1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/ScopeExit.h" 65 #include "llvm/ADT/Sequence.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/ConstantFolding.h" 70 #include "llvm/Analysis/InstructionSimplify.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 73 #include "llvm/Analysis/TargetLibraryInfo.h" 74 #include "llvm/Analysis/ValueTracking.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/GlobalAlias.h" 82 #include "llvm/IR/GlobalVariable.h" 83 #include "llvm/IR/InstIterator.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Metadata.h" 87 #include "llvm/IR/Operator.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/ErrorHandling.h" 92 #include "llvm/Support/KnownBits.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Support/SaveAndRestore.h" 96 #include <algorithm> 97 using namespace llvm; 98 99 #define DEBUG_TYPE "scalar-evolution" 100 101 STATISTIC(NumArrayLenItCounts, 102 "Number of trip counts computed with array length"); 103 STATISTIC(NumTripCountsComputed, 104 "Number of loops with predictable loop counts"); 105 STATISTIC(NumTripCountsNotComputed, 106 "Number of loops without predictable loop counts"); 107 STATISTIC(NumBruteForceTripCountsComputed, 108 "Number of loops with trip counts computed by force"); 109 110 static cl::opt<unsigned> 111 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 112 cl::desc("Maximum number of iterations SCEV will " 113 "symbolically execute a constant " 114 "derived loop"), 115 cl::init(100)); 116 117 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 118 static cl::opt<bool> 119 VerifySCEV("verify-scev", 120 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 121 static cl::opt<bool> 122 VerifySCEVMap("verify-scev-maps", 123 cl::desc("Verify no dangling value in ScalarEvolution's " 124 "ExprValueMap (slow)")); 125 126 static cl::opt<unsigned> MulOpsInlineThreshold( 127 "scev-mulops-inline-threshold", cl::Hidden, 128 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 129 cl::init(1000)); 130 131 static cl::opt<unsigned> AddOpsInlineThreshold( 132 "scev-addops-inline-threshold", cl::Hidden, 133 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 134 cl::init(500)); 135 136 static cl::opt<unsigned> MaxSCEVCompareDepth( 137 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 138 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 139 cl::init(32)); 140 141 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 142 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 143 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 144 cl::init(2)); 145 146 static cl::opt<unsigned> MaxValueCompareDepth( 147 "scalar-evolution-max-value-compare-depth", cl::Hidden, 148 cl::desc("Maximum depth of recursive value complexity comparisons"), 149 cl::init(2)); 150 151 static cl::opt<unsigned> 152 MaxAddExprDepth("scalar-evolution-max-addexpr-depth", cl::Hidden, 153 cl::desc("Maximum depth of recursive AddExpr"), 154 cl::init(32)); 155 156 static cl::opt<unsigned> MaxConstantEvolvingDepth( 157 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 158 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 159 160 //===----------------------------------------------------------------------===// 161 // SCEV class definitions 162 //===----------------------------------------------------------------------===// 163 164 //===----------------------------------------------------------------------===// 165 // Implementation of the SCEV class. 166 // 167 168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 169 LLVM_DUMP_METHOD void SCEV::dump() const { 170 print(dbgs()); 171 dbgs() << '\n'; 172 } 173 #endif 174 175 void SCEV::print(raw_ostream &OS) const { 176 switch (static_cast<SCEVTypes>(getSCEVType())) { 177 case scConstant: 178 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 179 return; 180 case scTruncate: { 181 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 182 const SCEV *Op = Trunc->getOperand(); 183 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 184 << *Trunc->getType() << ")"; 185 return; 186 } 187 case scZeroExtend: { 188 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 189 const SCEV *Op = ZExt->getOperand(); 190 OS << "(zext " << *Op->getType() << " " << *Op << " to " 191 << *ZExt->getType() << ")"; 192 return; 193 } 194 case scSignExtend: { 195 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 196 const SCEV *Op = SExt->getOperand(); 197 OS << "(sext " << *Op->getType() << " " << *Op << " to " 198 << *SExt->getType() << ")"; 199 return; 200 } 201 case scAddRecExpr: { 202 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 203 OS << "{" << *AR->getOperand(0); 204 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 205 OS << ",+," << *AR->getOperand(i); 206 OS << "}<"; 207 if (AR->hasNoUnsignedWrap()) 208 OS << "nuw><"; 209 if (AR->hasNoSignedWrap()) 210 OS << "nsw><"; 211 if (AR->hasNoSelfWrap() && 212 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 213 OS << "nw><"; 214 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 215 OS << ">"; 216 return; 217 } 218 case scAddExpr: 219 case scMulExpr: 220 case scUMaxExpr: 221 case scSMaxExpr: { 222 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 223 const char *OpStr = nullptr; 224 switch (NAry->getSCEVType()) { 225 case scAddExpr: OpStr = " + "; break; 226 case scMulExpr: OpStr = " * "; break; 227 case scUMaxExpr: OpStr = " umax "; break; 228 case scSMaxExpr: OpStr = " smax "; break; 229 } 230 OS << "("; 231 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 232 I != E; ++I) { 233 OS << **I; 234 if (std::next(I) != E) 235 OS << OpStr; 236 } 237 OS << ")"; 238 switch (NAry->getSCEVType()) { 239 case scAddExpr: 240 case scMulExpr: 241 if (NAry->hasNoUnsignedWrap()) 242 OS << "<nuw>"; 243 if (NAry->hasNoSignedWrap()) 244 OS << "<nsw>"; 245 } 246 return; 247 } 248 case scUDivExpr: { 249 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 250 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 251 return; 252 } 253 case scUnknown: { 254 const SCEVUnknown *U = cast<SCEVUnknown>(this); 255 Type *AllocTy; 256 if (U->isSizeOf(AllocTy)) { 257 OS << "sizeof(" << *AllocTy << ")"; 258 return; 259 } 260 if (U->isAlignOf(AllocTy)) { 261 OS << "alignof(" << *AllocTy << ")"; 262 return; 263 } 264 265 Type *CTy; 266 Constant *FieldNo; 267 if (U->isOffsetOf(CTy, FieldNo)) { 268 OS << "offsetof(" << *CTy << ", "; 269 FieldNo->printAsOperand(OS, false); 270 OS << ")"; 271 return; 272 } 273 274 // Otherwise just print it normally. 275 U->getValue()->printAsOperand(OS, false); 276 return; 277 } 278 case scCouldNotCompute: 279 OS << "***COULDNOTCOMPUTE***"; 280 return; 281 } 282 llvm_unreachable("Unknown SCEV kind!"); 283 } 284 285 Type *SCEV::getType() const { 286 switch (static_cast<SCEVTypes>(getSCEVType())) { 287 case scConstant: 288 return cast<SCEVConstant>(this)->getType(); 289 case scTruncate: 290 case scZeroExtend: 291 case scSignExtend: 292 return cast<SCEVCastExpr>(this)->getType(); 293 case scAddRecExpr: 294 case scMulExpr: 295 case scUMaxExpr: 296 case scSMaxExpr: 297 return cast<SCEVNAryExpr>(this)->getType(); 298 case scAddExpr: 299 return cast<SCEVAddExpr>(this)->getType(); 300 case scUDivExpr: 301 return cast<SCEVUDivExpr>(this)->getType(); 302 case scUnknown: 303 return cast<SCEVUnknown>(this)->getType(); 304 case scCouldNotCompute: 305 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 306 } 307 llvm_unreachable("Unknown SCEV kind!"); 308 } 309 310 bool SCEV::isZero() const { 311 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 312 return SC->getValue()->isZero(); 313 return false; 314 } 315 316 bool SCEV::isOne() const { 317 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 318 return SC->getValue()->isOne(); 319 return false; 320 } 321 322 bool SCEV::isAllOnesValue() const { 323 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 324 return SC->getValue()->isAllOnesValue(); 325 return false; 326 } 327 328 bool SCEV::isNonConstantNegative() const { 329 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 330 if (!Mul) return false; 331 332 // If there is a constant factor, it will be first. 333 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 334 if (!SC) return false; 335 336 // Return true if the value is negative, this matches things like (-42 * V). 337 return SC->getAPInt().isNegative(); 338 } 339 340 SCEVCouldNotCompute::SCEVCouldNotCompute() : 341 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 342 343 bool SCEVCouldNotCompute::classof(const SCEV *S) { 344 return S->getSCEVType() == scCouldNotCompute; 345 } 346 347 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 348 FoldingSetNodeID ID; 349 ID.AddInteger(scConstant); 350 ID.AddPointer(V); 351 void *IP = nullptr; 352 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 353 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 354 UniqueSCEVs.InsertNode(S, IP); 355 return S; 356 } 357 358 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 359 return getConstant(ConstantInt::get(getContext(), Val)); 360 } 361 362 const SCEV * 363 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 364 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 365 return getConstant(ConstantInt::get(ITy, V, isSigned)); 366 } 367 368 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 369 unsigned SCEVTy, const SCEV *op, Type *ty) 370 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 371 372 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 373 const SCEV *op, Type *ty) 374 : SCEVCastExpr(ID, scTruncate, op, ty) { 375 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 376 (Ty->isIntegerTy() || Ty->isPointerTy()) && 377 "Cannot truncate non-integer value!"); 378 } 379 380 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 381 const SCEV *op, Type *ty) 382 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 383 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 384 (Ty->isIntegerTy() || Ty->isPointerTy()) && 385 "Cannot zero extend non-integer value!"); 386 } 387 388 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 389 const SCEV *op, Type *ty) 390 : SCEVCastExpr(ID, scSignExtend, op, ty) { 391 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 392 (Ty->isIntegerTy() || Ty->isPointerTy()) && 393 "Cannot sign extend non-integer value!"); 394 } 395 396 void SCEVUnknown::deleted() { 397 // Clear this SCEVUnknown from various maps. 398 SE->forgetMemoizedResults(this); 399 400 // Remove this SCEVUnknown from the uniquing map. 401 SE->UniqueSCEVs.RemoveNode(this); 402 403 // Release the value. 404 setValPtr(nullptr); 405 } 406 407 void SCEVUnknown::allUsesReplacedWith(Value *New) { 408 // Clear this SCEVUnknown from various maps. 409 SE->forgetMemoizedResults(this); 410 411 // Remove this SCEVUnknown from the uniquing map. 412 SE->UniqueSCEVs.RemoveNode(this); 413 414 // Update this SCEVUnknown to point to the new value. This is needed 415 // because there may still be outstanding SCEVs which still point to 416 // this SCEVUnknown. 417 setValPtr(New); 418 } 419 420 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 421 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 422 if (VCE->getOpcode() == Instruction::PtrToInt) 423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 424 if (CE->getOpcode() == Instruction::GetElementPtr && 425 CE->getOperand(0)->isNullValue() && 426 CE->getNumOperands() == 2) 427 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 428 if (CI->isOne()) { 429 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 430 ->getElementType(); 431 return true; 432 } 433 434 return false; 435 } 436 437 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 438 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 439 if (VCE->getOpcode() == Instruction::PtrToInt) 440 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 441 if (CE->getOpcode() == Instruction::GetElementPtr && 442 CE->getOperand(0)->isNullValue()) { 443 Type *Ty = 444 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 445 if (StructType *STy = dyn_cast<StructType>(Ty)) 446 if (!STy->isPacked() && 447 CE->getNumOperands() == 3 && 448 CE->getOperand(1)->isNullValue()) { 449 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 450 if (CI->isOne() && 451 STy->getNumElements() == 2 && 452 STy->getElementType(0)->isIntegerTy(1)) { 453 AllocTy = STy->getElementType(1); 454 return true; 455 } 456 } 457 } 458 459 return false; 460 } 461 462 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 463 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 464 if (VCE->getOpcode() == Instruction::PtrToInt) 465 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 466 if (CE->getOpcode() == Instruction::GetElementPtr && 467 CE->getNumOperands() == 3 && 468 CE->getOperand(0)->isNullValue() && 469 CE->getOperand(1)->isNullValue()) { 470 Type *Ty = 471 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 472 // Ignore vector types here so that ScalarEvolutionExpander doesn't 473 // emit getelementptrs that index into vectors. 474 if (Ty->isStructTy() || Ty->isArrayTy()) { 475 CTy = Ty; 476 FieldNo = CE->getOperand(2); 477 return true; 478 } 479 } 480 481 return false; 482 } 483 484 //===----------------------------------------------------------------------===// 485 // SCEV Utilities 486 //===----------------------------------------------------------------------===// 487 488 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 489 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 490 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 491 /// have been previously deemed to be "equally complex" by this routine. It is 492 /// intended to avoid exponential time complexity in cases like: 493 /// 494 /// %a = f(%x, %y) 495 /// %b = f(%a, %a) 496 /// %c = f(%b, %b) 497 /// 498 /// %d = f(%x, %y) 499 /// %e = f(%d, %d) 500 /// %f = f(%e, %e) 501 /// 502 /// CompareValueComplexity(%f, %c) 503 /// 504 /// Since we do not continue running this routine on expression trees once we 505 /// have seen unequal values, there is no need to track them in the cache. 506 static int 507 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache, 508 const LoopInfo *const LI, Value *LV, Value *RV, 509 unsigned Depth) { 510 if (Depth > MaxValueCompareDepth || EqCache.count({LV, RV})) 511 return 0; 512 513 // Order pointer values after integer values. This helps SCEVExpander form 514 // GEPs. 515 bool LIsPointer = LV->getType()->isPointerTy(), 516 RIsPointer = RV->getType()->isPointerTy(); 517 if (LIsPointer != RIsPointer) 518 return (int)LIsPointer - (int)RIsPointer; 519 520 // Compare getValueID values. 521 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 522 if (LID != RID) 523 return (int)LID - (int)RID; 524 525 // Sort arguments by their position. 526 if (const auto *LA = dyn_cast<Argument>(LV)) { 527 const auto *RA = cast<Argument>(RV); 528 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 529 return (int)LArgNo - (int)RArgNo; 530 } 531 532 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 533 const auto *RGV = cast<GlobalValue>(RV); 534 535 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 536 auto LT = GV->getLinkage(); 537 return !(GlobalValue::isPrivateLinkage(LT) || 538 GlobalValue::isInternalLinkage(LT)); 539 }; 540 541 // Use the names to distinguish the two values, but only if the 542 // names are semantically important. 543 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 544 return LGV->getName().compare(RGV->getName()); 545 } 546 547 // For instructions, compare their loop depth, and their operand count. This 548 // is pretty loose. 549 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 550 const auto *RInst = cast<Instruction>(RV); 551 552 // Compare loop depths. 553 const BasicBlock *LParent = LInst->getParent(), 554 *RParent = RInst->getParent(); 555 if (LParent != RParent) { 556 unsigned LDepth = LI->getLoopDepth(LParent), 557 RDepth = LI->getLoopDepth(RParent); 558 if (LDepth != RDepth) 559 return (int)LDepth - (int)RDepth; 560 } 561 562 // Compare the number of operands. 563 unsigned LNumOps = LInst->getNumOperands(), 564 RNumOps = RInst->getNumOperands(); 565 if (LNumOps != RNumOps) 566 return (int)LNumOps - (int)RNumOps; 567 568 for (unsigned Idx : seq(0u, LNumOps)) { 569 int Result = 570 CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx), 571 RInst->getOperand(Idx), Depth + 1); 572 if (Result != 0) 573 return Result; 574 } 575 } 576 577 EqCache.insert({LV, RV}); 578 return 0; 579 } 580 581 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 582 // than RHS, respectively. A three-way result allows recursive comparisons to be 583 // more efficient. 584 static int CompareSCEVComplexity( 585 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV, 586 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 587 DominatorTree &DT, unsigned Depth = 0) { 588 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 589 if (LHS == RHS) 590 return 0; 591 592 // Primarily, sort the SCEVs by their getSCEVType(). 593 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 594 if (LType != RType) 595 return (int)LType - (int)RType; 596 597 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.count({LHS, RHS})) 598 return 0; 599 // Aside from the getSCEVType() ordering, the particular ordering 600 // isn't very important except that it's beneficial to be consistent, 601 // so that (a + b) and (b + a) don't end up as different expressions. 602 switch (static_cast<SCEVTypes>(LType)) { 603 case scUnknown: { 604 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 605 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 606 607 SmallSet<std::pair<Value *, Value *>, 8> EqCache; 608 int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(), 609 Depth + 1); 610 if (X == 0) 611 EqCacheSCEV.insert({LHS, RHS}); 612 return X; 613 } 614 615 case scConstant: { 616 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 617 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 618 619 // Compare constant values. 620 const APInt &LA = LC->getAPInt(); 621 const APInt &RA = RC->getAPInt(); 622 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 623 if (LBitWidth != RBitWidth) 624 return (int)LBitWidth - (int)RBitWidth; 625 return LA.ult(RA) ? -1 : 1; 626 } 627 628 case scAddRecExpr: { 629 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 630 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 631 632 // There is always a dominance between two recs that are used by one SCEV, 633 // so we can safely sort recs by loop header dominance. We require such 634 // order in getAddExpr. 635 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 636 if (LLoop != RLoop) { 637 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 638 assert(LHead != RHead && "Two loops share the same header?"); 639 if (DT.dominates(LHead, RHead)) 640 return 1; 641 else 642 assert(DT.dominates(RHead, LHead) && 643 "No dominance between recurrences used by one SCEV?"); 644 return -1; 645 } 646 647 // Addrec complexity grows with operand count. 648 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 649 if (LNumOps != RNumOps) 650 return (int)LNumOps - (int)RNumOps; 651 652 // Lexicographically compare. 653 for (unsigned i = 0; i != LNumOps; ++i) { 654 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i), 655 RA->getOperand(i), DT, Depth + 1); 656 if (X != 0) 657 return X; 658 } 659 EqCacheSCEV.insert({LHS, RHS}); 660 return 0; 661 } 662 663 case scAddExpr: 664 case scMulExpr: 665 case scSMaxExpr: 666 case scUMaxExpr: { 667 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 668 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 669 670 // Lexicographically compare n-ary expressions. 671 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 672 if (LNumOps != RNumOps) 673 return (int)LNumOps - (int)RNumOps; 674 675 for (unsigned i = 0; i != LNumOps; ++i) { 676 if (i >= RNumOps) 677 return 1; 678 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i), 679 RC->getOperand(i), DT, Depth + 1); 680 if (X != 0) 681 return X; 682 } 683 EqCacheSCEV.insert({LHS, RHS}); 684 return 0; 685 } 686 687 case scUDivExpr: { 688 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 689 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 690 691 // Lexicographically compare udiv expressions. 692 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(), 693 DT, Depth + 1); 694 if (X != 0) 695 return X; 696 X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(), DT, 697 Depth + 1); 698 if (X == 0) 699 EqCacheSCEV.insert({LHS, RHS}); 700 return X; 701 } 702 703 case scTruncate: 704 case scZeroExtend: 705 case scSignExtend: { 706 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 707 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 708 709 // Compare cast expressions by operand. 710 int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(), 711 RC->getOperand(), DT, Depth + 1); 712 if (X == 0) 713 EqCacheSCEV.insert({LHS, RHS}); 714 return X; 715 } 716 717 case scCouldNotCompute: 718 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 719 } 720 llvm_unreachable("Unknown SCEV kind!"); 721 } 722 723 /// Given a list of SCEV objects, order them by their complexity, and group 724 /// objects of the same complexity together by value. When this routine is 725 /// finished, we know that any duplicates in the vector are consecutive and that 726 /// complexity is monotonically increasing. 727 /// 728 /// Note that we go take special precautions to ensure that we get deterministic 729 /// results from this routine. In other words, we don't want the results of 730 /// this to depend on where the addresses of various SCEV objects happened to 731 /// land in memory. 732 /// 733 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 734 LoopInfo *LI, DominatorTree &DT) { 735 if (Ops.size() < 2) return; // Noop 736 737 SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache; 738 if (Ops.size() == 2) { 739 // This is the common case, which also happens to be trivially simple. 740 // Special case it. 741 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 742 if (CompareSCEVComplexity(EqCache, LI, RHS, LHS, DT) < 0) 743 std::swap(LHS, RHS); 744 return; 745 } 746 747 // Do the rough sort by complexity. 748 std::stable_sort(Ops.begin(), Ops.end(), 749 [&EqCache, LI, &DT](const SCEV *LHS, const SCEV *RHS) { 750 return 751 CompareSCEVComplexity(EqCache, LI, LHS, RHS, DT) < 0; 752 }); 753 754 // Now that we are sorted by complexity, group elements of the same 755 // complexity. Note that this is, at worst, N^2, but the vector is likely to 756 // be extremely short in practice. Note that we take this approach because we 757 // do not want to depend on the addresses of the objects we are grouping. 758 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 759 const SCEV *S = Ops[i]; 760 unsigned Complexity = S->getSCEVType(); 761 762 // If there are any objects of the same complexity and same value as this 763 // one, group them. 764 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 765 if (Ops[j] == S) { // Found a duplicate. 766 // Move it to immediately after i'th element. 767 std::swap(Ops[i+1], Ops[j]); 768 ++i; // no need to rescan it. 769 if (i == e-2) return; // Done! 770 } 771 } 772 } 773 } 774 775 // Returns the size of the SCEV S. 776 static inline int sizeOfSCEV(const SCEV *S) { 777 struct FindSCEVSize { 778 int Size; 779 FindSCEVSize() : Size(0) {} 780 781 bool follow(const SCEV *S) { 782 ++Size; 783 // Keep looking at all operands of S. 784 return true; 785 } 786 bool isDone() const { 787 return false; 788 } 789 }; 790 791 FindSCEVSize F; 792 SCEVTraversal<FindSCEVSize> ST(F); 793 ST.visitAll(S); 794 return F.Size; 795 } 796 797 namespace { 798 799 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 800 public: 801 // Computes the Quotient and Remainder of the division of Numerator by 802 // Denominator. 803 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 804 const SCEV *Denominator, const SCEV **Quotient, 805 const SCEV **Remainder) { 806 assert(Numerator && Denominator && "Uninitialized SCEV"); 807 808 SCEVDivision D(SE, Numerator, Denominator); 809 810 // Check for the trivial case here to avoid having to check for it in the 811 // rest of the code. 812 if (Numerator == Denominator) { 813 *Quotient = D.One; 814 *Remainder = D.Zero; 815 return; 816 } 817 818 if (Numerator->isZero()) { 819 *Quotient = D.Zero; 820 *Remainder = D.Zero; 821 return; 822 } 823 824 // A simple case when N/1. The quotient is N. 825 if (Denominator->isOne()) { 826 *Quotient = Numerator; 827 *Remainder = D.Zero; 828 return; 829 } 830 831 // Split the Denominator when it is a product. 832 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { 833 const SCEV *Q, *R; 834 *Quotient = Numerator; 835 for (const SCEV *Op : T->operands()) { 836 divide(SE, *Quotient, Op, &Q, &R); 837 *Quotient = Q; 838 839 // Bail out when the Numerator is not divisible by one of the terms of 840 // the Denominator. 841 if (!R->isZero()) { 842 *Quotient = D.Zero; 843 *Remainder = Numerator; 844 return; 845 } 846 } 847 *Remainder = D.Zero; 848 return; 849 } 850 851 D.visit(Numerator); 852 *Quotient = D.Quotient; 853 *Remainder = D.Remainder; 854 } 855 856 // Except in the trivial case described above, we do not know how to divide 857 // Expr by Denominator for the following functions with empty implementation. 858 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 859 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 860 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 861 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 862 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 863 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 864 void visitUnknown(const SCEVUnknown *Numerator) {} 865 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 866 867 void visitConstant(const SCEVConstant *Numerator) { 868 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 869 APInt NumeratorVal = Numerator->getAPInt(); 870 APInt DenominatorVal = D->getAPInt(); 871 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 872 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 873 874 if (NumeratorBW > DenominatorBW) 875 DenominatorVal = DenominatorVal.sext(NumeratorBW); 876 else if (NumeratorBW < DenominatorBW) 877 NumeratorVal = NumeratorVal.sext(DenominatorBW); 878 879 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 880 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 881 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 882 Quotient = SE.getConstant(QuotientVal); 883 Remainder = SE.getConstant(RemainderVal); 884 return; 885 } 886 } 887 888 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 889 const SCEV *StartQ, *StartR, *StepQ, *StepR; 890 if (!Numerator->isAffine()) 891 return cannotDivide(Numerator); 892 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 893 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 894 // Bail out if the types do not match. 895 Type *Ty = Denominator->getType(); 896 if (Ty != StartQ->getType() || Ty != StartR->getType() || 897 Ty != StepQ->getType() || Ty != StepR->getType()) 898 return cannotDivide(Numerator); 899 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 900 Numerator->getNoWrapFlags()); 901 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 902 Numerator->getNoWrapFlags()); 903 } 904 905 void visitAddExpr(const SCEVAddExpr *Numerator) { 906 SmallVector<const SCEV *, 2> Qs, Rs; 907 Type *Ty = Denominator->getType(); 908 909 for (const SCEV *Op : Numerator->operands()) { 910 const SCEV *Q, *R; 911 divide(SE, Op, Denominator, &Q, &R); 912 913 // Bail out if types do not match. 914 if (Ty != Q->getType() || Ty != R->getType()) 915 return cannotDivide(Numerator); 916 917 Qs.push_back(Q); 918 Rs.push_back(R); 919 } 920 921 if (Qs.size() == 1) { 922 Quotient = Qs[0]; 923 Remainder = Rs[0]; 924 return; 925 } 926 927 Quotient = SE.getAddExpr(Qs); 928 Remainder = SE.getAddExpr(Rs); 929 } 930 931 void visitMulExpr(const SCEVMulExpr *Numerator) { 932 SmallVector<const SCEV *, 2> Qs; 933 Type *Ty = Denominator->getType(); 934 935 bool FoundDenominatorTerm = false; 936 for (const SCEV *Op : Numerator->operands()) { 937 // Bail out if types do not match. 938 if (Ty != Op->getType()) 939 return cannotDivide(Numerator); 940 941 if (FoundDenominatorTerm) { 942 Qs.push_back(Op); 943 continue; 944 } 945 946 // Check whether Denominator divides one of the product operands. 947 const SCEV *Q, *R; 948 divide(SE, Op, Denominator, &Q, &R); 949 if (!R->isZero()) { 950 Qs.push_back(Op); 951 continue; 952 } 953 954 // Bail out if types do not match. 955 if (Ty != Q->getType()) 956 return cannotDivide(Numerator); 957 958 FoundDenominatorTerm = true; 959 Qs.push_back(Q); 960 } 961 962 if (FoundDenominatorTerm) { 963 Remainder = Zero; 964 if (Qs.size() == 1) 965 Quotient = Qs[0]; 966 else 967 Quotient = SE.getMulExpr(Qs); 968 return; 969 } 970 971 if (!isa<SCEVUnknown>(Denominator)) 972 return cannotDivide(Numerator); 973 974 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 975 ValueToValueMap RewriteMap; 976 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 977 cast<SCEVConstant>(Zero)->getValue(); 978 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 979 980 if (Remainder->isZero()) { 981 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 982 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 983 cast<SCEVConstant>(One)->getValue(); 984 Quotient = 985 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 986 return; 987 } 988 989 // Quotient is (Numerator - Remainder) divided by Denominator. 990 const SCEV *Q, *R; 991 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 992 // This SCEV does not seem to simplify: fail the division here. 993 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 994 return cannotDivide(Numerator); 995 divide(SE, Diff, Denominator, &Q, &R); 996 if (R != Zero) 997 return cannotDivide(Numerator); 998 Quotient = Q; 999 } 1000 1001 private: 1002 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 1003 const SCEV *Denominator) 1004 : SE(S), Denominator(Denominator) { 1005 Zero = SE.getZero(Denominator->getType()); 1006 One = SE.getOne(Denominator->getType()); 1007 1008 // We generally do not know how to divide Expr by Denominator. We 1009 // initialize the division to a "cannot divide" state to simplify the rest 1010 // of the code. 1011 cannotDivide(Numerator); 1012 } 1013 1014 // Convenience function for giving up on the division. We set the quotient to 1015 // be equal to zero and the remainder to be equal to the numerator. 1016 void cannotDivide(const SCEV *Numerator) { 1017 Quotient = Zero; 1018 Remainder = Numerator; 1019 } 1020 1021 ScalarEvolution &SE; 1022 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 1023 }; 1024 1025 } 1026 1027 //===----------------------------------------------------------------------===// 1028 // Simple SCEV method implementations 1029 //===----------------------------------------------------------------------===// 1030 1031 /// Compute BC(It, K). The result has width W. Assume, K > 0. 1032 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 1033 ScalarEvolution &SE, 1034 Type *ResultTy) { 1035 // Handle the simplest case efficiently. 1036 if (K == 1) 1037 return SE.getTruncateOrZeroExtend(It, ResultTy); 1038 1039 // We are using the following formula for BC(It, K): 1040 // 1041 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 1042 // 1043 // Suppose, W is the bitwidth of the return value. We must be prepared for 1044 // overflow. Hence, we must assure that the result of our computation is 1045 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 1046 // safe in modular arithmetic. 1047 // 1048 // However, this code doesn't use exactly that formula; the formula it uses 1049 // is something like the following, where T is the number of factors of 2 in 1050 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 1051 // exponentiation: 1052 // 1053 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 1054 // 1055 // This formula is trivially equivalent to the previous formula. However, 1056 // this formula can be implemented much more efficiently. The trick is that 1057 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 1058 // arithmetic. To do exact division in modular arithmetic, all we have 1059 // to do is multiply by the inverse. Therefore, this step can be done at 1060 // width W. 1061 // 1062 // The next issue is how to safely do the division by 2^T. The way this 1063 // is done is by doing the multiplication step at a width of at least W + T 1064 // bits. This way, the bottom W+T bits of the product are accurate. Then, 1065 // when we perform the division by 2^T (which is equivalent to a right shift 1066 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 1067 // truncated out after the division by 2^T. 1068 // 1069 // In comparison to just directly using the first formula, this technique 1070 // is much more efficient; using the first formula requires W * K bits, 1071 // but this formula less than W + K bits. Also, the first formula requires 1072 // a division step, whereas this formula only requires multiplies and shifts. 1073 // 1074 // It doesn't matter whether the subtraction step is done in the calculation 1075 // width or the input iteration count's width; if the subtraction overflows, 1076 // the result must be zero anyway. We prefer here to do it in the width of 1077 // the induction variable because it helps a lot for certain cases; CodeGen 1078 // isn't smart enough to ignore the overflow, which leads to much less 1079 // efficient code if the width of the subtraction is wider than the native 1080 // register width. 1081 // 1082 // (It's possible to not widen at all by pulling out factors of 2 before 1083 // the multiplication; for example, K=2 can be calculated as 1084 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 1085 // extra arithmetic, so it's not an obvious win, and it gets 1086 // much more complicated for K > 3.) 1087 1088 // Protection from insane SCEVs; this bound is conservative, 1089 // but it probably doesn't matter. 1090 if (K > 1000) 1091 return SE.getCouldNotCompute(); 1092 1093 unsigned W = SE.getTypeSizeInBits(ResultTy); 1094 1095 // Calculate K! / 2^T and T; we divide out the factors of two before 1096 // multiplying for calculating K! / 2^T to avoid overflow. 1097 // Other overflow doesn't matter because we only care about the bottom 1098 // W bits of the result. 1099 APInt OddFactorial(W, 1); 1100 unsigned T = 1; 1101 for (unsigned i = 3; i <= K; ++i) { 1102 APInt Mult(W, i); 1103 unsigned TwoFactors = Mult.countTrailingZeros(); 1104 T += TwoFactors; 1105 Mult.lshrInPlace(TwoFactors); 1106 OddFactorial *= Mult; 1107 } 1108 1109 // We need at least W + T bits for the multiplication step 1110 unsigned CalculationBits = W + T; 1111 1112 // Calculate 2^T, at width T+W. 1113 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1114 1115 // Calculate the multiplicative inverse of K! / 2^T; 1116 // this multiplication factor will perform the exact division by 1117 // K! / 2^T. 1118 APInt Mod = APInt::getSignedMinValue(W+1); 1119 APInt MultiplyFactor = OddFactorial.zext(W+1); 1120 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1121 MultiplyFactor = MultiplyFactor.trunc(W); 1122 1123 // Calculate the product, at width T+W 1124 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1125 CalculationBits); 1126 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1127 for (unsigned i = 1; i != K; ++i) { 1128 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1129 Dividend = SE.getMulExpr(Dividend, 1130 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1131 } 1132 1133 // Divide by 2^T 1134 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1135 1136 // Truncate the result, and divide by K! / 2^T. 1137 1138 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1139 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1140 } 1141 1142 /// Return the value of this chain of recurrences at the specified iteration 1143 /// number. We can evaluate this recurrence by multiplying each element in the 1144 /// chain by the binomial coefficient corresponding to it. In other words, we 1145 /// can evaluate {A,+,B,+,C,+,D} as: 1146 /// 1147 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1148 /// 1149 /// where BC(It, k) stands for binomial coefficient. 1150 /// 1151 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1152 ScalarEvolution &SE) const { 1153 const SCEV *Result = getStart(); 1154 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1155 // The computation is correct in the face of overflow provided that the 1156 // multiplication is performed _after_ the evaluation of the binomial 1157 // coefficient. 1158 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1159 if (isa<SCEVCouldNotCompute>(Coeff)) 1160 return Coeff; 1161 1162 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1163 } 1164 return Result; 1165 } 1166 1167 //===----------------------------------------------------------------------===// 1168 // SCEV Expression folder implementations 1169 //===----------------------------------------------------------------------===// 1170 1171 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1172 Type *Ty) { 1173 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1174 "This is not a truncating conversion!"); 1175 assert(isSCEVable(Ty) && 1176 "This is not a conversion to a SCEVable type!"); 1177 Ty = getEffectiveSCEVType(Ty); 1178 1179 FoldingSetNodeID ID; 1180 ID.AddInteger(scTruncate); 1181 ID.AddPointer(Op); 1182 ID.AddPointer(Ty); 1183 void *IP = nullptr; 1184 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1185 1186 // Fold if the operand is constant. 1187 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1188 return getConstant( 1189 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1190 1191 // trunc(trunc(x)) --> trunc(x) 1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1193 return getTruncateExpr(ST->getOperand(), Ty); 1194 1195 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1196 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1197 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1198 1199 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1200 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1201 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1202 1203 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1204 // eliminate all the truncates, or we replace other casts with truncates. 1205 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1206 SmallVector<const SCEV *, 4> Operands; 1207 bool hasTrunc = false; 1208 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1209 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1210 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1211 hasTrunc = isa<SCEVTruncateExpr>(S); 1212 Operands.push_back(S); 1213 } 1214 if (!hasTrunc) 1215 return getAddExpr(Operands); 1216 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1217 } 1218 1219 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1220 // eliminate all the truncates, or we replace other casts with truncates. 1221 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1222 SmallVector<const SCEV *, 4> Operands; 1223 bool hasTrunc = false; 1224 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1225 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1226 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1227 hasTrunc = isa<SCEVTruncateExpr>(S); 1228 Operands.push_back(S); 1229 } 1230 if (!hasTrunc) 1231 return getMulExpr(Operands); 1232 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1233 } 1234 1235 // If the input value is a chrec scev, truncate the chrec's operands. 1236 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1237 SmallVector<const SCEV *, 4> Operands; 1238 for (const SCEV *Op : AddRec->operands()) 1239 Operands.push_back(getTruncateExpr(Op, Ty)); 1240 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1241 } 1242 1243 // The cast wasn't folded; create an explicit cast node. We can reuse 1244 // the existing insert position since if we get here, we won't have 1245 // made any changes which would invalidate it. 1246 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1247 Op, Ty); 1248 UniqueSCEVs.InsertNode(S, IP); 1249 return S; 1250 } 1251 1252 // Get the limit of a recurrence such that incrementing by Step cannot cause 1253 // signed overflow as long as the value of the recurrence within the 1254 // loop does not exceed this limit before incrementing. 1255 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1256 ICmpInst::Predicate *Pred, 1257 ScalarEvolution *SE) { 1258 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1259 if (SE->isKnownPositive(Step)) { 1260 *Pred = ICmpInst::ICMP_SLT; 1261 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1262 SE->getSignedRange(Step).getSignedMax()); 1263 } 1264 if (SE->isKnownNegative(Step)) { 1265 *Pred = ICmpInst::ICMP_SGT; 1266 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1267 SE->getSignedRange(Step).getSignedMin()); 1268 } 1269 return nullptr; 1270 } 1271 1272 // Get the limit of a recurrence such that incrementing by Step cannot cause 1273 // unsigned overflow as long as the value of the recurrence within the loop does 1274 // not exceed this limit before incrementing. 1275 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1276 ICmpInst::Predicate *Pred, 1277 ScalarEvolution *SE) { 1278 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1279 *Pred = ICmpInst::ICMP_ULT; 1280 1281 return SE->getConstant(APInt::getMinValue(BitWidth) - 1282 SE->getUnsignedRange(Step).getUnsignedMax()); 1283 } 1284 1285 namespace { 1286 1287 struct ExtendOpTraitsBase { 1288 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)( 1289 const SCEV *, Type *, ScalarEvolution::ExtendCacheTy &Cache); 1290 }; 1291 1292 // Used to make code generic over signed and unsigned overflow. 1293 template <typename ExtendOp> struct ExtendOpTraits { 1294 // Members present: 1295 // 1296 // static const SCEV::NoWrapFlags WrapType; 1297 // 1298 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1299 // 1300 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1301 // ICmpInst::Predicate *Pred, 1302 // ScalarEvolution *SE); 1303 }; 1304 1305 template <> 1306 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1307 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1308 1309 static const GetExtendExprTy GetExtendExpr; 1310 1311 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1312 ICmpInst::Predicate *Pred, 1313 ScalarEvolution *SE) { 1314 return getSignedOverflowLimitForStep(Step, Pred, SE); 1315 } 1316 }; 1317 1318 const ExtendOpTraitsBase::GetExtendExprTy 1319 ExtendOpTraits<SCEVSignExtendExpr>::GetExtendExpr = 1320 &ScalarEvolution::getSignExtendExprCached; 1321 1322 template <> 1323 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1324 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1325 1326 static const GetExtendExprTy GetExtendExpr; 1327 1328 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1329 ICmpInst::Predicate *Pred, 1330 ScalarEvolution *SE) { 1331 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1332 } 1333 }; 1334 1335 const ExtendOpTraitsBase::GetExtendExprTy 1336 ExtendOpTraits<SCEVZeroExtendExpr>::GetExtendExpr = 1337 &ScalarEvolution::getZeroExtendExprCached; 1338 } 1339 1340 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1341 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1342 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1343 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1344 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1345 // expression "Step + sext/zext(PreIncAR)" is congruent with 1346 // "sext/zext(PostIncAR)" 1347 template <typename ExtendOpTy> 1348 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1349 ScalarEvolution *SE, 1350 ScalarEvolution::ExtendCacheTy &Cache) { 1351 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1352 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1353 1354 const Loop *L = AR->getLoop(); 1355 const SCEV *Start = AR->getStart(); 1356 const SCEV *Step = AR->getStepRecurrence(*SE); 1357 1358 // Check for a simple looking step prior to loop entry. 1359 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1360 if (!SA) 1361 return nullptr; 1362 1363 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1364 // subtraction is expensive. For this purpose, perform a quick and dirty 1365 // difference, by checking for Step in the operand list. 1366 SmallVector<const SCEV *, 4> DiffOps; 1367 for (const SCEV *Op : SA->operands()) 1368 if (Op != Step) 1369 DiffOps.push_back(Op); 1370 1371 if (DiffOps.size() == SA->getNumOperands()) 1372 return nullptr; 1373 1374 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1375 // `Step`: 1376 1377 // 1. NSW/NUW flags on the step increment. 1378 auto PreStartFlags = 1379 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1380 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1381 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1382 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1383 1384 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1385 // "S+X does not sign/unsign-overflow". 1386 // 1387 1388 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1389 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1390 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1391 return PreStart; 1392 1393 // 2. Direct overflow check on the step operation's expression. 1394 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1395 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1396 const SCEV *OperandExtendedStart = 1397 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Cache), 1398 (SE->*GetExtendExpr)(Step, WideTy, Cache)); 1399 if ((SE->*GetExtendExpr)(Start, WideTy, Cache) == OperandExtendedStart) { 1400 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1401 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1402 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1403 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1404 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1405 } 1406 return PreStart; 1407 } 1408 1409 // 3. Loop precondition. 1410 ICmpInst::Predicate Pred; 1411 const SCEV *OverflowLimit = 1412 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1413 1414 if (OverflowLimit && 1415 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1416 return PreStart; 1417 1418 return nullptr; 1419 } 1420 1421 // Get the normalized zero or sign extended expression for this AddRec's Start. 1422 template <typename ExtendOpTy> 1423 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1424 ScalarEvolution *SE, 1425 ScalarEvolution::ExtendCacheTy &Cache) { 1426 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1427 1428 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Cache); 1429 if (!PreStart) 1430 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Cache); 1431 1432 return SE->getAddExpr( 1433 (SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, Cache), 1434 (SE->*GetExtendExpr)(PreStart, Ty, Cache)); 1435 } 1436 1437 // Try to prove away overflow by looking at "nearby" add recurrences. A 1438 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1439 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1440 // 1441 // Formally: 1442 // 1443 // {S,+,X} == {S-T,+,X} + T 1444 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1445 // 1446 // If ({S-T,+,X} + T) does not overflow ... (1) 1447 // 1448 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1449 // 1450 // If {S-T,+,X} does not overflow ... (2) 1451 // 1452 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1453 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1454 // 1455 // If (S-T)+T does not overflow ... (3) 1456 // 1457 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1458 // == {Ext(S),+,Ext(X)} == LHS 1459 // 1460 // Thus, if (1), (2) and (3) are true for some T, then 1461 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1462 // 1463 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1464 // does not overflow" restricted to the 0th iteration. Therefore we only need 1465 // to check for (1) and (2). 1466 // 1467 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1468 // is `Delta` (defined below). 1469 // 1470 template <typename ExtendOpTy> 1471 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1472 const SCEV *Step, 1473 const Loop *L) { 1474 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1475 1476 // We restrict `Start` to a constant to prevent SCEV from spending too much 1477 // time here. It is correct (but more expensive) to continue with a 1478 // non-constant `Start` and do a general SCEV subtraction to compute 1479 // `PreStart` below. 1480 // 1481 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1482 if (!StartC) 1483 return false; 1484 1485 APInt StartAI = StartC->getAPInt(); 1486 1487 for (unsigned Delta : {-2, -1, 1, 2}) { 1488 const SCEV *PreStart = getConstant(StartAI - Delta); 1489 1490 FoldingSetNodeID ID; 1491 ID.AddInteger(scAddRecExpr); 1492 ID.AddPointer(PreStart); 1493 ID.AddPointer(Step); 1494 ID.AddPointer(L); 1495 void *IP = nullptr; 1496 const auto *PreAR = 1497 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1498 1499 // Give up if we don't already have the add recurrence we need because 1500 // actually constructing an add recurrence is relatively expensive. 1501 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1502 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1503 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1504 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1505 DeltaS, &Pred, this); 1506 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1507 return true; 1508 } 1509 } 1510 1511 return false; 1512 } 1513 1514 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty) { 1515 // Use the local cache to prevent exponential behavior of 1516 // getZeroExtendExprImpl. 1517 ExtendCacheTy Cache; 1518 return getZeroExtendExprCached(Op, Ty, Cache); 1519 } 1520 1521 /// Query \p Cache before calling getZeroExtendExprImpl. If there is no 1522 /// related entry in the \p Cache, call getZeroExtendExprImpl and save 1523 /// the result in the \p Cache. 1524 const SCEV *ScalarEvolution::getZeroExtendExprCached(const SCEV *Op, Type *Ty, 1525 ExtendCacheTy &Cache) { 1526 auto It = Cache.find({Op, Ty}); 1527 if (It != Cache.end()) 1528 return It->second; 1529 const SCEV *ZExt = getZeroExtendExprImpl(Op, Ty, Cache); 1530 auto InsertResult = Cache.insert({{Op, Ty}, ZExt}); 1531 assert(InsertResult.second && "Expect the key was not in the cache"); 1532 (void)InsertResult; 1533 return ZExt; 1534 } 1535 1536 /// The real implementation of getZeroExtendExpr. 1537 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 1538 ExtendCacheTy &Cache) { 1539 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1540 "This is not an extending conversion!"); 1541 assert(isSCEVable(Ty) && 1542 "This is not a conversion to a SCEVable type!"); 1543 Ty = getEffectiveSCEVType(Ty); 1544 1545 // Fold if the operand is constant. 1546 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1547 return getConstant( 1548 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1549 1550 // zext(zext(x)) --> zext(x) 1551 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1552 return getZeroExtendExprCached(SZ->getOperand(), Ty, Cache); 1553 1554 // Before doing any expensive analysis, check to see if we've already 1555 // computed a SCEV for this Op and Ty. 1556 FoldingSetNodeID ID; 1557 ID.AddInteger(scZeroExtend); 1558 ID.AddPointer(Op); 1559 ID.AddPointer(Ty); 1560 void *IP = nullptr; 1561 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1562 1563 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1564 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1565 // It's possible the bits taken off by the truncate were all zero bits. If 1566 // so, we should be able to simplify this further. 1567 const SCEV *X = ST->getOperand(); 1568 ConstantRange CR = getUnsignedRange(X); 1569 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1570 unsigned NewBits = getTypeSizeInBits(Ty); 1571 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1572 CR.zextOrTrunc(NewBits))) 1573 return getTruncateOrZeroExtend(X, Ty); 1574 } 1575 1576 // If the input value is a chrec scev, and we can prove that the value 1577 // did not overflow the old, smaller, value, we can zero extend all of the 1578 // operands (often constants). This allows analysis of something like 1579 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1580 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1581 if (AR->isAffine()) { 1582 const SCEV *Start = AR->getStart(); 1583 const SCEV *Step = AR->getStepRecurrence(*this); 1584 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1585 const Loop *L = AR->getLoop(); 1586 1587 if (!AR->hasNoUnsignedWrap()) { 1588 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1589 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1590 } 1591 1592 // If we have special knowledge that this addrec won't overflow, 1593 // we don't need to do any further analysis. 1594 if (AR->hasNoUnsignedWrap()) 1595 return getAddRecExpr( 1596 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1597 getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1598 1599 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1600 // Note that this serves two purposes: It filters out loops that are 1601 // simply not analyzable, and it covers the case where this code is 1602 // being called from within backedge-taken count analysis, such that 1603 // attempting to ask for the backedge-taken count would likely result 1604 // in infinite recursion. In the later case, the analysis code will 1605 // cope with a conservative value, and it will take care to purge 1606 // that value once it has finished. 1607 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1608 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1609 // Manually compute the final value for AR, checking for 1610 // overflow. 1611 1612 // Check whether the backedge-taken count can be losslessly casted to 1613 // the addrec's type. The count is always unsigned. 1614 const SCEV *CastedMaxBECount = 1615 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1616 const SCEV *RecastedMaxBECount = 1617 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1618 if (MaxBECount == RecastedMaxBECount) { 1619 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1620 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1621 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1622 const SCEV *ZAdd = 1623 getZeroExtendExprCached(getAddExpr(Start, ZMul), WideTy, Cache); 1624 const SCEV *WideStart = getZeroExtendExprCached(Start, WideTy, Cache); 1625 const SCEV *WideMaxBECount = 1626 getZeroExtendExprCached(CastedMaxBECount, WideTy, Cache); 1627 const SCEV *OperandExtendedAdd = getAddExpr( 1628 WideStart, getMulExpr(WideMaxBECount, getZeroExtendExprCached( 1629 Step, WideTy, Cache))); 1630 if (ZAdd == OperandExtendedAdd) { 1631 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1632 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1633 // Return the expression with the addrec on the outside. 1634 return getAddRecExpr( 1635 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1636 getZeroExtendExprCached(Step, Ty, Cache), L, 1637 AR->getNoWrapFlags()); 1638 } 1639 // Similar to above, only this time treat the step value as signed. 1640 // This covers loops that count down. 1641 OperandExtendedAdd = 1642 getAddExpr(WideStart, 1643 getMulExpr(WideMaxBECount, 1644 getSignExtendExpr(Step, WideTy))); 1645 if (ZAdd == OperandExtendedAdd) { 1646 // Cache knowledge of AR NW, which is propagated to this AddRec. 1647 // Negative step causes unsigned wrap, but it still can't self-wrap. 1648 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1649 // Return the expression with the addrec on the outside. 1650 return getAddRecExpr( 1651 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1652 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1653 } 1654 } 1655 } 1656 1657 // Normally, in the cases we can prove no-overflow via a 1658 // backedge guarding condition, we can also compute a backedge 1659 // taken count for the loop. The exceptions are assumptions and 1660 // guards present in the loop -- SCEV is not great at exploiting 1661 // these to compute max backedge taken counts, but can still use 1662 // these to prove lack of overflow. Use this fact to avoid 1663 // doing extra work that may not pay off. 1664 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1665 !AC.assumptions().empty()) { 1666 // If the backedge is guarded by a comparison with the pre-inc 1667 // value the addrec is safe. Also, if the entry is guarded by 1668 // a comparison with the start value and the backedge is 1669 // guarded by a comparison with the post-inc value, the addrec 1670 // is safe. 1671 if (isKnownPositive(Step)) { 1672 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1673 getUnsignedRange(Step).getUnsignedMax()); 1674 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1675 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1676 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1677 AR->getPostIncExpr(*this), N))) { 1678 // Cache knowledge of AR NUW, which is propagated to this 1679 // AddRec. 1680 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1681 // Return the expression with the addrec on the outside. 1682 return getAddRecExpr( 1683 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1684 getZeroExtendExprCached(Step, Ty, Cache), L, 1685 AR->getNoWrapFlags()); 1686 } 1687 } else if (isKnownNegative(Step)) { 1688 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1689 getSignedRange(Step).getSignedMin()); 1690 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1691 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1692 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1693 AR->getPostIncExpr(*this), N))) { 1694 // Cache knowledge of AR NW, which is propagated to this 1695 // AddRec. Negative step causes unsigned wrap, but it 1696 // still can't self-wrap. 1697 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1698 // Return the expression with the addrec on the outside. 1699 return getAddRecExpr( 1700 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1701 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1702 } 1703 } 1704 } 1705 1706 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1708 return getAddRecExpr( 1709 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Cache), 1710 getZeroExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1711 } 1712 } 1713 1714 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1715 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1716 if (SA->hasNoUnsignedWrap()) { 1717 // If the addition does not unsign overflow then we can, by definition, 1718 // commute the zero extension with the addition operation. 1719 SmallVector<const SCEV *, 4> Ops; 1720 for (const auto *Op : SA->operands()) 1721 Ops.push_back(getZeroExtendExprCached(Op, Ty, Cache)); 1722 return getAddExpr(Ops, SCEV::FlagNUW); 1723 } 1724 } 1725 1726 // The cast wasn't folded; create an explicit cast node. 1727 // Recompute the insert position, as it may have been invalidated. 1728 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1729 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1730 Op, Ty); 1731 UniqueSCEVs.InsertNode(S, IP); 1732 return S; 1733 } 1734 1735 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty) { 1736 // Use the local cache to prevent exponential behavior of 1737 // getSignExtendExprImpl. 1738 ExtendCacheTy Cache; 1739 return getSignExtendExprCached(Op, Ty, Cache); 1740 } 1741 1742 /// Query \p Cache before calling getSignExtendExprImpl. If there is no 1743 /// related entry in the \p Cache, call getSignExtendExprImpl and save 1744 /// the result in the \p Cache. 1745 const SCEV *ScalarEvolution::getSignExtendExprCached(const SCEV *Op, Type *Ty, 1746 ExtendCacheTy &Cache) { 1747 auto It = Cache.find({Op, Ty}); 1748 if (It != Cache.end()) 1749 return It->second; 1750 const SCEV *SExt = getSignExtendExprImpl(Op, Ty, Cache); 1751 auto InsertResult = Cache.insert({{Op, Ty}, SExt}); 1752 assert(InsertResult.second && "Expect the key was not in the cache"); 1753 (void)InsertResult; 1754 return SExt; 1755 } 1756 1757 /// The real implementation of getSignExtendExpr. 1758 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty, 1759 ExtendCacheTy &Cache) { 1760 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1761 "This is not an extending conversion!"); 1762 assert(isSCEVable(Ty) && 1763 "This is not a conversion to a SCEVable type!"); 1764 Ty = getEffectiveSCEVType(Ty); 1765 1766 // Fold if the operand is constant. 1767 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1768 return getConstant( 1769 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1770 1771 // sext(sext(x)) --> sext(x) 1772 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1773 return getSignExtendExprCached(SS->getOperand(), Ty, Cache); 1774 1775 // sext(zext(x)) --> zext(x) 1776 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1777 return getZeroExtendExpr(SZ->getOperand(), Ty); 1778 1779 // Before doing any expensive analysis, check to see if we've already 1780 // computed a SCEV for this Op and Ty. 1781 FoldingSetNodeID ID; 1782 ID.AddInteger(scSignExtend); 1783 ID.AddPointer(Op); 1784 ID.AddPointer(Ty); 1785 void *IP = nullptr; 1786 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1787 1788 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1789 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1790 // It's possible the bits taken off by the truncate were all sign bits. If 1791 // so, we should be able to simplify this further. 1792 const SCEV *X = ST->getOperand(); 1793 ConstantRange CR = getSignedRange(X); 1794 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1795 unsigned NewBits = getTypeSizeInBits(Ty); 1796 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1797 CR.sextOrTrunc(NewBits))) 1798 return getTruncateOrSignExtend(X, Ty); 1799 } 1800 1801 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1802 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1803 if (SA->getNumOperands() == 2) { 1804 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1805 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1806 if (SMul && SC1) { 1807 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1808 const APInt &C1 = SC1->getAPInt(); 1809 const APInt &C2 = SC2->getAPInt(); 1810 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1811 C2.ugt(C1) && C2.isPowerOf2()) 1812 return getAddExpr(getSignExtendExprCached(SC1, Ty, Cache), 1813 getSignExtendExprCached(SMul, Ty, Cache)); 1814 } 1815 } 1816 } 1817 1818 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1819 if (SA->hasNoSignedWrap()) { 1820 // If the addition does not sign overflow then we can, by definition, 1821 // commute the sign extension with the addition operation. 1822 SmallVector<const SCEV *, 4> Ops; 1823 for (const auto *Op : SA->operands()) 1824 Ops.push_back(getSignExtendExprCached(Op, Ty, Cache)); 1825 return getAddExpr(Ops, SCEV::FlagNSW); 1826 } 1827 } 1828 // If the input value is a chrec scev, and we can prove that the value 1829 // did not overflow the old, smaller, value, we can sign extend all of the 1830 // operands (often constants). This allows analysis of something like 1831 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1832 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1833 if (AR->isAffine()) { 1834 const SCEV *Start = AR->getStart(); 1835 const SCEV *Step = AR->getStepRecurrence(*this); 1836 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1837 const Loop *L = AR->getLoop(); 1838 1839 if (!AR->hasNoSignedWrap()) { 1840 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1841 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1842 } 1843 1844 // If we have special knowledge that this addrec won't overflow, 1845 // we don't need to do any further analysis. 1846 if (AR->hasNoSignedWrap()) 1847 return getAddRecExpr( 1848 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1849 getSignExtendExprCached(Step, Ty, Cache), L, SCEV::FlagNSW); 1850 1851 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1852 // Note that this serves two purposes: It filters out loops that are 1853 // simply not analyzable, and it covers the case where this code is 1854 // being called from within backedge-taken count analysis, such that 1855 // attempting to ask for the backedge-taken count would likely result 1856 // in infinite recursion. In the later case, the analysis code will 1857 // cope with a conservative value, and it will take care to purge 1858 // that value once it has finished. 1859 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1860 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1861 // Manually compute the final value for AR, checking for 1862 // overflow. 1863 1864 // Check whether the backedge-taken count can be losslessly casted to 1865 // the addrec's type. The count is always unsigned. 1866 const SCEV *CastedMaxBECount = 1867 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1868 const SCEV *RecastedMaxBECount = 1869 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1870 if (MaxBECount == RecastedMaxBECount) { 1871 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1872 // Check whether Start+Step*MaxBECount has no signed overflow. 1873 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1874 const SCEV *SAdd = 1875 getSignExtendExprCached(getAddExpr(Start, SMul), WideTy, Cache); 1876 const SCEV *WideStart = getSignExtendExprCached(Start, WideTy, Cache); 1877 const SCEV *WideMaxBECount = 1878 getZeroExtendExpr(CastedMaxBECount, WideTy); 1879 const SCEV *OperandExtendedAdd = getAddExpr( 1880 WideStart, getMulExpr(WideMaxBECount, getSignExtendExprCached( 1881 Step, WideTy, Cache))); 1882 if (SAdd == OperandExtendedAdd) { 1883 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1884 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1885 // Return the expression with the addrec on the outside. 1886 return getAddRecExpr( 1887 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1888 getSignExtendExprCached(Step, Ty, Cache), L, 1889 AR->getNoWrapFlags()); 1890 } 1891 // Similar to above, only this time treat the step value as unsigned. 1892 // This covers loops that count up with an unsigned step. 1893 OperandExtendedAdd = 1894 getAddExpr(WideStart, 1895 getMulExpr(WideMaxBECount, 1896 getZeroExtendExpr(Step, WideTy))); 1897 if (SAdd == OperandExtendedAdd) { 1898 // If AR wraps around then 1899 // 1900 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1901 // => SAdd != OperandExtendedAdd 1902 // 1903 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1904 // (SAdd == OperandExtendedAdd => AR is NW) 1905 1906 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1907 1908 // Return the expression with the addrec on the outside. 1909 return getAddRecExpr( 1910 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1911 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1912 } 1913 } 1914 } 1915 1916 // Normally, in the cases we can prove no-overflow via a 1917 // backedge guarding condition, we can also compute a backedge 1918 // taken count for the loop. The exceptions are assumptions and 1919 // guards present in the loop -- SCEV is not great at exploiting 1920 // these to compute max backedge taken counts, but can still use 1921 // these to prove lack of overflow. Use this fact to avoid 1922 // doing extra work that may not pay off. 1923 1924 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1925 !AC.assumptions().empty()) { 1926 // If the backedge is guarded by a comparison with the pre-inc 1927 // value the addrec is safe. Also, if the entry is guarded by 1928 // a comparison with the start value and the backedge is 1929 // guarded by a comparison with the post-inc value, the addrec 1930 // is safe. 1931 ICmpInst::Predicate Pred; 1932 const SCEV *OverflowLimit = 1933 getSignedOverflowLimitForStep(Step, &Pred, this); 1934 if (OverflowLimit && 1935 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1936 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1937 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1938 OverflowLimit)))) { 1939 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1940 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1941 return getAddRecExpr( 1942 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1943 getSignExtendExprCached(Step, Ty, Cache), L, 1944 AR->getNoWrapFlags()); 1945 } 1946 } 1947 1948 // If Start and Step are constants, check if we can apply this 1949 // transformation: 1950 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1951 auto *SC1 = dyn_cast<SCEVConstant>(Start); 1952 auto *SC2 = dyn_cast<SCEVConstant>(Step); 1953 if (SC1 && SC2) { 1954 const APInt &C1 = SC1->getAPInt(); 1955 const APInt &C2 = SC2->getAPInt(); 1956 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1957 C2.isPowerOf2()) { 1958 Start = getSignExtendExprCached(Start, Ty, Cache); 1959 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1960 AR->getNoWrapFlags()); 1961 return getAddExpr(Start, getSignExtendExprCached(NewAR, Ty, Cache)); 1962 } 1963 } 1964 1965 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1966 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1967 return getAddRecExpr( 1968 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Cache), 1969 getSignExtendExprCached(Step, Ty, Cache), L, AR->getNoWrapFlags()); 1970 } 1971 } 1972 1973 // If the input value is provably positive and we could not simplify 1974 // away the sext build a zext instead. 1975 if (isKnownNonNegative(Op)) 1976 return getZeroExtendExpr(Op, Ty); 1977 1978 // The cast wasn't folded; create an explicit cast node. 1979 // Recompute the insert position, as it may have been invalidated. 1980 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1981 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1982 Op, Ty); 1983 UniqueSCEVs.InsertNode(S, IP); 1984 return S; 1985 } 1986 1987 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1988 /// unspecified bits out to the given type. 1989 /// 1990 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1991 Type *Ty) { 1992 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1993 "This is not an extending conversion!"); 1994 assert(isSCEVable(Ty) && 1995 "This is not a conversion to a SCEVable type!"); 1996 Ty = getEffectiveSCEVType(Ty); 1997 1998 // Sign-extend negative constants. 1999 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2000 if (SC->getAPInt().isNegative()) 2001 return getSignExtendExpr(Op, Ty); 2002 2003 // Peel off a truncate cast. 2004 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2005 const SCEV *NewOp = T->getOperand(); 2006 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2007 return getAnyExtendExpr(NewOp, Ty); 2008 return getTruncateOrNoop(NewOp, Ty); 2009 } 2010 2011 // Next try a zext cast. If the cast is folded, use it. 2012 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2013 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2014 return ZExt; 2015 2016 // Next try a sext cast. If the cast is folded, use it. 2017 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2018 if (!isa<SCEVSignExtendExpr>(SExt)) 2019 return SExt; 2020 2021 // Force the cast to be folded into the operands of an addrec. 2022 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2023 SmallVector<const SCEV *, 4> Ops; 2024 for (const SCEV *Op : AR->operands()) 2025 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2026 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2027 } 2028 2029 // If the expression is obviously signed, use the sext cast value. 2030 if (isa<SCEVSMaxExpr>(Op)) 2031 return SExt; 2032 2033 // Absent any other information, use the zext cast value. 2034 return ZExt; 2035 } 2036 2037 /// Process the given Ops list, which is a list of operands to be added under 2038 /// the given scale, update the given map. This is a helper function for 2039 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2040 /// that would form an add expression like this: 2041 /// 2042 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2043 /// 2044 /// where A and B are constants, update the map with these values: 2045 /// 2046 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2047 /// 2048 /// and add 13 + A*B*29 to AccumulatedConstant. 2049 /// This will allow getAddRecExpr to produce this: 2050 /// 2051 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2052 /// 2053 /// This form often exposes folding opportunities that are hidden in 2054 /// the original operand list. 2055 /// 2056 /// Return true iff it appears that any interesting folding opportunities 2057 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2058 /// the common case where no interesting opportunities are present, and 2059 /// is also used as a check to avoid infinite recursion. 2060 /// 2061 static bool 2062 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2063 SmallVectorImpl<const SCEV *> &NewOps, 2064 APInt &AccumulatedConstant, 2065 const SCEV *const *Ops, size_t NumOperands, 2066 const APInt &Scale, 2067 ScalarEvolution &SE) { 2068 bool Interesting = false; 2069 2070 // Iterate over the add operands. They are sorted, with constants first. 2071 unsigned i = 0; 2072 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2073 ++i; 2074 // Pull a buried constant out to the outside. 2075 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2076 Interesting = true; 2077 AccumulatedConstant += Scale * C->getAPInt(); 2078 } 2079 2080 // Next comes everything else. We're especially interested in multiplies 2081 // here, but they're in the middle, so just visit the rest with one loop. 2082 for (; i != NumOperands; ++i) { 2083 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2084 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2085 APInt NewScale = 2086 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2087 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2088 // A multiplication of a constant with another add; recurse. 2089 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2090 Interesting |= 2091 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2092 Add->op_begin(), Add->getNumOperands(), 2093 NewScale, SE); 2094 } else { 2095 // A multiplication of a constant with some other value. Update 2096 // the map. 2097 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2098 const SCEV *Key = SE.getMulExpr(MulOps); 2099 auto Pair = M.insert({Key, NewScale}); 2100 if (Pair.second) { 2101 NewOps.push_back(Pair.first->first); 2102 } else { 2103 Pair.first->second += NewScale; 2104 // The map already had an entry for this value, which may indicate 2105 // a folding opportunity. 2106 Interesting = true; 2107 } 2108 } 2109 } else { 2110 // An ordinary operand. Update the map. 2111 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2112 M.insert({Ops[i], Scale}); 2113 if (Pair.second) { 2114 NewOps.push_back(Pair.first->first); 2115 } else { 2116 Pair.first->second += Scale; 2117 // The map already had an entry for this value, which may indicate 2118 // a folding opportunity. 2119 Interesting = true; 2120 } 2121 } 2122 } 2123 2124 return Interesting; 2125 } 2126 2127 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2128 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2129 // can't-overflow flags for the operation if possible. 2130 static SCEV::NoWrapFlags 2131 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2132 const SmallVectorImpl<const SCEV *> &Ops, 2133 SCEV::NoWrapFlags Flags) { 2134 using namespace std::placeholders; 2135 typedef OverflowingBinaryOperator OBO; 2136 2137 bool CanAnalyze = 2138 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2139 (void)CanAnalyze; 2140 assert(CanAnalyze && "don't call from other places!"); 2141 2142 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2143 SCEV::NoWrapFlags SignOrUnsignWrap = 2144 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2145 2146 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2147 auto IsKnownNonNegative = [&](const SCEV *S) { 2148 return SE->isKnownNonNegative(S); 2149 }; 2150 2151 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2152 Flags = 2153 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2154 2155 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2156 2157 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr && 2158 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) { 2159 2160 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow 2161 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow 2162 2163 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2164 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2165 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2166 Instruction::Add, C, OBO::NoSignedWrap); 2167 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2168 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2169 } 2170 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2171 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2172 Instruction::Add, C, OBO::NoUnsignedWrap); 2173 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2174 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2175 } 2176 } 2177 2178 return Flags; 2179 } 2180 2181 /// Get a canonical add expression, or something simpler if possible. 2182 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2183 SCEV::NoWrapFlags Flags, 2184 unsigned Depth) { 2185 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2186 "only nuw or nsw allowed"); 2187 assert(!Ops.empty() && "Cannot get empty add!"); 2188 if (Ops.size() == 1) return Ops[0]; 2189 #ifndef NDEBUG 2190 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2191 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2192 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2193 "SCEVAddExpr operand types don't match!"); 2194 #endif 2195 2196 // Sort by complexity, this groups all similar expression types together. 2197 GroupByComplexity(Ops, &LI, DT); 2198 2199 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2200 2201 // If there are any constants, fold them together. 2202 unsigned Idx = 0; 2203 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2204 ++Idx; 2205 assert(Idx < Ops.size()); 2206 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2207 // We found two constants, fold them together! 2208 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2209 if (Ops.size() == 2) return Ops[0]; 2210 Ops.erase(Ops.begin()+1); // Erase the folded element 2211 LHSC = cast<SCEVConstant>(Ops[0]); 2212 } 2213 2214 // If we are left with a constant zero being added, strip it off. 2215 if (LHSC->getValue()->isZero()) { 2216 Ops.erase(Ops.begin()); 2217 --Idx; 2218 } 2219 2220 if (Ops.size() == 1) return Ops[0]; 2221 } 2222 2223 // Limit recursion calls depth 2224 if (Depth > MaxAddExprDepth) 2225 return getOrCreateAddExpr(Ops, Flags); 2226 2227 // Okay, check to see if the same value occurs in the operand list more than 2228 // once. If so, merge them together into an multiply expression. Since we 2229 // sorted the list, these values are required to be adjacent. 2230 Type *Ty = Ops[0]->getType(); 2231 bool FoundMatch = false; 2232 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2233 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2234 // Scan ahead to count how many equal operands there are. 2235 unsigned Count = 2; 2236 while (i+Count != e && Ops[i+Count] == Ops[i]) 2237 ++Count; 2238 // Merge the values into a multiply. 2239 const SCEV *Scale = getConstant(Ty, Count); 2240 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2241 if (Ops.size() == Count) 2242 return Mul; 2243 Ops[i] = Mul; 2244 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2245 --i; e -= Count - 1; 2246 FoundMatch = true; 2247 } 2248 if (FoundMatch) 2249 return getAddExpr(Ops, Flags); 2250 2251 // Check for truncates. If all the operands are truncated from the same 2252 // type, see if factoring out the truncate would permit the result to be 2253 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2254 // if the contents of the resulting outer trunc fold to something simple. 2255 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2256 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2257 Type *DstType = Trunc->getType(); 2258 Type *SrcType = Trunc->getOperand()->getType(); 2259 SmallVector<const SCEV *, 8> LargeOps; 2260 bool Ok = true; 2261 // Check all the operands to see if they can be represented in the 2262 // source type of the truncate. 2263 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2264 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2265 if (T->getOperand()->getType() != SrcType) { 2266 Ok = false; 2267 break; 2268 } 2269 LargeOps.push_back(T->getOperand()); 2270 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2271 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2272 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2273 SmallVector<const SCEV *, 8> LargeMulOps; 2274 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2275 if (const SCEVTruncateExpr *T = 2276 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2277 if (T->getOperand()->getType() != SrcType) { 2278 Ok = false; 2279 break; 2280 } 2281 LargeMulOps.push_back(T->getOperand()); 2282 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2283 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2284 } else { 2285 Ok = false; 2286 break; 2287 } 2288 } 2289 if (Ok) 2290 LargeOps.push_back(getMulExpr(LargeMulOps)); 2291 } else { 2292 Ok = false; 2293 break; 2294 } 2295 } 2296 if (Ok) { 2297 // Evaluate the expression in the larger type. 2298 const SCEV *Fold = getAddExpr(LargeOps, Flags, Depth + 1); 2299 // If it folds to something simple, use it. Otherwise, don't. 2300 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2301 return getTruncateExpr(Fold, DstType); 2302 } 2303 } 2304 2305 // Skip past any other cast SCEVs. 2306 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2307 ++Idx; 2308 2309 // If there are add operands they would be next. 2310 if (Idx < Ops.size()) { 2311 bool DeletedAdd = false; 2312 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2313 if (Ops.size() > AddOpsInlineThreshold || 2314 Add->getNumOperands() > AddOpsInlineThreshold) 2315 break; 2316 // If we have an add, expand the add operands onto the end of the operands 2317 // list. 2318 Ops.erase(Ops.begin()+Idx); 2319 Ops.append(Add->op_begin(), Add->op_end()); 2320 DeletedAdd = true; 2321 } 2322 2323 // If we deleted at least one add, we added operands to the end of the list, 2324 // and they are not necessarily sorted. Recurse to resort and resimplify 2325 // any operands we just acquired. 2326 if (DeletedAdd) 2327 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2328 } 2329 2330 // Skip over the add expression until we get to a multiply. 2331 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2332 ++Idx; 2333 2334 // Check to see if there are any folding opportunities present with 2335 // operands multiplied by constant values. 2336 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2337 uint64_t BitWidth = getTypeSizeInBits(Ty); 2338 DenseMap<const SCEV *, APInt> M; 2339 SmallVector<const SCEV *, 8> NewOps; 2340 APInt AccumulatedConstant(BitWidth, 0); 2341 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2342 Ops.data(), Ops.size(), 2343 APInt(BitWidth, 1), *this)) { 2344 struct APIntCompare { 2345 bool operator()(const APInt &LHS, const APInt &RHS) const { 2346 return LHS.ult(RHS); 2347 } 2348 }; 2349 2350 // Some interesting folding opportunity is present, so its worthwhile to 2351 // re-generate the operands list. Group the operands by constant scale, 2352 // to avoid multiplying by the same constant scale multiple times. 2353 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2354 for (const SCEV *NewOp : NewOps) 2355 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2356 // Re-generate the operands list. 2357 Ops.clear(); 2358 if (AccumulatedConstant != 0) 2359 Ops.push_back(getConstant(AccumulatedConstant)); 2360 for (auto &MulOp : MulOpLists) 2361 if (MulOp.first != 0) 2362 Ops.push_back(getMulExpr( 2363 getConstant(MulOp.first), 2364 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1))); 2365 if (Ops.empty()) 2366 return getZero(Ty); 2367 if (Ops.size() == 1) 2368 return Ops[0]; 2369 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2370 } 2371 } 2372 2373 // If we are adding something to a multiply expression, make sure the 2374 // something is not already an operand of the multiply. If so, merge it into 2375 // the multiply. 2376 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2377 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2378 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2379 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2380 if (isa<SCEVConstant>(MulOpSCEV)) 2381 continue; 2382 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2383 if (MulOpSCEV == Ops[AddOp]) { 2384 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2385 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2386 if (Mul->getNumOperands() != 2) { 2387 // If the multiply has more than two operands, we must get the 2388 // Y*Z term. 2389 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2390 Mul->op_begin()+MulOp); 2391 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2392 InnerMul = getMulExpr(MulOps); 2393 } 2394 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2395 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2396 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2397 if (Ops.size() == 2) return OuterMul; 2398 if (AddOp < Idx) { 2399 Ops.erase(Ops.begin()+AddOp); 2400 Ops.erase(Ops.begin()+Idx-1); 2401 } else { 2402 Ops.erase(Ops.begin()+Idx); 2403 Ops.erase(Ops.begin()+AddOp-1); 2404 } 2405 Ops.push_back(OuterMul); 2406 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2407 } 2408 2409 // Check this multiply against other multiplies being added together. 2410 for (unsigned OtherMulIdx = Idx+1; 2411 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2412 ++OtherMulIdx) { 2413 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2414 // If MulOp occurs in OtherMul, we can fold the two multiplies 2415 // together. 2416 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2417 OMulOp != e; ++OMulOp) 2418 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2419 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2420 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2421 if (Mul->getNumOperands() != 2) { 2422 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2423 Mul->op_begin()+MulOp); 2424 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2425 InnerMul1 = getMulExpr(MulOps); 2426 } 2427 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2428 if (OtherMul->getNumOperands() != 2) { 2429 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2430 OtherMul->op_begin()+OMulOp); 2431 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2432 InnerMul2 = getMulExpr(MulOps); 2433 } 2434 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2435 const SCEV *InnerMulSum = 2436 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2437 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2438 if (Ops.size() == 2) return OuterMul; 2439 Ops.erase(Ops.begin()+Idx); 2440 Ops.erase(Ops.begin()+OtherMulIdx-1); 2441 Ops.push_back(OuterMul); 2442 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2443 } 2444 } 2445 } 2446 } 2447 2448 // If there are any add recurrences in the operands list, see if any other 2449 // added values are loop invariant. If so, we can fold them into the 2450 // recurrence. 2451 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2452 ++Idx; 2453 2454 // Scan over all recurrences, trying to fold loop invariants into them. 2455 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2456 // Scan all of the other operands to this add and add them to the vector if 2457 // they are loop invariant w.r.t. the recurrence. 2458 SmallVector<const SCEV *, 8> LIOps; 2459 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2460 const Loop *AddRecLoop = AddRec->getLoop(); 2461 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2462 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2463 LIOps.push_back(Ops[i]); 2464 Ops.erase(Ops.begin()+i); 2465 --i; --e; 2466 } 2467 2468 // If we found some loop invariants, fold them into the recurrence. 2469 if (!LIOps.empty()) { 2470 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2471 LIOps.push_back(AddRec->getStart()); 2472 2473 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2474 AddRec->op_end()); 2475 // This follows from the fact that the no-wrap flags on the outer add 2476 // expression are applicable on the 0th iteration, when the add recurrence 2477 // will be equal to its start value. 2478 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2479 2480 // Build the new addrec. Propagate the NUW and NSW flags if both the 2481 // outer add and the inner addrec are guaranteed to have no overflow. 2482 // Always propagate NW. 2483 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2484 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2485 2486 // If all of the other operands were loop invariant, we are done. 2487 if (Ops.size() == 1) return NewRec; 2488 2489 // Otherwise, add the folded AddRec by the non-invariant parts. 2490 for (unsigned i = 0;; ++i) 2491 if (Ops[i] == AddRec) { 2492 Ops[i] = NewRec; 2493 break; 2494 } 2495 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2496 } 2497 2498 // Okay, if there weren't any loop invariants to be folded, check to see if 2499 // there are multiple AddRec's with the same loop induction variable being 2500 // added together. If so, we can fold them. 2501 for (unsigned OtherIdx = Idx+1; 2502 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2503 ++OtherIdx) { 2504 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2505 // so that the 1st found AddRecExpr is dominated by all others. 2506 assert(DT.dominates( 2507 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2508 AddRec->getLoop()->getHeader()) && 2509 "AddRecExprs are not sorted in reverse dominance order?"); 2510 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2511 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2512 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2513 AddRec->op_end()); 2514 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2515 ++OtherIdx) { 2516 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2517 if (OtherAddRec->getLoop() == AddRecLoop) { 2518 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2519 i != e; ++i) { 2520 if (i >= AddRecOps.size()) { 2521 AddRecOps.append(OtherAddRec->op_begin()+i, 2522 OtherAddRec->op_end()); 2523 break; 2524 } 2525 SmallVector<const SCEV *, 2> TwoOps = { 2526 AddRecOps[i], OtherAddRec->getOperand(i)}; 2527 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2528 } 2529 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2530 } 2531 } 2532 // Step size has changed, so we cannot guarantee no self-wraparound. 2533 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2534 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2535 } 2536 } 2537 2538 // Otherwise couldn't fold anything into this recurrence. Move onto the 2539 // next one. 2540 } 2541 2542 // Okay, it looks like we really DO need an add expr. Check to see if we 2543 // already have one, otherwise create a new one. 2544 return getOrCreateAddExpr(Ops, Flags); 2545 } 2546 2547 const SCEV * 2548 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2549 SCEV::NoWrapFlags Flags) { 2550 FoldingSetNodeID ID; 2551 ID.AddInteger(scAddExpr); 2552 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2553 ID.AddPointer(Ops[i]); 2554 void *IP = nullptr; 2555 SCEVAddExpr *S = 2556 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2557 if (!S) { 2558 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2559 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2560 S = new (SCEVAllocator) 2561 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2562 UniqueSCEVs.InsertNode(S, IP); 2563 } 2564 S->setNoWrapFlags(Flags); 2565 return S; 2566 } 2567 2568 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2569 uint64_t k = i*j; 2570 if (j > 1 && k / j != i) Overflow = true; 2571 return k; 2572 } 2573 2574 /// Compute the result of "n choose k", the binomial coefficient. If an 2575 /// intermediate computation overflows, Overflow will be set and the return will 2576 /// be garbage. Overflow is not cleared on absence of overflow. 2577 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2578 // We use the multiplicative formula: 2579 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2580 // At each iteration, we take the n-th term of the numeral and divide by the 2581 // (k-n)th term of the denominator. This division will always produce an 2582 // integral result, and helps reduce the chance of overflow in the 2583 // intermediate computations. However, we can still overflow even when the 2584 // final result would fit. 2585 2586 if (n == 0 || n == k) return 1; 2587 if (k > n) return 0; 2588 2589 if (k > n/2) 2590 k = n-k; 2591 2592 uint64_t r = 1; 2593 for (uint64_t i = 1; i <= k; ++i) { 2594 r = umul_ov(r, n-(i-1), Overflow); 2595 r /= i; 2596 } 2597 return r; 2598 } 2599 2600 /// Determine if any of the operands in this SCEV are a constant or if 2601 /// any of the add or multiply expressions in this SCEV contain a constant. 2602 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2603 SmallVector<const SCEV *, 4> Ops; 2604 Ops.push_back(StartExpr); 2605 while (!Ops.empty()) { 2606 const SCEV *CurrentExpr = Ops.pop_back_val(); 2607 if (isa<SCEVConstant>(*CurrentExpr)) 2608 return true; 2609 2610 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2611 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2612 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2613 } 2614 } 2615 return false; 2616 } 2617 2618 /// Get a canonical multiply expression, or something simpler if possible. 2619 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2620 SCEV::NoWrapFlags Flags) { 2621 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2622 "only nuw or nsw allowed"); 2623 assert(!Ops.empty() && "Cannot get empty mul!"); 2624 if (Ops.size() == 1) return Ops[0]; 2625 #ifndef NDEBUG 2626 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2627 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2628 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2629 "SCEVMulExpr operand types don't match!"); 2630 #endif 2631 2632 // Sort by complexity, this groups all similar expression types together. 2633 GroupByComplexity(Ops, &LI, DT); 2634 2635 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2636 2637 // If there are any constants, fold them together. 2638 unsigned Idx = 0; 2639 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2640 2641 // C1*(C2+V) -> C1*C2 + C1*V 2642 if (Ops.size() == 2) 2643 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2644 // If any of Add's ops are Adds or Muls with a constant, 2645 // apply this transformation as well. 2646 if (Add->getNumOperands() == 2) 2647 if (containsConstantSomewhere(Add)) 2648 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2649 getMulExpr(LHSC, Add->getOperand(1))); 2650 2651 ++Idx; 2652 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2653 // We found two constants, fold them together! 2654 ConstantInt *Fold = 2655 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2656 Ops[0] = getConstant(Fold); 2657 Ops.erase(Ops.begin()+1); // Erase the folded element 2658 if (Ops.size() == 1) return Ops[0]; 2659 LHSC = cast<SCEVConstant>(Ops[0]); 2660 } 2661 2662 // If we are left with a constant one being multiplied, strip it off. 2663 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2664 Ops.erase(Ops.begin()); 2665 --Idx; 2666 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2667 // If we have a multiply of zero, it will always be zero. 2668 return Ops[0]; 2669 } else if (Ops[0]->isAllOnesValue()) { 2670 // If we have a mul by -1 of an add, try distributing the -1 among the 2671 // add operands. 2672 if (Ops.size() == 2) { 2673 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2674 SmallVector<const SCEV *, 4> NewOps; 2675 bool AnyFolded = false; 2676 for (const SCEV *AddOp : Add->operands()) { 2677 const SCEV *Mul = getMulExpr(Ops[0], AddOp); 2678 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2679 NewOps.push_back(Mul); 2680 } 2681 if (AnyFolded) 2682 return getAddExpr(NewOps); 2683 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2684 // Negation preserves a recurrence's no self-wrap property. 2685 SmallVector<const SCEV *, 4> Operands; 2686 for (const SCEV *AddRecOp : AddRec->operands()) 2687 Operands.push_back(getMulExpr(Ops[0], AddRecOp)); 2688 2689 return getAddRecExpr(Operands, AddRec->getLoop(), 2690 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2691 } 2692 } 2693 } 2694 2695 if (Ops.size() == 1) 2696 return Ops[0]; 2697 } 2698 2699 // Skip over the add expression until we get to a multiply. 2700 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2701 ++Idx; 2702 2703 // If there are mul operands inline them all into this expression. 2704 if (Idx < Ops.size()) { 2705 bool DeletedMul = false; 2706 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2707 if (Ops.size() > MulOpsInlineThreshold) 2708 break; 2709 // If we have an mul, expand the mul operands onto the end of the operands 2710 // list. 2711 Ops.erase(Ops.begin()+Idx); 2712 Ops.append(Mul->op_begin(), Mul->op_end()); 2713 DeletedMul = true; 2714 } 2715 2716 // If we deleted at least one mul, we added operands to the end of the list, 2717 // and they are not necessarily sorted. Recurse to resort and resimplify 2718 // any operands we just acquired. 2719 if (DeletedMul) 2720 return getMulExpr(Ops); 2721 } 2722 2723 // If there are any add recurrences in the operands list, see if any other 2724 // added values are loop invariant. If so, we can fold them into the 2725 // recurrence. 2726 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2727 ++Idx; 2728 2729 // Scan over all recurrences, trying to fold loop invariants into them. 2730 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2731 // Scan all of the other operands to this mul and add them to the vector if 2732 // they are loop invariant w.r.t. the recurrence. 2733 SmallVector<const SCEV *, 8> LIOps; 2734 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2735 const Loop *AddRecLoop = AddRec->getLoop(); 2736 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2737 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2738 LIOps.push_back(Ops[i]); 2739 Ops.erase(Ops.begin()+i); 2740 --i; --e; 2741 } 2742 2743 // If we found some loop invariants, fold them into the recurrence. 2744 if (!LIOps.empty()) { 2745 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2746 SmallVector<const SCEV *, 4> NewOps; 2747 NewOps.reserve(AddRec->getNumOperands()); 2748 const SCEV *Scale = getMulExpr(LIOps); 2749 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2750 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2751 2752 // Build the new addrec. Propagate the NUW and NSW flags if both the 2753 // outer mul and the inner addrec are guaranteed to have no overflow. 2754 // 2755 // No self-wrap cannot be guaranteed after changing the step size, but 2756 // will be inferred if either NUW or NSW is true. 2757 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2758 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2759 2760 // If all of the other operands were loop invariant, we are done. 2761 if (Ops.size() == 1) return NewRec; 2762 2763 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2764 for (unsigned i = 0;; ++i) 2765 if (Ops[i] == AddRec) { 2766 Ops[i] = NewRec; 2767 break; 2768 } 2769 return getMulExpr(Ops); 2770 } 2771 2772 // Okay, if there weren't any loop invariants to be folded, check to see if 2773 // there are multiple AddRec's with the same loop induction variable being 2774 // multiplied together. If so, we can fold them. 2775 2776 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2777 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2778 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2779 // ]]],+,...up to x=2n}. 2780 // Note that the arguments to choose() are always integers with values 2781 // known at compile time, never SCEV objects. 2782 // 2783 // The implementation avoids pointless extra computations when the two 2784 // addrec's are of different length (mathematically, it's equivalent to 2785 // an infinite stream of zeros on the right). 2786 bool OpsModified = false; 2787 for (unsigned OtherIdx = Idx+1; 2788 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2789 ++OtherIdx) { 2790 const SCEVAddRecExpr *OtherAddRec = 2791 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2792 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2793 continue; 2794 2795 bool Overflow = false; 2796 Type *Ty = AddRec->getType(); 2797 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2798 SmallVector<const SCEV*, 7> AddRecOps; 2799 for (int x = 0, xe = AddRec->getNumOperands() + 2800 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2801 const SCEV *Term = getZero(Ty); 2802 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2803 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2804 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2805 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2806 z < ze && !Overflow; ++z) { 2807 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2808 uint64_t Coeff; 2809 if (LargerThan64Bits) 2810 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2811 else 2812 Coeff = Coeff1*Coeff2; 2813 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2814 const SCEV *Term1 = AddRec->getOperand(y-z); 2815 const SCEV *Term2 = OtherAddRec->getOperand(z); 2816 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2817 } 2818 } 2819 AddRecOps.push_back(Term); 2820 } 2821 if (!Overflow) { 2822 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2823 SCEV::FlagAnyWrap); 2824 if (Ops.size() == 2) return NewAddRec; 2825 Ops[Idx] = NewAddRec; 2826 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2827 OpsModified = true; 2828 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2829 if (!AddRec) 2830 break; 2831 } 2832 } 2833 if (OpsModified) 2834 return getMulExpr(Ops); 2835 2836 // Otherwise couldn't fold anything into this recurrence. Move onto the 2837 // next one. 2838 } 2839 2840 // Okay, it looks like we really DO need an mul expr. Check to see if we 2841 // already have one, otherwise create a new one. 2842 FoldingSetNodeID ID; 2843 ID.AddInteger(scMulExpr); 2844 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2845 ID.AddPointer(Ops[i]); 2846 void *IP = nullptr; 2847 SCEVMulExpr *S = 2848 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2849 if (!S) { 2850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2851 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2852 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2853 O, Ops.size()); 2854 UniqueSCEVs.InsertNode(S, IP); 2855 } 2856 S->setNoWrapFlags(Flags); 2857 return S; 2858 } 2859 2860 /// Get a canonical unsigned division expression, or something simpler if 2861 /// possible. 2862 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2863 const SCEV *RHS) { 2864 assert(getEffectiveSCEVType(LHS->getType()) == 2865 getEffectiveSCEVType(RHS->getType()) && 2866 "SCEVUDivExpr operand types don't match!"); 2867 2868 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2869 if (RHSC->getValue()->equalsInt(1)) 2870 return LHS; // X udiv 1 --> x 2871 // If the denominator is zero, the result of the udiv is undefined. Don't 2872 // try to analyze it, because the resolution chosen here may differ from 2873 // the resolution chosen in other parts of the compiler. 2874 if (!RHSC->getValue()->isZero()) { 2875 // Determine if the division can be folded into the operands of 2876 // its operands. 2877 // TODO: Generalize this to non-constants by using known-bits information. 2878 Type *Ty = LHS->getType(); 2879 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2880 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2881 // For non-power-of-two values, effectively round the value up to the 2882 // nearest power of two. 2883 if (!RHSC->getAPInt().isPowerOf2()) 2884 ++MaxShiftAmt; 2885 IntegerType *ExtTy = 2886 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2887 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2888 if (const SCEVConstant *Step = 2889 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2890 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2891 const APInt &StepInt = Step->getAPInt(); 2892 const APInt &DivInt = RHSC->getAPInt(); 2893 if (!StepInt.urem(DivInt) && 2894 getZeroExtendExpr(AR, ExtTy) == 2895 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2896 getZeroExtendExpr(Step, ExtTy), 2897 AR->getLoop(), SCEV::FlagAnyWrap)) { 2898 SmallVector<const SCEV *, 4> Operands; 2899 for (const SCEV *Op : AR->operands()) 2900 Operands.push_back(getUDivExpr(Op, RHS)); 2901 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2902 } 2903 /// Get a canonical UDivExpr for a recurrence. 2904 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2905 // We can currently only fold X%N if X is constant. 2906 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2907 if (StartC && !DivInt.urem(StepInt) && 2908 getZeroExtendExpr(AR, ExtTy) == 2909 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2910 getZeroExtendExpr(Step, ExtTy), 2911 AR->getLoop(), SCEV::FlagAnyWrap)) { 2912 const APInt &StartInt = StartC->getAPInt(); 2913 const APInt &StartRem = StartInt.urem(StepInt); 2914 if (StartRem != 0) 2915 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2916 AR->getLoop(), SCEV::FlagNW); 2917 } 2918 } 2919 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2920 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2921 SmallVector<const SCEV *, 4> Operands; 2922 for (const SCEV *Op : M->operands()) 2923 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2924 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2925 // Find an operand that's safely divisible. 2926 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2927 const SCEV *Op = M->getOperand(i); 2928 const SCEV *Div = getUDivExpr(Op, RHSC); 2929 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2930 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2931 M->op_end()); 2932 Operands[i] = Div; 2933 return getMulExpr(Operands); 2934 } 2935 } 2936 } 2937 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2938 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2939 SmallVector<const SCEV *, 4> Operands; 2940 for (const SCEV *Op : A->operands()) 2941 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 2942 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2943 Operands.clear(); 2944 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2945 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2946 if (isa<SCEVUDivExpr>(Op) || 2947 getMulExpr(Op, RHS) != A->getOperand(i)) 2948 break; 2949 Operands.push_back(Op); 2950 } 2951 if (Operands.size() == A->getNumOperands()) 2952 return getAddExpr(Operands); 2953 } 2954 } 2955 2956 // Fold if both operands are constant. 2957 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2958 Constant *LHSCV = LHSC->getValue(); 2959 Constant *RHSCV = RHSC->getValue(); 2960 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2961 RHSCV))); 2962 } 2963 } 2964 } 2965 2966 FoldingSetNodeID ID; 2967 ID.AddInteger(scUDivExpr); 2968 ID.AddPointer(LHS); 2969 ID.AddPointer(RHS); 2970 void *IP = nullptr; 2971 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2972 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2973 LHS, RHS); 2974 UniqueSCEVs.InsertNode(S, IP); 2975 return S; 2976 } 2977 2978 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2979 APInt A = C1->getAPInt().abs(); 2980 APInt B = C2->getAPInt().abs(); 2981 uint32_t ABW = A.getBitWidth(); 2982 uint32_t BBW = B.getBitWidth(); 2983 2984 if (ABW > BBW) 2985 B = B.zext(ABW); 2986 else if (ABW < BBW) 2987 A = A.zext(BBW); 2988 2989 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 2990 } 2991 2992 /// Get a canonical unsigned division expression, or something simpler if 2993 /// possible. There is no representation for an exact udiv in SCEV IR, but we 2994 /// can attempt to remove factors from the LHS and RHS. We can't do this when 2995 /// it's not exact because the udiv may be clearing bits. 2996 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2997 const SCEV *RHS) { 2998 // TODO: we could try to find factors in all sorts of things, but for now we 2999 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3000 // end of this file for inspiration. 3001 3002 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3003 if (!Mul || !Mul->hasNoUnsignedWrap()) 3004 return getUDivExpr(LHS, RHS); 3005 3006 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3007 // If the mulexpr multiplies by a constant, then that constant must be the 3008 // first element of the mulexpr. 3009 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3010 if (LHSCst == RHSCst) { 3011 SmallVector<const SCEV *, 2> Operands; 3012 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3013 return getMulExpr(Operands); 3014 } 3015 3016 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3017 // that there's a factor provided by one of the other terms. We need to 3018 // check. 3019 APInt Factor = gcd(LHSCst, RHSCst); 3020 if (!Factor.isIntN(1)) { 3021 LHSCst = 3022 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3023 RHSCst = 3024 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3025 SmallVector<const SCEV *, 2> Operands; 3026 Operands.push_back(LHSCst); 3027 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3028 LHS = getMulExpr(Operands); 3029 RHS = RHSCst; 3030 Mul = dyn_cast<SCEVMulExpr>(LHS); 3031 if (!Mul) 3032 return getUDivExactExpr(LHS, RHS); 3033 } 3034 } 3035 } 3036 3037 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3038 if (Mul->getOperand(i) == RHS) { 3039 SmallVector<const SCEV *, 2> Operands; 3040 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3041 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3042 return getMulExpr(Operands); 3043 } 3044 } 3045 3046 return getUDivExpr(LHS, RHS); 3047 } 3048 3049 /// Get an add recurrence expression for the specified loop. Simplify the 3050 /// expression as much as possible. 3051 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3052 const Loop *L, 3053 SCEV::NoWrapFlags Flags) { 3054 SmallVector<const SCEV *, 4> Operands; 3055 Operands.push_back(Start); 3056 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3057 if (StepChrec->getLoop() == L) { 3058 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3059 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3060 } 3061 3062 Operands.push_back(Step); 3063 return getAddRecExpr(Operands, L, Flags); 3064 } 3065 3066 /// Get an add recurrence expression for the specified loop. Simplify the 3067 /// expression as much as possible. 3068 const SCEV * 3069 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3070 const Loop *L, SCEV::NoWrapFlags Flags) { 3071 if (Operands.size() == 1) return Operands[0]; 3072 #ifndef NDEBUG 3073 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3074 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3075 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3076 "SCEVAddRecExpr operand types don't match!"); 3077 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3078 assert(isLoopInvariant(Operands[i], L) && 3079 "SCEVAddRecExpr operand is not loop-invariant!"); 3080 #endif 3081 3082 if (Operands.back()->isZero()) { 3083 Operands.pop_back(); 3084 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3085 } 3086 3087 // It's tempting to want to call getMaxBackedgeTakenCount count here and 3088 // use that information to infer NUW and NSW flags. However, computing a 3089 // BE count requires calling getAddRecExpr, so we may not yet have a 3090 // meaningful BE count at this point (and if we don't, we'd be stuck 3091 // with a SCEVCouldNotCompute as the cached BE count). 3092 3093 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3094 3095 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3096 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3097 const Loop *NestedLoop = NestedAR->getLoop(); 3098 if (L->contains(NestedLoop) 3099 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3100 : (!NestedLoop->contains(L) && 3101 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3102 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3103 NestedAR->op_end()); 3104 Operands[0] = NestedAR->getStart(); 3105 // AddRecs require their operands be loop-invariant with respect to their 3106 // loops. Don't perform this transformation if it would break this 3107 // requirement. 3108 bool AllInvariant = all_of( 3109 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3110 3111 if (AllInvariant) { 3112 // Create a recurrence for the outer loop with the same step size. 3113 // 3114 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3115 // inner recurrence has the same property. 3116 SCEV::NoWrapFlags OuterFlags = 3117 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3118 3119 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3120 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3121 return isLoopInvariant(Op, NestedLoop); 3122 }); 3123 3124 if (AllInvariant) { 3125 // Ok, both add recurrences are valid after the transformation. 3126 // 3127 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3128 // the outer recurrence has the same property. 3129 SCEV::NoWrapFlags InnerFlags = 3130 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3131 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3132 } 3133 } 3134 // Reset Operands to its original state. 3135 Operands[0] = NestedAR; 3136 } 3137 } 3138 3139 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3140 // already have one, otherwise create a new one. 3141 FoldingSetNodeID ID; 3142 ID.AddInteger(scAddRecExpr); 3143 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3144 ID.AddPointer(Operands[i]); 3145 ID.AddPointer(L); 3146 void *IP = nullptr; 3147 SCEVAddRecExpr *S = 3148 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 3149 if (!S) { 3150 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 3151 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 3152 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 3153 O, Operands.size(), L); 3154 UniqueSCEVs.InsertNode(S, IP); 3155 } 3156 S->setNoWrapFlags(Flags); 3157 return S; 3158 } 3159 3160 const SCEV * 3161 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3162 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3163 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3164 // getSCEV(Base)->getType() has the same address space as Base->getType() 3165 // because SCEV::getType() preserves the address space. 3166 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 3167 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3168 // instruction to its SCEV, because the Instruction may be guarded by control 3169 // flow and the no-overflow bits may not be valid for the expression in any 3170 // context. This can be fixed similarly to how these flags are handled for 3171 // adds. 3172 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3173 : SCEV::FlagAnyWrap; 3174 3175 const SCEV *TotalOffset = getZero(IntPtrTy); 3176 // The array size is unimportant. The first thing we do on CurTy is getting 3177 // its element type. 3178 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); 3179 for (const SCEV *IndexExpr : IndexExprs) { 3180 // Compute the (potentially symbolic) offset in bytes for this index. 3181 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3182 // For a struct, add the member offset. 3183 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3184 unsigned FieldNo = Index->getZExtValue(); 3185 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 3186 3187 // Add the field offset to the running total offset. 3188 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3189 3190 // Update CurTy to the type of the field at Index. 3191 CurTy = STy->getTypeAtIndex(Index); 3192 } else { 3193 // Update CurTy to its element type. 3194 CurTy = cast<SequentialType>(CurTy)->getElementType(); 3195 // For an array, add the element offset, explicitly scaled. 3196 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 3197 // Getelementptr indices are signed. 3198 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 3199 3200 // Multiply the index by the element size to compute the element offset. 3201 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3202 3203 // Add the element offset to the running total offset. 3204 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3205 } 3206 } 3207 3208 // Add the total offset from all the GEP indices to the base. 3209 return getAddExpr(BaseExpr, TotalOffset, Wrap); 3210 } 3211 3212 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 3213 const SCEV *RHS) { 3214 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3215 return getSMaxExpr(Ops); 3216 } 3217 3218 const SCEV * 3219 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3220 assert(!Ops.empty() && "Cannot get empty smax!"); 3221 if (Ops.size() == 1) return Ops[0]; 3222 #ifndef NDEBUG 3223 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3224 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3225 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3226 "SCEVSMaxExpr operand types don't match!"); 3227 #endif 3228 3229 // Sort by complexity, this groups all similar expression types together. 3230 GroupByComplexity(Ops, &LI, DT); 3231 3232 // If there are any constants, fold them together. 3233 unsigned Idx = 0; 3234 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3235 ++Idx; 3236 assert(Idx < Ops.size()); 3237 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3238 // We found two constants, fold them together! 3239 ConstantInt *Fold = ConstantInt::get( 3240 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); 3241 Ops[0] = getConstant(Fold); 3242 Ops.erase(Ops.begin()+1); // Erase the folded element 3243 if (Ops.size() == 1) return Ops[0]; 3244 LHSC = cast<SCEVConstant>(Ops[0]); 3245 } 3246 3247 // If we are left with a constant minimum-int, strip it off. 3248 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3249 Ops.erase(Ops.begin()); 3250 --Idx; 3251 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3252 // If we have an smax with a constant maximum-int, it will always be 3253 // maximum-int. 3254 return Ops[0]; 3255 } 3256 3257 if (Ops.size() == 1) return Ops[0]; 3258 } 3259 3260 // Find the first SMax 3261 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3262 ++Idx; 3263 3264 // Check to see if one of the operands is an SMax. If so, expand its operands 3265 // onto our operand list, and recurse to simplify. 3266 if (Idx < Ops.size()) { 3267 bool DeletedSMax = false; 3268 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3269 Ops.erase(Ops.begin()+Idx); 3270 Ops.append(SMax->op_begin(), SMax->op_end()); 3271 DeletedSMax = true; 3272 } 3273 3274 if (DeletedSMax) 3275 return getSMaxExpr(Ops); 3276 } 3277 3278 // Okay, check to see if the same value occurs in the operand list twice. If 3279 // so, delete one. Since we sorted the list, these values are required to 3280 // be adjacent. 3281 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3282 // X smax Y smax Y --> X smax Y 3283 // X smax Y --> X, if X is always greater than Y 3284 if (Ops[i] == Ops[i+1] || 3285 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3286 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3287 --i; --e; 3288 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3289 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3290 --i; --e; 3291 } 3292 3293 if (Ops.size() == 1) return Ops[0]; 3294 3295 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3296 3297 // Okay, it looks like we really DO need an smax expr. Check to see if we 3298 // already have one, otherwise create a new one. 3299 FoldingSetNodeID ID; 3300 ID.AddInteger(scSMaxExpr); 3301 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3302 ID.AddPointer(Ops[i]); 3303 void *IP = nullptr; 3304 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3305 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3306 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3307 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3308 O, Ops.size()); 3309 UniqueSCEVs.InsertNode(S, IP); 3310 return S; 3311 } 3312 3313 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3314 const SCEV *RHS) { 3315 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3316 return getUMaxExpr(Ops); 3317 } 3318 3319 const SCEV * 3320 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3321 assert(!Ops.empty() && "Cannot get empty umax!"); 3322 if (Ops.size() == 1) return Ops[0]; 3323 #ifndef NDEBUG 3324 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3325 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3326 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3327 "SCEVUMaxExpr operand types don't match!"); 3328 #endif 3329 3330 // Sort by complexity, this groups all similar expression types together. 3331 GroupByComplexity(Ops, &LI, DT); 3332 3333 // If there are any constants, fold them together. 3334 unsigned Idx = 0; 3335 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3336 ++Idx; 3337 assert(Idx < Ops.size()); 3338 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3339 // We found two constants, fold them together! 3340 ConstantInt *Fold = ConstantInt::get( 3341 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); 3342 Ops[0] = getConstant(Fold); 3343 Ops.erase(Ops.begin()+1); // Erase the folded element 3344 if (Ops.size() == 1) return Ops[0]; 3345 LHSC = cast<SCEVConstant>(Ops[0]); 3346 } 3347 3348 // If we are left with a constant minimum-int, strip it off. 3349 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3350 Ops.erase(Ops.begin()); 3351 --Idx; 3352 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3353 // If we have an umax with a constant maximum-int, it will always be 3354 // maximum-int. 3355 return Ops[0]; 3356 } 3357 3358 if (Ops.size() == 1) return Ops[0]; 3359 } 3360 3361 // Find the first UMax 3362 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3363 ++Idx; 3364 3365 // Check to see if one of the operands is a UMax. If so, expand its operands 3366 // onto our operand list, and recurse to simplify. 3367 if (Idx < Ops.size()) { 3368 bool DeletedUMax = false; 3369 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3370 Ops.erase(Ops.begin()+Idx); 3371 Ops.append(UMax->op_begin(), UMax->op_end()); 3372 DeletedUMax = true; 3373 } 3374 3375 if (DeletedUMax) 3376 return getUMaxExpr(Ops); 3377 } 3378 3379 // Okay, check to see if the same value occurs in the operand list twice. If 3380 // so, delete one. Since we sorted the list, these values are required to 3381 // be adjacent. 3382 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3383 // X umax Y umax Y --> X umax Y 3384 // X umax Y --> X, if X is always greater than Y 3385 if (Ops[i] == Ops[i+1] || 3386 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3387 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3388 --i; --e; 3389 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3390 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3391 --i; --e; 3392 } 3393 3394 if (Ops.size() == 1) return Ops[0]; 3395 3396 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3397 3398 // Okay, it looks like we really DO need a umax expr. Check to see if we 3399 // already have one, otherwise create a new one. 3400 FoldingSetNodeID ID; 3401 ID.AddInteger(scUMaxExpr); 3402 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3403 ID.AddPointer(Ops[i]); 3404 void *IP = nullptr; 3405 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3406 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3407 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3408 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3409 O, Ops.size()); 3410 UniqueSCEVs.InsertNode(S, IP); 3411 return S; 3412 } 3413 3414 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3415 const SCEV *RHS) { 3416 // ~smax(~x, ~y) == smin(x, y). 3417 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3418 } 3419 3420 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3421 const SCEV *RHS) { 3422 // ~umax(~x, ~y) == umin(x, y) 3423 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3424 } 3425 3426 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3427 // We can bypass creating a target-independent 3428 // constant expression and then folding it back into a ConstantInt. 3429 // This is just a compile-time optimization. 3430 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3431 } 3432 3433 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3434 StructType *STy, 3435 unsigned FieldNo) { 3436 // We can bypass creating a target-independent 3437 // constant expression and then folding it back into a ConstantInt. 3438 // This is just a compile-time optimization. 3439 return getConstant( 3440 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3441 } 3442 3443 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3444 // Don't attempt to do anything other than create a SCEVUnknown object 3445 // here. createSCEV only calls getUnknown after checking for all other 3446 // interesting possibilities, and any other code that calls getUnknown 3447 // is doing so in order to hide a value from SCEV canonicalization. 3448 3449 FoldingSetNodeID ID; 3450 ID.AddInteger(scUnknown); 3451 ID.AddPointer(V); 3452 void *IP = nullptr; 3453 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3454 assert(cast<SCEVUnknown>(S)->getValue() == V && 3455 "Stale SCEVUnknown in uniquing map!"); 3456 return S; 3457 } 3458 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3459 FirstUnknown); 3460 FirstUnknown = cast<SCEVUnknown>(S); 3461 UniqueSCEVs.InsertNode(S, IP); 3462 return S; 3463 } 3464 3465 //===----------------------------------------------------------------------===// 3466 // Basic SCEV Analysis and PHI Idiom Recognition Code 3467 // 3468 3469 /// Test if values of the given type are analyzable within the SCEV 3470 /// framework. This primarily includes integer types, and it can optionally 3471 /// include pointer types if the ScalarEvolution class has access to 3472 /// target-specific information. 3473 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3474 // Integers and pointers are always SCEVable. 3475 return Ty->isIntegerTy() || Ty->isPointerTy(); 3476 } 3477 3478 /// Return the size in bits of the specified type, for which isSCEVable must 3479 /// return true. 3480 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3481 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3482 return getDataLayout().getTypeSizeInBits(Ty); 3483 } 3484 3485 /// Return a type with the same bitwidth as the given type and which represents 3486 /// how SCEV will treat the given type, for which isSCEVable must return 3487 /// true. For pointer types, this is the pointer-sized integer type. 3488 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3489 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3490 3491 if (Ty->isIntegerTy()) 3492 return Ty; 3493 3494 // The only other support type is pointer. 3495 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3496 return getDataLayout().getIntPtrType(Ty); 3497 } 3498 3499 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3500 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3501 } 3502 3503 const SCEV *ScalarEvolution::getCouldNotCompute() { 3504 return CouldNotCompute.get(); 3505 } 3506 3507 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3508 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3509 auto *SU = dyn_cast<SCEVUnknown>(S); 3510 return SU && SU->getValue() == nullptr; 3511 }); 3512 3513 return !ContainsNulls; 3514 } 3515 3516 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3517 HasRecMapType::iterator I = HasRecMap.find(S); 3518 if (I != HasRecMap.end()) 3519 return I->second; 3520 3521 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); 3522 HasRecMap.insert({S, FoundAddRec}); 3523 return FoundAddRec; 3524 } 3525 3526 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3527 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3528 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3529 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3530 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3531 if (!Add) 3532 return {S, nullptr}; 3533 3534 if (Add->getNumOperands() != 2) 3535 return {S, nullptr}; 3536 3537 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3538 if (!ConstOp) 3539 return {S, nullptr}; 3540 3541 return {Add->getOperand(1), ConstOp->getValue()}; 3542 } 3543 3544 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3545 /// by the value and offset from any ValueOffsetPair in the set. 3546 SetVector<ScalarEvolution::ValueOffsetPair> * 3547 ScalarEvolution::getSCEVValues(const SCEV *S) { 3548 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3549 if (SI == ExprValueMap.end()) 3550 return nullptr; 3551 #ifndef NDEBUG 3552 if (VerifySCEVMap) { 3553 // Check there is no dangling Value in the set returned. 3554 for (const auto &VE : SI->second) 3555 assert(ValueExprMap.count(VE.first)); 3556 } 3557 #endif 3558 return &SI->second; 3559 } 3560 3561 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3562 /// cannot be used separately. eraseValueFromMap should be used to remove 3563 /// V from ValueExprMap and ExprValueMap at the same time. 3564 void ScalarEvolution::eraseValueFromMap(Value *V) { 3565 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3566 if (I != ValueExprMap.end()) { 3567 const SCEV *S = I->second; 3568 // Remove {V, 0} from the set of ExprValueMap[S] 3569 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3570 SV->remove({V, nullptr}); 3571 3572 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3573 const SCEV *Stripped; 3574 ConstantInt *Offset; 3575 std::tie(Stripped, Offset) = splitAddExpr(S); 3576 if (Offset != nullptr) { 3577 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3578 SV->remove({V, Offset}); 3579 } 3580 ValueExprMap.erase(V); 3581 } 3582 } 3583 3584 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3585 /// create a new one. 3586 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3587 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3588 3589 const SCEV *S = getExistingSCEV(V); 3590 if (S == nullptr) { 3591 S = createSCEV(V); 3592 // During PHI resolution, it is possible to create two SCEVs for the same 3593 // V, so it is needed to double check whether V->S is inserted into 3594 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3595 std::pair<ValueExprMapType::iterator, bool> Pair = 3596 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3597 if (Pair.second) { 3598 ExprValueMap[S].insert({V, nullptr}); 3599 3600 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3601 // ExprValueMap. 3602 const SCEV *Stripped = S; 3603 ConstantInt *Offset = nullptr; 3604 std::tie(Stripped, Offset) = splitAddExpr(S); 3605 // If stripped is SCEVUnknown, don't bother to save 3606 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3607 // increase the complexity of the expansion code. 3608 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3609 // because it may generate add/sub instead of GEP in SCEV expansion. 3610 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3611 !isa<GetElementPtrInst>(V)) 3612 ExprValueMap[Stripped].insert({V, Offset}); 3613 } 3614 } 3615 return S; 3616 } 3617 3618 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3619 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3620 3621 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3622 if (I != ValueExprMap.end()) { 3623 const SCEV *S = I->second; 3624 if (checkValidity(S)) 3625 return S; 3626 eraseValueFromMap(V); 3627 forgetMemoizedResults(S); 3628 } 3629 return nullptr; 3630 } 3631 3632 /// Return a SCEV corresponding to -V = -1*V 3633 /// 3634 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3635 SCEV::NoWrapFlags Flags) { 3636 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3637 return getConstant( 3638 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3639 3640 Type *Ty = V->getType(); 3641 Ty = getEffectiveSCEVType(Ty); 3642 return getMulExpr( 3643 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3644 } 3645 3646 /// Return a SCEV corresponding to ~V = -1-V 3647 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3648 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3649 return getConstant( 3650 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3651 3652 Type *Ty = V->getType(); 3653 Ty = getEffectiveSCEVType(Ty); 3654 const SCEV *AllOnes = 3655 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3656 return getMinusSCEV(AllOnes, V); 3657 } 3658 3659 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3660 SCEV::NoWrapFlags Flags) { 3661 // Fast path: X - X --> 0. 3662 if (LHS == RHS) 3663 return getZero(LHS->getType()); 3664 3665 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3666 // makes it so that we cannot make much use of NUW. 3667 auto AddFlags = SCEV::FlagAnyWrap; 3668 const bool RHSIsNotMinSigned = 3669 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3670 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3671 // Let M be the minimum representable signed value. Then (-1)*RHS 3672 // signed-wraps if and only if RHS is M. That can happen even for 3673 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3674 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3675 // (-1)*RHS, we need to prove that RHS != M. 3676 // 3677 // If LHS is non-negative and we know that LHS - RHS does not 3678 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3679 // either by proving that RHS > M or that LHS >= 0. 3680 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3681 AddFlags = SCEV::FlagNSW; 3682 } 3683 } 3684 3685 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3686 // RHS is NSW and LHS >= 0. 3687 // 3688 // The difficulty here is that the NSW flag may have been proven 3689 // relative to a loop that is to be found in a recurrence in LHS and 3690 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3691 // larger scope than intended. 3692 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3693 3694 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3695 } 3696 3697 const SCEV * 3698 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3699 Type *SrcTy = V->getType(); 3700 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3701 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3702 "Cannot truncate or zero extend with non-integer arguments!"); 3703 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3704 return V; // No conversion 3705 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3706 return getTruncateExpr(V, Ty); 3707 return getZeroExtendExpr(V, Ty); 3708 } 3709 3710 const SCEV * 3711 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3712 Type *Ty) { 3713 Type *SrcTy = V->getType(); 3714 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3715 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3716 "Cannot truncate or zero extend with non-integer arguments!"); 3717 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3718 return V; // No conversion 3719 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3720 return getTruncateExpr(V, Ty); 3721 return getSignExtendExpr(V, Ty); 3722 } 3723 3724 const SCEV * 3725 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3726 Type *SrcTy = V->getType(); 3727 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3728 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3729 "Cannot noop or zero extend with non-integer arguments!"); 3730 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3731 "getNoopOrZeroExtend cannot truncate!"); 3732 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3733 return V; // No conversion 3734 return getZeroExtendExpr(V, Ty); 3735 } 3736 3737 const SCEV * 3738 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3739 Type *SrcTy = V->getType(); 3740 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3741 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3742 "Cannot noop or sign extend with non-integer arguments!"); 3743 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3744 "getNoopOrSignExtend cannot truncate!"); 3745 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3746 return V; // No conversion 3747 return getSignExtendExpr(V, Ty); 3748 } 3749 3750 const SCEV * 3751 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3752 Type *SrcTy = V->getType(); 3753 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3754 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3755 "Cannot noop or any extend with non-integer arguments!"); 3756 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3757 "getNoopOrAnyExtend cannot truncate!"); 3758 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3759 return V; // No conversion 3760 return getAnyExtendExpr(V, Ty); 3761 } 3762 3763 const SCEV * 3764 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3765 Type *SrcTy = V->getType(); 3766 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3767 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3768 "Cannot truncate or noop with non-integer arguments!"); 3769 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3770 "getTruncateOrNoop cannot extend!"); 3771 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3772 return V; // No conversion 3773 return getTruncateExpr(V, Ty); 3774 } 3775 3776 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3777 const SCEV *RHS) { 3778 const SCEV *PromotedLHS = LHS; 3779 const SCEV *PromotedRHS = RHS; 3780 3781 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3782 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3783 else 3784 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3785 3786 return getUMaxExpr(PromotedLHS, PromotedRHS); 3787 } 3788 3789 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3790 const SCEV *RHS) { 3791 const SCEV *PromotedLHS = LHS; 3792 const SCEV *PromotedRHS = RHS; 3793 3794 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3795 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3796 else 3797 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3798 3799 return getUMinExpr(PromotedLHS, PromotedRHS); 3800 } 3801 3802 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3803 // A pointer operand may evaluate to a nonpointer expression, such as null. 3804 if (!V->getType()->isPointerTy()) 3805 return V; 3806 3807 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3808 return getPointerBase(Cast->getOperand()); 3809 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3810 const SCEV *PtrOp = nullptr; 3811 for (const SCEV *NAryOp : NAry->operands()) { 3812 if (NAryOp->getType()->isPointerTy()) { 3813 // Cannot find the base of an expression with multiple pointer operands. 3814 if (PtrOp) 3815 return V; 3816 PtrOp = NAryOp; 3817 } 3818 } 3819 if (!PtrOp) 3820 return V; 3821 return getPointerBase(PtrOp); 3822 } 3823 return V; 3824 } 3825 3826 /// Push users of the given Instruction onto the given Worklist. 3827 static void 3828 PushDefUseChildren(Instruction *I, 3829 SmallVectorImpl<Instruction *> &Worklist) { 3830 // Push the def-use children onto the Worklist stack. 3831 for (User *U : I->users()) 3832 Worklist.push_back(cast<Instruction>(U)); 3833 } 3834 3835 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3836 SmallVector<Instruction *, 16> Worklist; 3837 PushDefUseChildren(PN, Worklist); 3838 3839 SmallPtrSet<Instruction *, 8> Visited; 3840 Visited.insert(PN); 3841 while (!Worklist.empty()) { 3842 Instruction *I = Worklist.pop_back_val(); 3843 if (!Visited.insert(I).second) 3844 continue; 3845 3846 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 3847 if (It != ValueExprMap.end()) { 3848 const SCEV *Old = It->second; 3849 3850 // Short-circuit the def-use traversal if the symbolic name 3851 // ceases to appear in expressions. 3852 if (Old != SymName && !hasOperand(Old, SymName)) 3853 continue; 3854 3855 // SCEVUnknown for a PHI either means that it has an unrecognized 3856 // structure, it's a PHI that's in the progress of being computed 3857 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3858 // additional loop trip count information isn't going to change anything. 3859 // In the second case, createNodeForPHI will perform the necessary 3860 // updates on its own when it gets to that point. In the third, we do 3861 // want to forget the SCEVUnknown. 3862 if (!isa<PHINode>(I) || 3863 !isa<SCEVUnknown>(Old) || 3864 (I != PN && Old == SymName)) { 3865 eraseValueFromMap(It->first); 3866 forgetMemoizedResults(Old); 3867 } 3868 } 3869 3870 PushDefUseChildren(I, Worklist); 3871 } 3872 } 3873 3874 namespace { 3875 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 3876 public: 3877 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3878 ScalarEvolution &SE) { 3879 SCEVInitRewriter Rewriter(L, SE); 3880 const SCEV *Result = Rewriter.visit(S); 3881 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3882 } 3883 3884 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 3885 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3886 3887 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3888 if (!SE.isLoopInvariant(Expr, L)) 3889 Valid = false; 3890 return Expr; 3891 } 3892 3893 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3894 // Only allow AddRecExprs for this loop. 3895 if (Expr->getLoop() == L) 3896 return Expr->getStart(); 3897 Valid = false; 3898 return Expr; 3899 } 3900 3901 bool isValid() { return Valid; } 3902 3903 private: 3904 const Loop *L; 3905 bool Valid; 3906 }; 3907 3908 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 3909 public: 3910 static const SCEV *rewrite(const SCEV *S, const Loop *L, 3911 ScalarEvolution &SE) { 3912 SCEVShiftRewriter Rewriter(L, SE); 3913 const SCEV *Result = Rewriter.visit(S); 3914 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 3915 } 3916 3917 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 3918 : SCEVRewriteVisitor(SE), L(L), Valid(true) {} 3919 3920 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 3921 // Only allow AddRecExprs for this loop. 3922 if (!SE.isLoopInvariant(Expr, L)) 3923 Valid = false; 3924 return Expr; 3925 } 3926 3927 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 3928 if (Expr->getLoop() == L && Expr->isAffine()) 3929 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 3930 Valid = false; 3931 return Expr; 3932 } 3933 bool isValid() { return Valid; } 3934 3935 private: 3936 const Loop *L; 3937 bool Valid; 3938 }; 3939 } // end anonymous namespace 3940 3941 SCEV::NoWrapFlags 3942 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 3943 if (!AR->isAffine()) 3944 return SCEV::FlagAnyWrap; 3945 3946 typedef OverflowingBinaryOperator OBO; 3947 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 3948 3949 if (!AR->hasNoSignedWrap()) { 3950 ConstantRange AddRecRange = getSignedRange(AR); 3951 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 3952 3953 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3954 Instruction::Add, IncRange, OBO::NoSignedWrap); 3955 if (NSWRegion.contains(AddRecRange)) 3956 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 3957 } 3958 3959 if (!AR->hasNoUnsignedWrap()) { 3960 ConstantRange AddRecRange = getUnsignedRange(AR); 3961 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 3962 3963 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 3964 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 3965 if (NUWRegion.contains(AddRecRange)) 3966 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 3967 } 3968 3969 return Result; 3970 } 3971 3972 namespace { 3973 /// Represents an abstract binary operation. This may exist as a 3974 /// normal instruction or constant expression, or may have been 3975 /// derived from an expression tree. 3976 struct BinaryOp { 3977 unsigned Opcode; 3978 Value *LHS; 3979 Value *RHS; 3980 bool IsNSW; 3981 bool IsNUW; 3982 3983 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 3984 /// constant expression. 3985 Operator *Op; 3986 3987 explicit BinaryOp(Operator *Op) 3988 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 3989 IsNSW(false), IsNUW(false), Op(Op) { 3990 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 3991 IsNSW = OBO->hasNoSignedWrap(); 3992 IsNUW = OBO->hasNoUnsignedWrap(); 3993 } 3994 } 3995 3996 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 3997 bool IsNUW = false) 3998 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW), 3999 Op(nullptr) {} 4000 }; 4001 } 4002 4003 4004 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4005 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4006 auto *Op = dyn_cast<Operator>(V); 4007 if (!Op) 4008 return None; 4009 4010 // Implementation detail: all the cleverness here should happen without 4011 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4012 // SCEV expressions when possible, and we should not break that. 4013 4014 switch (Op->getOpcode()) { 4015 case Instruction::Add: 4016 case Instruction::Sub: 4017 case Instruction::Mul: 4018 case Instruction::UDiv: 4019 case Instruction::And: 4020 case Instruction::Or: 4021 case Instruction::AShr: 4022 case Instruction::Shl: 4023 return BinaryOp(Op); 4024 4025 case Instruction::Xor: 4026 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4027 // If the RHS of the xor is a signmask, then this is just an add. 4028 // Instcombine turns add of signmask into xor as a strength reduction step. 4029 if (RHSC->getValue().isSignMask()) 4030 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4031 return BinaryOp(Op); 4032 4033 case Instruction::LShr: 4034 // Turn logical shift right of a constant into a unsigned divide. 4035 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4036 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4037 4038 // If the shift count is not less than the bitwidth, the result of 4039 // the shift is undefined. Don't try to analyze it, because the 4040 // resolution chosen here may differ from the resolution chosen in 4041 // other parts of the compiler. 4042 if (SA->getValue().ult(BitWidth)) { 4043 Constant *X = 4044 ConstantInt::get(SA->getContext(), 4045 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4046 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4047 } 4048 } 4049 return BinaryOp(Op); 4050 4051 case Instruction::ExtractValue: { 4052 auto *EVI = cast<ExtractValueInst>(Op); 4053 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4054 break; 4055 4056 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); 4057 if (!CI) 4058 break; 4059 4060 if (auto *F = CI->getCalledFunction()) 4061 switch (F->getIntrinsicID()) { 4062 case Intrinsic::sadd_with_overflow: 4063 case Intrinsic::uadd_with_overflow: { 4064 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) 4065 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4066 CI->getArgOperand(1)); 4067 4068 // Now that we know that all uses of the arithmetic-result component of 4069 // CI are guarded by the overflow check, we can go ahead and pretend 4070 // that the arithmetic is non-overflowing. 4071 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) 4072 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4073 CI->getArgOperand(1), /* IsNSW = */ true, 4074 /* IsNUW = */ false); 4075 else 4076 return BinaryOp(Instruction::Add, CI->getArgOperand(0), 4077 CI->getArgOperand(1), /* IsNSW = */ false, 4078 /* IsNUW*/ true); 4079 } 4080 4081 case Intrinsic::ssub_with_overflow: 4082 case Intrinsic::usub_with_overflow: 4083 return BinaryOp(Instruction::Sub, CI->getArgOperand(0), 4084 CI->getArgOperand(1)); 4085 4086 case Intrinsic::smul_with_overflow: 4087 case Intrinsic::umul_with_overflow: 4088 return BinaryOp(Instruction::Mul, CI->getArgOperand(0), 4089 CI->getArgOperand(1)); 4090 default: 4091 break; 4092 } 4093 } 4094 4095 default: 4096 break; 4097 } 4098 4099 return None; 4100 } 4101 4102 /// A helper function for createAddRecFromPHI to handle simple cases. 4103 /// 4104 /// This function tries to find an AddRec expression for the simplest (yet most 4105 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4106 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4107 /// technique for finding the AddRec expression. 4108 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4109 Value *BEValueV, 4110 Value *StartValueV) { 4111 const Loop *L = LI.getLoopFor(PN->getParent()); 4112 assert(L && L->getHeader() == PN->getParent()); 4113 assert(BEValueV && StartValueV); 4114 4115 auto BO = MatchBinaryOp(BEValueV, DT); 4116 if (!BO) 4117 return nullptr; 4118 4119 if (BO->Opcode != Instruction::Add) 4120 return nullptr; 4121 4122 const SCEV *Accum = nullptr; 4123 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4124 Accum = getSCEV(BO->RHS); 4125 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4126 Accum = getSCEV(BO->LHS); 4127 4128 if (!Accum) 4129 return nullptr; 4130 4131 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4132 if (BO->IsNUW) 4133 Flags = setFlags(Flags, SCEV::FlagNUW); 4134 if (BO->IsNSW) 4135 Flags = setFlags(Flags, SCEV::FlagNSW); 4136 4137 const SCEV *StartVal = getSCEV(StartValueV); 4138 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4139 4140 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4141 4142 // We can add Flags to the post-inc expression only if we 4143 // know that it is *undefined behavior* for BEValueV to 4144 // overflow. 4145 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4146 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4147 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4148 4149 return PHISCEV; 4150 } 4151 4152 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4153 const Loop *L = LI.getLoopFor(PN->getParent()); 4154 if (!L || L->getHeader() != PN->getParent()) 4155 return nullptr; 4156 4157 // The loop may have multiple entrances or multiple exits; we can analyze 4158 // this phi as an addrec if it has a unique entry value and a unique 4159 // backedge value. 4160 Value *BEValueV = nullptr, *StartValueV = nullptr; 4161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4162 Value *V = PN->getIncomingValue(i); 4163 if (L->contains(PN->getIncomingBlock(i))) { 4164 if (!BEValueV) { 4165 BEValueV = V; 4166 } else if (BEValueV != V) { 4167 BEValueV = nullptr; 4168 break; 4169 } 4170 } else if (!StartValueV) { 4171 StartValueV = V; 4172 } else if (StartValueV != V) { 4173 StartValueV = nullptr; 4174 break; 4175 } 4176 } 4177 if (!BEValueV || !StartValueV) 4178 return nullptr; 4179 4180 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4181 "PHI node already processed?"); 4182 4183 // First, try to find AddRec expression without creating a fictituos symbolic 4184 // value for PN. 4185 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4186 return S; 4187 4188 // Handle PHI node value symbolically. 4189 const SCEV *SymbolicName = getUnknown(PN); 4190 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4191 4192 // Using this symbolic name for the PHI, analyze the value coming around 4193 // the back-edge. 4194 const SCEV *BEValue = getSCEV(BEValueV); 4195 4196 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4197 // has a special value for the first iteration of the loop. 4198 4199 // If the value coming around the backedge is an add with the symbolic 4200 // value we just inserted, then we found a simple induction variable! 4201 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4202 // If there is a single occurrence of the symbolic value, replace it 4203 // with a recurrence. 4204 unsigned FoundIndex = Add->getNumOperands(); 4205 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4206 if (Add->getOperand(i) == SymbolicName) 4207 if (FoundIndex == e) { 4208 FoundIndex = i; 4209 break; 4210 } 4211 4212 if (FoundIndex != Add->getNumOperands()) { 4213 // Create an add with everything but the specified operand. 4214 SmallVector<const SCEV *, 8> Ops; 4215 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4216 if (i != FoundIndex) 4217 Ops.push_back(Add->getOperand(i)); 4218 const SCEV *Accum = getAddExpr(Ops); 4219 4220 // This is not a valid addrec if the step amount is varying each 4221 // loop iteration, but is not itself an addrec in this loop. 4222 if (isLoopInvariant(Accum, L) || 4223 (isa<SCEVAddRecExpr>(Accum) && 4224 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4225 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4226 4227 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4228 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4229 if (BO->IsNUW) 4230 Flags = setFlags(Flags, SCEV::FlagNUW); 4231 if (BO->IsNSW) 4232 Flags = setFlags(Flags, SCEV::FlagNSW); 4233 } 4234 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4235 // If the increment is an inbounds GEP, then we know the address 4236 // space cannot be wrapped around. We cannot make any guarantee 4237 // about signed or unsigned overflow because pointers are 4238 // unsigned but we may have a negative index from the base 4239 // pointer. We can guarantee that no unsigned wrap occurs if the 4240 // indices form a positive value. 4241 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4242 Flags = setFlags(Flags, SCEV::FlagNW); 4243 4244 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4245 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4246 Flags = setFlags(Flags, SCEV::FlagNUW); 4247 } 4248 4249 // We cannot transfer nuw and nsw flags from subtraction 4250 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4251 // for instance. 4252 } 4253 4254 const SCEV *StartVal = getSCEV(StartValueV); 4255 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4256 4257 // Okay, for the entire analysis of this edge we assumed the PHI 4258 // to be symbolic. We now need to go back and purge all of the 4259 // entries for the scalars that use the symbolic expression. 4260 forgetSymbolicName(PN, SymbolicName); 4261 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4262 4263 // We can add Flags to the post-inc expression only if we 4264 // know that it is *undefined behavior* for BEValueV to 4265 // overflow. 4266 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4267 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4268 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4269 4270 return PHISCEV; 4271 } 4272 } 4273 } else { 4274 // Otherwise, this could be a loop like this: 4275 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4276 // In this case, j = {1,+,1} and BEValue is j. 4277 // Because the other in-value of i (0) fits the evolution of BEValue 4278 // i really is an addrec evolution. 4279 // 4280 // We can generalize this saying that i is the shifted value of BEValue 4281 // by one iteration: 4282 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4283 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4284 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this); 4285 if (Shifted != getCouldNotCompute() && 4286 Start != getCouldNotCompute()) { 4287 const SCEV *StartVal = getSCEV(StartValueV); 4288 if (Start == StartVal) { 4289 // Okay, for the entire analysis of this edge we assumed the PHI 4290 // to be symbolic. We now need to go back and purge all of the 4291 // entries for the scalars that use the symbolic expression. 4292 forgetSymbolicName(PN, SymbolicName); 4293 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4294 return Shifted; 4295 } 4296 } 4297 } 4298 4299 // Remove the temporary PHI node SCEV that has been inserted while intending 4300 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4301 // as it will prevent later (possibly simpler) SCEV expressions to be added 4302 // to the ValueExprMap. 4303 eraseValueFromMap(PN); 4304 4305 return nullptr; 4306 } 4307 4308 // Checks if the SCEV S is available at BB. S is considered available at BB 4309 // if S can be materialized at BB without introducing a fault. 4310 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4311 BasicBlock *BB) { 4312 struct CheckAvailable { 4313 bool TraversalDone = false; 4314 bool Available = true; 4315 4316 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4317 BasicBlock *BB = nullptr; 4318 DominatorTree &DT; 4319 4320 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4321 : L(L), BB(BB), DT(DT) {} 4322 4323 bool setUnavailable() { 4324 TraversalDone = true; 4325 Available = false; 4326 return false; 4327 } 4328 4329 bool follow(const SCEV *S) { 4330 switch (S->getSCEVType()) { 4331 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4332 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4333 // These expressions are available if their operand(s) is/are. 4334 return true; 4335 4336 case scAddRecExpr: { 4337 // We allow add recurrences that are on the loop BB is in, or some 4338 // outer loop. This guarantees availability because the value of the 4339 // add recurrence at BB is simply the "current" value of the induction 4340 // variable. We can relax this in the future; for instance an add 4341 // recurrence on a sibling dominating loop is also available at BB. 4342 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 4343 if (L && (ARLoop == L || ARLoop->contains(L))) 4344 return true; 4345 4346 return setUnavailable(); 4347 } 4348 4349 case scUnknown: { 4350 // For SCEVUnknown, we check for simple dominance. 4351 const auto *SU = cast<SCEVUnknown>(S); 4352 Value *V = SU->getValue(); 4353 4354 if (isa<Argument>(V)) 4355 return false; 4356 4357 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 4358 return false; 4359 4360 return setUnavailable(); 4361 } 4362 4363 case scUDivExpr: 4364 case scCouldNotCompute: 4365 // We do not try to smart about these at all. 4366 return setUnavailable(); 4367 } 4368 llvm_unreachable("switch should be fully covered!"); 4369 } 4370 4371 bool isDone() { return TraversalDone; } 4372 }; 4373 4374 CheckAvailable CA(L, BB, DT); 4375 SCEVTraversal<CheckAvailable> ST(CA); 4376 4377 ST.visitAll(S); 4378 return CA.Available; 4379 } 4380 4381 // Try to match a control flow sequence that branches out at BI and merges back 4382 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 4383 // match. 4384 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 4385 Value *&C, Value *&LHS, Value *&RHS) { 4386 C = BI->getCondition(); 4387 4388 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 4389 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 4390 4391 if (!LeftEdge.isSingleEdge()) 4392 return false; 4393 4394 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 4395 4396 Use &LeftUse = Merge->getOperandUse(0); 4397 Use &RightUse = Merge->getOperandUse(1); 4398 4399 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 4400 LHS = LeftUse; 4401 RHS = RightUse; 4402 return true; 4403 } 4404 4405 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 4406 LHS = RightUse; 4407 RHS = LeftUse; 4408 return true; 4409 } 4410 4411 return false; 4412 } 4413 4414 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 4415 auto IsReachable = 4416 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 4417 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 4418 const Loop *L = LI.getLoopFor(PN->getParent()); 4419 4420 // We don't want to break LCSSA, even in a SCEV expression tree. 4421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4422 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 4423 return nullptr; 4424 4425 // Try to match 4426 // 4427 // br %cond, label %left, label %right 4428 // left: 4429 // br label %merge 4430 // right: 4431 // br label %merge 4432 // merge: 4433 // V = phi [ %x, %left ], [ %y, %right ] 4434 // 4435 // as "select %cond, %x, %y" 4436 4437 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 4438 assert(IDom && "At least the entry block should dominate PN"); 4439 4440 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 4441 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 4442 4443 if (BI && BI->isConditional() && 4444 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 4445 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 4446 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 4447 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 4448 } 4449 4450 return nullptr; 4451 } 4452 4453 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 4454 if (const SCEV *S = createAddRecFromPHI(PN)) 4455 return S; 4456 4457 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 4458 return S; 4459 4460 // If the PHI has a single incoming value, follow that value, unless the 4461 // PHI's incoming blocks are in a different loop, in which case doing so 4462 // risks breaking LCSSA form. Instcombine would normally zap these, but 4463 // it doesn't have DominatorTree information, so it may miss cases. 4464 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 4465 if (LI.replacementPreservesLCSSAForm(PN, V)) 4466 return getSCEV(V); 4467 4468 // If it's not a loop phi, we can't handle it yet. 4469 return getUnknown(PN); 4470 } 4471 4472 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 4473 Value *Cond, 4474 Value *TrueVal, 4475 Value *FalseVal) { 4476 // Handle "constant" branch or select. This can occur for instance when a 4477 // loop pass transforms an inner loop and moves on to process the outer loop. 4478 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 4479 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 4480 4481 // Try to match some simple smax or umax patterns. 4482 auto *ICI = dyn_cast<ICmpInst>(Cond); 4483 if (!ICI) 4484 return getUnknown(I); 4485 4486 Value *LHS = ICI->getOperand(0); 4487 Value *RHS = ICI->getOperand(1); 4488 4489 switch (ICI->getPredicate()) { 4490 case ICmpInst::ICMP_SLT: 4491 case ICmpInst::ICMP_SLE: 4492 std::swap(LHS, RHS); 4493 LLVM_FALLTHROUGH; 4494 case ICmpInst::ICMP_SGT: 4495 case ICmpInst::ICMP_SGE: 4496 // a >s b ? a+x : b+x -> smax(a, b)+x 4497 // a >s b ? b+x : a+x -> smin(a, b)+x 4498 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4499 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 4500 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 4501 const SCEV *LA = getSCEV(TrueVal); 4502 const SCEV *RA = getSCEV(FalseVal); 4503 const SCEV *LDiff = getMinusSCEV(LA, LS); 4504 const SCEV *RDiff = getMinusSCEV(RA, RS); 4505 if (LDiff == RDiff) 4506 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4507 LDiff = getMinusSCEV(LA, RS); 4508 RDiff = getMinusSCEV(RA, LS); 4509 if (LDiff == RDiff) 4510 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4511 } 4512 break; 4513 case ICmpInst::ICMP_ULT: 4514 case ICmpInst::ICMP_ULE: 4515 std::swap(LHS, RHS); 4516 LLVM_FALLTHROUGH; 4517 case ICmpInst::ICMP_UGT: 4518 case ICmpInst::ICMP_UGE: 4519 // a >u b ? a+x : b+x -> umax(a, b)+x 4520 // a >u b ? b+x : a+x -> umin(a, b)+x 4521 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 4522 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4523 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 4524 const SCEV *LA = getSCEV(TrueVal); 4525 const SCEV *RA = getSCEV(FalseVal); 4526 const SCEV *LDiff = getMinusSCEV(LA, LS); 4527 const SCEV *RDiff = getMinusSCEV(RA, RS); 4528 if (LDiff == RDiff) 4529 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4530 LDiff = getMinusSCEV(LA, RS); 4531 RDiff = getMinusSCEV(RA, LS); 4532 if (LDiff == RDiff) 4533 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4534 } 4535 break; 4536 case ICmpInst::ICMP_NE: 4537 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4538 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4539 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4540 const SCEV *One = getOne(I->getType()); 4541 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4542 const SCEV *LA = getSCEV(TrueVal); 4543 const SCEV *RA = getSCEV(FalseVal); 4544 const SCEV *LDiff = getMinusSCEV(LA, LS); 4545 const SCEV *RDiff = getMinusSCEV(RA, One); 4546 if (LDiff == RDiff) 4547 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4548 } 4549 break; 4550 case ICmpInst::ICMP_EQ: 4551 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4552 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 4553 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4554 const SCEV *One = getOne(I->getType()); 4555 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 4556 const SCEV *LA = getSCEV(TrueVal); 4557 const SCEV *RA = getSCEV(FalseVal); 4558 const SCEV *LDiff = getMinusSCEV(LA, One); 4559 const SCEV *RDiff = getMinusSCEV(RA, LS); 4560 if (LDiff == RDiff) 4561 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4562 } 4563 break; 4564 default: 4565 break; 4566 } 4567 4568 return getUnknown(I); 4569 } 4570 4571 /// Expand GEP instructions into add and multiply operations. This allows them 4572 /// to be analyzed by regular SCEV code. 4573 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 4574 // Don't attempt to analyze GEPs over unsized objects. 4575 if (!GEP->getSourceElementType()->isSized()) 4576 return getUnknown(GEP); 4577 4578 SmallVector<const SCEV *, 4> IndexExprs; 4579 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 4580 IndexExprs.push_back(getSCEV(*Index)); 4581 return getGEPExpr(GEP, IndexExprs); 4582 } 4583 4584 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 4585 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4586 return C->getAPInt().countTrailingZeros(); 4587 4588 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 4589 return std::min(GetMinTrailingZeros(T->getOperand()), 4590 (uint32_t)getTypeSizeInBits(T->getType())); 4591 4592 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 4593 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4594 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4595 ? getTypeSizeInBits(E->getType()) 4596 : OpRes; 4597 } 4598 4599 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 4600 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 4601 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 4602 ? getTypeSizeInBits(E->getType()) 4603 : OpRes; 4604 } 4605 4606 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 4607 // The result is the min of all operands results. 4608 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4609 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4610 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4611 return MinOpRes; 4612 } 4613 4614 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 4615 // The result is the sum of all operands results. 4616 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 4617 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 4618 for (unsigned i = 1, e = M->getNumOperands(); 4619 SumOpRes != BitWidth && i != e; ++i) 4620 SumOpRes = 4621 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 4622 return SumOpRes; 4623 } 4624 4625 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 4626 // The result is the min of all operands results. 4627 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 4628 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 4629 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 4630 return MinOpRes; 4631 } 4632 4633 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 4634 // The result is the min of all operands results. 4635 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4636 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4637 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4638 return MinOpRes; 4639 } 4640 4641 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 4642 // The result is the min of all operands results. 4643 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 4644 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 4645 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 4646 return MinOpRes; 4647 } 4648 4649 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4650 // For a SCEVUnknown, ask ValueTracking. 4651 unsigned BitWidth = getTypeSizeInBits(U->getType()); 4652 KnownBits Known(BitWidth); 4653 computeKnownBits(U->getValue(), Known, getDataLayout(), 0, &AC, 4654 nullptr, &DT); 4655 return Known.countMinTrailingZeros(); 4656 } 4657 4658 // SCEVUDivExpr 4659 return 0; 4660 } 4661 4662 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 4663 auto I = MinTrailingZerosCache.find(S); 4664 if (I != MinTrailingZerosCache.end()) 4665 return I->second; 4666 4667 uint32_t Result = GetMinTrailingZerosImpl(S); 4668 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 4669 assert(InsertPair.second && "Should insert a new key"); 4670 return InsertPair.first->second; 4671 } 4672 4673 /// Helper method to assign a range to V from metadata present in the IR. 4674 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 4675 if (Instruction *I = dyn_cast<Instruction>(V)) 4676 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 4677 return getConstantRangeFromMetadata(*MD); 4678 4679 return None; 4680 } 4681 4682 /// Determine the range for a particular SCEV. If SignHint is 4683 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 4684 /// with a "cleaner" unsigned (resp. signed) representation. 4685 ConstantRange 4686 ScalarEvolution::getRange(const SCEV *S, 4687 ScalarEvolution::RangeSignHint SignHint) { 4688 DenseMap<const SCEV *, ConstantRange> &Cache = 4689 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 4690 : SignedRanges; 4691 4692 // See if we've computed this range already. 4693 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 4694 if (I != Cache.end()) 4695 return I->second; 4696 4697 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 4698 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 4699 4700 unsigned BitWidth = getTypeSizeInBits(S->getType()); 4701 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 4702 4703 // If the value has known zeros, the maximum value will have those known zeros 4704 // as well. 4705 uint32_t TZ = GetMinTrailingZeros(S); 4706 if (TZ != 0) { 4707 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 4708 ConservativeResult = 4709 ConstantRange(APInt::getMinValue(BitWidth), 4710 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 4711 else 4712 ConservativeResult = ConstantRange( 4713 APInt::getSignedMinValue(BitWidth), 4714 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 4715 } 4716 4717 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 4718 ConstantRange X = getRange(Add->getOperand(0), SignHint); 4719 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 4720 X = X.add(getRange(Add->getOperand(i), SignHint)); 4721 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 4722 } 4723 4724 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 4725 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 4726 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 4727 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 4728 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 4729 } 4730 4731 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 4732 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 4733 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 4734 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 4735 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 4736 } 4737 4738 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 4739 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 4740 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 4741 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 4742 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 4743 } 4744 4745 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 4746 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 4747 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 4748 return setRange(UDiv, SignHint, 4749 ConservativeResult.intersectWith(X.udiv(Y))); 4750 } 4751 4752 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 4753 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 4754 return setRange(ZExt, SignHint, 4755 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 4756 } 4757 4758 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 4759 ConstantRange X = getRange(SExt->getOperand(), SignHint); 4760 return setRange(SExt, SignHint, 4761 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 4762 } 4763 4764 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 4765 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 4766 return setRange(Trunc, SignHint, 4767 ConservativeResult.intersectWith(X.truncate(BitWidth))); 4768 } 4769 4770 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 4771 // If there's no unsigned wrap, the value will never be less than its 4772 // initial value. 4773 if (AddRec->hasNoUnsignedWrap()) 4774 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 4775 if (!C->getValue()->isZero()) 4776 ConservativeResult = ConservativeResult.intersectWith( 4777 ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); 4778 4779 // If there's no signed wrap, and all the operands have the same sign or 4780 // zero, the value won't ever change sign. 4781 if (AddRec->hasNoSignedWrap()) { 4782 bool AllNonNeg = true; 4783 bool AllNonPos = true; 4784 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 4785 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 4786 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 4787 } 4788 if (AllNonNeg) 4789 ConservativeResult = ConservativeResult.intersectWith( 4790 ConstantRange(APInt(BitWidth, 0), 4791 APInt::getSignedMinValue(BitWidth))); 4792 else if (AllNonPos) 4793 ConservativeResult = ConservativeResult.intersectWith( 4794 ConstantRange(APInt::getSignedMinValue(BitWidth), 4795 APInt(BitWidth, 1))); 4796 } 4797 4798 // TODO: non-affine addrec 4799 if (AddRec->isAffine()) { 4800 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4801 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4802 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4803 auto RangeFromAffine = getRangeForAffineAR( 4804 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4805 BitWidth); 4806 if (!RangeFromAffine.isFullSet()) 4807 ConservativeResult = 4808 ConservativeResult.intersectWith(RangeFromAffine); 4809 4810 auto RangeFromFactoring = getRangeViaFactoring( 4811 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 4812 BitWidth); 4813 if (!RangeFromFactoring.isFullSet()) 4814 ConservativeResult = 4815 ConservativeResult.intersectWith(RangeFromFactoring); 4816 } 4817 } 4818 4819 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 4820 } 4821 4822 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4823 // Check if the IR explicitly contains !range metadata. 4824 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4825 if (MDRange.hasValue()) 4826 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4827 4828 // Split here to avoid paying the compile-time cost of calling both 4829 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4830 // if needed. 4831 const DataLayout &DL = getDataLayout(); 4832 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4833 // For a SCEVUnknown, ask ValueTracking. 4834 KnownBits Known(BitWidth); 4835 computeKnownBits(U->getValue(), Known, DL, 0, &AC, nullptr, &DT); 4836 if (Known.One != ~Known.Zero + 1) 4837 ConservativeResult = 4838 ConservativeResult.intersectWith(ConstantRange(Known.One, 4839 ~Known.Zero + 1)); 4840 } else { 4841 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4842 "generalize as needed!"); 4843 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4844 if (NS > 1) 4845 ConservativeResult = ConservativeResult.intersectWith( 4846 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4847 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4848 } 4849 4850 return setRange(U, SignHint, std::move(ConservativeResult)); 4851 } 4852 4853 return setRange(S, SignHint, std::move(ConservativeResult)); 4854 } 4855 4856 // Given a StartRange, Step and MaxBECount for an expression compute a range of 4857 // values that the expression can take. Initially, the expression has a value 4858 // from StartRange and then is changed by Step up to MaxBECount times. Signed 4859 // argument defines if we treat Step as signed or unsigned. 4860 static ConstantRange getRangeForAffineARHelper(APInt Step, 4861 const ConstantRange &StartRange, 4862 const APInt &MaxBECount, 4863 unsigned BitWidth, bool Signed) { 4864 // If either Step or MaxBECount is 0, then the expression won't change, and we 4865 // just need to return the initial range. 4866 if (Step == 0 || MaxBECount == 0) 4867 return StartRange; 4868 4869 // If we don't know anything about the initial value (i.e. StartRange is 4870 // FullRange), then we don't know anything about the final range either. 4871 // Return FullRange. 4872 if (StartRange.isFullSet()) 4873 return ConstantRange(BitWidth, /* isFullSet = */ true); 4874 4875 // If Step is signed and negative, then we use its absolute value, but we also 4876 // note that we're moving in the opposite direction. 4877 bool Descending = Signed && Step.isNegative(); 4878 4879 if (Signed) 4880 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 4881 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 4882 // This equations hold true due to the well-defined wrap-around behavior of 4883 // APInt. 4884 Step = Step.abs(); 4885 4886 // Check if Offset is more than full span of BitWidth. If it is, the 4887 // expression is guaranteed to overflow. 4888 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 4889 return ConstantRange(BitWidth, /* isFullSet = */ true); 4890 4891 // Offset is by how much the expression can change. Checks above guarantee no 4892 // overflow here. 4893 APInt Offset = Step * MaxBECount; 4894 4895 // Minimum value of the final range will match the minimal value of StartRange 4896 // if the expression is increasing and will be decreased by Offset otherwise. 4897 // Maximum value of the final range will match the maximal value of StartRange 4898 // if the expression is decreasing and will be increased by Offset otherwise. 4899 APInt StartLower = StartRange.getLower(); 4900 APInt StartUpper = StartRange.getUpper() - 1; 4901 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 4902 : (StartUpper + std::move(Offset)); 4903 4904 // It's possible that the new minimum/maximum value will fall into the initial 4905 // range (due to wrap around). This means that the expression can take any 4906 // value in this bitwidth, and we have to return full range. 4907 if (StartRange.contains(MovedBoundary)) 4908 return ConstantRange(BitWidth, /* isFullSet = */ true); 4909 4910 APInt NewLower = 4911 Descending ? std::move(MovedBoundary) : std::move(StartLower); 4912 APInt NewUpper = 4913 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 4914 NewUpper += 1; 4915 4916 // If we end up with full range, return a proper full range. 4917 if (NewLower == NewUpper) 4918 return ConstantRange(BitWidth, /* isFullSet = */ true); 4919 4920 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 4921 return ConstantRange(std::move(NewLower), std::move(NewUpper)); 4922 } 4923 4924 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 4925 const SCEV *Step, 4926 const SCEV *MaxBECount, 4927 unsigned BitWidth) { 4928 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 4929 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 4930 "Precondition!"); 4931 4932 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 4933 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4934 APInt MaxBECountValue = MaxBECountRange.getUnsignedMax(); 4935 4936 // First, consider step signed. 4937 ConstantRange StartSRange = getSignedRange(Start); 4938 ConstantRange StepSRange = getSignedRange(Step); 4939 4940 // If Step can be both positive and negative, we need to find ranges for the 4941 // maximum absolute step values in both directions and union them. 4942 ConstantRange SR = 4943 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 4944 MaxBECountValue, BitWidth, /* Signed = */ true); 4945 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 4946 StartSRange, MaxBECountValue, 4947 BitWidth, /* Signed = */ true)); 4948 4949 // Next, consider step unsigned. 4950 ConstantRange UR = getRangeForAffineARHelper( 4951 getUnsignedRange(Step).getUnsignedMax(), getUnsignedRange(Start), 4952 MaxBECountValue, BitWidth, /* Signed = */ false); 4953 4954 // Finally, intersect signed and unsigned ranges. 4955 return SR.intersectWith(UR); 4956 } 4957 4958 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 4959 const SCEV *Step, 4960 const SCEV *MaxBECount, 4961 unsigned BitWidth) { 4962 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 4963 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 4964 4965 struct SelectPattern { 4966 Value *Condition = nullptr; 4967 APInt TrueValue; 4968 APInt FalseValue; 4969 4970 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 4971 const SCEV *S) { 4972 Optional<unsigned> CastOp; 4973 APInt Offset(BitWidth, 0); 4974 4975 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 4976 "Should be!"); 4977 4978 // Peel off a constant offset: 4979 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 4980 // In the future we could consider being smarter here and handle 4981 // {Start+Step,+,Step} too. 4982 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 4983 return; 4984 4985 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 4986 S = SA->getOperand(1); 4987 } 4988 4989 // Peel off a cast operation 4990 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 4991 CastOp = SCast->getSCEVType(); 4992 S = SCast->getOperand(); 4993 } 4994 4995 using namespace llvm::PatternMatch; 4996 4997 auto *SU = dyn_cast<SCEVUnknown>(S); 4998 const APInt *TrueVal, *FalseVal; 4999 if (!SU || 5000 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5001 m_APInt(FalseVal)))) { 5002 Condition = nullptr; 5003 return; 5004 } 5005 5006 TrueValue = *TrueVal; 5007 FalseValue = *FalseVal; 5008 5009 // Re-apply the cast we peeled off earlier 5010 if (CastOp.hasValue()) 5011 switch (*CastOp) { 5012 default: 5013 llvm_unreachable("Unknown SCEV cast type!"); 5014 5015 case scTruncate: 5016 TrueValue = TrueValue.trunc(BitWidth); 5017 FalseValue = FalseValue.trunc(BitWidth); 5018 break; 5019 case scZeroExtend: 5020 TrueValue = TrueValue.zext(BitWidth); 5021 FalseValue = FalseValue.zext(BitWidth); 5022 break; 5023 case scSignExtend: 5024 TrueValue = TrueValue.sext(BitWidth); 5025 FalseValue = FalseValue.sext(BitWidth); 5026 break; 5027 } 5028 5029 // Re-apply the constant offset we peeled off earlier 5030 TrueValue += Offset; 5031 FalseValue += Offset; 5032 } 5033 5034 bool isRecognized() { return Condition != nullptr; } 5035 }; 5036 5037 SelectPattern StartPattern(*this, BitWidth, Start); 5038 if (!StartPattern.isRecognized()) 5039 return ConstantRange(BitWidth, /* isFullSet = */ true); 5040 5041 SelectPattern StepPattern(*this, BitWidth, Step); 5042 if (!StepPattern.isRecognized()) 5043 return ConstantRange(BitWidth, /* isFullSet = */ true); 5044 5045 if (StartPattern.Condition != StepPattern.Condition) { 5046 // We don't handle this case today; but we could, by considering four 5047 // possibilities below instead of two. I'm not sure if there are cases where 5048 // that will help over what getRange already does, though. 5049 return ConstantRange(BitWidth, /* isFullSet = */ true); 5050 } 5051 5052 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5053 // construct arbitrary general SCEV expressions here. This function is called 5054 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5055 // say) can end up caching a suboptimal value. 5056 5057 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5058 // C2352 and C2512 (otherwise it isn't needed). 5059 5060 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5061 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5062 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5063 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5064 5065 ConstantRange TrueRange = 5066 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5067 ConstantRange FalseRange = 5068 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5069 5070 return TrueRange.unionWith(FalseRange); 5071 } 5072 5073 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5074 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5075 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5076 5077 // Return early if there are no flags to propagate to the SCEV. 5078 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5079 if (BinOp->hasNoUnsignedWrap()) 5080 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5081 if (BinOp->hasNoSignedWrap()) 5082 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5083 if (Flags == SCEV::FlagAnyWrap) 5084 return SCEV::FlagAnyWrap; 5085 5086 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5087 } 5088 5089 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5090 // Here we check that I is in the header of the innermost loop containing I, 5091 // since we only deal with instructions in the loop header. The actual loop we 5092 // need to check later will come from an add recurrence, but getting that 5093 // requires computing the SCEV of the operands, which can be expensive. This 5094 // check we can do cheaply to rule out some cases early. 5095 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5096 if (InnermostContainingLoop == nullptr || 5097 InnermostContainingLoop->getHeader() != I->getParent()) 5098 return false; 5099 5100 // Only proceed if we can prove that I does not yield poison. 5101 if (!programUndefinedIfFullPoison(I)) 5102 return false; 5103 5104 // At this point we know that if I is executed, then it does not wrap 5105 // according to at least one of NSW or NUW. If I is not executed, then we do 5106 // not know if the calculation that I represents would wrap. Multiple 5107 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5108 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5109 // derived from other instructions that map to the same SCEV. We cannot make 5110 // that guarantee for cases where I is not executed. So we need to find the 5111 // loop that I is considered in relation to and prove that I is executed for 5112 // every iteration of that loop. That implies that the value that I 5113 // calculates does not wrap anywhere in the loop, so then we can apply the 5114 // flags to the SCEV. 5115 // 5116 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5117 // from different loops, so that we know which loop to prove that I is 5118 // executed in. 5119 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5120 // I could be an extractvalue from a call to an overflow intrinsic. 5121 // TODO: We can do better here in some cases. 5122 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5123 return false; 5124 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5125 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5126 bool AllOtherOpsLoopInvariant = true; 5127 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5128 ++OtherOpIndex) { 5129 if (OtherOpIndex != OpIndex) { 5130 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5131 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5132 AllOtherOpsLoopInvariant = false; 5133 break; 5134 } 5135 } 5136 } 5137 if (AllOtherOpsLoopInvariant && 5138 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5139 return true; 5140 } 5141 } 5142 return false; 5143 } 5144 5145 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5146 // If we know that \c I can never be poison period, then that's enough. 5147 if (isSCEVExprNeverPoison(I)) 5148 return true; 5149 5150 // For an add recurrence specifically, we assume that infinite loops without 5151 // side effects are undefined behavior, and then reason as follows: 5152 // 5153 // If the add recurrence is poison in any iteration, it is poison on all 5154 // future iterations (since incrementing poison yields poison). If the result 5155 // of the add recurrence is fed into the loop latch condition and the loop 5156 // does not contain any throws or exiting blocks other than the latch, we now 5157 // have the ability to "choose" whether the backedge is taken or not (by 5158 // choosing a sufficiently evil value for the poison feeding into the branch) 5159 // for every iteration including and after the one in which \p I first became 5160 // poison. There are two possibilities (let's call the iteration in which \p 5161 // I first became poison as K): 5162 // 5163 // 1. In the set of iterations including and after K, the loop body executes 5164 // no side effects. In this case executing the backege an infinte number 5165 // of times will yield undefined behavior. 5166 // 5167 // 2. In the set of iterations including and after K, the loop body executes 5168 // at least one side effect. In this case, that specific instance of side 5169 // effect is control dependent on poison, which also yields undefined 5170 // behavior. 5171 5172 auto *ExitingBB = L->getExitingBlock(); 5173 auto *LatchBB = L->getLoopLatch(); 5174 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5175 return false; 5176 5177 SmallPtrSet<const Instruction *, 16> Pushed; 5178 SmallVector<const Instruction *, 8> PoisonStack; 5179 5180 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5181 // things that are known to be fully poison under that assumption go on the 5182 // PoisonStack. 5183 Pushed.insert(I); 5184 PoisonStack.push_back(I); 5185 5186 bool LatchControlDependentOnPoison = false; 5187 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5188 const Instruction *Poison = PoisonStack.pop_back_val(); 5189 5190 for (auto *PoisonUser : Poison->users()) { 5191 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { 5192 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5193 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5194 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5195 assert(BI->isConditional() && "Only possibility!"); 5196 if (BI->getParent() == LatchBB) { 5197 LatchControlDependentOnPoison = true; 5198 break; 5199 } 5200 } 5201 } 5202 } 5203 5204 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5205 } 5206 5207 ScalarEvolution::LoopProperties 5208 ScalarEvolution::getLoopProperties(const Loop *L) { 5209 typedef ScalarEvolution::LoopProperties LoopProperties; 5210 5211 auto Itr = LoopPropertiesCache.find(L); 5212 if (Itr == LoopPropertiesCache.end()) { 5213 auto HasSideEffects = [](Instruction *I) { 5214 if (auto *SI = dyn_cast<StoreInst>(I)) 5215 return !SI->isSimple(); 5216 5217 return I->mayHaveSideEffects(); 5218 }; 5219 5220 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5221 /*HasNoSideEffects*/ true}; 5222 5223 for (auto *BB : L->getBlocks()) 5224 for (auto &I : *BB) { 5225 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5226 LP.HasNoAbnormalExits = false; 5227 if (HasSideEffects(&I)) 5228 LP.HasNoSideEffects = false; 5229 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5230 break; // We're already as pessimistic as we can get. 5231 } 5232 5233 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5234 assert(InsertPair.second && "We just checked!"); 5235 Itr = InsertPair.first; 5236 } 5237 5238 return Itr->second; 5239 } 5240 5241 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5242 if (!isSCEVable(V->getType())) 5243 return getUnknown(V); 5244 5245 if (Instruction *I = dyn_cast<Instruction>(V)) { 5246 // Don't attempt to analyze instructions in blocks that aren't 5247 // reachable. Such instructions don't matter, and they aren't required 5248 // to obey basic rules for definitions dominating uses which this 5249 // analysis depends on. 5250 if (!DT.isReachableFromEntry(I->getParent())) 5251 return getUnknown(V); 5252 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5253 return getConstant(CI); 5254 else if (isa<ConstantPointerNull>(V)) 5255 return getZero(V->getType()); 5256 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5257 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5258 else if (!isa<ConstantExpr>(V)) 5259 return getUnknown(V); 5260 5261 Operator *U = cast<Operator>(V); 5262 if (auto BO = MatchBinaryOp(U, DT)) { 5263 switch (BO->Opcode) { 5264 case Instruction::Add: { 5265 // The simple thing to do would be to just call getSCEV on both operands 5266 // and call getAddExpr with the result. However if we're looking at a 5267 // bunch of things all added together, this can be quite inefficient, 5268 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5269 // Instead, gather up all the operands and make a single getAddExpr call. 5270 // LLVM IR canonical form means we need only traverse the left operands. 5271 SmallVector<const SCEV *, 4> AddOps; 5272 do { 5273 if (BO->Op) { 5274 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5275 AddOps.push_back(OpSCEV); 5276 break; 5277 } 5278 5279 // If a NUW or NSW flag can be applied to the SCEV for this 5280 // addition, then compute the SCEV for this addition by itself 5281 // with a separate call to getAddExpr. We need to do that 5282 // instead of pushing the operands of the addition onto AddOps, 5283 // since the flags are only known to apply to this particular 5284 // addition - they may not apply to other additions that can be 5285 // formed with operands from AddOps. 5286 const SCEV *RHS = getSCEV(BO->RHS); 5287 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5288 if (Flags != SCEV::FlagAnyWrap) { 5289 const SCEV *LHS = getSCEV(BO->LHS); 5290 if (BO->Opcode == Instruction::Sub) 5291 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 5292 else 5293 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 5294 break; 5295 } 5296 } 5297 5298 if (BO->Opcode == Instruction::Sub) 5299 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 5300 else 5301 AddOps.push_back(getSCEV(BO->RHS)); 5302 5303 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5304 if (!NewBO || (NewBO->Opcode != Instruction::Add && 5305 NewBO->Opcode != Instruction::Sub)) { 5306 AddOps.push_back(getSCEV(BO->LHS)); 5307 break; 5308 } 5309 BO = NewBO; 5310 } while (true); 5311 5312 return getAddExpr(AddOps); 5313 } 5314 5315 case Instruction::Mul: { 5316 SmallVector<const SCEV *, 4> MulOps; 5317 do { 5318 if (BO->Op) { 5319 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 5320 MulOps.push_back(OpSCEV); 5321 break; 5322 } 5323 5324 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 5325 if (Flags != SCEV::FlagAnyWrap) { 5326 MulOps.push_back( 5327 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 5328 break; 5329 } 5330 } 5331 5332 MulOps.push_back(getSCEV(BO->RHS)); 5333 auto NewBO = MatchBinaryOp(BO->LHS, DT); 5334 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 5335 MulOps.push_back(getSCEV(BO->LHS)); 5336 break; 5337 } 5338 BO = NewBO; 5339 } while (true); 5340 5341 return getMulExpr(MulOps); 5342 } 5343 case Instruction::UDiv: 5344 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 5345 case Instruction::Sub: { 5346 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5347 if (BO->Op) 5348 Flags = getNoWrapFlagsFromUB(BO->Op); 5349 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 5350 } 5351 case Instruction::And: 5352 // For an expression like x&255 that merely masks off the high bits, 5353 // use zext(trunc(x)) as the SCEV expression. 5354 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5355 if (CI->isNullValue()) 5356 return getSCEV(BO->RHS); 5357 if (CI->isAllOnesValue()) 5358 return getSCEV(BO->LHS); 5359 const APInt &A = CI->getValue(); 5360 5361 // Instcombine's ShrinkDemandedConstant may strip bits out of 5362 // constants, obscuring what would otherwise be a low-bits mask. 5363 // Use computeKnownBits to compute what ShrinkDemandedConstant 5364 // knew about to reconstruct a low-bits mask value. 5365 unsigned LZ = A.countLeadingZeros(); 5366 unsigned TZ = A.countTrailingZeros(); 5367 unsigned BitWidth = A.getBitWidth(); 5368 KnownBits Known(BitWidth); 5369 computeKnownBits(BO->LHS, Known, getDataLayout(), 5370 0, &AC, nullptr, &DT); 5371 5372 APInt EffectiveMask = 5373 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 5374 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 5375 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 5376 const SCEV *LHS = getSCEV(BO->LHS); 5377 const SCEV *ShiftedLHS = nullptr; 5378 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 5379 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 5380 // For an expression like (x * 8) & 8, simplify the multiply. 5381 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 5382 unsigned GCD = std::min(MulZeros, TZ); 5383 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 5384 SmallVector<const SCEV*, 4> MulOps; 5385 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 5386 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 5387 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 5388 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 5389 } 5390 } 5391 if (!ShiftedLHS) 5392 ShiftedLHS = getUDivExpr(LHS, MulCount); 5393 return getMulExpr( 5394 getZeroExtendExpr( 5395 getTruncateExpr(ShiftedLHS, 5396 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 5397 BO->LHS->getType()), 5398 MulCount); 5399 } 5400 } 5401 break; 5402 5403 case Instruction::Or: 5404 // If the RHS of the Or is a constant, we may have something like: 5405 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 5406 // optimizations will transparently handle this case. 5407 // 5408 // In order for this transformation to be safe, the LHS must be of the 5409 // form X*(2^n) and the Or constant must be less than 2^n. 5410 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5411 const SCEV *LHS = getSCEV(BO->LHS); 5412 const APInt &CIVal = CI->getValue(); 5413 if (GetMinTrailingZeros(LHS) >= 5414 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 5415 // Build a plain add SCEV. 5416 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 5417 // If the LHS of the add was an addrec and it has no-wrap flags, 5418 // transfer the no-wrap flags, since an or won't introduce a wrap. 5419 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 5420 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 5421 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 5422 OldAR->getNoWrapFlags()); 5423 } 5424 return S; 5425 } 5426 } 5427 break; 5428 5429 case Instruction::Xor: 5430 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 5431 // If the RHS of xor is -1, then this is a not operation. 5432 if (CI->isAllOnesValue()) 5433 return getNotSCEV(getSCEV(BO->LHS)); 5434 5435 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 5436 // This is a variant of the check for xor with -1, and it handles 5437 // the case where instcombine has trimmed non-demanded bits out 5438 // of an xor with -1. 5439 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 5440 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 5441 if (LBO->getOpcode() == Instruction::And && 5442 LCI->getValue() == CI->getValue()) 5443 if (const SCEVZeroExtendExpr *Z = 5444 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 5445 Type *UTy = BO->LHS->getType(); 5446 const SCEV *Z0 = Z->getOperand(); 5447 Type *Z0Ty = Z0->getType(); 5448 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 5449 5450 // If C is a low-bits mask, the zero extend is serving to 5451 // mask off the high bits. Complement the operand and 5452 // re-apply the zext. 5453 if (CI->getValue().isMask(Z0TySize)) 5454 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 5455 5456 // If C is a single bit, it may be in the sign-bit position 5457 // before the zero-extend. In this case, represent the xor 5458 // using an add, which is equivalent, and re-apply the zext. 5459 APInt Trunc = CI->getValue().trunc(Z0TySize); 5460 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 5461 Trunc.isSignMask()) 5462 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 5463 UTy); 5464 } 5465 } 5466 break; 5467 5468 case Instruction::Shl: 5469 // Turn shift left of a constant amount into a multiply. 5470 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 5471 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 5472 5473 // If the shift count is not less than the bitwidth, the result of 5474 // the shift is undefined. Don't try to analyze it, because the 5475 // resolution chosen here may differ from the resolution chosen in 5476 // other parts of the compiler. 5477 if (SA->getValue().uge(BitWidth)) 5478 break; 5479 5480 // It is currently not resolved how to interpret NSW for left 5481 // shift by BitWidth - 1, so we avoid applying flags in that 5482 // case. Remove this check (or this comment) once the situation 5483 // is resolved. See 5484 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 5485 // and http://reviews.llvm.org/D8890 . 5486 auto Flags = SCEV::FlagAnyWrap; 5487 if (BO->Op && SA->getValue().ult(BitWidth - 1)) 5488 Flags = getNoWrapFlagsFromUB(BO->Op); 5489 5490 Constant *X = ConstantInt::get(getContext(), 5491 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5492 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 5493 } 5494 break; 5495 5496 case Instruction::AShr: 5497 // AShr X, C, where C is a constant. 5498 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 5499 if (!CI) 5500 break; 5501 5502 Type *OuterTy = BO->LHS->getType(); 5503 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 5504 // If the shift count is not less than the bitwidth, the result of 5505 // the shift is undefined. Don't try to analyze it, because the 5506 // resolution chosen here may differ from the resolution chosen in 5507 // other parts of the compiler. 5508 if (CI->getValue().uge(BitWidth)) 5509 break; 5510 5511 if (CI->isNullValue()) 5512 return getSCEV(BO->LHS); // shift by zero --> noop 5513 5514 uint64_t AShrAmt = CI->getZExtValue(); 5515 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 5516 5517 Operator *L = dyn_cast<Operator>(BO->LHS); 5518 if (L && L->getOpcode() == Instruction::Shl) { 5519 // X = Shl A, n 5520 // Y = AShr X, m 5521 // Both n and m are constant. 5522 5523 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 5524 if (L->getOperand(1) == BO->RHS) 5525 // For a two-shift sext-inreg, i.e. n = m, 5526 // use sext(trunc(x)) as the SCEV expression. 5527 return getSignExtendExpr( 5528 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 5529 5530 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 5531 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 5532 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 5533 if (ShlAmt > AShrAmt) { 5534 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 5535 // expression. We already checked that ShlAmt < BitWidth, so 5536 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 5537 // ShlAmt - AShrAmt < Amt. 5538 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 5539 ShlAmt - AShrAmt); 5540 return getSignExtendExpr( 5541 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 5542 getConstant(Mul)), OuterTy); 5543 } 5544 } 5545 } 5546 break; 5547 } 5548 } 5549 5550 switch (U->getOpcode()) { 5551 case Instruction::Trunc: 5552 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 5553 5554 case Instruction::ZExt: 5555 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5556 5557 case Instruction::SExt: 5558 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 5559 5560 case Instruction::BitCast: 5561 // BitCasts are no-op casts so we just eliminate the cast. 5562 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 5563 return getSCEV(U->getOperand(0)); 5564 break; 5565 5566 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 5567 // lead to pointer expressions which cannot safely be expanded to GEPs, 5568 // because ScalarEvolution doesn't respect the GEP aliasing rules when 5569 // simplifying integer expressions. 5570 5571 case Instruction::GetElementPtr: 5572 return createNodeForGEP(cast<GEPOperator>(U)); 5573 5574 case Instruction::PHI: 5575 return createNodeForPHI(cast<PHINode>(U)); 5576 5577 case Instruction::Select: 5578 // U can also be a select constant expr, which let fall through. Since 5579 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 5580 // constant expressions cannot have instructions as operands, we'd have 5581 // returned getUnknown for a select constant expressions anyway. 5582 if (isa<Instruction>(U)) 5583 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 5584 U->getOperand(1), U->getOperand(2)); 5585 break; 5586 5587 case Instruction::Call: 5588 case Instruction::Invoke: 5589 if (Value *RV = CallSite(U).getReturnedArgOperand()) 5590 return getSCEV(RV); 5591 break; 5592 } 5593 5594 return getUnknown(V); 5595 } 5596 5597 5598 5599 //===----------------------------------------------------------------------===// 5600 // Iteration Count Computation Code 5601 // 5602 5603 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 5604 if (!ExitCount) 5605 return 0; 5606 5607 ConstantInt *ExitConst = ExitCount->getValue(); 5608 5609 // Guard against huge trip counts. 5610 if (ExitConst->getValue().getActiveBits() > 32) 5611 return 0; 5612 5613 // In case of integer overflow, this returns 0, which is correct. 5614 return ((unsigned)ExitConst->getZExtValue()) + 1; 5615 } 5616 5617 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 5618 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5619 return getSmallConstantTripCount(L, ExitingBB); 5620 5621 // No trip count information for multiple exits. 5622 return 0; 5623 } 5624 5625 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 5626 BasicBlock *ExitingBlock) { 5627 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5628 assert(L->isLoopExiting(ExitingBlock) && 5629 "Exiting block must actually branch out of the loop!"); 5630 const SCEVConstant *ExitCount = 5631 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 5632 return getConstantTripCount(ExitCount); 5633 } 5634 5635 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 5636 const auto *MaxExitCount = 5637 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); 5638 return getConstantTripCount(MaxExitCount); 5639 } 5640 5641 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 5642 if (BasicBlock *ExitingBB = L->getExitingBlock()) 5643 return getSmallConstantTripMultiple(L, ExitingBB); 5644 5645 // No trip multiple information for multiple exits. 5646 return 0; 5647 } 5648 5649 /// Returns the largest constant divisor of the trip count of this loop as a 5650 /// normal unsigned value, if possible. This means that the actual trip count is 5651 /// always a multiple of the returned value (don't forget the trip count could 5652 /// very well be zero as well!). 5653 /// 5654 /// Returns 1 if the trip count is unknown or not guaranteed to be the 5655 /// multiple of a constant (which is also the case if the trip count is simply 5656 /// constant, use getSmallConstantTripCount for that case), Will also return 1 5657 /// if the trip count is very large (>= 2^32). 5658 /// 5659 /// As explained in the comments for getSmallConstantTripCount, this assumes 5660 /// that control exits the loop via ExitingBlock. 5661 unsigned 5662 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 5663 BasicBlock *ExitingBlock) { 5664 assert(ExitingBlock && "Must pass a non-null exiting block!"); 5665 assert(L->isLoopExiting(ExitingBlock) && 5666 "Exiting block must actually branch out of the loop!"); 5667 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 5668 if (ExitCount == getCouldNotCompute()) 5669 return 1; 5670 5671 // Get the trip count from the BE count by adding 1. 5672 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 5673 5674 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 5675 if (!TC) 5676 // Attempt to factor more general cases. Returns the greatest power of 5677 // two divisor. If overflow happens, the trip count expression is still 5678 // divisible by the greatest power of 2 divisor returned. 5679 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 5680 5681 ConstantInt *Result = TC->getValue(); 5682 5683 // Guard against huge trip counts (this requires checking 5684 // for zero to handle the case where the trip count == -1 and the 5685 // addition wraps). 5686 if (!Result || Result->getValue().getActiveBits() > 32 || 5687 Result->getValue().getActiveBits() == 0) 5688 return 1; 5689 5690 return (unsigned)Result->getZExtValue(); 5691 } 5692 5693 /// Get the expression for the number of loop iterations for which this loop is 5694 /// guaranteed not to exit via ExitingBlock. Otherwise return 5695 /// SCEVCouldNotCompute. 5696 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 5697 BasicBlock *ExitingBlock) { 5698 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 5699 } 5700 5701 const SCEV * 5702 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 5703 SCEVUnionPredicate &Preds) { 5704 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds); 5705 } 5706 5707 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 5708 return getBackedgeTakenInfo(L).getExact(this); 5709 } 5710 5711 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is 5712 /// known never to be less than the actual backedge taken count. 5713 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 5714 return getBackedgeTakenInfo(L).getMax(this); 5715 } 5716 5717 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 5718 return getBackedgeTakenInfo(L).isMaxOrZero(this); 5719 } 5720 5721 /// Push PHI nodes in the header of the given loop onto the given Worklist. 5722 static void 5723 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 5724 BasicBlock *Header = L->getHeader(); 5725 5726 // Push all Loop-header PHIs onto the Worklist stack. 5727 for (BasicBlock::iterator I = Header->begin(); 5728 PHINode *PN = dyn_cast<PHINode>(I); ++I) 5729 Worklist.push_back(PN); 5730 } 5731 5732 const ScalarEvolution::BackedgeTakenInfo & 5733 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 5734 auto &BTI = getBackedgeTakenInfo(L); 5735 if (BTI.hasFullInfo()) 5736 return BTI; 5737 5738 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5739 5740 if (!Pair.second) 5741 return Pair.first->second; 5742 5743 BackedgeTakenInfo Result = 5744 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 5745 5746 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 5747 } 5748 5749 const ScalarEvolution::BackedgeTakenInfo & 5750 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 5751 // Initially insert an invalid entry for this loop. If the insertion 5752 // succeeds, proceed to actually compute a backedge-taken count and 5753 // update the value. The temporary CouldNotCompute value tells SCEV 5754 // code elsewhere that it shouldn't attempt to request a new 5755 // backedge-taken count, which could result in infinite recursion. 5756 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 5757 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 5758 if (!Pair.second) 5759 return Pair.first->second; 5760 5761 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 5762 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 5763 // must be cleared in this scope. 5764 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 5765 5766 if (Result.getExact(this) != getCouldNotCompute()) { 5767 assert(isLoopInvariant(Result.getExact(this), L) && 5768 isLoopInvariant(Result.getMax(this), L) && 5769 "Computed backedge-taken count isn't loop invariant for loop!"); 5770 ++NumTripCountsComputed; 5771 } 5772 else if (Result.getMax(this) == getCouldNotCompute() && 5773 isa<PHINode>(L->getHeader()->begin())) { 5774 // Only count loops that have phi nodes as not being computable. 5775 ++NumTripCountsNotComputed; 5776 } 5777 5778 // Now that we know more about the trip count for this loop, forget any 5779 // existing SCEV values for PHI nodes in this loop since they are only 5780 // conservative estimates made without the benefit of trip count 5781 // information. This is similar to the code in forgetLoop, except that 5782 // it handles SCEVUnknown PHI nodes specially. 5783 if (Result.hasAnyInfo()) { 5784 SmallVector<Instruction *, 16> Worklist; 5785 PushLoopPHIs(L, Worklist); 5786 5787 SmallPtrSet<Instruction *, 8> Visited; 5788 while (!Worklist.empty()) { 5789 Instruction *I = Worklist.pop_back_val(); 5790 if (!Visited.insert(I).second) 5791 continue; 5792 5793 ValueExprMapType::iterator It = 5794 ValueExprMap.find_as(static_cast<Value *>(I)); 5795 if (It != ValueExprMap.end()) { 5796 const SCEV *Old = It->second; 5797 5798 // SCEVUnknown for a PHI either means that it has an unrecognized 5799 // structure, or it's a PHI that's in the progress of being computed 5800 // by createNodeForPHI. In the former case, additional loop trip 5801 // count information isn't going to change anything. In the later 5802 // case, createNodeForPHI will perform the necessary updates on its 5803 // own when it gets to that point. 5804 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 5805 eraseValueFromMap(It->first); 5806 forgetMemoizedResults(Old); 5807 } 5808 if (PHINode *PN = dyn_cast<PHINode>(I)) 5809 ConstantEvolutionLoopExitValue.erase(PN); 5810 } 5811 5812 PushDefUseChildren(I, Worklist); 5813 } 5814 } 5815 5816 // Re-lookup the insert position, since the call to 5817 // computeBackedgeTakenCount above could result in a 5818 // recusive call to getBackedgeTakenInfo (on a different 5819 // loop), which would invalidate the iterator computed 5820 // earlier. 5821 return BackedgeTakenCounts.find(L)->second = std::move(Result); 5822 } 5823 5824 void ScalarEvolution::forgetLoop(const Loop *L) { 5825 // Drop any stored trip count value. 5826 auto RemoveLoopFromBackedgeMap = 5827 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 5828 auto BTCPos = Map.find(L); 5829 if (BTCPos != Map.end()) { 5830 BTCPos->second.clear(); 5831 Map.erase(BTCPos); 5832 } 5833 }; 5834 5835 RemoveLoopFromBackedgeMap(BackedgeTakenCounts); 5836 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts); 5837 5838 // Drop information about expressions based on loop-header PHIs. 5839 SmallVector<Instruction *, 16> Worklist; 5840 PushLoopPHIs(L, Worklist); 5841 5842 SmallPtrSet<Instruction *, 8> Visited; 5843 while (!Worklist.empty()) { 5844 Instruction *I = Worklist.pop_back_val(); 5845 if (!Visited.insert(I).second) 5846 continue; 5847 5848 ValueExprMapType::iterator It = 5849 ValueExprMap.find_as(static_cast<Value *>(I)); 5850 if (It != ValueExprMap.end()) { 5851 eraseValueFromMap(It->first); 5852 forgetMemoizedResults(It->second); 5853 if (PHINode *PN = dyn_cast<PHINode>(I)) 5854 ConstantEvolutionLoopExitValue.erase(PN); 5855 } 5856 5857 PushDefUseChildren(I, Worklist); 5858 } 5859 5860 // Forget all contained loops too, to avoid dangling entries in the 5861 // ValuesAtScopes map. 5862 for (Loop *I : *L) 5863 forgetLoop(I); 5864 5865 LoopPropertiesCache.erase(L); 5866 } 5867 5868 void ScalarEvolution::forgetValue(Value *V) { 5869 Instruction *I = dyn_cast<Instruction>(V); 5870 if (!I) return; 5871 5872 // Drop information about expressions based on loop-header PHIs. 5873 SmallVector<Instruction *, 16> Worklist; 5874 Worklist.push_back(I); 5875 5876 SmallPtrSet<Instruction *, 8> Visited; 5877 while (!Worklist.empty()) { 5878 I = Worklist.pop_back_val(); 5879 if (!Visited.insert(I).second) 5880 continue; 5881 5882 ValueExprMapType::iterator It = 5883 ValueExprMap.find_as(static_cast<Value *>(I)); 5884 if (It != ValueExprMap.end()) { 5885 eraseValueFromMap(It->first); 5886 forgetMemoizedResults(It->second); 5887 if (PHINode *PN = dyn_cast<PHINode>(I)) 5888 ConstantEvolutionLoopExitValue.erase(PN); 5889 } 5890 5891 PushDefUseChildren(I, Worklist); 5892 } 5893 } 5894 5895 /// Get the exact loop backedge taken count considering all loop exits. A 5896 /// computable result can only be returned for loops with a single exit. 5897 /// Returning the minimum taken count among all exits is incorrect because one 5898 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that 5899 /// the limit of each loop test is never skipped. This is a valid assumption as 5900 /// long as the loop exits via that test. For precise results, it is the 5901 /// caller's responsibility to specify the relevant loop exit using 5902 /// getExact(ExitingBlock, SE). 5903 const SCEV * 5904 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE, 5905 SCEVUnionPredicate *Preds) const { 5906 // If any exits were not computable, the loop is not computable. 5907 if (!isComplete() || ExitNotTaken.empty()) 5908 return SE->getCouldNotCompute(); 5909 5910 const SCEV *BECount = nullptr; 5911 for (auto &ENT : ExitNotTaken) { 5912 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 5913 5914 if (!BECount) 5915 BECount = ENT.ExactNotTaken; 5916 else if (BECount != ENT.ExactNotTaken) 5917 return SE->getCouldNotCompute(); 5918 if (Preds && !ENT.hasAlwaysTruePredicate()) 5919 Preds->add(ENT.Predicate.get()); 5920 5921 assert((Preds || ENT.hasAlwaysTruePredicate()) && 5922 "Predicate should be always true!"); 5923 } 5924 5925 assert(BECount && "Invalid not taken count for loop exit"); 5926 return BECount; 5927 } 5928 5929 /// Get the exact not taken count for this loop exit. 5930 const SCEV * 5931 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 5932 ScalarEvolution *SE) const { 5933 for (auto &ENT : ExitNotTaken) 5934 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 5935 return ENT.ExactNotTaken; 5936 5937 return SE->getCouldNotCompute(); 5938 } 5939 5940 /// getMax - Get the max backedge taken count for the loop. 5941 const SCEV * 5942 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 5943 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5944 return !ENT.hasAlwaysTruePredicate(); 5945 }; 5946 5947 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 5948 return SE->getCouldNotCompute(); 5949 5950 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 5951 "No point in having a non-constant max backedge taken count!"); 5952 return getMax(); 5953 } 5954 5955 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 5956 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 5957 return !ENT.hasAlwaysTruePredicate(); 5958 }; 5959 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 5960 } 5961 5962 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 5963 ScalarEvolution *SE) const { 5964 if (getMax() && getMax() != SE->getCouldNotCompute() && 5965 SE->hasOperand(getMax(), S)) 5966 return true; 5967 5968 for (auto &ENT : ExitNotTaken) 5969 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 5970 SE->hasOperand(ENT.ExactNotTaken, S)) 5971 return true; 5972 5973 return false; 5974 } 5975 5976 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 5977 : ExactNotTaken(E), MaxNotTaken(E), MaxOrZero(false) { 5978 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 5979 isa<SCEVConstant>(MaxNotTaken)) && 5980 "No point in having a non-constant max backedge taken count!"); 5981 } 5982 5983 ScalarEvolution::ExitLimit::ExitLimit( 5984 const SCEV *E, const SCEV *M, bool MaxOrZero, 5985 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 5986 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 5987 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 5988 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 5989 "Exact is not allowed to be less precise than Max"); 5990 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 5991 isa<SCEVConstant>(MaxNotTaken)) && 5992 "No point in having a non-constant max backedge taken count!"); 5993 for (auto *PredSet : PredSetList) 5994 for (auto *P : *PredSet) 5995 addPredicate(P); 5996 } 5997 5998 ScalarEvolution::ExitLimit::ExitLimit( 5999 const SCEV *E, const SCEV *M, bool MaxOrZero, 6000 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6001 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6002 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6003 isa<SCEVConstant>(MaxNotTaken)) && 6004 "No point in having a non-constant max backedge taken count!"); 6005 } 6006 6007 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6008 bool MaxOrZero) 6009 : ExitLimit(E, M, MaxOrZero, None) { 6010 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6011 isa<SCEVConstant>(MaxNotTaken)) && 6012 "No point in having a non-constant max backedge taken count!"); 6013 } 6014 6015 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6016 /// computable exit into a persistent ExitNotTakenInfo array. 6017 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6018 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6019 &&ExitCounts, 6020 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6021 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6022 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 6023 ExitNotTaken.reserve(ExitCounts.size()); 6024 std::transform( 6025 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6026 [&](const EdgeExitInfo &EEI) { 6027 BasicBlock *ExitBB = EEI.first; 6028 const ExitLimit &EL = EEI.second; 6029 if (EL.Predicates.empty()) 6030 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); 6031 6032 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6033 for (auto *Pred : EL.Predicates) 6034 Predicate->add(Pred); 6035 6036 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); 6037 }); 6038 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6039 "No point in having a non-constant max backedge taken count!"); 6040 } 6041 6042 /// Invalidate this result and free the ExitNotTakenInfo array. 6043 void ScalarEvolution::BackedgeTakenInfo::clear() { 6044 ExitNotTaken.clear(); 6045 } 6046 6047 /// Compute the number of times the backedge of the specified loop will execute. 6048 ScalarEvolution::BackedgeTakenInfo 6049 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6050 bool AllowPredicates) { 6051 SmallVector<BasicBlock *, 8> ExitingBlocks; 6052 L->getExitingBlocks(ExitingBlocks); 6053 6054 typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo; 6055 6056 SmallVector<EdgeExitInfo, 4> ExitCounts; 6057 bool CouldComputeBECount = true; 6058 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6059 const SCEV *MustExitMaxBECount = nullptr; 6060 const SCEV *MayExitMaxBECount = nullptr; 6061 bool MustExitMaxOrZero = false; 6062 6063 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6064 // and compute maxBECount. 6065 // Do a union of all the predicates here. 6066 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6067 BasicBlock *ExitBB = ExitingBlocks[i]; 6068 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6069 6070 assert((AllowPredicates || EL.Predicates.empty()) && 6071 "Predicated exit limit when predicates are not allowed!"); 6072 6073 // 1. For each exit that can be computed, add an entry to ExitCounts. 6074 // CouldComputeBECount is true only if all exits can be computed. 6075 if (EL.ExactNotTaken == getCouldNotCompute()) 6076 // We couldn't compute an exact value for this exit, so 6077 // we won't be able to compute an exact value for the loop. 6078 CouldComputeBECount = false; 6079 else 6080 ExitCounts.emplace_back(ExitBB, EL); 6081 6082 // 2. Derive the loop's MaxBECount from each exit's max number of 6083 // non-exiting iterations. Partition the loop exits into two kinds: 6084 // LoopMustExits and LoopMayExits. 6085 // 6086 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6087 // is a LoopMayExit. If any computable LoopMustExit is found, then 6088 // MaxBECount is the minimum EL.MaxNotTaken of computable 6089 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6090 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6091 // computable EL.MaxNotTaken. 6092 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6093 DT.dominates(ExitBB, Latch)) { 6094 if (!MustExitMaxBECount) { 6095 MustExitMaxBECount = EL.MaxNotTaken; 6096 MustExitMaxOrZero = EL.MaxOrZero; 6097 } else { 6098 MustExitMaxBECount = 6099 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6100 } 6101 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6102 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6103 MayExitMaxBECount = EL.MaxNotTaken; 6104 else { 6105 MayExitMaxBECount = 6106 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6107 } 6108 } 6109 } 6110 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6111 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6112 // The loop backedge will be taken the maximum or zero times if there's 6113 // a single exit that must be taken the maximum or zero times. 6114 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6115 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6116 MaxBECount, MaxOrZero); 6117 } 6118 6119 ScalarEvolution::ExitLimit 6120 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6121 bool AllowPredicates) { 6122 6123 // Okay, we've chosen an exiting block. See what condition causes us to exit 6124 // at this block and remember the exit block and whether all other targets 6125 // lead to the loop header. 6126 bool MustExecuteLoopHeader = true; 6127 BasicBlock *Exit = nullptr; 6128 for (auto *SBB : successors(ExitingBlock)) 6129 if (!L->contains(SBB)) { 6130 if (Exit) // Multiple exit successors. 6131 return getCouldNotCompute(); 6132 Exit = SBB; 6133 } else if (SBB != L->getHeader()) { 6134 MustExecuteLoopHeader = false; 6135 } 6136 6137 // At this point, we know we have a conditional branch that determines whether 6138 // the loop is exited. However, we don't know if the branch is executed each 6139 // time through the loop. If not, then the execution count of the branch will 6140 // not be equal to the trip count of the loop. 6141 // 6142 // Currently we check for this by checking to see if the Exit branch goes to 6143 // the loop header. If so, we know it will always execute the same number of 6144 // times as the loop. We also handle the case where the exit block *is* the 6145 // loop header. This is common for un-rotated loops. 6146 // 6147 // If both of those tests fail, walk up the unique predecessor chain to the 6148 // header, stopping if there is an edge that doesn't exit the loop. If the 6149 // header is reached, the execution count of the branch will be equal to the 6150 // trip count of the loop. 6151 // 6152 // More extensive analysis could be done to handle more cases here. 6153 // 6154 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 6155 // The simple checks failed, try climbing the unique predecessor chain 6156 // up to the header. 6157 bool Ok = false; 6158 for (BasicBlock *BB = ExitingBlock; BB; ) { 6159 BasicBlock *Pred = BB->getUniquePredecessor(); 6160 if (!Pred) 6161 return getCouldNotCompute(); 6162 TerminatorInst *PredTerm = Pred->getTerminator(); 6163 for (const BasicBlock *PredSucc : PredTerm->successors()) { 6164 if (PredSucc == BB) 6165 continue; 6166 // If the predecessor has a successor that isn't BB and isn't 6167 // outside the loop, assume the worst. 6168 if (L->contains(PredSucc)) 6169 return getCouldNotCompute(); 6170 } 6171 if (Pred == L->getHeader()) { 6172 Ok = true; 6173 break; 6174 } 6175 BB = Pred; 6176 } 6177 if (!Ok) 6178 return getCouldNotCompute(); 6179 } 6180 6181 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6182 TerminatorInst *Term = ExitingBlock->getTerminator(); 6183 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6184 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6185 // Proceed to the next level to examine the exit condition expression. 6186 return computeExitLimitFromCond( 6187 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1), 6188 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6189 } 6190 6191 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 6192 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 6193 /*ControlsExit=*/IsOnlyExit); 6194 6195 return getCouldNotCompute(); 6196 } 6197 6198 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 6199 const Loop *L, Value *ExitCond, BasicBlock *TBB, BasicBlock *FBB, 6200 bool ControlsExit, bool AllowPredicates) { 6201 ScalarEvolution::ExitLimitCacheTy Cache(L, TBB, FBB, AllowPredicates); 6202 return computeExitLimitFromCondCached(Cache, L, ExitCond, TBB, FBB, 6203 ControlsExit, AllowPredicates); 6204 } 6205 6206 Optional<ScalarEvolution::ExitLimit> 6207 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 6208 BasicBlock *TBB, BasicBlock *FBB, 6209 bool ControlsExit, bool AllowPredicates) { 6210 (void)this->L; 6211 (void)this->TBB; 6212 (void)this->FBB; 6213 (void)this->AllowPredicates; 6214 6215 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6216 this->AllowPredicates == AllowPredicates && 6217 "Variance in assumed invariant key components!"); 6218 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 6219 if (Itr == TripCountMap.end()) 6220 return None; 6221 return Itr->second; 6222 } 6223 6224 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 6225 BasicBlock *TBB, BasicBlock *FBB, 6226 bool ControlsExit, 6227 bool AllowPredicates, 6228 const ExitLimit &EL) { 6229 assert(this->L == L && this->TBB == TBB && this->FBB == FBB && 6230 this->AllowPredicates == AllowPredicates && 6231 "Variance in assumed invariant key components!"); 6232 6233 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 6234 assert(InsertResult.second && "Expected successful insertion!"); 6235 (void)InsertResult; 6236 } 6237 6238 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 6239 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6240 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6241 6242 if (auto MaybeEL = 6243 Cache.find(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates)) 6244 return *MaybeEL; 6245 6246 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, TBB, FBB, 6247 ControlsExit, AllowPredicates); 6248 Cache.insert(L, ExitCond, TBB, FBB, ControlsExit, AllowPredicates, EL); 6249 return EL; 6250 } 6251 6252 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 6253 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, BasicBlock *TBB, 6254 BasicBlock *FBB, bool ControlsExit, bool AllowPredicates) { 6255 // Check if the controlling expression for this loop is an And or Or. 6256 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 6257 if (BO->getOpcode() == Instruction::And) { 6258 // Recurse on the operands of the and. 6259 bool EitherMayExit = L->contains(TBB); 6260 ExitLimit EL0 = computeExitLimitFromCondCached( 6261 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6262 AllowPredicates); 6263 ExitLimit EL1 = computeExitLimitFromCondCached( 6264 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6265 AllowPredicates); 6266 const SCEV *BECount = getCouldNotCompute(); 6267 const SCEV *MaxBECount = getCouldNotCompute(); 6268 if (EitherMayExit) { 6269 // Both conditions must be true for the loop to continue executing. 6270 // Choose the less conservative count. 6271 if (EL0.ExactNotTaken == getCouldNotCompute() || 6272 EL1.ExactNotTaken == getCouldNotCompute()) 6273 BECount = getCouldNotCompute(); 6274 else 6275 BECount = 6276 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6277 if (EL0.MaxNotTaken == getCouldNotCompute()) 6278 MaxBECount = EL1.MaxNotTaken; 6279 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6280 MaxBECount = EL0.MaxNotTaken; 6281 else 6282 MaxBECount = 6283 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6284 } else { 6285 // Both conditions must be true at the same time for the loop to exit. 6286 // For now, be conservative. 6287 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 6288 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6289 MaxBECount = EL0.MaxNotTaken; 6290 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6291 BECount = EL0.ExactNotTaken; 6292 } 6293 6294 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 6295 // to be more aggressive when computing BECount than when computing 6296 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 6297 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 6298 // to not. 6299 if (isa<SCEVCouldNotCompute>(MaxBECount) && 6300 !isa<SCEVCouldNotCompute>(BECount)) 6301 MaxBECount = getConstant(getUnsignedRange(BECount).getUnsignedMax()); 6302 6303 return ExitLimit(BECount, MaxBECount, false, 6304 {&EL0.Predicates, &EL1.Predicates}); 6305 } 6306 if (BO->getOpcode() == Instruction::Or) { 6307 // Recurse on the operands of the or. 6308 bool EitherMayExit = L->contains(FBB); 6309 ExitLimit EL0 = computeExitLimitFromCondCached( 6310 Cache, L, BO->getOperand(0), TBB, FBB, ControlsExit && !EitherMayExit, 6311 AllowPredicates); 6312 ExitLimit EL1 = computeExitLimitFromCondCached( 6313 Cache, L, BO->getOperand(1), TBB, FBB, ControlsExit && !EitherMayExit, 6314 AllowPredicates); 6315 const SCEV *BECount = getCouldNotCompute(); 6316 const SCEV *MaxBECount = getCouldNotCompute(); 6317 if (EitherMayExit) { 6318 // Both conditions must be false for the loop to continue executing. 6319 // Choose the less conservative count. 6320 if (EL0.ExactNotTaken == getCouldNotCompute() || 6321 EL1.ExactNotTaken == getCouldNotCompute()) 6322 BECount = getCouldNotCompute(); 6323 else 6324 BECount = 6325 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 6326 if (EL0.MaxNotTaken == getCouldNotCompute()) 6327 MaxBECount = EL1.MaxNotTaken; 6328 else if (EL1.MaxNotTaken == getCouldNotCompute()) 6329 MaxBECount = EL0.MaxNotTaken; 6330 else 6331 MaxBECount = 6332 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 6333 } else { 6334 // Both conditions must be false at the same time for the loop to exit. 6335 // For now, be conservative. 6336 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 6337 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 6338 MaxBECount = EL0.MaxNotTaken; 6339 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 6340 BECount = EL0.ExactNotTaken; 6341 } 6342 6343 return ExitLimit(BECount, MaxBECount, false, 6344 {&EL0.Predicates, &EL1.Predicates}); 6345 } 6346 } 6347 6348 // With an icmp, it may be feasible to compute an exact backedge-taken count. 6349 // Proceed to the next level to examine the icmp. 6350 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 6351 ExitLimit EL = 6352 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 6353 if (EL.hasFullInfo() || !AllowPredicates) 6354 return EL; 6355 6356 // Try again, but use SCEV predicates this time. 6357 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit, 6358 /*AllowPredicates=*/true); 6359 } 6360 6361 // Check for a constant condition. These are normally stripped out by 6362 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 6363 // preserve the CFG and is temporarily leaving constant conditions 6364 // in place. 6365 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 6366 if (L->contains(FBB) == !CI->getZExtValue()) 6367 // The backedge is always taken. 6368 return getCouldNotCompute(); 6369 else 6370 // The backedge is never taken. 6371 return getZero(CI->getType()); 6372 } 6373 6374 // If it's not an integer or pointer comparison then compute it the hard way. 6375 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6376 } 6377 6378 ScalarEvolution::ExitLimit 6379 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 6380 ICmpInst *ExitCond, 6381 BasicBlock *TBB, 6382 BasicBlock *FBB, 6383 bool ControlsExit, 6384 bool AllowPredicates) { 6385 6386 // If the condition was exit on true, convert the condition to exit on false 6387 ICmpInst::Predicate Cond; 6388 if (!L->contains(FBB)) 6389 Cond = ExitCond->getPredicate(); 6390 else 6391 Cond = ExitCond->getInversePredicate(); 6392 6393 // Handle common loops like: for (X = "string"; *X; ++X) 6394 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 6395 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 6396 ExitLimit ItCnt = 6397 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 6398 if (ItCnt.hasAnyInfo()) 6399 return ItCnt; 6400 } 6401 6402 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 6403 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 6404 6405 // Try to evaluate any dependencies out of the loop. 6406 LHS = getSCEVAtScope(LHS, L); 6407 RHS = getSCEVAtScope(RHS, L); 6408 6409 // At this point, we would like to compute how many iterations of the 6410 // loop the predicate will return true for these inputs. 6411 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 6412 // If there is a loop-invariant, force it into the RHS. 6413 std::swap(LHS, RHS); 6414 Cond = ICmpInst::getSwappedPredicate(Cond); 6415 } 6416 6417 // Simplify the operands before analyzing them. 6418 (void)SimplifyICmpOperands(Cond, LHS, RHS); 6419 6420 // If we have a comparison of a chrec against a constant, try to use value 6421 // ranges to answer this query. 6422 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 6423 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 6424 if (AddRec->getLoop() == L) { 6425 // Form the constant range. 6426 ConstantRange CompRange = 6427 ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt()); 6428 6429 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 6430 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 6431 } 6432 6433 switch (Cond) { 6434 case ICmpInst::ICMP_NE: { // while (X != Y) 6435 // Convert to: while (X-Y != 0) 6436 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 6437 AllowPredicates); 6438 if (EL.hasAnyInfo()) return EL; 6439 break; 6440 } 6441 case ICmpInst::ICMP_EQ: { // while (X == Y) 6442 // Convert to: while (X-Y == 0) 6443 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 6444 if (EL.hasAnyInfo()) return EL; 6445 break; 6446 } 6447 case ICmpInst::ICMP_SLT: 6448 case ICmpInst::ICMP_ULT: { // while (X < Y) 6449 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 6450 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 6451 AllowPredicates); 6452 if (EL.hasAnyInfo()) return EL; 6453 break; 6454 } 6455 case ICmpInst::ICMP_SGT: 6456 case ICmpInst::ICMP_UGT: { // while (X > Y) 6457 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 6458 ExitLimit EL = 6459 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 6460 AllowPredicates); 6461 if (EL.hasAnyInfo()) return EL; 6462 break; 6463 } 6464 default: 6465 break; 6466 } 6467 6468 auto *ExhaustiveCount = 6469 computeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 6470 6471 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 6472 return ExhaustiveCount; 6473 6474 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 6475 ExitCond->getOperand(1), L, Cond); 6476 } 6477 6478 ScalarEvolution::ExitLimit 6479 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 6480 SwitchInst *Switch, 6481 BasicBlock *ExitingBlock, 6482 bool ControlsExit) { 6483 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 6484 6485 // Give up if the exit is the default dest of a switch. 6486 if (Switch->getDefaultDest() == ExitingBlock) 6487 return getCouldNotCompute(); 6488 6489 assert(L->contains(Switch->getDefaultDest()) && 6490 "Default case must not exit the loop!"); 6491 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 6492 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 6493 6494 // while (X != Y) --> while (X-Y != 0) 6495 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 6496 if (EL.hasAnyInfo()) 6497 return EL; 6498 6499 return getCouldNotCompute(); 6500 } 6501 6502 static ConstantInt * 6503 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 6504 ScalarEvolution &SE) { 6505 const SCEV *InVal = SE.getConstant(C); 6506 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 6507 assert(isa<SCEVConstant>(Val) && 6508 "Evaluation of SCEV at constant didn't fold correctly?"); 6509 return cast<SCEVConstant>(Val)->getValue(); 6510 } 6511 6512 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 6513 /// compute the backedge execution count. 6514 ScalarEvolution::ExitLimit 6515 ScalarEvolution::computeLoadConstantCompareExitLimit( 6516 LoadInst *LI, 6517 Constant *RHS, 6518 const Loop *L, 6519 ICmpInst::Predicate predicate) { 6520 6521 if (LI->isVolatile()) return getCouldNotCompute(); 6522 6523 // Check to see if the loaded pointer is a getelementptr of a global. 6524 // TODO: Use SCEV instead of manually grubbing with GEPs. 6525 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 6526 if (!GEP) return getCouldNotCompute(); 6527 6528 // Make sure that it is really a constant global we are gepping, with an 6529 // initializer, and make sure the first IDX is really 0. 6530 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 6531 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 6532 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 6533 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 6534 return getCouldNotCompute(); 6535 6536 // Okay, we allow one non-constant index into the GEP instruction. 6537 Value *VarIdx = nullptr; 6538 std::vector<Constant*> Indexes; 6539 unsigned VarIdxNum = 0; 6540 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 6541 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 6542 Indexes.push_back(CI); 6543 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 6544 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 6545 VarIdx = GEP->getOperand(i); 6546 VarIdxNum = i-2; 6547 Indexes.push_back(nullptr); 6548 } 6549 6550 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 6551 if (!VarIdx) 6552 return getCouldNotCompute(); 6553 6554 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 6555 // Check to see if X is a loop variant variable value now. 6556 const SCEV *Idx = getSCEV(VarIdx); 6557 Idx = getSCEVAtScope(Idx, L); 6558 6559 // We can only recognize very limited forms of loop index expressions, in 6560 // particular, only affine AddRec's like {C1,+,C2}. 6561 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 6562 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 6563 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 6564 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 6565 return getCouldNotCompute(); 6566 6567 unsigned MaxSteps = MaxBruteForceIterations; 6568 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 6569 ConstantInt *ItCst = ConstantInt::get( 6570 cast<IntegerType>(IdxExpr->getType()), IterationNum); 6571 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 6572 6573 // Form the GEP offset. 6574 Indexes[VarIdxNum] = Val; 6575 6576 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 6577 Indexes); 6578 if (!Result) break; // Cannot compute! 6579 6580 // Evaluate the condition for this iteration. 6581 Result = ConstantExpr::getICmp(predicate, Result, RHS); 6582 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 6583 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 6584 ++NumArrayLenItCounts; 6585 return getConstant(ItCst); // Found terminating iteration! 6586 } 6587 } 6588 return getCouldNotCompute(); 6589 } 6590 6591 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 6592 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 6593 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 6594 if (!RHS) 6595 return getCouldNotCompute(); 6596 6597 const BasicBlock *Latch = L->getLoopLatch(); 6598 if (!Latch) 6599 return getCouldNotCompute(); 6600 6601 const BasicBlock *Predecessor = L->getLoopPredecessor(); 6602 if (!Predecessor) 6603 return getCouldNotCompute(); 6604 6605 // Return true if V is of the form "LHS `shift_op` <positive constant>". 6606 // Return LHS in OutLHS and shift_opt in OutOpCode. 6607 auto MatchPositiveShift = 6608 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 6609 6610 using namespace PatternMatch; 6611 6612 ConstantInt *ShiftAmt; 6613 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6614 OutOpCode = Instruction::LShr; 6615 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6616 OutOpCode = Instruction::AShr; 6617 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 6618 OutOpCode = Instruction::Shl; 6619 else 6620 return false; 6621 6622 return ShiftAmt->getValue().isStrictlyPositive(); 6623 }; 6624 6625 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 6626 // 6627 // loop: 6628 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 6629 // %iv.shifted = lshr i32 %iv, <positive constant> 6630 // 6631 // Return true on a successful match. Return the corresponding PHI node (%iv 6632 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 6633 auto MatchShiftRecurrence = 6634 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 6635 Optional<Instruction::BinaryOps> PostShiftOpCode; 6636 6637 { 6638 Instruction::BinaryOps OpC; 6639 Value *V; 6640 6641 // If we encounter a shift instruction, "peel off" the shift operation, 6642 // and remember that we did so. Later when we inspect %iv's backedge 6643 // value, we will make sure that the backedge value uses the same 6644 // operation. 6645 // 6646 // Note: the peeled shift operation does not have to be the same 6647 // instruction as the one feeding into the PHI's backedge value. We only 6648 // really care about it being the same *kind* of shift instruction -- 6649 // that's all that is required for our later inferences to hold. 6650 if (MatchPositiveShift(LHS, V, OpC)) { 6651 PostShiftOpCode = OpC; 6652 LHS = V; 6653 } 6654 } 6655 6656 PNOut = dyn_cast<PHINode>(LHS); 6657 if (!PNOut || PNOut->getParent() != L->getHeader()) 6658 return false; 6659 6660 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 6661 Value *OpLHS; 6662 6663 return 6664 // The backedge value for the PHI node must be a shift by a positive 6665 // amount 6666 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 6667 6668 // of the PHI node itself 6669 OpLHS == PNOut && 6670 6671 // and the kind of shift should be match the kind of shift we peeled 6672 // off, if any. 6673 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 6674 }; 6675 6676 PHINode *PN; 6677 Instruction::BinaryOps OpCode; 6678 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 6679 return getCouldNotCompute(); 6680 6681 const DataLayout &DL = getDataLayout(); 6682 6683 // The key rationale for this optimization is that for some kinds of shift 6684 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 6685 // within a finite number of iterations. If the condition guarding the 6686 // backedge (in the sense that the backedge is taken if the condition is true) 6687 // is false for the value the shift recurrence stabilizes to, then we know 6688 // that the backedge is taken only a finite number of times. 6689 6690 ConstantInt *StableValue = nullptr; 6691 switch (OpCode) { 6692 default: 6693 llvm_unreachable("Impossible case!"); 6694 6695 case Instruction::AShr: { 6696 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 6697 // bitwidth(K) iterations. 6698 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 6699 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 6700 Predecessor->getTerminator(), &DT); 6701 auto *Ty = cast<IntegerType>(RHS->getType()); 6702 if (Known.isNonNegative()) 6703 StableValue = ConstantInt::get(Ty, 0); 6704 else if (Known.isNegative()) 6705 StableValue = ConstantInt::get(Ty, -1, true); 6706 else 6707 return getCouldNotCompute(); 6708 6709 break; 6710 } 6711 case Instruction::LShr: 6712 case Instruction::Shl: 6713 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 6714 // stabilize to 0 in at most bitwidth(K) iterations. 6715 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 6716 break; 6717 } 6718 6719 auto *Result = 6720 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 6721 assert(Result->getType()->isIntegerTy(1) && 6722 "Otherwise cannot be an operand to a branch instruction"); 6723 6724 if (Result->isZeroValue()) { 6725 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 6726 const SCEV *UpperBound = 6727 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 6728 return ExitLimit(getCouldNotCompute(), UpperBound, false); 6729 } 6730 6731 return getCouldNotCompute(); 6732 } 6733 6734 /// Return true if we can constant fold an instruction of the specified type, 6735 /// assuming that all operands were constants. 6736 static bool CanConstantFold(const Instruction *I) { 6737 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 6738 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6739 isa<LoadInst>(I)) 6740 return true; 6741 6742 if (const CallInst *CI = dyn_cast<CallInst>(I)) 6743 if (const Function *F = CI->getCalledFunction()) 6744 return canConstantFoldCallTo(F); 6745 return false; 6746 } 6747 6748 /// Determine whether this instruction can constant evolve within this loop 6749 /// assuming its operands can all constant evolve. 6750 static bool canConstantEvolve(Instruction *I, const Loop *L) { 6751 // An instruction outside of the loop can't be derived from a loop PHI. 6752 if (!L->contains(I)) return false; 6753 6754 if (isa<PHINode>(I)) { 6755 // We don't currently keep track of the control flow needed to evaluate 6756 // PHIs, so we cannot handle PHIs inside of loops. 6757 return L->getHeader() == I->getParent(); 6758 } 6759 6760 // If we won't be able to constant fold this expression even if the operands 6761 // are constants, bail early. 6762 return CanConstantFold(I); 6763 } 6764 6765 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 6766 /// recursing through each instruction operand until reaching a loop header phi. 6767 static PHINode * 6768 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 6769 DenseMap<Instruction *, PHINode *> &PHIMap, 6770 unsigned Depth) { 6771 if (Depth > MaxConstantEvolvingDepth) 6772 return nullptr; 6773 6774 // Otherwise, we can evaluate this instruction if all of its operands are 6775 // constant or derived from a PHI node themselves. 6776 PHINode *PHI = nullptr; 6777 for (Value *Op : UseInst->operands()) { 6778 if (isa<Constant>(Op)) continue; 6779 6780 Instruction *OpInst = dyn_cast<Instruction>(Op); 6781 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 6782 6783 PHINode *P = dyn_cast<PHINode>(OpInst); 6784 if (!P) 6785 // If this operand is already visited, reuse the prior result. 6786 // We may have P != PHI if this is the deepest point at which the 6787 // inconsistent paths meet. 6788 P = PHIMap.lookup(OpInst); 6789 if (!P) { 6790 // Recurse and memoize the results, whether a phi is found or not. 6791 // This recursive call invalidates pointers into PHIMap. 6792 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 6793 PHIMap[OpInst] = P; 6794 } 6795 if (!P) 6796 return nullptr; // Not evolving from PHI 6797 if (PHI && PHI != P) 6798 return nullptr; // Evolving from multiple different PHIs. 6799 PHI = P; 6800 } 6801 // This is a expression evolving from a constant PHI! 6802 return PHI; 6803 } 6804 6805 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 6806 /// in the loop that V is derived from. We allow arbitrary operations along the 6807 /// way, but the operands of an operation must either be constants or a value 6808 /// derived from a constant PHI. If this expression does not fit with these 6809 /// constraints, return null. 6810 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 6811 Instruction *I = dyn_cast<Instruction>(V); 6812 if (!I || !canConstantEvolve(I, L)) return nullptr; 6813 6814 if (PHINode *PN = dyn_cast<PHINode>(I)) 6815 return PN; 6816 6817 // Record non-constant instructions contained by the loop. 6818 DenseMap<Instruction *, PHINode *> PHIMap; 6819 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 6820 } 6821 6822 /// EvaluateExpression - Given an expression that passes the 6823 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 6824 /// in the loop has the value PHIVal. If we can't fold this expression for some 6825 /// reason, return null. 6826 static Constant *EvaluateExpression(Value *V, const Loop *L, 6827 DenseMap<Instruction *, Constant *> &Vals, 6828 const DataLayout &DL, 6829 const TargetLibraryInfo *TLI) { 6830 // Convenient constant check, but redundant for recursive calls. 6831 if (Constant *C = dyn_cast<Constant>(V)) return C; 6832 Instruction *I = dyn_cast<Instruction>(V); 6833 if (!I) return nullptr; 6834 6835 if (Constant *C = Vals.lookup(I)) return C; 6836 6837 // An instruction inside the loop depends on a value outside the loop that we 6838 // weren't given a mapping for, or a value such as a call inside the loop. 6839 if (!canConstantEvolve(I, L)) return nullptr; 6840 6841 // An unmapped PHI can be due to a branch or another loop inside this loop, 6842 // or due to this not being the initial iteration through a loop where we 6843 // couldn't compute the evolution of this particular PHI last time. 6844 if (isa<PHINode>(I)) return nullptr; 6845 6846 std::vector<Constant*> Operands(I->getNumOperands()); 6847 6848 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 6849 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 6850 if (!Operand) { 6851 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 6852 if (!Operands[i]) return nullptr; 6853 continue; 6854 } 6855 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 6856 Vals[Operand] = C; 6857 if (!C) return nullptr; 6858 Operands[i] = C; 6859 } 6860 6861 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6862 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 6863 Operands[1], DL, TLI); 6864 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6865 if (!LI->isVolatile()) 6866 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 6867 } 6868 return ConstantFoldInstOperands(I, Operands, DL, TLI); 6869 } 6870 6871 6872 // If every incoming value to PN except the one for BB is a specific Constant, 6873 // return that, else return nullptr. 6874 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 6875 Constant *IncomingVal = nullptr; 6876 6877 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 6878 if (PN->getIncomingBlock(i) == BB) 6879 continue; 6880 6881 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 6882 if (!CurrentVal) 6883 return nullptr; 6884 6885 if (IncomingVal != CurrentVal) { 6886 if (IncomingVal) 6887 return nullptr; 6888 IncomingVal = CurrentVal; 6889 } 6890 } 6891 6892 return IncomingVal; 6893 } 6894 6895 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 6896 /// in the header of its containing loop, we know the loop executes a 6897 /// constant number of times, and the PHI node is just a recurrence 6898 /// involving constants, fold it. 6899 Constant * 6900 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 6901 const APInt &BEs, 6902 const Loop *L) { 6903 auto I = ConstantEvolutionLoopExitValue.find(PN); 6904 if (I != ConstantEvolutionLoopExitValue.end()) 6905 return I->second; 6906 6907 if (BEs.ugt(MaxBruteForceIterations)) 6908 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 6909 6910 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 6911 6912 DenseMap<Instruction *, Constant *> CurrentIterVals; 6913 BasicBlock *Header = L->getHeader(); 6914 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6915 6916 BasicBlock *Latch = L->getLoopLatch(); 6917 if (!Latch) 6918 return nullptr; 6919 6920 for (auto &I : *Header) { 6921 PHINode *PHI = dyn_cast<PHINode>(&I); 6922 if (!PHI) break; 6923 auto *StartCST = getOtherIncomingValue(PHI, Latch); 6924 if (!StartCST) continue; 6925 CurrentIterVals[PHI] = StartCST; 6926 } 6927 if (!CurrentIterVals.count(PN)) 6928 return RetVal = nullptr; 6929 6930 Value *BEValue = PN->getIncomingValueForBlock(Latch); 6931 6932 // Execute the loop symbolically to determine the exit value. 6933 if (BEs.getActiveBits() >= 32) 6934 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 6935 6936 unsigned NumIterations = BEs.getZExtValue(); // must be in range 6937 unsigned IterationNum = 0; 6938 const DataLayout &DL = getDataLayout(); 6939 for (; ; ++IterationNum) { 6940 if (IterationNum == NumIterations) 6941 return RetVal = CurrentIterVals[PN]; // Got exit value! 6942 6943 // Compute the value of the PHIs for the next iteration. 6944 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 6945 DenseMap<Instruction *, Constant *> NextIterVals; 6946 Constant *NextPHI = 6947 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6948 if (!NextPHI) 6949 return nullptr; // Couldn't evaluate! 6950 NextIterVals[PN] = NextPHI; 6951 6952 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 6953 6954 // Also evaluate the other PHI nodes. However, we don't get to stop if we 6955 // cease to be able to evaluate one of them or if they stop evolving, 6956 // because that doesn't necessarily prevent us from computing PN. 6957 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 6958 for (const auto &I : CurrentIterVals) { 6959 PHINode *PHI = dyn_cast<PHINode>(I.first); 6960 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 6961 PHIsToCompute.emplace_back(PHI, I.second); 6962 } 6963 // We use two distinct loops because EvaluateExpression may invalidate any 6964 // iterators into CurrentIterVals. 6965 for (const auto &I : PHIsToCompute) { 6966 PHINode *PHI = I.first; 6967 Constant *&NextPHI = NextIterVals[PHI]; 6968 if (!NextPHI) { // Not already computed. 6969 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 6970 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 6971 } 6972 if (NextPHI != I.second) 6973 StoppedEvolving = false; 6974 } 6975 6976 // If all entries in CurrentIterVals == NextIterVals then we can stop 6977 // iterating, the loop can't continue to change. 6978 if (StoppedEvolving) 6979 return RetVal = CurrentIterVals[PN]; 6980 6981 CurrentIterVals.swap(NextIterVals); 6982 } 6983 } 6984 6985 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 6986 Value *Cond, 6987 bool ExitWhen) { 6988 PHINode *PN = getConstantEvolvingPHI(Cond, L); 6989 if (!PN) return getCouldNotCompute(); 6990 6991 // If the loop is canonicalized, the PHI will have exactly two entries. 6992 // That's the only form we support here. 6993 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 6994 6995 DenseMap<Instruction *, Constant *> CurrentIterVals; 6996 BasicBlock *Header = L->getHeader(); 6997 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 6998 6999 BasicBlock *Latch = L->getLoopLatch(); 7000 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7001 7002 for (auto &I : *Header) { 7003 PHINode *PHI = dyn_cast<PHINode>(&I); 7004 if (!PHI) 7005 break; 7006 auto *StartCST = getOtherIncomingValue(PHI, Latch); 7007 if (!StartCST) continue; 7008 CurrentIterVals[PHI] = StartCST; 7009 } 7010 if (!CurrentIterVals.count(PN)) 7011 return getCouldNotCompute(); 7012 7013 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7014 // the loop symbolically to determine when the condition gets a value of 7015 // "ExitWhen". 7016 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7017 const DataLayout &DL = getDataLayout(); 7018 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7019 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7020 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7021 7022 // Couldn't symbolically evaluate. 7023 if (!CondVal) return getCouldNotCompute(); 7024 7025 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7026 ++NumBruteForceTripCountsComputed; 7027 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7028 } 7029 7030 // Update all the PHI nodes for the next iteration. 7031 DenseMap<Instruction *, Constant *> NextIterVals; 7032 7033 // Create a list of which PHIs we need to compute. We want to do this before 7034 // calling EvaluateExpression on them because that may invalidate iterators 7035 // into CurrentIterVals. 7036 SmallVector<PHINode *, 8> PHIsToCompute; 7037 for (const auto &I : CurrentIterVals) { 7038 PHINode *PHI = dyn_cast<PHINode>(I.first); 7039 if (!PHI || PHI->getParent() != Header) continue; 7040 PHIsToCompute.push_back(PHI); 7041 } 7042 for (PHINode *PHI : PHIsToCompute) { 7043 Constant *&NextPHI = NextIterVals[PHI]; 7044 if (NextPHI) continue; // Already computed! 7045 7046 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7047 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7048 } 7049 CurrentIterVals.swap(NextIterVals); 7050 } 7051 7052 // Too many iterations were needed to evaluate. 7053 return getCouldNotCompute(); 7054 } 7055 7056 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7057 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7058 ValuesAtScopes[V]; 7059 // Check to see if we've folded this expression at this loop before. 7060 for (auto &LS : Values) 7061 if (LS.first == L) 7062 return LS.second ? LS.second : V; 7063 7064 Values.emplace_back(L, nullptr); 7065 7066 // Otherwise compute it. 7067 const SCEV *C = computeSCEVAtScope(V, L); 7068 for (auto &LS : reverse(ValuesAtScopes[V])) 7069 if (LS.first == L) { 7070 LS.second = C; 7071 break; 7072 } 7073 return C; 7074 } 7075 7076 /// This builds up a Constant using the ConstantExpr interface. That way, we 7077 /// will return Constants for objects which aren't represented by a 7078 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7079 /// Returns NULL if the SCEV isn't representable as a Constant. 7080 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7081 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7082 case scCouldNotCompute: 7083 case scAddRecExpr: 7084 break; 7085 case scConstant: 7086 return cast<SCEVConstant>(V)->getValue(); 7087 case scUnknown: 7088 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7089 case scSignExtend: { 7090 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7091 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7092 return ConstantExpr::getSExt(CastOp, SS->getType()); 7093 break; 7094 } 7095 case scZeroExtend: { 7096 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7097 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7098 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7099 break; 7100 } 7101 case scTruncate: { 7102 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7103 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7104 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7105 break; 7106 } 7107 case scAddExpr: { 7108 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7109 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7110 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7111 unsigned AS = PTy->getAddressSpace(); 7112 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7113 C = ConstantExpr::getBitCast(C, DestPtrTy); 7114 } 7115 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7116 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7117 if (!C2) return nullptr; 7118 7119 // First pointer! 7120 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7121 unsigned AS = C2->getType()->getPointerAddressSpace(); 7122 std::swap(C, C2); 7123 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7124 // The offsets have been converted to bytes. We can add bytes to an 7125 // i8* by GEP with the byte count in the first index. 7126 C = ConstantExpr::getBitCast(C, DestPtrTy); 7127 } 7128 7129 // Don't bother trying to sum two pointers. We probably can't 7130 // statically compute a load that results from it anyway. 7131 if (C2->getType()->isPointerTy()) 7132 return nullptr; 7133 7134 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7135 if (PTy->getElementType()->isStructTy()) 7136 C2 = ConstantExpr::getIntegerCast( 7137 C2, Type::getInt32Ty(C->getContext()), true); 7138 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7139 } else 7140 C = ConstantExpr::getAdd(C, C2); 7141 } 7142 return C; 7143 } 7144 break; 7145 } 7146 case scMulExpr: { 7147 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7148 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7149 // Don't bother with pointers at all. 7150 if (C->getType()->isPointerTy()) return nullptr; 7151 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7152 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7153 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7154 C = ConstantExpr::getMul(C, C2); 7155 } 7156 return C; 7157 } 7158 break; 7159 } 7160 case scUDivExpr: { 7161 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7162 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7163 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7164 if (LHS->getType() == RHS->getType()) 7165 return ConstantExpr::getUDiv(LHS, RHS); 7166 break; 7167 } 7168 case scSMaxExpr: 7169 case scUMaxExpr: 7170 break; // TODO: smax, umax. 7171 } 7172 return nullptr; 7173 } 7174 7175 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 7176 if (isa<SCEVConstant>(V)) return V; 7177 7178 // If this instruction is evolved from a constant-evolving PHI, compute the 7179 // exit value from the loop without using SCEVs. 7180 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 7181 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 7182 const Loop *LI = this->LI[I->getParent()]; 7183 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 7184 if (PHINode *PN = dyn_cast<PHINode>(I)) 7185 if (PN->getParent() == LI->getHeader()) { 7186 // Okay, there is no closed form solution for the PHI node. Check 7187 // to see if the loop that contains it has a known backedge-taken 7188 // count. If so, we may be able to force computation of the exit 7189 // value. 7190 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 7191 if (const SCEVConstant *BTCC = 7192 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 7193 // Okay, we know how many times the containing loop executes. If 7194 // this is a constant evolving PHI node, get the final value at 7195 // the specified iteration number. 7196 Constant *RV = 7197 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 7198 if (RV) return getSCEV(RV); 7199 } 7200 } 7201 7202 // Okay, this is an expression that we cannot symbolically evaluate 7203 // into a SCEV. Check to see if it's possible to symbolically evaluate 7204 // the arguments into constants, and if so, try to constant propagate the 7205 // result. This is particularly useful for computing loop exit values. 7206 if (CanConstantFold(I)) { 7207 SmallVector<Constant *, 4> Operands; 7208 bool MadeImprovement = false; 7209 for (Value *Op : I->operands()) { 7210 if (Constant *C = dyn_cast<Constant>(Op)) { 7211 Operands.push_back(C); 7212 continue; 7213 } 7214 7215 // If any of the operands is non-constant and if they are 7216 // non-integer and non-pointer, don't even try to analyze them 7217 // with scev techniques. 7218 if (!isSCEVable(Op->getType())) 7219 return V; 7220 7221 const SCEV *OrigV = getSCEV(Op); 7222 const SCEV *OpV = getSCEVAtScope(OrigV, L); 7223 MadeImprovement |= OrigV != OpV; 7224 7225 Constant *C = BuildConstantFromSCEV(OpV); 7226 if (!C) return V; 7227 if (C->getType() != Op->getType()) 7228 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 7229 Op->getType(), 7230 false), 7231 C, Op->getType()); 7232 Operands.push_back(C); 7233 } 7234 7235 // Check to see if getSCEVAtScope actually made an improvement. 7236 if (MadeImprovement) { 7237 Constant *C = nullptr; 7238 const DataLayout &DL = getDataLayout(); 7239 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 7240 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7241 Operands[1], DL, &TLI); 7242 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 7243 if (!LI->isVolatile()) 7244 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7245 } else 7246 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 7247 if (!C) return V; 7248 return getSCEV(C); 7249 } 7250 } 7251 } 7252 7253 // This is some other type of SCEVUnknown, just return it. 7254 return V; 7255 } 7256 7257 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 7258 // Avoid performing the look-up in the common case where the specified 7259 // expression has no loop-variant portions. 7260 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 7261 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7262 if (OpAtScope != Comm->getOperand(i)) { 7263 // Okay, at least one of these operands is loop variant but might be 7264 // foldable. Build a new instance of the folded commutative expression. 7265 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 7266 Comm->op_begin()+i); 7267 NewOps.push_back(OpAtScope); 7268 7269 for (++i; i != e; ++i) { 7270 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 7271 NewOps.push_back(OpAtScope); 7272 } 7273 if (isa<SCEVAddExpr>(Comm)) 7274 return getAddExpr(NewOps); 7275 if (isa<SCEVMulExpr>(Comm)) 7276 return getMulExpr(NewOps); 7277 if (isa<SCEVSMaxExpr>(Comm)) 7278 return getSMaxExpr(NewOps); 7279 if (isa<SCEVUMaxExpr>(Comm)) 7280 return getUMaxExpr(NewOps); 7281 llvm_unreachable("Unknown commutative SCEV type!"); 7282 } 7283 } 7284 // If we got here, all operands are loop invariant. 7285 return Comm; 7286 } 7287 7288 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 7289 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 7290 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 7291 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 7292 return Div; // must be loop invariant 7293 return getUDivExpr(LHS, RHS); 7294 } 7295 7296 // If this is a loop recurrence for a loop that does not contain L, then we 7297 // are dealing with the final value computed by the loop. 7298 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 7299 // First, attempt to evaluate each operand. 7300 // Avoid performing the look-up in the common case where the specified 7301 // expression has no loop-variant portions. 7302 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 7303 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 7304 if (OpAtScope == AddRec->getOperand(i)) 7305 continue; 7306 7307 // Okay, at least one of these operands is loop variant but might be 7308 // foldable. Build a new instance of the folded commutative expression. 7309 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 7310 AddRec->op_begin()+i); 7311 NewOps.push_back(OpAtScope); 7312 for (++i; i != e; ++i) 7313 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 7314 7315 const SCEV *FoldedRec = 7316 getAddRecExpr(NewOps, AddRec->getLoop(), 7317 AddRec->getNoWrapFlags(SCEV::FlagNW)); 7318 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 7319 // The addrec may be folded to a nonrecurrence, for example, if the 7320 // induction variable is multiplied by zero after constant folding. Go 7321 // ahead and return the folded value. 7322 if (!AddRec) 7323 return FoldedRec; 7324 break; 7325 } 7326 7327 // If the scope is outside the addrec's loop, evaluate it by using the 7328 // loop exit value of the addrec. 7329 if (!AddRec->getLoop()->contains(L)) { 7330 // To evaluate this recurrence, we need to know how many times the AddRec 7331 // loop iterates. Compute this now. 7332 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 7333 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 7334 7335 // Then, evaluate the AddRec. 7336 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 7337 } 7338 7339 return AddRec; 7340 } 7341 7342 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 7343 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7344 if (Op == Cast->getOperand()) 7345 return Cast; // must be loop invariant 7346 return getZeroExtendExpr(Op, Cast->getType()); 7347 } 7348 7349 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 7350 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7351 if (Op == Cast->getOperand()) 7352 return Cast; // must be loop invariant 7353 return getSignExtendExpr(Op, Cast->getType()); 7354 } 7355 7356 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 7357 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 7358 if (Op == Cast->getOperand()) 7359 return Cast; // must be loop invariant 7360 return getTruncateExpr(Op, Cast->getType()); 7361 } 7362 7363 llvm_unreachable("Unknown SCEV type!"); 7364 } 7365 7366 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 7367 return getSCEVAtScope(getSCEV(V), L); 7368 } 7369 7370 /// Finds the minimum unsigned root of the following equation: 7371 /// 7372 /// A * X = B (mod N) 7373 /// 7374 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 7375 /// A and B isn't important. 7376 /// 7377 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 7378 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 7379 ScalarEvolution &SE) { 7380 uint32_t BW = A.getBitWidth(); 7381 assert(BW == SE.getTypeSizeInBits(B->getType())); 7382 assert(A != 0 && "A must be non-zero."); 7383 7384 // 1. D = gcd(A, N) 7385 // 7386 // The gcd of A and N may have only one prime factor: 2. The number of 7387 // trailing zeros in A is its multiplicity 7388 uint32_t Mult2 = A.countTrailingZeros(); 7389 // D = 2^Mult2 7390 7391 // 2. Check if B is divisible by D. 7392 // 7393 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 7394 // is not less than multiplicity of this prime factor for D. 7395 if (SE.GetMinTrailingZeros(B) < Mult2) 7396 return SE.getCouldNotCompute(); 7397 7398 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 7399 // modulo (N / D). 7400 // 7401 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 7402 // (N / D) in general. The inverse itself always fits into BW bits, though, 7403 // so we immediately truncate it. 7404 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 7405 APInt Mod(BW + 1, 0); 7406 Mod.setBit(BW - Mult2); // Mod = N / D 7407 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 7408 7409 // 4. Compute the minimum unsigned root of the equation: 7410 // I * (B / D) mod (N / D) 7411 // To simplify the computation, we factor out the divide by D: 7412 // (I * B mod N) / D 7413 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 7414 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 7415 } 7416 7417 /// Find the roots of the quadratic equation for the given quadratic chrec 7418 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or 7419 /// two SCEVCouldNotCompute objects. 7420 /// 7421 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>> 7422 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 7423 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 7424 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 7425 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 7426 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 7427 7428 // We currently can only solve this if the coefficients are constants. 7429 if (!LC || !MC || !NC) 7430 return None; 7431 7432 uint32_t BitWidth = LC->getAPInt().getBitWidth(); 7433 const APInt &L = LC->getAPInt(); 7434 const APInt &M = MC->getAPInt(); 7435 const APInt &N = NC->getAPInt(); 7436 APInt Two(BitWidth, 2); 7437 7438 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 7439 7440 // The A coefficient is N/2 7441 APInt A = N.sdiv(Two); 7442 7443 // The B coefficient is M-N/2 7444 APInt B = M; 7445 B -= A; // A is the same as N/2. 7446 7447 // The C coefficient is L. 7448 const APInt& C = L; 7449 7450 // Compute the B^2-4ac term. 7451 APInt SqrtTerm = B; 7452 SqrtTerm *= B; 7453 SqrtTerm -= 4 * (A * C); 7454 7455 if (SqrtTerm.isNegative()) { 7456 // The loop is provably infinite. 7457 return None; 7458 } 7459 7460 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 7461 // integer value or else APInt::sqrt() will assert. 7462 APInt SqrtVal = SqrtTerm.sqrt(); 7463 7464 // Compute the two solutions for the quadratic formula. 7465 // The divisions must be performed as signed divisions. 7466 APInt NegB = -std::move(B); 7467 APInt TwoA = std::move(A); 7468 TwoA <<= 1; 7469 if (TwoA.isNullValue()) 7470 return None; 7471 7472 LLVMContext &Context = SE.getContext(); 7473 7474 ConstantInt *Solution1 = 7475 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 7476 ConstantInt *Solution2 = 7477 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 7478 7479 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)), 7480 cast<SCEVConstant>(SE.getConstant(Solution2))); 7481 } 7482 7483 ScalarEvolution::ExitLimit 7484 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 7485 bool AllowPredicates) { 7486 7487 // This is only used for loops with a "x != y" exit test. The exit condition 7488 // is now expressed as a single expression, V = x-y. So the exit test is 7489 // effectively V != 0. We know and take advantage of the fact that this 7490 // expression only being used in a comparison by zero context. 7491 7492 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 7493 // If the value is a constant 7494 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7495 // If the value is already zero, the branch will execute zero times. 7496 if (C->getValue()->isZero()) return C; 7497 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7498 } 7499 7500 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 7501 if (!AddRec && AllowPredicates) 7502 // Try to make this an AddRec using runtime tests, in the first X 7503 // iterations of this loop, where X is the SCEV expression found by the 7504 // algorithm below. 7505 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 7506 7507 if (!AddRec || AddRec->getLoop() != L) 7508 return getCouldNotCompute(); 7509 7510 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 7511 // the quadratic equation to solve it. 7512 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 7513 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) { 7514 const SCEVConstant *R1 = Roots->first; 7515 const SCEVConstant *R2 = Roots->second; 7516 // Pick the smallest positive root value. 7517 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 7518 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 7519 if (!CB->getZExtValue()) 7520 std::swap(R1, R2); // R1 is the minimum root now. 7521 7522 // We can only use this value if the chrec ends up with an exact zero 7523 // value at this index. When solving for "X*X != 5", for example, we 7524 // should not accept a root of 2. 7525 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 7526 if (Val->isZero()) 7527 // We found a quadratic root! 7528 return ExitLimit(R1, R1, false, Predicates); 7529 } 7530 } 7531 return getCouldNotCompute(); 7532 } 7533 7534 // Otherwise we can only handle this if it is affine. 7535 if (!AddRec->isAffine()) 7536 return getCouldNotCompute(); 7537 7538 // If this is an affine expression, the execution count of this branch is 7539 // the minimum unsigned root of the following equation: 7540 // 7541 // Start + Step*N = 0 (mod 2^BW) 7542 // 7543 // equivalent to: 7544 // 7545 // Step*N = -Start (mod 2^BW) 7546 // 7547 // where BW is the common bit width of Start and Step. 7548 7549 // Get the initial value for the loop. 7550 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 7551 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 7552 7553 // For now we handle only constant steps. 7554 // 7555 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 7556 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 7557 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 7558 // We have not yet seen any such cases. 7559 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 7560 if (!StepC || StepC->getValue()->equalsInt(0)) 7561 return getCouldNotCompute(); 7562 7563 // For positive steps (counting up until unsigned overflow): 7564 // N = -Start/Step (as unsigned) 7565 // For negative steps (counting down to zero): 7566 // N = Start/-Step 7567 // First compute the unsigned distance from zero in the direction of Step. 7568 bool CountDown = StepC->getAPInt().isNegative(); 7569 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 7570 7571 // Handle unitary steps, which cannot wraparound. 7572 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 7573 // N = Distance (as unsigned) 7574 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 7575 APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax(); 7576 7577 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 7578 // we end up with a loop whose backedge-taken count is n - 1. Detect this 7579 // case, and see if we can improve the bound. 7580 // 7581 // Explicitly handling this here is necessary because getUnsignedRange 7582 // isn't context-sensitive; it doesn't know that we only care about the 7583 // range inside the loop. 7584 const SCEV *Zero = getZero(Distance->getType()); 7585 const SCEV *One = getOne(Distance->getType()); 7586 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 7587 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 7588 // If Distance + 1 doesn't overflow, we can compute the maximum distance 7589 // as "unsigned_max(Distance + 1) - 1". 7590 ConstantRange CR = getUnsignedRange(DistancePlusOne); 7591 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 7592 } 7593 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 7594 } 7595 7596 // If the condition controls loop exit (the loop exits only if the expression 7597 // is true) and the addition is no-wrap we can use unsigned divide to 7598 // compute the backedge count. In this case, the step may not divide the 7599 // distance, but we don't care because if the condition is "missed" the loop 7600 // will have undefined behavior due to wrapping. 7601 if (ControlsExit && AddRec->hasNoSelfWrap() && 7602 loopHasNoAbnormalExits(AddRec->getLoop())) { 7603 const SCEV *Exact = 7604 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 7605 const SCEV *Max = 7606 Exact == getCouldNotCompute() 7607 ? Exact 7608 : getConstant(getUnsignedRange(Exact).getUnsignedMax()); 7609 return ExitLimit(Exact, Max, false, Predicates); 7610 } 7611 7612 // Solve the general equation. 7613 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 7614 getNegativeSCEV(Start), *this); 7615 const SCEV *M = E == getCouldNotCompute() 7616 ? E 7617 : getConstant(getUnsignedRange(E).getUnsignedMax()); 7618 return ExitLimit(E, M, false, Predicates); 7619 } 7620 7621 ScalarEvolution::ExitLimit 7622 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 7623 // Loops that look like: while (X == 0) are very strange indeed. We don't 7624 // handle them yet except for the trivial case. This could be expanded in the 7625 // future as needed. 7626 7627 // If the value is a constant, check to see if it is known to be non-zero 7628 // already. If so, the backedge will execute zero times. 7629 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 7630 if (!C->getValue()->isNullValue()) 7631 return getZero(C->getType()); 7632 return getCouldNotCompute(); // Otherwise it will loop infinitely. 7633 } 7634 7635 // We could implement others, but I really doubt anyone writes loops like 7636 // this, and if they did, they would already be constant folded. 7637 return getCouldNotCompute(); 7638 } 7639 7640 std::pair<BasicBlock *, BasicBlock *> 7641 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 7642 // If the block has a unique predecessor, then there is no path from the 7643 // predecessor to the block that does not go through the direct edge 7644 // from the predecessor to the block. 7645 if (BasicBlock *Pred = BB->getSinglePredecessor()) 7646 return {Pred, BB}; 7647 7648 // A loop's header is defined to be a block that dominates the loop. 7649 // If the header has a unique predecessor outside the loop, it must be 7650 // a block that has exactly one successor that can reach the loop. 7651 if (Loop *L = LI.getLoopFor(BB)) 7652 return {L->getLoopPredecessor(), L->getHeader()}; 7653 7654 return {nullptr, nullptr}; 7655 } 7656 7657 /// SCEV structural equivalence is usually sufficient for testing whether two 7658 /// expressions are equal, however for the purposes of looking for a condition 7659 /// guarding a loop, it can be useful to be a little more general, since a 7660 /// front-end may have replicated the controlling expression. 7661 /// 7662 static bool HasSameValue(const SCEV *A, const SCEV *B) { 7663 // Quick check to see if they are the same SCEV. 7664 if (A == B) return true; 7665 7666 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 7667 // Not all instructions that are "identical" compute the same value. For 7668 // instance, two distinct alloca instructions allocating the same type are 7669 // identical and do not read memory; but compute distinct values. 7670 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 7671 }; 7672 7673 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 7674 // two different instructions with the same value. Check for this case. 7675 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 7676 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 7677 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 7678 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 7679 if (ComputesEqualValues(AI, BI)) 7680 return true; 7681 7682 // Otherwise assume they may have a different value. 7683 return false; 7684 } 7685 7686 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 7687 const SCEV *&LHS, const SCEV *&RHS, 7688 unsigned Depth) { 7689 bool Changed = false; 7690 7691 // If we hit the max recursion limit bail out. 7692 if (Depth >= 3) 7693 return false; 7694 7695 // Canonicalize a constant to the right side. 7696 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 7697 // Check for both operands constant. 7698 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 7699 if (ConstantExpr::getICmp(Pred, 7700 LHSC->getValue(), 7701 RHSC->getValue())->isNullValue()) 7702 goto trivially_false; 7703 else 7704 goto trivially_true; 7705 } 7706 // Otherwise swap the operands to put the constant on the right. 7707 std::swap(LHS, RHS); 7708 Pred = ICmpInst::getSwappedPredicate(Pred); 7709 Changed = true; 7710 } 7711 7712 // If we're comparing an addrec with a value which is loop-invariant in the 7713 // addrec's loop, put the addrec on the left. Also make a dominance check, 7714 // as both operands could be addrecs loop-invariant in each other's loop. 7715 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 7716 const Loop *L = AR->getLoop(); 7717 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 7718 std::swap(LHS, RHS); 7719 Pred = ICmpInst::getSwappedPredicate(Pred); 7720 Changed = true; 7721 } 7722 } 7723 7724 // If there's a constant operand, canonicalize comparisons with boundary 7725 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 7726 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 7727 const APInt &RA = RC->getAPInt(); 7728 7729 bool SimplifiedByConstantRange = false; 7730 7731 if (!ICmpInst::isEquality(Pred)) { 7732 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 7733 if (ExactCR.isFullSet()) 7734 goto trivially_true; 7735 else if (ExactCR.isEmptySet()) 7736 goto trivially_false; 7737 7738 APInt NewRHS; 7739 CmpInst::Predicate NewPred; 7740 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 7741 ICmpInst::isEquality(NewPred)) { 7742 // We were able to convert an inequality to an equality. 7743 Pred = NewPred; 7744 RHS = getConstant(NewRHS); 7745 Changed = SimplifiedByConstantRange = true; 7746 } 7747 } 7748 7749 if (!SimplifiedByConstantRange) { 7750 switch (Pred) { 7751 default: 7752 break; 7753 case ICmpInst::ICMP_EQ: 7754 case ICmpInst::ICMP_NE: 7755 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 7756 if (!RA) 7757 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 7758 if (const SCEVMulExpr *ME = 7759 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 7760 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 7761 ME->getOperand(0)->isAllOnesValue()) { 7762 RHS = AE->getOperand(1); 7763 LHS = ME->getOperand(1); 7764 Changed = true; 7765 } 7766 break; 7767 7768 7769 // The "Should have been caught earlier!" messages refer to the fact 7770 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 7771 // should have fired on the corresponding cases, and canonicalized the 7772 // check to trivially_true or trivially_false. 7773 7774 case ICmpInst::ICMP_UGE: 7775 assert(!RA.isMinValue() && "Should have been caught earlier!"); 7776 Pred = ICmpInst::ICMP_UGT; 7777 RHS = getConstant(RA - 1); 7778 Changed = true; 7779 break; 7780 case ICmpInst::ICMP_ULE: 7781 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 7782 Pred = ICmpInst::ICMP_ULT; 7783 RHS = getConstant(RA + 1); 7784 Changed = true; 7785 break; 7786 case ICmpInst::ICMP_SGE: 7787 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 7788 Pred = ICmpInst::ICMP_SGT; 7789 RHS = getConstant(RA - 1); 7790 Changed = true; 7791 break; 7792 case ICmpInst::ICMP_SLE: 7793 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 7794 Pred = ICmpInst::ICMP_SLT; 7795 RHS = getConstant(RA + 1); 7796 Changed = true; 7797 break; 7798 } 7799 } 7800 } 7801 7802 // Check for obvious equality. 7803 if (HasSameValue(LHS, RHS)) { 7804 if (ICmpInst::isTrueWhenEqual(Pred)) 7805 goto trivially_true; 7806 if (ICmpInst::isFalseWhenEqual(Pred)) 7807 goto trivially_false; 7808 } 7809 7810 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 7811 // adding or subtracting 1 from one of the operands. 7812 switch (Pred) { 7813 case ICmpInst::ICMP_SLE: 7814 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 7815 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7816 SCEV::FlagNSW); 7817 Pred = ICmpInst::ICMP_SLT; 7818 Changed = true; 7819 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 7820 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 7821 SCEV::FlagNSW); 7822 Pred = ICmpInst::ICMP_SLT; 7823 Changed = true; 7824 } 7825 break; 7826 case ICmpInst::ICMP_SGE: 7827 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 7828 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 7829 SCEV::FlagNSW); 7830 Pred = ICmpInst::ICMP_SGT; 7831 Changed = true; 7832 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 7833 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7834 SCEV::FlagNSW); 7835 Pred = ICmpInst::ICMP_SGT; 7836 Changed = true; 7837 } 7838 break; 7839 case ICmpInst::ICMP_ULE: 7840 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 7841 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 7842 SCEV::FlagNUW); 7843 Pred = ICmpInst::ICMP_ULT; 7844 Changed = true; 7845 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 7846 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 7847 Pred = ICmpInst::ICMP_ULT; 7848 Changed = true; 7849 } 7850 break; 7851 case ICmpInst::ICMP_UGE: 7852 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 7853 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 7854 Pred = ICmpInst::ICMP_UGT; 7855 Changed = true; 7856 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 7857 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 7858 SCEV::FlagNUW); 7859 Pred = ICmpInst::ICMP_UGT; 7860 Changed = true; 7861 } 7862 break; 7863 default: 7864 break; 7865 } 7866 7867 // TODO: More simplifications are possible here. 7868 7869 // Recursively simplify until we either hit a recursion limit or nothing 7870 // changes. 7871 if (Changed) 7872 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 7873 7874 return Changed; 7875 7876 trivially_true: 7877 // Return 0 == 0. 7878 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7879 Pred = ICmpInst::ICMP_EQ; 7880 return true; 7881 7882 trivially_false: 7883 // Return 0 != 0. 7884 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 7885 Pred = ICmpInst::ICMP_NE; 7886 return true; 7887 } 7888 7889 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 7890 return getSignedRange(S).getSignedMax().isNegative(); 7891 } 7892 7893 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 7894 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 7895 } 7896 7897 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 7898 return !getSignedRange(S).getSignedMin().isNegative(); 7899 } 7900 7901 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 7902 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 7903 } 7904 7905 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 7906 return isKnownNegative(S) || isKnownPositive(S); 7907 } 7908 7909 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 7910 const SCEV *LHS, const SCEV *RHS) { 7911 // Canonicalize the inputs first. 7912 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7913 7914 // If LHS or RHS is an addrec, check to see if the condition is true in 7915 // every iteration of the loop. 7916 // If LHS and RHS are both addrec, both conditions must be true in 7917 // every iteration of the loop. 7918 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7919 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7920 bool LeftGuarded = false; 7921 bool RightGuarded = false; 7922 if (LAR) { 7923 const Loop *L = LAR->getLoop(); 7924 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 7925 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 7926 if (!RAR) return true; 7927 LeftGuarded = true; 7928 } 7929 } 7930 if (RAR) { 7931 const Loop *L = RAR->getLoop(); 7932 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 7933 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 7934 if (!LAR) return true; 7935 RightGuarded = true; 7936 } 7937 } 7938 if (LeftGuarded && RightGuarded) 7939 return true; 7940 7941 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 7942 return true; 7943 7944 // Otherwise see what can be done with known constant ranges. 7945 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS); 7946 } 7947 7948 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 7949 ICmpInst::Predicate Pred, 7950 bool &Increasing) { 7951 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 7952 7953 #ifndef NDEBUG 7954 // Verify an invariant: inverting the predicate should turn a monotonically 7955 // increasing change to a monotonically decreasing one, and vice versa. 7956 bool IncreasingSwapped; 7957 bool ResultSwapped = isMonotonicPredicateImpl( 7958 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 7959 7960 assert(Result == ResultSwapped && "should be able to analyze both!"); 7961 if (ResultSwapped) 7962 assert(Increasing == !IncreasingSwapped && 7963 "monotonicity should flip as we flip the predicate"); 7964 #endif 7965 7966 return Result; 7967 } 7968 7969 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 7970 ICmpInst::Predicate Pred, 7971 bool &Increasing) { 7972 7973 // A zero step value for LHS means the induction variable is essentially a 7974 // loop invariant value. We don't really depend on the predicate actually 7975 // flipping from false to true (for increasing predicates, and the other way 7976 // around for decreasing predicates), all we care about is that *if* the 7977 // predicate changes then it only changes from false to true. 7978 // 7979 // A zero step value in itself is not very useful, but there may be places 7980 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 7981 // as general as possible. 7982 7983 switch (Pred) { 7984 default: 7985 return false; // Conservative answer 7986 7987 case ICmpInst::ICMP_UGT: 7988 case ICmpInst::ICMP_UGE: 7989 case ICmpInst::ICMP_ULT: 7990 case ICmpInst::ICMP_ULE: 7991 if (!LHS->hasNoUnsignedWrap()) 7992 return false; 7993 7994 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 7995 return true; 7996 7997 case ICmpInst::ICMP_SGT: 7998 case ICmpInst::ICMP_SGE: 7999 case ICmpInst::ICMP_SLT: 8000 case ICmpInst::ICMP_SLE: { 8001 if (!LHS->hasNoSignedWrap()) 8002 return false; 8003 8004 const SCEV *Step = LHS->getStepRecurrence(*this); 8005 8006 if (isKnownNonNegative(Step)) { 8007 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 8008 return true; 8009 } 8010 8011 if (isKnownNonPositive(Step)) { 8012 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 8013 return true; 8014 } 8015 8016 return false; 8017 } 8018 8019 } 8020 8021 llvm_unreachable("switch has default clause!"); 8022 } 8023 8024 bool ScalarEvolution::isLoopInvariantPredicate( 8025 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 8026 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 8027 const SCEV *&InvariantRHS) { 8028 8029 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 8030 if (!isLoopInvariant(RHS, L)) { 8031 if (!isLoopInvariant(LHS, L)) 8032 return false; 8033 8034 std::swap(LHS, RHS); 8035 Pred = ICmpInst::getSwappedPredicate(Pred); 8036 } 8037 8038 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8039 if (!ArLHS || ArLHS->getLoop() != L) 8040 return false; 8041 8042 bool Increasing; 8043 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 8044 return false; 8045 8046 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 8047 // true as the loop iterates, and the backedge is control dependent on 8048 // "ArLHS `Pred` RHS" == true then we can reason as follows: 8049 // 8050 // * if the predicate was false in the first iteration then the predicate 8051 // is never evaluated again, since the loop exits without taking the 8052 // backedge. 8053 // * if the predicate was true in the first iteration then it will 8054 // continue to be true for all future iterations since it is 8055 // monotonically increasing. 8056 // 8057 // For both the above possibilities, we can replace the loop varying 8058 // predicate with its value on the first iteration of the loop (which is 8059 // loop invariant). 8060 // 8061 // A similar reasoning applies for a monotonically decreasing predicate, by 8062 // replacing true with false and false with true in the above two bullets. 8063 8064 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 8065 8066 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 8067 return false; 8068 8069 InvariantPred = Pred; 8070 InvariantLHS = ArLHS->getStart(); 8071 InvariantRHS = RHS; 8072 return true; 8073 } 8074 8075 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 8076 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 8077 if (HasSameValue(LHS, RHS)) 8078 return ICmpInst::isTrueWhenEqual(Pred); 8079 8080 // This code is split out from isKnownPredicate because it is called from 8081 // within isLoopEntryGuardedByCond. 8082 8083 auto CheckRanges = 8084 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 8085 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 8086 .contains(RangeLHS); 8087 }; 8088 8089 // The check at the top of the function catches the case where the values are 8090 // known to be equal. 8091 if (Pred == CmpInst::ICMP_EQ) 8092 return false; 8093 8094 if (Pred == CmpInst::ICMP_NE) 8095 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 8096 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 8097 isKnownNonZero(getMinusSCEV(LHS, RHS)); 8098 8099 if (CmpInst::isSigned(Pred)) 8100 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 8101 8102 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 8103 } 8104 8105 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 8106 const SCEV *LHS, 8107 const SCEV *RHS) { 8108 8109 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 8110 // Return Y via OutY. 8111 auto MatchBinaryAddToConst = 8112 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 8113 SCEV::NoWrapFlags ExpectedFlags) { 8114 const SCEV *NonConstOp, *ConstOp; 8115 SCEV::NoWrapFlags FlagsPresent; 8116 8117 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 8118 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 8119 return false; 8120 8121 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 8122 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 8123 }; 8124 8125 APInt C; 8126 8127 switch (Pred) { 8128 default: 8129 break; 8130 8131 case ICmpInst::ICMP_SGE: 8132 std::swap(LHS, RHS); 8133 case ICmpInst::ICMP_SLE: 8134 // X s<= (X + C)<nsw> if C >= 0 8135 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 8136 return true; 8137 8138 // (X + C)<nsw> s<= X if C <= 0 8139 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 8140 !C.isStrictlyPositive()) 8141 return true; 8142 break; 8143 8144 case ICmpInst::ICMP_SGT: 8145 std::swap(LHS, RHS); 8146 case ICmpInst::ICMP_SLT: 8147 // X s< (X + C)<nsw> if C > 0 8148 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 8149 C.isStrictlyPositive()) 8150 return true; 8151 8152 // (X + C)<nsw> s< X if C < 0 8153 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 8154 return true; 8155 break; 8156 } 8157 8158 return false; 8159 } 8160 8161 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 8162 const SCEV *LHS, 8163 const SCEV *RHS) { 8164 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 8165 return false; 8166 8167 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 8168 // the stack can result in exponential time complexity. 8169 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 8170 8171 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 8172 // 8173 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 8174 // isKnownPredicate. isKnownPredicate is more powerful, but also more 8175 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 8176 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 8177 // use isKnownPredicate later if needed. 8178 return isKnownNonNegative(RHS) && 8179 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 8180 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 8181 } 8182 8183 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 8184 ICmpInst::Predicate Pred, 8185 const SCEV *LHS, const SCEV *RHS) { 8186 // No need to even try if we know the module has no guards. 8187 if (!HasGuards) 8188 return false; 8189 8190 return any_of(*BB, [&](Instruction &I) { 8191 using namespace llvm::PatternMatch; 8192 8193 Value *Condition; 8194 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 8195 m_Value(Condition))) && 8196 isImpliedCond(Pred, LHS, RHS, Condition, false); 8197 }); 8198 } 8199 8200 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 8201 /// protected by a conditional between LHS and RHS. This is used to 8202 /// to eliminate casts. 8203 bool 8204 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 8205 ICmpInst::Predicate Pred, 8206 const SCEV *LHS, const SCEV *RHS) { 8207 // Interpret a null as meaning no loop, where there is obviously no guard 8208 // (interprocedural conditions notwithstanding). 8209 if (!L) return true; 8210 8211 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8212 return true; 8213 8214 BasicBlock *Latch = L->getLoopLatch(); 8215 if (!Latch) 8216 return false; 8217 8218 BranchInst *LoopContinuePredicate = 8219 dyn_cast<BranchInst>(Latch->getTerminator()); 8220 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 8221 isImpliedCond(Pred, LHS, RHS, 8222 LoopContinuePredicate->getCondition(), 8223 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 8224 return true; 8225 8226 // We don't want more than one activation of the following loops on the stack 8227 // -- that can lead to O(n!) time complexity. 8228 if (WalkingBEDominatingConds) 8229 return false; 8230 8231 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 8232 8233 // See if we can exploit a trip count to prove the predicate. 8234 const auto &BETakenInfo = getBackedgeTakenInfo(L); 8235 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 8236 if (LatchBECount != getCouldNotCompute()) { 8237 // We know that Latch branches back to the loop header exactly 8238 // LatchBECount times. This means the backdege condition at Latch is 8239 // equivalent to "{0,+,1} u< LatchBECount". 8240 Type *Ty = LatchBECount->getType(); 8241 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 8242 const SCEV *LoopCounter = 8243 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 8244 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 8245 LatchBECount)) 8246 return true; 8247 } 8248 8249 // Check conditions due to any @llvm.assume intrinsics. 8250 for (auto &AssumeVH : AC.assumptions()) { 8251 if (!AssumeVH) 8252 continue; 8253 auto *CI = cast<CallInst>(AssumeVH); 8254 if (!DT.dominates(CI, Latch->getTerminator())) 8255 continue; 8256 8257 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8258 return true; 8259 } 8260 8261 // If the loop is not reachable from the entry block, we risk running into an 8262 // infinite loop as we walk up into the dom tree. These loops do not matter 8263 // anyway, so we just return a conservative answer when we see them. 8264 if (!DT.isReachableFromEntry(L->getHeader())) 8265 return false; 8266 8267 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 8268 return true; 8269 8270 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 8271 DTN != HeaderDTN; DTN = DTN->getIDom()) { 8272 8273 assert(DTN && "should reach the loop header before reaching the root!"); 8274 8275 BasicBlock *BB = DTN->getBlock(); 8276 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 8277 return true; 8278 8279 BasicBlock *PBB = BB->getSinglePredecessor(); 8280 if (!PBB) 8281 continue; 8282 8283 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 8284 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 8285 continue; 8286 8287 Value *Condition = ContinuePredicate->getCondition(); 8288 8289 // If we have an edge `E` within the loop body that dominates the only 8290 // latch, the condition guarding `E` also guards the backedge. This 8291 // reasoning works only for loops with a single latch. 8292 8293 BasicBlockEdge DominatingEdge(PBB, BB); 8294 if (DominatingEdge.isSingleEdge()) { 8295 // We're constructively (and conservatively) enumerating edges within the 8296 // loop body that dominate the latch. The dominator tree better agree 8297 // with us on this: 8298 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 8299 8300 if (isImpliedCond(Pred, LHS, RHS, Condition, 8301 BB != ContinuePredicate->getSuccessor(0))) 8302 return true; 8303 } 8304 } 8305 8306 return false; 8307 } 8308 8309 bool 8310 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 8311 ICmpInst::Predicate Pred, 8312 const SCEV *LHS, const SCEV *RHS) { 8313 // Interpret a null as meaning no loop, where there is obviously no guard 8314 // (interprocedural conditions notwithstanding). 8315 if (!L) return false; 8316 8317 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS)) 8318 return true; 8319 8320 // Starting at the loop predecessor, climb up the predecessor chain, as long 8321 // as there are predecessors that can be found that have unique successors 8322 // leading to the original header. 8323 for (std::pair<BasicBlock *, BasicBlock *> 8324 Pair(L->getLoopPredecessor(), L->getHeader()); 8325 Pair.first; 8326 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 8327 8328 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS)) 8329 return true; 8330 8331 BranchInst *LoopEntryPredicate = 8332 dyn_cast<BranchInst>(Pair.first->getTerminator()); 8333 if (!LoopEntryPredicate || 8334 LoopEntryPredicate->isUnconditional()) 8335 continue; 8336 8337 if (isImpliedCond(Pred, LHS, RHS, 8338 LoopEntryPredicate->getCondition(), 8339 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 8340 return true; 8341 } 8342 8343 // Check conditions due to any @llvm.assume intrinsics. 8344 for (auto &AssumeVH : AC.assumptions()) { 8345 if (!AssumeVH) 8346 continue; 8347 auto *CI = cast<CallInst>(AssumeVH); 8348 if (!DT.dominates(CI, L->getHeader())) 8349 continue; 8350 8351 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 8352 return true; 8353 } 8354 8355 return false; 8356 } 8357 8358 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 8359 const SCEV *LHS, const SCEV *RHS, 8360 Value *FoundCondValue, 8361 bool Inverse) { 8362 if (!PendingLoopPredicates.insert(FoundCondValue).second) 8363 return false; 8364 8365 auto ClearOnExit = 8366 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 8367 8368 // Recursively handle And and Or conditions. 8369 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 8370 if (BO->getOpcode() == Instruction::And) { 8371 if (!Inverse) 8372 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8373 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8374 } else if (BO->getOpcode() == Instruction::Or) { 8375 if (Inverse) 8376 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 8377 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 8378 } 8379 } 8380 8381 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 8382 if (!ICI) return false; 8383 8384 // Now that we found a conditional branch that dominates the loop or controls 8385 // the loop latch. Check to see if it is the comparison we are looking for. 8386 ICmpInst::Predicate FoundPred; 8387 if (Inverse) 8388 FoundPred = ICI->getInversePredicate(); 8389 else 8390 FoundPred = ICI->getPredicate(); 8391 8392 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 8393 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 8394 8395 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 8396 } 8397 8398 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 8399 const SCEV *RHS, 8400 ICmpInst::Predicate FoundPred, 8401 const SCEV *FoundLHS, 8402 const SCEV *FoundRHS) { 8403 // Balance the types. 8404 if (getTypeSizeInBits(LHS->getType()) < 8405 getTypeSizeInBits(FoundLHS->getType())) { 8406 if (CmpInst::isSigned(Pred)) { 8407 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 8408 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 8409 } else { 8410 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 8411 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 8412 } 8413 } else if (getTypeSizeInBits(LHS->getType()) > 8414 getTypeSizeInBits(FoundLHS->getType())) { 8415 if (CmpInst::isSigned(FoundPred)) { 8416 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 8417 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 8418 } else { 8419 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 8420 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 8421 } 8422 } 8423 8424 // Canonicalize the query to match the way instcombine will have 8425 // canonicalized the comparison. 8426 if (SimplifyICmpOperands(Pred, LHS, RHS)) 8427 if (LHS == RHS) 8428 return CmpInst::isTrueWhenEqual(Pred); 8429 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 8430 if (FoundLHS == FoundRHS) 8431 return CmpInst::isFalseWhenEqual(FoundPred); 8432 8433 // Check to see if we can make the LHS or RHS match. 8434 if (LHS == FoundRHS || RHS == FoundLHS) { 8435 if (isa<SCEVConstant>(RHS)) { 8436 std::swap(FoundLHS, FoundRHS); 8437 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 8438 } else { 8439 std::swap(LHS, RHS); 8440 Pred = ICmpInst::getSwappedPredicate(Pred); 8441 } 8442 } 8443 8444 // Check whether the found predicate is the same as the desired predicate. 8445 if (FoundPred == Pred) 8446 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8447 8448 // Check whether swapping the found predicate makes it the same as the 8449 // desired predicate. 8450 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 8451 if (isa<SCEVConstant>(RHS)) 8452 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 8453 else 8454 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 8455 RHS, LHS, FoundLHS, FoundRHS); 8456 } 8457 8458 // Unsigned comparison is the same as signed comparison when both the operands 8459 // are non-negative. 8460 if (CmpInst::isUnsigned(FoundPred) && 8461 CmpInst::getSignedPredicate(FoundPred) == Pred && 8462 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 8463 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 8464 8465 // Check if we can make progress by sharpening ranges. 8466 if (FoundPred == ICmpInst::ICMP_NE && 8467 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 8468 8469 const SCEVConstant *C = nullptr; 8470 const SCEV *V = nullptr; 8471 8472 if (isa<SCEVConstant>(FoundLHS)) { 8473 C = cast<SCEVConstant>(FoundLHS); 8474 V = FoundRHS; 8475 } else { 8476 C = cast<SCEVConstant>(FoundRHS); 8477 V = FoundLHS; 8478 } 8479 8480 // The guarding predicate tells us that C != V. If the known range 8481 // of V is [C, t), we can sharpen the range to [C + 1, t). The 8482 // range we consider has to correspond to same signedness as the 8483 // predicate we're interested in folding. 8484 8485 APInt Min = ICmpInst::isSigned(Pred) ? 8486 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 8487 8488 if (Min == C->getAPInt()) { 8489 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 8490 // This is true even if (Min + 1) wraps around -- in case of 8491 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 8492 8493 APInt SharperMin = Min + 1; 8494 8495 switch (Pred) { 8496 case ICmpInst::ICMP_SGE: 8497 case ICmpInst::ICMP_UGE: 8498 // We know V `Pred` SharperMin. If this implies LHS `Pred` 8499 // RHS, we're done. 8500 if (isImpliedCondOperands(Pred, LHS, RHS, V, 8501 getConstant(SharperMin))) 8502 return true; 8503 8504 case ICmpInst::ICMP_SGT: 8505 case ICmpInst::ICMP_UGT: 8506 // We know from the range information that (V `Pred` Min || 8507 // V == Min). We know from the guarding condition that !(V 8508 // == Min). This gives us 8509 // 8510 // V `Pred` Min || V == Min && !(V == Min) 8511 // => V `Pred` Min 8512 // 8513 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 8514 8515 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 8516 return true; 8517 8518 default: 8519 // No change 8520 break; 8521 } 8522 } 8523 } 8524 8525 // Check whether the actual condition is beyond sufficient. 8526 if (FoundPred == ICmpInst::ICMP_EQ) 8527 if (ICmpInst::isTrueWhenEqual(Pred)) 8528 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8529 return true; 8530 if (Pred == ICmpInst::ICMP_NE) 8531 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 8532 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 8533 return true; 8534 8535 // Otherwise assume the worst. 8536 return false; 8537 } 8538 8539 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 8540 const SCEV *&L, const SCEV *&R, 8541 SCEV::NoWrapFlags &Flags) { 8542 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 8543 if (!AE || AE->getNumOperands() != 2) 8544 return false; 8545 8546 L = AE->getOperand(0); 8547 R = AE->getOperand(1); 8548 Flags = AE->getNoWrapFlags(); 8549 return true; 8550 } 8551 8552 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 8553 const SCEV *Less) { 8554 // We avoid subtracting expressions here because this function is usually 8555 // fairly deep in the call stack (i.e. is called many times). 8556 8557 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 8558 const auto *LAR = cast<SCEVAddRecExpr>(Less); 8559 const auto *MAR = cast<SCEVAddRecExpr>(More); 8560 8561 if (LAR->getLoop() != MAR->getLoop()) 8562 return None; 8563 8564 // We look at affine expressions only; not for correctness but to keep 8565 // getStepRecurrence cheap. 8566 if (!LAR->isAffine() || !MAR->isAffine()) 8567 return None; 8568 8569 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 8570 return None; 8571 8572 Less = LAR->getStart(); 8573 More = MAR->getStart(); 8574 8575 // fall through 8576 } 8577 8578 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 8579 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 8580 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 8581 return M - L; 8582 } 8583 8584 const SCEV *L, *R; 8585 SCEV::NoWrapFlags Flags; 8586 if (splitBinaryAdd(Less, L, R, Flags)) 8587 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8588 if (R == More) 8589 return -(LC->getAPInt()); 8590 8591 if (splitBinaryAdd(More, L, R, Flags)) 8592 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 8593 if (R == Less) 8594 return LC->getAPInt(); 8595 8596 return None; 8597 } 8598 8599 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 8600 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 8601 const SCEV *FoundLHS, const SCEV *FoundRHS) { 8602 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 8603 return false; 8604 8605 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 8606 if (!AddRecLHS) 8607 return false; 8608 8609 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 8610 if (!AddRecFoundLHS) 8611 return false; 8612 8613 // We'd like to let SCEV reason about control dependencies, so we constrain 8614 // both the inequalities to be about add recurrences on the same loop. This 8615 // way we can use isLoopEntryGuardedByCond later. 8616 8617 const Loop *L = AddRecFoundLHS->getLoop(); 8618 if (L != AddRecLHS->getLoop()) 8619 return false; 8620 8621 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 8622 // 8623 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 8624 // ... (2) 8625 // 8626 // Informal proof for (2), assuming (1) [*]: 8627 // 8628 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 8629 // 8630 // Then 8631 // 8632 // FoundLHS s< FoundRHS s< INT_MIN - C 8633 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 8634 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 8635 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 8636 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 8637 // <=> FoundLHS + C s< FoundRHS + C 8638 // 8639 // [*]: (1) can be proved by ruling out overflow. 8640 // 8641 // [**]: This can be proved by analyzing all the four possibilities: 8642 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 8643 // (A s>= 0, B s>= 0). 8644 // 8645 // Note: 8646 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 8647 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 8648 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 8649 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 8650 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 8651 // C)". 8652 8653 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 8654 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 8655 if (!LDiff || !RDiff || *LDiff != *RDiff) 8656 return false; 8657 8658 if (LDiff->isMinValue()) 8659 return true; 8660 8661 APInt FoundRHSLimit; 8662 8663 if (Pred == CmpInst::ICMP_ULT) { 8664 FoundRHSLimit = -(*RDiff); 8665 } else { 8666 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 8667 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 8668 } 8669 8670 // Try to prove (1) or (2), as needed. 8671 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 8672 getConstant(FoundRHSLimit)); 8673 } 8674 8675 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 8676 const SCEV *LHS, const SCEV *RHS, 8677 const SCEV *FoundLHS, 8678 const SCEV *FoundRHS) { 8679 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8680 return true; 8681 8682 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8683 return true; 8684 8685 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 8686 FoundLHS, FoundRHS) || 8687 // ~x < ~y --> x > y 8688 isImpliedCondOperandsHelper(Pred, LHS, RHS, 8689 getNotSCEV(FoundRHS), 8690 getNotSCEV(FoundLHS)); 8691 } 8692 8693 8694 /// If Expr computes ~A, return A else return nullptr 8695 static const SCEV *MatchNotExpr(const SCEV *Expr) { 8696 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 8697 if (!Add || Add->getNumOperands() != 2 || 8698 !Add->getOperand(0)->isAllOnesValue()) 8699 return nullptr; 8700 8701 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 8702 if (!AddRHS || AddRHS->getNumOperands() != 2 || 8703 !AddRHS->getOperand(0)->isAllOnesValue()) 8704 return nullptr; 8705 8706 return AddRHS->getOperand(1); 8707 } 8708 8709 8710 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 8711 template<typename MaxExprType> 8712 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 8713 const SCEV *Candidate) { 8714 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 8715 if (!MaxExpr) return false; 8716 8717 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); 8718 } 8719 8720 8721 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 8722 template<typename MaxExprType> 8723 static bool IsMinConsistingOf(ScalarEvolution &SE, 8724 const SCEV *MaybeMinExpr, 8725 const SCEV *Candidate) { 8726 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 8727 if (!MaybeMaxExpr) 8728 return false; 8729 8730 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 8731 } 8732 8733 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 8734 ICmpInst::Predicate Pred, 8735 const SCEV *LHS, const SCEV *RHS) { 8736 8737 // If both sides are affine addrecs for the same loop, with equal 8738 // steps, and we know the recurrences don't wrap, then we only 8739 // need to check the predicate on the starting values. 8740 8741 if (!ICmpInst::isRelational(Pred)) 8742 return false; 8743 8744 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 8745 if (!LAR) 8746 return false; 8747 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 8748 if (!RAR) 8749 return false; 8750 if (LAR->getLoop() != RAR->getLoop()) 8751 return false; 8752 if (!LAR->isAffine() || !RAR->isAffine()) 8753 return false; 8754 8755 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 8756 return false; 8757 8758 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 8759 SCEV::FlagNSW : SCEV::FlagNUW; 8760 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 8761 return false; 8762 8763 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 8764 } 8765 8766 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 8767 /// expression? 8768 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 8769 ICmpInst::Predicate Pred, 8770 const SCEV *LHS, const SCEV *RHS) { 8771 switch (Pred) { 8772 default: 8773 return false; 8774 8775 case ICmpInst::ICMP_SGE: 8776 std::swap(LHS, RHS); 8777 LLVM_FALLTHROUGH; 8778 case ICmpInst::ICMP_SLE: 8779 return 8780 // min(A, ...) <= A 8781 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 8782 // A <= max(A, ...) 8783 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 8784 8785 case ICmpInst::ICMP_UGE: 8786 std::swap(LHS, RHS); 8787 LLVM_FALLTHROUGH; 8788 case ICmpInst::ICMP_ULE: 8789 return 8790 // min(A, ...) <= A 8791 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 8792 // A <= max(A, ...) 8793 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 8794 } 8795 8796 llvm_unreachable("covered switch fell through?!"); 8797 } 8798 8799 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 8800 const SCEV *LHS, const SCEV *RHS, 8801 const SCEV *FoundLHS, 8802 const SCEV *FoundRHS, 8803 unsigned Depth) { 8804 assert(getTypeSizeInBits(LHS->getType()) == 8805 getTypeSizeInBits(RHS->getType()) && 8806 "LHS and RHS have different sizes?"); 8807 assert(getTypeSizeInBits(FoundLHS->getType()) == 8808 getTypeSizeInBits(FoundRHS->getType()) && 8809 "FoundLHS and FoundRHS have different sizes?"); 8810 // We want to avoid hurting the compile time with analysis of too big trees. 8811 if (Depth > MaxSCEVOperationsImplicationDepth) 8812 return false; 8813 // We only want to work with ICMP_SGT comparison so far. 8814 // TODO: Extend to ICMP_UGT? 8815 if (Pred == ICmpInst::ICMP_SLT) { 8816 Pred = ICmpInst::ICMP_SGT; 8817 std::swap(LHS, RHS); 8818 std::swap(FoundLHS, FoundRHS); 8819 } 8820 if (Pred != ICmpInst::ICMP_SGT) 8821 return false; 8822 8823 auto GetOpFromSExt = [&](const SCEV *S) { 8824 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 8825 return Ext->getOperand(); 8826 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 8827 // the constant in some cases. 8828 return S; 8829 }; 8830 8831 // Acquire values from extensions. 8832 auto *OrigFoundLHS = FoundLHS; 8833 LHS = GetOpFromSExt(LHS); 8834 FoundLHS = GetOpFromSExt(FoundLHS); 8835 8836 // Is the SGT predicate can be proved trivially or using the found context. 8837 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 8838 return isKnownViaSimpleReasoning(ICmpInst::ICMP_SGT, S1, S2) || 8839 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 8840 FoundRHS, Depth + 1); 8841 }; 8842 8843 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 8844 // We want to avoid creation of any new non-constant SCEV. Since we are 8845 // going to compare the operands to RHS, we should be certain that we don't 8846 // need any size extensions for this. So let's decline all cases when the 8847 // sizes of types of LHS and RHS do not match. 8848 // TODO: Maybe try to get RHS from sext to catch more cases? 8849 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 8850 return false; 8851 8852 // Should not overflow. 8853 if (!LHSAddExpr->hasNoSignedWrap()) 8854 return false; 8855 8856 auto *LL = LHSAddExpr->getOperand(0); 8857 auto *LR = LHSAddExpr->getOperand(1); 8858 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 8859 8860 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 8861 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 8862 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 8863 }; 8864 // Try to prove the following rule: 8865 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 8866 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 8867 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 8868 return true; 8869 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 8870 Value *LL, *LR; 8871 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 8872 using namespace llvm::PatternMatch; 8873 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 8874 // Rules for division. 8875 // We are going to perform some comparisons with Denominator and its 8876 // derivative expressions. In general case, creating a SCEV for it may 8877 // lead to a complex analysis of the entire graph, and in particular it 8878 // can request trip count recalculation for the same loop. This would 8879 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 8880 // this, we only want to create SCEVs that are constants in this section. 8881 // So we bail if Denominator is not a constant. 8882 if (!isa<ConstantInt>(LR)) 8883 return false; 8884 8885 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 8886 8887 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 8888 // then a SCEV for the numerator already exists and matches with FoundLHS. 8889 auto *Numerator = getExistingSCEV(LL); 8890 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 8891 return false; 8892 8893 // Make sure that the numerator matches with FoundLHS and the denominator 8894 // is positive. 8895 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 8896 return false; 8897 8898 auto *DTy = Denominator->getType(); 8899 auto *FRHSTy = FoundRHS->getType(); 8900 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 8901 // One of types is a pointer and another one is not. We cannot extend 8902 // them properly to a wider type, so let us just reject this case. 8903 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 8904 // to avoid this check. 8905 return false; 8906 8907 // Given that: 8908 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 8909 auto *WTy = getWiderType(DTy, FRHSTy); 8910 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 8911 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 8912 8913 // Try to prove the following rule: 8914 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 8915 // For example, given that FoundLHS > 2. It means that FoundLHS is at 8916 // least 3. If we divide it by Denominator < 4, we will have at least 1. 8917 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 8918 if (isKnownNonPositive(RHS) && 8919 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 8920 return true; 8921 8922 // Try to prove the following rule: 8923 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 8924 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 8925 // If we divide it by Denominator > 2, then: 8926 // 1. If FoundLHS is negative, then the result is 0. 8927 // 2. If FoundLHS is non-negative, then the result is non-negative. 8928 // Anyways, the result is non-negative. 8929 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 8930 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 8931 if (isKnownNegative(RHS) && 8932 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 8933 return true; 8934 } 8935 } 8936 8937 return false; 8938 } 8939 8940 bool 8941 ScalarEvolution::isKnownViaSimpleReasoning(ICmpInst::Predicate Pred, 8942 const SCEV *LHS, const SCEV *RHS) { 8943 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 8944 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 8945 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 8946 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 8947 } 8948 8949 bool 8950 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 8951 const SCEV *LHS, const SCEV *RHS, 8952 const SCEV *FoundLHS, 8953 const SCEV *FoundRHS) { 8954 switch (Pred) { 8955 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 8956 case ICmpInst::ICMP_EQ: 8957 case ICmpInst::ICMP_NE: 8958 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 8959 return true; 8960 break; 8961 case ICmpInst::ICMP_SLT: 8962 case ICmpInst::ICMP_SLE: 8963 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 8964 isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 8965 return true; 8966 break; 8967 case ICmpInst::ICMP_SGT: 8968 case ICmpInst::ICMP_SGE: 8969 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 8970 isKnownViaSimpleReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 8971 return true; 8972 break; 8973 case ICmpInst::ICMP_ULT: 8974 case ICmpInst::ICMP_ULE: 8975 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 8976 isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 8977 return true; 8978 break; 8979 case ICmpInst::ICMP_UGT: 8980 case ICmpInst::ICMP_UGE: 8981 if (isKnownViaSimpleReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 8982 isKnownViaSimpleReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 8983 return true; 8984 break; 8985 } 8986 8987 // Maybe it can be proved via operations? 8988 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 8989 return true; 8990 8991 return false; 8992 } 8993 8994 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 8995 const SCEV *LHS, 8996 const SCEV *RHS, 8997 const SCEV *FoundLHS, 8998 const SCEV *FoundRHS) { 8999 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 9000 // The restriction on `FoundRHS` be lifted easily -- it exists only to 9001 // reduce the compile time impact of this optimization. 9002 return false; 9003 9004 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 9005 if (!Addend) 9006 return false; 9007 9008 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 9009 9010 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 9011 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 9012 ConstantRange FoundLHSRange = 9013 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 9014 9015 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 9016 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 9017 9018 // We can also compute the range of values for `LHS` that satisfy the 9019 // consequent, "`LHS` `Pred` `RHS`": 9020 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 9021 ConstantRange SatisfyingLHSRange = 9022 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 9023 9024 // The antecedent implies the consequent if every value of `LHS` that 9025 // satisfies the antecedent also satisfies the consequent. 9026 return SatisfyingLHSRange.contains(LHSRange); 9027 } 9028 9029 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 9030 bool IsSigned, bool NoWrap) { 9031 assert(isKnownPositive(Stride) && "Positive stride expected!"); 9032 9033 if (NoWrap) return false; 9034 9035 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9036 const SCEV *One = getOne(Stride->getType()); 9037 9038 if (IsSigned) { 9039 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 9040 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 9041 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 9042 .getSignedMax(); 9043 9044 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 9045 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 9046 } 9047 9048 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 9049 APInt MaxValue = APInt::getMaxValue(BitWidth); 9050 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 9051 .getUnsignedMax(); 9052 9053 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 9054 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 9055 } 9056 9057 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 9058 bool IsSigned, bool NoWrap) { 9059 if (NoWrap) return false; 9060 9061 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 9062 const SCEV *One = getOne(Stride->getType()); 9063 9064 if (IsSigned) { 9065 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 9066 APInt MinValue = APInt::getSignedMinValue(BitWidth); 9067 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 9068 .getSignedMax(); 9069 9070 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 9071 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 9072 } 9073 9074 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 9075 APInt MinValue = APInt::getMinValue(BitWidth); 9076 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 9077 .getUnsignedMax(); 9078 9079 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 9080 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 9081 } 9082 9083 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 9084 bool Equality) { 9085 const SCEV *One = getOne(Step->getType()); 9086 Delta = Equality ? getAddExpr(Delta, Step) 9087 : getAddExpr(Delta, getMinusSCEV(Step, One)); 9088 return getUDivExpr(Delta, Step); 9089 } 9090 9091 ScalarEvolution::ExitLimit 9092 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 9093 const Loop *L, bool IsSigned, 9094 bool ControlsExit, bool AllowPredicates) { 9095 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9096 // We handle only IV < Invariant 9097 if (!isLoopInvariant(RHS, L)) 9098 return getCouldNotCompute(); 9099 9100 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9101 bool PredicatedIV = false; 9102 9103 if (!IV && AllowPredicates) { 9104 // Try to make this an AddRec using runtime tests, in the first X 9105 // iterations of this loop, where X is the SCEV expression found by the 9106 // algorithm below. 9107 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9108 PredicatedIV = true; 9109 } 9110 9111 // Avoid weird loops 9112 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9113 return getCouldNotCompute(); 9114 9115 bool NoWrap = ControlsExit && 9116 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9117 9118 const SCEV *Stride = IV->getStepRecurrence(*this); 9119 9120 bool PositiveStride = isKnownPositive(Stride); 9121 9122 // Avoid negative or zero stride values. 9123 if (!PositiveStride) { 9124 // We can compute the correct backedge taken count for loops with unknown 9125 // strides if we can prove that the loop is not an infinite loop with side 9126 // effects. Here's the loop structure we are trying to handle - 9127 // 9128 // i = start 9129 // do { 9130 // A[i] = i; 9131 // i += s; 9132 // } while (i < end); 9133 // 9134 // The backedge taken count for such loops is evaluated as - 9135 // (max(end, start + stride) - start - 1) /u stride 9136 // 9137 // The additional preconditions that we need to check to prove correctness 9138 // of the above formula is as follows - 9139 // 9140 // a) IV is either nuw or nsw depending upon signedness (indicated by the 9141 // NoWrap flag). 9142 // b) loop is single exit with no side effects. 9143 // 9144 // 9145 // Precondition a) implies that if the stride is negative, this is a single 9146 // trip loop. The backedge taken count formula reduces to zero in this case. 9147 // 9148 // Precondition b) implies that the unknown stride cannot be zero otherwise 9149 // we have UB. 9150 // 9151 // The positive stride case is the same as isKnownPositive(Stride) returning 9152 // true (original behavior of the function). 9153 // 9154 // We want to make sure that the stride is truly unknown as there are edge 9155 // cases where ScalarEvolution propagates no wrap flags to the 9156 // post-increment/decrement IV even though the increment/decrement operation 9157 // itself is wrapping. The computed backedge taken count may be wrong in 9158 // such cases. This is prevented by checking that the stride is not known to 9159 // be either positive or non-positive. For example, no wrap flags are 9160 // propagated to the post-increment IV of this loop with a trip count of 2 - 9161 // 9162 // unsigned char i; 9163 // for(i=127; i<128; i+=129) 9164 // A[i] = i; 9165 // 9166 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 9167 !loopHasNoSideEffects(L)) 9168 return getCouldNotCompute(); 9169 9170 } else if (!Stride->isOne() && 9171 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 9172 // Avoid proven overflow cases: this will ensure that the backedge taken 9173 // count will not generate any unsigned overflow. Relaxed no-overflow 9174 // conditions exploit NoWrapFlags, allowing to optimize in presence of 9175 // undefined behaviors like the case of C language. 9176 return getCouldNotCompute(); 9177 9178 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 9179 : ICmpInst::ICMP_ULT; 9180 const SCEV *Start = IV->getStart(); 9181 const SCEV *End = RHS; 9182 // If the backedge is taken at least once, then it will be taken 9183 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 9184 // is the LHS value of the less-than comparison the first time it is evaluated 9185 // and End is the RHS. 9186 const SCEV *BECountIfBackedgeTaken = 9187 computeBECount(getMinusSCEV(End, Start), Stride, false); 9188 // If the loop entry is guarded by the result of the backedge test of the 9189 // first loop iteration, then we know the backedge will be taken at least 9190 // once and so the backedge taken count is as above. If not then we use the 9191 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 9192 // as if the backedge is taken at least once max(End,Start) is End and so the 9193 // result is as above, and if not max(End,Start) is Start so we get a backedge 9194 // count of zero. 9195 const SCEV *BECount; 9196 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 9197 BECount = BECountIfBackedgeTaken; 9198 else { 9199 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 9200 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 9201 } 9202 9203 const SCEV *MaxBECount; 9204 bool MaxOrZero = false; 9205 if (isa<SCEVConstant>(BECount)) 9206 MaxBECount = BECount; 9207 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 9208 // If we know exactly how many times the backedge will be taken if it's 9209 // taken at least once, then the backedge count will either be that or 9210 // zero. 9211 MaxBECount = BECountIfBackedgeTaken; 9212 MaxOrZero = true; 9213 } else { 9214 // Calculate the maximum backedge count based on the range of values 9215 // permitted by Start, End, and Stride. 9216 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 9217 : getUnsignedRange(Start).getUnsignedMin(); 9218 9219 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9220 9221 APInt StrideForMaxBECount; 9222 9223 if (PositiveStride) 9224 StrideForMaxBECount = 9225 IsSigned ? getSignedRange(Stride).getSignedMin() 9226 : getUnsignedRange(Stride).getUnsignedMin(); 9227 else 9228 // Using a stride of 1 is safe when computing max backedge taken count for 9229 // a loop with unknown stride. 9230 StrideForMaxBECount = APInt(BitWidth, 1, IsSigned); 9231 9232 APInt Limit = 9233 IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1) 9234 : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1); 9235 9236 // Although End can be a MAX expression we estimate MaxEnd considering only 9237 // the case End = RHS. This is safe because in the other case (End - Start) 9238 // is zero, leading to a zero maximum backedge taken count. 9239 APInt MaxEnd = 9240 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 9241 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 9242 9243 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 9244 getConstant(StrideForMaxBECount), false); 9245 } 9246 9247 if (isa<SCEVCouldNotCompute>(MaxBECount) && 9248 !isa<SCEVCouldNotCompute>(BECount)) 9249 MaxBECount = getConstant(getUnsignedRange(BECount).getUnsignedMax()); 9250 9251 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 9252 } 9253 9254 ScalarEvolution::ExitLimit 9255 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 9256 const Loop *L, bool IsSigned, 9257 bool ControlsExit, bool AllowPredicates) { 9258 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9259 // We handle only IV > Invariant 9260 if (!isLoopInvariant(RHS, L)) 9261 return getCouldNotCompute(); 9262 9263 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 9264 if (!IV && AllowPredicates) 9265 // Try to make this an AddRec using runtime tests, in the first X 9266 // iterations of this loop, where X is the SCEV expression found by the 9267 // algorithm below. 9268 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 9269 9270 // Avoid weird loops 9271 if (!IV || IV->getLoop() != L || !IV->isAffine()) 9272 return getCouldNotCompute(); 9273 9274 bool NoWrap = ControlsExit && 9275 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 9276 9277 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 9278 9279 // Avoid negative or zero stride values 9280 if (!isKnownPositive(Stride)) 9281 return getCouldNotCompute(); 9282 9283 // Avoid proven overflow cases: this will ensure that the backedge taken count 9284 // will not generate any unsigned overflow. Relaxed no-overflow conditions 9285 // exploit NoWrapFlags, allowing to optimize in presence of undefined 9286 // behaviors like the case of C language. 9287 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 9288 return getCouldNotCompute(); 9289 9290 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 9291 : ICmpInst::ICMP_UGT; 9292 9293 const SCEV *Start = IV->getStart(); 9294 const SCEV *End = RHS; 9295 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 9296 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 9297 9298 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 9299 9300 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 9301 : getUnsignedRange(Start).getUnsignedMax(); 9302 9303 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 9304 : getUnsignedRange(Stride).getUnsignedMin(); 9305 9306 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 9307 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 9308 : APInt::getMinValue(BitWidth) + (MinStride - 1); 9309 9310 // Although End can be a MIN expression we estimate MinEnd considering only 9311 // the case End = RHS. This is safe because in the other case (Start - End) 9312 // is zero, leading to a zero maximum backedge taken count. 9313 APInt MinEnd = 9314 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 9315 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 9316 9317 9318 const SCEV *MaxBECount = getCouldNotCompute(); 9319 if (isa<SCEVConstant>(BECount)) 9320 MaxBECount = BECount; 9321 else 9322 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 9323 getConstant(MinStride), false); 9324 9325 if (isa<SCEVCouldNotCompute>(MaxBECount)) 9326 MaxBECount = BECount; 9327 9328 return ExitLimit(BECount, MaxBECount, false, Predicates); 9329 } 9330 9331 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 9332 ScalarEvolution &SE) const { 9333 if (Range.isFullSet()) // Infinite loop. 9334 return SE.getCouldNotCompute(); 9335 9336 // If the start is a non-zero constant, shift the range to simplify things. 9337 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 9338 if (!SC->getValue()->isZero()) { 9339 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 9340 Operands[0] = SE.getZero(SC->getType()); 9341 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 9342 getNoWrapFlags(FlagNW)); 9343 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 9344 return ShiftedAddRec->getNumIterationsInRange( 9345 Range.subtract(SC->getAPInt()), SE); 9346 // This is strange and shouldn't happen. 9347 return SE.getCouldNotCompute(); 9348 } 9349 9350 // The only time we can solve this is when we have all constant indices. 9351 // Otherwise, we cannot determine the overflow conditions. 9352 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 9353 return SE.getCouldNotCompute(); 9354 9355 // Okay at this point we know that all elements of the chrec are constants and 9356 // that the start element is zero. 9357 9358 // First check to see if the range contains zero. If not, the first 9359 // iteration exits. 9360 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 9361 if (!Range.contains(APInt(BitWidth, 0))) 9362 return SE.getZero(getType()); 9363 9364 if (isAffine()) { 9365 // If this is an affine expression then we have this situation: 9366 // Solve {0,+,A} in Range === Ax in Range 9367 9368 // We know that zero is in the range. If A is positive then we know that 9369 // the upper value of the range must be the first possible exit value. 9370 // If A is negative then the lower of the range is the last possible loop 9371 // value. Also note that we already checked for a full range. 9372 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 9373 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 9374 9375 // The exit value should be (End+A)/A. 9376 APInt ExitVal = (End + A).udiv(A); 9377 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 9378 9379 // Evaluate at the exit value. If we really did fall out of the valid 9380 // range, then we computed our trip count, otherwise wrap around or other 9381 // things must have happened. 9382 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 9383 if (Range.contains(Val->getValue())) 9384 return SE.getCouldNotCompute(); // Something strange happened 9385 9386 // Ensure that the previous value is in the range. This is a sanity check. 9387 assert(Range.contains( 9388 EvaluateConstantChrecAtConstant(this, 9389 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 9390 "Linear scev computation is off in a bad way!"); 9391 return SE.getConstant(ExitValue); 9392 } else if (isQuadratic()) { 9393 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 9394 // quadratic equation to solve it. To do this, we must frame our problem in 9395 // terms of figuring out when zero is crossed, instead of when 9396 // Range.getUpper() is crossed. 9397 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 9398 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 9399 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap); 9400 9401 // Next, solve the constructed addrec 9402 if (auto Roots = 9403 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) { 9404 const SCEVConstant *R1 = Roots->first; 9405 const SCEVConstant *R2 = Roots->second; 9406 // Pick the smallest positive root value. 9407 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp( 9408 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) { 9409 if (!CB->getZExtValue()) 9410 std::swap(R1, R2); // R1 is the minimum root now. 9411 9412 // Make sure the root is not off by one. The returned iteration should 9413 // not be in the range, but the previous one should be. When solving 9414 // for "X*X < 5", for example, we should not return a root of 2. 9415 ConstantInt *R1Val = 9416 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE); 9417 if (Range.contains(R1Val->getValue())) { 9418 // The next iteration must be out of the range... 9419 ConstantInt *NextVal = 9420 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1); 9421 9422 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9423 if (!Range.contains(R1Val->getValue())) 9424 return SE.getConstant(NextVal); 9425 return SE.getCouldNotCompute(); // Something strange happened 9426 } 9427 9428 // If R1 was not in the range, then it is a good return value. Make 9429 // sure that R1-1 WAS in the range though, just in case. 9430 ConstantInt *NextVal = 9431 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1); 9432 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 9433 if (Range.contains(R1Val->getValue())) 9434 return R1; 9435 return SE.getCouldNotCompute(); // Something strange happened 9436 } 9437 } 9438 } 9439 9440 return SE.getCouldNotCompute(); 9441 } 9442 9443 // Return true when S contains at least an undef value. 9444 static inline bool containsUndefs(const SCEV *S) { 9445 return SCEVExprContains(S, [](const SCEV *S) { 9446 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 9447 return isa<UndefValue>(SU->getValue()); 9448 else if (const auto *SC = dyn_cast<SCEVConstant>(S)) 9449 return isa<UndefValue>(SC->getValue()); 9450 return false; 9451 }); 9452 } 9453 9454 namespace { 9455 // Collect all steps of SCEV expressions. 9456 struct SCEVCollectStrides { 9457 ScalarEvolution &SE; 9458 SmallVectorImpl<const SCEV *> &Strides; 9459 9460 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 9461 : SE(SE), Strides(S) {} 9462 9463 bool follow(const SCEV *S) { 9464 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 9465 Strides.push_back(AR->getStepRecurrence(SE)); 9466 return true; 9467 } 9468 bool isDone() const { return false; } 9469 }; 9470 9471 // Collect all SCEVUnknown and SCEVMulExpr expressions. 9472 struct SCEVCollectTerms { 9473 SmallVectorImpl<const SCEV *> &Terms; 9474 9475 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 9476 : Terms(T) {} 9477 9478 bool follow(const SCEV *S) { 9479 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 9480 isa<SCEVSignExtendExpr>(S)) { 9481 if (!containsUndefs(S)) 9482 Terms.push_back(S); 9483 9484 // Stop recursion: once we collected a term, do not walk its operands. 9485 return false; 9486 } 9487 9488 // Keep looking. 9489 return true; 9490 } 9491 bool isDone() const { return false; } 9492 }; 9493 9494 // Check if a SCEV contains an AddRecExpr. 9495 struct SCEVHasAddRec { 9496 bool &ContainsAddRec; 9497 9498 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 9499 ContainsAddRec = false; 9500 } 9501 9502 bool follow(const SCEV *S) { 9503 if (isa<SCEVAddRecExpr>(S)) { 9504 ContainsAddRec = true; 9505 9506 // Stop recursion: once we collected a term, do not walk its operands. 9507 return false; 9508 } 9509 9510 // Keep looking. 9511 return true; 9512 } 9513 bool isDone() const { return false; } 9514 }; 9515 9516 // Find factors that are multiplied with an expression that (possibly as a 9517 // subexpression) contains an AddRecExpr. In the expression: 9518 // 9519 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 9520 // 9521 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 9522 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 9523 // parameters as they form a product with an induction variable. 9524 // 9525 // This collector expects all array size parameters to be in the same MulExpr. 9526 // It might be necessary to later add support for collecting parameters that are 9527 // spread over different nested MulExpr. 9528 struct SCEVCollectAddRecMultiplies { 9529 SmallVectorImpl<const SCEV *> &Terms; 9530 ScalarEvolution &SE; 9531 9532 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 9533 : Terms(T), SE(SE) {} 9534 9535 bool follow(const SCEV *S) { 9536 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 9537 bool HasAddRec = false; 9538 SmallVector<const SCEV *, 0> Operands; 9539 for (auto Op : Mul->operands()) { 9540 if (isa<SCEVUnknown>(Op)) { 9541 Operands.push_back(Op); 9542 } else { 9543 bool ContainsAddRec; 9544 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 9545 visitAll(Op, ContiansAddRec); 9546 HasAddRec |= ContainsAddRec; 9547 } 9548 } 9549 if (Operands.size() == 0) 9550 return true; 9551 9552 if (!HasAddRec) 9553 return false; 9554 9555 Terms.push_back(SE.getMulExpr(Operands)); 9556 // Stop recursion: once we collected a term, do not walk its operands. 9557 return false; 9558 } 9559 9560 // Keep looking. 9561 return true; 9562 } 9563 bool isDone() const { return false; } 9564 }; 9565 } 9566 9567 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 9568 /// two places: 9569 /// 1) The strides of AddRec expressions. 9570 /// 2) Unknowns that are multiplied with AddRec expressions. 9571 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 9572 SmallVectorImpl<const SCEV *> &Terms) { 9573 SmallVector<const SCEV *, 4> Strides; 9574 SCEVCollectStrides StrideCollector(*this, Strides); 9575 visitAll(Expr, StrideCollector); 9576 9577 DEBUG({ 9578 dbgs() << "Strides:\n"; 9579 for (const SCEV *S : Strides) 9580 dbgs() << *S << "\n"; 9581 }); 9582 9583 for (const SCEV *S : Strides) { 9584 SCEVCollectTerms TermCollector(Terms); 9585 visitAll(S, TermCollector); 9586 } 9587 9588 DEBUG({ 9589 dbgs() << "Terms:\n"; 9590 for (const SCEV *T : Terms) 9591 dbgs() << *T << "\n"; 9592 }); 9593 9594 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 9595 visitAll(Expr, MulCollector); 9596 } 9597 9598 static bool findArrayDimensionsRec(ScalarEvolution &SE, 9599 SmallVectorImpl<const SCEV *> &Terms, 9600 SmallVectorImpl<const SCEV *> &Sizes) { 9601 int Last = Terms.size() - 1; 9602 const SCEV *Step = Terms[Last]; 9603 9604 // End of recursion. 9605 if (Last == 0) { 9606 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 9607 SmallVector<const SCEV *, 2> Qs; 9608 for (const SCEV *Op : M->operands()) 9609 if (!isa<SCEVConstant>(Op)) 9610 Qs.push_back(Op); 9611 9612 Step = SE.getMulExpr(Qs); 9613 } 9614 9615 Sizes.push_back(Step); 9616 return true; 9617 } 9618 9619 for (const SCEV *&Term : Terms) { 9620 // Normalize the terms before the next call to findArrayDimensionsRec. 9621 const SCEV *Q, *R; 9622 SCEVDivision::divide(SE, Term, Step, &Q, &R); 9623 9624 // Bail out when GCD does not evenly divide one of the terms. 9625 if (!R->isZero()) 9626 return false; 9627 9628 Term = Q; 9629 } 9630 9631 // Remove all SCEVConstants. 9632 Terms.erase( 9633 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 9634 Terms.end()); 9635 9636 if (Terms.size() > 0) 9637 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 9638 return false; 9639 9640 Sizes.push_back(Step); 9641 return true; 9642 } 9643 9644 9645 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 9646 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 9647 for (const SCEV *T : Terms) 9648 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) 9649 return true; 9650 return false; 9651 } 9652 9653 // Return the number of product terms in S. 9654 static inline int numberOfTerms(const SCEV *S) { 9655 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 9656 return Expr->getNumOperands(); 9657 return 1; 9658 } 9659 9660 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 9661 if (isa<SCEVConstant>(T)) 9662 return nullptr; 9663 9664 if (isa<SCEVUnknown>(T)) 9665 return T; 9666 9667 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 9668 SmallVector<const SCEV *, 2> Factors; 9669 for (const SCEV *Op : M->operands()) 9670 if (!isa<SCEVConstant>(Op)) 9671 Factors.push_back(Op); 9672 9673 return SE.getMulExpr(Factors); 9674 } 9675 9676 return T; 9677 } 9678 9679 /// Return the size of an element read or written by Inst. 9680 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 9681 Type *Ty; 9682 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 9683 Ty = Store->getValueOperand()->getType(); 9684 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 9685 Ty = Load->getType(); 9686 else 9687 return nullptr; 9688 9689 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 9690 return getSizeOfExpr(ETy, Ty); 9691 } 9692 9693 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 9694 SmallVectorImpl<const SCEV *> &Sizes, 9695 const SCEV *ElementSize) { 9696 if (Terms.size() < 1 || !ElementSize) 9697 return; 9698 9699 // Early return when Terms do not contain parameters: we do not delinearize 9700 // non parametric SCEVs. 9701 if (!containsParameters(Terms)) 9702 return; 9703 9704 DEBUG({ 9705 dbgs() << "Terms:\n"; 9706 for (const SCEV *T : Terms) 9707 dbgs() << *T << "\n"; 9708 }); 9709 9710 // Remove duplicates. 9711 array_pod_sort(Terms.begin(), Terms.end()); 9712 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 9713 9714 // Put larger terms first. 9715 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 9716 return numberOfTerms(LHS) > numberOfTerms(RHS); 9717 }); 9718 9719 // Try to divide all terms by the element size. If term is not divisible by 9720 // element size, proceed with the original term. 9721 for (const SCEV *&Term : Terms) { 9722 const SCEV *Q, *R; 9723 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 9724 if (!Q->isZero()) 9725 Term = Q; 9726 } 9727 9728 SmallVector<const SCEV *, 4> NewTerms; 9729 9730 // Remove constant factors. 9731 for (const SCEV *T : Terms) 9732 if (const SCEV *NewT = removeConstantFactors(*this, T)) 9733 NewTerms.push_back(NewT); 9734 9735 DEBUG({ 9736 dbgs() << "Terms after sorting:\n"; 9737 for (const SCEV *T : NewTerms) 9738 dbgs() << *T << "\n"; 9739 }); 9740 9741 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 9742 Sizes.clear(); 9743 return; 9744 } 9745 9746 // The last element to be pushed into Sizes is the size of an element. 9747 Sizes.push_back(ElementSize); 9748 9749 DEBUG({ 9750 dbgs() << "Sizes:\n"; 9751 for (const SCEV *S : Sizes) 9752 dbgs() << *S << "\n"; 9753 }); 9754 } 9755 9756 void ScalarEvolution::computeAccessFunctions( 9757 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 9758 SmallVectorImpl<const SCEV *> &Sizes) { 9759 9760 // Early exit in case this SCEV is not an affine multivariate function. 9761 if (Sizes.empty()) 9762 return; 9763 9764 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 9765 if (!AR->isAffine()) 9766 return; 9767 9768 const SCEV *Res = Expr; 9769 int Last = Sizes.size() - 1; 9770 for (int i = Last; i >= 0; i--) { 9771 const SCEV *Q, *R; 9772 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 9773 9774 DEBUG({ 9775 dbgs() << "Res: " << *Res << "\n"; 9776 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 9777 dbgs() << "Res divided by Sizes[i]:\n"; 9778 dbgs() << "Quotient: " << *Q << "\n"; 9779 dbgs() << "Remainder: " << *R << "\n"; 9780 }); 9781 9782 Res = Q; 9783 9784 // Do not record the last subscript corresponding to the size of elements in 9785 // the array. 9786 if (i == Last) { 9787 9788 // Bail out if the remainder is too complex. 9789 if (isa<SCEVAddRecExpr>(R)) { 9790 Subscripts.clear(); 9791 Sizes.clear(); 9792 return; 9793 } 9794 9795 continue; 9796 } 9797 9798 // Record the access function for the current subscript. 9799 Subscripts.push_back(R); 9800 } 9801 9802 // Also push in last position the remainder of the last division: it will be 9803 // the access function of the innermost dimension. 9804 Subscripts.push_back(Res); 9805 9806 std::reverse(Subscripts.begin(), Subscripts.end()); 9807 9808 DEBUG({ 9809 dbgs() << "Subscripts:\n"; 9810 for (const SCEV *S : Subscripts) 9811 dbgs() << *S << "\n"; 9812 }); 9813 } 9814 9815 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 9816 /// sizes of an array access. Returns the remainder of the delinearization that 9817 /// is the offset start of the array. The SCEV->delinearize algorithm computes 9818 /// the multiples of SCEV coefficients: that is a pattern matching of sub 9819 /// expressions in the stride and base of a SCEV corresponding to the 9820 /// computation of a GCD (greatest common divisor) of base and stride. When 9821 /// SCEV->delinearize fails, it returns the SCEV unchanged. 9822 /// 9823 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 9824 /// 9825 /// void foo(long n, long m, long o, double A[n][m][o]) { 9826 /// 9827 /// for (long i = 0; i < n; i++) 9828 /// for (long j = 0; j < m; j++) 9829 /// for (long k = 0; k < o; k++) 9830 /// A[i][j][k] = 1.0; 9831 /// } 9832 /// 9833 /// the delinearization input is the following AddRec SCEV: 9834 /// 9835 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 9836 /// 9837 /// From this SCEV, we are able to say that the base offset of the access is %A 9838 /// because it appears as an offset that does not divide any of the strides in 9839 /// the loops: 9840 /// 9841 /// CHECK: Base offset: %A 9842 /// 9843 /// and then SCEV->delinearize determines the size of some of the dimensions of 9844 /// the array as these are the multiples by which the strides are happening: 9845 /// 9846 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 9847 /// 9848 /// Note that the outermost dimension remains of UnknownSize because there are 9849 /// no strides that would help identifying the size of the last dimension: when 9850 /// the array has been statically allocated, one could compute the size of that 9851 /// dimension by dividing the overall size of the array by the size of the known 9852 /// dimensions: %m * %o * 8. 9853 /// 9854 /// Finally delinearize provides the access functions for the array reference 9855 /// that does correspond to A[i][j][k] of the above C testcase: 9856 /// 9857 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 9858 /// 9859 /// The testcases are checking the output of a function pass: 9860 /// DelinearizationPass that walks through all loads and stores of a function 9861 /// asking for the SCEV of the memory access with respect to all enclosing 9862 /// loops, calling SCEV->delinearize on that and printing the results. 9863 9864 void ScalarEvolution::delinearize(const SCEV *Expr, 9865 SmallVectorImpl<const SCEV *> &Subscripts, 9866 SmallVectorImpl<const SCEV *> &Sizes, 9867 const SCEV *ElementSize) { 9868 // First step: collect parametric terms. 9869 SmallVector<const SCEV *, 4> Terms; 9870 collectParametricTerms(Expr, Terms); 9871 9872 if (Terms.empty()) 9873 return; 9874 9875 // Second step: find subscript sizes. 9876 findArrayDimensions(Terms, Sizes, ElementSize); 9877 9878 if (Sizes.empty()) 9879 return; 9880 9881 // Third step: compute the access functions for each subscript. 9882 computeAccessFunctions(Expr, Subscripts, Sizes); 9883 9884 if (Subscripts.empty()) 9885 return; 9886 9887 DEBUG({ 9888 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 9889 dbgs() << "ArrayDecl[UnknownSize]"; 9890 for (const SCEV *S : Sizes) 9891 dbgs() << "[" << *S << "]"; 9892 9893 dbgs() << "\nArrayRef"; 9894 for (const SCEV *S : Subscripts) 9895 dbgs() << "[" << *S << "]"; 9896 dbgs() << "\n"; 9897 }); 9898 } 9899 9900 //===----------------------------------------------------------------------===// 9901 // SCEVCallbackVH Class Implementation 9902 //===----------------------------------------------------------------------===// 9903 9904 void ScalarEvolution::SCEVCallbackVH::deleted() { 9905 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9906 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 9907 SE->ConstantEvolutionLoopExitValue.erase(PN); 9908 SE->eraseValueFromMap(getValPtr()); 9909 // this now dangles! 9910 } 9911 9912 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 9913 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 9914 9915 // Forget all the expressions associated with users of the old value, 9916 // so that future queries will recompute the expressions using the new 9917 // value. 9918 Value *Old = getValPtr(); 9919 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 9920 SmallPtrSet<User *, 8> Visited; 9921 while (!Worklist.empty()) { 9922 User *U = Worklist.pop_back_val(); 9923 // Deleting the Old value will cause this to dangle. Postpone 9924 // that until everything else is done. 9925 if (U == Old) 9926 continue; 9927 if (!Visited.insert(U).second) 9928 continue; 9929 if (PHINode *PN = dyn_cast<PHINode>(U)) 9930 SE->ConstantEvolutionLoopExitValue.erase(PN); 9931 SE->eraseValueFromMap(U); 9932 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 9933 } 9934 // Delete the Old value. 9935 if (PHINode *PN = dyn_cast<PHINode>(Old)) 9936 SE->ConstantEvolutionLoopExitValue.erase(PN); 9937 SE->eraseValueFromMap(Old); 9938 // this now dangles! 9939 } 9940 9941 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 9942 : CallbackVH(V), SE(se) {} 9943 9944 //===----------------------------------------------------------------------===// 9945 // ScalarEvolution Class Implementation 9946 //===----------------------------------------------------------------------===// 9947 9948 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 9949 AssumptionCache &AC, DominatorTree &DT, 9950 LoopInfo &LI) 9951 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 9952 CouldNotCompute(new SCEVCouldNotCompute()), 9953 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9954 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), 9955 FirstUnknown(nullptr) { 9956 9957 // To use guards for proving predicates, we need to scan every instruction in 9958 // relevant basic blocks, and not just terminators. Doing this is a waste of 9959 // time if the IR does not actually contain any calls to 9960 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 9961 // 9962 // This pessimizes the case where a pass that preserves ScalarEvolution wants 9963 // to _add_ guards to the module when there weren't any before, and wants 9964 // ScalarEvolution to optimize based on those guards. For now we prefer to be 9965 // efficient in lieu of being smart in that rather obscure case. 9966 9967 auto *GuardDecl = F.getParent()->getFunction( 9968 Intrinsic::getName(Intrinsic::experimental_guard)); 9969 HasGuards = GuardDecl && !GuardDecl->use_empty(); 9970 } 9971 9972 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 9973 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 9974 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 9975 ValueExprMap(std::move(Arg.ValueExprMap)), 9976 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 9977 WalkingBEDominatingConds(false), ProvingSplitPredicate(false), 9978 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 9979 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 9980 PredicatedBackedgeTakenCounts( 9981 std::move(Arg.PredicatedBackedgeTakenCounts)), 9982 ConstantEvolutionLoopExitValue( 9983 std::move(Arg.ConstantEvolutionLoopExitValue)), 9984 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 9985 LoopDispositions(std::move(Arg.LoopDispositions)), 9986 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 9987 BlockDispositions(std::move(Arg.BlockDispositions)), 9988 UnsignedRanges(std::move(Arg.UnsignedRanges)), 9989 SignedRanges(std::move(Arg.SignedRanges)), 9990 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 9991 UniquePreds(std::move(Arg.UniquePreds)), 9992 SCEVAllocator(std::move(Arg.SCEVAllocator)), 9993 FirstUnknown(Arg.FirstUnknown) { 9994 Arg.FirstUnknown = nullptr; 9995 } 9996 9997 ScalarEvolution::~ScalarEvolution() { 9998 // Iterate through all the SCEVUnknown instances and call their 9999 // destructors, so that they release their references to their values. 10000 for (SCEVUnknown *U = FirstUnknown; U;) { 10001 SCEVUnknown *Tmp = U; 10002 U = U->Next; 10003 Tmp->~SCEVUnknown(); 10004 } 10005 FirstUnknown = nullptr; 10006 10007 ExprValueMap.clear(); 10008 ValueExprMap.clear(); 10009 HasRecMap.clear(); 10010 10011 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 10012 // that a loop had multiple computable exits. 10013 for (auto &BTCI : BackedgeTakenCounts) 10014 BTCI.second.clear(); 10015 for (auto &BTCI : PredicatedBackedgeTakenCounts) 10016 BTCI.second.clear(); 10017 10018 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 10019 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 10020 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 10021 } 10022 10023 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 10024 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 10025 } 10026 10027 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 10028 const Loop *L) { 10029 // Print all inner loops first 10030 for (Loop *I : *L) 10031 PrintLoopInfo(OS, SE, I); 10032 10033 OS << "Loop "; 10034 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10035 OS << ": "; 10036 10037 SmallVector<BasicBlock *, 8> ExitBlocks; 10038 L->getExitBlocks(ExitBlocks); 10039 if (ExitBlocks.size() != 1) 10040 OS << "<multiple exits> "; 10041 10042 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10043 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 10044 } else { 10045 OS << "Unpredictable backedge-taken count. "; 10046 } 10047 10048 OS << "\n" 10049 "Loop "; 10050 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10051 OS << ": "; 10052 10053 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 10054 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 10055 if (SE->isBackedgeTakenCountMaxOrZero(L)) 10056 OS << ", actual taken count either this or zero."; 10057 } else { 10058 OS << "Unpredictable max backedge-taken count. "; 10059 } 10060 10061 OS << "\n" 10062 "Loop "; 10063 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10064 OS << ": "; 10065 10066 SCEVUnionPredicate Pred; 10067 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 10068 if (!isa<SCEVCouldNotCompute>(PBT)) { 10069 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 10070 OS << " Predicates:\n"; 10071 Pred.print(OS, 4); 10072 } else { 10073 OS << "Unpredictable predicated backedge-taken count. "; 10074 } 10075 OS << "\n"; 10076 10077 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 10078 OS << "Loop "; 10079 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10080 OS << ": "; 10081 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 10082 } 10083 } 10084 10085 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 10086 switch (LD) { 10087 case ScalarEvolution::LoopVariant: 10088 return "Variant"; 10089 case ScalarEvolution::LoopInvariant: 10090 return "Invariant"; 10091 case ScalarEvolution::LoopComputable: 10092 return "Computable"; 10093 } 10094 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 10095 } 10096 10097 void ScalarEvolution::print(raw_ostream &OS) const { 10098 // ScalarEvolution's implementation of the print method is to print 10099 // out SCEV values of all instructions that are interesting. Doing 10100 // this potentially causes it to create new SCEV objects though, 10101 // which technically conflicts with the const qualifier. This isn't 10102 // observable from outside the class though, so casting away the 10103 // const isn't dangerous. 10104 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10105 10106 OS << "Classifying expressions for: "; 10107 F.printAsOperand(OS, /*PrintType=*/false); 10108 OS << "\n"; 10109 for (Instruction &I : instructions(F)) 10110 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 10111 OS << I << '\n'; 10112 OS << " --> "; 10113 const SCEV *SV = SE.getSCEV(&I); 10114 SV->print(OS); 10115 if (!isa<SCEVCouldNotCompute>(SV)) { 10116 OS << " U: "; 10117 SE.getUnsignedRange(SV).print(OS); 10118 OS << " S: "; 10119 SE.getSignedRange(SV).print(OS); 10120 } 10121 10122 const Loop *L = LI.getLoopFor(I.getParent()); 10123 10124 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 10125 if (AtUse != SV) { 10126 OS << " --> "; 10127 AtUse->print(OS); 10128 if (!isa<SCEVCouldNotCompute>(AtUse)) { 10129 OS << " U: "; 10130 SE.getUnsignedRange(AtUse).print(OS); 10131 OS << " S: "; 10132 SE.getSignedRange(AtUse).print(OS); 10133 } 10134 } 10135 10136 if (L) { 10137 OS << "\t\t" "Exits: "; 10138 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 10139 if (!SE.isLoopInvariant(ExitValue, L)) { 10140 OS << "<<Unknown>>"; 10141 } else { 10142 OS << *ExitValue; 10143 } 10144 10145 bool First = true; 10146 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 10147 if (First) { 10148 OS << "\t\t" "LoopDispositions: { "; 10149 First = false; 10150 } else { 10151 OS << ", "; 10152 } 10153 10154 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10155 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 10156 } 10157 10158 for (auto *InnerL : depth_first(L)) { 10159 if (InnerL == L) 10160 continue; 10161 if (First) { 10162 OS << "\t\t" "LoopDispositions: { "; 10163 First = false; 10164 } else { 10165 OS << ", "; 10166 } 10167 10168 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 10169 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 10170 } 10171 10172 OS << " }"; 10173 } 10174 10175 OS << "\n"; 10176 } 10177 10178 OS << "Determining loop execution counts for: "; 10179 F.printAsOperand(OS, /*PrintType=*/false); 10180 OS << "\n"; 10181 for (Loop *I : LI) 10182 PrintLoopInfo(OS, &SE, I); 10183 } 10184 10185 ScalarEvolution::LoopDisposition 10186 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 10187 auto &Values = LoopDispositions[S]; 10188 for (auto &V : Values) { 10189 if (V.getPointer() == L) 10190 return V.getInt(); 10191 } 10192 Values.emplace_back(L, LoopVariant); 10193 LoopDisposition D = computeLoopDisposition(S, L); 10194 auto &Values2 = LoopDispositions[S]; 10195 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10196 if (V.getPointer() == L) { 10197 V.setInt(D); 10198 break; 10199 } 10200 } 10201 return D; 10202 } 10203 10204 ScalarEvolution::LoopDisposition 10205 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 10206 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10207 case scConstant: 10208 return LoopInvariant; 10209 case scTruncate: 10210 case scZeroExtend: 10211 case scSignExtend: 10212 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 10213 case scAddRecExpr: { 10214 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10215 10216 // If L is the addrec's loop, it's computable. 10217 if (AR->getLoop() == L) 10218 return LoopComputable; 10219 10220 // Add recurrences are never invariant in the function-body (null loop). 10221 if (!L) 10222 return LoopVariant; 10223 10224 // This recurrence is variant w.r.t. L if L contains AR's loop. 10225 if (L->contains(AR->getLoop())) 10226 return LoopVariant; 10227 10228 // This recurrence is invariant w.r.t. L if AR's loop contains L. 10229 if (AR->getLoop()->contains(L)) 10230 return LoopInvariant; 10231 10232 // This recurrence is variant w.r.t. L if any of its operands 10233 // are variant. 10234 for (auto *Op : AR->operands()) 10235 if (!isLoopInvariant(Op, L)) 10236 return LoopVariant; 10237 10238 // Otherwise it's loop-invariant. 10239 return LoopInvariant; 10240 } 10241 case scAddExpr: 10242 case scMulExpr: 10243 case scUMaxExpr: 10244 case scSMaxExpr: { 10245 bool HasVarying = false; 10246 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 10247 LoopDisposition D = getLoopDisposition(Op, L); 10248 if (D == LoopVariant) 10249 return LoopVariant; 10250 if (D == LoopComputable) 10251 HasVarying = true; 10252 } 10253 return HasVarying ? LoopComputable : LoopInvariant; 10254 } 10255 case scUDivExpr: { 10256 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10257 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 10258 if (LD == LoopVariant) 10259 return LoopVariant; 10260 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 10261 if (RD == LoopVariant) 10262 return LoopVariant; 10263 return (LD == LoopInvariant && RD == LoopInvariant) ? 10264 LoopInvariant : LoopComputable; 10265 } 10266 case scUnknown: 10267 // All non-instruction values are loop invariant. All instructions are loop 10268 // invariant if they are not contained in the specified loop. 10269 // Instructions are never considered invariant in the function body 10270 // (null loop) because they are defined within the "loop". 10271 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 10272 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 10273 return LoopInvariant; 10274 case scCouldNotCompute: 10275 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10276 } 10277 llvm_unreachable("Unknown SCEV kind!"); 10278 } 10279 10280 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 10281 return getLoopDisposition(S, L) == LoopInvariant; 10282 } 10283 10284 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 10285 return getLoopDisposition(S, L) == LoopComputable; 10286 } 10287 10288 ScalarEvolution::BlockDisposition 10289 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10290 auto &Values = BlockDispositions[S]; 10291 for (auto &V : Values) { 10292 if (V.getPointer() == BB) 10293 return V.getInt(); 10294 } 10295 Values.emplace_back(BB, DoesNotDominateBlock); 10296 BlockDisposition D = computeBlockDisposition(S, BB); 10297 auto &Values2 = BlockDispositions[S]; 10298 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 10299 if (V.getPointer() == BB) { 10300 V.setInt(D); 10301 break; 10302 } 10303 } 10304 return D; 10305 } 10306 10307 ScalarEvolution::BlockDisposition 10308 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 10309 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 10310 case scConstant: 10311 return ProperlyDominatesBlock; 10312 case scTruncate: 10313 case scZeroExtend: 10314 case scSignExtend: 10315 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 10316 case scAddRecExpr: { 10317 // This uses a "dominates" query instead of "properly dominates" query 10318 // to test for proper dominance too, because the instruction which 10319 // produces the addrec's value is a PHI, and a PHI effectively properly 10320 // dominates its entire containing block. 10321 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 10322 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 10323 return DoesNotDominateBlock; 10324 10325 // Fall through into SCEVNAryExpr handling. 10326 LLVM_FALLTHROUGH; 10327 } 10328 case scAddExpr: 10329 case scMulExpr: 10330 case scUMaxExpr: 10331 case scSMaxExpr: { 10332 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 10333 bool Proper = true; 10334 for (const SCEV *NAryOp : NAry->operands()) { 10335 BlockDisposition D = getBlockDisposition(NAryOp, BB); 10336 if (D == DoesNotDominateBlock) 10337 return DoesNotDominateBlock; 10338 if (D == DominatesBlock) 10339 Proper = false; 10340 } 10341 return Proper ? ProperlyDominatesBlock : DominatesBlock; 10342 } 10343 case scUDivExpr: { 10344 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 10345 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 10346 BlockDisposition LD = getBlockDisposition(LHS, BB); 10347 if (LD == DoesNotDominateBlock) 10348 return DoesNotDominateBlock; 10349 BlockDisposition RD = getBlockDisposition(RHS, BB); 10350 if (RD == DoesNotDominateBlock) 10351 return DoesNotDominateBlock; 10352 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 10353 ProperlyDominatesBlock : DominatesBlock; 10354 } 10355 case scUnknown: 10356 if (Instruction *I = 10357 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 10358 if (I->getParent() == BB) 10359 return DominatesBlock; 10360 if (DT.properlyDominates(I->getParent(), BB)) 10361 return ProperlyDominatesBlock; 10362 return DoesNotDominateBlock; 10363 } 10364 return ProperlyDominatesBlock; 10365 case scCouldNotCompute: 10366 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 10367 } 10368 llvm_unreachable("Unknown SCEV kind!"); 10369 } 10370 10371 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 10372 return getBlockDisposition(S, BB) >= DominatesBlock; 10373 } 10374 10375 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 10376 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 10377 } 10378 10379 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 10380 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 10381 } 10382 10383 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 10384 ValuesAtScopes.erase(S); 10385 LoopDispositions.erase(S); 10386 BlockDispositions.erase(S); 10387 UnsignedRanges.erase(S); 10388 SignedRanges.erase(S); 10389 ExprValueMap.erase(S); 10390 HasRecMap.erase(S); 10391 MinTrailingZerosCache.erase(S); 10392 10393 auto RemoveSCEVFromBackedgeMap = 10394 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 10395 for (auto I = Map.begin(), E = Map.end(); I != E;) { 10396 BackedgeTakenInfo &BEInfo = I->second; 10397 if (BEInfo.hasOperand(S, this)) { 10398 BEInfo.clear(); 10399 Map.erase(I++); 10400 } else 10401 ++I; 10402 } 10403 }; 10404 10405 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 10406 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 10407 } 10408 10409 void ScalarEvolution::verify() const { 10410 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 10411 ScalarEvolution SE2(F, TLI, AC, DT, LI); 10412 10413 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 10414 10415 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 10416 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 10417 const SCEV *visitConstant(const SCEVConstant *Constant) { 10418 return SE.getConstant(Constant->getAPInt()); 10419 } 10420 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10421 return SE.getUnknown(Expr->getValue()); 10422 } 10423 10424 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 10425 return SE.getCouldNotCompute(); 10426 } 10427 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 10428 }; 10429 10430 SCEVMapper SCM(SE2); 10431 10432 while (!LoopStack.empty()) { 10433 auto *L = LoopStack.pop_back_val(); 10434 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 10435 10436 auto *CurBECount = SCM.visit( 10437 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 10438 auto *NewBECount = SE2.getBackedgeTakenCount(L); 10439 10440 if (CurBECount == SE2.getCouldNotCompute() || 10441 NewBECount == SE2.getCouldNotCompute()) { 10442 // NB! This situation is legal, but is very suspicious -- whatever pass 10443 // change the loop to make a trip count go from could not compute to 10444 // computable or vice-versa *should have* invalidated SCEV. However, we 10445 // choose not to assert here (for now) since we don't want false 10446 // positives. 10447 continue; 10448 } 10449 10450 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 10451 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 10452 // not propagate undef aggressively). This means we can (and do) fail 10453 // verification in cases where a transform makes the trip count of a loop 10454 // go from "undef" to "undef+1" (say). The transform is fine, since in 10455 // both cases the loop iterates "undef" times, but SCEV thinks we 10456 // increased the trip count of the loop by 1 incorrectly. 10457 continue; 10458 } 10459 10460 if (SE.getTypeSizeInBits(CurBECount->getType()) > 10461 SE.getTypeSizeInBits(NewBECount->getType())) 10462 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 10463 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 10464 SE.getTypeSizeInBits(NewBECount->getType())) 10465 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 10466 10467 auto *ConstantDelta = 10468 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); 10469 10470 if (ConstantDelta && ConstantDelta->getAPInt() != 0) { 10471 dbgs() << "Trip Count Changed!\n"; 10472 dbgs() << "Old: " << *CurBECount << "\n"; 10473 dbgs() << "New: " << *NewBECount << "\n"; 10474 dbgs() << "Delta: " << *ConstantDelta << "\n"; 10475 std::abort(); 10476 } 10477 } 10478 } 10479 10480 bool ScalarEvolution::invalidate( 10481 Function &F, const PreservedAnalyses &PA, 10482 FunctionAnalysisManager::Invalidator &Inv) { 10483 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 10484 // of its dependencies is invalidated. 10485 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 10486 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 10487 Inv.invalidate<AssumptionAnalysis>(F, PA) || 10488 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 10489 Inv.invalidate<LoopAnalysis>(F, PA); 10490 } 10491 10492 AnalysisKey ScalarEvolutionAnalysis::Key; 10493 10494 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 10495 FunctionAnalysisManager &AM) { 10496 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 10497 AM.getResult<AssumptionAnalysis>(F), 10498 AM.getResult<DominatorTreeAnalysis>(F), 10499 AM.getResult<LoopAnalysis>(F)); 10500 } 10501 10502 PreservedAnalyses 10503 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 10504 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 10505 return PreservedAnalyses::all(); 10506 } 10507 10508 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 10509 "Scalar Evolution Analysis", false, true) 10510 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10511 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 10512 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10513 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10514 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 10515 "Scalar Evolution Analysis", false, true) 10516 char ScalarEvolutionWrapperPass::ID = 0; 10517 10518 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 10519 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 10520 } 10521 10522 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 10523 SE.reset(new ScalarEvolution( 10524 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 10525 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 10526 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 10527 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 10528 return false; 10529 } 10530 10531 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 10532 10533 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 10534 SE->print(OS); 10535 } 10536 10537 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 10538 if (!VerifySCEV) 10539 return; 10540 10541 SE->verify(); 10542 } 10543 10544 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 10545 AU.setPreservesAll(); 10546 AU.addRequiredTransitive<AssumptionCacheTracker>(); 10547 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 10548 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 10549 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 10550 } 10551 10552 const SCEVPredicate * 10553 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS, 10554 const SCEVConstant *RHS) { 10555 FoldingSetNodeID ID; 10556 // Unique this node based on the arguments 10557 ID.AddInteger(SCEVPredicate::P_Equal); 10558 ID.AddPointer(LHS); 10559 ID.AddPointer(RHS); 10560 void *IP = nullptr; 10561 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10562 return S; 10563 SCEVEqualPredicate *Eq = new (SCEVAllocator) 10564 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 10565 UniquePreds.InsertNode(Eq, IP); 10566 return Eq; 10567 } 10568 10569 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 10570 const SCEVAddRecExpr *AR, 10571 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10572 FoldingSetNodeID ID; 10573 // Unique this node based on the arguments 10574 ID.AddInteger(SCEVPredicate::P_Wrap); 10575 ID.AddPointer(AR); 10576 ID.AddInteger(AddedFlags); 10577 void *IP = nullptr; 10578 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 10579 return S; 10580 auto *OF = new (SCEVAllocator) 10581 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 10582 UniquePreds.InsertNode(OF, IP); 10583 return OF; 10584 } 10585 10586 namespace { 10587 10588 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 10589 public: 10590 /// Rewrites \p S in the context of a loop L and the SCEV predication 10591 /// infrastructure. 10592 /// 10593 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 10594 /// equivalences present in \p Pred. 10595 /// 10596 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 10597 /// \p NewPreds such that the result will be an AddRecExpr. 10598 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 10599 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10600 SCEVUnionPredicate *Pred) { 10601 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 10602 return Rewriter.visit(S); 10603 } 10604 10605 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 10606 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 10607 SCEVUnionPredicate *Pred) 10608 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 10609 10610 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 10611 if (Pred) { 10612 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 10613 for (auto *Pred : ExprPreds) 10614 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 10615 if (IPred->getLHS() == Expr) 10616 return IPred->getRHS(); 10617 } 10618 10619 return Expr; 10620 } 10621 10622 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 10623 const SCEV *Operand = visit(Expr->getOperand()); 10624 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10625 if (AR && AR->getLoop() == L && AR->isAffine()) { 10626 // This couldn't be folded because the operand didn't have the nuw 10627 // flag. Add the nusw flag as an assumption that we could make. 10628 const SCEV *Step = AR->getStepRecurrence(SE); 10629 Type *Ty = Expr->getType(); 10630 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 10631 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 10632 SE.getSignExtendExpr(Step, Ty), L, 10633 AR->getNoWrapFlags()); 10634 } 10635 return SE.getZeroExtendExpr(Operand, Expr->getType()); 10636 } 10637 10638 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 10639 const SCEV *Operand = visit(Expr->getOperand()); 10640 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 10641 if (AR && AR->getLoop() == L && AR->isAffine()) { 10642 // This couldn't be folded because the operand didn't have the nsw 10643 // flag. Add the nssw flag as an assumption that we could make. 10644 const SCEV *Step = AR->getStepRecurrence(SE); 10645 Type *Ty = Expr->getType(); 10646 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 10647 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 10648 SE.getSignExtendExpr(Step, Ty), L, 10649 AR->getNoWrapFlags()); 10650 } 10651 return SE.getSignExtendExpr(Operand, Expr->getType()); 10652 } 10653 10654 private: 10655 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 10656 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 10657 auto *A = SE.getWrapPredicate(AR, AddedFlags); 10658 if (!NewPreds) { 10659 // Check if we've already made this assumption. 10660 return Pred && Pred->implies(A); 10661 } 10662 NewPreds->insert(A); 10663 return true; 10664 } 10665 10666 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 10667 SCEVUnionPredicate *Pred; 10668 const Loop *L; 10669 }; 10670 } // end anonymous namespace 10671 10672 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 10673 SCEVUnionPredicate &Preds) { 10674 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 10675 } 10676 10677 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 10678 const SCEV *S, const Loop *L, 10679 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 10680 10681 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 10682 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 10683 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 10684 10685 if (!AddRec) 10686 return nullptr; 10687 10688 // Since the transformation was successful, we can now transfer the SCEV 10689 // predicates. 10690 for (auto *P : TransformPreds) 10691 Preds.insert(P); 10692 10693 return AddRec; 10694 } 10695 10696 /// SCEV predicates 10697 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 10698 SCEVPredicateKind Kind) 10699 : FastID(ID), Kind(Kind) {} 10700 10701 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 10702 const SCEVUnknown *LHS, 10703 const SCEVConstant *RHS) 10704 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {} 10705 10706 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 10707 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 10708 10709 if (!Op) 10710 return false; 10711 10712 return Op->LHS == LHS && Op->RHS == RHS; 10713 } 10714 10715 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 10716 10717 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 10718 10719 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 10720 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 10721 } 10722 10723 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 10724 const SCEVAddRecExpr *AR, 10725 IncrementWrapFlags Flags) 10726 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 10727 10728 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 10729 10730 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 10731 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 10732 10733 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 10734 } 10735 10736 bool SCEVWrapPredicate::isAlwaysTrue() const { 10737 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 10738 IncrementWrapFlags IFlags = Flags; 10739 10740 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 10741 IFlags = clearFlags(IFlags, IncrementNSSW); 10742 10743 return IFlags == IncrementAnyWrap; 10744 } 10745 10746 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 10747 OS.indent(Depth) << *getExpr() << " Added Flags: "; 10748 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 10749 OS << "<nusw>"; 10750 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 10751 OS << "<nssw>"; 10752 OS << "\n"; 10753 } 10754 10755 SCEVWrapPredicate::IncrementWrapFlags 10756 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 10757 ScalarEvolution &SE) { 10758 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 10759 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 10760 10761 // We can safely transfer the NSW flag as NSSW. 10762 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 10763 ImpliedFlags = IncrementNSSW; 10764 10765 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 10766 // If the increment is positive, the SCEV NUW flag will also imply the 10767 // WrapPredicate NUSW flag. 10768 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 10769 if (Step->getValue()->getValue().isNonNegative()) 10770 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 10771 } 10772 10773 return ImpliedFlags; 10774 } 10775 10776 /// Union predicates don't get cached so create a dummy set ID for it. 10777 SCEVUnionPredicate::SCEVUnionPredicate() 10778 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 10779 10780 bool SCEVUnionPredicate::isAlwaysTrue() const { 10781 return all_of(Preds, 10782 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 10783 } 10784 10785 ArrayRef<const SCEVPredicate *> 10786 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 10787 auto I = SCEVToPreds.find(Expr); 10788 if (I == SCEVToPreds.end()) 10789 return ArrayRef<const SCEVPredicate *>(); 10790 return I->second; 10791 } 10792 10793 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 10794 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 10795 return all_of(Set->Preds, 10796 [this](const SCEVPredicate *I) { return this->implies(I); }); 10797 10798 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 10799 if (ScevPredsIt == SCEVToPreds.end()) 10800 return false; 10801 auto &SCEVPreds = ScevPredsIt->second; 10802 10803 return any_of(SCEVPreds, 10804 [N](const SCEVPredicate *I) { return I->implies(N); }); 10805 } 10806 10807 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 10808 10809 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 10810 for (auto Pred : Preds) 10811 Pred->print(OS, Depth); 10812 } 10813 10814 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 10815 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 10816 for (auto Pred : Set->Preds) 10817 add(Pred); 10818 return; 10819 } 10820 10821 if (implies(N)) 10822 return; 10823 10824 const SCEV *Key = N->getExpr(); 10825 assert(Key && "Only SCEVUnionPredicate doesn't have an " 10826 " associated expression!"); 10827 10828 SCEVToPreds[Key].push_back(N); 10829 Preds.push_back(N); 10830 } 10831 10832 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 10833 Loop &L) 10834 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {} 10835 10836 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 10837 const SCEV *Expr = SE.getSCEV(V); 10838 RewriteEntry &Entry = RewriteMap[Expr]; 10839 10840 // If we already have an entry and the version matches, return it. 10841 if (Entry.second && Generation == Entry.first) 10842 return Entry.second; 10843 10844 // We found an entry but it's stale. Rewrite the stale entry 10845 // according to the current predicate. 10846 if (Entry.second) 10847 Expr = Entry.second; 10848 10849 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 10850 Entry = {Generation, NewSCEV}; 10851 10852 return NewSCEV; 10853 } 10854 10855 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 10856 if (!BackedgeCount) { 10857 SCEVUnionPredicate BackedgePred; 10858 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 10859 addPredicate(BackedgePred); 10860 } 10861 return BackedgeCount; 10862 } 10863 10864 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 10865 if (Preds.implies(&Pred)) 10866 return; 10867 Preds.add(&Pred); 10868 updateGeneration(); 10869 } 10870 10871 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 10872 return Preds; 10873 } 10874 10875 void PredicatedScalarEvolution::updateGeneration() { 10876 // If the generation number wrapped recompute everything. 10877 if (++Generation == 0) { 10878 for (auto &II : RewriteMap) { 10879 const SCEV *Rewritten = II.second.second; 10880 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 10881 } 10882 } 10883 } 10884 10885 void PredicatedScalarEvolution::setNoOverflow( 10886 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10887 const SCEV *Expr = getSCEV(V); 10888 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10889 10890 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 10891 10892 // Clear the statically implied flags. 10893 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 10894 addPredicate(*SE.getWrapPredicate(AR, Flags)); 10895 10896 auto II = FlagsMap.insert({V, Flags}); 10897 if (!II.second) 10898 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 10899 } 10900 10901 bool PredicatedScalarEvolution::hasNoOverflow( 10902 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 10903 const SCEV *Expr = getSCEV(V); 10904 const auto *AR = cast<SCEVAddRecExpr>(Expr); 10905 10906 Flags = SCEVWrapPredicate::clearFlags( 10907 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 10908 10909 auto II = FlagsMap.find(V); 10910 10911 if (II != FlagsMap.end()) 10912 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 10913 10914 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 10915 } 10916 10917 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 10918 const SCEV *Expr = this->getSCEV(V); 10919 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 10920 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 10921 10922 if (!New) 10923 return nullptr; 10924 10925 for (auto *P : NewPreds) 10926 Preds.add(P); 10927 10928 updateGeneration(); 10929 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 10930 return New; 10931 } 10932 10933 PredicatedScalarEvolution::PredicatedScalarEvolution( 10934 const PredicatedScalarEvolution &Init) 10935 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 10936 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 10937 for (const auto &I : Init.FlagsMap) 10938 FlagsMap.insert(I); 10939 } 10940 10941 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 10942 // For each block. 10943 for (auto *BB : L.getBlocks()) 10944 for (auto &I : *BB) { 10945 if (!SE.isSCEVable(I.getType())) 10946 continue; 10947 10948 auto *Expr = SE.getSCEV(&I); 10949 auto II = RewriteMap.find(Expr); 10950 10951 if (II == RewriteMap.end()) 10952 continue; 10953 10954 // Don't print things that are not interesting. 10955 if (II->second.second == Expr) 10956 continue; 10957 10958 OS.indent(Depth) << "[PSE]" << I << ":\n"; 10959 OS.indent(Depth + 2) << *Expr << "\n"; 10960 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 10961 } 10962 } 10963