) Induction hypothesis (step i): 4780 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4781 // 4782 // Proof: 4783 // Expr(i+1) = 4784 // = Start + (i+1)*Accum 4785 // = (Start + i*Accum) + Accum 4786 // = Expr(i) + Accum 4787 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4788 // :: from step i 4789 // 4790 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4791 // 4792 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4793 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4794 // + Accum :: from P3 4795 // 4796 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4797 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4798 // 4799 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4800 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4801 // 4802 // By induction, the same applies to all iterations 1<=i<n: 4803 // 4804 4805 // Create a truncated addrec for which we will add a no overflow check (P1). 4806 const SCEV *StartVal = getSCEV(StartValueV); 4807 const SCEV *PHISCEV = 4808 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4809 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4810 4811 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4812 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4813 // will be constant. 4814 // 4815 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4816 // add P1. 4817 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4818 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4819 Signed ? SCEVWrapPredicate::IncrementNSSW 4820 : SCEVWrapPredicate::IncrementNUSW; 4821 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4822 Predicates.push_back(AddRecPred); 4823 } 4824 4825 // Create the Equal Predicates P2,P3: 4826 4827 // It is possible that the predicates P2 and/or P3 are computable at 4828 // compile time due to StartVal and/or Accum being constants. 4829 // If either one is, then we can check that now and escape if either P2 4830 // or P3 is false. 4831 4832 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4833 // for each of StartVal and Accum 4834 auto getExtendedExpr = [&](const SCEV *Expr, 4835 bool CreateSignExtend) -> const SCEV * { 4836 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4837 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4838 const SCEV *ExtendedExpr = 4839 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4840 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4841 return ExtendedExpr; 4842 }; 4843 4844 // Given: 4845 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4846 // = getExtendedExpr(Expr) 4847 // Determine whether the predicate P: Expr == ExtendedExpr 4848 // is known to be false at compile time 4849 auto PredIsKnownFalse = [&](const SCEV *Expr, 4850 const SCEV *ExtendedExpr) -> bool { 4851 return Expr != ExtendedExpr && 4852 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4853 }; 4854 4855 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4856 if (PredIsKnownFalse(StartVal, StartExtended)) { 4857 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4858 return None; 4859 } 4860 4861 // The Step is always Signed (because the overflow checks are either 4862 // NSSW or NUSW) 4863 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4864 if (PredIsKnownFalse(Accum, AccumExtended)) { 4865 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4866 return None; 4867 } 4868 4869 auto AppendPredicate = [&](const SCEV *Expr, 4870 const SCEV *ExtendedExpr) -> void { 4871 if (Expr != ExtendedExpr && 4872 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4873 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4874 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4875 Predicates.push_back(Pred); 4876 } 4877 }; 4878 4879 AppendPredicate(StartVal, StartExtended); 4880 AppendPredicate(Accum, AccumExtended); 4881 4882 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4883 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4884 // into NewAR if it will also add the runtime overflow checks specified in 4885 // Predicates. 4886 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4887 4888 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4889 std::make_pair(NewAR, Predicates); 4890 // Remember the result of the analysis for this SCEV at this locayyytion. 4891 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4892 return PredRewrite; 4893 } 4894 4895 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4896 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4897 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4898 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4899 if (!L) 4900 return None; 4901 4902 // Check to see if we already analyzed this PHI. 4903 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4904 if (I != PredicatedSCEVRewrites.end()) { 4905 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4906 I->second; 4907 // Analysis was done before and failed to create an AddRec: 4908 if (Rewrite.first == SymbolicPHI) 4909 return None; 4910 // Analysis was done before and succeeded to create an AddRec under 4911 // a predicate: 4912 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4913 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4914 return Rewrite; 4915 } 4916 4917 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4918 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4919 4920 // Record in the cache that the analysis failed 4921 if (!Rewrite) { 4922 SmallVector<const SCEVPredicate *, 3> Predicates; 4923 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4924 return None; 4925 } 4926 4927 return Rewrite; 4928 } 4929 4930 // FIXME: This utility is currently required because the Rewriter currently 4931 // does not rewrite this expression: 4932 // {0, +, (sext ix (trunc iy to ix) to iy)} 4933 // into {0, +, %step}, 4934 // even when the following Equal predicate exists: 4935 // "%step == (sext ix (trunc iy to ix) to iy)". 4936 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4937 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4938 if (AR1 == AR2) 4939 return true; 4940 4941 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4942 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4943 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4944 return false; 4945 return true; 4946 }; 4947 4948 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4949 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4950 return false; 4951 return true; 4952 } 4953 4954 /// A helper function for createAddRecFromPHI to handle simple cases. 4955 /// 4956 /// This function tries to find an AddRec expression for the simplest (yet most 4957 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4958 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4959 /// technique for finding the AddRec expression. 4960 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4961 Value *BEValueV, 4962 Value *StartValueV) { 4963 const Loop *L = LI.getLoopFor(PN->getParent()); 4964 assert(L && L->getHeader() == PN->getParent()); 4965 assert(BEValueV && StartValueV); 4966 4967 auto BO = MatchBinaryOp(BEValueV, DT); 4968 if (!BO) 4969 return nullptr; 4970 4971 if (BO->Opcode != Instruction::Add) 4972 return nullptr; 4973 4974 const SCEV *Accum = nullptr; 4975 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4976 Accum = getSCEV(BO->RHS); 4977 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4978 Accum = getSCEV(BO->LHS); 4979 4980 if (!Accum) 4981 return nullptr; 4982 4983 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4984 if (BO->IsNUW) 4985 Flags = setFlags(Flags, SCEV::FlagNUW); 4986 if (BO->IsNSW) 4987 Flags = setFlags(Flags, SCEV::FlagNSW); 4988 4989 const SCEV *StartVal = getSCEV(StartValueV); 4990 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4991 4992 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4993 4994 // We can add Flags to the post-inc expression only if we 4995 // know that it is *undefined behavior* for BEValueV to 4996 // overflow. 4997 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4998 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4999 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5000 5001 return PHISCEV; 5002 } 5003 5004 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5005 const Loop *L = LI.getLoopFor(PN->getParent()); 5006 if (!L || L->getHeader() != PN->getParent()) 5007 return nullptr; 5008 5009 // The loop may have multiple entrances or multiple exits; we can analyze 5010 // this phi as an addrec if it has a unique entry value and a unique 5011 // backedge value. 5012 Value *BEValueV = nullptr, *StartValueV = nullptr; 5013 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5014 Value *V = PN->getIncomingValue(i); 5015 if (L->contains(PN->getIncomingBlock(i))) { 5016 if (!BEValueV) { 5017 BEValueV = V; 5018 } else if (BEValueV != V) { 5019 BEValueV = nullptr; 5020 break; 5021 } 5022 } else if (!StartValueV) { 5023 StartValueV = V; 5024 } else if (StartValueV != V) { 5025 StartValueV = nullptr; 5026 break; 5027 } 5028 } 5029 if (!BEValueV || !StartValueV) 5030 return nullptr; 5031 5032 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5033 "PHI node already processed?"); 5034 5035 // First, try to find AddRec expression without creating a fictituos symbolic 5036 // value for PN. 5037 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5038 return S; 5039 5040 // Handle PHI node value symbolically. 5041 const SCEV *SymbolicName = getUnknown(PN); 5042 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5043 5044 // Using this symbolic name for the PHI, analyze the value coming around 5045 // the back-edge. 5046 const SCEV *BEValue = getSCEV(BEValueV); 5047 5048 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5049 // has a special value for the first iteration of the loop. 5050 5051 // If the value coming around the backedge is an add with the symbolic 5052 // value we just inserted, then we found a simple induction variable! 5053 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5054 // If there is a single occurrence of the symbolic value, replace it 5055 // with a recurrence. 5056 unsigned FoundIndex = Add->getNumOperands(); 5057 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5058 if (Add->getOperand(i) == SymbolicName) 5059 if (FoundIndex == e) { 5060 FoundIndex = i; 5061 break; 5062 } 5063 5064 if (FoundIndex != Add->getNumOperands()) { 5065 // Create an add with everything but the specified operand. 5066 SmallVector<const SCEV *, 8> Ops; 5067 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5068 if (i != FoundIndex) 5069 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5070 L, *this)); 5071 const SCEV *Accum = getAddExpr(Ops); 5072 5073 // This is not a valid addrec if the step amount is varying each 5074 // loop iteration, but is not itself an addrec in this loop. 5075 if (isLoopInvariant(Accum, L) || 5076 (isa<SCEVAddRecExpr>(Accum) && 5077 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5078 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5079 5080 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5081 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5082 if (BO->IsNUW) 5083 Flags = setFlags(Flags, SCEV::FlagNUW); 5084 if (BO->IsNSW) 5085 Flags = setFlags(Flags, SCEV::FlagNSW); 5086 } 5087 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5088 // If the increment is an inbounds GEP, then we know the address 5089 // space cannot be wrapped around. We cannot make any guarantee 5090 // about signed or unsigned overflow because pointers are 5091 // unsigned but we may have a negative index from the base 5092 // pointer. We can guarantee that no unsigned wrap occurs if the 5093 // indices form a positive value. 5094 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5095 Flags = setFlags(Flags, SCEV::FlagNW); 5096 5097 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5098 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5099 Flags = setFlags(Flags, SCEV::FlagNUW); 5100 } 5101 5102 // We cannot transfer nuw and nsw flags from subtraction 5103 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5104 // for instance. 5105 } 5106 5107 const SCEV *StartVal = getSCEV(StartValueV); 5108 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5109 5110 // Okay, for the entire analysis of this edge we assumed the PHI 5111 // to be symbolic. We now need to go back and purge all of the 5112 // entries for the scalars that use the symbolic expression. 5113 forgetSymbolicName(PN, SymbolicName); 5114 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5115 5116 // We can add Flags to the post-inc expression only if we 5117 // know that it is *undefined behavior* for BEValueV to 5118 // overflow. 5119 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5120 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5121 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5122 5123 return PHISCEV; 5124 } 5125 } 5126 } else { 5127 // Otherwise, this could be a loop like this: 5128 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5129 // In this case, j = {1,+,1} and BEValue is j. 5130 // Because the other in-value of i (0) fits the evolution of BEValue 5131 // i really is an addrec evolution. 5132 // 5133 // We can generalize this saying that i is the shifted value of BEValue 5134 // by one iteration: 5135 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5136 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5137 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5138 if (Shifted != getCouldNotCompute() && 5139 Start != getCouldNotCompute()) { 5140 const SCEV *StartVal = getSCEV(StartValueV); 5141 if (Start == StartVal) { 5142 // Okay, for the entire analysis of this edge we assumed the PHI 5143 // to be symbolic. We now need to go back and purge all of the 5144 // entries for the scalars that use the symbolic expression. 5145 forgetSymbolicName(PN, SymbolicName); 5146 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5147 return Shifted; 5148 } 5149 } 5150 } 5151 5152 // Remove the temporary PHI node SCEV that has been inserted while intending 5153 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5154 // as it will prevent later (possibly simpler) SCEV expressions to be added 5155 // to the ValueExprMap. 5156 eraseValueFromMap(PN); 5157 5158 return nullptr; 5159 } 5160 5161 // Checks if the SCEV S is available at BB. S is considered available at BB 5162 // if S can be materialized at BB without introducing a fault. 5163 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5164 BasicBlock *BB) { 5165 struct CheckAvailable { 5166 bool TraversalDone = false; 5167 bool Available = true; 5168 5169 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5170 BasicBlock *BB = nullptr; 5171 DominatorTree &DT; 5172 5173 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5174 : L(L), BB(BB), DT(DT) {} 5175 5176 bool setUnavailable() { 5177 TraversalDone = true; 5178 Available = false; 5179 return false; 5180 } 5181 5182 bool follow(const SCEV *S) { 5183 switch (S->getSCEVType()) { 5184 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 5185 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 5186 case scUMinExpr: 5187 case scSMinExpr: 5188 // These expressions are available if their operand(s) is/are. 5189 return true; 5190 5191 case scAddRecExpr: { 5192 // We allow add recurrences that are on the loop BB is in, or some 5193 // outer loop. This guarantees availability because the value of the 5194 // add recurrence at BB is simply the "current" value of the induction 5195 // variable. We can relax this in the future; for instance an add 5196 // recurrence on a sibling dominating loop is also available at BB. 5197 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5198 if (L && (ARLoop == L || ARLoop->contains(L))) 5199 return true; 5200 5201 return setUnavailable(); 5202 } 5203 5204 case scUnknown: { 5205 // For SCEVUnknown, we check for simple dominance. 5206 const auto *SU = cast<SCEVUnknown>(S); 5207 Value *V = SU->getValue(); 5208 5209 if (isa<Argument>(V)) 5210 return false; 5211 5212 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5213 return false; 5214 5215 return setUnavailable(); 5216 } 5217 5218 case scUDivExpr: 5219 case scCouldNotCompute: 5220 // We do not try to smart about these at all. 5221 return setUnavailable(); 5222 } 5223 llvm_unreachable("switch should be fully covered!"); 5224 } 5225 5226 bool isDone() { return TraversalDone; } 5227 }; 5228 5229 CheckAvailable CA(L, BB, DT); 5230 SCEVTraversal<CheckAvailable> ST(CA); 5231 5232 ST.visitAll(S); 5233 return CA.Available; 5234 } 5235 5236 // Try to match a control flow sequence that branches out at BI and merges back 5237 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5238 // match. 5239 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5240 Value *&C, Value *&LHS, Value *&RHS) { 5241 C = BI->getCondition(); 5242 5243 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5244 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5245 5246 if (!LeftEdge.isSingleEdge()) 5247 return false; 5248 5249 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5250 5251 Use &LeftUse = Merge->getOperandUse(0); 5252 Use &RightUse = Merge->getOperandUse(1); 5253 5254 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5255 LHS = LeftUse; 5256 RHS = RightUse; 5257 return true; 5258 } 5259 5260 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5261 LHS = RightUse; 5262 RHS = LeftUse; 5263 return true; 5264 } 5265 5266 return false; 5267 } 5268 5269 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5270 auto IsReachable = 5271 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5272 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5273 const Loop *L = LI.getLoopFor(PN->getParent()); 5274 5275 // We don't want to break LCSSA, even in a SCEV expression tree. 5276 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5277 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5278 return nullptr; 5279 5280 // Try to match 5281 // 5282 // br %cond, label %left, label %right 5283 // left: 5284 // br label %merge 5285 // right: 5286 // br label %merge 5287 // merge: 5288 // V = phi [ %x, %left ], [ %y, %right ] 5289 // 5290 // as "select %cond, %x, %y" 5291 5292 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5293 assert(IDom && "At least the entry block should dominate PN"); 5294 5295 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5296 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5297 5298 if (BI && BI->isConditional() && 5299 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5300 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5301 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5302 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5303 } 5304 5305 return nullptr; 5306 } 5307 5308 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5309 if (const SCEV *S = createAddRecFromPHI(PN)) 5310 return S; 5311 5312 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5313 return S; 5314 5315 // If the PHI has a single incoming value, follow that value, unless the 5316 // PHI's incoming blocks are in a different loop, in which case doing so 5317 // risks breaking LCSSA form. Instcombine would normally zap these, but 5318 // it doesn't have DominatorTree information, so it may miss cases. 5319 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5320 if (LI.replacementPreservesLCSSAForm(PN, V)) 5321 return getSCEV(V); 5322 5323 // If it's not a loop phi, we can't handle it yet. 5324 return getUnknown(PN); 5325 } 5326 5327 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5328 Value *Cond, 5329 Value *TrueVal, 5330 Value *FalseVal) { 5331 // Handle "constant" branch or select. This can occur for instance when a 5332 // loop pass transforms an inner loop and moves on to process the outer loop. 5333 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5334 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5335 5336 // Try to match some simple smax or umax patterns. 5337 auto *ICI = dyn_cast<ICmpInst>(Cond); 5338 if (!ICI) 5339 return getUnknown(I); 5340 5341 Value *LHS = ICI->getOperand(0); 5342 Value *RHS = ICI->getOperand(1); 5343 5344 switch (ICI->getPredicate()) { 5345 case ICmpInst::ICMP_SLT: 5346 case ICmpInst::ICMP_SLE: 5347 std::swap(LHS, RHS); 5348 LLVM_FALLTHROUGH; 5349 case ICmpInst::ICMP_SGT: 5350 case ICmpInst::ICMP_SGE: 5351 // a >s b ? a+x : b+x -> smax(a, b)+x 5352 // a >s b ? b+x : a+x -> smin(a, b)+x 5353 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5354 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5355 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5356 const SCEV *LA = getSCEV(TrueVal); 5357 const SCEV *RA = getSCEV(FalseVal); 5358 const SCEV *LDiff = getMinusSCEV(LA, LS); 5359 const SCEV *RDiff = getMinusSCEV(RA, RS); 5360 if (LDiff == RDiff) 5361 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5362 LDiff = getMinusSCEV(LA, RS); 5363 RDiff = getMinusSCEV(RA, LS); 5364 if (LDiff == RDiff) 5365 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5366 } 5367 break; 5368 case ICmpInst::ICMP_ULT: 5369 case ICmpInst::ICMP_ULE: 5370 std::swap(LHS, RHS); 5371 LLVM_FALLTHROUGH; 5372 case ICmpInst::ICMP_UGT: 5373 case ICmpInst::ICMP_UGE: 5374 // a >u b ? a+x : b+x -> umax(a, b)+x 5375 // a >u b ? b+x : a+x -> umin(a, b)+x 5376 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5377 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5378 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5379 const SCEV *LA = getSCEV(TrueVal); 5380 const SCEV *RA = getSCEV(FalseVal); 5381 const SCEV *LDiff = getMinusSCEV(LA, LS); 5382 const SCEV *RDiff = getMinusSCEV(RA, RS); 5383 if (LDiff == RDiff) 5384 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5385 LDiff = getMinusSCEV(LA, RS); 5386 RDiff = getMinusSCEV(RA, LS); 5387 if (LDiff == RDiff) 5388 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5389 } 5390 break; 5391 case ICmpInst::ICMP_NE: 5392 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5393 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5394 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5395 const SCEV *One = getOne(I->getType()); 5396 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5397 const SCEV *LA = getSCEV(TrueVal); 5398 const SCEV *RA = getSCEV(FalseVal); 5399 const SCEV *LDiff = getMinusSCEV(LA, LS); 5400 const SCEV *RDiff = getMinusSCEV(RA, One); 5401 if (LDiff == RDiff) 5402 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5403 } 5404 break; 5405 case ICmpInst::ICMP_EQ: 5406 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5407 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5408 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5409 const SCEV *One = getOne(I->getType()); 5410 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5411 const SCEV *LA = getSCEV(TrueVal); 5412 const SCEV *RA = getSCEV(FalseVal); 5413 const SCEV *LDiff = getMinusSCEV(LA, One); 5414 const SCEV *RDiff = getMinusSCEV(RA, LS); 5415 if (LDiff == RDiff) 5416 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5417 } 5418 break; 5419 default: 5420 break; 5421 } 5422 5423 return getUnknown(I); 5424 } 5425 5426 /// Expand GEP instructions into add and multiply operations. This allows them 5427 /// to be analyzed by regular SCEV code. 5428 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5429 // Don't attempt to analyze GEPs over unsized objects. 5430 if (!GEP->getSourceElementType()->isSized()) 5431 return getUnknown(GEP); 5432 5433 SmallVector<const SCEV *, 4> IndexExprs; 5434 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5435 IndexExprs.push_back(getSCEV(*Index)); 5436 return getGEPExpr(GEP, IndexExprs); 5437 } 5438 5439 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5440 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5441 return C->getAPInt().countTrailingZeros(); 5442 5443 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5444 return std::min(GetMinTrailingZeros(T->getOperand()), 5445 (uint32_t)getTypeSizeInBits(T->getType())); 5446 5447 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5448 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5449 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5450 ? getTypeSizeInBits(E->getType()) 5451 : OpRes; 5452 } 5453 5454 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5455 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5456 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5457 ? getTypeSizeInBits(E->getType()) 5458 : OpRes; 5459 } 5460 5461 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5462 // The result is the min of all operands results. 5463 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5464 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5465 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5466 return MinOpRes; 5467 } 5468 5469 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5470 // The result is the sum of all operands results. 5471 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5472 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5473 for (unsigned i = 1, e = M->getNumOperands(); 5474 SumOpRes != BitWidth && i != e; ++i) 5475 SumOpRes = 5476 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5477 return SumOpRes; 5478 } 5479 5480 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5481 // The result is the min of all operands results. 5482 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5483 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5484 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5485 return MinOpRes; 5486 } 5487 5488 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5489 // The result is the min of all operands results. 5490 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5491 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5492 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5493 return MinOpRes; 5494 } 5495 5496 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5497 // The result is the min of all operands results. 5498 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5499 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5500 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5501 return MinOpRes; 5502 } 5503 5504 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5505 // For a SCEVUnknown, ask ValueTracking. 5506 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5507 return Known.countMinTrailingZeros(); 5508 } 5509 5510 // SCEVUDivExpr 5511 return 0; 5512 } 5513 5514 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5515 auto I = MinTrailingZerosCache.find(S); 5516 if (I != MinTrailingZerosCache.end()) 5517 return I->second; 5518 5519 uint32_t Result = GetMinTrailingZerosImpl(S); 5520 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5521 assert(InsertPair.second && "Should insert a new key"); 5522 return InsertPair.first->second; 5523 } 5524 5525 /// Helper method to assign a range to V from metadata present in the IR. 5526 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5527 if (Instruction *I = dyn_cast<Instruction>(V)) 5528 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5529 return getConstantRangeFromMetadata(*MD); 5530 5531 return None; 5532 } 5533 5534 /// Determine the range for a particular SCEV. If SignHint is 5535 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5536 /// with a "cleaner" unsigned (resp. signed) representation. 5537 const ConstantRange & 5538 ScalarEvolution::getRangeRef(const SCEV *S, 5539 ScalarEvolution::RangeSignHint SignHint) { 5540 DenseMap<const SCEV *, ConstantRange> &Cache = 5541 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5542 : SignedRanges; 5543 ConstantRange::PreferredRangeType RangeType = 5544 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5545 ? ConstantRange::Unsigned : ConstantRange::Signed; 5546 5547 // See if we've computed this range already. 5548 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5549 if (I != Cache.end()) 5550 return I->second; 5551 5552 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5553 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5554 5555 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5556 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5557 5558 // If the value has known zeros, the maximum value will have those known zeros 5559 // as well. 5560 uint32_t TZ = GetMinTrailingZeros(S); 5561 if (TZ != 0) { 5562 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5563 ConservativeResult = 5564 ConstantRange(APInt::getMinValue(BitWidth), 5565 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5566 else 5567 ConservativeResult = ConstantRange( 5568 APInt::getSignedMinValue(BitWidth), 5569 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5570 } 5571 5572 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5573 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5574 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5575 X = X.add(getRangeRef(Add->getOperand(i), SignHint)); 5576 return setRange(Add, SignHint, 5577 ConservativeResult.intersectWith(X, RangeType)); 5578 } 5579 5580 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5581 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5582 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5583 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5584 return setRange(Mul, SignHint, 5585 ConservativeResult.intersectWith(X, RangeType)); 5586 } 5587 5588 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5589 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5590 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5591 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5592 return setRange(SMax, SignHint, 5593 ConservativeResult.intersectWith(X, RangeType)); 5594 } 5595 5596 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5597 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5598 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5599 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5600 return setRange(UMax, SignHint, 5601 ConservativeResult.intersectWith(X, RangeType)); 5602 } 5603 5604 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5605 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5606 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5607 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5608 return setRange(SMin, SignHint, 5609 ConservativeResult.intersectWith(X, RangeType)); 5610 } 5611 5612 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5613 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5614 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5615 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5616 return setRange(UMin, SignHint, 5617 ConservativeResult.intersectWith(X, RangeType)); 5618 } 5619 5620 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5621 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5622 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5623 return setRange(UDiv, SignHint, 5624 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5625 } 5626 5627 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5628 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5629 return setRange(ZExt, SignHint, 5630 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5631 RangeType)); 5632 } 5633 5634 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5635 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5636 return setRange(SExt, SignHint, 5637 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5638 RangeType)); 5639 } 5640 5641 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5642 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5643 return setRange(Trunc, SignHint, 5644 ConservativeResult.intersectWith(X.truncate(BitWidth), 5645 RangeType)); 5646 } 5647 5648 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5649 // If there's no unsigned wrap, the value will never be less than its 5650 // initial value. 5651 if (AddRec->hasNoUnsignedWrap()) 5652 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 5653 if (!C->getValue()->isZero()) 5654 ConservativeResult = ConservativeResult.intersectWith( 5655 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)), RangeType); 5656 5657 // If there's no signed wrap, and all the operands have the same sign or 5658 // zero, the value won't ever change sign. 5659 if (AddRec->hasNoSignedWrap()) { 5660 bool AllNonNeg = true; 5661 bool AllNonPos = true; 5662 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5663 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 5664 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 5665 } 5666 if (AllNonNeg) 5667 ConservativeResult = ConservativeResult.intersectWith( 5668 ConstantRange(APInt(BitWidth, 0), 5669 APInt::getSignedMinValue(BitWidth)), RangeType); 5670 else if (AllNonPos) 5671 ConservativeResult = ConservativeResult.intersectWith( 5672 ConstantRange(APInt::getSignedMinValue(BitWidth), 5673 APInt(BitWidth, 1)), RangeType); 5674 } 5675 5676 // TODO: non-affine addrec 5677 if (AddRec->isAffine()) { 5678 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5679 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5680 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5681 auto RangeFromAffine = getRangeForAffineAR( 5682 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5683 BitWidth); 5684 if (!RangeFromAffine.isFullSet()) 5685 ConservativeResult = 5686 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5687 5688 auto RangeFromFactoring = getRangeViaFactoring( 5689 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5690 BitWidth); 5691 if (!RangeFromFactoring.isFullSet()) 5692 ConservativeResult = 5693 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5694 } 5695 } 5696 5697 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5698 } 5699 5700 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5701 // Check if the IR explicitly contains !range metadata. 5702 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5703 if (MDRange.hasValue()) 5704 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5705 RangeType); 5706 5707 // Split here to avoid paying the compile-time cost of calling both 5708 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5709 // if needed. 5710 const DataLayout &DL = getDataLayout(); 5711 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5712 // For a SCEVUnknown, ask ValueTracking. 5713 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5714 if (Known.One != ~Known.Zero + 1) 5715 ConservativeResult = 5716 ConservativeResult.intersectWith( 5717 ConstantRange(Known.One, ~Known.Zero + 1), RangeType); 5718 } else { 5719 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5720 "generalize as needed!"); 5721 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5722 if (NS > 1) 5723 ConservativeResult = ConservativeResult.intersectWith( 5724 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5725 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5726 RangeType); 5727 } 5728 5729 // A range of Phi is a subset of union of all ranges of its input. 5730 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5731 // Make sure that we do not run over cycled Phis. 5732 if (PendingPhiRanges.insert(Phi).second) { 5733 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5734 for (auto &Op : Phi->operands()) { 5735 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5736 RangeFromOps = RangeFromOps.unionWith(OpRange); 5737 // No point to continue if we already have a full set. 5738 if (RangeFromOps.isFullSet()) 5739 break; 5740 } 5741 ConservativeResult = 5742 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5743 bool Erased = PendingPhiRanges.erase(Phi); 5744 assert(Erased && "Failed to erase Phi properly?"); 5745 (void) Erased; 5746 } 5747 } 5748 5749 return setRange(U, SignHint, std::move(ConservativeResult)); 5750 } 5751 5752 return setRange(S, SignHint, std::move(ConservativeResult)); 5753 } 5754 5755 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5756 // values that the expression can take. Initially, the expression has a value 5757 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5758 // argument defines if we treat Step as signed or unsigned. 5759 static ConstantRange getRangeForAffineARHelper(APInt Step, 5760 const ConstantRange &StartRange, 5761 const APInt &MaxBECount, 5762 unsigned BitWidth, bool Signed) { 5763 // If either Step or MaxBECount is 0, then the expression won't change, and we 5764 // just need to return the initial range. 5765 if (Step == 0 || MaxBECount == 0) 5766 return StartRange; 5767 5768 // If we don't know anything about the initial value (i.e. StartRange is 5769 // FullRange), then we don't know anything about the final range either. 5770 // Return FullRange. 5771 if (StartRange.isFullSet()) 5772 return ConstantRange::getFull(BitWidth); 5773 5774 // If Step is signed and negative, then we use its absolute value, but we also 5775 // note that we're moving in the opposite direction. 5776 bool Descending = Signed && Step.isNegative(); 5777 5778 if (Signed) 5779 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5780 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5781 // This equations hold true due to the well-defined wrap-around behavior of 5782 // APInt. 5783 Step = Step.abs(); 5784 5785 // Check if Offset is more than full span of BitWidth. If it is, the 5786 // expression is guaranteed to overflow. 5787 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5788 return ConstantRange::getFull(BitWidth); 5789 5790 // Offset is by how much the expression can change. Checks above guarantee no 5791 // overflow here. 5792 APInt Offset = Step * MaxBECount; 5793 5794 // Minimum value of the final range will match the minimal value of StartRange 5795 // if the expression is increasing and will be decreased by Offset otherwise. 5796 // Maximum value of the final range will match the maximal value of StartRange 5797 // if the expression is decreasing and will be increased by Offset otherwise. 5798 APInt StartLower = StartRange.getLower(); 5799 APInt StartUpper = StartRange.getUpper() - 1; 5800 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5801 : (StartUpper + std::move(Offset)); 5802 5803 // It's possible that the new minimum/maximum value will fall into the initial 5804 // range (due to wrap around). This means that the expression can take any 5805 // value in this bitwidth, and we have to return full range. 5806 if (StartRange.contains(MovedBoundary)) 5807 return ConstantRange::getFull(BitWidth); 5808 5809 APInt NewLower = 5810 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5811 APInt NewUpper = 5812 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5813 NewUpper += 1; 5814 5815 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5816 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5817 } 5818 5819 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5820 const SCEV *Step, 5821 const SCEV *MaxBECount, 5822 unsigned BitWidth) { 5823 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5824 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5825 "Precondition!"); 5826 5827 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5828 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5829 5830 // First, consider step signed. 5831 ConstantRange StartSRange = getSignedRange(Start); 5832 ConstantRange StepSRange = getSignedRange(Step); 5833 5834 // If Step can be both positive and negative, we need to find ranges for the 5835 // maximum absolute step values in both directions and union them. 5836 ConstantRange SR = 5837 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5838 MaxBECountValue, BitWidth, /* Signed = */ true); 5839 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5840 StartSRange, MaxBECountValue, 5841 BitWidth, /* Signed = */ true)); 5842 5843 // Next, consider step unsigned. 5844 ConstantRange UR = getRangeForAffineARHelper( 5845 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5846 MaxBECountValue, BitWidth, /* Signed = */ false); 5847 5848 // Finally, intersect signed and unsigned ranges. 5849 return SR.intersectWith(UR, ConstantRange::Smallest); 5850 } 5851 5852 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5853 const SCEV *Step, 5854 const SCEV *MaxBECount, 5855 unsigned BitWidth) { 5856 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5857 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5858 5859 struct SelectPattern { 5860 Value *Condition = nullptr; 5861 APInt TrueValue; 5862 APInt FalseValue; 5863 5864 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5865 const SCEV *S) { 5866 Optional<unsigned> CastOp; 5867 APInt Offset(BitWidth, 0); 5868 5869 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5870 "Should be!"); 5871 5872 // Peel off a constant offset: 5873 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5874 // In the future we could consider being smarter here and handle 5875 // {Start+Step,+,Step} too. 5876 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5877 return; 5878 5879 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5880 S = SA->getOperand(1); 5881 } 5882 5883 // Peel off a cast operation 5884 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5885 CastOp = SCast->getSCEVType(); 5886 S = SCast->getOperand(); 5887 } 5888 5889 using namespace llvm::PatternMatch; 5890 5891 auto *SU = dyn_cast<SCEVUnknown>(S); 5892 const APInt *TrueVal, *FalseVal; 5893 if (!SU || 5894 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5895 m_APInt(FalseVal)))) { 5896 Condition = nullptr; 5897 return; 5898 } 5899 5900 TrueValue = *TrueVal; 5901 FalseValue = *FalseVal; 5902 5903 // Re-apply the cast we peeled off earlier 5904 if (CastOp.hasValue()) 5905 switch (*CastOp) { 5906 default: 5907 llvm_unreachable("Unknown SCEV cast type!"); 5908 5909 case scTruncate: 5910 TrueValue = TrueValue.trunc(BitWidth); 5911 FalseValue = FalseValue.trunc(BitWidth); 5912 break; 5913 case scZeroExtend: 5914 TrueValue = TrueValue.zext(BitWidth); 5915 FalseValue = FalseValue.zext(BitWidth); 5916 break; 5917 case scSignExtend: 5918 TrueValue = TrueValue.sext(BitWidth); 5919 FalseValue = FalseValue.sext(BitWidth); 5920 break; 5921 } 5922 5923 // Re-apply the constant offset we peeled off earlier 5924 TrueValue += Offset; 5925 FalseValue += Offset; 5926 } 5927 5928 bool isRecognized() { return Condition != nullptr; } 5929 }; 5930 5931 SelectPattern StartPattern(*this, BitWidth, Start); 5932 if (!StartPattern.isRecognized()) 5933 return ConstantRange::getFull(BitWidth); 5934 5935 SelectPattern StepPattern(*this, BitWidth, Step); 5936 if (!StepPattern.isRecognized()) 5937 return ConstantRange::getFull(BitWidth); 5938 5939 if (StartPattern.Condition != StepPattern.Condition) { 5940 // We don't handle this case today; but we could, by considering four 5941 // possibilities below instead of two. I'm not sure if there are cases where 5942 // that will help over what getRange already does, though. 5943 return ConstantRange::getFull(BitWidth); 5944 } 5945 5946 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5947 // construct arbitrary general SCEV expressions here. This function is called 5948 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5949 // say) can end up caching a suboptimal value. 5950 5951 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5952 // C2352 and C2512 (otherwise it isn't needed). 5953 5954 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5955 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5956 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5957 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5958 5959 ConstantRange TrueRange = 5960 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5961 ConstantRange FalseRange = 5962 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5963 5964 return TrueRange.unionWith(FalseRange); 5965 } 5966 5967 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5968 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5969 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5970 5971 // Return early if there are no flags to propagate to the SCEV. 5972 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5973 if (BinOp->hasNoUnsignedWrap()) 5974 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5975 if (BinOp->hasNoSignedWrap()) 5976 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5977 if (Flags == SCEV::FlagAnyWrap) 5978 return SCEV::FlagAnyWrap; 5979 5980 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5981 } 5982 5983 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5984 // Here we check that I is in the header of the innermost loop containing I, 5985 // since we only deal with instructions in the loop header. The actual loop we 5986 // need to check later will come from an add recurrence, but getting that 5987 // requires computing the SCEV of the operands, which can be expensive. This 5988 // check we can do cheaply to rule out some cases early. 5989 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5990 if (InnermostContainingLoop == nullptr || 5991 InnermostContainingLoop->getHeader() != I->getParent()) 5992 return false; 5993 5994 // Only proceed if we can prove that I does not yield poison. 5995 if (!programUndefinedIfFullPoison(I)) 5996 return false; 5997 5998 // At this point we know that if I is executed, then it does not wrap 5999 // according to at least one of NSW or NUW. If I is not executed, then we do 6000 // not know if the calculation that I represents would wrap. Multiple 6001 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6002 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6003 // derived from other instructions that map to the same SCEV. We cannot make 6004 // that guarantee for cases where I is not executed. So we need to find the 6005 // loop that I is considered in relation to and prove that I is executed for 6006 // every iteration of that loop. That implies that the value that I 6007 // calculates does not wrap anywhere in the loop, so then we can apply the 6008 // flags to the SCEV. 6009 // 6010 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6011 // from different loops, so that we know which loop to prove that I is 6012 // executed in. 6013 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6014 // I could be an extractvalue from a call to an overflow intrinsic. 6015 // TODO: We can do better here in some cases. 6016 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6017 return false; 6018 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6019 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6020 bool AllOtherOpsLoopInvariant = true; 6021 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6022 ++OtherOpIndex) { 6023 if (OtherOpIndex != OpIndex) { 6024 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6025 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6026 AllOtherOpsLoopInvariant = false; 6027 break; 6028 } 6029 } 6030 } 6031 if (AllOtherOpsLoopInvariant && 6032 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6033 return true; 6034 } 6035 } 6036 return false; 6037 } 6038 6039 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6040 // If we know that \c I can never be poison period, then that's enough. 6041 if (isSCEVExprNeverPoison(I)) 6042 return true; 6043 6044 // For an add recurrence specifically, we assume that infinite loops without 6045 // side effects are undefined behavior, and then reason as follows: 6046 // 6047 // If the add recurrence is poison in any iteration, it is poison on all 6048 // future iterations (since incrementing poison yields poison). If the result 6049 // of the add recurrence is fed into the loop latch condition and the loop 6050 // does not contain any throws or exiting blocks other than the latch, we now 6051 // have the ability to "choose" whether the backedge is taken or not (by 6052 // choosing a sufficiently evil value for the poison feeding into the branch) 6053 // for every iteration including and after the one in which \p I first became 6054 // poison. There are two possibilities (let's call the iteration in which \p 6055 // I first became poison as K): 6056 // 6057 // 1. In the set of iterations including and after K, the loop body executes 6058 // no side effects. In this case executing the backege an infinte number 6059 // of times will yield undefined behavior. 6060 // 6061 // 2. In the set of iterations including and after K, the loop body executes 6062 // at least one side effect. In this case, that specific instance of side 6063 // effect is control dependent on poison, which also yields undefined 6064 // behavior. 6065 6066 auto *ExitingBB = L->getExitingBlock(); 6067 auto *LatchBB = L->getLoopLatch(); 6068 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6069 return false; 6070 6071 SmallPtrSet<const Instruction *, 16> Pushed; 6072 SmallVector<const Instruction *, 8> PoisonStack; 6073 6074 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6075 // things that are known to be fully poison under that assumption go on the 6076 // PoisonStack. 6077 Pushed.insert(I); 6078 PoisonStack.push_back(I); 6079 6080 bool LatchControlDependentOnPoison = false; 6081 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6082 const Instruction *Poison = PoisonStack.pop_back_val(); 6083 6084 for (auto *PoisonUser : Poison->users()) { 6085 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 6086 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6087 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6088 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6089 assert(BI->isConditional() && "Only possibility!"); 6090 if (BI->getParent() == LatchBB) { 6091 LatchControlDependentOnPoison = true; 6092 break; 6093 } 6094 } 6095 } 6096 } 6097 6098 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6099 } 6100 6101 ScalarEvolution::LoopProperties 6102 ScalarEvolution::getLoopProperties(const Loop *L) { 6103 using LoopProperties = ScalarEvolution::LoopProperties; 6104 6105 auto Itr = LoopPropertiesCache.find(L); 6106 if (Itr == LoopPropertiesCache.end()) { 6107 auto HasSideEffects = [](Instruction *I) { 6108 if (auto *SI = dyn_cast<StoreInst>(I)) 6109 return !SI->isSimple(); 6110 6111 return I->mayHaveSideEffects(); 6112 }; 6113 6114 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6115 /*HasNoSideEffects*/ true}; 6116 6117 for (auto *BB : L->getBlocks()) 6118 for (auto &I : *BB) { 6119 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6120 LP.HasNoAbnormalExits = false; 6121 if (HasSideEffects(&I)) 6122 LP.HasNoSideEffects = false; 6123 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6124 break; // We're already as pessimistic as we can get. 6125 } 6126 6127 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6128 assert(InsertPair.second && "We just checked!"); 6129 Itr = InsertPair.first; 6130 } 6131 6132 return Itr->second; 6133 } 6134 6135 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6136 if (!isSCEVable(V->getType())) 6137 return getUnknown(V); 6138 6139 if (Instruction *I = dyn_cast<Instruction>(V)) { 6140 // Don't attempt to analyze instructions in blocks that aren't 6141 // reachable. Such instructions don't matter, and they aren't required 6142 // to obey basic rules for definitions dominating uses which this 6143 // analysis depends on. 6144 if (!DT.isReachableFromEntry(I->getParent())) 6145 return getUnknown(UndefValue::get(V->getType())); 6146 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6147 return getConstant(CI); 6148 else if (isa<ConstantPointerNull>(V)) 6149 return getZero(V->getType()); 6150 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6151 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6152 else if (!isa<ConstantExpr>(V)) 6153 return getUnknown(V); 6154 6155 Operator *U = cast<Operator>(V); 6156 if (auto BO = MatchBinaryOp(U, DT)) { 6157 switch (BO->Opcode) { 6158 case Instruction::Add: { 6159 // The simple thing to do would be to just call getSCEV on both operands 6160 // and call getAddExpr with the result. However if we're looking at a 6161 // bunch of things all added together, this can be quite inefficient, 6162 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6163 // Instead, gather up all the operands and make a single getAddExpr call. 6164 // LLVM IR canonical form means we need only traverse the left operands. 6165 SmallVector<const SCEV *, 4> AddOps; 6166 do { 6167 if (BO->Op) { 6168 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6169 AddOps.push_back(OpSCEV); 6170 break; 6171 } 6172 6173 // If a NUW or NSW flag can be applied to the SCEV for this 6174 // addition, then compute the SCEV for this addition by itself 6175 // with a separate call to getAddExpr. We need to do that 6176 // instead of pushing the operands of the addition onto AddOps, 6177 // since the flags are only known to apply to this particular 6178 // addition - they may not apply to other additions that can be 6179 // formed with operands from AddOps. 6180 const SCEV *RHS = getSCEV(BO->RHS); 6181 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6182 if (Flags != SCEV::FlagAnyWrap) { 6183 const SCEV *LHS = getSCEV(BO->LHS); 6184 if (BO->Opcode == Instruction::Sub) 6185 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6186 else 6187 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6188 break; 6189 } 6190 } 6191 6192 if (BO->Opcode == Instruction::Sub) 6193 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6194 else 6195 AddOps.push_back(getSCEV(BO->RHS)); 6196 6197 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6198 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6199 NewBO->Opcode != Instruction::Sub)) { 6200 AddOps.push_back(getSCEV(BO->LHS)); 6201 break; 6202 } 6203 BO = NewBO; 6204 } while (true); 6205 6206 return getAddExpr(AddOps); 6207 } 6208 6209 case Instruction::Mul: { 6210 SmallVector<const SCEV *, 4> MulOps; 6211 do { 6212 if (BO->Op) { 6213 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6214 MulOps.push_back(OpSCEV); 6215 break; 6216 } 6217 6218 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6219 if (Flags != SCEV::FlagAnyWrap) { 6220 MulOps.push_back( 6221 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6222 break; 6223 } 6224 } 6225 6226 MulOps.push_back(getSCEV(BO->RHS)); 6227 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6228 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6229 MulOps.push_back(getSCEV(BO->LHS)); 6230 break; 6231 } 6232 BO = NewBO; 6233 } while (true); 6234 6235 return getMulExpr(MulOps); 6236 } 6237 case Instruction::UDiv: 6238 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6239 case Instruction::URem: 6240 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6241 case Instruction::Sub: { 6242 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6243 if (BO->Op) 6244 Flags = getNoWrapFlagsFromUB(BO->Op); 6245 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6246 } 6247 case Instruction::And: 6248 // For an expression like x&255 that merely masks off the high bits, 6249 // use zext(trunc(x)) as the SCEV expression. 6250 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6251 if (CI->isZero()) 6252 return getSCEV(BO->RHS); 6253 if (CI->isMinusOne()) 6254 return getSCEV(BO->LHS); 6255 const APInt &A = CI->getValue(); 6256 6257 // Instcombine's ShrinkDemandedConstant may strip bits out of 6258 // constants, obscuring what would otherwise be a low-bits mask. 6259 // Use computeKnownBits to compute what ShrinkDemandedConstant 6260 // knew about to reconstruct a low-bits mask value. 6261 unsigned LZ = A.countLeadingZeros(); 6262 unsigned TZ = A.countTrailingZeros(); 6263 unsigned BitWidth = A.getBitWidth(); 6264 KnownBits Known(BitWidth); 6265 computeKnownBits(BO->LHS, Known, getDataLayout(), 6266 0, &AC, nullptr, &DT); 6267 6268 APInt EffectiveMask = 6269 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6270 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6271 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6272 const SCEV *LHS = getSCEV(BO->LHS); 6273 const SCEV *ShiftedLHS = nullptr; 6274 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6275 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6276 // For an expression like (x * 8) & 8, simplify the multiply. 6277 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6278 unsigned GCD = std::min(MulZeros, TZ); 6279 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6280 SmallVector<const SCEV*, 4> MulOps; 6281 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6282 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6283 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6284 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6285 } 6286 } 6287 if (!ShiftedLHS) 6288 ShiftedLHS = getUDivExpr(LHS, MulCount); 6289 return getMulExpr( 6290 getZeroExtendExpr( 6291 getTruncateExpr(ShiftedLHS, 6292 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6293 BO->LHS->getType()), 6294 MulCount); 6295 } 6296 } 6297 break; 6298 6299 case Instruction::Or: 6300 // If the RHS of the Or is a constant, we may have something like: 6301 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6302 // optimizations will transparently handle this case. 6303 // 6304 // In order for this transformation to be safe, the LHS must be of the 6305 // form X*(2^n) and the Or constant must be less than 2^n. 6306 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6307 const SCEV *LHS = getSCEV(BO->LHS); 6308 const APInt &CIVal = CI->getValue(); 6309 if (GetMinTrailingZeros(LHS) >= 6310 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6311 // Build a plain add SCEV. 6312 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 6313 // If the LHS of the add was an addrec and it has no-wrap flags, 6314 // transfer the no-wrap flags, since an or won't introduce a wrap. 6315 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 6316 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 6317 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 6318 OldAR->getNoWrapFlags()); 6319 } 6320 return S; 6321 } 6322 } 6323 break; 6324 6325 case Instruction::Xor: 6326 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6327 // If the RHS of xor is -1, then this is a not operation. 6328 if (CI->isMinusOne()) 6329 return getNotSCEV(getSCEV(BO->LHS)); 6330 6331 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6332 // This is a variant of the check for xor with -1, and it handles 6333 // the case where instcombine has trimmed non-demanded bits out 6334 // of an xor with -1. 6335 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6336 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6337 if (LBO->getOpcode() == Instruction::And && 6338 LCI->getValue() == CI->getValue()) 6339 if (const SCEVZeroExtendExpr *Z = 6340 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6341 Type *UTy = BO->LHS->getType(); 6342 const SCEV *Z0 = Z->getOperand(); 6343 Type *Z0Ty = Z0->getType(); 6344 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6345 6346 // If C is a low-bits mask, the zero extend is serving to 6347 // mask off the high bits. Complement the operand and 6348 // re-apply the zext. 6349 if (CI->getValue().isMask(Z0TySize)) 6350 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6351 6352 // If C is a single bit, it may be in the sign-bit position 6353 // before the zero-extend. In this case, represent the xor 6354 // using an add, which is equivalent, and re-apply the zext. 6355 APInt Trunc = CI->getValue().trunc(Z0TySize); 6356 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6357 Trunc.isSignMask()) 6358 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6359 UTy); 6360 } 6361 } 6362 break; 6363 6364 case Instruction::Shl: 6365 // Turn shift left of a constant amount into a multiply. 6366 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6367 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6368 6369 // If the shift count is not less than the bitwidth, the result of 6370 // the shift is undefined. Don't try to analyze it, because the 6371 // resolution chosen here may differ from the resolution chosen in 6372 // other parts of the compiler. 6373 if (SA->getValue().uge(BitWidth)) 6374 break; 6375 6376 // It is currently not resolved how to interpret NSW for left 6377 // shift by BitWidth - 1, so we avoid applying flags in that 6378 // case. Remove this check (or this comment) once the situation 6379 // is resolved. See 6380 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 6381 // and http://reviews.llvm.org/D8890 . 6382 auto Flags = SCEV::FlagAnyWrap; 6383 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 6384 Flags = getNoWrapFlagsFromUB(BO->Op); 6385 6386 Constant *X = ConstantInt::get( 6387 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6388 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6389 } 6390 break; 6391 6392 case Instruction::AShr: { 6393 // AShr X, C, where C is a constant. 6394 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6395 if (!CI) 6396 break; 6397 6398 Type *OuterTy = BO->LHS->getType(); 6399 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6400 // If the shift count is not less than the bitwidth, the result of 6401 // the shift is undefined. Don't try to analyze it, because the 6402 // resolution chosen here may differ from the resolution chosen in 6403 // other parts of the compiler. 6404 if (CI->getValue().uge(BitWidth)) 6405 break; 6406 6407 if (CI->isZero()) 6408 return getSCEV(BO->LHS); // shift by zero --> noop 6409 6410 uint64_t AShrAmt = CI->getZExtValue(); 6411 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6412 6413 Operator *L = dyn_cast<Operator>(BO->LHS); 6414 if (L && L->getOpcode() == Instruction::Shl) { 6415 // X = Shl A, n 6416 // Y = AShr X, m 6417 // Both n and m are constant. 6418 6419 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6420 if (L->getOperand(1) == BO->RHS) 6421 // For a two-shift sext-inreg, i.e. n = m, 6422 // use sext(trunc(x)) as the SCEV expression. 6423 return getSignExtendExpr( 6424 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6425 6426 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6427 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6428 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6429 if (ShlAmt > AShrAmt) { 6430 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6431 // expression. We already checked that ShlAmt < BitWidth, so 6432 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6433 // ShlAmt - AShrAmt < Amt. 6434 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6435 ShlAmt - AShrAmt); 6436 return getSignExtendExpr( 6437 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6438 getConstant(Mul)), OuterTy); 6439 } 6440 } 6441 } 6442 break; 6443 } 6444 } 6445 } 6446 6447 switch (U->getOpcode()) { 6448 case Instruction::Trunc: 6449 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6450 6451 case Instruction::ZExt: 6452 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6453 6454 case Instruction::SExt: 6455 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6456 // The NSW flag of a subtract does not always survive the conversion to 6457 // A + (-1)*B. By pushing sign extension onto its operands we are much 6458 // more likely to preserve NSW and allow later AddRec optimisations. 6459 // 6460 // NOTE: This is effectively duplicating this logic from getSignExtend: 6461 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6462 // but by that point the NSW information has potentially been lost. 6463 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6464 Type *Ty = U->getType(); 6465 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6466 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6467 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6468 } 6469 } 6470 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6471 6472 case Instruction::BitCast: 6473 // BitCasts are no-op casts so we just eliminate the cast. 6474 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6475 return getSCEV(U->getOperand(0)); 6476 break; 6477 6478 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6479 // lead to pointer expressions which cannot safely be expanded to GEPs, 6480 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6481 // simplifying integer expressions. 6482 6483 case Instruction::GetElementPtr: 6484 return createNodeForGEP(cast<GEPOperator>(U)); 6485 6486 case Instruction::PHI: 6487 return createNodeForPHI(cast<PHINode>(U)); 6488 6489 case Instruction::Select: 6490 // U can also be a select constant expr, which let fall through. Since 6491 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6492 // constant expressions cannot have instructions as operands, we'd have 6493 // returned getUnknown for a select constant expressions anyway. 6494 if (isa<Instruction>(U)) 6495 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6496 U->getOperand(1), U->getOperand(2)); 6497 break; 6498 6499 case Instruction::Call: 6500 case Instruction::Invoke: 6501 if (Value *RV = CallSite(U).getReturnedArgOperand()) 6502 return getSCEV(RV); 6503 break; 6504 } 6505 6506 return getUnknown(V); 6507 } 6508 6509 //===----------------------------------------------------------------------===// 6510 // Iteration Count Computation Code 6511 // 6512 6513 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6514 if (!ExitCount) 6515 return 0; 6516 6517 ConstantInt *ExitConst = ExitCount->getValue(); 6518 6519 // Guard against huge trip counts. 6520 if (ExitConst->getValue().getActiveBits() > 32) 6521 return 0; 6522 6523 // In case of integer overflow, this returns 0, which is correct. 6524 return ((unsigned)ExitConst->getZExtValue()) + 1; 6525 } 6526 6527 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6528 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6529 return getSmallConstantTripCount(L, ExitingBB); 6530 6531 // No trip count information for multiple exits. 6532 return 0; 6533 } 6534 6535 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6536 BasicBlock *ExitingBlock) { 6537 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6538 assert(L->isLoopExiting(ExitingBlock) && 6539 "Exiting block must actually branch out of the loop!"); 6540 const SCEVConstant *ExitCount = 6541 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6542 return getConstantTripCount(ExitCount); 6543 } 6544 6545 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6546 const auto *MaxExitCount = 6547 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6548 return getConstantTripCount(MaxExitCount); 6549 } 6550 6551 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6552 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6553 return getSmallConstantTripMultiple(L, ExitingBB); 6554 6555 // No trip multiple information for multiple exits. 6556 return 0; 6557 } 6558 6559 /// Returns the largest constant divisor of the trip count of this loop as a 6560 /// normal unsigned value, if possible. This means that the actual trip count is 6561 /// always a multiple of the returned value (don't forget the trip count could 6562 /// very well be zero as well!). 6563 /// 6564 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6565 /// multiple of a constant (which is also the case if the trip count is simply 6566 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6567 /// if the trip count is very large (>= 2^32). 6568 /// 6569 /// As explained in the comments for getSmallConstantTripCount, this assumes 6570 /// that control exits the loop via ExitingBlock. 6571 unsigned 6572 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6573 BasicBlock *ExitingBlock) { 6574 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6575 assert(L->isLoopExiting(ExitingBlock) && 6576 "Exiting block must actually branch out of the loop!"); 6577 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6578 if (ExitCount == getCouldNotCompute()) 6579 return 1; 6580 6581 // Get the trip count from the BE count by adding 1. 6582 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6583 6584 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6585 if (!TC) 6586 // Attempt to factor more general cases. Returns the greatest power of 6587 // two divisor. If overflow happens, the trip count expression is still 6588 // divisible by the greatest power of 2 divisor returned. 6589 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6590 6591 ConstantInt *Result = TC->getValue(); 6592 6593 // Guard against huge trip counts (this requires checking 6594 // for zero to handle the case where the trip count == -1 and the 6595 // addition wraps). 6596 if (!Result || Result->getValue().getActiveBits() > 32 || 6597 Result->getValue().getActiveBits() == 0) 6598 return 1; 6599 6600 return (unsigned)Result->getZExtValue(); 6601 } 6602 6603 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6604 BasicBlock *ExitingBlock, 6605 ExitCountKind Kind) { 6606 switch (Kind) { 6607 case Exact: 6608 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6609 case ConstantMaximum: 6610 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); 6611 }; 6612 llvm_unreachable("Invalid ExitCountKind!"); 6613 } 6614 6615 const SCEV * 6616 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6617 SCEVUnionPredicate &Preds) { 6618 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6619 } 6620 6621 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6622 ExitCountKind Kind) { 6623 switch (Kind) { 6624 case Exact: 6625 return getBackedgeTakenInfo(L).getExact(L, this); 6626 case ConstantMaximum: 6627 return getBackedgeTakenInfo(L).getMax(this); 6628 }; 6629 llvm_unreachable("Invalid ExitCountKind!"); 6630 } 6631 6632 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6633 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6634 } 6635 6636 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6637 static void 6638 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6639 BasicBlock *Header = L->getHeader(); 6640 6641 // Push all Loop-header PHIs onto the Worklist stack. 6642 for (PHINode &PN : Header->phis()) 6643 Worklist.push_back(&PN); 6644 } 6645 6646 const ScalarEvolution::BackedgeTakenInfo & 6647 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6648 auto &BTI = getBackedgeTakenInfo(L); 6649 if (BTI.hasFullInfo()) 6650 return BTI; 6651 6652 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6653 6654 if (!Pair.second) 6655 return Pair.first->second; 6656 6657 BackedgeTakenInfo Result = 6658 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6659 6660 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6661 } 6662 6663 const ScalarEvolution::BackedgeTakenInfo & 6664 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6665 // Initially insert an invalid entry for this loop. If the insertion 6666 // succeeds, proceed to actually compute a backedge-taken count and 6667 // update the value. The temporary CouldNotCompute value tells SCEV 6668 // code elsewhere that it shouldn't attempt to request a new 6669 // backedge-taken count, which could result in infinite recursion. 6670 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6671 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6672 if (!Pair.second) 6673 return Pair.first->second; 6674 6675 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6676 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6677 // must be cleared in this scope. 6678 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6679 6680 // In product build, there are no usage of statistic. 6681 (void)NumTripCountsComputed; 6682 (void)NumTripCountsNotComputed; 6683 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6684 const SCEV *BEExact = Result.getExact(L, this); 6685 if (BEExact != getCouldNotCompute()) { 6686 assert(isLoopInvariant(BEExact, L) && 6687 isLoopInvariant(Result.getMax(this), L) && 6688 "Computed backedge-taken count isn't loop invariant for loop!"); 6689 ++NumTripCountsComputed; 6690 } 6691 else if (Result.getMax(this) == getCouldNotCompute() && 6692 isa<PHINode>(L->getHeader()->begin())) { 6693 // Only count loops that have phi nodes as not being computable. 6694 ++NumTripCountsNotComputed; 6695 } 6696 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6697 6698 // Now that we know more about the trip count for this loop, forget any 6699 // existing SCEV values for PHI nodes in this loop since they are only 6700 // conservative estimates made without the benefit of trip count 6701 // information. This is similar to the code in forgetLoop, except that 6702 // it handles SCEVUnknown PHI nodes specially. 6703 if (Result.hasAnyInfo()) { 6704 SmallVector<Instruction *, 16> Worklist; 6705 PushLoopPHIs(L, Worklist); 6706 6707 SmallPtrSet<Instruction *, 8> Discovered; 6708 while (!Worklist.empty()) { 6709 Instruction *I = Worklist.pop_back_val(); 6710 6711 ValueExprMapType::iterator It = 6712 ValueExprMap.find_as(static_cast<Value *>(I)); 6713 if (It != ValueExprMap.end()) { 6714 const SCEV *Old = It->second; 6715 6716 // SCEVUnknown for a PHI either means that it has an unrecognized 6717 // structure, or it's a PHI that's in the progress of being computed 6718 // by createNodeForPHI. In the former case, additional loop trip 6719 // count information isn't going to change anything. In the later 6720 // case, createNodeForPHI will perform the necessary updates on its 6721 // own when it gets to that point. 6722 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6723 eraseValueFromMap(It->first); 6724 forgetMemoizedResults(Old); 6725 } 6726 if (PHINode *PN = dyn_cast<PHINode>(I)) 6727 ConstantEvolutionLoopExitValue.erase(PN); 6728 } 6729 6730 // Since we don't need to invalidate anything for correctness and we're 6731 // only invalidating to make SCEV's results more precise, we get to stop 6732 // early to avoid invalidating too much. This is especially important in 6733 // cases like: 6734 // 6735 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6736 // loop0: 6737 // %pn0 = phi 6738 // ... 6739 // loop1: 6740 // %pn1 = phi 6741 // ... 6742 // 6743 // where both loop0 and loop1's backedge taken count uses the SCEV 6744 // expression for %v. If we don't have the early stop below then in cases 6745 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6746 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6747 // count for loop1, effectively nullifying SCEV's trip count cache. 6748 for (auto *U : I->users()) 6749 if (auto *I = dyn_cast<Instruction>(U)) { 6750 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6751 if (LoopForUser && L->contains(LoopForUser) && 6752 Discovered.insert(I).second) 6753 Worklist.push_back(I); 6754 } 6755 } 6756 } 6757 6758 // Re-lookup the insert position, since the call to 6759 // computeBackedgeTakenCount above could result in a 6760 // recusive call to getBackedgeTakenInfo (on a different 6761 // loop), which would invalidate the iterator computed 6762 // earlier. 6763 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6764 } 6765 6766 void ScalarEvolution::forgetAllLoops() { 6767 // This method is intended to forget all info about loops. It should 6768 // invalidate caches as if the following happened: 6769 // - The trip counts of all loops have changed arbitrarily 6770 // - Every llvm::Value has been updated in place to produce a different 6771 // result. 6772 BackedgeTakenCounts.clear(); 6773 PredicatedBackedgeTakenCounts.clear(); 6774 LoopPropertiesCache.clear(); 6775 ConstantEvolutionLoopExitValue.clear(); 6776 ValueExprMap.clear(); 6777 ValuesAtScopes.clear(); 6778 LoopDispositions.clear(); 6779 BlockDispositions.clear(); 6780 UnsignedRanges.clear(); 6781 SignedRanges.clear(); 6782 ExprValueMap.clear(); 6783 HasRecMap.clear(); 6784 MinTrailingZerosCache.clear(); 6785 PredicatedSCEVRewrites.clear(); 6786 } 6787 6788 void ScalarEvolution::forgetLoop(const Loop *L) { 6789 // Drop any stored trip count value. 6790 auto RemoveLoopFromBackedgeMap = 6791 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6792 auto BTCPos = Map.find(L); 6793 if (BTCPos != Map.end()) { 6794 BTCPos->second.clear(); 6795 Map.erase(BTCPos); 6796 } 6797 }; 6798 6799 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6800 SmallVector<Instruction *, 32> Worklist; 6801 SmallPtrSet<Instruction *, 16> Visited; 6802 6803 // Iterate over all the loops and sub-loops to drop SCEV information. 6804 while (!LoopWorklist.empty()) { 6805 auto *CurrL = LoopWorklist.pop_back_val(); 6806 6807 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6808 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6809 6810 // Drop information about predicated SCEV rewrites for this loop. 6811 for (auto I = PredicatedSCEVRewrites.begin(); 6812 I != PredicatedSCEVRewrites.end();) { 6813 std::pair<const SCEV *, const Loop *> Entry = I->first; 6814 if (Entry.second == CurrL) 6815 PredicatedSCEVRewrites.erase(I++); 6816 else 6817 ++I; 6818 } 6819 6820 auto LoopUsersItr = LoopUsers.find(CurrL); 6821 if (LoopUsersItr != LoopUsers.end()) { 6822 for (auto *S : LoopUsersItr->second) 6823 forgetMemoizedResults(S); 6824 LoopUsers.erase(LoopUsersItr); 6825 } 6826 6827 // Drop information about expressions based on loop-header PHIs. 6828 PushLoopPHIs(CurrL, Worklist); 6829 6830 while (!Worklist.empty()) { 6831 Instruction *I = Worklist.pop_back_val(); 6832 if (!Visited.insert(I).second) 6833 continue; 6834 6835 ValueExprMapType::iterator It = 6836 ValueExprMap.find_as(static_cast<Value *>(I)); 6837 if (It != ValueExprMap.end()) { 6838 eraseValueFromMap(It->first); 6839 forgetMemoizedResults(It->second); 6840 if (PHINode *PN = dyn_cast<PHINode>(I)) 6841 ConstantEvolutionLoopExitValue.erase(PN); 6842 } 6843 6844 PushDefUseChildren(I, Worklist); 6845 } 6846 6847 LoopPropertiesCache.erase(CurrL); 6848 // Forget all contained loops too, to avoid dangling entries in the 6849 // ValuesAtScopes map. 6850 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6851 } 6852 } 6853 6854 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6855 while (Loop *Parent = L->getParentLoop()) 6856 L = Parent; 6857 forgetLoop(L); 6858 } 6859 6860 void ScalarEvolution::forgetValue(Value *V) { 6861 Instruction *I = dyn_cast<Instruction>(V); 6862 if (!I) return; 6863 6864 // Drop information about expressions based on loop-header PHIs. 6865 SmallVector<Instruction *, 16> Worklist; 6866 Worklist.push_back(I); 6867 6868 SmallPtrSet<Instruction *, 8> Visited; 6869 while (!Worklist.empty()) { 6870 I = Worklist.pop_back_val(); 6871 if (!Visited.insert(I).second) 6872 continue; 6873 6874 ValueExprMapType::iterator It = 6875 ValueExprMap.find_as(static_cast<Value *>(I)); 6876 if (It != ValueExprMap.end()) { 6877 eraseValueFromMap(It->first); 6878 forgetMemoizedResults(It->second); 6879 if (PHINode *PN = dyn_cast<PHINode>(I)) 6880 ConstantEvolutionLoopExitValue.erase(PN); 6881 } 6882 6883 PushDefUseChildren(I, Worklist); 6884 } 6885 } 6886 6887 /// Get the exact loop backedge taken count considering all loop exits. A 6888 /// computable result can only be returned for loops with all exiting blocks 6889 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6890 /// is never skipped. This is a valid assumption as long as the loop exits via 6891 /// that test. For precise results, it is the caller's responsibility to specify 6892 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6893 const SCEV * 6894 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6895 SCEVUnionPredicate *Preds) const { 6896 // If any exits were not computable, the loop is not computable. 6897 if (!isComplete() || ExitNotTaken.empty()) 6898 return SE->getCouldNotCompute(); 6899 6900 const BasicBlock *Latch = L->getLoopLatch(); 6901 // All exiting blocks we have collected must dominate the only backedge. 6902 if (!Latch) 6903 return SE->getCouldNotCompute(); 6904 6905 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6906 // count is simply a minimum out of all these calculated exit counts. 6907 SmallVector<const SCEV *, 2> Ops; 6908 for (auto &ENT : ExitNotTaken) { 6909 const SCEV *BECount = ENT.ExactNotTaken; 6910 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6911 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6912 "We should only have known counts for exiting blocks that dominate " 6913 "latch!"); 6914 6915 Ops.push_back(BECount); 6916 6917 if (Preds && !ENT.hasAlwaysTruePredicate()) 6918 Preds->add(ENT.Predicate.get()); 6919 6920 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6921 "Predicate should be always true!"); 6922 } 6923 6924 return SE->getUMinFromMismatchedTypes(Ops); 6925 } 6926 6927 /// Get the exact not taken count for this loop exit. 6928 const SCEV * 6929 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6930 ScalarEvolution *SE) const { 6931 for (auto &ENT : ExitNotTaken) 6932 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6933 return ENT.ExactNotTaken; 6934 6935 return SE->getCouldNotCompute(); 6936 } 6937 6938 const SCEV * 6939 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock, 6940 ScalarEvolution *SE) const { 6941 for (auto &ENT : ExitNotTaken) 6942 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6943 return ENT.MaxNotTaken; 6944 6945 return SE->getCouldNotCompute(); 6946 } 6947 6948 /// getMax - Get the max backedge taken count for the loop. 6949 const SCEV * 6950 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6951 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6952 return !ENT.hasAlwaysTruePredicate(); 6953 }; 6954 6955 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6956 return SE->getCouldNotCompute(); 6957 6958 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6959 "No point in having a non-constant max backedge taken count!"); 6960 return getMax(); 6961 } 6962 6963 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6964 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6965 return !ENT.hasAlwaysTruePredicate(); 6966 }; 6967 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6968 } 6969 6970 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6971 ScalarEvolution *SE) const { 6972 if (getMax() && getMax() != SE->getCouldNotCompute() && 6973 SE->hasOperand(getMax(), S)) 6974 return true; 6975 6976 for (auto &ENT : ExitNotTaken) 6977 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6978 SE->hasOperand(ENT.ExactNotTaken, S)) 6979 return true; 6980 6981 return false; 6982 } 6983 6984 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6985 : ExactNotTaken(E), MaxNotTaken(E) { 6986 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6987 isa<SCEVConstant>(MaxNotTaken)) && 6988 "No point in having a non-constant max backedge taken count!"); 6989 } 6990 6991 ScalarEvolution::ExitLimit::ExitLimit( 6992 const SCEV *E, const SCEV *M, bool MaxOrZero, 6993 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6994 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6995 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6996 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6997 "Exact is not allowed to be less precise than Max"); 6998 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6999 isa<SCEVConstant>(MaxNotTaken)) && 7000 "No point in having a non-constant max backedge taken count!"); 7001 for (auto *PredSet : PredSetList) 7002 for (auto *P : *PredSet) 7003 addPredicate(P); 7004 } 7005 7006 ScalarEvolution::ExitLimit::ExitLimit( 7007 const SCEV *E, const SCEV *M, bool MaxOrZero, 7008 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7009 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7010 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7011 isa<SCEVConstant>(MaxNotTaken)) && 7012 "No point in having a non-constant max backedge taken count!"); 7013 } 7014 7015 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7016 bool MaxOrZero) 7017 : ExitLimit(E, M, MaxOrZero, None) { 7018 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7019 isa<SCEVConstant>(MaxNotTaken)) && 7020 "No point in having a non-constant max backedge taken count!"); 7021 } 7022 7023 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7024 /// computable exit into a persistent ExitNotTakenInfo array. 7025 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7026 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 7027 ExitCounts, 7028 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 7029 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 7030 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7031 7032 ExitNotTaken.reserve(ExitCounts.size()); 7033 std::transform( 7034 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7035 [&](const EdgeExitInfo &EEI) { 7036 BasicBlock *ExitBB = EEI.first; 7037 const ExitLimit &EL = EEI.second; 7038 if (EL.Predicates.empty()) 7039 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7040 nullptr); 7041 7042 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7043 for (auto *Pred : EL.Predicates) 7044 Predicate->add(Pred); 7045 7046 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7047 std::move(Predicate)); 7048 }); 7049 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 7050 "No point in having a non-constant max backedge taken count!"); 7051 } 7052 7053 /// Invalidate this result and free the ExitNotTakenInfo array. 7054 void ScalarEvolution::BackedgeTakenInfo::clear() { 7055 ExitNotTaken.clear(); 7056 } 7057 7058 /// Compute the number of times the backedge of the specified loop will execute. 7059 ScalarEvolution::BackedgeTakenInfo 7060 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7061 bool AllowPredicates) { 7062 SmallVector<BasicBlock *, 8> ExitingBlocks; 7063 L->getExitingBlocks(ExitingBlocks); 7064 7065 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7066 7067 SmallVector<EdgeExitInfo, 4> ExitCounts; 7068 bool CouldComputeBECount = true; 7069 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7070 const SCEV *MustExitMaxBECount = nullptr; 7071 const SCEV *MayExitMaxBECount = nullptr; 7072 bool MustExitMaxOrZero = false; 7073 7074 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7075 // and compute maxBECount. 7076 // Do a union of all the predicates here. 7077 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7078 BasicBlock *ExitBB = ExitingBlocks[i]; 7079 7080 // We canonicalize untaken exits to br (constant), ignore them so that 7081 // proving an exit untaken doesn't negatively impact our ability to reason 7082 // about the loop as whole. 7083 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7084 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7085 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7086 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7087 continue; 7088 } 7089 7090 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7091 7092 assert((AllowPredicates || EL.Predicates.empty()) && 7093 "Predicated exit limit when predicates are not allowed!"); 7094 7095 // 1. For each exit that can be computed, add an entry to ExitCounts. 7096 // CouldComputeBECount is true only if all exits can be computed. 7097 if (EL.ExactNotTaken == getCouldNotCompute()) 7098 // We couldn't compute an exact value for this exit, so 7099 // we won't be able to compute an exact value for the loop. 7100 CouldComputeBECount = false; 7101 else 7102 ExitCounts.emplace_back(ExitBB, EL); 7103 7104 // 2. Derive the loop's MaxBECount from each exit's max number of 7105 // non-exiting iterations. Partition the loop exits into two kinds: 7106 // LoopMustExits and LoopMayExits. 7107 // 7108 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7109 // is a LoopMayExit. If any computable LoopMustExit is found, then 7110 // MaxBECount is the minimum EL.MaxNotTaken of computable 7111 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7112 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7113 // computable EL.MaxNotTaken. 7114 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7115 DT.dominates(ExitBB, Latch)) { 7116 if (!MustExitMaxBECount) { 7117 MustExitMaxBECount = EL.MaxNotTaken; 7118 MustExitMaxOrZero = EL.MaxOrZero; 7119 } else { 7120 MustExitMaxBECount = 7121 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7122 } 7123 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7124 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7125 MayExitMaxBECount = EL.MaxNotTaken; 7126 else { 7127 MayExitMaxBECount = 7128 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7129 } 7130 } 7131 } 7132 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7133 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7134 // The loop backedge will be taken the maximum or zero times if there's 7135 // a single exit that must be taken the maximum or zero times. 7136 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7137 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7138 MaxBECount, MaxOrZero); 7139 } 7140 7141 ScalarEvolution::ExitLimit 7142 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7143 bool AllowPredicates) { 7144 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7145 // If our exiting block does not dominate the latch, then its connection with 7146 // loop's exit limit may be far from trivial. 7147 const BasicBlock *Latch = L->getLoopLatch(); 7148 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7149 return getCouldNotCompute(); 7150 7151 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7152 Instruction *Term = ExitingBlock->getTerminator(); 7153 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7154 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7155 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7156 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7157 "It should have one successor in loop and one exit block!"); 7158 // Proceed to the next level to examine the exit condition expression. 7159 return computeExitLimitFromCond( 7160 L, BI->getCondition(), ExitIfTrue, 7161 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7162 } 7163 7164 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7165 // For switch, make sure that there is a single exit from the loop. 7166 BasicBlock *Exit = nullptr; 7167 for (auto *SBB : successors(ExitingBlock)) 7168 if (!L->contains(SBB)) { 7169 if (Exit) // Multiple exit successors. 7170 return getCouldNotCompute(); 7171 Exit = SBB; 7172 } 7173 assert(Exit && "Exiting block must have at least one exit"); 7174 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7175 /*ControlsExit=*/IsOnlyExit); 7176 } 7177 7178 return getCouldNotCompute(); 7179 } 7180 7181 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7182 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7183 bool ControlsExit, bool AllowPredicates) { 7184 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7185 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7186 ControlsExit, AllowPredicates); 7187 } 7188 7189 Optional<ScalarEvolution::ExitLimit> 7190 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7191 bool ExitIfTrue, bool ControlsExit, 7192 bool AllowPredicates) { 7193 (void)this->L; 7194 (void)this->ExitIfTrue; 7195 (void)this->AllowPredicates; 7196 7197 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7198 this->AllowPredicates == AllowPredicates && 7199 "Variance in assumed invariant key components!"); 7200 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7201 if (Itr == TripCountMap.end()) 7202 return None; 7203 return Itr->second; 7204 } 7205 7206 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7207 bool ExitIfTrue, 7208 bool ControlsExit, 7209 bool AllowPredicates, 7210 const ExitLimit &EL) { 7211 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7212 this->AllowPredicates == AllowPredicates && 7213 "Variance in assumed invariant key components!"); 7214 7215 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7216 assert(InsertResult.second && "Expected successful insertion!"); 7217 (void)InsertResult; 7218 (void)ExitIfTrue; 7219 } 7220 7221 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7222 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7223 bool ControlsExit, bool AllowPredicates) { 7224 7225 if (auto MaybeEL = 7226 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7227 return *MaybeEL; 7228 7229 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7230 ControlsExit, AllowPredicates); 7231 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7232 return EL; 7233 } 7234 7235 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7236 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7237 bool ControlsExit, bool AllowPredicates) { 7238 // Check if the controlling expression for this loop is an And or Or. 7239 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7240 if (BO->getOpcode() == Instruction::And) { 7241 // Recurse on the operands of the and. 7242 bool EitherMayExit = !ExitIfTrue; 7243 ExitLimit EL0 = computeExitLimitFromCondCached( 7244 Cache, L, BO->getOperand(0), ExitIfTrue, 7245 ControlsExit && !EitherMayExit, AllowPredicates); 7246 ExitLimit EL1 = computeExitLimitFromCondCached( 7247 Cache, L, BO->getOperand(1), ExitIfTrue, 7248 ControlsExit && !EitherMayExit, AllowPredicates); 7249 const SCEV *BECount = getCouldNotCompute(); 7250 const SCEV *MaxBECount = getCouldNotCompute(); 7251 if (EitherMayExit) { 7252 // Both conditions must be true for the loop to continue executing. 7253 // Choose the less conservative count. 7254 if (EL0.ExactNotTaken == getCouldNotCompute() || 7255 EL1.ExactNotTaken == getCouldNotCompute()) 7256 BECount = getCouldNotCompute(); 7257 else 7258 BECount = 7259 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7260 if (EL0.MaxNotTaken == getCouldNotCompute()) 7261 MaxBECount = EL1.MaxNotTaken; 7262 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7263 MaxBECount = EL0.MaxNotTaken; 7264 else 7265 MaxBECount = 7266 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7267 } else { 7268 // Both conditions must be true at the same time for the loop to exit. 7269 // For now, be conservative. 7270 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7271 MaxBECount = EL0.MaxNotTaken; 7272 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7273 BECount = EL0.ExactNotTaken; 7274 } 7275 7276 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7277 // to be more aggressive when computing BECount than when computing 7278 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7279 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7280 // to not. 7281 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7282 !isa<SCEVCouldNotCompute>(BECount)) 7283 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7284 7285 return ExitLimit(BECount, MaxBECount, false, 7286 {&EL0.Predicates, &EL1.Predicates}); 7287 } 7288 if (BO->getOpcode() == Instruction::Or) { 7289 // Recurse on the operands of the or. 7290 bool EitherMayExit = ExitIfTrue; 7291 ExitLimit EL0 = computeExitLimitFromCondCached( 7292 Cache, L, BO->getOperand(0), ExitIfTrue, 7293 ControlsExit && !EitherMayExit, AllowPredicates); 7294 ExitLimit EL1 = computeExitLimitFromCondCached( 7295 Cache, L, BO->getOperand(1), ExitIfTrue, 7296 ControlsExit && !EitherMayExit, AllowPredicates); 7297 const SCEV *BECount = getCouldNotCompute(); 7298 const SCEV *MaxBECount = getCouldNotCompute(); 7299 if (EitherMayExit) { 7300 // Both conditions must be false for the loop to continue executing. 7301 // Choose the less conservative count. 7302 if (EL0.ExactNotTaken == getCouldNotCompute() || 7303 EL1.ExactNotTaken == getCouldNotCompute()) 7304 BECount = getCouldNotCompute(); 7305 else 7306 BECount = 7307 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7308 if (EL0.MaxNotTaken == getCouldNotCompute()) 7309 MaxBECount = EL1.MaxNotTaken; 7310 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7311 MaxBECount = EL0.MaxNotTaken; 7312 else 7313 MaxBECount = 7314 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7315 } else { 7316 // Both conditions must be false at the same time for the loop to exit. 7317 // For now, be conservative. 7318 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7319 MaxBECount = EL0.MaxNotTaken; 7320 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7321 BECount = EL0.ExactNotTaken; 7322 } 7323 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7324 // to be more aggressive when computing BECount than when computing 7325 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7326 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7327 // to not. 7328 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7329 !isa<SCEVCouldNotCompute>(BECount)) 7330 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7331 7332 return ExitLimit(BECount, MaxBECount, false, 7333 {&EL0.Predicates, &EL1.Predicates}); 7334 } 7335 } 7336 7337 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7338 // Proceed to the next level to examine the icmp. 7339 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7340 ExitLimit EL = 7341 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7342 if (EL.hasFullInfo() || !AllowPredicates) 7343 return EL; 7344 7345 // Try again, but use SCEV predicates this time. 7346 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7347 /*AllowPredicates=*/true); 7348 } 7349 7350 // Check for a constant condition. These are normally stripped out by 7351 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7352 // preserve the CFG and is temporarily leaving constant conditions 7353 // in place. 7354 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7355 if (ExitIfTrue == !CI->getZExtValue()) 7356 // The backedge is always taken. 7357 return getCouldNotCompute(); 7358 else 7359 // The backedge is never taken. 7360 return getZero(CI->getType()); 7361 } 7362 7363 // If it's not an integer or pointer comparison then compute it the hard way. 7364 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7365 } 7366 7367 ScalarEvolution::ExitLimit 7368 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7369 ICmpInst *ExitCond, 7370 bool ExitIfTrue, 7371 bool ControlsExit, 7372 bool AllowPredicates) { 7373 // If the condition was exit on true, convert the condition to exit on false 7374 ICmpInst::Predicate Pred; 7375 if (!ExitIfTrue) 7376 Pred = ExitCond->getPredicate(); 7377 else 7378 Pred = ExitCond->getInversePredicate(); 7379 const ICmpInst::Predicate OriginalPred = Pred; 7380 7381 // Handle common loops like: for (X = "string"; *X; ++X) 7382 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7383 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7384 ExitLimit ItCnt = 7385 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7386 if (ItCnt.hasAnyInfo()) 7387 return ItCnt; 7388 } 7389 7390 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7391 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7392 7393 // Try to evaluate any dependencies out of the loop. 7394 LHS = getSCEVAtScope(LHS, L); 7395 RHS = getSCEVAtScope(RHS, L); 7396 7397 // At this point, we would like to compute how many iterations of the 7398 // loop the predicate will return true for these inputs. 7399 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7400 // If there is a loop-invariant, force it into the RHS. 7401 std::swap(LHS, RHS); 7402 Pred = ICmpInst::getSwappedPredicate(Pred); 7403 } 7404 7405 // Simplify the operands before analyzing them. 7406 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7407 7408 // If we have a comparison of a chrec against a constant, try to use value 7409 // ranges to answer this query. 7410 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7411 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7412 if (AddRec->getLoop() == L) { 7413 // Form the constant range. 7414 ConstantRange CompRange = 7415 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7416 7417 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7418 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7419 } 7420 7421 switch (Pred) { 7422 case ICmpInst::ICMP_NE: { // while (X != Y) 7423 // Convert to: while (X-Y != 0) 7424 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7425 AllowPredicates); 7426 if (EL.hasAnyInfo()) return EL; 7427 break; 7428 } 7429 case ICmpInst::ICMP_EQ: { // while (X == Y) 7430 // Convert to: while (X-Y == 0) 7431 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7432 if (EL.hasAnyInfo()) return EL; 7433 break; 7434 } 7435 case ICmpInst::ICMP_SLT: 7436 case ICmpInst::ICMP_ULT: { // while (X < Y) 7437 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7438 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7439 AllowPredicates); 7440 if (EL.hasAnyInfo()) return EL; 7441 break; 7442 } 7443 case ICmpInst::ICMP_SGT: 7444 case ICmpInst::ICMP_UGT: { // while (X > Y) 7445 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7446 ExitLimit EL = 7447 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7448 AllowPredicates); 7449 if (EL.hasAnyInfo()) return EL; 7450 break; 7451 } 7452 default: 7453 break; 7454 } 7455 7456 auto *ExhaustiveCount = 7457 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7458 7459 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7460 return ExhaustiveCount; 7461 7462 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7463 ExitCond->getOperand(1), L, OriginalPred); 7464 } 7465 7466 ScalarEvolution::ExitLimit 7467 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7468 SwitchInst *Switch, 7469 BasicBlock *ExitingBlock, 7470 bool ControlsExit) { 7471 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7472 7473 // Give up if the exit is the default dest of a switch. 7474 if (Switch->getDefaultDest() == ExitingBlock) 7475 return getCouldNotCompute(); 7476 7477 assert(L->contains(Switch->getDefaultDest()) && 7478 "Default case must not exit the loop!"); 7479 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7480 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7481 7482 // while (X != Y) --> while (X-Y != 0) 7483 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7484 if (EL.hasAnyInfo()) 7485 return EL; 7486 7487 return getCouldNotCompute(); 7488 } 7489 7490 static ConstantInt * 7491 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7492 ScalarEvolution &SE) { 7493 const SCEV *InVal = SE.getConstant(C); 7494 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7495 assert(isa<SCEVConstant>(Val) && 7496 "Evaluation of SCEV at constant didn't fold correctly?"); 7497 return cast<SCEVConstant>(Val)->getValue(); 7498 } 7499 7500 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7501 /// compute the backedge execution count. 7502 ScalarEvolution::ExitLimit 7503 ScalarEvolution::computeLoadConstantCompareExitLimit( 7504 LoadInst *LI, 7505 Constant *RHS, 7506 const Loop *L, 7507 ICmpInst::Predicate predicate) { 7508 if (LI->isVolatile()) return getCouldNotCompute(); 7509 7510 // Check to see if the loaded pointer is a getelementptr of a global. 7511 // TODO: Use SCEV instead of manually grubbing with GEPs. 7512 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7513 if (!GEP) return getCouldNotCompute(); 7514 7515 // Make sure that it is really a constant global we are gepping, with an 7516 // initializer, and make sure the first IDX is really 0. 7517 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7518 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7519 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7520 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7521 return getCouldNotCompute(); 7522 7523 // Okay, we allow one non-constant index into the GEP instruction. 7524 Value *VarIdx = nullptr; 7525 std::vector<Constant*> Indexes; 7526 unsigned VarIdxNum = 0; 7527 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7528 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7529 Indexes.push_back(CI); 7530 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7531 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7532 VarIdx = GEP->getOperand(i); 7533 VarIdxNum = i-2; 7534 Indexes.push_back(nullptr); 7535 } 7536 7537 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7538 if (!VarIdx) 7539 return getCouldNotCompute(); 7540 7541 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7542 // Check to see if X is a loop variant variable value now. 7543 const SCEV *Idx = getSCEV(VarIdx); 7544 Idx = getSCEVAtScope(Idx, L); 7545 7546 // We can only recognize very limited forms of loop index expressions, in 7547 // particular, only affine AddRec's like {C1,+,C2}. 7548 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7549 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7550 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7551 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7552 return getCouldNotCompute(); 7553 7554 unsigned MaxSteps = MaxBruteForceIterations; 7555 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7556 ConstantInt *ItCst = ConstantInt::get( 7557 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7558 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7559 7560 // Form the GEP offset. 7561 Indexes[VarIdxNum] = Val; 7562 7563 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7564 Indexes); 7565 if (!Result) break; // Cannot compute! 7566 7567 // Evaluate the condition for this iteration. 7568 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7569 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7570 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7571 ++NumArrayLenItCounts; 7572 return getConstant(ItCst); // Found terminating iteration! 7573 } 7574 } 7575 return getCouldNotCompute(); 7576 } 7577 7578 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7579 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7580 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7581 if (!RHS) 7582 return getCouldNotCompute(); 7583 7584 const BasicBlock *Latch = L->getLoopLatch(); 7585 if (!Latch) 7586 return getCouldNotCompute(); 7587 7588 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7589 if (!Predecessor) 7590 return getCouldNotCompute(); 7591 7592 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7593 // Return LHS in OutLHS and shift_opt in OutOpCode. 7594 auto MatchPositiveShift = 7595 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7596 7597 using namespace PatternMatch; 7598 7599 ConstantInt *ShiftAmt; 7600 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7601 OutOpCode = Instruction::LShr; 7602 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7603 OutOpCode = Instruction::AShr; 7604 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7605 OutOpCode = Instruction::Shl; 7606 else 7607 return false; 7608 7609 return ShiftAmt->getValue().isStrictlyPositive(); 7610 }; 7611 7612 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7613 // 7614 // loop: 7615 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7616 // %iv.shifted = lshr i32 %iv, <positive constant> 7617 // 7618 // Return true on a successful match. Return the corresponding PHI node (%iv 7619 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7620 auto MatchShiftRecurrence = 7621 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7622 Optional<Instruction::BinaryOps> PostShiftOpCode; 7623 7624 { 7625 Instruction::BinaryOps OpC; 7626 Value *V; 7627 7628 // If we encounter a shift instruction, "peel off" the shift operation, 7629 // and remember that we did so. Later when we inspect %iv's backedge 7630 // value, we will make sure that the backedge value uses the same 7631 // operation. 7632 // 7633 // Note: the peeled shift operation does not have to be the same 7634 // instruction as the one feeding into the PHI's backedge value. We only 7635 // really care about it being the same *kind* of shift instruction -- 7636 // that's all that is required for our later inferences to hold. 7637 if (MatchPositiveShift(LHS, V, OpC)) { 7638 PostShiftOpCode = OpC; 7639 LHS = V; 7640 } 7641 } 7642 7643 PNOut = dyn_cast<PHINode>(LHS); 7644 if (!PNOut || PNOut->getParent() != L->getHeader()) 7645 return false; 7646 7647 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7648 Value *OpLHS; 7649 7650 return 7651 // The backedge value for the PHI node must be a shift by a positive 7652 // amount 7653 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7654 7655 // of the PHI node itself 7656 OpLHS == PNOut && 7657 7658 // and the kind of shift should be match the kind of shift we peeled 7659 // off, if any. 7660 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7661 }; 7662 7663 PHINode *PN; 7664 Instruction::BinaryOps OpCode; 7665 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7666 return getCouldNotCompute(); 7667 7668 const DataLayout &DL = getDataLayout(); 7669 7670 // The key rationale for this optimization is that for some kinds of shift 7671 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7672 // within a finite number of iterations. If the condition guarding the 7673 // backedge (in the sense that the backedge is taken if the condition is true) 7674 // is false for the value the shift recurrence stabilizes to, then we know 7675 // that the backedge is taken only a finite number of times. 7676 7677 ConstantInt *StableValue = nullptr; 7678 switch (OpCode) { 7679 default: 7680 llvm_unreachable("Impossible case!"); 7681 7682 case Instruction::AShr: { 7683 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7684 // bitwidth(K) iterations. 7685 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7686 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7687 Predecessor->getTerminator(), &DT); 7688 auto *Ty = cast<IntegerType>(RHS->getType()); 7689 if (Known.isNonNegative()) 7690 StableValue = ConstantInt::get(Ty, 0); 7691 else if (Known.isNegative()) 7692 StableValue = ConstantInt::get(Ty, -1, true); 7693 else 7694 return getCouldNotCompute(); 7695 7696 break; 7697 } 7698 case Instruction::LShr: 7699 case Instruction::Shl: 7700 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7701 // stabilize to 0 in at most bitwidth(K) iterations. 7702 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7703 break; 7704 } 7705 7706 auto *Result = 7707 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7708 assert(Result->getType()->isIntegerTy(1) && 7709 "Otherwise cannot be an operand to a branch instruction"); 7710 7711 if (Result->isZeroValue()) { 7712 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7713 const SCEV *UpperBound = 7714 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7715 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7716 } 7717 7718 return getCouldNotCompute(); 7719 } 7720 7721 /// Return true if we can constant fold an instruction of the specified type, 7722 /// assuming that all operands were constants. 7723 static bool CanConstantFold(const Instruction *I) { 7724 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7725 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7726 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7727 return true; 7728 7729 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7730 if (const Function *F = CI->getCalledFunction()) 7731 return canConstantFoldCallTo(CI, F); 7732 return false; 7733 } 7734 7735 /// Determine whether this instruction can constant evolve within this loop 7736 /// assuming its operands can all constant evolve. 7737 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7738 // An instruction outside of the loop can't be derived from a loop PHI. 7739 if (!L->contains(I)) return false; 7740 7741 if (isa<PHINode>(I)) { 7742 // We don't currently keep track of the control flow needed to evaluate 7743 // PHIs, so we cannot handle PHIs inside of loops. 7744 return L->getHeader() == I->getParent(); 7745 } 7746 7747 // If we won't be able to constant fold this expression even if the operands 7748 // are constants, bail early. 7749 return CanConstantFold(I); 7750 } 7751 7752 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7753 /// recursing through each instruction operand until reaching a loop header phi. 7754 static PHINode * 7755 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7756 DenseMap<Instruction *, PHINode *> &PHIMap, 7757 unsigned Depth) { 7758 if (Depth > MaxConstantEvolvingDepth) 7759 return nullptr; 7760 7761 // Otherwise, we can evaluate this instruction if all of its operands are 7762 // constant or derived from a PHI node themselves. 7763 PHINode *PHI = nullptr; 7764 for (Value *Op : UseInst->operands()) { 7765 if (isa<Constant>(Op)) continue; 7766 7767 Instruction *OpInst = dyn_cast<Instruction>(Op); 7768 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7769 7770 PHINode *P = dyn_cast<PHINode>(OpInst); 7771 if (!P) 7772 // If this operand is already visited, reuse the prior result. 7773 // We may have P != PHI if this is the deepest point at which the 7774 // inconsistent paths meet. 7775 P = PHIMap.lookup(OpInst); 7776 if (!P) { 7777 // Recurse and memoize the results, whether a phi is found or not. 7778 // This recursive call invalidates pointers into PHIMap. 7779 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7780 PHIMap[OpInst] = P; 7781 } 7782 if (!P) 7783 return nullptr; // Not evolving from PHI 7784 if (PHI && PHI != P) 7785 return nullptr; // Evolving from multiple different PHIs. 7786 PHI = P; 7787 } 7788 // This is a expression evolving from a constant PHI! 7789 return PHI; 7790 } 7791 7792 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7793 /// in the loop that V is derived from. We allow arbitrary operations along the 7794 /// way, but the operands of an operation must either be constants or a value 7795 /// derived from a constant PHI. If this expression does not fit with these 7796 /// constraints, return null. 7797 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7798 Instruction *I = dyn_cast<Instruction>(V); 7799 if (!I || !canConstantEvolve(I, L)) return nullptr; 7800 7801 if (PHINode *PN = dyn_cast<PHINode>(I)) 7802 return PN; 7803 7804 // Record non-constant instructions contained by the loop. 7805 DenseMap<Instruction *, PHINode *> PHIMap; 7806 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7807 } 7808 7809 /// EvaluateExpression - Given an expression that passes the 7810 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7811 /// in the loop has the value PHIVal. If we can't fold this expression for some 7812 /// reason, return null. 7813 static Constant *EvaluateExpression(Value *V, const Loop *L, 7814 DenseMap<Instruction *, Constant *> &Vals, 7815 const DataLayout &DL, 7816 const TargetLibraryInfo *TLI) { 7817 // Convenient constant check, but redundant for recursive calls. 7818 if (Constant *C = dyn_cast<Constant>(V)) return C; 7819 Instruction *I = dyn_cast<Instruction>(V); 7820 if (!I) return nullptr; 7821 7822 if (Constant *C = Vals.lookup(I)) return C; 7823 7824 // An instruction inside the loop depends on a value outside the loop that we 7825 // weren't given a mapping for, or a value such as a call inside the loop. 7826 if (!canConstantEvolve(I, L)) return nullptr; 7827 7828 // An unmapped PHI can be due to a branch or another loop inside this loop, 7829 // or due to this not being the initial iteration through a loop where we 7830 // couldn't compute the evolution of this particular PHI last time. 7831 if (isa<PHINode>(I)) return nullptr; 7832 7833 std::vector<Constant*> Operands(I->getNumOperands()); 7834 7835 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7836 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7837 if (!Operand) { 7838 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7839 if (!Operands[i]) return nullptr; 7840 continue; 7841 } 7842 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7843 Vals[Operand] = C; 7844 if (!C) return nullptr; 7845 Operands[i] = C; 7846 } 7847 7848 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7849 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7850 Operands[1], DL, TLI); 7851 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7852 if (!LI->isVolatile()) 7853 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7854 } 7855 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7856 } 7857 7858 7859 // If every incoming value to PN except the one for BB is a specific Constant, 7860 // return that, else return nullptr. 7861 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7862 Constant *IncomingVal = nullptr; 7863 7864 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7865 if (PN->getIncomingBlock(i) == BB) 7866 continue; 7867 7868 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7869 if (!CurrentVal) 7870 return nullptr; 7871 7872 if (IncomingVal != CurrentVal) { 7873 if (IncomingVal) 7874 return nullptr; 7875 IncomingVal = CurrentVal; 7876 } 7877 } 7878 7879 return IncomingVal; 7880 } 7881 7882 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7883 /// in the header of its containing loop, we know the loop executes a 7884 /// constant number of times, and the PHI node is just a recurrence 7885 /// involving constants, fold it. 7886 Constant * 7887 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7888 const APInt &BEs, 7889 const Loop *L) { 7890 auto I = ConstantEvolutionLoopExitValue.find(PN); 7891 if (I != ConstantEvolutionLoopExitValue.end()) 7892 return I->second; 7893 7894 if (BEs.ugt(MaxBruteForceIterations)) 7895 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7896 7897 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7898 7899 DenseMap<Instruction *, Constant *> CurrentIterVals; 7900 BasicBlock *Header = L->getHeader(); 7901 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7902 7903 BasicBlock *Latch = L->getLoopLatch(); 7904 if (!Latch) 7905 return nullptr; 7906 7907 for (PHINode &PHI : Header->phis()) { 7908 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7909 CurrentIterVals[&PHI] = StartCST; 7910 } 7911 if (!CurrentIterVals.count(PN)) 7912 return RetVal = nullptr; 7913 7914 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7915 7916 // Execute the loop symbolically to determine the exit value. 7917 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7918 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7919 7920 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7921 unsigned IterationNum = 0; 7922 const DataLayout &DL = getDataLayout(); 7923 for (; ; ++IterationNum) { 7924 if (IterationNum == NumIterations) 7925 return RetVal = CurrentIterVals[PN]; // Got exit value! 7926 7927 // Compute the value of the PHIs for the next iteration. 7928 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7929 DenseMap<Instruction *, Constant *> NextIterVals; 7930 Constant *NextPHI = 7931 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7932 if (!NextPHI) 7933 return nullptr; // Couldn't evaluate! 7934 NextIterVals[PN] = NextPHI; 7935 7936 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7937 7938 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7939 // cease to be able to evaluate one of them or if they stop evolving, 7940 // because that doesn't necessarily prevent us from computing PN. 7941 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7942 for (const auto &I : CurrentIterVals) { 7943 PHINode *PHI = dyn_cast<PHINode>(I.first); 7944 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7945 PHIsToCompute.emplace_back(PHI, I.second); 7946 } 7947 // We use two distinct loops because EvaluateExpression may invalidate any 7948 // iterators into CurrentIterVals. 7949 for (const auto &I : PHIsToCompute) { 7950 PHINode *PHI = I.first; 7951 Constant *&NextPHI = NextIterVals[PHI]; 7952 if (!NextPHI) { // Not already computed. 7953 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7954 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7955 } 7956 if (NextPHI != I.second) 7957 StoppedEvolving = false; 7958 } 7959 7960 // If all entries in CurrentIterVals == NextIterVals then we can stop 7961 // iterating, the loop can't continue to change. 7962 if (StoppedEvolving) 7963 return RetVal = CurrentIterVals[PN]; 7964 7965 CurrentIterVals.swap(NextIterVals); 7966 } 7967 } 7968 7969 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7970 Value *Cond, 7971 bool ExitWhen) { 7972 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7973 if (!PN) return getCouldNotCompute(); 7974 7975 // If the loop is canonicalized, the PHI will have exactly two entries. 7976 // That's the only form we support here. 7977 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7978 7979 DenseMap<Instruction *, Constant *> CurrentIterVals; 7980 BasicBlock *Header = L->getHeader(); 7981 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7982 7983 BasicBlock *Latch = L->getLoopLatch(); 7984 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7985 7986 for (PHINode &PHI : Header->phis()) { 7987 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7988 CurrentIterVals[&PHI] = StartCST; 7989 } 7990 if (!CurrentIterVals.count(PN)) 7991 return getCouldNotCompute(); 7992 7993 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7994 // the loop symbolically to determine when the condition gets a value of 7995 // "ExitWhen". 7996 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7997 const DataLayout &DL = getDataLayout(); 7998 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7999 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8000 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8001 8002 // Couldn't symbolically evaluate. 8003 if (!CondVal) return getCouldNotCompute(); 8004 8005 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8006 ++NumBruteForceTripCountsComputed; 8007 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8008 } 8009 8010 // Update all the PHI nodes for the next iteration. 8011 DenseMap<Instruction *, Constant *> NextIterVals; 8012 8013 // Create a list of which PHIs we need to compute. We want to do this before 8014 // calling EvaluateExpression on them because that may invalidate iterators 8015 // into CurrentIterVals. 8016 SmallVector<PHINode *, 8> PHIsToCompute; 8017 for (const auto &I : CurrentIterVals) { 8018 PHINode *PHI = dyn_cast<PHINode>(I.first); 8019 if (!PHI || PHI->getParent() != Header) continue; 8020 PHIsToCompute.push_back(PHI); 8021 } 8022 for (PHINode *PHI : PHIsToCompute) { 8023 Constant *&NextPHI = NextIterVals[PHI]; 8024 if (NextPHI) continue; // Already computed! 8025 8026 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8027 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8028 } 8029 CurrentIterVals.swap(NextIterVals); 8030 } 8031 8032 // Too many iterations were needed to evaluate. 8033 return getCouldNotCompute(); 8034 } 8035 8036 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8037 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8038 ValuesAtScopes[V]; 8039 // Check to see if we've folded this expression at this loop before. 8040 for (auto &LS : Values) 8041 if (LS.first == L) 8042 return LS.second ? LS.second : V; 8043 8044 Values.emplace_back(L, nullptr); 8045 8046 // Otherwise compute it. 8047 const SCEV *C = computeSCEVAtScope(V, L); 8048 for (auto &LS : reverse(ValuesAtScopes[V])) 8049 if (LS.first == L) { 8050 LS.second = C; 8051 break; 8052 } 8053 return C; 8054 } 8055 8056 /// This builds up a Constant using the ConstantExpr interface. That way, we 8057 /// will return Constants for objects which aren't represented by a 8058 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8059 /// Returns NULL if the SCEV isn't representable as a Constant. 8060 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8061 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 8062 case scCouldNotCompute: 8063 case scAddRecExpr: 8064 break; 8065 case scConstant: 8066 return cast<SCEVConstant>(V)->getValue(); 8067 case scUnknown: 8068 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8069 case scSignExtend: { 8070 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8071 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8072 return ConstantExpr::getSExt(CastOp, SS->getType()); 8073 break; 8074 } 8075 case scZeroExtend: { 8076 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8077 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8078 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8079 break; 8080 } 8081 case scTruncate: { 8082 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8083 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8084 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8085 break; 8086 } 8087 case scAddExpr: { 8088 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8089 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8090 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8091 unsigned AS = PTy->getAddressSpace(); 8092 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8093 C = ConstantExpr::getBitCast(C, DestPtrTy); 8094 } 8095 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8096 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8097 if (!C2) return nullptr; 8098 8099 // First pointer! 8100 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8101 unsigned AS = C2->getType()->getPointerAddressSpace(); 8102 std::swap(C, C2); 8103 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8104 // The offsets have been converted to bytes. We can add bytes to an 8105 // i8* by GEP with the byte count in the first index. 8106 C = ConstantExpr::getBitCast(C, DestPtrTy); 8107 } 8108 8109 // Don't bother trying to sum two pointers. We probably can't 8110 // statically compute a load that results from it anyway. 8111 if (C2->getType()->isPointerTy()) 8112 return nullptr; 8113 8114 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8115 if (PTy->getElementType()->isStructTy()) 8116 C2 = ConstantExpr::getIntegerCast( 8117 C2, Type::getInt32Ty(C->getContext()), true); 8118 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8119 } else 8120 C = ConstantExpr::getAdd(C, C2); 8121 } 8122 return C; 8123 } 8124 break; 8125 } 8126 case scMulExpr: { 8127 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8128 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8129 // Don't bother with pointers at all. 8130 if (C->getType()->isPointerTy()) return nullptr; 8131 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8132 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8133 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 8134 C = ConstantExpr::getMul(C, C2); 8135 } 8136 return C; 8137 } 8138 break; 8139 } 8140 case scUDivExpr: { 8141 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8142 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8143 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8144 if (LHS->getType() == RHS->getType()) 8145 return ConstantExpr::getUDiv(LHS, RHS); 8146 break; 8147 } 8148 case scSMaxExpr: 8149 case scUMaxExpr: 8150 case scSMinExpr: 8151 case scUMinExpr: 8152 break; // TODO: smax, umax, smin, umax. 8153 } 8154 return nullptr; 8155 } 8156 8157 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8158 if (isa<SCEVConstant>(V)) return V; 8159 8160 // If this instruction is evolved from a constant-evolving PHI, compute the 8161 // exit value from the loop without using SCEVs. 8162 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8163 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8164 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8165 const Loop *LI = this->LI[I->getParent()]; 8166 // Looking for loop exit value. 8167 if (LI && LI->getParentLoop() == L && 8168 PN->getParent() == LI->getHeader()) { 8169 // Okay, there is no closed form solution for the PHI node. Check 8170 // to see if the loop that contains it has a known backedge-taken 8171 // count. If so, we may be able to force computation of the exit 8172 // value. 8173 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8174 // This trivial case can show up in some degenerate cases where 8175 // the incoming IR has not yet been fully simplified. 8176 if (BackedgeTakenCount->isZero()) { 8177 Value *InitValue = nullptr; 8178 bool MultipleInitValues = false; 8179 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8180 if (!LI->contains(PN->getIncomingBlock(i))) { 8181 if (!InitValue) 8182 InitValue = PN->getIncomingValue(i); 8183 else if (InitValue != PN->getIncomingValue(i)) { 8184 MultipleInitValues = true; 8185 break; 8186 } 8187 } 8188 } 8189 if (!MultipleInitValues && InitValue) 8190 return getSCEV(InitValue); 8191 } 8192 // Do we have a loop invariant value flowing around the backedge 8193 // for a loop which must execute the backedge? 8194 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8195 isKnownPositive(BackedgeTakenCount) && 8196 PN->getNumIncomingValues() == 2) { 8197 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8198 const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred)); 8199 if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent())) 8200 return OnBackedge; 8201 } 8202 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8203 // Okay, we know how many times the containing loop executes. If 8204 // this is a constant evolving PHI node, get the final value at 8205 // the specified iteration number. 8206 Constant *RV = 8207 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8208 if (RV) return getSCEV(RV); 8209 } 8210 } 8211 8212 // If there is a single-input Phi, evaluate it at our scope. If we can 8213 // prove that this replacement does not break LCSSA form, use new value. 8214 if (PN->getNumOperands() == 1) { 8215 const SCEV *Input = getSCEV(PN->getOperand(0)); 8216 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8217 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8218 // for the simplest case just support constants. 8219 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8220 } 8221 } 8222 8223 // Okay, this is an expression that we cannot symbolically evaluate 8224 // into a SCEV. Check to see if it's possible to symbolically evaluate 8225 // the arguments into constants, and if so, try to constant propagate the 8226 // result. This is particularly useful for computing loop exit values. 8227 if (CanConstantFold(I)) { 8228 SmallVector<Constant *, 4> Operands; 8229 bool MadeImprovement = false; 8230 for (Value *Op : I->operands()) { 8231 if (Constant *C = dyn_cast<Constant>(Op)) { 8232 Operands.push_back(C); 8233 continue; 8234 } 8235 8236 // If any of the operands is non-constant and if they are 8237 // non-integer and non-pointer, don't even try to analyze them 8238 // with scev techniques. 8239 if (!isSCEVable(Op->getType())) 8240 return V; 8241 8242 const SCEV *OrigV = getSCEV(Op); 8243 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8244 MadeImprovement |= OrigV != OpV; 8245 8246 Constant *C = BuildConstantFromSCEV(OpV); 8247 if (!C) return V; 8248 if (C->getType() != Op->getType()) 8249 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8250 Op->getType(), 8251 false), 8252 C, Op->getType()); 8253 Operands.push_back(C); 8254 } 8255 8256 // Check to see if getSCEVAtScope actually made an improvement. 8257 if (MadeImprovement) { 8258 Constant *C = nullptr; 8259 const DataLayout &DL = getDataLayout(); 8260 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8261 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8262 Operands[1], DL, &TLI); 8263 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8264 if (!LI->isVolatile()) 8265 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8266 } else 8267 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8268 if (!C) return V; 8269 return getSCEV(C); 8270 } 8271 } 8272 } 8273 8274 // This is some other type of SCEVUnknown, just return it. 8275 return V; 8276 } 8277 8278 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8279 // Avoid performing the look-up in the common case where the specified 8280 // expression has no loop-variant portions. 8281 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8282 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8283 if (OpAtScope != Comm->getOperand(i)) { 8284 // Okay, at least one of these operands is loop variant but might be 8285 // foldable. Build a new instance of the folded commutative expression. 8286 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8287 Comm->op_begin()+i); 8288 NewOps.push_back(OpAtScope); 8289 8290 for (++i; i != e; ++i) { 8291 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8292 NewOps.push_back(OpAtScope); 8293 } 8294 if (isa<SCEVAddExpr>(Comm)) 8295 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8296 if (isa<SCEVMulExpr>(Comm)) 8297 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8298 if (isa<SCEVMinMaxExpr>(Comm)) 8299 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8300 llvm_unreachable("Unknown commutative SCEV type!"); 8301 } 8302 } 8303 // If we got here, all operands are loop invariant. 8304 return Comm; 8305 } 8306 8307 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8308 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8309 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8310 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8311 return Div; // must be loop invariant 8312 return getUDivExpr(LHS, RHS); 8313 } 8314 8315 // If this is a loop recurrence for a loop that does not contain L, then we 8316 // are dealing with the final value computed by the loop. 8317 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8318 // First, attempt to evaluate each operand. 8319 // Avoid performing the look-up in the common case where the specified 8320 // expression has no loop-variant portions. 8321 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8322 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8323 if (OpAtScope == AddRec->getOperand(i)) 8324 continue; 8325 8326 // Okay, at least one of these operands is loop variant but might be 8327 // foldable. Build a new instance of the folded commutative expression. 8328 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8329 AddRec->op_begin()+i); 8330 NewOps.push_back(OpAtScope); 8331 for (++i; i != e; ++i) 8332 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8333 8334 const SCEV *FoldedRec = 8335 getAddRecExpr(NewOps, AddRec->getLoop(), 8336 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8337 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8338 // The addrec may be folded to a nonrecurrence, for example, if the 8339 // induction variable is multiplied by zero after constant folding. Go 8340 // ahead and return the folded value. 8341 if (!AddRec) 8342 return FoldedRec; 8343 break; 8344 } 8345 8346 // If the scope is outside the addrec's loop, evaluate it by using the 8347 // loop exit value of the addrec. 8348 if (!AddRec->getLoop()->contains(L)) { 8349 // To evaluate this recurrence, we need to know how many times the AddRec 8350 // loop iterates. Compute this now. 8351 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8352 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8353 8354 // Then, evaluate the AddRec. 8355 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8356 } 8357 8358 return AddRec; 8359 } 8360 8361 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8362 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8363 if (Op == Cast->getOperand()) 8364 return Cast; // must be loop invariant 8365 return getZeroExtendExpr(Op, Cast->getType()); 8366 } 8367 8368 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8369 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8370 if (Op == Cast->getOperand()) 8371 return Cast; // must be loop invariant 8372 return getSignExtendExpr(Op, Cast->getType()); 8373 } 8374 8375 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8376 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8377 if (Op == Cast->getOperand()) 8378 return Cast; // must be loop invariant 8379 return getTruncateExpr(Op, Cast->getType()); 8380 } 8381 8382 llvm_unreachable("Unknown SCEV type!"); 8383 } 8384 8385 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8386 return getSCEVAtScope(getSCEV(V), L); 8387 } 8388 8389 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8390 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8391 return stripInjectiveFunctions(ZExt->getOperand()); 8392 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8393 return stripInjectiveFunctions(SExt->getOperand()); 8394 return S; 8395 } 8396 8397 /// Finds the minimum unsigned root of the following equation: 8398 /// 8399 /// A * X = B (mod N) 8400 /// 8401 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8402 /// A and B isn't important. 8403 /// 8404 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8405 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8406 ScalarEvolution &SE) { 8407 uint32_t BW = A.getBitWidth(); 8408 assert(BW == SE.getTypeSizeInBits(B->getType())); 8409 assert(A != 0 && "A must be non-zero."); 8410 8411 // 1. D = gcd(A, N) 8412 // 8413 // The gcd of A and N may have only one prime factor: 2. The number of 8414 // trailing zeros in A is its multiplicity 8415 uint32_t Mult2 = A.countTrailingZeros(); 8416 // D = 2^Mult2 8417 8418 // 2. Check if B is divisible by D. 8419 // 8420 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8421 // is not less than multiplicity of this prime factor for D. 8422 if (SE.GetMinTrailingZeros(B) < Mult2) 8423 return SE.getCouldNotCompute(); 8424 8425 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8426 // modulo (N / D). 8427 // 8428 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8429 // (N / D) in general. The inverse itself always fits into BW bits, though, 8430 // so we immediately truncate it. 8431 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8432 APInt Mod(BW + 1, 0); 8433 Mod.setBit(BW - Mult2); // Mod = N / D 8434 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8435 8436 // 4. Compute the minimum unsigned root of the equation: 8437 // I * (B / D) mod (N / D) 8438 // To simplify the computation, we factor out the divide by D: 8439 // (I * B mod N) / D 8440 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8441 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8442 } 8443 8444 /// For a given quadratic addrec, generate coefficients of the corresponding 8445 /// quadratic equation, multiplied by a common value to ensure that they are 8446 /// integers. 8447 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8448 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8449 /// were multiplied by, and BitWidth is the bit width of the original addrec 8450 /// coefficients. 8451 /// This function returns None if the addrec coefficients are not compile- 8452 /// time constants. 8453 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8454 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8455 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8456 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8457 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8458 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8459 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8460 << *AddRec << '\n'); 8461 8462 // We currently can only solve this if the coefficients are constants. 8463 if (!LC || !MC || !NC) { 8464 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8465 return None; 8466 } 8467 8468 APInt L = LC->getAPInt(); 8469 APInt M = MC->getAPInt(); 8470 APInt N = NC->getAPInt(); 8471 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8472 8473 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8474 unsigned NewWidth = BitWidth + 1; 8475 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8476 << BitWidth << '\n'); 8477 // The sign-extension (as opposed to a zero-extension) here matches the 8478 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8479 N = N.sext(NewWidth); 8480 M = M.sext(NewWidth); 8481 L = L.sext(NewWidth); 8482 8483 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8484 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8485 // L+M, L+2M+N, L+3M+3N, ... 8486 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8487 // 8488 // The equation Acc = 0 is then 8489 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8490 // In a quadratic form it becomes: 8491 // N n^2 + (2M-N) n + 2L = 0. 8492 8493 APInt A = N; 8494 APInt B = 2 * M - A; 8495 APInt C = 2 * L; 8496 APInt T = APInt(NewWidth, 2); 8497 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8498 << "x + " << C << ", coeff bw: " << NewWidth 8499 << ", multiplied by " << T << '\n'); 8500 return std::make_tuple(A, B, C, T, BitWidth); 8501 } 8502 8503 /// Helper function to compare optional APInts: 8504 /// (a) if X and Y both exist, return min(X, Y), 8505 /// (b) if neither X nor Y exist, return None, 8506 /// (c) if exactly one of X and Y exists, return that value. 8507 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8508 if (X.hasValue() && Y.hasValue()) { 8509 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8510 APInt XW = X->sextOrSelf(W); 8511 APInt YW = Y->sextOrSelf(W); 8512 return XW.slt(YW) ? *X : *Y; 8513 } 8514 if (!X.hasValue() && !Y.hasValue()) 8515 return None; 8516 return X.hasValue() ? *X : *Y; 8517 } 8518 8519 /// Helper function to truncate an optional APInt to a given BitWidth. 8520 /// When solving addrec-related equations, it is preferable to return a value 8521 /// that has the same bit width as the original addrec's coefficients. If the 8522 /// solution fits in the original bit width, truncate it (except for i1). 8523 /// Returning a value of a different bit width may inhibit some optimizations. 8524 /// 8525 /// In general, a solution to a quadratic equation generated from an addrec 8526 /// may require BW+1 bits, where BW is the bit width of the addrec's 8527 /// coefficients. The reason is that the coefficients of the quadratic 8528 /// equation are BW+1 bits wide (to avoid truncation when converting from 8529 /// the addrec to the equation). 8530 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8531 if (!X.hasValue()) 8532 return None; 8533 unsigned W = X->getBitWidth(); 8534 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8535 return X->trunc(BitWidth); 8536 return X; 8537 } 8538 8539 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8540 /// iterations. The values L, M, N are assumed to be signed, and they 8541 /// should all have the same bit widths. 8542 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8543 /// where BW is the bit width of the addrec's coefficients. 8544 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8545 /// returned as such, otherwise the bit width of the returned value may 8546 /// be greater than BW. 8547 /// 8548 /// This function returns None if 8549 /// (a) the addrec coefficients are not constant, or 8550 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8551 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8552 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8553 static Optional<APInt> 8554 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8555 APInt A, B, C, M; 8556 unsigned BitWidth; 8557 auto T = GetQuadraticEquation(AddRec); 8558 if (!T.hasValue()) 8559 return None; 8560 8561 std::tie(A, B, C, M, BitWidth) = *T; 8562 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8563 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8564 if (!X.hasValue()) 8565 return None; 8566 8567 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8568 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8569 if (!V->isZero()) 8570 return None; 8571 8572 return TruncIfPossible(X, BitWidth); 8573 } 8574 8575 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8576 /// iterations. The values M, N are assumed to be signed, and they 8577 /// should all have the same bit widths. 8578 /// Find the least n such that c(n) does not belong to the given range, 8579 /// while c(n-1) does. 8580 /// 8581 /// This function returns None if 8582 /// (a) the addrec coefficients are not constant, or 8583 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8584 /// bounds of the range. 8585 static Optional<APInt> 8586 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8587 const ConstantRange &Range, ScalarEvolution &SE) { 8588 assert(AddRec->getOperand(0)->isZero() && 8589 "Starting value of addrec should be 0"); 8590 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8591 << Range << ", addrec " << *AddRec << '\n'); 8592 // This case is handled in getNumIterationsInRange. Here we can assume that 8593 // we start in the range. 8594 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8595 "Addrec's initial value should be in range"); 8596 8597 APInt A, B, C, M; 8598 unsigned BitWidth; 8599 auto T = GetQuadraticEquation(AddRec); 8600 if (!T.hasValue()) 8601 return None; 8602 8603 // Be careful about the return value: there can be two reasons for not 8604 // returning an actual number. First, if no solutions to the equations 8605 // were found, and second, if the solutions don't leave the given range. 8606 // The first case means that the actual solution is "unknown", the second 8607 // means that it's known, but not valid. If the solution is unknown, we 8608 // cannot make any conclusions. 8609 // Return a pair: the optional solution and a flag indicating if the 8610 // solution was found. 8611 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8612 // Solve for signed overflow and unsigned overflow, pick the lower 8613 // solution. 8614 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8615 << Bound << " (before multiplying by " << M << ")\n"); 8616 Bound *= M; // The quadratic equation multiplier. 8617 8618 Optional<APInt> SO = None; 8619 if (BitWidth > 1) { 8620 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8621 "signed overflow\n"); 8622 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8623 } 8624 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8625 "unsigned overflow\n"); 8626 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8627 BitWidth+1); 8628 8629 auto LeavesRange = [&] (const APInt &X) { 8630 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8631 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8632 if (Range.contains(V0->getValue())) 8633 return false; 8634 // X should be at least 1, so X-1 is non-negative. 8635 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8636 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8637 if (Range.contains(V1->getValue())) 8638 return true; 8639 return false; 8640 }; 8641 8642 // If SolveQuadraticEquationWrap returns None, it means that there can 8643 // be a solution, but the function failed to find it. We cannot treat it 8644 // as "no solution". 8645 if (!SO.hasValue() || !UO.hasValue()) 8646 return { None, false }; 8647 8648 // Check the smaller value first to see if it leaves the range. 8649 // At this point, both SO and UO must have values. 8650 Optional<APInt> Min = MinOptional(SO, UO); 8651 if (LeavesRange(*Min)) 8652 return { Min, true }; 8653 Optional<APInt> Max = Min == SO ? UO : SO; 8654 if (LeavesRange(*Max)) 8655 return { Max, true }; 8656 8657 // Solutions were found, but were eliminated, hence the "true". 8658 return { None, true }; 8659 }; 8660 8661 std::tie(A, B, C, M, BitWidth) = *T; 8662 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8663 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8664 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8665 auto SL = SolveForBoundary(Lower); 8666 auto SU = SolveForBoundary(Upper); 8667 // If any of the solutions was unknown, no meaninigful conclusions can 8668 // be made. 8669 if (!SL.second || !SU.second) 8670 return None; 8671 8672 // Claim: The correct solution is not some value between Min and Max. 8673 // 8674 // Justification: Assuming that Min and Max are different values, one of 8675 // them is when the first signed overflow happens, the other is when the 8676 // first unsigned overflow happens. Crossing the range boundary is only 8677 // possible via an overflow (treating 0 as a special case of it, modeling 8678 // an overflow as crossing k*2^W for some k). 8679 // 8680 // The interesting case here is when Min was eliminated as an invalid 8681 // solution, but Max was not. The argument is that if there was another 8682 // overflow between Min and Max, it would also have been eliminated if 8683 // it was considered. 8684 // 8685 // For a given boundary, it is possible to have two overflows of the same 8686 // type (signed/unsigned) without having the other type in between: this 8687 // can happen when the vertex of the parabola is between the iterations 8688 // corresponding to the overflows. This is only possible when the two 8689 // overflows cross k*2^W for the same k. In such case, if the second one 8690 // left the range (and was the first one to do so), the first overflow 8691 // would have to enter the range, which would mean that either we had left 8692 // the range before or that we started outside of it. Both of these cases 8693 // are contradictions. 8694 // 8695 // Claim: In the case where SolveForBoundary returns None, the correct 8696 // solution is not some value between the Max for this boundary and the 8697 // Min of the other boundary. 8698 // 8699 // Justification: Assume that we had such Max_A and Min_B corresponding 8700 // to range boundaries A and B and such that Max_A < Min_B. If there was 8701 // a solution between Max_A and Min_B, it would have to be caused by an 8702 // overflow corresponding to either A or B. It cannot correspond to B, 8703 // since Min_B is the first occurrence of such an overflow. If it 8704 // corresponded to A, it would have to be either a signed or an unsigned 8705 // overflow that is larger than both eliminated overflows for A. But 8706 // between the eliminated overflows and this overflow, the values would 8707 // cover the entire value space, thus crossing the other boundary, which 8708 // is a contradiction. 8709 8710 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8711 } 8712 8713 ScalarEvolution::ExitLimit 8714 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8715 bool AllowPredicates) { 8716 8717 // This is only used for loops with a "x != y" exit test. The exit condition 8718 // is now expressed as a single expression, V = x-y. So the exit test is 8719 // effectively V != 0. We know and take advantage of the fact that this 8720 // expression only being used in a comparison by zero context. 8721 8722 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8723 // If the value is a constant 8724 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8725 // If the value is already zero, the branch will execute zero times. 8726 if (C->getValue()->isZero()) return C; 8727 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8728 } 8729 8730 const SCEVAddRecExpr *AddRec = 8731 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8732 8733 if (!AddRec && AllowPredicates) 8734 // Try to make this an AddRec using runtime tests, in the first X 8735 // iterations of this loop, where X is the SCEV expression found by the 8736 // algorithm below. 8737 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8738 8739 if (!AddRec || AddRec->getLoop() != L) 8740 return getCouldNotCompute(); 8741 8742 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8743 // the quadratic equation to solve it. 8744 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8745 // We can only use this value if the chrec ends up with an exact zero 8746 // value at this index. When solving for "X*X != 5", for example, we 8747 // should not accept a root of 2. 8748 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8749 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8750 return ExitLimit(R, R, false, Predicates); 8751 } 8752 return getCouldNotCompute(); 8753 } 8754 8755 // Otherwise we can only handle this if it is affine. 8756 if (!AddRec->isAffine()) 8757 return getCouldNotCompute(); 8758 8759 // If this is an affine expression, the execution count of this branch is 8760 // the minimum unsigned root of the following equation: 8761 // 8762 // Start + Step*N = 0 (mod 2^BW) 8763 // 8764 // equivalent to: 8765 // 8766 // Step*N = -Start (mod 2^BW) 8767 // 8768 // where BW is the common bit width of Start and Step. 8769 8770 // Get the initial value for the loop. 8771 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8772 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8773 8774 // For now we handle only constant steps. 8775 // 8776 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8777 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8778 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8779 // We have not yet seen any such cases. 8780 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8781 if (!StepC || StepC->getValue()->isZero()) 8782 return getCouldNotCompute(); 8783 8784 // For positive steps (counting up until unsigned overflow): 8785 // N = -Start/Step (as unsigned) 8786 // For negative steps (counting down to zero): 8787 // N = Start/-Step 8788 // First compute the unsigned distance from zero in the direction of Step. 8789 bool CountDown = StepC->getAPInt().isNegative(); 8790 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8791 8792 // Handle unitary steps, which cannot wraparound. 8793 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8794 // N = Distance (as unsigned) 8795 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8796 APInt MaxBECount = getUnsignedRangeMax(Distance); 8797 8798 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8799 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8800 // case, and see if we can improve the bound. 8801 // 8802 // Explicitly handling this here is necessary because getUnsignedRange 8803 // isn't context-sensitive; it doesn't know that we only care about the 8804 // range inside the loop. 8805 const SCEV *Zero = getZero(Distance->getType()); 8806 const SCEV *One = getOne(Distance->getType()); 8807 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8808 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8809 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8810 // as "unsigned_max(Distance + 1) - 1". 8811 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8812 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8813 } 8814 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8815 } 8816 8817 // If the condition controls loop exit (the loop exits only if the expression 8818 // is true) and the addition is no-wrap we can use unsigned divide to 8819 // compute the backedge count. In this case, the step may not divide the 8820 // distance, but we don't care because if the condition is "missed" the loop 8821 // will have undefined behavior due to wrapping. 8822 if (ControlsExit && AddRec->hasNoSelfWrap() && 8823 loopHasNoAbnormalExits(AddRec->getLoop())) { 8824 const SCEV *Exact = 8825 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8826 const SCEV *Max = 8827 Exact == getCouldNotCompute() 8828 ? Exact 8829 : getConstant(getUnsignedRangeMax(Exact)); 8830 return ExitLimit(Exact, Max, false, Predicates); 8831 } 8832 8833 // Solve the general equation. 8834 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8835 getNegativeSCEV(Start), *this); 8836 const SCEV *M = E == getCouldNotCompute() 8837 ? E 8838 : getConstant(getUnsignedRangeMax(E)); 8839 return ExitLimit(E, M, false, Predicates); 8840 } 8841 8842 ScalarEvolution::ExitLimit 8843 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8844 // Loops that look like: while (X == 0) are very strange indeed. We don't 8845 // handle them yet except for the trivial case. This could be expanded in the 8846 // future as needed. 8847 8848 // If the value is a constant, check to see if it is known to be non-zero 8849 // already. If so, the backedge will execute zero times. 8850 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8851 if (!C->getValue()->isZero()) 8852 return getZero(C->getType()); 8853 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8854 } 8855 8856 // We could implement others, but I really doubt anyone writes loops like 8857 // this, and if they did, they would already be constant folded. 8858 return getCouldNotCompute(); 8859 } 8860 8861 std::pair<BasicBlock *, BasicBlock *> 8862 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8863 // If the block has a unique predecessor, then there is no path from the 8864 // predecessor to the block that does not go through the direct edge 8865 // from the predecessor to the block. 8866 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8867 return {Pred, BB}; 8868 8869 // A loop's header is defined to be a block that dominates the loop. 8870 // If the header has a unique predecessor outside the loop, it must be 8871 // a block that has exactly one successor that can reach the loop. 8872 if (Loop *L = LI.getLoopFor(BB)) 8873 return {L->getLoopPredecessor(), L->getHeader()}; 8874 8875 return {nullptr, nullptr}; 8876 } 8877 8878 /// SCEV structural equivalence is usually sufficient for testing whether two 8879 /// expressions are equal, however for the purposes of looking for a condition 8880 /// guarding a loop, it can be useful to be a little more general, since a 8881 /// front-end may have replicated the controlling expression. 8882 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8883 // Quick check to see if they are the same SCEV. 8884 if (A == B) return true; 8885 8886 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8887 // Not all instructions that are "identical" compute the same value. For 8888 // instance, two distinct alloca instructions allocating the same type are 8889 // identical and do not read memory; but compute distinct values. 8890 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8891 }; 8892 8893 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8894 // two different instructions with the same value. Check for this case. 8895 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8896 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8897 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8898 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8899 if (ComputesEqualValues(AI, BI)) 8900 return true; 8901 8902 // Otherwise assume they may have a different value. 8903 return false; 8904 } 8905 8906 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8907 const SCEV *&LHS, const SCEV *&RHS, 8908 unsigned Depth) { 8909 bool Changed = false; 8910 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8911 // '0 != 0'. 8912 auto TrivialCase = [&](bool TriviallyTrue) { 8913 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8914 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8915 return true; 8916 }; 8917 // If we hit the max recursion limit bail out. 8918 if (Depth >= 3) 8919 return false; 8920 8921 // Canonicalize a constant to the right side. 8922 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8923 // Check for both operands constant. 8924 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8925 if (ConstantExpr::getICmp(Pred, 8926 LHSC->getValue(), 8927 RHSC->getValue())->isNullValue()) 8928 return TrivialCase(false); 8929 else 8930 return TrivialCase(true); 8931 } 8932 // Otherwise swap the operands to put the constant on the right. 8933 std::swap(LHS, RHS); 8934 Pred = ICmpInst::getSwappedPredicate(Pred); 8935 Changed = true; 8936 } 8937 8938 // If we're comparing an addrec with a value which is loop-invariant in the 8939 // addrec's loop, put the addrec on the left. Also make a dominance check, 8940 // as both operands could be addrecs loop-invariant in each other's loop. 8941 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8942 const Loop *L = AR->getLoop(); 8943 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8944 std::swap(LHS, RHS); 8945 Pred = ICmpInst::getSwappedPredicate(Pred); 8946 Changed = true; 8947 } 8948 } 8949 8950 // If there's a constant operand, canonicalize comparisons with boundary 8951 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8952 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8953 const APInt &RA = RC->getAPInt(); 8954 8955 bool SimplifiedByConstantRange = false; 8956 8957 if (!ICmpInst::isEquality(Pred)) { 8958 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8959 if (ExactCR.isFullSet()) 8960 return TrivialCase(true); 8961 else if (ExactCR.isEmptySet()) 8962 return TrivialCase(false); 8963 8964 APInt NewRHS; 8965 CmpInst::Predicate NewPred; 8966 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8967 ICmpInst::isEquality(NewPred)) { 8968 // We were able to convert an inequality to an equality. 8969 Pred = NewPred; 8970 RHS = getConstant(NewRHS); 8971 Changed = SimplifiedByConstantRange = true; 8972 } 8973 } 8974 8975 if (!SimplifiedByConstantRange) { 8976 switch (Pred) { 8977 default: 8978 break; 8979 case ICmpInst::ICMP_EQ: 8980 case ICmpInst::ICMP_NE: 8981 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8982 if (!RA) 8983 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8984 if (const SCEVMulExpr *ME = 8985 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8986 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8987 ME->getOperand(0)->isAllOnesValue()) { 8988 RHS = AE->getOperand(1); 8989 LHS = ME->getOperand(1); 8990 Changed = true; 8991 } 8992 break; 8993 8994 8995 // The "Should have been caught earlier!" messages refer to the fact 8996 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8997 // should have fired on the corresponding cases, and canonicalized the 8998 // check to trivial case. 8999 9000 case ICmpInst::ICMP_UGE: 9001 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9002 Pred = ICmpInst::ICMP_UGT; 9003 RHS = getConstant(RA - 1); 9004 Changed = true; 9005 break; 9006 case ICmpInst::ICMP_ULE: 9007 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9008 Pred = ICmpInst::ICMP_ULT; 9009 RHS = getConstant(RA + 1); 9010 Changed = true; 9011 break; 9012 case ICmpInst::ICMP_SGE: 9013 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9014 Pred = ICmpInst::ICMP_SGT; 9015 RHS = getConstant(RA - 1); 9016 Changed = true; 9017 break; 9018 case ICmpInst::ICMP_SLE: 9019 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9020 Pred = ICmpInst::ICMP_SLT; 9021 RHS = getConstant(RA + 1); 9022 Changed = true; 9023 break; 9024 } 9025 } 9026 } 9027 9028 // Check for obvious equality. 9029 if (HasSameValue(LHS, RHS)) { 9030 if (ICmpInst::isTrueWhenEqual(Pred)) 9031 return TrivialCase(true); 9032 if (ICmpInst::isFalseWhenEqual(Pred)) 9033 return TrivialCase(false); 9034 } 9035 9036 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9037 // adding or subtracting 1 from one of the operands. 9038 switch (Pred) { 9039 case ICmpInst::ICMP_SLE: 9040 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9041 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9042 SCEV::FlagNSW); 9043 Pred = ICmpInst::ICMP_SLT; 9044 Changed = true; 9045 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9046 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9047 SCEV::FlagNSW); 9048 Pred = ICmpInst::ICMP_SLT; 9049 Changed = true; 9050 } 9051 break; 9052 case ICmpInst::ICMP_SGE: 9053 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9054 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9055 SCEV::FlagNSW); 9056 Pred = ICmpInst::ICMP_SGT; 9057 Changed = true; 9058 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9059 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9060 SCEV::FlagNSW); 9061 Pred = ICmpInst::ICMP_SGT; 9062 Changed = true; 9063 } 9064 break; 9065 case ICmpInst::ICMP_ULE: 9066 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9067 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9068 SCEV::FlagNUW); 9069 Pred = ICmpInst::ICMP_ULT; 9070 Changed = true; 9071 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9072 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9073 Pred = ICmpInst::ICMP_ULT; 9074 Changed = true; 9075 } 9076 break; 9077 case ICmpInst::ICMP_UGE: 9078 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9079 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9080 Pred = ICmpInst::ICMP_UGT; 9081 Changed = true; 9082 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9083 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9084 SCEV::FlagNUW); 9085 Pred = ICmpInst::ICMP_UGT; 9086 Changed = true; 9087 } 9088 break; 9089 default: 9090 break; 9091 } 9092 9093 // TODO: More simplifications are possible here. 9094 9095 // Recursively simplify until we either hit a recursion limit or nothing 9096 // changes. 9097 if (Changed) 9098 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9099 9100 return Changed; 9101 } 9102 9103 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9104 return getSignedRangeMax(S).isNegative(); 9105 } 9106 9107 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9108 return getSignedRangeMin(S).isStrictlyPositive(); 9109 } 9110 9111 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9112 return !getSignedRangeMin(S).isNegative(); 9113 } 9114 9115 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9116 return !getSignedRangeMax(S).isStrictlyPositive(); 9117 } 9118 9119 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9120 return isKnownNegative(S) || isKnownPositive(S); 9121 } 9122 9123 std::pair<const SCEV *, const SCEV *> 9124 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9125 // Compute SCEV on entry of loop L. 9126 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9127 if (Start == getCouldNotCompute()) 9128 return { Start, Start }; 9129 // Compute post increment SCEV for loop L. 9130 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9131 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9132 return { Start, PostInc }; 9133 } 9134 9135 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9136 const SCEV *LHS, const SCEV *RHS) { 9137 // First collect all loops. 9138 SmallPtrSet<const Loop *, 8> LoopsUsed; 9139 getUsedLoops(LHS, LoopsUsed); 9140 getUsedLoops(RHS, LoopsUsed); 9141 9142 if (LoopsUsed.empty()) 9143 return false; 9144 9145 // Domination relationship must be a linear order on collected loops. 9146 #ifndef NDEBUG 9147 for (auto *L1 : LoopsUsed) 9148 for (auto *L2 : LoopsUsed) 9149 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9150 DT.dominates(L2->getHeader(), L1->getHeader())) && 9151 "Domination relationship is not a linear order"); 9152 #endif 9153 9154 const Loop *MDL = 9155 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9156 [&](const Loop *L1, const Loop *L2) { 9157 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9158 }); 9159 9160 // Get init and post increment value for LHS. 9161 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9162 // if LHS contains unknown non-invariant SCEV then bail out. 9163 if (SplitLHS.first == getCouldNotCompute()) 9164 return false; 9165 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9166 // Get init and post increment value for RHS. 9167 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9168 // if RHS contains unknown non-invariant SCEV then bail out. 9169 if (SplitRHS.first == getCouldNotCompute()) 9170 return false; 9171 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9172 // It is possible that init SCEV contains an invariant load but it does 9173 // not dominate MDL and is not available at MDL loop entry, so we should 9174 // check it here. 9175 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9176 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9177 return false; 9178 9179 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && 9180 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9181 SplitRHS.second); 9182 } 9183 9184 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9185 const SCEV *LHS, const SCEV *RHS) { 9186 // Canonicalize the inputs first. 9187 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9188 9189 if (isKnownViaInduction(Pred, LHS, RHS)) 9190 return true; 9191 9192 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9193 return true; 9194 9195 // Otherwise see what can be done with some simple reasoning. 9196 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9197 } 9198 9199 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9200 const SCEVAddRecExpr *LHS, 9201 const SCEV *RHS) { 9202 const Loop *L = LHS->getLoop(); 9203 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9204 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9205 } 9206 9207 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9208 ICmpInst::Predicate Pred, 9209 bool &Increasing) { 9210 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9211 9212 #ifndef NDEBUG 9213 // Verify an invariant: inverting the predicate should turn a monotonically 9214 // increasing change to a monotonically decreasing one, and vice versa. 9215 bool IncreasingSwapped; 9216 bool ResultSwapped = isMonotonicPredicateImpl( 9217 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9218 9219 assert(Result == ResultSwapped && "should be able to analyze both!"); 9220 if (ResultSwapped) 9221 assert(Increasing == !IncreasingSwapped && 9222 "monotonicity should flip as we flip the predicate"); 9223 #endif 9224 9225 return Result; 9226 } 9227 9228 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9229 ICmpInst::Predicate Pred, 9230 bool &Increasing) { 9231 9232 // A zero step value for LHS means the induction variable is essentially a 9233 // loop invariant value. We don't really depend on the predicate actually 9234 // flipping from false to true (for increasing predicates, and the other way 9235 // around for decreasing predicates), all we care about is that *if* the 9236 // predicate changes then it only changes from false to true. 9237 // 9238 // A zero step value in itself is not very useful, but there may be places 9239 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9240 // as general as possible. 9241 9242 switch (Pred) { 9243 default: 9244 return false; // Conservative answer 9245 9246 case ICmpInst::ICMP_UGT: 9247 case ICmpInst::ICMP_UGE: 9248 case ICmpInst::ICMP_ULT: 9249 case ICmpInst::ICMP_ULE: 9250 if (!LHS->hasNoUnsignedWrap()) 9251 return false; 9252 9253 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9254 return true; 9255 9256 case ICmpInst::ICMP_SGT: 9257 case ICmpInst::ICMP_SGE: 9258 case ICmpInst::ICMP_SLT: 9259 case ICmpInst::ICMP_SLE: { 9260 if (!LHS->hasNoSignedWrap()) 9261 return false; 9262 9263 const SCEV *Step = LHS->getStepRecurrence(*this); 9264 9265 if (isKnownNonNegative(Step)) { 9266 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9267 return true; 9268 } 9269 9270 if (isKnownNonPositive(Step)) { 9271 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9272 return true; 9273 } 9274 9275 return false; 9276 } 9277 9278 } 9279 9280 llvm_unreachable("switch has default clause!"); 9281 } 9282 9283 bool ScalarEvolution::isLoopInvariantPredicate( 9284 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9285 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9286 const SCEV *&InvariantRHS) { 9287 9288 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9289 if (!isLoopInvariant(RHS, L)) { 9290 if (!isLoopInvariant(LHS, L)) 9291 return false; 9292 9293 std::swap(LHS, RHS); 9294 Pred = ICmpInst::getSwappedPredicate(Pred); 9295 } 9296 9297 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9298 if (!ArLHS || ArLHS->getLoop() != L) 9299 return false; 9300 9301 bool Increasing; 9302 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9303 return false; 9304 9305 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9306 // true as the loop iterates, and the backedge is control dependent on 9307 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9308 // 9309 // * if the predicate was false in the first iteration then the predicate 9310 // is never evaluated again, since the loop exits without taking the 9311 // backedge. 9312 // * if the predicate was true in the first iteration then it will 9313 // continue to be true for all future iterations since it is 9314 // monotonically increasing. 9315 // 9316 // For both the above possibilities, we can replace the loop varying 9317 // predicate with its value on the first iteration of the loop (which is 9318 // loop invariant). 9319 // 9320 // A similar reasoning applies for a monotonically decreasing predicate, by 9321 // replacing true with false and false with true in the above two bullets. 9322 9323 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9324 9325 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9326 return false; 9327 9328 InvariantPred = Pred; 9329 InvariantLHS = ArLHS->getStart(); 9330 InvariantRHS = RHS; 9331 return true; 9332 } 9333 9334 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9335 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9336 if (HasSameValue(LHS, RHS)) 9337 return ICmpInst::isTrueWhenEqual(Pred); 9338 9339 // This code is split out from isKnownPredicate because it is called from 9340 // within isLoopEntryGuardedByCond. 9341 9342 auto CheckRanges = 9343 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9344 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9345 .contains(RangeLHS); 9346 }; 9347 9348 // The check at the top of the function catches the case where the values are 9349 // known to be equal. 9350 if (Pred == CmpInst::ICMP_EQ) 9351 return false; 9352 9353 if (Pred == CmpInst::ICMP_NE) 9354 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9355 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9356 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9357 9358 if (CmpInst::isSigned(Pred)) 9359 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9360 9361 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9362 } 9363 9364 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9365 const SCEV *LHS, 9366 const SCEV *RHS) { 9367 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9368 // Return Y via OutY. 9369 auto MatchBinaryAddToConst = 9370 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9371 SCEV::NoWrapFlags ExpectedFlags) { 9372 const SCEV *NonConstOp, *ConstOp; 9373 SCEV::NoWrapFlags FlagsPresent; 9374 9375 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9376 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9377 return false; 9378 9379 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9380 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9381 }; 9382 9383 APInt C; 9384 9385 switch (Pred) { 9386 default: 9387 break; 9388 9389 case ICmpInst::ICMP_SGE: 9390 std::swap(LHS, RHS); 9391 LLVM_FALLTHROUGH; 9392 case ICmpInst::ICMP_SLE: 9393 // X s<= (X + C)<nsw> if C >= 0 9394 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9395 return true; 9396 9397 // (X + C)<nsw> s<= X if C <= 0 9398 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9399 !C.isStrictlyPositive()) 9400 return true; 9401 break; 9402 9403 case ICmpInst::ICMP_SGT: 9404 std::swap(LHS, RHS); 9405 LLVM_FALLTHROUGH; 9406 case ICmpInst::ICMP_SLT: 9407 // X s< (X + C)<nsw> if C > 0 9408 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9409 C.isStrictlyPositive()) 9410 return true; 9411 9412 // (X + C)<nsw> s< X if C < 0 9413 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9414 return true; 9415 break; 9416 } 9417 9418 return false; 9419 } 9420 9421 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9422 const SCEV *LHS, 9423 const SCEV *RHS) { 9424 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9425 return false; 9426 9427 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9428 // the stack can result in exponential time complexity. 9429 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9430 9431 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9432 // 9433 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9434 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9435 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9436 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9437 // use isKnownPredicate later if needed. 9438 return isKnownNonNegative(RHS) && 9439 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9440 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9441 } 9442 9443 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9444 ICmpInst::Predicate Pred, 9445 const SCEV *LHS, const SCEV *RHS) { 9446 // No need to even try if we know the module has no guards. 9447 if (!HasGuards) 9448 return false; 9449 9450 return any_of(*BB, [&](Instruction &I) { 9451 using namespace llvm::PatternMatch; 9452 9453 Value *Condition; 9454 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9455 m_Value(Condition))) && 9456 isImpliedCond(Pred, LHS, RHS, Condition, false); 9457 }); 9458 } 9459 9460 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9461 /// protected by a conditional between LHS and RHS. This is used to 9462 /// to eliminate casts. 9463 bool 9464 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9465 ICmpInst::Predicate Pred, 9466 const SCEV *LHS, const SCEV *RHS) { 9467 // Interpret a null as meaning no loop, where there is obviously no guard 9468 // (interprocedural conditions notwithstanding). 9469 if (!L) return true; 9470 9471 if (VerifyIR) 9472 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9473 "This cannot be done on broken IR!"); 9474 9475 9476 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9477 return true; 9478 9479 BasicBlock *Latch = L->getLoopLatch(); 9480 if (!Latch) 9481 return false; 9482 9483 BranchInst *LoopContinuePredicate = 9484 dyn_cast<BranchInst>(Latch->getTerminator()); 9485 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9486 isImpliedCond(Pred, LHS, RHS, 9487 LoopContinuePredicate->getCondition(), 9488 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9489 return true; 9490 9491 // We don't want more than one activation of the following loops on the stack 9492 // -- that can lead to O(n!) time complexity. 9493 if (WalkingBEDominatingConds) 9494 return false; 9495 9496 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9497 9498 // See if we can exploit a trip count to prove the predicate. 9499 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9500 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9501 if (LatchBECount != getCouldNotCompute()) { 9502 // We know that Latch branches back to the loop header exactly 9503 // LatchBECount times. This means the backdege condition at Latch is 9504 // equivalent to "{0,+,1} u< LatchBECount". 9505 Type *Ty = LatchBECount->getType(); 9506 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9507 const SCEV *LoopCounter = 9508 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9509 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9510 LatchBECount)) 9511 return true; 9512 } 9513 9514 // Check conditions due to any @llvm.assume intrinsics. 9515 for (auto &AssumeVH : AC.assumptions()) { 9516 if (!AssumeVH) 9517 continue; 9518 auto *CI = cast<CallInst>(AssumeVH); 9519 if (!DT.dominates(CI, Latch->getTerminator())) 9520 continue; 9521 9522 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9523 return true; 9524 } 9525 9526 // If the loop is not reachable from the entry block, we risk running into an 9527 // infinite loop as we walk up into the dom tree. These loops do not matter 9528 // anyway, so we just return a conservative answer when we see them. 9529 if (!DT.isReachableFromEntry(L->getHeader())) 9530 return false; 9531 9532 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9533 return true; 9534 9535 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9536 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9537 assert(DTN && "should reach the loop header before reaching the root!"); 9538 9539 BasicBlock *BB = DTN->getBlock(); 9540 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9541 return true; 9542 9543 BasicBlock *PBB = BB->getSinglePredecessor(); 9544 if (!PBB) 9545 continue; 9546 9547 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9548 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9549 continue; 9550 9551 Value *Condition = ContinuePredicate->getCondition(); 9552 9553 // If we have an edge `E` within the loop body that dominates the only 9554 // latch, the condition guarding `E` also guards the backedge. This 9555 // reasoning works only for loops with a single latch. 9556 9557 BasicBlockEdge DominatingEdge(PBB, BB); 9558 if (DominatingEdge.isSingleEdge()) { 9559 // We're constructively (and conservatively) enumerating edges within the 9560 // loop body that dominate the latch. The dominator tree better agree 9561 // with us on this: 9562 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9563 9564 if (isImpliedCond(Pred, LHS, RHS, Condition, 9565 BB != ContinuePredicate->getSuccessor(0))) 9566 return true; 9567 } 9568 } 9569 9570 return false; 9571 } 9572 9573 bool 9574 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9575 ICmpInst::Predicate Pred, 9576 const SCEV *LHS, const SCEV *RHS) { 9577 // Interpret a null as meaning no loop, where there is obviously no guard 9578 // (interprocedural conditions notwithstanding). 9579 if (!L) return false; 9580 9581 if (VerifyIR) 9582 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9583 "This cannot be done on broken IR!"); 9584 9585 // Both LHS and RHS must be available at loop entry. 9586 assert(isAvailableAtLoopEntry(LHS, L) && 9587 "LHS is not available at Loop Entry"); 9588 assert(isAvailableAtLoopEntry(RHS, L) && 9589 "RHS is not available at Loop Entry"); 9590 9591 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9592 return true; 9593 9594 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9595 // the facts (a >= b && a != b) separately. A typical situation is when the 9596 // non-strict comparison is known from ranges and non-equality is known from 9597 // dominating predicates. If we are proving strict comparison, we always try 9598 // to prove non-equality and non-strict comparison separately. 9599 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9600 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9601 bool ProvedNonStrictComparison = false; 9602 bool ProvedNonEquality = false; 9603 9604 if (ProvingStrictComparison) { 9605 ProvedNonStrictComparison = 9606 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9607 ProvedNonEquality = 9608 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9609 if (ProvedNonStrictComparison && ProvedNonEquality) 9610 return true; 9611 } 9612 9613 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9614 auto ProveViaGuard = [&](BasicBlock *Block) { 9615 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9616 return true; 9617 if (ProvingStrictComparison) { 9618 if (!ProvedNonStrictComparison) 9619 ProvedNonStrictComparison = 9620 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9621 if (!ProvedNonEquality) 9622 ProvedNonEquality = 9623 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9624 if (ProvedNonStrictComparison && ProvedNonEquality) 9625 return true; 9626 } 9627 return false; 9628 }; 9629 9630 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9631 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9632 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9633 return true; 9634 if (ProvingStrictComparison) { 9635 if (!ProvedNonStrictComparison) 9636 ProvedNonStrictComparison = 9637 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9638 if (!ProvedNonEquality) 9639 ProvedNonEquality = 9640 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9641 if (ProvedNonStrictComparison && ProvedNonEquality) 9642 return true; 9643 } 9644 return false; 9645 }; 9646 9647 // Starting at the loop predecessor, climb up the predecessor chain, as long 9648 // as there are predecessors that can be found that have unique successors 9649 // leading to the original header. 9650 for (std::pair<BasicBlock *, BasicBlock *> 9651 Pair(L->getLoopPredecessor(), L->getHeader()); 9652 Pair.first; 9653 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9654 9655 if (ProveViaGuard(Pair.first)) 9656 return true; 9657 9658 BranchInst *LoopEntryPredicate = 9659 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9660 if (!LoopEntryPredicate || 9661 LoopEntryPredicate->isUnconditional()) 9662 continue; 9663 9664 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9665 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9666 return true; 9667 } 9668 9669 // Check conditions due to any @llvm.assume intrinsics. 9670 for (auto &AssumeVH : AC.assumptions()) { 9671 if (!AssumeVH) 9672 continue; 9673 auto *CI = cast<CallInst>(AssumeVH); 9674 if (!DT.dominates(CI, L->getHeader())) 9675 continue; 9676 9677 if (ProveViaCond(CI->getArgOperand(0), false)) 9678 return true; 9679 } 9680 9681 return false; 9682 } 9683 9684 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9685 const SCEV *LHS, const SCEV *RHS, 9686 Value *FoundCondValue, 9687 bool Inverse) { 9688 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9689 return false; 9690 9691 auto ClearOnExit = 9692 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9693 9694 // Recursively handle And and Or conditions. 9695 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9696 if (BO->getOpcode() == Instruction::And) { 9697 if (!Inverse) 9698 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9699 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9700 } else if (BO->getOpcode() == Instruction::Or) { 9701 if (Inverse) 9702 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9703 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9704 } 9705 } 9706 9707 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9708 if (!ICI) return false; 9709 9710 // Now that we found a conditional branch that dominates the loop or controls 9711 // the loop latch. Check to see if it is the comparison we are looking for. 9712 ICmpInst::Predicate FoundPred; 9713 if (Inverse) 9714 FoundPred = ICI->getInversePredicate(); 9715 else 9716 FoundPred = ICI->getPredicate(); 9717 9718 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9719 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9720 9721 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9722 } 9723 9724 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9725 const SCEV *RHS, 9726 ICmpInst::Predicate FoundPred, 9727 const SCEV *FoundLHS, 9728 const SCEV *FoundRHS) { 9729 // Balance the types. 9730 if (getTypeSizeInBits(LHS->getType()) < 9731 getTypeSizeInBits(FoundLHS->getType())) { 9732 if (CmpInst::isSigned(Pred)) { 9733 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9734 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9735 } else { 9736 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9737 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9738 } 9739 } else if (getTypeSizeInBits(LHS->getType()) > 9740 getTypeSizeInBits(FoundLHS->getType())) { 9741 if (CmpInst::isSigned(FoundPred)) { 9742 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9743 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9744 } else { 9745 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9746 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9747 } 9748 } 9749 9750 // Canonicalize the query to match the way instcombine will have 9751 // canonicalized the comparison. 9752 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9753 if (LHS == RHS) 9754 return CmpInst::isTrueWhenEqual(Pred); 9755 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9756 if (FoundLHS == FoundRHS) 9757 return CmpInst::isFalseWhenEqual(FoundPred); 9758 9759 // Check to see if we can make the LHS or RHS match. 9760 if (LHS == FoundRHS || RHS == FoundLHS) { 9761 if (isa<SCEVConstant>(RHS)) { 9762 std::swap(FoundLHS, FoundRHS); 9763 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9764 } else { 9765 std::swap(LHS, RHS); 9766 Pred = ICmpInst::getSwappedPredicate(Pred); 9767 } 9768 } 9769 9770 // Check whether the found predicate is the same as the desired predicate. 9771 if (FoundPred == Pred) 9772 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9773 9774 // Check whether swapping the found predicate makes it the same as the 9775 // desired predicate. 9776 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9777 if (isa<SCEVConstant>(RHS)) 9778 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9779 else 9780 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9781 RHS, LHS, FoundLHS, FoundRHS); 9782 } 9783 9784 // Unsigned comparison is the same as signed comparison when both the operands 9785 // are non-negative. 9786 if (CmpInst::isUnsigned(FoundPred) && 9787 CmpInst::getSignedPredicate(FoundPred) == Pred && 9788 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9789 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9790 9791 // Check if we can make progress by sharpening ranges. 9792 if (FoundPred == ICmpInst::ICMP_NE && 9793 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9794 9795 const SCEVConstant *C = nullptr; 9796 const SCEV *V = nullptr; 9797 9798 if (isa<SCEVConstant>(FoundLHS)) { 9799 C = cast<SCEVConstant>(FoundLHS); 9800 V = FoundRHS; 9801 } else { 9802 C = cast<SCEVConstant>(FoundRHS); 9803 V = FoundLHS; 9804 } 9805 9806 // The guarding predicate tells us that C != V. If the known range 9807 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9808 // range we consider has to correspond to same signedness as the 9809 // predicate we're interested in folding. 9810 9811 APInt Min = ICmpInst::isSigned(Pred) ? 9812 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9813 9814 if (Min == C->getAPInt()) { 9815 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9816 // This is true even if (Min + 1) wraps around -- in case of 9817 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9818 9819 APInt SharperMin = Min + 1; 9820 9821 switch (Pred) { 9822 case ICmpInst::ICMP_SGE: 9823 case ICmpInst::ICMP_UGE: 9824 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9825 // RHS, we're done. 9826 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9827 getConstant(SharperMin))) 9828 return true; 9829 LLVM_FALLTHROUGH; 9830 9831 case ICmpInst::ICMP_SGT: 9832 case ICmpInst::ICMP_UGT: 9833 // We know from the range information that (V `Pred` Min || 9834 // V == Min). We know from the guarding condition that !(V 9835 // == Min). This gives us 9836 // 9837 // V `Pred` Min || V == Min && !(V == Min) 9838 // => V `Pred` Min 9839 // 9840 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9841 9842 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9843 return true; 9844 LLVM_FALLTHROUGH; 9845 9846 default: 9847 // No change 9848 break; 9849 } 9850 } 9851 } 9852 9853 // Check whether the actual condition is beyond sufficient. 9854 if (FoundPred == ICmpInst::ICMP_EQ) 9855 if (ICmpInst::isTrueWhenEqual(Pred)) 9856 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9857 return true; 9858 if (Pred == ICmpInst::ICMP_NE) 9859 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9860 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9861 return true; 9862 9863 // Otherwise assume the worst. 9864 return false; 9865 } 9866 9867 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9868 const SCEV *&L, const SCEV *&R, 9869 SCEV::NoWrapFlags &Flags) { 9870 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9871 if (!AE || AE->getNumOperands() != 2) 9872 return false; 9873 9874 L = AE->getOperand(0); 9875 R = AE->getOperand(1); 9876 Flags = AE->getNoWrapFlags(); 9877 return true; 9878 } 9879 9880 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9881 const SCEV *Less) { 9882 // We avoid subtracting expressions here because this function is usually 9883 // fairly deep in the call stack (i.e. is called many times). 9884 9885 // X - X = 0. 9886 if (More == Less) 9887 return APInt(getTypeSizeInBits(More->getType()), 0); 9888 9889 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9890 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9891 const auto *MAR = cast<SCEVAddRecExpr>(More); 9892 9893 if (LAR->getLoop() != MAR->getLoop()) 9894 return None; 9895 9896 // We look at affine expressions only; not for correctness but to keep 9897 // getStepRecurrence cheap. 9898 if (!LAR->isAffine() || !MAR->isAffine()) 9899 return None; 9900 9901 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9902 return None; 9903 9904 Less = LAR->getStart(); 9905 More = MAR->getStart(); 9906 9907 // fall through 9908 } 9909 9910 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9911 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9912 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9913 return M - L; 9914 } 9915 9916 SCEV::NoWrapFlags Flags; 9917 const SCEV *LLess = nullptr, *RLess = nullptr; 9918 const SCEV *LMore = nullptr, *RMore = nullptr; 9919 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9920 // Compare (X + C1) vs X. 9921 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9922 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9923 if (RLess == More) 9924 return -(C1->getAPInt()); 9925 9926 // Compare X vs (X + C2). 9927 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9928 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9929 if (RMore == Less) 9930 return C2->getAPInt(); 9931 9932 // Compare (X + C1) vs (X + C2). 9933 if (C1 && C2 && RLess == RMore) 9934 return C2->getAPInt() - C1->getAPInt(); 9935 9936 return None; 9937 } 9938 9939 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9940 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9941 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9942 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9943 return false; 9944 9945 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9946 if (!AddRecLHS) 9947 return false; 9948 9949 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9950 if (!AddRecFoundLHS) 9951 return false; 9952 9953 // We'd like to let SCEV reason about control dependencies, so we constrain 9954 // both the inequalities to be about add recurrences on the same loop. This 9955 // way we can use isLoopEntryGuardedByCond later. 9956 9957 const Loop *L = AddRecFoundLHS->getLoop(); 9958 if (L != AddRecLHS->getLoop()) 9959 return false; 9960 9961 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9962 // 9963 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9964 // ... (2) 9965 // 9966 // Informal proof for (2), assuming (1) [*]: 9967 // 9968 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9969 // 9970 // Then 9971 // 9972 // FoundLHS s< FoundRHS s< INT_MIN - C 9973 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9974 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9975 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9976 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9977 // <=> FoundLHS + C s< FoundRHS + C 9978 // 9979 // [*]: (1) can be proved by ruling out overflow. 9980 // 9981 // [**]: This can be proved by analyzing all the four possibilities: 9982 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9983 // (A s>= 0, B s>= 0). 9984 // 9985 // Note: 9986 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9987 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9988 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9989 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9990 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9991 // C)". 9992 9993 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9994 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9995 if (!LDiff || !RDiff || *LDiff != *RDiff) 9996 return false; 9997 9998 if (LDiff->isMinValue()) 9999 return true; 10000 10001 APInt FoundRHSLimit; 10002 10003 if (Pred == CmpInst::ICMP_ULT) { 10004 FoundRHSLimit = -(*RDiff); 10005 } else { 10006 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10007 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10008 } 10009 10010 // Try to prove (1) or (2), as needed. 10011 return isAvailableAtLoopEntry(FoundRHS, L) && 10012 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10013 getConstant(FoundRHSLimit)); 10014 } 10015 10016 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10017 const SCEV *LHS, const SCEV *RHS, 10018 const SCEV *FoundLHS, 10019 const SCEV *FoundRHS, unsigned Depth) { 10020 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10021 10022 auto ClearOnExit = make_scope_exit([&]() { 10023 if (LPhi) { 10024 bool Erased = PendingMerges.erase(LPhi); 10025 assert(Erased && "Failed to erase LPhi!"); 10026 (void)Erased; 10027 } 10028 if (RPhi) { 10029 bool Erased = PendingMerges.erase(RPhi); 10030 assert(Erased && "Failed to erase RPhi!"); 10031 (void)Erased; 10032 } 10033 }); 10034 10035 // Find respective Phis and check that they are not being pending. 10036 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10037 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10038 if (!PendingMerges.insert(Phi).second) 10039 return false; 10040 LPhi = Phi; 10041 } 10042 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10043 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10044 // If we detect a loop of Phi nodes being processed by this method, for 10045 // example: 10046 // 10047 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10048 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10049 // 10050 // we don't want to deal with a case that complex, so return conservative 10051 // answer false. 10052 if (!PendingMerges.insert(Phi).second) 10053 return false; 10054 RPhi = Phi; 10055 } 10056 10057 // If none of LHS, RHS is a Phi, nothing to do here. 10058 if (!LPhi && !RPhi) 10059 return false; 10060 10061 // If there is a SCEVUnknown Phi we are interested in, make it left. 10062 if (!LPhi) { 10063 std::swap(LHS, RHS); 10064 std::swap(FoundLHS, FoundRHS); 10065 std::swap(LPhi, RPhi); 10066 Pred = ICmpInst::getSwappedPredicate(Pred); 10067 } 10068 10069 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10070 const BasicBlock *LBB = LPhi->getParent(); 10071 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10072 10073 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10074 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10075 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10076 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10077 }; 10078 10079 if (RPhi && RPhi->getParent() == LBB) { 10080 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10081 // If we compare two Phis from the same block, and for each entry block 10082 // the predicate is true for incoming values from this block, then the 10083 // predicate is also true for the Phis. 10084 for (const BasicBlock *IncBB : predecessors(LBB)) { 10085 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10086 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10087 if (!ProvedEasily(L, R)) 10088 return false; 10089 } 10090 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10091 // Case two: RHS is also a Phi from the same basic block, and it is an 10092 // AddRec. It means that there is a loop which has both AddRec and Unknown 10093 // PHIs, for it we can compare incoming values of AddRec from above the loop 10094 // and latch with their respective incoming values of LPhi. 10095 // TODO: Generalize to handle loops with many inputs in a header. 10096 if (LPhi->getNumIncomingValues() != 2) return false; 10097 10098 auto *RLoop = RAR->getLoop(); 10099 auto *Predecessor = RLoop->getLoopPredecessor(); 10100 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10101 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10102 if (!ProvedEasily(L1, RAR->getStart())) 10103 return false; 10104 auto *Latch = RLoop->getLoopLatch(); 10105 assert(Latch && "Loop with AddRec with no latch?"); 10106 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10107 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10108 return false; 10109 } else { 10110 // In all other cases go over inputs of LHS and compare each of them to RHS, 10111 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10112 // At this point RHS is either a non-Phi, or it is a Phi from some block 10113 // different from LBB. 10114 for (const BasicBlock *IncBB : predecessors(LBB)) { 10115 // Check that RHS is available in this block. 10116 if (!dominates(RHS, IncBB)) 10117 return false; 10118 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10119 if (!ProvedEasily(L, RHS)) 10120 return false; 10121 } 10122 } 10123 return true; 10124 } 10125 10126 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10127 const SCEV *LHS, const SCEV *RHS, 10128 const SCEV *FoundLHS, 10129 const SCEV *FoundRHS) { 10130 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10131 return true; 10132 10133 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10134 return true; 10135 10136 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10137 FoundLHS, FoundRHS) || 10138 // ~x < ~y --> x > y 10139 isImpliedCondOperandsHelper(Pred, LHS, RHS, 10140 getNotSCEV(FoundRHS), 10141 getNotSCEV(FoundLHS)); 10142 } 10143 10144 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10145 template <typename MinMaxExprType> 10146 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10147 const SCEV *Candidate) { 10148 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10149 if (!MinMaxExpr) 10150 return false; 10151 10152 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 10153 } 10154 10155 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10156 ICmpInst::Predicate Pred, 10157 const SCEV *LHS, const SCEV *RHS) { 10158 // If both sides are affine addrecs for the same loop, with equal 10159 // steps, and we know the recurrences don't wrap, then we only 10160 // need to check the predicate on the starting values. 10161 10162 if (!ICmpInst::isRelational(Pred)) 10163 return false; 10164 10165 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10166 if (!LAR) 10167 return false; 10168 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10169 if (!RAR) 10170 return false; 10171 if (LAR->getLoop() != RAR->getLoop()) 10172 return false; 10173 if (!LAR->isAffine() || !RAR->isAffine()) 10174 return false; 10175 10176 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10177 return false; 10178 10179 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10180 SCEV::FlagNSW : SCEV::FlagNUW; 10181 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10182 return false; 10183 10184 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10185 } 10186 10187 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10188 /// expression? 10189 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10190 ICmpInst::Predicate Pred, 10191 const SCEV *LHS, const SCEV *RHS) { 10192 switch (Pred) { 10193 default: 10194 return false; 10195 10196 case ICmpInst::ICMP_SGE: 10197 std::swap(LHS, RHS); 10198 LLVM_FALLTHROUGH; 10199 case ICmpInst::ICMP_SLE: 10200 return 10201 // min(A, ...) <= A 10202 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10203 // A <= max(A, ...) 10204 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10205 10206 case ICmpInst::ICMP_UGE: 10207 std::swap(LHS, RHS); 10208 LLVM_FALLTHROUGH; 10209 case ICmpInst::ICMP_ULE: 10210 return 10211 // min(A, ...) <= A 10212 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10213 // A <= max(A, ...) 10214 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10215 } 10216 10217 llvm_unreachable("covered switch fell through?!"); 10218 } 10219 10220 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10221 const SCEV *LHS, const SCEV *RHS, 10222 const SCEV *FoundLHS, 10223 const SCEV *FoundRHS, 10224 unsigned Depth) { 10225 assert(getTypeSizeInBits(LHS->getType()) == 10226 getTypeSizeInBits(RHS->getType()) && 10227 "LHS and RHS have different sizes?"); 10228 assert(getTypeSizeInBits(FoundLHS->getType()) == 10229 getTypeSizeInBits(FoundRHS->getType()) && 10230 "FoundLHS and FoundRHS have different sizes?"); 10231 // We want to avoid hurting the compile time with analysis of too big trees. 10232 if (Depth > MaxSCEVOperationsImplicationDepth) 10233 return false; 10234 // We only want to work with ICMP_SGT comparison so far. 10235 // TODO: Extend to ICMP_UGT? 10236 if (Pred == ICmpInst::ICMP_SLT) { 10237 Pred = ICmpInst::ICMP_SGT; 10238 std::swap(LHS, RHS); 10239 std::swap(FoundLHS, FoundRHS); 10240 } 10241 if (Pred != ICmpInst::ICMP_SGT) 10242 return false; 10243 10244 auto GetOpFromSExt = [&](const SCEV *S) { 10245 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10246 return Ext->getOperand(); 10247 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10248 // the constant in some cases. 10249 return S; 10250 }; 10251 10252 // Acquire values from extensions. 10253 auto *OrigLHS = LHS; 10254 auto *OrigFoundLHS = FoundLHS; 10255 LHS = GetOpFromSExt(LHS); 10256 FoundLHS = GetOpFromSExt(FoundLHS); 10257 10258 // Is the SGT predicate can be proved trivially or using the found context. 10259 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10260 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10261 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10262 FoundRHS, Depth + 1); 10263 }; 10264 10265 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10266 // We want to avoid creation of any new non-constant SCEV. Since we are 10267 // going to compare the operands to RHS, we should be certain that we don't 10268 // need any size extensions for this. So let's decline all cases when the 10269 // sizes of types of LHS and RHS do not match. 10270 // TODO: Maybe try to get RHS from sext to catch more cases? 10271 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10272 return false; 10273 10274 // Should not overflow. 10275 if (!LHSAddExpr->hasNoSignedWrap()) 10276 return false; 10277 10278 auto *LL = LHSAddExpr->getOperand(0); 10279 auto *LR = LHSAddExpr->getOperand(1); 10280 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10281 10282 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10283 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10284 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10285 }; 10286 // Try to prove the following rule: 10287 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10288 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10289 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10290 return true; 10291 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10292 Value *LL, *LR; 10293 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10294 10295 using namespace llvm::PatternMatch; 10296 10297 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10298 // Rules for division. 10299 // We are going to perform some comparisons with Denominator and its 10300 // derivative expressions. In general case, creating a SCEV for it may 10301 // lead to a complex analysis of the entire graph, and in particular it 10302 // can request trip count recalculation for the same loop. This would 10303 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10304 // this, we only want to create SCEVs that are constants in this section. 10305 // So we bail if Denominator is not a constant. 10306 if (!isa<ConstantInt>(LR)) 10307 return false; 10308 10309 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10310 10311 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10312 // then a SCEV for the numerator already exists and matches with FoundLHS. 10313 auto *Numerator = getExistingSCEV(LL); 10314 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10315 return false; 10316 10317 // Make sure that the numerator matches with FoundLHS and the denominator 10318 // is positive. 10319 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10320 return false; 10321 10322 auto *DTy = Denominator->getType(); 10323 auto *FRHSTy = FoundRHS->getType(); 10324 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10325 // One of types is a pointer and another one is not. We cannot extend 10326 // them properly to a wider type, so let us just reject this case. 10327 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10328 // to avoid this check. 10329 return false; 10330 10331 // Given that: 10332 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10333 auto *WTy = getWiderType(DTy, FRHSTy); 10334 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10335 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10336 10337 // Try to prove the following rule: 10338 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10339 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10340 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10341 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10342 if (isKnownNonPositive(RHS) && 10343 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10344 return true; 10345 10346 // Try to prove the following rule: 10347 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10348 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10349 // If we divide it by Denominator > 2, then: 10350 // 1. If FoundLHS is negative, then the result is 0. 10351 // 2. If FoundLHS is non-negative, then the result is non-negative. 10352 // Anyways, the result is non-negative. 10353 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10354 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10355 if (isKnownNegative(RHS) && 10356 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10357 return true; 10358 } 10359 } 10360 10361 // If our expression contained SCEVUnknown Phis, and we split it down and now 10362 // need to prove something for them, try to prove the predicate for every 10363 // possible incoming values of those Phis. 10364 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10365 return true; 10366 10367 return false; 10368 } 10369 10370 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10371 const SCEV *LHS, const SCEV *RHS) { 10372 // zext x u<= sext x, sext x s<= zext x 10373 switch (Pred) { 10374 case ICmpInst::ICMP_SGE: 10375 std::swap(LHS, RHS); 10376 LLVM_FALLTHROUGH; 10377 case ICmpInst::ICMP_SLE: { 10378 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10379 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10380 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10381 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10382 return true; 10383 break; 10384 } 10385 case ICmpInst::ICMP_UGE: 10386 std::swap(LHS, RHS); 10387 LLVM_FALLTHROUGH; 10388 case ICmpInst::ICMP_ULE: { 10389 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10390 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10391 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10392 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10393 return true; 10394 break; 10395 } 10396 default: 10397 break; 10398 }; 10399 return false; 10400 } 10401 10402 bool 10403 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10404 const SCEV *LHS, const SCEV *RHS) { 10405 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10406 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10407 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10408 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10409 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10410 } 10411 10412 bool 10413 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10414 const SCEV *LHS, const SCEV *RHS, 10415 const SCEV *FoundLHS, 10416 const SCEV *FoundRHS) { 10417 switch (Pred) { 10418 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10419 case ICmpInst::ICMP_EQ: 10420 case ICmpInst::ICMP_NE: 10421 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10422 return true; 10423 break; 10424 case ICmpInst::ICMP_SLT: 10425 case ICmpInst::ICMP_SLE: 10426 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10427 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10428 return true; 10429 break; 10430 case ICmpInst::ICMP_SGT: 10431 case ICmpInst::ICMP_SGE: 10432 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10433 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10434 return true; 10435 break; 10436 case ICmpInst::ICMP_ULT: 10437 case ICmpInst::ICMP_ULE: 10438 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10439 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10440 return true; 10441 break; 10442 case ICmpInst::ICMP_UGT: 10443 case ICmpInst::ICMP_UGE: 10444 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10445 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10446 return true; 10447 break; 10448 } 10449 10450 // Maybe it can be proved via operations? 10451 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10452 return true; 10453 10454 return false; 10455 } 10456 10457 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10458 const SCEV *LHS, 10459 const SCEV *RHS, 10460 const SCEV *FoundLHS, 10461 const SCEV *FoundRHS) { 10462 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10463 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10464 // reduce the compile time impact of this optimization. 10465 return false; 10466 10467 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10468 if (!Addend) 10469 return false; 10470 10471 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10472 10473 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10474 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10475 ConstantRange FoundLHSRange = 10476 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10477 10478 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10479 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10480 10481 // We can also compute the range of values for `LHS` that satisfy the 10482 // consequent, "`LHS` `Pred` `RHS`": 10483 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10484 ConstantRange SatisfyingLHSRange = 10485 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10486 10487 // The antecedent implies the consequent if every value of `LHS` that 10488 // satisfies the antecedent also satisfies the consequent. 10489 return SatisfyingLHSRange.contains(LHSRange); 10490 } 10491 10492 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10493 bool IsSigned, bool NoWrap) { 10494 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10495 10496 if (NoWrap) return false; 10497 10498 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10499 const SCEV *One = getOne(Stride->getType()); 10500 10501 if (IsSigned) { 10502 APInt MaxRHS = getSignedRangeMax(RHS); 10503 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10504 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10505 10506 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10507 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10508 } 10509 10510 APInt MaxRHS = getUnsignedRangeMax(RHS); 10511 APInt MaxValue = APInt::getMaxValue(BitWidth); 10512 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10513 10514 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10515 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10516 } 10517 10518 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10519 bool IsSigned, bool NoWrap) { 10520 if (NoWrap) return false; 10521 10522 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10523 const SCEV *One = getOne(Stride->getType()); 10524 10525 if (IsSigned) { 10526 APInt MinRHS = getSignedRangeMin(RHS); 10527 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10528 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10529 10530 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10531 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10532 } 10533 10534 APInt MinRHS = getUnsignedRangeMin(RHS); 10535 APInt MinValue = APInt::getMinValue(BitWidth); 10536 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10537 10538 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10539 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10540 } 10541 10542 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10543 bool Equality) { 10544 const SCEV *One = getOne(Step->getType()); 10545 Delta = Equality ? getAddExpr(Delta, Step) 10546 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10547 return getUDivExpr(Delta, Step); 10548 } 10549 10550 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10551 const SCEV *Stride, 10552 const SCEV *End, 10553 unsigned BitWidth, 10554 bool IsSigned) { 10555 10556 assert(!isKnownNonPositive(Stride) && 10557 "Stride is expected strictly positive!"); 10558 // Calculate the maximum backedge count based on the range of values 10559 // permitted by Start, End, and Stride. 10560 const SCEV *MaxBECount; 10561 APInt MinStart = 10562 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10563 10564 APInt StrideForMaxBECount = 10565 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10566 10567 // We already know that the stride is positive, so we paper over conservatism 10568 // in our range computation by forcing StrideForMaxBECount to be at least one. 10569 // In theory this is unnecessary, but we expect MaxBECount to be a 10570 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10571 // is nothing to constant fold it to). 10572 APInt One(BitWidth, 1, IsSigned); 10573 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10574 10575 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10576 : APInt::getMaxValue(BitWidth); 10577 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10578 10579 // Although End can be a MAX expression we estimate MaxEnd considering only 10580 // the case End = RHS of the loop termination condition. This is safe because 10581 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10582 // taken count. 10583 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10584 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10585 10586 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10587 getConstant(StrideForMaxBECount) /* Step */, 10588 false /* Equality */); 10589 10590 return MaxBECount; 10591 } 10592 10593 ScalarEvolution::ExitLimit 10594 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10595 const Loop *L, bool IsSigned, 10596 bool ControlsExit, bool AllowPredicates) { 10597 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10598 10599 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10600 bool PredicatedIV = false; 10601 10602 if (!IV && AllowPredicates) { 10603 // Try to make this an AddRec using runtime tests, in the first X 10604 // iterations of this loop, where X is the SCEV expression found by the 10605 // algorithm below. 10606 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10607 PredicatedIV = true; 10608 } 10609 10610 // Avoid weird loops 10611 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10612 return getCouldNotCompute(); 10613 10614 bool NoWrap = ControlsExit && 10615 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10616 10617 const SCEV *Stride = IV->getStepRecurrence(*this); 10618 10619 bool PositiveStride = isKnownPositive(Stride); 10620 10621 // Avoid negative or zero stride values. 10622 if (!PositiveStride) { 10623 // We can compute the correct backedge taken count for loops with unknown 10624 // strides if we can prove that the loop is not an infinite loop with side 10625 // effects. Here's the loop structure we are trying to handle - 10626 // 10627 // i = start 10628 // do { 10629 // A[i] = i; 10630 // i += s; 10631 // } while (i < end); 10632 // 10633 // The backedge taken count for such loops is evaluated as - 10634 // (max(end, start + stride) - start - 1) /u stride 10635 // 10636 // The additional preconditions that we need to check to prove correctness 10637 // of the above formula is as follows - 10638 // 10639 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10640 // NoWrap flag). 10641 // b) loop is single exit with no side effects. 10642 // 10643 // 10644 // Precondition a) implies that if the stride is negative, this is a single 10645 // trip loop. The backedge taken count formula reduces to zero in this case. 10646 // 10647 // Precondition b) implies that the unknown stride cannot be zero otherwise 10648 // we have UB. 10649 // 10650 // The positive stride case is the same as isKnownPositive(Stride) returning 10651 // true (original behavior of the function). 10652 // 10653 // We want to make sure that the stride is truly unknown as there are edge 10654 // cases where ScalarEvolution propagates no wrap flags to the 10655 // post-increment/decrement IV even though the increment/decrement operation 10656 // itself is wrapping. The computed backedge taken count may be wrong in 10657 // such cases. This is prevented by checking that the stride is not known to 10658 // be either positive or non-positive. For example, no wrap flags are 10659 // propagated to the post-increment IV of this loop with a trip count of 2 - 10660 // 10661 // unsigned char i; 10662 // for(i=127; i<128; i+=129) 10663 // A[i] = i; 10664 // 10665 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10666 !loopHasNoSideEffects(L)) 10667 return getCouldNotCompute(); 10668 } else if (!Stride->isOne() && 10669 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10670 // Avoid proven overflow cases: this will ensure that the backedge taken 10671 // count will not generate any unsigned overflow. Relaxed no-overflow 10672 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10673 // undefined behaviors like the case of C language. 10674 return getCouldNotCompute(); 10675 10676 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10677 : ICmpInst::ICMP_ULT; 10678 const SCEV *Start = IV->getStart(); 10679 const SCEV *End = RHS; 10680 // When the RHS is not invariant, we do not know the end bound of the loop and 10681 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10682 // calculate the MaxBECount, given the start, stride and max value for the end 10683 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10684 // checked above). 10685 if (!isLoopInvariant(RHS, L)) { 10686 const SCEV *MaxBECount = computeMaxBECountForLT( 10687 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10688 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10689 false /*MaxOrZero*/, Predicates); 10690 } 10691 // If the backedge is taken at least once, then it will be taken 10692 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10693 // is the LHS value of the less-than comparison the first time it is evaluated 10694 // and End is the RHS. 10695 const SCEV *BECountIfBackedgeTaken = 10696 computeBECount(getMinusSCEV(End, Start), Stride, false); 10697 // If the loop entry is guarded by the result of the backedge test of the 10698 // first loop iteration, then we know the backedge will be taken at least 10699 // once and so the backedge taken count is as above. If not then we use the 10700 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10701 // as if the backedge is taken at least once max(End,Start) is End and so the 10702 // result is as above, and if not max(End,Start) is Start so we get a backedge 10703 // count of zero. 10704 const SCEV *BECount; 10705 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10706 BECount = BECountIfBackedgeTaken; 10707 else { 10708 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10709 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10710 } 10711 10712 const SCEV *MaxBECount; 10713 bool MaxOrZero = false; 10714 if (isa<SCEVConstant>(BECount)) 10715 MaxBECount = BECount; 10716 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10717 // If we know exactly how many times the backedge will be taken if it's 10718 // taken at least once, then the backedge count will either be that or 10719 // zero. 10720 MaxBECount = BECountIfBackedgeTaken; 10721 MaxOrZero = true; 10722 } else { 10723 MaxBECount = computeMaxBECountForLT( 10724 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10725 } 10726 10727 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10728 !isa<SCEVCouldNotCompute>(BECount)) 10729 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10730 10731 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10732 } 10733 10734 ScalarEvolution::ExitLimit 10735 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10736 const Loop *L, bool IsSigned, 10737 bool ControlsExit, bool AllowPredicates) { 10738 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10739 // We handle only IV > Invariant 10740 if (!isLoopInvariant(RHS, L)) 10741 return getCouldNotCompute(); 10742 10743 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10744 if (!IV && AllowPredicates) 10745 // Try to make this an AddRec using runtime tests, in the first X 10746 // iterations of this loop, where X is the SCEV expression found by the 10747 // algorithm below. 10748 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10749 10750 // Avoid weird loops 10751 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10752 return getCouldNotCompute(); 10753 10754 bool NoWrap = ControlsExit && 10755 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10756 10757 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10758 10759 // Avoid negative or zero stride values 10760 if (!isKnownPositive(Stride)) 10761 return getCouldNotCompute(); 10762 10763 // Avoid proven overflow cases: this will ensure that the backedge taken count 10764 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10765 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10766 // behaviors like the case of C language. 10767 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10768 return getCouldNotCompute(); 10769 10770 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10771 : ICmpInst::ICMP_UGT; 10772 10773 const SCEV *Start = IV->getStart(); 10774 const SCEV *End = RHS; 10775 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10776 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10777 10778 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10779 10780 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10781 : getUnsignedRangeMax(Start); 10782 10783 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10784 : getUnsignedRangeMin(Stride); 10785 10786 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10787 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10788 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10789 10790 // Although End can be a MIN expression we estimate MinEnd considering only 10791 // the case End = RHS. This is safe because in the other case (Start - End) 10792 // is zero, leading to a zero maximum backedge taken count. 10793 APInt MinEnd = 10794 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10795 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10796 10797 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 10798 ? BECount 10799 : computeBECount(getConstant(MaxStart - MinEnd), 10800 getConstant(MinStride), false); 10801 10802 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10803 MaxBECount = BECount; 10804 10805 return ExitLimit(BECount, MaxBECount, false, Predicates); 10806 } 10807 10808 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10809 ScalarEvolution &SE) const { 10810 if (Range.isFullSet()) // Infinite loop. 10811 return SE.getCouldNotCompute(); 10812 10813 // If the start is a non-zero constant, shift the range to simplify things. 10814 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10815 if (!SC->getValue()->isZero()) { 10816 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10817 Operands[0] = SE.getZero(SC->getType()); 10818 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10819 getNoWrapFlags(FlagNW)); 10820 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10821 return ShiftedAddRec->getNumIterationsInRange( 10822 Range.subtract(SC->getAPInt()), SE); 10823 // This is strange and shouldn't happen. 10824 return SE.getCouldNotCompute(); 10825 } 10826 10827 // The only time we can solve this is when we have all constant indices. 10828 // Otherwise, we cannot determine the overflow conditions. 10829 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10830 return SE.getCouldNotCompute(); 10831 10832 // Okay at this point we know that all elements of the chrec are constants and 10833 // that the start element is zero. 10834 10835 // First check to see if the range contains zero. If not, the first 10836 // iteration exits. 10837 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10838 if (!Range.contains(APInt(BitWidth, 0))) 10839 return SE.getZero(getType()); 10840 10841 if (isAffine()) { 10842 // If this is an affine expression then we have this situation: 10843 // Solve {0,+,A} in Range === Ax in Range 10844 10845 // We know that zero is in the range. If A is positive then we know that 10846 // the upper value of the range must be the first possible exit value. 10847 // If A is negative then the lower of the range is the last possible loop 10848 // value. Also note that we already checked for a full range. 10849 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10850 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10851 10852 // The exit value should be (End+A)/A. 10853 APInt ExitVal = (End + A).udiv(A); 10854 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10855 10856 // Evaluate at the exit value. If we really did fall out of the valid 10857 // range, then we computed our trip count, otherwise wrap around or other 10858 // things must have happened. 10859 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10860 if (Range.contains(Val->getValue())) 10861 return SE.getCouldNotCompute(); // Something strange happened 10862 10863 // Ensure that the previous value is in the range. This is a sanity check. 10864 assert(Range.contains( 10865 EvaluateConstantChrecAtConstant(this, 10866 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10867 "Linear scev computation is off in a bad way!"); 10868 return SE.getConstant(ExitValue); 10869 } 10870 10871 if (isQuadratic()) { 10872 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10873 return SE.getConstant(S.getValue()); 10874 } 10875 10876 return SE.getCouldNotCompute(); 10877 } 10878 10879 const SCEVAddRecExpr * 10880 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10881 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10882 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10883 // but in this case we cannot guarantee that the value returned will be an 10884 // AddRec because SCEV does not have a fixed point where it stops 10885 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10886 // may happen if we reach arithmetic depth limit while simplifying. So we 10887 // construct the returned value explicitly. 10888 SmallVector<const SCEV *, 3> Ops; 10889 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10890 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10891 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10892 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10893 // We know that the last operand is not a constant zero (otherwise it would 10894 // have been popped out earlier). This guarantees us that if the result has 10895 // the same last operand, then it will also not be popped out, meaning that 10896 // the returned value will be an AddRec. 10897 const SCEV *Last = getOperand(getNumOperands() - 1); 10898 assert(!Last->isZero() && "Recurrency with zero step?"); 10899 Ops.push_back(Last); 10900 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10901 SCEV::FlagAnyWrap)); 10902 } 10903 10904 // Return true when S contains at least an undef value. 10905 static inline bool containsUndefs(const SCEV *S) { 10906 return SCEVExprContains(S, [](const SCEV *S) { 10907 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10908 return isa<UndefValue>(SU->getValue()); 10909 return false; 10910 }); 10911 } 10912 10913 namespace { 10914 10915 // Collect all steps of SCEV expressions. 10916 struct SCEVCollectStrides { 10917 ScalarEvolution &SE; 10918 SmallVectorImpl<const SCEV *> &Strides; 10919 10920 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10921 : SE(SE), Strides(S) {} 10922 10923 bool follow(const SCEV *S) { 10924 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10925 Strides.push_back(AR->getStepRecurrence(SE)); 10926 return true; 10927 } 10928 10929 bool isDone() const { return false; } 10930 }; 10931 10932 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10933 struct SCEVCollectTerms { 10934 SmallVectorImpl<const SCEV *> &Terms; 10935 10936 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10937 10938 bool follow(const SCEV *S) { 10939 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10940 isa<SCEVSignExtendExpr>(S)) { 10941 if (!containsUndefs(S)) 10942 Terms.push_back(S); 10943 10944 // Stop recursion: once we collected a term, do not walk its operands. 10945 return false; 10946 } 10947 10948 // Keep looking. 10949 return true; 10950 } 10951 10952 bool isDone() const { return false; } 10953 }; 10954 10955 // Check if a SCEV contains an AddRecExpr. 10956 struct SCEVHasAddRec { 10957 bool &ContainsAddRec; 10958 10959 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10960 ContainsAddRec = false; 10961 } 10962 10963 bool follow(const SCEV *S) { 10964 if (isa<SCEVAddRecExpr>(S)) { 10965 ContainsAddRec = true; 10966 10967 // Stop recursion: once we collected a term, do not walk its operands. 10968 return false; 10969 } 10970 10971 // Keep looking. 10972 return true; 10973 } 10974 10975 bool isDone() const { return false; } 10976 }; 10977 10978 // Find factors that are multiplied with an expression that (possibly as a 10979 // subexpression) contains an AddRecExpr. In the expression: 10980 // 10981 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10982 // 10983 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10984 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10985 // parameters as they form a product with an induction variable. 10986 // 10987 // This collector expects all array size parameters to be in the same MulExpr. 10988 // It might be necessary to later add support for collecting parameters that are 10989 // spread over different nested MulExpr. 10990 struct SCEVCollectAddRecMultiplies { 10991 SmallVectorImpl<const SCEV *> &Terms; 10992 ScalarEvolution &SE; 10993 10994 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10995 : Terms(T), SE(SE) {} 10996 10997 bool follow(const SCEV *S) { 10998 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10999 bool HasAddRec = false; 11000 SmallVector<const SCEV *, 0> Operands; 11001 for (auto Op : Mul->operands()) { 11002 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11003 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11004 Operands.push_back(Op); 11005 } else if (Unknown) { 11006 HasAddRec = true; 11007 } else { 11008 bool ContainsAddRec = false; 11009 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11010 visitAll(Op, ContiansAddRec); 11011 HasAddRec |= ContainsAddRec; 11012 } 11013 } 11014 if (Operands.size() == 0) 11015 return true; 11016 11017 if (!HasAddRec) 11018 return false; 11019 11020 Terms.push_back(SE.getMulExpr(Operands)); 11021 // Stop recursion: once we collected a term, do not walk its operands. 11022 return false; 11023 } 11024 11025 // Keep looking. 11026 return true; 11027 } 11028 11029 bool isDone() const { return false; } 11030 }; 11031 11032 } // end anonymous namespace 11033 11034 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11035 /// two places: 11036 /// 1) The strides of AddRec expressions. 11037 /// 2) Unknowns that are multiplied with AddRec expressions. 11038 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11039 SmallVectorImpl<const SCEV *> &Terms) { 11040 SmallVector<const SCEV *, 4> Strides; 11041 SCEVCollectStrides StrideCollector(*this, Strides); 11042 visitAll(Expr, StrideCollector); 11043 11044 LLVM_DEBUG({ 11045 dbgs() << "Strides:\n"; 11046 for (const SCEV *S : Strides) 11047 dbgs() << *S << "\n"; 11048 }); 11049 11050 for (const SCEV *S : Strides) { 11051 SCEVCollectTerms TermCollector(Terms); 11052 visitAll(S, TermCollector); 11053 } 11054 11055 LLVM_DEBUG({ 11056 dbgs() << "Terms:\n"; 11057 for (const SCEV *T : Terms) 11058 dbgs() << *T << "\n"; 11059 }); 11060 11061 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11062 visitAll(Expr, MulCollector); 11063 } 11064 11065 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11066 SmallVectorImpl<const SCEV *> &Terms, 11067 SmallVectorImpl<const SCEV *> &Sizes) { 11068 int Last = Terms.size() - 1; 11069 const SCEV *Step = Terms[Last]; 11070 11071 // End of recursion. 11072 if (Last == 0) { 11073 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11074 SmallVector<const SCEV *, 2> Qs; 11075 for (const SCEV *Op : M->operands()) 11076 if (!isa<SCEVConstant>(Op)) 11077 Qs.push_back(Op); 11078 11079 Step = SE.getMulExpr(Qs); 11080 } 11081 11082 Sizes.push_back(Step); 11083 return true; 11084 } 11085 11086 for (const SCEV *&Term : Terms) { 11087 // Normalize the terms before the next call to findArrayDimensionsRec. 11088 const SCEV *Q, *R; 11089 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11090 11091 // Bail out when GCD does not evenly divide one of the terms. 11092 if (!R->isZero()) 11093 return false; 11094 11095 Term = Q; 11096 } 11097 11098 // Remove all SCEVConstants. 11099 Terms.erase( 11100 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 11101 Terms.end()); 11102 11103 if (Terms.size() > 0) 11104 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11105 return false; 11106 11107 Sizes.push_back(Step); 11108 return true; 11109 } 11110 11111 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11112 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11113 for (const SCEV *T : Terms) 11114 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 11115 return true; 11116 return false; 11117 } 11118 11119 // Return the number of product terms in S. 11120 static inline int numberOfTerms(const SCEV *S) { 11121 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11122 return Expr->getNumOperands(); 11123 return 1; 11124 } 11125 11126 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11127 if (isa<SCEVConstant>(T)) 11128 return nullptr; 11129 11130 if (isa<SCEVUnknown>(T)) 11131 return T; 11132 11133 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11134 SmallVector<const SCEV *, 2> Factors; 11135 for (const SCEV *Op : M->operands()) 11136 if (!isa<SCEVConstant>(Op)) 11137 Factors.push_back(Op); 11138 11139 return SE.getMulExpr(Factors); 11140 } 11141 11142 return T; 11143 } 11144 11145 /// Return the size of an element read or written by Inst. 11146 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11147 Type *Ty; 11148 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11149 Ty = Store->getValueOperand()->getType(); 11150 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11151 Ty = Load->getType(); 11152 else 11153 return nullptr; 11154 11155 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11156 return getSizeOfExpr(ETy, Ty); 11157 } 11158 11159 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11160 SmallVectorImpl<const SCEV *> &Sizes, 11161 const SCEV *ElementSize) { 11162 if (Terms.size() < 1 || !ElementSize) 11163 return; 11164 11165 // Early return when Terms do not contain parameters: we do not delinearize 11166 // non parametric SCEVs. 11167 if (!containsParameters(Terms)) 11168 return; 11169 11170 LLVM_DEBUG({ 11171 dbgs() << "Terms:\n"; 11172 for (const SCEV *T : Terms) 11173 dbgs() << *T << "\n"; 11174 }); 11175 11176 // Remove duplicates. 11177 array_pod_sort(Terms.begin(), Terms.end()); 11178 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11179 11180 // Put larger terms first. 11181 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11182 return numberOfTerms(LHS) > numberOfTerms(RHS); 11183 }); 11184 11185 // Try to divide all terms by the element size. If term is not divisible by 11186 // element size, proceed with the original term. 11187 for (const SCEV *&Term : Terms) { 11188 const SCEV *Q, *R; 11189 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11190 if (!Q->isZero()) 11191 Term = Q; 11192 } 11193 11194 SmallVector<const SCEV *, 4> NewTerms; 11195 11196 // Remove constant factors. 11197 for (const SCEV *T : Terms) 11198 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11199 NewTerms.push_back(NewT); 11200 11201 LLVM_DEBUG({ 11202 dbgs() << "Terms after sorting:\n"; 11203 for (const SCEV *T : NewTerms) 11204 dbgs() << *T << "\n"; 11205 }); 11206 11207 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11208 Sizes.clear(); 11209 return; 11210 } 11211 11212 // The last element to be pushed into Sizes is the size of an element. 11213 Sizes.push_back(ElementSize); 11214 11215 LLVM_DEBUG({ 11216 dbgs() << "Sizes:\n"; 11217 for (const SCEV *S : Sizes) 11218 dbgs() << *S << "\n"; 11219 }); 11220 } 11221 11222 void ScalarEvolution::computeAccessFunctions( 11223 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11224 SmallVectorImpl<const SCEV *> &Sizes) { 11225 // Early exit in case this SCEV is not an affine multivariate function. 11226 if (Sizes.empty()) 11227 return; 11228 11229 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11230 if (!AR->isAffine()) 11231 return; 11232 11233 const SCEV *Res = Expr; 11234 int Last = Sizes.size() - 1; 11235 for (int i = Last; i >= 0; i--) { 11236 const SCEV *Q, *R; 11237 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11238 11239 LLVM_DEBUG({ 11240 dbgs() << "Res: " << *Res << "\n"; 11241 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11242 dbgs() << "Res divided by Sizes[i]:\n"; 11243 dbgs() << "Quotient: " << *Q << "\n"; 11244 dbgs() << "Remainder: " << *R << "\n"; 11245 }); 11246 11247 Res = Q; 11248 11249 // Do not record the last subscript corresponding to the size of elements in 11250 // the array. 11251 if (i == Last) { 11252 11253 // Bail out if the remainder is too complex. 11254 if (isa<SCEVAddRecExpr>(R)) { 11255 Subscripts.clear(); 11256 Sizes.clear(); 11257 return; 11258 } 11259 11260 continue; 11261 } 11262 11263 // Record the access function for the current subscript. 11264 Subscripts.push_back(R); 11265 } 11266 11267 // Also push in last position the remainder of the last division: it will be 11268 // the access function of the innermost dimension. 11269 Subscripts.push_back(Res); 11270 11271 std::reverse(Subscripts.begin(), Subscripts.end()); 11272 11273 LLVM_DEBUG({ 11274 dbgs() << "Subscripts:\n"; 11275 for (const SCEV *S : Subscripts) 11276 dbgs() << *S << "\n"; 11277 }); 11278 } 11279 11280 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11281 /// sizes of an array access. Returns the remainder of the delinearization that 11282 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11283 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11284 /// expressions in the stride and base of a SCEV corresponding to the 11285 /// computation of a GCD (greatest common divisor) of base and stride. When 11286 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11287 /// 11288 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11289 /// 11290 /// void foo(long n, long m, long o, double A[n][m][o]) { 11291 /// 11292 /// for (long i = 0; i < n; i++) 11293 /// for (long j = 0; j < m; j++) 11294 /// for (long k = 0; k < o; k++) 11295 /// A[i][j][k] = 1.0; 11296 /// } 11297 /// 11298 /// the delinearization input is the following AddRec SCEV: 11299 /// 11300 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11301 /// 11302 /// From this SCEV, we are able to say that the base offset of the access is %A 11303 /// because it appears as an offset that does not divide any of the strides in 11304 /// the loops: 11305 /// 11306 /// CHECK: Base offset: %A 11307 /// 11308 /// and then SCEV->delinearize determines the size of some of the dimensions of 11309 /// the array as these are the multiples by which the strides are happening: 11310 /// 11311 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11312 /// 11313 /// Note that the outermost dimension remains of UnknownSize because there are 11314 /// no strides that would help identifying the size of the last dimension: when 11315 /// the array has been statically allocated, one could compute the size of that 11316 /// dimension by dividing the overall size of the array by the size of the known 11317 /// dimensions: %m * %o * 8. 11318 /// 11319 /// Finally delinearize provides the access functions for the array reference 11320 /// that does correspond to A[i][j][k] of the above C testcase: 11321 /// 11322 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11323 /// 11324 /// The testcases are checking the output of a function pass: 11325 /// DelinearizationPass that walks through all loads and stores of a function 11326 /// asking for the SCEV of the memory access with respect to all enclosing 11327 /// loops, calling SCEV->delinearize on that and printing the results. 11328 void ScalarEvolution::delinearize(const SCEV *Expr, 11329 SmallVectorImpl<const SCEV *> &Subscripts, 11330 SmallVectorImpl<const SCEV *> &Sizes, 11331 const SCEV *ElementSize) { 11332 // First step: collect parametric terms. 11333 SmallVector<const SCEV *, 4> Terms; 11334 collectParametricTerms(Expr, Terms); 11335 11336 if (Terms.empty()) 11337 return; 11338 11339 // Second step: find subscript sizes. 11340 findArrayDimensions(Terms, Sizes, ElementSize); 11341 11342 if (Sizes.empty()) 11343 return; 11344 11345 // Third step: compute the access functions for each subscript. 11346 computeAccessFunctions(Expr, Subscripts, Sizes); 11347 11348 if (Subscripts.empty()) 11349 return; 11350 11351 LLVM_DEBUG({ 11352 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11353 dbgs() << "ArrayDecl[UnknownSize]"; 11354 for (const SCEV *S : Sizes) 11355 dbgs() << "[" << *S << "]"; 11356 11357 dbgs() << "\nArrayRef"; 11358 for (const SCEV *S : Subscripts) 11359 dbgs() << "[" << *S << "]"; 11360 dbgs() << "\n"; 11361 }); 11362 } 11363 11364 //===----------------------------------------------------------------------===// 11365 // SCEVCallbackVH Class Implementation 11366 //===----------------------------------------------------------------------===// 11367 11368 void ScalarEvolution::SCEVCallbackVH::deleted() { 11369 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11370 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11371 SE->ConstantEvolutionLoopExitValue.erase(PN); 11372 SE->eraseValueFromMap(getValPtr()); 11373 // this now dangles! 11374 } 11375 11376 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11377 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11378 11379 // Forget all the expressions associated with users of the old value, 11380 // so that future queries will recompute the expressions using the new 11381 // value. 11382 Value *Old = getValPtr(); 11383 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11384 SmallPtrSet<User *, 8> Visited; 11385 while (!Worklist.empty()) { 11386 User *U = Worklist.pop_back_val(); 11387 // Deleting the Old value will cause this to dangle. Postpone 11388 // that until everything else is done. 11389 if (U == Old) 11390 continue; 11391 if (!Visited.insert(U).second) 11392 continue; 11393 if (PHINode *PN = dyn_cast<PHINode>(U)) 11394 SE->ConstantEvolutionLoopExitValue.erase(PN); 11395 SE->eraseValueFromMap(U); 11396 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11397 } 11398 // Delete the Old value. 11399 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11400 SE->ConstantEvolutionLoopExitValue.erase(PN); 11401 SE->eraseValueFromMap(Old); 11402 // this now dangles! 11403 } 11404 11405 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11406 : CallbackVH(V), SE(se) {} 11407 11408 //===----------------------------------------------------------------------===// 11409 // ScalarEvolution Class Implementation 11410 //===----------------------------------------------------------------------===// 11411 11412 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11413 AssumptionCache &AC, DominatorTree &DT, 11414 LoopInfo &LI) 11415 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11416 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11417 LoopDispositions(64), BlockDispositions(64) { 11418 // To use guards for proving predicates, we need to scan every instruction in 11419 // relevant basic blocks, and not just terminators. Doing this is a waste of 11420 // time if the IR does not actually contain any calls to 11421 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11422 // 11423 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11424 // to _add_ guards to the module when there weren't any before, and wants 11425 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11426 // efficient in lieu of being smart in that rather obscure case. 11427 11428 auto *GuardDecl = F.getParent()->getFunction( 11429 Intrinsic::getName(Intrinsic::experimental_guard)); 11430 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11431 } 11432 11433 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11434 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11435 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11436 ValueExprMap(std::move(Arg.ValueExprMap)), 11437 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11438 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11439 PendingMerges(std::move(Arg.PendingMerges)), 11440 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11441 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11442 PredicatedBackedgeTakenCounts( 11443 std::move(Arg.PredicatedBackedgeTakenCounts)), 11444 ConstantEvolutionLoopExitValue( 11445 std::move(Arg.ConstantEvolutionLoopExitValue)), 11446 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11447 LoopDispositions(std::move(Arg.LoopDispositions)), 11448 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11449 BlockDispositions(std::move(Arg.BlockDispositions)), 11450 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11451 SignedRanges(std::move(Arg.SignedRanges)), 11452 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11453 UniquePreds(std::move(Arg.UniquePreds)), 11454 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11455 LoopUsers(std::move(Arg.LoopUsers)), 11456 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11457 FirstUnknown(Arg.FirstUnknown) { 11458 Arg.FirstUnknown = nullptr; 11459 } 11460 11461 ScalarEvolution::~ScalarEvolution() { 11462 // Iterate through all the SCEVUnknown instances and call their 11463 // destructors, so that they release their references to their values. 11464 for (SCEVUnknown *U = FirstUnknown; U;) { 11465 SCEVUnknown *Tmp = U; 11466 U = U->Next; 11467 Tmp->~SCEVUnknown(); 11468 } 11469 FirstUnknown = nullptr; 11470 11471 ExprValueMap.clear(); 11472 ValueExprMap.clear(); 11473 HasRecMap.clear(); 11474 11475 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11476 // that a loop had multiple computable exits. 11477 for (auto &BTCI : BackedgeTakenCounts) 11478 BTCI.second.clear(); 11479 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11480 BTCI.second.clear(); 11481 11482 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11483 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11484 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11485 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11486 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11487 } 11488 11489 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11490 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11491 } 11492 11493 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11494 const Loop *L) { 11495 // Print all inner loops first 11496 for (Loop *I : *L) 11497 PrintLoopInfo(OS, SE, I); 11498 11499 OS << "Loop "; 11500 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11501 OS << ": "; 11502 11503 SmallVector<BasicBlock *, 8> ExitingBlocks; 11504 L->getExitingBlocks(ExitingBlocks); 11505 if (ExitingBlocks.size() != 1) 11506 OS << "<multiple exits> "; 11507 11508 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11509 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11510 else 11511 OS << "Unpredictable backedge-taken count.\n"; 11512 11513 if (ExitingBlocks.size() > 1) 11514 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11515 OS << " exit count for " << ExitingBlock->getName() << ": " 11516 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11517 } 11518 11519 OS << "Loop "; 11520 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11521 OS << ": "; 11522 11523 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11524 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11525 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11526 OS << ", actual taken count either this or zero."; 11527 } else { 11528 OS << "Unpredictable max backedge-taken count. "; 11529 } 11530 11531 OS << "\n" 11532 "Loop "; 11533 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11534 OS << ": "; 11535 11536 SCEVUnionPredicate Pred; 11537 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11538 if (!isa<SCEVCouldNotCompute>(PBT)) { 11539 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11540 OS << " Predicates:\n"; 11541 Pred.print(OS, 4); 11542 } else { 11543 OS << "Unpredictable predicated backedge-taken count. "; 11544 } 11545 OS << "\n"; 11546 11547 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11548 OS << "Loop "; 11549 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11550 OS << ": "; 11551 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11552 } 11553 } 11554 11555 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11556 switch (LD) { 11557 case ScalarEvolution::LoopVariant: 11558 return "Variant"; 11559 case ScalarEvolution::LoopInvariant: 11560 return "Invariant"; 11561 case ScalarEvolution::LoopComputable: 11562 return "Computable"; 11563 } 11564 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11565 } 11566 11567 void ScalarEvolution::print(raw_ostream &OS) const { 11568 // ScalarEvolution's implementation of the print method is to print 11569 // out SCEV values of all instructions that are interesting. Doing 11570 // this potentially causes it to create new SCEV objects though, 11571 // which technically conflicts with the const qualifier. This isn't 11572 // observable from outside the class though, so casting away the 11573 // const isn't dangerous. 11574 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11575 11576 OS << "Classifying expressions for: "; 11577 F.printAsOperand(OS, /*PrintType=*/false); 11578 OS << "\n"; 11579 for (Instruction &I : instructions(F)) 11580 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11581 OS << I << '\n'; 11582 OS << " --> "; 11583 const SCEV *SV = SE.getSCEV(&I); 11584 SV->print(OS); 11585 if (!isa<SCEVCouldNotCompute>(SV)) { 11586 OS << " U: "; 11587 SE.getUnsignedRange(SV).print(OS); 11588 OS << " S: "; 11589 SE.getSignedRange(SV).print(OS); 11590 } 11591 11592 const Loop *L = LI.getLoopFor(I.getParent()); 11593 11594 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11595 if (AtUse != SV) { 11596 OS << " --> "; 11597 AtUse->print(OS); 11598 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11599 OS << " U: "; 11600 SE.getUnsignedRange(AtUse).print(OS); 11601 OS << " S: "; 11602 SE.getSignedRange(AtUse).print(OS); 11603 } 11604 } 11605 11606 if (L) { 11607 OS << "\t\t" "Exits: "; 11608 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11609 if (!SE.isLoopInvariant(ExitValue, L)) { 11610 OS << "<<Unknown>>"; 11611 } else { 11612 OS << *ExitValue; 11613 } 11614 11615 bool First = true; 11616 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11617 if (First) { 11618 OS << "\t\t" "LoopDispositions: { "; 11619 First = false; 11620 } else { 11621 OS << ", "; 11622 } 11623 11624 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11625 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11626 } 11627 11628 for (auto *InnerL : depth_first(L)) { 11629 if (InnerL == L) 11630 continue; 11631 if (First) { 11632 OS << "\t\t" "LoopDispositions: { "; 11633 First = false; 11634 } else { 11635 OS << ", "; 11636 } 11637 11638 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11639 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11640 } 11641 11642 OS << " }"; 11643 } 11644 11645 OS << "\n"; 11646 } 11647 11648 OS << "Determining loop execution counts for: "; 11649 F.printAsOperand(OS, /*PrintType=*/false); 11650 OS << "\n"; 11651 for (Loop *I : LI) 11652 PrintLoopInfo(OS, &SE, I); 11653 } 11654 11655 ScalarEvolution::LoopDisposition 11656 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11657 auto &Values = LoopDispositions[S]; 11658 for (auto &V : Values) { 11659 if (V.getPointer() == L) 11660 return V.getInt(); 11661 } 11662 Values.emplace_back(L, LoopVariant); 11663 LoopDisposition D = computeLoopDisposition(S, L); 11664 auto &Values2 = LoopDispositions[S]; 11665 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11666 if (V.getPointer() == L) { 11667 V.setInt(D); 11668 break; 11669 } 11670 } 11671 return D; 11672 } 11673 11674 ScalarEvolution::LoopDisposition 11675 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11676 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11677 case scConstant: 11678 return LoopInvariant; 11679 case scTruncate: 11680 case scZeroExtend: 11681 case scSignExtend: 11682 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11683 case scAddRecExpr: { 11684 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11685 11686 // If L is the addrec's loop, it's computable. 11687 if (AR->getLoop() == L) 11688 return LoopComputable; 11689 11690 // Add recurrences are never invariant in the function-body (null loop). 11691 if (!L) 11692 return LoopVariant; 11693 11694 // Everything that is not defined at loop entry is variant. 11695 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11696 return LoopVariant; 11697 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11698 " dominate the contained loop's header?"); 11699 11700 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11701 if (AR->getLoop()->contains(L)) 11702 return LoopInvariant; 11703 11704 // This recurrence is variant w.r.t. L if any of its operands 11705 // are variant. 11706 for (auto *Op : AR->operands()) 11707 if (!isLoopInvariant(Op, L)) 11708 return LoopVariant; 11709 11710 // Otherwise it's loop-invariant. 11711 return LoopInvariant; 11712 } 11713 case scAddExpr: 11714 case scMulExpr: 11715 case scUMaxExpr: 11716 case scSMaxExpr: 11717 case scUMinExpr: 11718 case scSMinExpr: { 11719 bool HasVarying = false; 11720 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11721 LoopDisposition D = getLoopDisposition(Op, L); 11722 if (D == LoopVariant) 11723 return LoopVariant; 11724 if (D == LoopComputable) 11725 HasVarying = true; 11726 } 11727 return HasVarying ? LoopComputable : LoopInvariant; 11728 } 11729 case scUDivExpr: { 11730 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11731 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11732 if (LD == LoopVariant) 11733 return LoopVariant; 11734 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11735 if (RD == LoopVariant) 11736 return LoopVariant; 11737 return (LD == LoopInvariant && RD == LoopInvariant) ? 11738 LoopInvariant : LoopComputable; 11739 } 11740 case scUnknown: 11741 // All non-instruction values are loop invariant. All instructions are loop 11742 // invariant if they are not contained in the specified loop. 11743 // Instructions are never considered invariant in the function body 11744 // (null loop) because they are defined within the "loop". 11745 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11746 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11747 return LoopInvariant; 11748 case scCouldNotCompute: 11749 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11750 } 11751 llvm_unreachable("Unknown SCEV kind!"); 11752 } 11753 11754 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11755 return getLoopDisposition(S, L) == LoopInvariant; 11756 } 11757 11758 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11759 return getLoopDisposition(S, L) == LoopComputable; 11760 } 11761 11762 ScalarEvolution::BlockDisposition 11763 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11764 auto &Values = BlockDispositions[S]; 11765 for (auto &V : Values) { 11766 if (V.getPointer() == BB) 11767 return V.getInt(); 11768 } 11769 Values.emplace_back(BB, DoesNotDominateBlock); 11770 BlockDisposition D = computeBlockDisposition(S, BB); 11771 auto &Values2 = BlockDispositions[S]; 11772 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11773 if (V.getPointer() == BB) { 11774 V.setInt(D); 11775 break; 11776 } 11777 } 11778 return D; 11779 } 11780 11781 ScalarEvolution::BlockDisposition 11782 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11783 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11784 case scConstant: 11785 return ProperlyDominatesBlock; 11786 case scTruncate: 11787 case scZeroExtend: 11788 case scSignExtend: 11789 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11790 case scAddRecExpr: { 11791 // This uses a "dominates" query instead of "properly dominates" query 11792 // to test for proper dominance too, because the instruction which 11793 // produces the addrec's value is a PHI, and a PHI effectively properly 11794 // dominates its entire containing block. 11795 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11796 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11797 return DoesNotDominateBlock; 11798 11799 // Fall through into SCEVNAryExpr handling. 11800 LLVM_FALLTHROUGH; 11801 } 11802 case scAddExpr: 11803 case scMulExpr: 11804 case scUMaxExpr: 11805 case scSMaxExpr: 11806 case scUMinExpr: 11807 case scSMinExpr: { 11808 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11809 bool Proper = true; 11810 for (const SCEV *NAryOp : NAry->operands()) { 11811 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11812 if (D == DoesNotDominateBlock) 11813 return DoesNotDominateBlock; 11814 if (D == DominatesBlock) 11815 Proper = false; 11816 } 11817 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11818 } 11819 case scUDivExpr: { 11820 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11821 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11822 BlockDisposition LD = getBlockDisposition(LHS, BB); 11823 if (LD == DoesNotDominateBlock) 11824 return DoesNotDominateBlock; 11825 BlockDisposition RD = getBlockDisposition(RHS, BB); 11826 if (RD == DoesNotDominateBlock) 11827 return DoesNotDominateBlock; 11828 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11829 ProperlyDominatesBlock : DominatesBlock; 11830 } 11831 case scUnknown: 11832 if (Instruction *I = 11833 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11834 if (I->getParent() == BB) 11835 return DominatesBlock; 11836 if (DT.properlyDominates(I->getParent(), BB)) 11837 return ProperlyDominatesBlock; 11838 return DoesNotDominateBlock; 11839 } 11840 return ProperlyDominatesBlock; 11841 case scCouldNotCompute: 11842 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11843 } 11844 llvm_unreachable("Unknown SCEV kind!"); 11845 } 11846 11847 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11848 return getBlockDisposition(S, BB) >= DominatesBlock; 11849 } 11850 11851 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11852 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11853 } 11854 11855 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11856 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11857 } 11858 11859 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11860 auto IsS = [&](const SCEV *X) { return S == X; }; 11861 auto ContainsS = [&](const SCEV *X) { 11862 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11863 }; 11864 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11865 } 11866 11867 void 11868 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11869 ValuesAtScopes.erase(S); 11870 LoopDispositions.erase(S); 11871 BlockDispositions.erase(S); 11872 UnsignedRanges.erase(S); 11873 SignedRanges.erase(S); 11874 ExprValueMap.erase(S); 11875 HasRecMap.erase(S); 11876 MinTrailingZerosCache.erase(S); 11877 11878 for (auto I = PredicatedSCEVRewrites.begin(); 11879 I != PredicatedSCEVRewrites.end();) { 11880 std::pair<const SCEV *, const Loop *> Entry = I->first; 11881 if (Entry.first == S) 11882 PredicatedSCEVRewrites.erase(I++); 11883 else 11884 ++I; 11885 } 11886 11887 auto RemoveSCEVFromBackedgeMap = 11888 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11889 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11890 BackedgeTakenInfo &BEInfo = I->second; 11891 if (BEInfo.hasOperand(S, this)) { 11892 BEInfo.clear(); 11893 Map.erase(I++); 11894 } else 11895 ++I; 11896 } 11897 }; 11898 11899 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11900 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11901 } 11902 11903 void 11904 ScalarEvolution::getUsedLoops(const SCEV *S, 11905 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11906 struct FindUsedLoops { 11907 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11908 : LoopsUsed(LoopsUsed) {} 11909 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11910 bool follow(const SCEV *S) { 11911 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11912 LoopsUsed.insert(AR->getLoop()); 11913 return true; 11914 } 11915 11916 bool isDone() const { return false; } 11917 }; 11918 11919 FindUsedLoops F(LoopsUsed); 11920 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11921 } 11922 11923 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11924 SmallPtrSet<const Loop *, 8> LoopsUsed; 11925 getUsedLoops(S, LoopsUsed); 11926 for (auto *L : LoopsUsed) 11927 LoopUsers[L].push_back(S); 11928 } 11929 11930 void ScalarEvolution::verify() const { 11931 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11932 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11933 11934 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11935 11936 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11937 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11938 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11939 11940 const SCEV *visitConstant(const SCEVConstant *Constant) { 11941 return SE.getConstant(Constant->getAPInt()); 11942 } 11943 11944 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11945 return SE.getUnknown(Expr->getValue()); 11946 } 11947 11948 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11949 return SE.getCouldNotCompute(); 11950 } 11951 }; 11952 11953 SCEVMapper SCM(SE2); 11954 11955 while (!LoopStack.empty()) { 11956 auto *L = LoopStack.pop_back_val(); 11957 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11958 11959 auto *CurBECount = SCM.visit( 11960 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11961 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11962 11963 if (CurBECount == SE2.getCouldNotCompute() || 11964 NewBECount == SE2.getCouldNotCompute()) { 11965 // NB! This situation is legal, but is very suspicious -- whatever pass 11966 // change the loop to make a trip count go from could not compute to 11967 // computable or vice-versa *should have* invalidated SCEV. However, we 11968 // choose not to assert here (for now) since we don't want false 11969 // positives. 11970 continue; 11971 } 11972 11973 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11974 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11975 // not propagate undef aggressively). This means we can (and do) fail 11976 // verification in cases where a transform makes the trip count of a loop 11977 // go from "undef" to "undef+1" (say). The transform is fine, since in 11978 // both cases the loop iterates "undef" times, but SCEV thinks we 11979 // increased the trip count of the loop by 1 incorrectly. 11980 continue; 11981 } 11982 11983 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11984 SE.getTypeSizeInBits(NewBECount->getType())) 11985 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11986 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11987 SE.getTypeSizeInBits(NewBECount->getType())) 11988 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11989 11990 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 11991 11992 // Unless VerifySCEVStrict is set, we only compare constant deltas. 11993 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 11994 dbgs() << "Trip Count for " << *L << " Changed!\n"; 11995 dbgs() << "Old: " << *CurBECount << "\n"; 11996 dbgs() << "New: " << *NewBECount << "\n"; 11997 dbgs() << "Delta: " << *Delta << "\n"; 11998 std::abort(); 11999 } 12000 } 12001 } 12002 12003 bool ScalarEvolution::invalidate( 12004 Function &F, const PreservedAnalyses &PA, 12005 FunctionAnalysisManager::Invalidator &Inv) { 12006 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12007 // of its dependencies is invalidated. 12008 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12009 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12010 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12011 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12012 Inv.invalidate<LoopAnalysis>(F, PA); 12013 } 12014 12015 AnalysisKey ScalarEvolutionAnalysis::Key; 12016 12017 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12018 FunctionAnalysisManager &AM) { 12019 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12020 AM.getResult<AssumptionAnalysis>(F), 12021 AM.getResult<DominatorTreeAnalysis>(F), 12022 AM.getResult<LoopAnalysis>(F)); 12023 } 12024 12025 PreservedAnalyses 12026 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12027 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12028 return PreservedAnalyses::all(); 12029 } 12030 12031 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12032 "Scalar Evolution Analysis", false, true) 12033 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12034 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12035 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12036 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12037 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12038 "Scalar Evolution Analysis", false, true) 12039 12040 char ScalarEvolutionWrapperPass::ID = 0; 12041 12042 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12043 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12044 } 12045 12046 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12047 SE.reset(new ScalarEvolution( 12048 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12049 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12050 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12051 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12052 return false; 12053 } 12054 12055 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12056 12057 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12058 SE->print(OS); 12059 } 12060 12061 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12062 if (!VerifySCEV) 12063 return; 12064 12065 SE->verify(); 12066 } 12067 12068 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12069 AU.setPreservesAll(); 12070 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12071 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12072 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12073 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12074 } 12075 12076 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12077 const SCEV *RHS) { 12078 FoldingSetNodeID ID; 12079 assert(LHS->getType() == RHS->getType() && 12080 "Type mismatch between LHS and RHS"); 12081 // Unique this node based on the arguments 12082 ID.AddInteger(SCEVPredicate::P_Equal); 12083 ID.AddPointer(LHS); 12084 ID.AddPointer(RHS); 12085 void *IP = nullptr; 12086 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12087 return S; 12088 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12089 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12090 UniquePreds.InsertNode(Eq, IP); 12091 return Eq; 12092 } 12093 12094 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12095 const SCEVAddRecExpr *AR, 12096 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12097 FoldingSetNodeID ID; 12098 // Unique this node based on the arguments 12099 ID.AddInteger(SCEVPredicate::P_Wrap); 12100 ID.AddPointer(AR); 12101 ID.AddInteger(AddedFlags); 12102 void *IP = nullptr; 12103 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12104 return S; 12105 auto *OF = new (SCEVAllocator) 12106 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12107 UniquePreds.InsertNode(OF, IP); 12108 return OF; 12109 } 12110 12111 namespace { 12112 12113 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12114 public: 12115 12116 /// Rewrites \p S in the context of a loop L and the SCEV predication 12117 /// infrastructure. 12118 /// 12119 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12120 /// equivalences present in \p Pred. 12121 /// 12122 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12123 /// \p NewPreds such that the result will be an AddRecExpr. 12124 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12125 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12126 SCEVUnionPredicate *Pred) { 12127 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12128 return Rewriter.visit(S); 12129 } 12130 12131 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12132 if (Pred) { 12133 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12134 for (auto *Pred : ExprPreds) 12135 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12136 if (IPred->getLHS() == Expr) 12137 return IPred->getRHS(); 12138 } 12139 return convertToAddRecWithPreds(Expr); 12140 } 12141 12142 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12143 const SCEV *Operand = visit(Expr->getOperand()); 12144 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12145 if (AR && AR->getLoop() == L && AR->isAffine()) { 12146 // This couldn't be folded because the operand didn't have the nuw 12147 // flag. Add the nusw flag as an assumption that we could make. 12148 const SCEV *Step = AR->getStepRecurrence(SE); 12149 Type *Ty = Expr->getType(); 12150 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12151 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12152 SE.getSignExtendExpr(Step, Ty), L, 12153 AR->getNoWrapFlags()); 12154 } 12155 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12156 } 12157 12158 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12159 const SCEV *Operand = visit(Expr->getOperand()); 12160 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12161 if (AR && AR->getLoop() == L && AR->isAffine()) { 12162 // This couldn't be folded because the operand didn't have the nsw 12163 // flag. Add the nssw flag as an assumption that we could make. 12164 const SCEV *Step = AR->getStepRecurrence(SE); 12165 Type *Ty = Expr->getType(); 12166 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12167 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12168 SE.getSignExtendExpr(Step, Ty), L, 12169 AR->getNoWrapFlags()); 12170 } 12171 return SE.getSignExtendExpr(Operand, Expr->getType()); 12172 } 12173 12174 private: 12175 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12176 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12177 SCEVUnionPredicate *Pred) 12178 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12179 12180 bool addOverflowAssumption(const SCEVPredicate *P) { 12181 if (!NewPreds) { 12182 // Check if we've already made this assumption. 12183 return Pred && Pred->implies(P); 12184 } 12185 NewPreds->insert(P); 12186 return true; 12187 } 12188 12189 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12190 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12191 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12192 return addOverflowAssumption(A); 12193 } 12194 12195 // If \p Expr represents a PHINode, we try to see if it can be represented 12196 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12197 // to add this predicate as a runtime overflow check, we return the AddRec. 12198 // If \p Expr does not meet these conditions (is not a PHI node, or we 12199 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12200 // return \p Expr. 12201 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12202 if (!isa<PHINode>(Expr->getValue())) 12203 return Expr; 12204 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12205 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12206 if (!PredicatedRewrite) 12207 return Expr; 12208 for (auto *P : PredicatedRewrite->second){ 12209 // Wrap predicates from outer loops are not supported. 12210 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12211 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12212 if (L != AR->getLoop()) 12213 return Expr; 12214 } 12215 if (!addOverflowAssumption(P)) 12216 return Expr; 12217 } 12218 return PredicatedRewrite->first; 12219 } 12220 12221 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12222 SCEVUnionPredicate *Pred; 12223 const Loop *L; 12224 }; 12225 12226 } // end anonymous namespace 12227 12228 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12229 SCEVUnionPredicate &Preds) { 12230 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12231 } 12232 12233 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12234 const SCEV *S, const Loop *L, 12235 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12236 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12237 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12238 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12239 12240 if (!AddRec) 12241 return nullptr; 12242 12243 // Since the transformation was successful, we can now transfer the SCEV 12244 // predicates. 12245 for (auto *P : TransformPreds) 12246 Preds.insert(P); 12247 12248 return AddRec; 12249 } 12250 12251 /// SCEV predicates 12252 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12253 SCEVPredicateKind Kind) 12254 : FastID(ID), Kind(Kind) {} 12255 12256 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12257 const SCEV *LHS, const SCEV *RHS) 12258 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12259 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12260 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12261 } 12262 12263 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12264 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12265 12266 if (!Op) 12267 return false; 12268 12269 return Op->LHS == LHS && Op->RHS == RHS; 12270 } 12271 12272 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12273 12274 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12275 12276 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12277 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12278 } 12279 12280 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12281 const SCEVAddRecExpr *AR, 12282 IncrementWrapFlags Flags) 12283 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12284 12285 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12286 12287 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12288 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12289 12290 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12291 } 12292 12293 bool SCEVWrapPredicate::isAlwaysTrue() const { 12294 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12295 IncrementWrapFlags IFlags = Flags; 12296 12297 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12298 IFlags = clearFlags(IFlags, IncrementNSSW); 12299 12300 return IFlags == IncrementAnyWrap; 12301 } 12302 12303 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12304 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12305 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12306 OS << "<nusw>"; 12307 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12308 OS << "<nssw>"; 12309 OS << "\n"; 12310 } 12311 12312 SCEVWrapPredicate::IncrementWrapFlags 12313 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12314 ScalarEvolution &SE) { 12315 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12316 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12317 12318 // We can safely transfer the NSW flag as NSSW. 12319 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12320 ImpliedFlags = IncrementNSSW; 12321 12322 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12323 // If the increment is positive, the SCEV NUW flag will also imply the 12324 // WrapPredicate NUSW flag. 12325 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12326 if (Step->getValue()->getValue().isNonNegative()) 12327 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12328 } 12329 12330 return ImpliedFlags; 12331 } 12332 12333 /// Union predicates don't get cached so create a dummy set ID for it. 12334 SCEVUnionPredicate::SCEVUnionPredicate() 12335 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12336 12337 bool SCEVUnionPredicate::isAlwaysTrue() const { 12338 return all_of(Preds, 12339 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12340 } 12341 12342 ArrayRef<const SCEVPredicate *> 12343 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12344 auto I = SCEVToPreds.find(Expr); 12345 if (I == SCEVToPreds.end()) 12346 return ArrayRef<const SCEVPredicate *>(); 12347 return I->second; 12348 } 12349 12350 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12351 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12352 return all_of(Set->Preds, 12353 [this](const SCEVPredicate *I) { return this->implies(I); }); 12354 12355 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12356 if (ScevPredsIt == SCEVToPreds.end()) 12357 return false; 12358 auto &SCEVPreds = ScevPredsIt->second; 12359 12360 return any_of(SCEVPreds, 12361 [N](const SCEVPredicate *I) { return I->implies(N); }); 12362 } 12363 12364 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12365 12366 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12367 for (auto Pred : Preds) 12368 Pred->print(OS, Depth); 12369 } 12370 12371 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12372 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12373 for (auto Pred : Set->Preds) 12374 add(Pred); 12375 return; 12376 } 12377 12378 if (implies(N)) 12379 return; 12380 12381 const SCEV *Key = N->getExpr(); 12382 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12383 " associated expression!"); 12384 12385 SCEVToPreds[Key].push_back(N); 12386 Preds.push_back(N); 12387 } 12388 12389 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12390 Loop &L) 12391 : SE(SE), L(L) {} 12392 12393 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12394 const SCEV *Expr = SE.getSCEV(V); 12395 RewriteEntry &Entry = RewriteMap[Expr]; 12396 12397 // If we already have an entry and the version matches, return it. 12398 if (Entry.second && Generation == Entry.first) 12399 return Entry.second; 12400 12401 // We found an entry but it's stale. Rewrite the stale entry 12402 // according to the current predicate. 12403 if (Entry.second) 12404 Expr = Entry.second; 12405 12406 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12407 Entry = {Generation, NewSCEV}; 12408 12409 return NewSCEV; 12410 } 12411 12412 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12413 if (!BackedgeCount) { 12414 SCEVUnionPredicate BackedgePred; 12415 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12416 addPredicate(BackedgePred); 12417 } 12418 return BackedgeCount; 12419 } 12420 12421 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12422 if (Preds.implies(&Pred)) 12423 return; 12424 Preds.add(&Pred); 12425 updateGeneration(); 12426 } 12427 12428 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12429 return Preds; 12430 } 12431 12432 void PredicatedScalarEvolution::updateGeneration() { 12433 // If the generation number wrapped recompute everything. 12434 if (++Generation == 0) { 12435 for (auto &II : RewriteMap) { 12436 const SCEV *Rewritten = II.second.second; 12437 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12438 } 12439 } 12440 } 12441 12442 void PredicatedScalarEvolution::setNoOverflow( 12443 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12444 const SCEV *Expr = getSCEV(V); 12445 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12446 12447 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12448 12449 // Clear the statically implied flags. 12450 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12451 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12452 12453 auto II = FlagsMap.insert({V, Flags}); 12454 if (!II.second) 12455 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12456 } 12457 12458 bool PredicatedScalarEvolution::hasNoOverflow( 12459 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12460 const SCEV *Expr = getSCEV(V); 12461 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12462 12463 Flags = SCEVWrapPredicate::clearFlags( 12464 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12465 12466 auto II = FlagsMap.find(V); 12467 12468 if (II != FlagsMap.end()) 12469 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12470 12471 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12472 } 12473 12474 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12475 const SCEV *Expr = this->getSCEV(V); 12476 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12477 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12478 12479 if (!New) 12480 return nullptr; 12481 12482 for (auto *P : NewPreds) 12483 Preds.add(P); 12484 12485 updateGeneration(); 12486 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12487 return New; 12488 } 12489 12490 PredicatedScalarEvolution::PredicatedScalarEvolution( 12491 const PredicatedScalarEvolution &Init) 12492 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12493 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12494 for (const auto &I : Init.FlagsMap) 12495 FlagsMap.insert(I); 12496 } 12497 12498 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12499 // For each block. 12500 for (auto *BB : L.getBlocks()) 12501 for (auto &I : *BB) { 12502 if (!SE.isSCEVable(I.getType())) 12503 continue; 12504 12505 auto *Expr = SE.getSCEV(&I); 12506 auto II = RewriteMap.find(Expr); 12507 12508 if (II == RewriteMap.end()) 12509 continue; 12510 12511 // Don't print things that are not interesting. 12512 if (II->second.second == Expr) 12513 continue; 12514 12515 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12516 OS.indent(Depth + 2) << *Expr << "\n"; 12517 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12518 } 12519 } 12520 12521 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12522 // arbitrary expressions. 12523 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12524 // 4, A / B becomes X / 8). 12525 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12526 const SCEV *&RHS) { 12527 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12528 if (Add == nullptr || Add->getNumOperands() != 2) 12529 return false; 12530 12531 const SCEV *A = Add->getOperand(1); 12532 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12533 12534 if (Mul == nullptr) 12535 return false; 12536 12537 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12538 // (SomeExpr + (-(SomeExpr / B) * B)). 12539 if (Expr == getURemExpr(A, B)) { 12540 LHS = A; 12541 RHS = B; 12542 return true; 12543 } 12544 return false; 12545 }; 12546 12547 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12548 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12549 return MatchURemWithDivisor(Mul->getOperand(1)) || 12550 MatchURemWithDivisor(Mul->getOperand(2)); 12551 12552 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12553 if (Mul->getNumOperands() == 2) 12554 return MatchURemWithDivisor(Mul->getOperand(1)) || 12555 MatchURemWithDivisor(Mul->getOperand(0)) || 12556 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12557 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12558 return false; 12559 } 12560