1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #define DEBUG_TYPE "scalar-evolution" 62 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 63 #include "llvm/Constants.h" 64 #include "llvm/DerivedTypes.h" 65 #include "llvm/GlobalVariable.h" 66 #include "llvm/GlobalAlias.h" 67 #include "llvm/Instructions.h" 68 #include "llvm/LLVMContext.h" 69 #include "llvm/Operator.h" 70 #include "llvm/Analysis/ConstantFolding.h" 71 #include "llvm/Analysis/Dominators.h" 72 #include "llvm/Analysis/LoopInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Assembly/Writer.h" 75 #include "llvm/Target/TargetData.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/ConstantRange.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/GetElementPtrTypeIterator.h" 81 #include "llvm/Support/InstIterator.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/ADT/Statistic.h" 85 #include "llvm/ADT/STLExtras.h" 86 #include "llvm/ADT/SmallPtrSet.h" 87 #include <algorithm> 88 using namespace llvm; 89 90 STATISTIC(NumArrayLenItCounts, 91 "Number of trip counts computed with array length"); 92 STATISTIC(NumTripCountsComputed, 93 "Number of loops with predictable loop counts"); 94 STATISTIC(NumTripCountsNotComputed, 95 "Number of loops without predictable loop counts"); 96 STATISTIC(NumBruteForceTripCountsComputed, 97 "Number of loops with trip counts computed by force"); 98 99 static cl::opt<unsigned> 100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 101 cl::desc("Maximum number of iterations SCEV will " 102 "symbolically execute a constant " 103 "derived loop"), 104 cl::init(100)); 105 106 static RegisterPass<ScalarEvolution> 107 R("scalar-evolution", "Scalar Evolution Analysis", false, true); 108 char ScalarEvolution::ID = 0; 109 110 //===----------------------------------------------------------------------===// 111 // SCEV class definitions 112 //===----------------------------------------------------------------------===// 113 114 //===----------------------------------------------------------------------===// 115 // Implementation of the SCEV class. 116 // 117 118 SCEV::~SCEV() {} 119 120 void SCEV::dump() const { 121 print(dbgs()); 122 dbgs() << '\n'; 123 } 124 125 bool SCEV::isZero() const { 126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 127 return SC->getValue()->isZero(); 128 return false; 129 } 130 131 bool SCEV::isOne() const { 132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 133 return SC->getValue()->isOne(); 134 return false; 135 } 136 137 bool SCEV::isAllOnesValue() const { 138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 139 return SC->getValue()->isAllOnesValue(); 140 return false; 141 } 142 143 SCEVCouldNotCompute::SCEVCouldNotCompute() : 144 SCEV(FoldingSetNodeID(), scCouldNotCompute) {} 145 146 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const { 147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 148 return false; 149 } 150 151 const Type *SCEVCouldNotCompute::getType() const { 152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 153 return 0; 154 } 155 156 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const { 157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 158 return false; 159 } 160 161 bool SCEVCouldNotCompute::hasOperand(const SCEV *) const { 162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 163 return false; 164 } 165 166 void SCEVCouldNotCompute::print(raw_ostream &OS) const { 167 OS << "***COULDNOTCOMPUTE***"; 168 } 169 170 bool SCEVCouldNotCompute::classof(const SCEV *S) { 171 return S->getSCEVType() == scCouldNotCompute; 172 } 173 174 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 175 FoldingSetNodeID ID; 176 ID.AddInteger(scConstant); 177 ID.AddPointer(V); 178 void *IP = 0; 179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 180 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>(); 181 new (S) SCEVConstant(ID, V); 182 UniqueSCEVs.InsertNode(S, IP); 183 return S; 184 } 185 186 const SCEV *ScalarEvolution::getConstant(const APInt& Val) { 187 return getConstant(ConstantInt::get(getContext(), Val)); 188 } 189 190 const SCEV * 191 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) { 192 return getConstant( 193 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned)); 194 } 195 196 const Type *SCEVConstant::getType() const { return V->getType(); } 197 198 void SCEVConstant::print(raw_ostream &OS) const { 199 WriteAsOperand(OS, V, false); 200 } 201 202 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID, 203 unsigned SCEVTy, const SCEV *op, const Type *ty) 204 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 205 206 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 207 return Op->dominates(BB, DT); 208 } 209 210 bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 211 return Op->properlyDominates(BB, DT); 212 } 213 214 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID, 215 const SCEV *op, const Type *ty) 216 : SCEVCastExpr(ID, scTruncate, op, ty) { 217 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 218 (Ty->isIntegerTy() || Ty->isPointerTy()) && 219 "Cannot truncate non-integer value!"); 220 } 221 222 void SCEVTruncateExpr::print(raw_ostream &OS) const { 223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 224 } 225 226 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID, 227 const SCEV *op, const Type *ty) 228 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 229 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 230 (Ty->isIntegerTy() || Ty->isPointerTy()) && 231 "Cannot zero extend non-integer value!"); 232 } 233 234 void SCEVZeroExtendExpr::print(raw_ostream &OS) const { 235 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 236 } 237 238 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID, 239 const SCEV *op, const Type *ty) 240 : SCEVCastExpr(ID, scSignExtend, op, ty) { 241 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 242 (Ty->isIntegerTy() || Ty->isPointerTy()) && 243 "Cannot sign extend non-integer value!"); 244 } 245 246 void SCEVSignExtendExpr::print(raw_ostream &OS) const { 247 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")"; 248 } 249 250 void SCEVCommutativeExpr::print(raw_ostream &OS) const { 251 assert(Operands.size() > 1 && "This plus expr shouldn't exist!"); 252 const char *OpStr = getOperationStr(); 253 OS << "(" << *Operands[0]; 254 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 255 OS << OpStr << *Operands[i]; 256 OS << ")"; 257 } 258 259 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 260 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 261 if (!getOperand(i)->dominates(BB, DT)) 262 return false; 263 } 264 return true; 265 } 266 267 bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 269 if (!getOperand(i)->properlyDominates(BB, DT)) 270 return false; 271 } 272 return true; 273 } 274 275 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 276 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT); 277 } 278 279 bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 280 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT); 281 } 282 283 void SCEVUDivExpr::print(raw_ostream &OS) const { 284 OS << "(" << *LHS << " /u " << *RHS << ")"; 285 } 286 287 const Type *SCEVUDivExpr::getType() const { 288 // In most cases the types of LHS and RHS will be the same, but in some 289 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't 290 // depend on the type for correctness, but handling types carefully can 291 // avoid extra casts in the SCEVExpander. The LHS is more likely to be 292 // a pointer type than the RHS, so use the RHS' type here. 293 return RHS->getType(); 294 } 295 296 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const { 297 // Add recurrences are never invariant in the function-body (null loop). 298 if (!QueryLoop) 299 return false; 300 301 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L. 302 if (QueryLoop->contains(L)) 303 return false; 304 305 // This recurrence is variant w.r.t. QueryLoop if any of its operands 306 // are variant. 307 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 308 if (!getOperand(i)->isLoopInvariant(QueryLoop)) 309 return false; 310 311 // Otherwise it's loop-invariant. 312 return true; 313 } 314 315 bool 316 SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const { 317 return DT->dominates(L->getHeader(), BB) && 318 SCEVNAryExpr::dominates(BB, DT); 319 } 320 321 bool 322 SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 323 // This uses a "dominates" query instead of "properly dominates" query because 324 // the instruction which produces the addrec's value is a PHI, and a PHI 325 // effectively properly dominates its entire containing block. 326 return DT->dominates(L->getHeader(), BB) && 327 SCEVNAryExpr::properlyDominates(BB, DT); 328 } 329 330 void SCEVAddRecExpr::print(raw_ostream &OS) const { 331 OS << "{" << *Operands[0]; 332 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 333 OS << ",+," << *Operands[i]; 334 OS << "}<"; 335 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 336 OS << ">"; 337 } 338 339 bool SCEVUnknown::isLoopInvariant(const Loop *L) const { 340 // All non-instruction values are loop invariant. All instructions are loop 341 // invariant if they are not contained in the specified loop. 342 // Instructions are never considered invariant in the function body 343 // (null loop) because they are defined within the "loop". 344 if (Instruction *I = dyn_cast<Instruction>(V)) 345 return L && !L->contains(I); 346 return true; 347 } 348 349 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const { 350 if (Instruction *I = dyn_cast<Instruction>(getValue())) 351 return DT->dominates(I->getParent(), BB); 352 return true; 353 } 354 355 bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const { 356 if (Instruction *I = dyn_cast<Instruction>(getValue())) 357 return DT->properlyDominates(I->getParent(), BB); 358 return true; 359 } 360 361 const Type *SCEVUnknown::getType() const { 362 return V->getType(); 363 } 364 365 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const { 366 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 367 if (VCE->getOpcode() == Instruction::PtrToInt) 368 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 369 if (CE->getOpcode() == Instruction::GetElementPtr && 370 CE->getOperand(0)->isNullValue() && 371 CE->getNumOperands() == 2) 372 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 373 if (CI->isOne()) { 374 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 375 ->getElementType(); 376 return true; 377 } 378 379 return false; 380 } 381 382 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const { 383 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 384 if (VCE->getOpcode() == Instruction::PtrToInt) 385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 386 if (CE->getOpcode() == Instruction::GetElementPtr && 387 CE->getOperand(0)->isNullValue()) { 388 const Type *Ty = 389 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 390 if (const StructType *STy = dyn_cast<StructType>(Ty)) 391 if (!STy->isPacked() && 392 CE->getNumOperands() == 3 && 393 CE->getOperand(1)->isNullValue()) { 394 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 395 if (CI->isOne() && 396 STy->getNumElements() == 2 && 397 STy->getElementType(0)->isIntegerTy(1)) { 398 AllocTy = STy->getElementType(1); 399 return true; 400 } 401 } 402 } 403 404 return false; 405 } 406 407 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const { 408 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V)) 409 if (VCE->getOpcode() == Instruction::PtrToInt) 410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 411 if (CE->getOpcode() == Instruction::GetElementPtr && 412 CE->getNumOperands() == 3 && 413 CE->getOperand(0)->isNullValue() && 414 CE->getOperand(1)->isNullValue()) { 415 const Type *Ty = 416 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 417 // Ignore vector types here so that ScalarEvolutionExpander doesn't 418 // emit getelementptrs that index into vectors. 419 if (Ty->isStructTy() || Ty->isArrayTy()) { 420 CTy = Ty; 421 FieldNo = CE->getOperand(2); 422 return true; 423 } 424 } 425 426 return false; 427 } 428 429 void SCEVUnknown::print(raw_ostream &OS) const { 430 const Type *AllocTy; 431 if (isSizeOf(AllocTy)) { 432 OS << "sizeof(" << *AllocTy << ")"; 433 return; 434 } 435 if (isAlignOf(AllocTy)) { 436 OS << "alignof(" << *AllocTy << ")"; 437 return; 438 } 439 440 const Type *CTy; 441 Constant *FieldNo; 442 if (isOffsetOf(CTy, FieldNo)) { 443 OS << "offsetof(" << *CTy << ", "; 444 WriteAsOperand(OS, FieldNo, false); 445 OS << ")"; 446 return; 447 } 448 449 // Otherwise just print it normally. 450 WriteAsOperand(OS, V, false); 451 } 452 453 //===----------------------------------------------------------------------===// 454 // SCEV Utilities 455 //===----------------------------------------------------------------------===// 456 457 static bool CompareTypes(const Type *A, const Type *B) { 458 if (A->getTypeID() != B->getTypeID()) 459 return A->getTypeID() < B->getTypeID(); 460 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) { 461 const IntegerType *BI = cast<IntegerType>(B); 462 return AI->getBitWidth() < BI->getBitWidth(); 463 } 464 if (const PointerType *AI = dyn_cast<PointerType>(A)) { 465 const PointerType *BI = cast<PointerType>(B); 466 return CompareTypes(AI->getElementType(), BI->getElementType()); 467 } 468 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) { 469 const ArrayType *BI = cast<ArrayType>(B); 470 if (AI->getNumElements() != BI->getNumElements()) 471 return AI->getNumElements() < BI->getNumElements(); 472 return CompareTypes(AI->getElementType(), BI->getElementType()); 473 } 474 if (const VectorType *AI = dyn_cast<VectorType>(A)) { 475 const VectorType *BI = cast<VectorType>(B); 476 if (AI->getNumElements() != BI->getNumElements()) 477 return AI->getNumElements() < BI->getNumElements(); 478 return CompareTypes(AI->getElementType(), BI->getElementType()); 479 } 480 if (const StructType *AI = dyn_cast<StructType>(A)) { 481 const StructType *BI = cast<StructType>(B); 482 if (AI->getNumElements() != BI->getNumElements()) 483 return AI->getNumElements() < BI->getNumElements(); 484 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i) 485 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) || 486 CompareTypes(BI->getElementType(i), AI->getElementType(i))) 487 return CompareTypes(AI->getElementType(i), BI->getElementType(i)); 488 } 489 return false; 490 } 491 492 namespace { 493 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 494 /// than the complexity of the RHS. This comparator is used to canonicalize 495 /// expressions. 496 class SCEVComplexityCompare { 497 LoopInfo *LI; 498 public: 499 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {} 500 501 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 502 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 503 if (LHS == RHS) 504 return false; 505 506 // Primarily, sort the SCEVs by their getSCEVType(). 507 if (LHS->getSCEVType() != RHS->getSCEVType()) 508 return LHS->getSCEVType() < RHS->getSCEVType(); 509 510 // Aside from the getSCEVType() ordering, the particular ordering 511 // isn't very important except that it's beneficial to be consistent, 512 // so that (a + b) and (b + a) don't end up as different expressions. 513 514 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 515 // not as complete as it could be. 516 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) { 517 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 518 519 // Order pointer values after integer values. This helps SCEVExpander 520 // form GEPs. 521 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy()) 522 return false; 523 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy()) 524 return true; 525 526 // Compare getValueID values. 527 if (LU->getValue()->getValueID() != RU->getValue()->getValueID()) 528 return LU->getValue()->getValueID() < RU->getValue()->getValueID(); 529 530 // Sort arguments by their position. 531 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) { 532 const Argument *RA = cast<Argument>(RU->getValue()); 533 return LA->getArgNo() < RA->getArgNo(); 534 } 535 536 // For instructions, compare their loop depth, and their opcode. 537 // This is pretty loose. 538 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) { 539 Instruction *RV = cast<Instruction>(RU->getValue()); 540 541 // Compare loop depths. 542 if (LI->getLoopDepth(LV->getParent()) != 543 LI->getLoopDepth(RV->getParent())) 544 return LI->getLoopDepth(LV->getParent()) < 545 LI->getLoopDepth(RV->getParent()); 546 547 // Compare opcodes. 548 if (LV->getOpcode() != RV->getOpcode()) 549 return LV->getOpcode() < RV->getOpcode(); 550 551 // Compare the number of operands. 552 if (LV->getNumOperands() != RV->getNumOperands()) 553 return LV->getNumOperands() < RV->getNumOperands(); 554 } 555 556 return false; 557 } 558 559 // Compare constant values. 560 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) { 561 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 562 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth()) 563 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth(); 564 return LC->getValue()->getValue().ult(RC->getValue()->getValue()); 565 } 566 567 // Compare addrec loop depths. 568 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) { 569 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 570 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth()) 571 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth(); 572 } 573 574 // Lexicographically compare n-ary expressions. 575 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) { 576 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 577 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) { 578 if (i >= RC->getNumOperands()) 579 return false; 580 if (operator()(LC->getOperand(i), RC->getOperand(i))) 581 return true; 582 if (operator()(RC->getOperand(i), LC->getOperand(i))) 583 return false; 584 } 585 return LC->getNumOperands() < RC->getNumOperands(); 586 } 587 588 // Lexicographically compare udiv expressions. 589 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) { 590 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 591 if (operator()(LC->getLHS(), RC->getLHS())) 592 return true; 593 if (operator()(RC->getLHS(), LC->getLHS())) 594 return false; 595 if (operator()(LC->getRHS(), RC->getRHS())) 596 return true; 597 if (operator()(RC->getRHS(), LC->getRHS())) 598 return false; 599 return false; 600 } 601 602 // Compare cast expressions by operand. 603 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) { 604 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 605 return operator()(LC->getOperand(), RC->getOperand()); 606 } 607 608 llvm_unreachable("Unknown SCEV kind!"); 609 return false; 610 } 611 }; 612 } 613 614 /// GroupByComplexity - Given a list of SCEV objects, order them by their 615 /// complexity, and group objects of the same complexity together by value. 616 /// When this routine is finished, we know that any duplicates in the vector are 617 /// consecutive and that complexity is monotonically increasing. 618 /// 619 /// Note that we go take special precautions to ensure that we get determinstic 620 /// results from this routine. In other words, we don't want the results of 621 /// this to depend on where the addresses of various SCEV objects happened to 622 /// land in memory. 623 /// 624 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 625 LoopInfo *LI) { 626 if (Ops.size() < 2) return; // Noop 627 if (Ops.size() == 2) { 628 // This is the common case, which also happens to be trivially simple. 629 // Special case it. 630 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0])) 631 std::swap(Ops[0], Ops[1]); 632 return; 633 } 634 635 // Do the rough sort by complexity. 636 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 637 638 // Now that we are sorted by complexity, group elements of the same 639 // complexity. Note that this is, at worst, N^2, but the vector is likely to 640 // be extremely short in practice. Note that we take this approach because we 641 // do not want to depend on the addresses of the objects we are grouping. 642 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 643 const SCEV *S = Ops[i]; 644 unsigned Complexity = S->getSCEVType(); 645 646 // If there are any objects of the same complexity and same value as this 647 // one, group them. 648 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 649 if (Ops[j] == S) { // Found a duplicate. 650 // Move it to immediately after i'th element. 651 std::swap(Ops[i+1], Ops[j]); 652 ++i; // no need to rescan it. 653 if (i == e-2) return; // Done! 654 } 655 } 656 } 657 } 658 659 660 661 //===----------------------------------------------------------------------===// 662 // Simple SCEV method implementations 663 //===----------------------------------------------------------------------===// 664 665 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 666 /// Assume, K > 0. 667 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 668 ScalarEvolution &SE, 669 const Type* ResultTy) { 670 // Handle the simplest case efficiently. 671 if (K == 1) 672 return SE.getTruncateOrZeroExtend(It, ResultTy); 673 674 // We are using the following formula for BC(It, K): 675 // 676 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 677 // 678 // Suppose, W is the bitwidth of the return value. We must be prepared for 679 // overflow. Hence, we must assure that the result of our computation is 680 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 681 // safe in modular arithmetic. 682 // 683 // However, this code doesn't use exactly that formula; the formula it uses 684 // is something like the following, where T is the number of factors of 2 in 685 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 686 // exponentiation: 687 // 688 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 689 // 690 // This formula is trivially equivalent to the previous formula. However, 691 // this formula can be implemented much more efficiently. The trick is that 692 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 693 // arithmetic. To do exact division in modular arithmetic, all we have 694 // to do is multiply by the inverse. Therefore, this step can be done at 695 // width W. 696 // 697 // The next issue is how to safely do the division by 2^T. The way this 698 // is done is by doing the multiplication step at a width of at least W + T 699 // bits. This way, the bottom W+T bits of the product are accurate. Then, 700 // when we perform the division by 2^T (which is equivalent to a right shift 701 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 702 // truncated out after the division by 2^T. 703 // 704 // In comparison to just directly using the first formula, this technique 705 // is much more efficient; using the first formula requires W * K bits, 706 // but this formula less than W + K bits. Also, the first formula requires 707 // a division step, whereas this formula only requires multiplies and shifts. 708 // 709 // It doesn't matter whether the subtraction step is done in the calculation 710 // width or the input iteration count's width; if the subtraction overflows, 711 // the result must be zero anyway. We prefer here to do it in the width of 712 // the induction variable because it helps a lot for certain cases; CodeGen 713 // isn't smart enough to ignore the overflow, which leads to much less 714 // efficient code if the width of the subtraction is wider than the native 715 // register width. 716 // 717 // (It's possible to not widen at all by pulling out factors of 2 before 718 // the multiplication; for example, K=2 can be calculated as 719 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 720 // extra arithmetic, so it's not an obvious win, and it gets 721 // much more complicated for K > 3.) 722 723 // Protection from insane SCEVs; this bound is conservative, 724 // but it probably doesn't matter. 725 if (K > 1000) 726 return SE.getCouldNotCompute(); 727 728 unsigned W = SE.getTypeSizeInBits(ResultTy); 729 730 // Calculate K! / 2^T and T; we divide out the factors of two before 731 // multiplying for calculating K! / 2^T to avoid overflow. 732 // Other overflow doesn't matter because we only care about the bottom 733 // W bits of the result. 734 APInt OddFactorial(W, 1); 735 unsigned T = 1; 736 for (unsigned i = 3; i <= K; ++i) { 737 APInt Mult(W, i); 738 unsigned TwoFactors = Mult.countTrailingZeros(); 739 T += TwoFactors; 740 Mult = Mult.lshr(TwoFactors); 741 OddFactorial *= Mult; 742 } 743 744 // We need at least W + T bits for the multiplication step 745 unsigned CalculationBits = W + T; 746 747 // Calcuate 2^T, at width T+W. 748 APInt DivFactor = APInt(CalculationBits, 1).shl(T); 749 750 // Calculate the multiplicative inverse of K! / 2^T; 751 // this multiplication factor will perform the exact division by 752 // K! / 2^T. 753 APInt Mod = APInt::getSignedMinValue(W+1); 754 APInt MultiplyFactor = OddFactorial.zext(W+1); 755 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 756 MultiplyFactor = MultiplyFactor.trunc(W); 757 758 // Calculate the product, at width T+W 759 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 760 CalculationBits); 761 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 762 for (unsigned i = 1; i != K; ++i) { 763 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType())); 764 Dividend = SE.getMulExpr(Dividend, 765 SE.getTruncateOrZeroExtend(S, CalculationTy)); 766 } 767 768 // Divide by 2^T 769 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 770 771 // Truncate the result, and divide by K! / 2^T. 772 773 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 774 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 775 } 776 777 /// evaluateAtIteration - Return the value of this chain of recurrences at 778 /// the specified iteration number. We can evaluate this recurrence by 779 /// multiplying each element in the chain by the binomial coefficient 780 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 781 /// 782 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 783 /// 784 /// where BC(It, k) stands for binomial coefficient. 785 /// 786 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 787 ScalarEvolution &SE) const { 788 const SCEV *Result = getStart(); 789 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 790 // The computation is correct in the face of overflow provided that the 791 // multiplication is performed _after_ the evaluation of the binomial 792 // coefficient. 793 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 794 if (isa<SCEVCouldNotCompute>(Coeff)) 795 return Coeff; 796 797 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 798 } 799 return Result; 800 } 801 802 //===----------------------------------------------------------------------===// 803 // SCEV Expression folder implementations 804 //===----------------------------------------------------------------------===// 805 806 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 807 const Type *Ty) { 808 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 809 "This is not a truncating conversion!"); 810 assert(isSCEVable(Ty) && 811 "This is not a conversion to a SCEVable type!"); 812 Ty = getEffectiveSCEVType(Ty); 813 814 FoldingSetNodeID ID; 815 ID.AddInteger(scTruncate); 816 ID.AddPointer(Op); 817 ID.AddPointer(Ty); 818 void *IP = 0; 819 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 820 821 // Fold if the operand is constant. 822 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 823 return getConstant( 824 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 825 826 // trunc(trunc(x)) --> trunc(x) 827 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 828 return getTruncateExpr(ST->getOperand(), Ty); 829 830 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 831 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 832 return getTruncateOrSignExtend(SS->getOperand(), Ty); 833 834 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 835 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 836 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 837 838 // If the input value is a chrec scev, truncate the chrec's operands. 839 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 840 SmallVector<const SCEV *, 4> Operands; 841 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 842 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 843 return getAddRecExpr(Operands, AddRec->getLoop()); 844 } 845 846 // The cast wasn't folded; create an explicit cast node. 847 // Recompute the insert position, as it may have been invalidated. 848 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 849 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>(); 850 new (S) SCEVTruncateExpr(ID, Op, Ty); 851 UniqueSCEVs.InsertNode(S, IP); 852 return S; 853 } 854 855 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 856 const Type *Ty) { 857 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 858 "This is not an extending conversion!"); 859 assert(isSCEVable(Ty) && 860 "This is not a conversion to a SCEVable type!"); 861 Ty = getEffectiveSCEVType(Ty); 862 863 // Fold if the operand is constant. 864 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 865 const Type *IntTy = getEffectiveSCEVType(Ty); 866 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy); 867 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 868 return getConstant(cast<ConstantInt>(C)); 869 } 870 871 // zext(zext(x)) --> zext(x) 872 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 873 return getZeroExtendExpr(SZ->getOperand(), Ty); 874 875 // Before doing any expensive analysis, check to see if we've already 876 // computed a SCEV for this Op and Ty. 877 FoldingSetNodeID ID; 878 ID.AddInteger(scZeroExtend); 879 ID.AddPointer(Op); 880 ID.AddPointer(Ty); 881 void *IP = 0; 882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 883 884 // If the input value is a chrec scev, and we can prove that the value 885 // did not overflow the old, smaller, value, we can zero extend all of the 886 // operands (often constants). This allows analysis of something like 887 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 888 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 889 if (AR->isAffine()) { 890 const SCEV *Start = AR->getStart(); 891 const SCEV *Step = AR->getStepRecurrence(*this); 892 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 893 const Loop *L = AR->getLoop(); 894 895 // If we have special knowledge that this addrec won't overflow, 896 // we don't need to do any further analysis. 897 if (AR->hasNoUnsignedWrap()) 898 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 899 getZeroExtendExpr(Step, Ty), 900 L); 901 902 // Check whether the backedge-taken count is SCEVCouldNotCompute. 903 // Note that this serves two purposes: It filters out loops that are 904 // simply not analyzable, and it covers the case where this code is 905 // being called from within backedge-taken count analysis, such that 906 // attempting to ask for the backedge-taken count would likely result 907 // in infinite recursion. In the later case, the analysis code will 908 // cope with a conservative value, and it will take care to purge 909 // that value once it has finished. 910 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 911 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 912 // Manually compute the final value for AR, checking for 913 // overflow. 914 915 // Check whether the backedge-taken count can be losslessly casted to 916 // the addrec's type. The count is always unsigned. 917 const SCEV *CastedMaxBECount = 918 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 919 const SCEV *RecastedMaxBECount = 920 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 921 if (MaxBECount == RecastedMaxBECount) { 922 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 923 // Check whether Start+Step*MaxBECount has no unsigned overflow. 924 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 925 const SCEV *Add = getAddExpr(Start, ZMul); 926 const SCEV *OperandExtendedAdd = 927 getAddExpr(getZeroExtendExpr(Start, WideTy), 928 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 929 getZeroExtendExpr(Step, WideTy))); 930 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 931 // Return the expression with the addrec on the outside. 932 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 933 getZeroExtendExpr(Step, Ty), 934 L); 935 936 // Similar to above, only this time treat the step value as signed. 937 // This covers loops that count down. 938 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 939 Add = getAddExpr(Start, SMul); 940 OperandExtendedAdd = 941 getAddExpr(getZeroExtendExpr(Start, WideTy), 942 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 943 getSignExtendExpr(Step, WideTy))); 944 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd) 945 // Return the expression with the addrec on the outside. 946 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 947 getSignExtendExpr(Step, Ty), 948 L); 949 } 950 951 // If the backedge is guarded by a comparison with the pre-inc value 952 // the addrec is safe. Also, if the entry is guarded by a comparison 953 // with the start value and the backedge is guarded by a comparison 954 // with the post-inc value, the addrec is safe. 955 if (isKnownPositive(Step)) { 956 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 957 getUnsignedRange(Step).getUnsignedMax()); 958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 959 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 961 AR->getPostIncExpr(*this), N))) 962 // Return the expression with the addrec on the outside. 963 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 964 getZeroExtendExpr(Step, Ty), 965 L); 966 } else if (isKnownNegative(Step)) { 967 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 968 getSignedRange(Step).getSignedMin()); 969 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) && 970 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) || 971 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 972 AR->getPostIncExpr(*this), N))) 973 // Return the expression with the addrec on the outside. 974 return getAddRecExpr(getZeroExtendExpr(Start, Ty), 975 getSignExtendExpr(Step, Ty), 976 L); 977 } 978 } 979 } 980 981 // The cast wasn't folded; create an explicit cast node. 982 // Recompute the insert position, as it may have been invalidated. 983 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 984 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>(); 985 new (S) SCEVZeroExtendExpr(ID, Op, Ty); 986 UniqueSCEVs.InsertNode(S, IP); 987 return S; 988 } 989 990 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 991 const Type *Ty) { 992 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 993 "This is not an extending conversion!"); 994 assert(isSCEVable(Ty) && 995 "This is not a conversion to a SCEVable type!"); 996 Ty = getEffectiveSCEVType(Ty); 997 998 // Fold if the operand is constant. 999 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) { 1000 const Type *IntTy = getEffectiveSCEVType(Ty); 1001 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy); 1002 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty); 1003 return getConstant(cast<ConstantInt>(C)); 1004 } 1005 1006 // sext(sext(x)) --> sext(x) 1007 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1008 return getSignExtendExpr(SS->getOperand(), Ty); 1009 1010 // Before doing any expensive analysis, check to see if we've already 1011 // computed a SCEV for this Op and Ty. 1012 FoldingSetNodeID ID; 1013 ID.AddInteger(scSignExtend); 1014 ID.AddPointer(Op); 1015 ID.AddPointer(Ty); 1016 void *IP = 0; 1017 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1018 1019 // If the input value is a chrec scev, and we can prove that the value 1020 // did not overflow the old, smaller, value, we can sign extend all of the 1021 // operands (often constants). This allows analysis of something like 1022 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1023 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1024 if (AR->isAffine()) { 1025 const SCEV *Start = AR->getStart(); 1026 const SCEV *Step = AR->getStepRecurrence(*this); 1027 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1028 const Loop *L = AR->getLoop(); 1029 1030 // If we have special knowledge that this addrec won't overflow, 1031 // we don't need to do any further analysis. 1032 if (AR->hasNoSignedWrap()) 1033 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1034 getSignExtendExpr(Step, Ty), 1035 L); 1036 1037 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1038 // Note that this serves two purposes: It filters out loops that are 1039 // simply not analyzable, and it covers the case where this code is 1040 // being called from within backedge-taken count analysis, such that 1041 // attempting to ask for the backedge-taken count would likely result 1042 // in infinite recursion. In the later case, the analysis code will 1043 // cope with a conservative value, and it will take care to purge 1044 // that value once it has finished. 1045 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1046 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1047 // Manually compute the final value for AR, checking for 1048 // overflow. 1049 1050 // Check whether the backedge-taken count can be losslessly casted to 1051 // the addrec's type. The count is always unsigned. 1052 const SCEV *CastedMaxBECount = 1053 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1054 const SCEV *RecastedMaxBECount = 1055 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1056 if (MaxBECount == RecastedMaxBECount) { 1057 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1058 // Check whether Start+Step*MaxBECount has no signed overflow. 1059 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1060 const SCEV *Add = getAddExpr(Start, SMul); 1061 const SCEV *OperandExtendedAdd = 1062 getAddExpr(getSignExtendExpr(Start, WideTy), 1063 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1064 getSignExtendExpr(Step, WideTy))); 1065 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1066 // Return the expression with the addrec on the outside. 1067 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1068 getSignExtendExpr(Step, Ty), 1069 L); 1070 1071 // Similar to above, only this time treat the step value as unsigned. 1072 // This covers loops that count up with an unsigned step. 1073 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step); 1074 Add = getAddExpr(Start, UMul); 1075 OperandExtendedAdd = 1076 getAddExpr(getSignExtendExpr(Start, WideTy), 1077 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy), 1078 getZeroExtendExpr(Step, WideTy))); 1079 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd) 1080 // Return the expression with the addrec on the outside. 1081 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1082 getZeroExtendExpr(Step, Ty), 1083 L); 1084 } 1085 1086 // If the backedge is guarded by a comparison with the pre-inc value 1087 // the addrec is safe. Also, if the entry is guarded by a comparison 1088 // with the start value and the backedge is guarded by a comparison 1089 // with the post-inc value, the addrec is safe. 1090 if (isKnownPositive(Step)) { 1091 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) - 1092 getSignedRange(Step).getSignedMax()); 1093 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) || 1094 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) && 1095 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, 1096 AR->getPostIncExpr(*this), N))) 1097 // Return the expression with the addrec on the outside. 1098 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1099 getSignExtendExpr(Step, Ty), 1100 L); 1101 } else if (isKnownNegative(Step)) { 1102 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) - 1103 getSignedRange(Step).getSignedMin()); 1104 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) || 1105 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) && 1106 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, 1107 AR->getPostIncExpr(*this), N))) 1108 // Return the expression with the addrec on the outside. 1109 return getAddRecExpr(getSignExtendExpr(Start, Ty), 1110 getSignExtendExpr(Step, Ty), 1111 L); 1112 } 1113 } 1114 } 1115 1116 // The cast wasn't folded; create an explicit cast node. 1117 // Recompute the insert position, as it may have been invalidated. 1118 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1119 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>(); 1120 new (S) SCEVSignExtendExpr(ID, Op, Ty); 1121 UniqueSCEVs.InsertNode(S, IP); 1122 return S; 1123 } 1124 1125 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1126 /// unspecified bits out to the given type. 1127 /// 1128 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1129 const Type *Ty) { 1130 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1131 "This is not an extending conversion!"); 1132 assert(isSCEVable(Ty) && 1133 "This is not a conversion to a SCEVable type!"); 1134 Ty = getEffectiveSCEVType(Ty); 1135 1136 // Sign-extend negative constants. 1137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1138 if (SC->getValue()->getValue().isNegative()) 1139 return getSignExtendExpr(Op, Ty); 1140 1141 // Peel off a truncate cast. 1142 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1143 const SCEV *NewOp = T->getOperand(); 1144 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1145 return getAnyExtendExpr(NewOp, Ty); 1146 return getTruncateOrNoop(NewOp, Ty); 1147 } 1148 1149 // Next try a zext cast. If the cast is folded, use it. 1150 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1151 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1152 return ZExt; 1153 1154 // Next try a sext cast. If the cast is folded, use it. 1155 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1156 if (!isa<SCEVSignExtendExpr>(SExt)) 1157 return SExt; 1158 1159 // Force the cast to be folded into the operands of an addrec. 1160 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1161 SmallVector<const SCEV *, 4> Ops; 1162 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 1163 I != E; ++I) 1164 Ops.push_back(getAnyExtendExpr(*I, Ty)); 1165 return getAddRecExpr(Ops, AR->getLoop()); 1166 } 1167 1168 // If the expression is obviously signed, use the sext cast value. 1169 if (isa<SCEVSMaxExpr>(Op)) 1170 return SExt; 1171 1172 // Absent any other information, use the zext cast value. 1173 return ZExt; 1174 } 1175 1176 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1177 /// a list of operands to be added under the given scale, update the given 1178 /// map. This is a helper function for getAddRecExpr. As an example of 1179 /// what it does, given a sequence of operands that would form an add 1180 /// expression like this: 1181 /// 1182 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r) 1183 /// 1184 /// where A and B are constants, update the map with these values: 1185 /// 1186 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1187 /// 1188 /// and add 13 + A*B*29 to AccumulatedConstant. 1189 /// This will allow getAddRecExpr to produce this: 1190 /// 1191 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1192 /// 1193 /// This form often exposes folding opportunities that are hidden in 1194 /// the original operand list. 1195 /// 1196 /// Return true iff it appears that any interesting folding opportunities 1197 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1198 /// the common case where no interesting opportunities are present, and 1199 /// is also used as a check to avoid infinite recursion. 1200 /// 1201 static bool 1202 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1203 SmallVector<const SCEV *, 8> &NewOps, 1204 APInt &AccumulatedConstant, 1205 const SmallVectorImpl<const SCEV *> &Ops, 1206 const APInt &Scale, 1207 ScalarEvolution &SE) { 1208 bool Interesting = false; 1209 1210 // Iterate over the add operands. 1211 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1212 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1213 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1214 APInt NewScale = 1215 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1216 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1217 // A multiplication of a constant with another add; recurse. 1218 Interesting |= 1219 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1220 cast<SCEVAddExpr>(Mul->getOperand(1)) 1221 ->getOperands(), 1222 NewScale, SE); 1223 } else { 1224 // A multiplication of a constant with some other value. Update 1225 // the map. 1226 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1227 const SCEV *Key = SE.getMulExpr(MulOps); 1228 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1229 M.insert(std::make_pair(Key, NewScale)); 1230 if (Pair.second) { 1231 NewOps.push_back(Pair.first->first); 1232 } else { 1233 Pair.first->second += NewScale; 1234 // The map already had an entry for this value, which may indicate 1235 // a folding opportunity. 1236 Interesting = true; 1237 } 1238 } 1239 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1240 // Pull a buried constant out to the outside. 1241 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero()) 1242 Interesting = true; 1243 AccumulatedConstant += Scale * C->getValue()->getValue(); 1244 } else { 1245 // An ordinary operand. Update the map. 1246 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1247 M.insert(std::make_pair(Ops[i], Scale)); 1248 if (Pair.second) { 1249 NewOps.push_back(Pair.first->first); 1250 } else { 1251 Pair.first->second += Scale; 1252 // The map already had an entry for this value, which may indicate 1253 // a folding opportunity. 1254 Interesting = true; 1255 } 1256 } 1257 } 1258 1259 return Interesting; 1260 } 1261 1262 namespace { 1263 struct APIntCompare { 1264 bool operator()(const APInt &LHS, const APInt &RHS) const { 1265 return LHS.ult(RHS); 1266 } 1267 }; 1268 } 1269 1270 /// getAddExpr - Get a canonical add expression, or something simpler if 1271 /// possible. 1272 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1273 bool HasNUW, bool HasNSW) { 1274 assert(!Ops.empty() && "Cannot get empty add!"); 1275 if (Ops.size() == 1) return Ops[0]; 1276 #ifndef NDEBUG 1277 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1278 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1279 getEffectiveSCEVType(Ops[0]->getType()) && 1280 "SCEVAddExpr operand types don't match!"); 1281 #endif 1282 1283 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1284 if (!HasNUW && HasNSW) { 1285 bool All = true; 1286 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1287 if (!isKnownNonNegative(Ops[i])) { 1288 All = false; 1289 break; 1290 } 1291 if (All) HasNUW = true; 1292 } 1293 1294 // Sort by complexity, this groups all similar expression types together. 1295 GroupByComplexity(Ops, LI); 1296 1297 // If there are any constants, fold them together. 1298 unsigned Idx = 0; 1299 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1300 ++Idx; 1301 assert(Idx < Ops.size()); 1302 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1303 // We found two constants, fold them together! 1304 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1305 RHSC->getValue()->getValue()); 1306 if (Ops.size() == 2) return Ops[0]; 1307 Ops.erase(Ops.begin()+1); // Erase the folded element 1308 LHSC = cast<SCEVConstant>(Ops[0]); 1309 } 1310 1311 // If we are left with a constant zero being added, strip it off. 1312 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1313 Ops.erase(Ops.begin()); 1314 --Idx; 1315 } 1316 } 1317 1318 if (Ops.size() == 1) return Ops[0]; 1319 1320 // Okay, check to see if the same value occurs in the operand list twice. If 1321 // so, merge them together into an multiply expression. Since we sorted the 1322 // list, these values are required to be adjacent. 1323 const Type *Ty = Ops[0]->getType(); 1324 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 1325 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1326 // Found a match, merge the two values into a multiply, and add any 1327 // remaining values to the result. 1328 const SCEV *Two = getIntegerSCEV(2, Ty); 1329 const SCEV *Mul = getMulExpr(Ops[i], Two); 1330 if (Ops.size() == 2) 1331 return Mul; 1332 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1333 Ops.push_back(Mul); 1334 return getAddExpr(Ops, HasNUW, HasNSW); 1335 } 1336 1337 // Check for truncates. If all the operands are truncated from the same 1338 // type, see if factoring out the truncate would permit the result to be 1339 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 1340 // if the contents of the resulting outer trunc fold to something simple. 1341 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 1342 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 1343 const Type *DstType = Trunc->getType(); 1344 const Type *SrcType = Trunc->getOperand()->getType(); 1345 SmallVector<const SCEV *, 8> LargeOps; 1346 bool Ok = true; 1347 // Check all the operands to see if they can be represented in the 1348 // source type of the truncate. 1349 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1350 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 1351 if (T->getOperand()->getType() != SrcType) { 1352 Ok = false; 1353 break; 1354 } 1355 LargeOps.push_back(T->getOperand()); 1356 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1357 // This could be either sign or zero extension, but sign extension 1358 // is much more likely to be foldable here. 1359 LargeOps.push_back(getSignExtendExpr(C, SrcType)); 1360 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 1361 SmallVector<const SCEV *, 8> LargeMulOps; 1362 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 1363 if (const SCEVTruncateExpr *T = 1364 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 1365 if (T->getOperand()->getType() != SrcType) { 1366 Ok = false; 1367 break; 1368 } 1369 LargeMulOps.push_back(T->getOperand()); 1370 } else if (const SCEVConstant *C = 1371 dyn_cast<SCEVConstant>(M->getOperand(j))) { 1372 // This could be either sign or zero extension, but sign extension 1373 // is much more likely to be foldable here. 1374 LargeMulOps.push_back(getSignExtendExpr(C, SrcType)); 1375 } else { 1376 Ok = false; 1377 break; 1378 } 1379 } 1380 if (Ok) 1381 LargeOps.push_back(getMulExpr(LargeMulOps)); 1382 } else { 1383 Ok = false; 1384 break; 1385 } 1386 } 1387 if (Ok) { 1388 // Evaluate the expression in the larger type. 1389 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW); 1390 // If it folds to something simple, use it. Otherwise, don't. 1391 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 1392 return getTruncateExpr(Fold, DstType); 1393 } 1394 } 1395 1396 // Skip past any other cast SCEVs. 1397 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 1398 ++Idx; 1399 1400 // If there are add operands they would be next. 1401 if (Idx < Ops.size()) { 1402 bool DeletedAdd = false; 1403 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 1404 // If we have an add, expand the add operands onto the end of the operands 1405 // list. 1406 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end()); 1407 Ops.erase(Ops.begin()+Idx); 1408 DeletedAdd = true; 1409 } 1410 1411 // If we deleted at least one add, we added operands to the end of the list, 1412 // and they are not necessarily sorted. Recurse to resort and resimplify 1413 // any operands we just aquired. 1414 if (DeletedAdd) 1415 return getAddExpr(Ops); 1416 } 1417 1418 // Skip over the add expression until we get to a multiply. 1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1420 ++Idx; 1421 1422 // Check to see if there are any folding opportunities present with 1423 // operands multiplied by constant values. 1424 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 1425 uint64_t BitWidth = getTypeSizeInBits(Ty); 1426 DenseMap<const SCEV *, APInt> M; 1427 SmallVector<const SCEV *, 8> NewOps; 1428 APInt AccumulatedConstant(BitWidth, 0); 1429 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1430 Ops, APInt(BitWidth, 1), *this)) { 1431 // Some interesting folding opportunity is present, so its worthwhile to 1432 // re-generate the operands list. Group the operands by constant scale, 1433 // to avoid multiplying by the same constant scale multiple times. 1434 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 1435 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(), 1436 E = NewOps.end(); I != E; ++I) 1437 MulOpLists[M.find(*I)->second].push_back(*I); 1438 // Re-generate the operands list. 1439 Ops.clear(); 1440 if (AccumulatedConstant != 0) 1441 Ops.push_back(getConstant(AccumulatedConstant)); 1442 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 1443 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 1444 if (I->first != 0) 1445 Ops.push_back(getMulExpr(getConstant(I->first), 1446 getAddExpr(I->second))); 1447 if (Ops.empty()) 1448 return getIntegerSCEV(0, Ty); 1449 if (Ops.size() == 1) 1450 return Ops[0]; 1451 return getAddExpr(Ops); 1452 } 1453 } 1454 1455 // If we are adding something to a multiply expression, make sure the 1456 // something is not already an operand of the multiply. If so, merge it into 1457 // the multiply. 1458 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 1459 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 1460 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 1461 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 1462 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 1463 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) { 1464 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 1465 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 1466 if (Mul->getNumOperands() != 2) { 1467 // If the multiply has more than two operands, we must get the 1468 // Y*Z term. 1469 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end()); 1470 MulOps.erase(MulOps.begin()+MulOp); 1471 InnerMul = getMulExpr(MulOps); 1472 } 1473 const SCEV *One = getIntegerSCEV(1, Ty); 1474 const SCEV *AddOne = getAddExpr(InnerMul, One); 1475 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]); 1476 if (Ops.size() == 2) return OuterMul; 1477 if (AddOp < Idx) { 1478 Ops.erase(Ops.begin()+AddOp); 1479 Ops.erase(Ops.begin()+Idx-1); 1480 } else { 1481 Ops.erase(Ops.begin()+Idx); 1482 Ops.erase(Ops.begin()+AddOp-1); 1483 } 1484 Ops.push_back(OuterMul); 1485 return getAddExpr(Ops); 1486 } 1487 1488 // Check this multiply against other multiplies being added together. 1489 for (unsigned OtherMulIdx = Idx+1; 1490 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 1491 ++OtherMulIdx) { 1492 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 1493 // If MulOp occurs in OtherMul, we can fold the two multiplies 1494 // together. 1495 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 1496 OMulOp != e; ++OMulOp) 1497 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 1498 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 1499 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 1500 if (Mul->getNumOperands() != 2) { 1501 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 1502 Mul->op_end()); 1503 MulOps.erase(MulOps.begin()+MulOp); 1504 InnerMul1 = getMulExpr(MulOps); 1505 } 1506 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 1507 if (OtherMul->getNumOperands() != 2) { 1508 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 1509 OtherMul->op_end()); 1510 MulOps.erase(MulOps.begin()+OMulOp); 1511 InnerMul2 = getMulExpr(MulOps); 1512 } 1513 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 1514 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 1515 if (Ops.size() == 2) return OuterMul; 1516 Ops.erase(Ops.begin()+Idx); 1517 Ops.erase(Ops.begin()+OtherMulIdx-1); 1518 Ops.push_back(OuterMul); 1519 return getAddExpr(Ops); 1520 } 1521 } 1522 } 1523 } 1524 1525 // If there are any add recurrences in the operands list, see if any other 1526 // added values are loop invariant. If so, we can fold them into the 1527 // recurrence. 1528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1529 ++Idx; 1530 1531 // Scan over all recurrences, trying to fold loop invariants into them. 1532 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1533 // Scan all of the other operands to this add and add them to the vector if 1534 // they are loop invariant w.r.t. the recurrence. 1535 SmallVector<const SCEV *, 8> LIOps; 1536 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1537 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1538 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1539 LIOps.push_back(Ops[i]); 1540 Ops.erase(Ops.begin()+i); 1541 --i; --e; 1542 } 1543 1544 // If we found some loop invariants, fold them into the recurrence. 1545 if (!LIOps.empty()) { 1546 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 1547 LIOps.push_back(AddRec->getStart()); 1548 1549 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 1550 AddRec->op_end()); 1551 AddRecOps[0] = getAddExpr(LIOps); 1552 1553 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition 1554 // is not associative so this isn't necessarily safe. 1555 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop()); 1556 1557 // If all of the other operands were loop invariant, we are done. 1558 if (Ops.size() == 1) return NewRec; 1559 1560 // Otherwise, add the folded AddRec by the non-liv parts. 1561 for (unsigned i = 0;; ++i) 1562 if (Ops[i] == AddRec) { 1563 Ops[i] = NewRec; 1564 break; 1565 } 1566 return getAddExpr(Ops); 1567 } 1568 1569 // Okay, if there weren't any loop invariants to be folded, check to see if 1570 // there are multiple AddRec's with the same loop induction variable being 1571 // added together. If so, we can fold them. 1572 for (unsigned OtherIdx = Idx+1; 1573 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1574 if (OtherIdx != Idx) { 1575 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1576 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1577 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D} 1578 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(), 1579 AddRec->op_end()); 1580 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) { 1581 if (i >= NewOps.size()) { 1582 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i, 1583 OtherAddRec->op_end()); 1584 break; 1585 } 1586 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i)); 1587 } 1588 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop()); 1589 1590 if (Ops.size() == 2) return NewAddRec; 1591 1592 Ops.erase(Ops.begin()+Idx); 1593 Ops.erase(Ops.begin()+OtherIdx-1); 1594 Ops.push_back(NewAddRec); 1595 return getAddExpr(Ops); 1596 } 1597 } 1598 1599 // Otherwise couldn't fold anything into this recurrence. Move onto the 1600 // next one. 1601 } 1602 1603 // Okay, it looks like we really DO need an add expr. Check to see if we 1604 // already have one, otherwise create a new one. 1605 FoldingSetNodeID ID; 1606 ID.AddInteger(scAddExpr); 1607 ID.AddInteger(Ops.size()); 1608 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1609 ID.AddPointer(Ops[i]); 1610 void *IP = 0; 1611 SCEVAddExpr *S = 1612 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1613 if (!S) { 1614 S = SCEVAllocator.Allocate<SCEVAddExpr>(); 1615 new (S) SCEVAddExpr(ID, Ops); 1616 UniqueSCEVs.InsertNode(S, IP); 1617 } 1618 if (HasNUW) S->setHasNoUnsignedWrap(true); 1619 if (HasNSW) S->setHasNoSignedWrap(true); 1620 return S; 1621 } 1622 1623 /// getMulExpr - Get a canonical multiply expression, or something simpler if 1624 /// possible. 1625 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 1626 bool HasNUW, bool HasNSW) { 1627 assert(!Ops.empty() && "Cannot get empty mul!"); 1628 if (Ops.size() == 1) return Ops[0]; 1629 #ifndef NDEBUG 1630 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1631 assert(getEffectiveSCEVType(Ops[i]->getType()) == 1632 getEffectiveSCEVType(Ops[0]->getType()) && 1633 "SCEVMulExpr operand types don't match!"); 1634 #endif 1635 1636 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1637 if (!HasNUW && HasNSW) { 1638 bool All = true; 1639 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1640 if (!isKnownNonNegative(Ops[i])) { 1641 All = false; 1642 break; 1643 } 1644 if (All) HasNUW = true; 1645 } 1646 1647 // Sort by complexity, this groups all similar expression types together. 1648 GroupByComplexity(Ops, LI); 1649 1650 // If there are any constants, fold them together. 1651 unsigned Idx = 0; 1652 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1653 1654 // C1*(C2+V) -> C1*C2 + C1*V 1655 if (Ops.size() == 2) 1656 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 1657 if (Add->getNumOperands() == 2 && 1658 isa<SCEVConstant>(Add->getOperand(0))) 1659 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 1660 getMulExpr(LHSC, Add->getOperand(1))); 1661 1662 ++Idx; 1663 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1664 // We found two constants, fold them together! 1665 ConstantInt *Fold = ConstantInt::get(getContext(), 1666 LHSC->getValue()->getValue() * 1667 RHSC->getValue()->getValue()); 1668 Ops[0] = getConstant(Fold); 1669 Ops.erase(Ops.begin()+1); // Erase the folded element 1670 if (Ops.size() == 1) return Ops[0]; 1671 LHSC = cast<SCEVConstant>(Ops[0]); 1672 } 1673 1674 // If we are left with a constant one being multiplied, strip it off. 1675 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 1676 Ops.erase(Ops.begin()); 1677 --Idx; 1678 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 1679 // If we have a multiply of zero, it will always be zero. 1680 return Ops[0]; 1681 } else if (Ops[0]->isAllOnesValue()) { 1682 // If we have a mul by -1 of an add, try distributing the -1 among the 1683 // add operands. 1684 if (Ops.size() == 2) 1685 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 1686 SmallVector<const SCEV *, 4> NewOps; 1687 bool AnyFolded = false; 1688 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1689 I != E; ++I) { 1690 const SCEV *Mul = getMulExpr(Ops[0], *I); 1691 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 1692 NewOps.push_back(Mul); 1693 } 1694 if (AnyFolded) 1695 return getAddExpr(NewOps); 1696 } 1697 } 1698 } 1699 1700 // Skip over the add expression until we get to a multiply. 1701 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 1702 ++Idx; 1703 1704 if (Ops.size() == 1) 1705 return Ops[0]; 1706 1707 // If there are mul operands inline them all into this expression. 1708 if (Idx < Ops.size()) { 1709 bool DeletedMul = false; 1710 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 1711 // If we have an mul, expand the mul operands onto the end of the operands 1712 // list. 1713 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end()); 1714 Ops.erase(Ops.begin()+Idx); 1715 DeletedMul = true; 1716 } 1717 1718 // If we deleted at least one mul, we added operands to the end of the list, 1719 // and they are not necessarily sorted. Recurse to resort and resimplify 1720 // any operands we just aquired. 1721 if (DeletedMul) 1722 return getMulExpr(Ops); 1723 } 1724 1725 // If there are any add recurrences in the operands list, see if any other 1726 // added values are loop invariant. If so, we can fold them into the 1727 // recurrence. 1728 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 1729 ++Idx; 1730 1731 // Scan over all recurrences, trying to fold loop invariants into them. 1732 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 1733 // Scan all of the other operands to this mul and add them to the vector if 1734 // they are loop invariant w.r.t. the recurrence. 1735 SmallVector<const SCEV *, 8> LIOps; 1736 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 1737 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1738 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) { 1739 LIOps.push_back(Ops[i]); 1740 Ops.erase(Ops.begin()+i); 1741 --i; --e; 1742 } 1743 1744 // If we found some loop invariants, fold them into the recurrence. 1745 if (!LIOps.empty()) { 1746 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 1747 SmallVector<const SCEV *, 4> NewOps; 1748 NewOps.reserve(AddRec->getNumOperands()); 1749 if (LIOps.size() == 1) { 1750 const SCEV *Scale = LIOps[0]; 1751 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1752 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 1753 } else { 1754 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 1755 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end()); 1756 MulOps.push_back(AddRec->getOperand(i)); 1757 NewOps.push_back(getMulExpr(MulOps)); 1758 } 1759 } 1760 1761 // It's tempting to propagate the NSW flag here, but nsw multiplication 1762 // is not associative so this isn't necessarily safe. 1763 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(), 1764 HasNUW && AddRec->hasNoUnsignedWrap(), 1765 /*HasNSW=*/false); 1766 1767 // If all of the other operands were loop invariant, we are done. 1768 if (Ops.size() == 1) return NewRec; 1769 1770 // Otherwise, multiply the folded AddRec by the non-liv parts. 1771 for (unsigned i = 0;; ++i) 1772 if (Ops[i] == AddRec) { 1773 Ops[i] = NewRec; 1774 break; 1775 } 1776 return getMulExpr(Ops); 1777 } 1778 1779 // Okay, if there weren't any loop invariants to be folded, check to see if 1780 // there are multiple AddRec's with the same loop induction variable being 1781 // multiplied together. If so, we can fold them. 1782 for (unsigned OtherIdx = Idx+1; 1783 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx) 1784 if (OtherIdx != Idx) { 1785 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 1786 if (AddRec->getLoop() == OtherAddRec->getLoop()) { 1787 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D} 1788 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec; 1789 const SCEV *NewStart = getMulExpr(F->getStart(), 1790 G->getStart()); 1791 const SCEV *B = F->getStepRecurrence(*this); 1792 const SCEV *D = G->getStepRecurrence(*this); 1793 const SCEV *NewStep = getAddExpr(getMulExpr(F, D), 1794 getMulExpr(G, B), 1795 getMulExpr(B, D)); 1796 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep, 1797 F->getLoop()); 1798 if (Ops.size() == 2) return NewAddRec; 1799 1800 Ops.erase(Ops.begin()+Idx); 1801 Ops.erase(Ops.begin()+OtherIdx-1); 1802 Ops.push_back(NewAddRec); 1803 return getMulExpr(Ops); 1804 } 1805 } 1806 1807 // Otherwise couldn't fold anything into this recurrence. Move onto the 1808 // next one. 1809 } 1810 1811 // Okay, it looks like we really DO need an mul expr. Check to see if we 1812 // already have one, otherwise create a new one. 1813 FoldingSetNodeID ID; 1814 ID.AddInteger(scMulExpr); 1815 ID.AddInteger(Ops.size()); 1816 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1817 ID.AddPointer(Ops[i]); 1818 void *IP = 0; 1819 SCEVMulExpr *S = 1820 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1821 if (!S) { 1822 S = SCEVAllocator.Allocate<SCEVMulExpr>(); 1823 new (S) SCEVMulExpr(ID, Ops); 1824 UniqueSCEVs.InsertNode(S, IP); 1825 } 1826 if (HasNUW) S->setHasNoUnsignedWrap(true); 1827 if (HasNSW) S->setHasNoSignedWrap(true); 1828 return S; 1829 } 1830 1831 /// getUDivExpr - Get a canonical unsigned division expression, or something 1832 /// simpler if possible. 1833 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 1834 const SCEV *RHS) { 1835 assert(getEffectiveSCEVType(LHS->getType()) == 1836 getEffectiveSCEVType(RHS->getType()) && 1837 "SCEVUDivExpr operand types don't match!"); 1838 1839 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 1840 if (RHSC->getValue()->equalsInt(1)) 1841 return LHS; // X udiv 1 --> x 1842 if (RHSC->isZero()) 1843 return getIntegerSCEV(0, LHS->getType()); // value is undefined 1844 1845 // Determine if the division can be folded into the operands of 1846 // its operands. 1847 // TODO: Generalize this to non-constants by using known-bits information. 1848 const Type *Ty = LHS->getType(); 1849 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 1850 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ; 1851 // For non-power-of-two values, effectively round the value up to the 1852 // nearest power of two. 1853 if (!RHSC->getValue()->getValue().isPowerOf2()) 1854 ++MaxShiftAmt; 1855 const IntegerType *ExtTy = 1856 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 1857 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 1858 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 1859 if (const SCEVConstant *Step = 1860 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) 1861 if (!Step->getValue()->getValue() 1862 .urem(RHSC->getValue()->getValue()) && 1863 getZeroExtendExpr(AR, ExtTy) == 1864 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 1865 getZeroExtendExpr(Step, ExtTy), 1866 AR->getLoop())) { 1867 SmallVector<const SCEV *, 4> Operands; 1868 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 1869 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 1870 return getAddRecExpr(Operands, AR->getLoop()); 1871 } 1872 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 1873 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 1874 SmallVector<const SCEV *, 4> Operands; 1875 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 1876 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 1877 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 1878 // Find an operand that's safely divisible. 1879 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 1880 const SCEV *Op = M->getOperand(i); 1881 const SCEV *Div = getUDivExpr(Op, RHSC); 1882 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 1883 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands(); 1884 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(), 1885 MOperands.end()); 1886 Operands[i] = Div; 1887 return getMulExpr(Operands); 1888 } 1889 } 1890 } 1891 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 1892 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) { 1893 SmallVector<const SCEV *, 4> Operands; 1894 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 1895 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 1896 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 1897 Operands.clear(); 1898 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 1899 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 1900 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i)) 1901 break; 1902 Operands.push_back(Op); 1903 } 1904 if (Operands.size() == A->getNumOperands()) 1905 return getAddExpr(Operands); 1906 } 1907 } 1908 1909 // Fold if both operands are constant. 1910 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 1911 Constant *LHSCV = LHSC->getValue(); 1912 Constant *RHSCV = RHSC->getValue(); 1913 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 1914 RHSCV))); 1915 } 1916 } 1917 1918 FoldingSetNodeID ID; 1919 ID.AddInteger(scUDivExpr); 1920 ID.AddPointer(LHS); 1921 ID.AddPointer(RHS); 1922 void *IP = 0; 1923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1924 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>(); 1925 new (S) SCEVUDivExpr(ID, LHS, RHS); 1926 UniqueSCEVs.InsertNode(S, IP); 1927 return S; 1928 } 1929 1930 1931 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1932 /// Simplify the expression as much as possible. 1933 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, 1934 const SCEV *Step, const Loop *L, 1935 bool HasNUW, bool HasNSW) { 1936 SmallVector<const SCEV *, 4> Operands; 1937 Operands.push_back(Start); 1938 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 1939 if (StepChrec->getLoop() == L) { 1940 Operands.insert(Operands.end(), StepChrec->op_begin(), 1941 StepChrec->op_end()); 1942 return getAddRecExpr(Operands, L); 1943 } 1944 1945 Operands.push_back(Step); 1946 return getAddRecExpr(Operands, L, HasNUW, HasNSW); 1947 } 1948 1949 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 1950 /// Simplify the expression as much as possible. 1951 const SCEV * 1952 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 1953 const Loop *L, 1954 bool HasNUW, bool HasNSW) { 1955 if (Operands.size() == 1) return Operands[0]; 1956 #ifndef NDEBUG 1957 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 1958 assert(getEffectiveSCEVType(Operands[i]->getType()) == 1959 getEffectiveSCEVType(Operands[0]->getType()) && 1960 "SCEVAddRecExpr operand types don't match!"); 1961 #endif 1962 1963 if (Operands.back()->isZero()) { 1964 Operands.pop_back(); 1965 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X 1966 } 1967 1968 // It's tempting to want to call getMaxBackedgeTakenCount count here and 1969 // use that information to infer NUW and NSW flags. However, computing a 1970 // BE count requires calling getAddRecExpr, so we may not yet have a 1971 // meaningful BE count at this point (and if we don't, we'd be stuck 1972 // with a SCEVCouldNotCompute as the cached BE count). 1973 1974 // If HasNSW is true and all the operands are non-negative, infer HasNUW. 1975 if (!HasNUW && HasNSW) { 1976 bool All = true; 1977 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 1978 if (!isKnownNonNegative(Operands[i])) { 1979 All = false; 1980 break; 1981 } 1982 if (All) HasNUW = true; 1983 } 1984 1985 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 1986 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 1987 const Loop *NestedLoop = NestedAR->getLoop(); 1988 if (L->contains(NestedLoop->getHeader()) ? 1989 (L->getLoopDepth() < NestedLoop->getLoopDepth()) : 1990 (!NestedLoop->contains(L->getHeader()) && 1991 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) { 1992 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 1993 NestedAR->op_end()); 1994 Operands[0] = NestedAR->getStart(); 1995 // AddRecs require their operands be loop-invariant with respect to their 1996 // loops. Don't perform this transformation if it would break this 1997 // requirement. 1998 bool AllInvariant = true; 1999 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2000 if (!Operands[i]->isLoopInvariant(L)) { 2001 AllInvariant = false; 2002 break; 2003 } 2004 if (AllInvariant) { 2005 NestedOperands[0] = getAddRecExpr(Operands, L); 2006 AllInvariant = true; 2007 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2008 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) { 2009 AllInvariant = false; 2010 break; 2011 } 2012 if (AllInvariant) 2013 // Ok, both add recurrences are valid after the transformation. 2014 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW); 2015 } 2016 // Reset Operands to its original state. 2017 Operands[0] = NestedAR; 2018 } 2019 } 2020 2021 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2022 // already have one, otherwise create a new one. 2023 FoldingSetNodeID ID; 2024 ID.AddInteger(scAddRecExpr); 2025 ID.AddInteger(Operands.size()); 2026 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2027 ID.AddPointer(Operands[i]); 2028 ID.AddPointer(L); 2029 void *IP = 0; 2030 SCEVAddRecExpr *S = 2031 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2032 if (!S) { 2033 S = SCEVAllocator.Allocate<SCEVAddRecExpr>(); 2034 new (S) SCEVAddRecExpr(ID, Operands, L); 2035 UniqueSCEVs.InsertNode(S, IP); 2036 } 2037 if (HasNUW) S->setHasNoUnsignedWrap(true); 2038 if (HasNSW) S->setHasNoSignedWrap(true); 2039 return S; 2040 } 2041 2042 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2043 const SCEV *RHS) { 2044 SmallVector<const SCEV *, 2> Ops; 2045 Ops.push_back(LHS); 2046 Ops.push_back(RHS); 2047 return getSMaxExpr(Ops); 2048 } 2049 2050 const SCEV * 2051 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2052 assert(!Ops.empty() && "Cannot get empty smax!"); 2053 if (Ops.size() == 1) return Ops[0]; 2054 #ifndef NDEBUG 2055 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2056 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2057 getEffectiveSCEVType(Ops[0]->getType()) && 2058 "SCEVSMaxExpr operand types don't match!"); 2059 #endif 2060 2061 // Sort by complexity, this groups all similar expression types together. 2062 GroupByComplexity(Ops, LI); 2063 2064 // If there are any constants, fold them together. 2065 unsigned Idx = 0; 2066 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2067 ++Idx; 2068 assert(Idx < Ops.size()); 2069 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2070 // We found two constants, fold them together! 2071 ConstantInt *Fold = ConstantInt::get(getContext(), 2072 APIntOps::smax(LHSC->getValue()->getValue(), 2073 RHSC->getValue()->getValue())); 2074 Ops[0] = getConstant(Fold); 2075 Ops.erase(Ops.begin()+1); // Erase the folded element 2076 if (Ops.size() == 1) return Ops[0]; 2077 LHSC = cast<SCEVConstant>(Ops[0]); 2078 } 2079 2080 // If we are left with a constant minimum-int, strip it off. 2081 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 2082 Ops.erase(Ops.begin()); 2083 --Idx; 2084 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 2085 // If we have an smax with a constant maximum-int, it will always be 2086 // maximum-int. 2087 return Ops[0]; 2088 } 2089 } 2090 2091 if (Ops.size() == 1) return Ops[0]; 2092 2093 // Find the first SMax 2094 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 2095 ++Idx; 2096 2097 // Check to see if one of the operands is an SMax. If so, expand its operands 2098 // onto our operand list, and recurse to simplify. 2099 if (Idx < Ops.size()) { 2100 bool DeletedSMax = false; 2101 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 2102 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end()); 2103 Ops.erase(Ops.begin()+Idx); 2104 DeletedSMax = true; 2105 } 2106 2107 if (DeletedSMax) 2108 return getSMaxExpr(Ops); 2109 } 2110 2111 // Okay, check to see if the same value occurs in the operand list twice. If 2112 // so, delete one. Since we sorted the list, these values are required to 2113 // be adjacent. 2114 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2115 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y 2116 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2117 --i; --e; 2118 } 2119 2120 if (Ops.size() == 1) return Ops[0]; 2121 2122 assert(!Ops.empty() && "Reduced smax down to nothing!"); 2123 2124 // Okay, it looks like we really DO need an smax expr. Check to see if we 2125 // already have one, otherwise create a new one. 2126 FoldingSetNodeID ID; 2127 ID.AddInteger(scSMaxExpr); 2128 ID.AddInteger(Ops.size()); 2129 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2130 ID.AddPointer(Ops[i]); 2131 void *IP = 0; 2132 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2133 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>(); 2134 new (S) SCEVSMaxExpr(ID, Ops); 2135 UniqueSCEVs.InsertNode(S, IP); 2136 return S; 2137 } 2138 2139 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 2140 const SCEV *RHS) { 2141 SmallVector<const SCEV *, 2> Ops; 2142 Ops.push_back(LHS); 2143 Ops.push_back(RHS); 2144 return getUMaxExpr(Ops); 2145 } 2146 2147 const SCEV * 2148 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2149 assert(!Ops.empty() && "Cannot get empty umax!"); 2150 if (Ops.size() == 1) return Ops[0]; 2151 #ifndef NDEBUG 2152 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2153 assert(getEffectiveSCEVType(Ops[i]->getType()) == 2154 getEffectiveSCEVType(Ops[0]->getType()) && 2155 "SCEVUMaxExpr operand types don't match!"); 2156 #endif 2157 2158 // Sort by complexity, this groups all similar expression types together. 2159 GroupByComplexity(Ops, LI); 2160 2161 // If there are any constants, fold them together. 2162 unsigned Idx = 0; 2163 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2164 ++Idx; 2165 assert(Idx < Ops.size()); 2166 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2167 // We found two constants, fold them together! 2168 ConstantInt *Fold = ConstantInt::get(getContext(), 2169 APIntOps::umax(LHSC->getValue()->getValue(), 2170 RHSC->getValue()->getValue())); 2171 Ops[0] = getConstant(Fold); 2172 Ops.erase(Ops.begin()+1); // Erase the folded element 2173 if (Ops.size() == 1) return Ops[0]; 2174 LHSC = cast<SCEVConstant>(Ops[0]); 2175 } 2176 2177 // If we are left with a constant minimum-int, strip it off. 2178 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 2179 Ops.erase(Ops.begin()); 2180 --Idx; 2181 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 2182 // If we have an umax with a constant maximum-int, it will always be 2183 // maximum-int. 2184 return Ops[0]; 2185 } 2186 } 2187 2188 if (Ops.size() == 1) return Ops[0]; 2189 2190 // Find the first UMax 2191 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 2192 ++Idx; 2193 2194 // Check to see if one of the operands is a UMax. If so, expand its operands 2195 // onto our operand list, and recurse to simplify. 2196 if (Idx < Ops.size()) { 2197 bool DeletedUMax = false; 2198 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 2199 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end()); 2200 Ops.erase(Ops.begin()+Idx); 2201 DeletedUMax = true; 2202 } 2203 2204 if (DeletedUMax) 2205 return getUMaxExpr(Ops); 2206 } 2207 2208 // Okay, check to see if the same value occurs in the operand list twice. If 2209 // so, delete one. Since we sorted the list, these values are required to 2210 // be adjacent. 2211 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 2212 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y 2213 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 2214 --i; --e; 2215 } 2216 2217 if (Ops.size() == 1) return Ops[0]; 2218 2219 assert(!Ops.empty() && "Reduced umax down to nothing!"); 2220 2221 // Okay, it looks like we really DO need a umax expr. Check to see if we 2222 // already have one, otherwise create a new one. 2223 FoldingSetNodeID ID; 2224 ID.AddInteger(scUMaxExpr); 2225 ID.AddInteger(Ops.size()); 2226 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2227 ID.AddPointer(Ops[i]); 2228 void *IP = 0; 2229 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2230 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>(); 2231 new (S) SCEVUMaxExpr(ID, Ops); 2232 UniqueSCEVs.InsertNode(S, IP); 2233 return S; 2234 } 2235 2236 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 2237 const SCEV *RHS) { 2238 // ~smax(~x, ~y) == smin(x, y). 2239 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2240 } 2241 2242 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 2243 const SCEV *RHS) { 2244 // ~umax(~x, ~y) == umin(x, y) 2245 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 2246 } 2247 2248 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) { 2249 Constant *C = ConstantExpr::getSizeOf(AllocTy); 2250 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2251 C = ConstantFoldConstantExpression(CE, TD); 2252 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2253 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2254 } 2255 2256 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) { 2257 Constant *C = ConstantExpr::getAlignOf(AllocTy); 2258 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2259 C = ConstantFoldConstantExpression(CE, TD); 2260 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy)); 2261 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2262 } 2263 2264 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy, 2265 unsigned FieldNo) { 2266 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo); 2267 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2268 C = ConstantFoldConstantExpression(CE, TD); 2269 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy)); 2270 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2271 } 2272 2273 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy, 2274 Constant *FieldNo) { 2275 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo); 2276 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 2277 C = ConstantFoldConstantExpression(CE, TD); 2278 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy)); 2279 return getTruncateOrZeroExtend(getSCEV(C), Ty); 2280 } 2281 2282 const SCEV *ScalarEvolution::getUnknown(Value *V) { 2283 // Don't attempt to do anything other than create a SCEVUnknown object 2284 // here. createSCEV only calls getUnknown after checking for all other 2285 // interesting possibilities, and any other code that calls getUnknown 2286 // is doing so in order to hide a value from SCEV canonicalization. 2287 2288 FoldingSetNodeID ID; 2289 ID.AddInteger(scUnknown); 2290 ID.AddPointer(V); 2291 void *IP = 0; 2292 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2293 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>(); 2294 new (S) SCEVUnknown(ID, V); 2295 UniqueSCEVs.InsertNode(S, IP); 2296 return S; 2297 } 2298 2299 //===----------------------------------------------------------------------===// 2300 // Basic SCEV Analysis and PHI Idiom Recognition Code 2301 // 2302 2303 /// isSCEVable - Test if values of the given type are analyzable within 2304 /// the SCEV framework. This primarily includes integer types, and it 2305 /// can optionally include pointer types if the ScalarEvolution class 2306 /// has access to target-specific information. 2307 bool ScalarEvolution::isSCEVable(const Type *Ty) const { 2308 // Integers and pointers are always SCEVable. 2309 return Ty->isIntegerTy() || Ty->isPointerTy(); 2310 } 2311 2312 /// getTypeSizeInBits - Return the size in bits of the specified type, 2313 /// for which isSCEVable must return true. 2314 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const { 2315 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2316 2317 // If we have a TargetData, use it! 2318 if (TD) 2319 return TD->getTypeSizeInBits(Ty); 2320 2321 // Integer types have fixed sizes. 2322 if (Ty->isIntegerTy()) 2323 return Ty->getPrimitiveSizeInBits(); 2324 2325 // The only other support type is pointer. Without TargetData, conservatively 2326 // assume pointers are 64-bit. 2327 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!"); 2328 return 64; 2329 } 2330 2331 /// getEffectiveSCEVType - Return a type with the same bitwidth as 2332 /// the given type and which represents how SCEV will treat the given 2333 /// type, for which isSCEVable must return true. For pointer types, 2334 /// this is the pointer-sized integer type. 2335 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const { 2336 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 2337 2338 if (Ty->isIntegerTy()) 2339 return Ty; 2340 2341 // The only other support type is pointer. 2342 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 2343 if (TD) return TD->getIntPtrType(getContext()); 2344 2345 // Without TargetData, conservatively assume pointers are 64-bit. 2346 return Type::getInt64Ty(getContext()); 2347 } 2348 2349 const SCEV *ScalarEvolution::getCouldNotCompute() { 2350 return &CouldNotCompute; 2351 } 2352 2353 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 2354 /// expression and create a new one. 2355 const SCEV *ScalarEvolution::getSCEV(Value *V) { 2356 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 2357 2358 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V); 2359 if (I != Scalars.end()) return I->second; 2360 const SCEV *S = createSCEV(V); 2361 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 2362 return S; 2363 } 2364 2365 /// getIntegerSCEV - Given a SCEVable type, create a constant for the 2366 /// specified signed integer value and return a SCEV for the constant. 2367 const SCEV *ScalarEvolution::getIntegerSCEV(int64_t Val, const Type *Ty) { 2368 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 2369 return getConstant(ConstantInt::get(ITy, Val)); 2370 } 2371 2372 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 2373 /// 2374 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) { 2375 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2376 return getConstant( 2377 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 2378 2379 const Type *Ty = V->getType(); 2380 Ty = getEffectiveSCEVType(Ty); 2381 return getMulExpr(V, 2382 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)))); 2383 } 2384 2385 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 2386 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 2387 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 2388 return getConstant( 2389 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 2390 2391 const Type *Ty = V->getType(); 2392 Ty = getEffectiveSCEVType(Ty); 2393 const SCEV *AllOnes = 2394 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 2395 return getMinusSCEV(AllOnes, V); 2396 } 2397 2398 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS. 2399 /// 2400 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, 2401 const SCEV *RHS) { 2402 // X - Y --> X + -Y 2403 return getAddExpr(LHS, getNegativeSCEV(RHS)); 2404 } 2405 2406 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 2407 /// input value to the specified type. If the type must be extended, it is zero 2408 /// extended. 2409 const SCEV * 2410 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, 2411 const Type *Ty) { 2412 const Type *SrcTy = V->getType(); 2413 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2414 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2415 "Cannot truncate or zero extend with non-integer arguments!"); 2416 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2417 return V; // No conversion 2418 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2419 return getTruncateExpr(V, Ty); 2420 return getZeroExtendExpr(V, Ty); 2421 } 2422 2423 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 2424 /// input value to the specified type. If the type must be extended, it is sign 2425 /// extended. 2426 const SCEV * 2427 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 2428 const Type *Ty) { 2429 const Type *SrcTy = V->getType(); 2430 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2431 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2432 "Cannot truncate or zero extend with non-integer arguments!"); 2433 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2434 return V; // No conversion 2435 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 2436 return getTruncateExpr(V, Ty); 2437 return getSignExtendExpr(V, Ty); 2438 } 2439 2440 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 2441 /// input value to the specified type. If the type must be extended, it is zero 2442 /// extended. The conversion must not be narrowing. 2443 const SCEV * 2444 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) { 2445 const Type *SrcTy = V->getType(); 2446 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2447 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2448 "Cannot noop or zero extend with non-integer arguments!"); 2449 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2450 "getNoopOrZeroExtend cannot truncate!"); 2451 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2452 return V; // No conversion 2453 return getZeroExtendExpr(V, Ty); 2454 } 2455 2456 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 2457 /// input value to the specified type. If the type must be extended, it is sign 2458 /// extended. The conversion must not be narrowing. 2459 const SCEV * 2460 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) { 2461 const Type *SrcTy = V->getType(); 2462 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2463 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2464 "Cannot noop or sign extend with non-integer arguments!"); 2465 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2466 "getNoopOrSignExtend cannot truncate!"); 2467 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2468 return V; // No conversion 2469 return getSignExtendExpr(V, Ty); 2470 } 2471 2472 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 2473 /// the input value to the specified type. If the type must be extended, 2474 /// it is extended with unspecified bits. The conversion must not be 2475 /// narrowing. 2476 const SCEV * 2477 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) { 2478 const Type *SrcTy = V->getType(); 2479 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2480 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2481 "Cannot noop or any extend with non-integer arguments!"); 2482 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 2483 "getNoopOrAnyExtend cannot truncate!"); 2484 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2485 return V; // No conversion 2486 return getAnyExtendExpr(V, Ty); 2487 } 2488 2489 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 2490 /// input value to the specified type. The conversion must not be widening. 2491 const SCEV * 2492 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) { 2493 const Type *SrcTy = V->getType(); 2494 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 2495 (Ty->isIntegerTy() || Ty->isPointerTy()) && 2496 "Cannot truncate or noop with non-integer arguments!"); 2497 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 2498 "getTruncateOrNoop cannot extend!"); 2499 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 2500 return V; // No conversion 2501 return getTruncateExpr(V, Ty); 2502 } 2503 2504 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 2505 /// the types using zero-extension, and then perform a umax operation 2506 /// with them. 2507 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 2508 const SCEV *RHS) { 2509 const SCEV *PromotedLHS = LHS; 2510 const SCEV *PromotedRHS = RHS; 2511 2512 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2513 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2514 else 2515 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2516 2517 return getUMaxExpr(PromotedLHS, PromotedRHS); 2518 } 2519 2520 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 2521 /// the types using zero-extension, and then perform a umin operation 2522 /// with them. 2523 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 2524 const SCEV *RHS) { 2525 const SCEV *PromotedLHS = LHS; 2526 const SCEV *PromotedRHS = RHS; 2527 2528 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 2529 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 2530 else 2531 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 2532 2533 return getUMinExpr(PromotedLHS, PromotedRHS); 2534 } 2535 2536 /// PushDefUseChildren - Push users of the given Instruction 2537 /// onto the given Worklist. 2538 static void 2539 PushDefUseChildren(Instruction *I, 2540 SmallVectorImpl<Instruction *> &Worklist) { 2541 // Push the def-use children onto the Worklist stack. 2542 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 2543 UI != UE; ++UI) 2544 Worklist.push_back(cast<Instruction>(UI)); 2545 } 2546 2547 /// ForgetSymbolicValue - This looks up computed SCEV values for all 2548 /// instructions that depend on the given instruction and removes them from 2549 /// the Scalars map if they reference SymName. This is used during PHI 2550 /// resolution. 2551 void 2552 ScalarEvolution::ForgetSymbolicName(Instruction *I, const SCEV *SymName) { 2553 SmallVector<Instruction *, 16> Worklist; 2554 PushDefUseChildren(I, Worklist); 2555 2556 SmallPtrSet<Instruction *, 8> Visited; 2557 Visited.insert(I); 2558 while (!Worklist.empty()) { 2559 I = Worklist.pop_back_val(); 2560 if (!Visited.insert(I)) continue; 2561 2562 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 2563 Scalars.find(static_cast<Value *>(I)); 2564 if (It != Scalars.end()) { 2565 // Short-circuit the def-use traversal if the symbolic name 2566 // ceases to appear in expressions. 2567 if (It->second != SymName && !It->second->hasOperand(SymName)) 2568 continue; 2569 2570 // SCEVUnknown for a PHI either means that it has an unrecognized 2571 // structure, or it's a PHI that's in the progress of being computed 2572 // by createNodeForPHI. In the former case, additional loop trip 2573 // count information isn't going to change anything. In the later 2574 // case, createNodeForPHI will perform the necessary updates on its 2575 // own when it gets to that point. 2576 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 2577 ValuesAtScopes.erase(It->second); 2578 Scalars.erase(It); 2579 } 2580 } 2581 2582 PushDefUseChildren(I, Worklist); 2583 } 2584 } 2585 2586 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 2587 /// a loop header, making it a potential recurrence, or it doesn't. 2588 /// 2589 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 2590 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized. 2591 if (const Loop *L = LI->getLoopFor(PN->getParent())) 2592 if (L->getHeader() == PN->getParent()) { 2593 // If it lives in the loop header, it has two incoming values, one 2594 // from outside the loop, and one from inside. 2595 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 2596 unsigned BackEdge = IncomingEdge^1; 2597 2598 // While we are analyzing this PHI node, handle its value symbolically. 2599 const SCEV *SymbolicName = getUnknown(PN); 2600 assert(Scalars.find(PN) == Scalars.end() && 2601 "PHI node already processed?"); 2602 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 2603 2604 // Using this symbolic name for the PHI, analyze the value coming around 2605 // the back-edge. 2606 Value *BEValueV = PN->getIncomingValue(BackEdge); 2607 const SCEV *BEValue = getSCEV(BEValueV); 2608 2609 // NOTE: If BEValue is loop invariant, we know that the PHI node just 2610 // has a special value for the first iteration of the loop. 2611 2612 // If the value coming around the backedge is an add with the symbolic 2613 // value we just inserted, then we found a simple induction variable! 2614 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 2615 // If there is a single occurrence of the symbolic value, replace it 2616 // with a recurrence. 2617 unsigned FoundIndex = Add->getNumOperands(); 2618 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2619 if (Add->getOperand(i) == SymbolicName) 2620 if (FoundIndex == e) { 2621 FoundIndex = i; 2622 break; 2623 } 2624 2625 if (FoundIndex != Add->getNumOperands()) { 2626 // Create an add with everything but the specified operand. 2627 SmallVector<const SCEV *, 8> Ops; 2628 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 2629 if (i != FoundIndex) 2630 Ops.push_back(Add->getOperand(i)); 2631 const SCEV *Accum = getAddExpr(Ops); 2632 2633 // This is not a valid addrec if the step amount is varying each 2634 // loop iteration, but is not itself an addrec in this loop. 2635 if (Accum->isLoopInvariant(L) || 2636 (isa<SCEVAddRecExpr>(Accum) && 2637 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 2638 bool HasNUW = false; 2639 bool HasNSW = false; 2640 2641 // If the increment doesn't overflow, then neither the addrec nor 2642 // the post-increment will overflow. 2643 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 2644 if (OBO->hasNoUnsignedWrap()) 2645 HasNUW = true; 2646 if (OBO->hasNoSignedWrap()) 2647 HasNSW = true; 2648 } 2649 2650 const SCEV *StartVal = 2651 getSCEV(PN->getIncomingValue(IncomingEdge)); 2652 const SCEV *PHISCEV = 2653 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW); 2654 2655 // Since the no-wrap flags are on the increment, they apply to the 2656 // post-incremented value as well. 2657 if (Accum->isLoopInvariant(L)) 2658 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 2659 Accum, L, HasNUW, HasNSW); 2660 2661 // Okay, for the entire analysis of this edge we assumed the PHI 2662 // to be symbolic. We now need to go back and purge all of the 2663 // entries for the scalars that use the symbolic expression. 2664 ForgetSymbolicName(PN, SymbolicName); 2665 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2666 return PHISCEV; 2667 } 2668 } 2669 } else if (const SCEVAddRecExpr *AddRec = 2670 dyn_cast<SCEVAddRecExpr>(BEValue)) { 2671 // Otherwise, this could be a loop like this: 2672 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 2673 // In this case, j = {1,+,1} and BEValue is j. 2674 // Because the other in-value of i (0) fits the evolution of BEValue 2675 // i really is an addrec evolution. 2676 if (AddRec->getLoop() == L && AddRec->isAffine()) { 2677 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge)); 2678 2679 // If StartVal = j.start - j.stride, we can use StartVal as the 2680 // initial step of the addrec evolution. 2681 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 2682 AddRec->getOperand(1))) { 2683 const SCEV *PHISCEV = 2684 getAddRecExpr(StartVal, AddRec->getOperand(1), L); 2685 2686 // Okay, for the entire analysis of this edge we assumed the PHI 2687 // to be symbolic. We now need to go back and purge all of the 2688 // entries for the scalars that use the symbolic expression. 2689 ForgetSymbolicName(PN, SymbolicName); 2690 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV; 2691 return PHISCEV; 2692 } 2693 } 2694 } 2695 2696 return SymbolicName; 2697 } 2698 2699 // It's tempting to recognize PHIs with a unique incoming value, however 2700 // this leads passes like indvars to break LCSSA form. Fortunately, such 2701 // PHIs are rare, as instcombine zaps them. 2702 2703 // If it's not a loop phi, we can't handle it yet. 2704 return getUnknown(PN); 2705 } 2706 2707 /// createNodeForGEP - Expand GEP instructions into add and multiply 2708 /// operations. This allows them to be analyzed by regular SCEV code. 2709 /// 2710 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 2711 2712 bool InBounds = GEP->isInBounds(); 2713 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType()); 2714 Value *Base = GEP->getOperand(0); 2715 // Don't attempt to analyze GEPs over unsized objects. 2716 if (!cast<PointerType>(Base->getType())->getElementType()->isSized()) 2717 return getUnknown(GEP); 2718 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy); 2719 gep_type_iterator GTI = gep_type_begin(GEP); 2720 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()), 2721 E = GEP->op_end(); 2722 I != E; ++I) { 2723 Value *Index = *I; 2724 // Compute the (potentially symbolic) offset in bytes for this index. 2725 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 2726 // For a struct, add the member offset. 2727 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 2728 TotalOffset = getAddExpr(TotalOffset, 2729 getOffsetOfExpr(STy, FieldNo), 2730 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2731 } else { 2732 // For an array, add the element offset, explicitly scaled. 2733 const SCEV *LocalOffset = getSCEV(Index); 2734 // Getelementptr indicies are signed. 2735 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy); 2736 // Lower "inbounds" GEPs to NSW arithmetic. 2737 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI), 2738 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2739 TotalOffset = getAddExpr(TotalOffset, LocalOffset, 2740 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2741 } 2742 } 2743 return getAddExpr(getSCEV(Base), TotalOffset, 2744 /*HasNUW=*/false, /*HasNSW=*/InBounds); 2745 } 2746 2747 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 2748 /// guaranteed to end in (at every loop iteration). It is, at the same time, 2749 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 2750 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 2751 uint32_t 2752 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 2753 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2754 return C->getValue()->getValue().countTrailingZeros(); 2755 2756 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 2757 return std::min(GetMinTrailingZeros(T->getOperand()), 2758 (uint32_t)getTypeSizeInBits(T->getType())); 2759 2760 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 2761 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2762 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2763 getTypeSizeInBits(E->getType()) : OpRes; 2764 } 2765 2766 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 2767 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 2768 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 2769 getTypeSizeInBits(E->getType()) : OpRes; 2770 } 2771 2772 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 2773 // The result is the min of all operands results. 2774 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2775 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2776 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2777 return MinOpRes; 2778 } 2779 2780 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 2781 // The result is the sum of all operands results. 2782 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 2783 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 2784 for (unsigned i = 1, e = M->getNumOperands(); 2785 SumOpRes != BitWidth && i != e; ++i) 2786 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 2787 BitWidth); 2788 return SumOpRes; 2789 } 2790 2791 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 2792 // The result is the min of all operands results. 2793 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 2794 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 2795 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 2796 return MinOpRes; 2797 } 2798 2799 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 2800 // The result is the min of all operands results. 2801 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2802 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2803 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2804 return MinOpRes; 2805 } 2806 2807 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 2808 // The result is the min of all operands results. 2809 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 2810 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 2811 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 2812 return MinOpRes; 2813 } 2814 2815 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2816 // For a SCEVUnknown, ask ValueTracking. 2817 unsigned BitWidth = getTypeSizeInBits(U->getType()); 2818 APInt Mask = APInt::getAllOnesValue(BitWidth); 2819 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2820 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones); 2821 return Zeros.countTrailingOnes(); 2822 } 2823 2824 // SCEVUDivExpr 2825 return 0; 2826 } 2827 2828 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 2829 /// 2830 ConstantRange 2831 ScalarEvolution::getUnsignedRange(const SCEV *S) { 2832 2833 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2834 return ConstantRange(C->getValue()->getValue()); 2835 2836 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2837 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2838 2839 // If the value has known zeros, the maximum unsigned value will have those 2840 // known zeros as well. 2841 uint32_t TZ = GetMinTrailingZeros(S); 2842 if (TZ != 0) 2843 ConservativeResult = 2844 ConstantRange(APInt::getMinValue(BitWidth), 2845 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 2846 2847 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2848 ConstantRange X = getUnsignedRange(Add->getOperand(0)); 2849 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2850 X = X.add(getUnsignedRange(Add->getOperand(i))); 2851 return ConservativeResult.intersectWith(X); 2852 } 2853 2854 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2855 ConstantRange X = getUnsignedRange(Mul->getOperand(0)); 2856 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2857 X = X.multiply(getUnsignedRange(Mul->getOperand(i))); 2858 return ConservativeResult.intersectWith(X); 2859 } 2860 2861 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2862 ConstantRange X = getUnsignedRange(SMax->getOperand(0)); 2863 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2864 X = X.smax(getUnsignedRange(SMax->getOperand(i))); 2865 return ConservativeResult.intersectWith(X); 2866 } 2867 2868 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2869 ConstantRange X = getUnsignedRange(UMax->getOperand(0)); 2870 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2871 X = X.umax(getUnsignedRange(UMax->getOperand(i))); 2872 return ConservativeResult.intersectWith(X); 2873 } 2874 2875 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2876 ConstantRange X = getUnsignedRange(UDiv->getLHS()); 2877 ConstantRange Y = getUnsignedRange(UDiv->getRHS()); 2878 return ConservativeResult.intersectWith(X.udiv(Y)); 2879 } 2880 2881 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 2882 ConstantRange X = getUnsignedRange(ZExt->getOperand()); 2883 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 2884 } 2885 2886 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 2887 ConstantRange X = getUnsignedRange(SExt->getOperand()); 2888 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 2889 } 2890 2891 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 2892 ConstantRange X = getUnsignedRange(Trunc->getOperand()); 2893 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 2894 } 2895 2896 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 2897 // If there's no unsigned wrap, the value will never be less than its 2898 // initial value. 2899 if (AddRec->hasNoUnsignedWrap()) 2900 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 2901 ConservativeResult = 2902 ConstantRange(C->getValue()->getValue(), 2903 APInt(getTypeSizeInBits(C->getType()), 0)); 2904 2905 // TODO: non-affine addrec 2906 if (AddRec->isAffine()) { 2907 const Type *Ty = AddRec->getType(); 2908 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 2909 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 2910 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 2911 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 2912 2913 const SCEV *Start = AddRec->getStart(); 2914 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 2915 2916 // Check for overflow. 2917 if (!AddRec->hasNoUnsignedWrap()) 2918 return ConservativeResult; 2919 2920 ConstantRange StartRange = getUnsignedRange(Start); 2921 ConstantRange EndRange = getUnsignedRange(End); 2922 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(), 2923 EndRange.getUnsignedMin()); 2924 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(), 2925 EndRange.getUnsignedMax()); 2926 if (Min.isMinValue() && Max.isMaxValue()) 2927 return ConservativeResult; 2928 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 2929 } 2930 } 2931 2932 return ConservativeResult; 2933 } 2934 2935 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2936 // For a SCEVUnknown, ask ValueTracking. 2937 APInt Mask = APInt::getAllOnesValue(BitWidth); 2938 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 2939 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD); 2940 if (Ones == ~Zeros + 1) 2941 return ConservativeResult; 2942 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 2943 } 2944 2945 return ConservativeResult; 2946 } 2947 2948 /// getSignedRange - Determine the signed range for a particular SCEV. 2949 /// 2950 ConstantRange 2951 ScalarEvolution::getSignedRange(const SCEV *S) { 2952 2953 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 2954 return ConstantRange(C->getValue()->getValue()); 2955 2956 unsigned BitWidth = getTypeSizeInBits(S->getType()); 2957 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 2958 2959 // If the value has known zeros, the maximum signed value will have those 2960 // known zeros as well. 2961 uint32_t TZ = GetMinTrailingZeros(S); 2962 if (TZ != 0) 2963 ConservativeResult = 2964 ConstantRange(APInt::getSignedMinValue(BitWidth), 2965 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 2966 2967 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2968 ConstantRange X = getSignedRange(Add->getOperand(0)); 2969 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 2970 X = X.add(getSignedRange(Add->getOperand(i))); 2971 return ConservativeResult.intersectWith(X); 2972 } 2973 2974 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2975 ConstantRange X = getSignedRange(Mul->getOperand(0)); 2976 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 2977 X = X.multiply(getSignedRange(Mul->getOperand(i))); 2978 return ConservativeResult.intersectWith(X); 2979 } 2980 2981 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 2982 ConstantRange X = getSignedRange(SMax->getOperand(0)); 2983 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 2984 X = X.smax(getSignedRange(SMax->getOperand(i))); 2985 return ConservativeResult.intersectWith(X); 2986 } 2987 2988 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 2989 ConstantRange X = getSignedRange(UMax->getOperand(0)); 2990 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 2991 X = X.umax(getSignedRange(UMax->getOperand(i))); 2992 return ConservativeResult.intersectWith(X); 2993 } 2994 2995 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 2996 ConstantRange X = getSignedRange(UDiv->getLHS()); 2997 ConstantRange Y = getSignedRange(UDiv->getRHS()); 2998 return ConservativeResult.intersectWith(X.udiv(Y)); 2999 } 3000 3001 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3002 ConstantRange X = getSignedRange(ZExt->getOperand()); 3003 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth)); 3004 } 3005 3006 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3007 ConstantRange X = getSignedRange(SExt->getOperand()); 3008 return ConservativeResult.intersectWith(X.signExtend(BitWidth)); 3009 } 3010 3011 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3012 ConstantRange X = getSignedRange(Trunc->getOperand()); 3013 return ConservativeResult.intersectWith(X.truncate(BitWidth)); 3014 } 3015 3016 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3017 // If there's no signed wrap, and all the operands have the same sign or 3018 // zero, the value won't ever change sign. 3019 if (AddRec->hasNoSignedWrap()) { 3020 bool AllNonNeg = true; 3021 bool AllNonPos = true; 3022 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3023 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3024 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3025 } 3026 if (AllNonNeg) 3027 ConservativeResult = ConservativeResult.intersectWith( 3028 ConstantRange(APInt(BitWidth, 0), 3029 APInt::getSignedMinValue(BitWidth))); 3030 else if (AllNonPos) 3031 ConservativeResult = ConservativeResult.intersectWith( 3032 ConstantRange(APInt::getSignedMinValue(BitWidth), 3033 APInt(BitWidth, 1))); 3034 } 3035 3036 // TODO: non-affine addrec 3037 if (AddRec->isAffine()) { 3038 const Type *Ty = AddRec->getType(); 3039 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 3040 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 3041 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 3042 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 3043 3044 const SCEV *Start = AddRec->getStart(); 3045 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 3046 3047 // Check for overflow. 3048 if (!AddRec->hasNoSignedWrap()) 3049 return ConservativeResult; 3050 3051 ConstantRange StartRange = getSignedRange(Start); 3052 ConstantRange EndRange = getSignedRange(End); 3053 APInt Min = APIntOps::smin(StartRange.getSignedMin(), 3054 EndRange.getSignedMin()); 3055 APInt Max = APIntOps::smax(StartRange.getSignedMax(), 3056 EndRange.getSignedMax()); 3057 if (Min.isMinSignedValue() && Max.isMaxSignedValue()) 3058 return ConservativeResult; 3059 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1)); 3060 } 3061 } 3062 3063 return ConservativeResult; 3064 } 3065 3066 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3067 // For a SCEVUnknown, ask ValueTracking. 3068 if (!U->getValue()->getType()->isIntegerTy() && !TD) 3069 return ConservativeResult; 3070 unsigned NS = ComputeNumSignBits(U->getValue(), TD); 3071 if (NS == 1) 3072 return ConservativeResult; 3073 return ConservativeResult.intersectWith( 3074 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 3075 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)); 3076 } 3077 3078 return ConservativeResult; 3079 } 3080 3081 /// createSCEV - We know that there is no SCEV for the specified value. 3082 /// Analyze the expression. 3083 /// 3084 const SCEV *ScalarEvolution::createSCEV(Value *V) { 3085 if (!isSCEVable(V->getType())) 3086 return getUnknown(V); 3087 3088 unsigned Opcode = Instruction::UserOp1; 3089 if (Instruction *I = dyn_cast<Instruction>(V)) 3090 Opcode = I->getOpcode(); 3091 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 3092 Opcode = CE->getOpcode(); 3093 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 3094 return getConstant(CI); 3095 else if (isa<ConstantPointerNull>(V)) 3096 return getIntegerSCEV(0, V->getType()); 3097 else if (isa<UndefValue>(V)) 3098 return getIntegerSCEV(0, V->getType()); 3099 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 3100 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 3101 else 3102 return getUnknown(V); 3103 3104 Operator *U = cast<Operator>(V); 3105 switch (Opcode) { 3106 case Instruction::Add: 3107 // Don't transfer the NSW and NUW bits from the Add instruction to the 3108 // Add expression, because the Instruction may be guarded by control 3109 // flow and the no-overflow bits may not be valid for the expression in 3110 // any context. 3111 return getAddExpr(getSCEV(U->getOperand(0)), 3112 getSCEV(U->getOperand(1))); 3113 case Instruction::Mul: 3114 // Don't transfer the NSW and NUW bits from the Mul instruction to the 3115 // Mul expression, as with Add. 3116 return getMulExpr(getSCEV(U->getOperand(0)), 3117 getSCEV(U->getOperand(1))); 3118 case Instruction::UDiv: 3119 return getUDivExpr(getSCEV(U->getOperand(0)), 3120 getSCEV(U->getOperand(1))); 3121 case Instruction::Sub: 3122 return getMinusSCEV(getSCEV(U->getOperand(0)), 3123 getSCEV(U->getOperand(1))); 3124 case Instruction::And: 3125 // For an expression like x&255 that merely masks off the high bits, 3126 // use zext(trunc(x)) as the SCEV expression. 3127 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3128 if (CI->isNullValue()) 3129 return getSCEV(U->getOperand(1)); 3130 if (CI->isAllOnesValue()) 3131 return getSCEV(U->getOperand(0)); 3132 const APInt &A = CI->getValue(); 3133 3134 // Instcombine's ShrinkDemandedConstant may strip bits out of 3135 // constants, obscuring what would otherwise be a low-bits mask. 3136 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant 3137 // knew about to reconstruct a low-bits mask value. 3138 unsigned LZ = A.countLeadingZeros(); 3139 unsigned BitWidth = A.getBitWidth(); 3140 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 3141 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3142 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD); 3143 3144 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ); 3145 3146 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask)) 3147 return 3148 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)), 3149 IntegerType::get(getContext(), BitWidth - LZ)), 3150 U->getType()); 3151 } 3152 break; 3153 3154 case Instruction::Or: 3155 // If the RHS of the Or is a constant, we may have something like: 3156 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 3157 // optimizations will transparently handle this case. 3158 // 3159 // In order for this transformation to be safe, the LHS must be of the 3160 // form X*(2^n) and the Or constant must be less than 2^n. 3161 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3162 const SCEV *LHS = getSCEV(U->getOperand(0)); 3163 const APInt &CIVal = CI->getValue(); 3164 if (GetMinTrailingZeros(LHS) >= 3165 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 3166 // Build a plain add SCEV. 3167 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 3168 // If the LHS of the add was an addrec and it has no-wrap flags, 3169 // transfer the no-wrap flags, since an or won't introduce a wrap. 3170 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 3171 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 3172 if (OldAR->hasNoUnsignedWrap()) 3173 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true); 3174 if (OldAR->hasNoSignedWrap()) 3175 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true); 3176 } 3177 return S; 3178 } 3179 } 3180 break; 3181 case Instruction::Xor: 3182 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 3183 // If the RHS of the xor is a signbit, then this is just an add. 3184 // Instcombine turns add of signbit into xor as a strength reduction step. 3185 if (CI->getValue().isSignBit()) 3186 return getAddExpr(getSCEV(U->getOperand(0)), 3187 getSCEV(U->getOperand(1))); 3188 3189 // If the RHS of xor is -1, then this is a not operation. 3190 if (CI->isAllOnesValue()) 3191 return getNotSCEV(getSCEV(U->getOperand(0))); 3192 3193 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 3194 // This is a variant of the check for xor with -1, and it handles 3195 // the case where instcombine has trimmed non-demanded bits out 3196 // of an xor with -1. 3197 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 3198 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 3199 if (BO->getOpcode() == Instruction::And && 3200 LCI->getValue() == CI->getValue()) 3201 if (const SCEVZeroExtendExpr *Z = 3202 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 3203 const Type *UTy = U->getType(); 3204 const SCEV *Z0 = Z->getOperand(); 3205 const Type *Z0Ty = Z0->getType(); 3206 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 3207 3208 // If C is a low-bits mask, the zero extend is zerving to 3209 // mask off the high bits. Complement the operand and 3210 // re-apply the zext. 3211 if (APIntOps::isMask(Z0TySize, CI->getValue())) 3212 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 3213 3214 // If C is a single bit, it may be in the sign-bit position 3215 // before the zero-extend. In this case, represent the xor 3216 // using an add, which is equivalent, and re-apply the zext. 3217 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize); 3218 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() && 3219 Trunc.isSignBit()) 3220 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 3221 UTy); 3222 } 3223 } 3224 break; 3225 3226 case Instruction::Shl: 3227 // Turn shift left of a constant amount into a multiply. 3228 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3229 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3230 Constant *X = ConstantInt::get(getContext(), 3231 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3232 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3233 } 3234 break; 3235 3236 case Instruction::LShr: 3237 // Turn logical shift right of a constant into a unsigned divide. 3238 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 3239 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 3240 Constant *X = ConstantInt::get(getContext(), 3241 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth))); 3242 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 3243 } 3244 break; 3245 3246 case Instruction::AShr: 3247 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 3248 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 3249 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0))) 3250 if (L->getOpcode() == Instruction::Shl && 3251 L->getOperand(1) == U->getOperand(1)) { 3252 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3253 uint64_t Amt = BitWidth - CI->getZExtValue(); 3254 if (Amt == BitWidth) 3255 return getSCEV(L->getOperand(0)); // shift by zero --> noop 3256 if (Amt > BitWidth) 3257 return getIntegerSCEV(0, U->getType()); // value is undefined 3258 return 3259 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 3260 IntegerType::get(getContext(), Amt)), 3261 U->getType()); 3262 } 3263 break; 3264 3265 case Instruction::Trunc: 3266 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 3267 3268 case Instruction::ZExt: 3269 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3270 3271 case Instruction::SExt: 3272 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 3273 3274 case Instruction::BitCast: 3275 // BitCasts are no-op casts so we just eliminate the cast. 3276 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 3277 return getSCEV(U->getOperand(0)); 3278 break; 3279 3280 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 3281 // lead to pointer expressions which cannot safely be expanded to GEPs, 3282 // because ScalarEvolution doesn't respect the GEP aliasing rules when 3283 // simplifying integer expressions. 3284 3285 case Instruction::GetElementPtr: 3286 return createNodeForGEP(cast<GEPOperator>(U)); 3287 3288 case Instruction::PHI: 3289 return createNodeForPHI(cast<PHINode>(U)); 3290 3291 case Instruction::Select: 3292 // This could be a smax or umax that was lowered earlier. 3293 // Try to recover it. 3294 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 3295 Value *LHS = ICI->getOperand(0); 3296 Value *RHS = ICI->getOperand(1); 3297 switch (ICI->getPredicate()) { 3298 case ICmpInst::ICMP_SLT: 3299 case ICmpInst::ICMP_SLE: 3300 std::swap(LHS, RHS); 3301 // fall through 3302 case ICmpInst::ICMP_SGT: 3303 case ICmpInst::ICMP_SGE: 3304 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3305 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3306 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3307 return getSMinExpr(getSCEV(LHS), getSCEV(RHS)); 3308 break; 3309 case ICmpInst::ICMP_ULT: 3310 case ICmpInst::ICMP_ULE: 3311 std::swap(LHS, RHS); 3312 // fall through 3313 case ICmpInst::ICMP_UGT: 3314 case ICmpInst::ICMP_UGE: 3315 if (LHS == U->getOperand(1) && RHS == U->getOperand(2)) 3316 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS)); 3317 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1)) 3318 return getUMinExpr(getSCEV(LHS), getSCEV(RHS)); 3319 break; 3320 case ICmpInst::ICMP_NE: 3321 // n != 0 ? n : 1 -> umax(n, 1) 3322 if (LHS == U->getOperand(1) && 3323 isa<ConstantInt>(U->getOperand(2)) && 3324 cast<ConstantInt>(U->getOperand(2))->isOne() && 3325 isa<ConstantInt>(RHS) && 3326 cast<ConstantInt>(RHS)->isZero()) 3327 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2))); 3328 break; 3329 case ICmpInst::ICMP_EQ: 3330 // n == 0 ? 1 : n -> umax(n, 1) 3331 if (LHS == U->getOperand(2) && 3332 isa<ConstantInt>(U->getOperand(1)) && 3333 cast<ConstantInt>(U->getOperand(1))->isOne() && 3334 isa<ConstantInt>(RHS) && 3335 cast<ConstantInt>(RHS)->isZero()) 3336 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1))); 3337 break; 3338 default: 3339 break; 3340 } 3341 } 3342 3343 default: // We cannot analyze this expression. 3344 break; 3345 } 3346 3347 return getUnknown(V); 3348 } 3349 3350 3351 3352 //===----------------------------------------------------------------------===// 3353 // Iteration Count Computation Code 3354 // 3355 3356 /// getBackedgeTakenCount - If the specified loop has a predictable 3357 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 3358 /// object. The backedge-taken count is the number of times the loop header 3359 /// will be branched to from within the loop. This is one less than the 3360 /// trip count of the loop, since it doesn't count the first iteration, 3361 /// when the header is branched to from outside the loop. 3362 /// 3363 /// Note that it is not valid to call this method on a loop without a 3364 /// loop-invariant backedge-taken count (see 3365 /// hasLoopInvariantBackedgeTakenCount). 3366 /// 3367 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 3368 return getBackedgeTakenInfo(L).Exact; 3369 } 3370 3371 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 3372 /// return the least SCEV value that is known never to be less than the 3373 /// actual backedge taken count. 3374 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 3375 return getBackedgeTakenInfo(L).Max; 3376 } 3377 3378 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 3379 /// onto the given Worklist. 3380 static void 3381 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 3382 BasicBlock *Header = L->getHeader(); 3383 3384 // Push all Loop-header PHIs onto the Worklist stack. 3385 for (BasicBlock::iterator I = Header->begin(); 3386 PHINode *PN = dyn_cast<PHINode>(I); ++I) 3387 Worklist.push_back(PN); 3388 } 3389 3390 const ScalarEvolution::BackedgeTakenInfo & 3391 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 3392 // Initially insert a CouldNotCompute for this loop. If the insertion 3393 // succeeds, procede to actually compute a backedge-taken count and 3394 // update the value. The temporary CouldNotCompute value tells SCEV 3395 // code elsewhere that it shouldn't attempt to request a new 3396 // backedge-taken count, which could result in infinite recursion. 3397 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 3398 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute())); 3399 if (Pair.second) { 3400 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L); 3401 if (BECount.Exact != getCouldNotCompute()) { 3402 assert(BECount.Exact->isLoopInvariant(L) && 3403 BECount.Max->isLoopInvariant(L) && 3404 "Computed backedge-taken count isn't loop invariant for loop!"); 3405 ++NumTripCountsComputed; 3406 3407 // Update the value in the map. 3408 Pair.first->second = BECount; 3409 } else { 3410 if (BECount.Max != getCouldNotCompute()) 3411 // Update the value in the map. 3412 Pair.first->second = BECount; 3413 if (isa<PHINode>(L->getHeader()->begin())) 3414 // Only count loops that have phi nodes as not being computable. 3415 ++NumTripCountsNotComputed; 3416 } 3417 3418 // Now that we know more about the trip count for this loop, forget any 3419 // existing SCEV values for PHI nodes in this loop since they are only 3420 // conservative estimates made without the benefit of trip count 3421 // information. This is similar to the code in forgetLoop, except that 3422 // it handles SCEVUnknown PHI nodes specially. 3423 if (BECount.hasAnyInfo()) { 3424 SmallVector<Instruction *, 16> Worklist; 3425 PushLoopPHIs(L, Worklist); 3426 3427 SmallPtrSet<Instruction *, 8> Visited; 3428 while (!Worklist.empty()) { 3429 Instruction *I = Worklist.pop_back_val(); 3430 if (!Visited.insert(I)) continue; 3431 3432 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3433 Scalars.find(static_cast<Value *>(I)); 3434 if (It != Scalars.end()) { 3435 // SCEVUnknown for a PHI either means that it has an unrecognized 3436 // structure, or it's a PHI that's in the progress of being computed 3437 // by createNodeForPHI. In the former case, additional loop trip 3438 // count information isn't going to change anything. In the later 3439 // case, createNodeForPHI will perform the necessary updates on its 3440 // own when it gets to that point. 3441 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) { 3442 ValuesAtScopes.erase(It->second); 3443 Scalars.erase(It); 3444 } 3445 if (PHINode *PN = dyn_cast<PHINode>(I)) 3446 ConstantEvolutionLoopExitValue.erase(PN); 3447 } 3448 3449 PushDefUseChildren(I, Worklist); 3450 } 3451 } 3452 } 3453 return Pair.first->second; 3454 } 3455 3456 /// forgetLoop - This method should be called by the client when it has 3457 /// changed a loop in a way that may effect ScalarEvolution's ability to 3458 /// compute a trip count, or if the loop is deleted. 3459 void ScalarEvolution::forgetLoop(const Loop *L) { 3460 // Drop any stored trip count value. 3461 BackedgeTakenCounts.erase(L); 3462 3463 // Drop information about expressions based on loop-header PHIs. 3464 SmallVector<Instruction *, 16> Worklist; 3465 PushLoopPHIs(L, Worklist); 3466 3467 SmallPtrSet<Instruction *, 8> Visited; 3468 while (!Worklist.empty()) { 3469 Instruction *I = Worklist.pop_back_val(); 3470 if (!Visited.insert(I)) continue; 3471 3472 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3473 Scalars.find(static_cast<Value *>(I)); 3474 if (It != Scalars.end()) { 3475 ValuesAtScopes.erase(It->second); 3476 Scalars.erase(It); 3477 if (PHINode *PN = dyn_cast<PHINode>(I)) 3478 ConstantEvolutionLoopExitValue.erase(PN); 3479 } 3480 3481 PushDefUseChildren(I, Worklist); 3482 } 3483 } 3484 3485 /// forgetValue - This method should be called by the client when it has 3486 /// changed a value in a way that may effect its value, or which may 3487 /// disconnect it from a def-use chain linking it to a loop. 3488 void ScalarEvolution::forgetValue(Value *V) { 3489 Instruction *I = dyn_cast<Instruction>(V); 3490 if (!I) return; 3491 3492 // Drop information about expressions based on loop-header PHIs. 3493 SmallVector<Instruction *, 16> Worklist; 3494 Worklist.push_back(I); 3495 3496 SmallPtrSet<Instruction *, 8> Visited; 3497 while (!Worklist.empty()) { 3498 I = Worklist.pop_back_val(); 3499 if (!Visited.insert(I)) continue; 3500 3501 std::map<SCEVCallbackVH, const SCEV *>::iterator It = 3502 Scalars.find(static_cast<Value *>(I)); 3503 if (It != Scalars.end()) { 3504 ValuesAtScopes.erase(It->second); 3505 Scalars.erase(It); 3506 if (PHINode *PN = dyn_cast<PHINode>(I)) 3507 ConstantEvolutionLoopExitValue.erase(PN); 3508 } 3509 3510 PushDefUseChildren(I, Worklist); 3511 } 3512 } 3513 3514 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 3515 /// of the specified loop will execute. 3516 ScalarEvolution::BackedgeTakenInfo 3517 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 3518 SmallVector<BasicBlock *, 8> ExitingBlocks; 3519 L->getExitingBlocks(ExitingBlocks); 3520 3521 // Examine all exits and pick the most conservative values. 3522 const SCEV *BECount = getCouldNotCompute(); 3523 const SCEV *MaxBECount = getCouldNotCompute(); 3524 bool CouldNotComputeBECount = false; 3525 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 3526 BackedgeTakenInfo NewBTI = 3527 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]); 3528 3529 if (NewBTI.Exact == getCouldNotCompute()) { 3530 // We couldn't compute an exact value for this exit, so 3531 // we won't be able to compute an exact value for the loop. 3532 CouldNotComputeBECount = true; 3533 BECount = getCouldNotCompute(); 3534 } else if (!CouldNotComputeBECount) { 3535 if (BECount == getCouldNotCompute()) 3536 BECount = NewBTI.Exact; 3537 else 3538 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact); 3539 } 3540 if (MaxBECount == getCouldNotCompute()) 3541 MaxBECount = NewBTI.Max; 3542 else if (NewBTI.Max != getCouldNotCompute()) 3543 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max); 3544 } 3545 3546 return BackedgeTakenInfo(BECount, MaxBECount); 3547 } 3548 3549 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge 3550 /// of the specified loop will execute if it exits via the specified block. 3551 ScalarEvolution::BackedgeTakenInfo 3552 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L, 3553 BasicBlock *ExitingBlock) { 3554 3555 // Okay, we've chosen an exiting block. See what condition causes us to 3556 // exit at this block. 3557 // 3558 // FIXME: we should be able to handle switch instructions (with a single exit) 3559 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 3560 if (ExitBr == 0) return getCouldNotCompute(); 3561 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!"); 3562 3563 // At this point, we know we have a conditional branch that determines whether 3564 // the loop is exited. However, we don't know if the branch is executed each 3565 // time through the loop. If not, then the execution count of the branch will 3566 // not be equal to the trip count of the loop. 3567 // 3568 // Currently we check for this by checking to see if the Exit branch goes to 3569 // the loop header. If so, we know it will always execute the same number of 3570 // times as the loop. We also handle the case where the exit block *is* the 3571 // loop header. This is common for un-rotated loops. 3572 // 3573 // If both of those tests fail, walk up the unique predecessor chain to the 3574 // header, stopping if there is an edge that doesn't exit the loop. If the 3575 // header is reached, the execution count of the branch will be equal to the 3576 // trip count of the loop. 3577 // 3578 // More extensive analysis could be done to handle more cases here. 3579 // 3580 if (ExitBr->getSuccessor(0) != L->getHeader() && 3581 ExitBr->getSuccessor(1) != L->getHeader() && 3582 ExitBr->getParent() != L->getHeader()) { 3583 // The simple checks failed, try climbing the unique predecessor chain 3584 // up to the header. 3585 bool Ok = false; 3586 for (BasicBlock *BB = ExitBr->getParent(); BB; ) { 3587 BasicBlock *Pred = BB->getUniquePredecessor(); 3588 if (!Pred) 3589 return getCouldNotCompute(); 3590 TerminatorInst *PredTerm = Pred->getTerminator(); 3591 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) { 3592 BasicBlock *PredSucc = PredTerm->getSuccessor(i); 3593 if (PredSucc == BB) 3594 continue; 3595 // If the predecessor has a successor that isn't BB and isn't 3596 // outside the loop, assume the worst. 3597 if (L->contains(PredSucc)) 3598 return getCouldNotCompute(); 3599 } 3600 if (Pred == L->getHeader()) { 3601 Ok = true; 3602 break; 3603 } 3604 BB = Pred; 3605 } 3606 if (!Ok) 3607 return getCouldNotCompute(); 3608 } 3609 3610 // Procede to the next level to examine the exit condition expression. 3611 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(), 3612 ExitBr->getSuccessor(0), 3613 ExitBr->getSuccessor(1)); 3614 } 3615 3616 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the 3617 /// backedge of the specified loop will execute if its exit condition 3618 /// were a conditional branch of ExitCond, TBB, and FBB. 3619 ScalarEvolution::BackedgeTakenInfo 3620 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L, 3621 Value *ExitCond, 3622 BasicBlock *TBB, 3623 BasicBlock *FBB) { 3624 // Check if the controlling expression for this loop is an And or Or. 3625 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 3626 if (BO->getOpcode() == Instruction::And) { 3627 // Recurse on the operands of the and. 3628 BackedgeTakenInfo BTI0 = 3629 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3630 BackedgeTakenInfo BTI1 = 3631 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3632 const SCEV *BECount = getCouldNotCompute(); 3633 const SCEV *MaxBECount = getCouldNotCompute(); 3634 if (L->contains(TBB)) { 3635 // Both conditions must be true for the loop to continue executing. 3636 // Choose the less conservative count. 3637 if (BTI0.Exact == getCouldNotCompute() || 3638 BTI1.Exact == getCouldNotCompute()) 3639 BECount = getCouldNotCompute(); 3640 else 3641 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3642 if (BTI0.Max == getCouldNotCompute()) 3643 MaxBECount = BTI1.Max; 3644 else if (BTI1.Max == getCouldNotCompute()) 3645 MaxBECount = BTI0.Max; 3646 else 3647 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3648 } else { 3649 // Both conditions must be true for the loop to exit. 3650 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 3651 if (BTI0.Exact != getCouldNotCompute() && 3652 BTI1.Exact != getCouldNotCompute()) 3653 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3654 if (BTI0.Max != getCouldNotCompute() && 3655 BTI1.Max != getCouldNotCompute()) 3656 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3657 } 3658 3659 return BackedgeTakenInfo(BECount, MaxBECount); 3660 } 3661 if (BO->getOpcode() == Instruction::Or) { 3662 // Recurse on the operands of the or. 3663 BackedgeTakenInfo BTI0 = 3664 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB); 3665 BackedgeTakenInfo BTI1 = 3666 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB); 3667 const SCEV *BECount = getCouldNotCompute(); 3668 const SCEV *MaxBECount = getCouldNotCompute(); 3669 if (L->contains(FBB)) { 3670 // Both conditions must be false for the loop to continue executing. 3671 // Choose the less conservative count. 3672 if (BTI0.Exact == getCouldNotCompute() || 3673 BTI1.Exact == getCouldNotCompute()) 3674 BECount = getCouldNotCompute(); 3675 else 3676 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3677 if (BTI0.Max == getCouldNotCompute()) 3678 MaxBECount = BTI1.Max; 3679 else if (BTI1.Max == getCouldNotCompute()) 3680 MaxBECount = BTI0.Max; 3681 else 3682 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max); 3683 } else { 3684 // Both conditions must be false for the loop to exit. 3685 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 3686 if (BTI0.Exact != getCouldNotCompute() && 3687 BTI1.Exact != getCouldNotCompute()) 3688 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact); 3689 if (BTI0.Max != getCouldNotCompute() && 3690 BTI1.Max != getCouldNotCompute()) 3691 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max); 3692 } 3693 3694 return BackedgeTakenInfo(BECount, MaxBECount); 3695 } 3696 } 3697 3698 // With an icmp, it may be feasible to compute an exact backedge-taken count. 3699 // Procede to the next level to examine the icmp. 3700 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 3701 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB); 3702 3703 // Check for a constant condition. These are normally stripped out by 3704 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 3705 // preserve the CFG and is temporarily leaving constant conditions 3706 // in place. 3707 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 3708 if (L->contains(FBB) == !CI->getZExtValue()) 3709 // The backedge is always taken. 3710 return getCouldNotCompute(); 3711 else 3712 // The backedge is never taken. 3713 return getIntegerSCEV(0, CI->getType()); 3714 } 3715 3716 // If it's not an integer or pointer comparison then compute it the hard way. 3717 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3718 } 3719 3720 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the 3721 /// backedge of the specified loop will execute if its exit condition 3722 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 3723 ScalarEvolution::BackedgeTakenInfo 3724 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L, 3725 ICmpInst *ExitCond, 3726 BasicBlock *TBB, 3727 BasicBlock *FBB) { 3728 3729 // If the condition was exit on true, convert the condition to exit on false 3730 ICmpInst::Predicate Cond; 3731 if (!L->contains(FBB)) 3732 Cond = ExitCond->getPredicate(); 3733 else 3734 Cond = ExitCond->getInversePredicate(); 3735 3736 // Handle common loops like: for (X = "string"; *X; ++X) 3737 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 3738 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 3739 BackedgeTakenInfo ItCnt = 3740 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond); 3741 if (ItCnt.hasAnyInfo()) 3742 return ItCnt; 3743 } 3744 3745 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 3746 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 3747 3748 // Try to evaluate any dependencies out of the loop. 3749 LHS = getSCEVAtScope(LHS, L); 3750 RHS = getSCEVAtScope(RHS, L); 3751 3752 // At this point, we would like to compute how many iterations of the 3753 // loop the predicate will return true for these inputs. 3754 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) { 3755 // If there is a loop-invariant, force it into the RHS. 3756 std::swap(LHS, RHS); 3757 Cond = ICmpInst::getSwappedPredicate(Cond); 3758 } 3759 3760 // If we have a comparison of a chrec against a constant, try to use value 3761 // ranges to answer this query. 3762 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 3763 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 3764 if (AddRec->getLoop() == L) { 3765 // Form the constant range. 3766 ConstantRange CompRange( 3767 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 3768 3769 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 3770 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 3771 } 3772 3773 switch (Cond) { 3774 case ICmpInst::ICMP_NE: { // while (X != Y) 3775 // Convert to: while (X-Y != 0) 3776 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L); 3777 if (BTI.hasAnyInfo()) return BTI; 3778 break; 3779 } 3780 case ICmpInst::ICMP_EQ: { // while (X == Y) 3781 // Convert to: while (X-Y == 0) 3782 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 3783 if (BTI.hasAnyInfo()) return BTI; 3784 break; 3785 } 3786 case ICmpInst::ICMP_SLT: { 3787 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true); 3788 if (BTI.hasAnyInfo()) return BTI; 3789 break; 3790 } 3791 case ICmpInst::ICMP_SGT: { 3792 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3793 getNotSCEV(RHS), L, true); 3794 if (BTI.hasAnyInfo()) return BTI; 3795 break; 3796 } 3797 case ICmpInst::ICMP_ULT: { 3798 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false); 3799 if (BTI.hasAnyInfo()) return BTI; 3800 break; 3801 } 3802 case ICmpInst::ICMP_UGT: { 3803 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS), 3804 getNotSCEV(RHS), L, false); 3805 if (BTI.hasAnyInfo()) return BTI; 3806 break; 3807 } 3808 default: 3809 #if 0 3810 dbgs() << "ComputeBackedgeTakenCount "; 3811 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 3812 dbgs() << "[unsigned] "; 3813 dbgs() << *LHS << " " 3814 << Instruction::getOpcodeName(Instruction::ICmp) 3815 << " " << *RHS << "\n"; 3816 #endif 3817 break; 3818 } 3819 return 3820 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB)); 3821 } 3822 3823 static ConstantInt * 3824 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 3825 ScalarEvolution &SE) { 3826 const SCEV *InVal = SE.getConstant(C); 3827 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 3828 assert(isa<SCEVConstant>(Val) && 3829 "Evaluation of SCEV at constant didn't fold correctly?"); 3830 return cast<SCEVConstant>(Val)->getValue(); 3831 } 3832 3833 /// GetAddressedElementFromGlobal - Given a global variable with an initializer 3834 /// and a GEP expression (missing the pointer index) indexing into it, return 3835 /// the addressed element of the initializer or null if the index expression is 3836 /// invalid. 3837 static Constant * 3838 GetAddressedElementFromGlobal(GlobalVariable *GV, 3839 const std::vector<ConstantInt*> &Indices) { 3840 Constant *Init = GV->getInitializer(); 3841 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 3842 uint64_t Idx = Indices[i]->getZExtValue(); 3843 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 3844 assert(Idx < CS->getNumOperands() && "Bad struct index!"); 3845 Init = cast<Constant>(CS->getOperand(Idx)); 3846 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 3847 if (Idx >= CA->getNumOperands()) return 0; // Bogus program 3848 Init = cast<Constant>(CA->getOperand(Idx)); 3849 } else if (isa<ConstantAggregateZero>(Init)) { 3850 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 3851 assert(Idx < STy->getNumElements() && "Bad struct index!"); 3852 Init = Constant::getNullValue(STy->getElementType(Idx)); 3853 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) { 3854 if (Idx >= ATy->getNumElements()) return 0; // Bogus program 3855 Init = Constant::getNullValue(ATy->getElementType()); 3856 } else { 3857 llvm_unreachable("Unknown constant aggregate type!"); 3858 } 3859 return 0; 3860 } else { 3861 return 0; // Unknown initializer type 3862 } 3863 } 3864 return Init; 3865 } 3866 3867 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of 3868 /// 'icmp op load X, cst', try to see if we can compute the backedge 3869 /// execution count. 3870 ScalarEvolution::BackedgeTakenInfo 3871 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount( 3872 LoadInst *LI, 3873 Constant *RHS, 3874 const Loop *L, 3875 ICmpInst::Predicate predicate) { 3876 if (LI->isVolatile()) return getCouldNotCompute(); 3877 3878 // Check to see if the loaded pointer is a getelementptr of a global. 3879 // TODO: Use SCEV instead of manually grubbing with GEPs. 3880 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 3881 if (!GEP) return getCouldNotCompute(); 3882 3883 // Make sure that it is really a constant global we are gepping, with an 3884 // initializer, and make sure the first IDX is really 0. 3885 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 3886 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 3887 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 3888 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 3889 return getCouldNotCompute(); 3890 3891 // Okay, we allow one non-constant index into the GEP instruction. 3892 Value *VarIdx = 0; 3893 std::vector<ConstantInt*> Indexes; 3894 unsigned VarIdxNum = 0; 3895 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 3896 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 3897 Indexes.push_back(CI); 3898 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 3899 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 3900 VarIdx = GEP->getOperand(i); 3901 VarIdxNum = i-2; 3902 Indexes.push_back(0); 3903 } 3904 3905 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 3906 // Check to see if X is a loop variant variable value now. 3907 const SCEV *Idx = getSCEV(VarIdx); 3908 Idx = getSCEVAtScope(Idx, L); 3909 3910 // We can only recognize very limited forms of loop index expressions, in 3911 // particular, only affine AddRec's like {C1,+,C2}. 3912 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 3913 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) || 3914 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 3915 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 3916 return getCouldNotCompute(); 3917 3918 unsigned MaxSteps = MaxBruteForceIterations; 3919 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 3920 ConstantInt *ItCst = ConstantInt::get( 3921 cast<IntegerType>(IdxExpr->getType()), IterationNum); 3922 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 3923 3924 // Form the GEP offset. 3925 Indexes[VarIdxNum] = Val; 3926 3927 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes); 3928 if (Result == 0) break; // Cannot compute! 3929 3930 // Evaluate the condition for this iteration. 3931 Result = ConstantExpr::getICmp(predicate, Result, RHS); 3932 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 3933 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 3934 #if 0 3935 dbgs() << "\n***\n*** Computed loop count " << *ItCst 3936 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 3937 << "***\n"; 3938 #endif 3939 ++NumArrayLenItCounts; 3940 return getConstant(ItCst); // Found terminating iteration! 3941 } 3942 } 3943 return getCouldNotCompute(); 3944 } 3945 3946 3947 /// CanConstantFold - Return true if we can constant fold an instruction of the 3948 /// specified type, assuming that all operands were constants. 3949 static bool CanConstantFold(const Instruction *I) { 3950 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 3951 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I)) 3952 return true; 3953 3954 if (const CallInst *CI = dyn_cast<CallInst>(I)) 3955 if (const Function *F = CI->getCalledFunction()) 3956 return canConstantFoldCallTo(F); 3957 return false; 3958 } 3959 3960 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 3961 /// in the loop that V is derived from. We allow arbitrary operations along the 3962 /// way, but the operands of an operation must either be constants or a value 3963 /// derived from a constant PHI. If this expression does not fit with these 3964 /// constraints, return null. 3965 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 3966 // If this is not an instruction, or if this is an instruction outside of the 3967 // loop, it can't be derived from a loop PHI. 3968 Instruction *I = dyn_cast<Instruction>(V); 3969 if (I == 0 || !L->contains(I)) return 0; 3970 3971 if (PHINode *PN = dyn_cast<PHINode>(I)) { 3972 if (L->getHeader() == I->getParent()) 3973 return PN; 3974 else 3975 // We don't currently keep track of the control flow needed to evaluate 3976 // PHIs, so we cannot handle PHIs inside of loops. 3977 return 0; 3978 } 3979 3980 // If we won't be able to constant fold this expression even if the operands 3981 // are constants, return early. 3982 if (!CanConstantFold(I)) return 0; 3983 3984 // Otherwise, we can evaluate this instruction if all of its operands are 3985 // constant or derived from a PHI node themselves. 3986 PHINode *PHI = 0; 3987 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op) 3988 if (!(isa<Constant>(I->getOperand(Op)) || 3989 isa<GlobalValue>(I->getOperand(Op)))) { 3990 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L); 3991 if (P == 0) return 0; // Not evolving from PHI 3992 if (PHI == 0) 3993 PHI = P; 3994 else if (PHI != P) 3995 return 0; // Evolving from multiple different PHIs. 3996 } 3997 3998 // This is a expression evolving from a constant PHI! 3999 return PHI; 4000 } 4001 4002 /// EvaluateExpression - Given an expression that passes the 4003 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 4004 /// in the loop has the value PHIVal. If we can't fold this expression for some 4005 /// reason, return null. 4006 static Constant *EvaluateExpression(Value *V, Constant *PHIVal, 4007 const TargetData *TD) { 4008 if (isa<PHINode>(V)) return PHIVal; 4009 if (Constant *C = dyn_cast<Constant>(V)) return C; 4010 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV; 4011 Instruction *I = cast<Instruction>(V); 4012 4013 std::vector<Constant*> Operands; 4014 Operands.resize(I->getNumOperands()); 4015 4016 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4017 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD); 4018 if (Operands[i] == 0) return 0; 4019 } 4020 4021 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4022 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 4023 Operands[1], TD); 4024 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4025 &Operands[0], Operands.size(), TD); 4026 } 4027 4028 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 4029 /// in the header of its containing loop, we know the loop executes a 4030 /// constant number of times, and the PHI node is just a recurrence 4031 /// involving constants, fold it. 4032 Constant * 4033 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 4034 const APInt &BEs, 4035 const Loop *L) { 4036 std::map<PHINode*, Constant*>::iterator I = 4037 ConstantEvolutionLoopExitValue.find(PN); 4038 if (I != ConstantEvolutionLoopExitValue.end()) 4039 return I->second; 4040 4041 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations))) 4042 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it. 4043 4044 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 4045 4046 // Since the loop is canonicalized, the PHI node must have two entries. One 4047 // entry must be a constant (coming in from outside of the loop), and the 4048 // second must be derived from the same PHI. 4049 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4050 Constant *StartCST = 4051 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4052 if (StartCST == 0) 4053 return RetVal = 0; // Must be a constant. 4054 4055 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4056 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 4057 if (PN2 != PN) 4058 return RetVal = 0; // Not derived from same PHI. 4059 4060 // Execute the loop symbolically to determine the exit value. 4061 if (BEs.getActiveBits() >= 32) 4062 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it! 4063 4064 unsigned NumIterations = BEs.getZExtValue(); // must be in range 4065 unsigned IterationNum = 0; 4066 for (Constant *PHIVal = StartCST; ; ++IterationNum) { 4067 if (IterationNum == NumIterations) 4068 return RetVal = PHIVal; // Got exit value! 4069 4070 // Compute the value of the PHI node for the next iteration. 4071 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4072 if (NextPHI == PHIVal) 4073 return RetVal = NextPHI; // Stopped evolving! 4074 if (NextPHI == 0) 4075 return 0; // Couldn't evaluate! 4076 PHIVal = NextPHI; 4077 } 4078 } 4079 4080 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a 4081 /// constant number of times (the condition evolves only from constants), 4082 /// try to evaluate a few iterations of the loop until we get the exit 4083 /// condition gets a value of ExitWhen (true or false). If we cannot 4084 /// evaluate the trip count of the loop, return getCouldNotCompute(). 4085 const SCEV * 4086 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L, 4087 Value *Cond, 4088 bool ExitWhen) { 4089 PHINode *PN = getConstantEvolvingPHI(Cond, L); 4090 if (PN == 0) return getCouldNotCompute(); 4091 4092 // Since the loop is canonicalized, the PHI node must have two entries. One 4093 // entry must be a constant (coming in from outside of the loop), and the 4094 // second must be derived from the same PHI. 4095 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 4096 Constant *StartCST = 4097 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge)); 4098 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant. 4099 4100 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 4101 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L); 4102 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI. 4103 4104 // Okay, we find a PHI node that defines the trip count of this loop. Execute 4105 // the loop symbolically to determine when the condition gets a value of 4106 // "ExitWhen". 4107 unsigned IterationNum = 0; 4108 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 4109 for (Constant *PHIVal = StartCST; 4110 IterationNum != MaxIterations; ++IterationNum) { 4111 ConstantInt *CondVal = 4112 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD)); 4113 4114 // Couldn't symbolically evaluate. 4115 if (!CondVal) return getCouldNotCompute(); 4116 4117 if (CondVal->getValue() == uint64_t(ExitWhen)) { 4118 ++NumBruteForceTripCountsComputed; 4119 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 4120 } 4121 4122 // Compute the value of the PHI node for the next iteration. 4123 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD); 4124 if (NextPHI == 0 || NextPHI == PHIVal) 4125 return getCouldNotCompute();// Couldn't evaluate or not making progress... 4126 PHIVal = NextPHI; 4127 } 4128 4129 // Too many iterations were needed to evaluate. 4130 return getCouldNotCompute(); 4131 } 4132 4133 /// getSCEVAtScope - Return a SCEV expression for the specified value 4134 /// at the specified scope in the program. The L value specifies a loop 4135 /// nest to evaluate the expression at, where null is the top-level or a 4136 /// specified loop is immediately inside of the loop. 4137 /// 4138 /// This method can be used to compute the exit value for a variable defined 4139 /// in a loop by querying what the value will hold in the parent loop. 4140 /// 4141 /// In the case that a relevant loop exit value cannot be computed, the 4142 /// original value V is returned. 4143 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 4144 // Check to see if we've folded this expression at this loop before. 4145 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V]; 4146 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair = 4147 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0))); 4148 if (!Pair.second) 4149 return Pair.first->second ? Pair.first->second : V; 4150 4151 // Otherwise compute it. 4152 const SCEV *C = computeSCEVAtScope(V, L); 4153 ValuesAtScopes[V][L] = C; 4154 return C; 4155 } 4156 4157 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 4158 if (isa<SCEVConstant>(V)) return V; 4159 4160 // If this instruction is evolved from a constant-evolving PHI, compute the 4161 // exit value from the loop without using SCEVs. 4162 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 4163 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 4164 const Loop *LI = (*this->LI)[I->getParent()]; 4165 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 4166 if (PHINode *PN = dyn_cast<PHINode>(I)) 4167 if (PN->getParent() == LI->getHeader()) { 4168 // Okay, there is no closed form solution for the PHI node. Check 4169 // to see if the loop that contains it has a known backedge-taken 4170 // count. If so, we may be able to force computation of the exit 4171 // value. 4172 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 4173 if (const SCEVConstant *BTCC = 4174 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 4175 // Okay, we know how many times the containing loop executes. If 4176 // this is a constant evolving PHI node, get the final value at 4177 // the specified iteration number. 4178 Constant *RV = getConstantEvolutionLoopExitValue(PN, 4179 BTCC->getValue()->getValue(), 4180 LI); 4181 if (RV) return getSCEV(RV); 4182 } 4183 } 4184 4185 // Okay, this is an expression that we cannot symbolically evaluate 4186 // into a SCEV. Check to see if it's possible to symbolically evaluate 4187 // the arguments into constants, and if so, try to constant propagate the 4188 // result. This is particularly useful for computing loop exit values. 4189 if (CanConstantFold(I)) { 4190 std::vector<Constant*> Operands; 4191 Operands.reserve(I->getNumOperands()); 4192 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4193 Value *Op = I->getOperand(i); 4194 if (Constant *C = dyn_cast<Constant>(Op)) { 4195 Operands.push_back(C); 4196 } else { 4197 // If any of the operands is non-constant and if they are 4198 // non-integer and non-pointer, don't even try to analyze them 4199 // with scev techniques. 4200 if (!isSCEVable(Op->getType())) 4201 return V; 4202 4203 const SCEV *OpV = getSCEVAtScope(Op, L); 4204 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) { 4205 Constant *C = SC->getValue(); 4206 if (C->getType() != Op->getType()) 4207 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4208 Op->getType(), 4209 false), 4210 C, Op->getType()); 4211 Operands.push_back(C); 4212 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) { 4213 if (Constant *C = dyn_cast<Constant>(SU->getValue())) { 4214 if (C->getType() != Op->getType()) 4215 C = 4216 ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4217 Op->getType(), 4218 false), 4219 C, Op->getType()); 4220 Operands.push_back(C); 4221 } else 4222 return V; 4223 } else { 4224 return V; 4225 } 4226 } 4227 } 4228 4229 Constant *C; 4230 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 4231 C = ConstantFoldCompareInstOperands(CI->getPredicate(), 4232 Operands[0], Operands[1], TD); 4233 else 4234 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), 4235 &Operands[0], Operands.size(), TD); 4236 return getSCEV(C); 4237 } 4238 } 4239 4240 // This is some other type of SCEVUnknown, just return it. 4241 return V; 4242 } 4243 4244 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 4245 // Avoid performing the look-up in the common case where the specified 4246 // expression has no loop-variant portions. 4247 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 4248 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4249 if (OpAtScope != Comm->getOperand(i)) { 4250 // Okay, at least one of these operands is loop variant but might be 4251 // foldable. Build a new instance of the folded commutative expression. 4252 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 4253 Comm->op_begin()+i); 4254 NewOps.push_back(OpAtScope); 4255 4256 for (++i; i != e; ++i) { 4257 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 4258 NewOps.push_back(OpAtScope); 4259 } 4260 if (isa<SCEVAddExpr>(Comm)) 4261 return getAddExpr(NewOps); 4262 if (isa<SCEVMulExpr>(Comm)) 4263 return getMulExpr(NewOps); 4264 if (isa<SCEVSMaxExpr>(Comm)) 4265 return getSMaxExpr(NewOps); 4266 if (isa<SCEVUMaxExpr>(Comm)) 4267 return getUMaxExpr(NewOps); 4268 llvm_unreachable("Unknown commutative SCEV type!"); 4269 } 4270 } 4271 // If we got here, all operands are loop invariant. 4272 return Comm; 4273 } 4274 4275 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 4276 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 4277 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 4278 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 4279 return Div; // must be loop invariant 4280 return getUDivExpr(LHS, RHS); 4281 } 4282 4283 // If this is a loop recurrence for a loop that does not contain L, then we 4284 // are dealing with the final value computed by the loop. 4285 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4286 if (!L || !AddRec->getLoop()->contains(L)) { 4287 // To evaluate this recurrence, we need to know how many times the AddRec 4288 // loop iterates. Compute this now. 4289 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 4290 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 4291 4292 // Then, evaluate the AddRec. 4293 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 4294 } 4295 return AddRec; 4296 } 4297 4298 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 4299 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4300 if (Op == Cast->getOperand()) 4301 return Cast; // must be loop invariant 4302 return getZeroExtendExpr(Op, Cast->getType()); 4303 } 4304 4305 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 4306 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4307 if (Op == Cast->getOperand()) 4308 return Cast; // must be loop invariant 4309 return getSignExtendExpr(Op, Cast->getType()); 4310 } 4311 4312 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 4313 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 4314 if (Op == Cast->getOperand()) 4315 return Cast; // must be loop invariant 4316 return getTruncateExpr(Op, Cast->getType()); 4317 } 4318 4319 llvm_unreachable("Unknown SCEV type!"); 4320 return 0; 4321 } 4322 4323 /// getSCEVAtScope - This is a convenience function which does 4324 /// getSCEVAtScope(getSCEV(V), L). 4325 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 4326 return getSCEVAtScope(getSCEV(V), L); 4327 } 4328 4329 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 4330 /// following equation: 4331 /// 4332 /// A * X = B (mod N) 4333 /// 4334 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 4335 /// A and B isn't important. 4336 /// 4337 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 4338 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 4339 ScalarEvolution &SE) { 4340 uint32_t BW = A.getBitWidth(); 4341 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 4342 assert(A != 0 && "A must be non-zero."); 4343 4344 // 1. D = gcd(A, N) 4345 // 4346 // The gcd of A and N may have only one prime factor: 2. The number of 4347 // trailing zeros in A is its multiplicity 4348 uint32_t Mult2 = A.countTrailingZeros(); 4349 // D = 2^Mult2 4350 4351 // 2. Check if B is divisible by D. 4352 // 4353 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 4354 // is not less than multiplicity of this prime factor for D. 4355 if (B.countTrailingZeros() < Mult2) 4356 return SE.getCouldNotCompute(); 4357 4358 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 4359 // modulo (N / D). 4360 // 4361 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 4362 // bit width during computations. 4363 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 4364 APInt Mod(BW + 1, 0); 4365 Mod.set(BW - Mult2); // Mod = N / D 4366 APInt I = AD.multiplicativeInverse(Mod); 4367 4368 // 4. Compute the minimum unsigned root of the equation: 4369 // I * (B / D) mod (N / D) 4370 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 4371 4372 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 4373 // bits. 4374 return SE.getConstant(Result.trunc(BW)); 4375 } 4376 4377 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 4378 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 4379 /// might be the same) or two SCEVCouldNotCompute objects. 4380 /// 4381 static std::pair<const SCEV *,const SCEV *> 4382 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 4383 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 4384 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 4385 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 4386 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 4387 4388 // We currently can only solve this if the coefficients are constants. 4389 if (!LC || !MC || !NC) { 4390 const SCEV *CNC = SE.getCouldNotCompute(); 4391 return std::make_pair(CNC, CNC); 4392 } 4393 4394 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 4395 const APInt &L = LC->getValue()->getValue(); 4396 const APInt &M = MC->getValue()->getValue(); 4397 const APInt &N = NC->getValue()->getValue(); 4398 APInt Two(BitWidth, 2); 4399 APInt Four(BitWidth, 4); 4400 4401 { 4402 using namespace APIntOps; 4403 const APInt& C = L; 4404 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 4405 // The B coefficient is M-N/2 4406 APInt B(M); 4407 B -= sdiv(N,Two); 4408 4409 // The A coefficient is N/2 4410 APInt A(N.sdiv(Two)); 4411 4412 // Compute the B^2-4ac term. 4413 APInt SqrtTerm(B); 4414 SqrtTerm *= B; 4415 SqrtTerm -= Four * (A * C); 4416 4417 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 4418 // integer value or else APInt::sqrt() will assert. 4419 APInt SqrtVal(SqrtTerm.sqrt()); 4420 4421 // Compute the two solutions for the quadratic formula. 4422 // The divisions must be performed as signed divisions. 4423 APInt NegB(-B); 4424 APInt TwoA( A << 1 ); 4425 if (TwoA.isMinValue()) { 4426 const SCEV *CNC = SE.getCouldNotCompute(); 4427 return std::make_pair(CNC, CNC); 4428 } 4429 4430 LLVMContext &Context = SE.getContext(); 4431 4432 ConstantInt *Solution1 = 4433 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 4434 ConstantInt *Solution2 = 4435 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 4436 4437 return std::make_pair(SE.getConstant(Solution1), 4438 SE.getConstant(Solution2)); 4439 } // end APIntOps namespace 4440 } 4441 4442 /// HowFarToZero - Return the number of times a backedge comparing the specified 4443 /// value to zero will execute. If not computable, return CouldNotCompute. 4444 ScalarEvolution::BackedgeTakenInfo 4445 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) { 4446 // If the value is a constant 4447 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4448 // If the value is already zero, the branch will execute zero times. 4449 if (C->getValue()->isZero()) return C; 4450 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4451 } 4452 4453 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 4454 if (!AddRec || AddRec->getLoop() != L) 4455 return getCouldNotCompute(); 4456 4457 if (AddRec->isAffine()) { 4458 // If this is an affine expression, the execution count of this branch is 4459 // the minimum unsigned root of the following equation: 4460 // 4461 // Start + Step*N = 0 (mod 2^BW) 4462 // 4463 // equivalent to: 4464 // 4465 // Step*N = -Start (mod 2^BW) 4466 // 4467 // where BW is the common bit width of Start and Step. 4468 4469 // Get the initial value for the loop. 4470 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), 4471 L->getParentLoop()); 4472 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), 4473 L->getParentLoop()); 4474 4475 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) { 4476 // For now we handle only constant steps. 4477 4478 // First, handle unitary steps. 4479 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so: 4480 return getNegativeSCEV(Start); // N = -Start (as unsigned) 4481 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so: 4482 return Start; // N = Start (as unsigned) 4483 4484 // Then, try to solve the above equation provided that Start is constant. 4485 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 4486 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 4487 -StartC->getValue()->getValue(), 4488 *this); 4489 } 4490 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 4491 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 4492 // the quadratic equation to solve it. 4493 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec, 4494 *this); 4495 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 4496 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 4497 if (R1) { 4498 #if 0 4499 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 4500 << " sol#2: " << *R2 << "\n"; 4501 #endif 4502 // Pick the smallest positive root value. 4503 if (ConstantInt *CB = 4504 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 4505 R1->getValue(), R2->getValue()))) { 4506 if (CB->getZExtValue() == false) 4507 std::swap(R1, R2); // R1 is the minimum root now. 4508 4509 // We can only use this value if the chrec ends up with an exact zero 4510 // value at this index. When solving for "X*X != 5", for example, we 4511 // should not accept a root of 2. 4512 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 4513 if (Val->isZero()) 4514 return R1; // We found a quadratic root! 4515 } 4516 } 4517 } 4518 4519 return getCouldNotCompute(); 4520 } 4521 4522 /// HowFarToNonZero - Return the number of times a backedge checking the 4523 /// specified value for nonzero will execute. If not computable, return 4524 /// CouldNotCompute 4525 ScalarEvolution::BackedgeTakenInfo 4526 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 4527 // Loops that look like: while (X == 0) are very strange indeed. We don't 4528 // handle them yet except for the trivial case. This could be expanded in the 4529 // future as needed. 4530 4531 // If the value is a constant, check to see if it is known to be non-zero 4532 // already. If so, the backedge will execute zero times. 4533 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 4534 if (!C->getValue()->isNullValue()) 4535 return getIntegerSCEV(0, C->getType()); 4536 return getCouldNotCompute(); // Otherwise it will loop infinitely. 4537 } 4538 4539 // We could implement others, but I really doubt anyone writes loops like 4540 // this, and if they did, they would already be constant folded. 4541 return getCouldNotCompute(); 4542 } 4543 4544 /// getLoopPredecessor - If the given loop's header has exactly one unique 4545 /// predecessor outside the loop, return it. Otherwise return null. 4546 /// 4547 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) { 4548 BasicBlock *Header = L->getHeader(); 4549 BasicBlock *Pred = 0; 4550 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); 4551 PI != E; ++PI) 4552 if (!L->contains(*PI)) { 4553 if (Pred && Pred != *PI) return 0; // Multiple predecessors. 4554 Pred = *PI; 4555 } 4556 return Pred; 4557 } 4558 4559 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 4560 /// (which may not be an immediate predecessor) which has exactly one 4561 /// successor from which BB is reachable, or null if no such block is 4562 /// found. 4563 /// 4564 BasicBlock * 4565 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 4566 // If the block has a unique predecessor, then there is no path from the 4567 // predecessor to the block that does not go through the direct edge 4568 // from the predecessor to the block. 4569 if (BasicBlock *Pred = BB->getSinglePredecessor()) 4570 return Pred; 4571 4572 // A loop's header is defined to be a block that dominates the loop. 4573 // If the header has a unique predecessor outside the loop, it must be 4574 // a block that has exactly one successor that can reach the loop. 4575 if (Loop *L = LI->getLoopFor(BB)) 4576 return getLoopPredecessor(L); 4577 4578 return 0; 4579 } 4580 4581 /// HasSameValue - SCEV structural equivalence is usually sufficient for 4582 /// testing whether two expressions are equal, however for the purposes of 4583 /// looking for a condition guarding a loop, it can be useful to be a little 4584 /// more general, since a front-end may have replicated the controlling 4585 /// expression. 4586 /// 4587 static bool HasSameValue(const SCEV *A, const SCEV *B) { 4588 // Quick check to see if they are the same SCEV. 4589 if (A == B) return true; 4590 4591 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 4592 // two different instructions with the same value. Check for this case. 4593 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 4594 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 4595 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 4596 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 4597 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory()) 4598 return true; 4599 4600 // Otherwise assume they may have a different value. 4601 return false; 4602 } 4603 4604 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 4605 return getSignedRange(S).getSignedMax().isNegative(); 4606 } 4607 4608 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 4609 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 4610 } 4611 4612 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 4613 return !getSignedRange(S).getSignedMin().isNegative(); 4614 } 4615 4616 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 4617 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 4618 } 4619 4620 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 4621 return isKnownNegative(S) || isKnownPositive(S); 4622 } 4623 4624 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 4625 const SCEV *LHS, const SCEV *RHS) { 4626 4627 if (HasSameValue(LHS, RHS)) 4628 return ICmpInst::isTrueWhenEqual(Pred); 4629 4630 switch (Pred) { 4631 default: 4632 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4633 break; 4634 case ICmpInst::ICMP_SGT: 4635 Pred = ICmpInst::ICMP_SLT; 4636 std::swap(LHS, RHS); 4637 case ICmpInst::ICMP_SLT: { 4638 ConstantRange LHSRange = getSignedRange(LHS); 4639 ConstantRange RHSRange = getSignedRange(RHS); 4640 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 4641 return true; 4642 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 4643 return false; 4644 break; 4645 } 4646 case ICmpInst::ICMP_SGE: 4647 Pred = ICmpInst::ICMP_SLE; 4648 std::swap(LHS, RHS); 4649 case ICmpInst::ICMP_SLE: { 4650 ConstantRange LHSRange = getSignedRange(LHS); 4651 ConstantRange RHSRange = getSignedRange(RHS); 4652 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 4653 return true; 4654 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 4655 return false; 4656 break; 4657 } 4658 case ICmpInst::ICMP_UGT: 4659 Pred = ICmpInst::ICMP_ULT; 4660 std::swap(LHS, RHS); 4661 case ICmpInst::ICMP_ULT: { 4662 ConstantRange LHSRange = getUnsignedRange(LHS); 4663 ConstantRange RHSRange = getUnsignedRange(RHS); 4664 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 4665 return true; 4666 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 4667 return false; 4668 break; 4669 } 4670 case ICmpInst::ICMP_UGE: 4671 Pred = ICmpInst::ICMP_ULE; 4672 std::swap(LHS, RHS); 4673 case ICmpInst::ICMP_ULE: { 4674 ConstantRange LHSRange = getUnsignedRange(LHS); 4675 ConstantRange RHSRange = getUnsignedRange(RHS); 4676 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 4677 return true; 4678 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 4679 return false; 4680 break; 4681 } 4682 case ICmpInst::ICMP_NE: { 4683 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 4684 return true; 4685 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 4686 return true; 4687 4688 const SCEV *Diff = getMinusSCEV(LHS, RHS); 4689 if (isKnownNonZero(Diff)) 4690 return true; 4691 break; 4692 } 4693 case ICmpInst::ICMP_EQ: 4694 // The check at the top of the function catches the case where 4695 // the values are known to be equal. 4696 break; 4697 } 4698 return false; 4699 } 4700 4701 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 4702 /// protected by a conditional between LHS and RHS. This is used to 4703 /// to eliminate casts. 4704 bool 4705 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 4706 ICmpInst::Predicate Pred, 4707 const SCEV *LHS, const SCEV *RHS) { 4708 // Interpret a null as meaning no loop, where there is obviously no guard 4709 // (interprocedural conditions notwithstanding). 4710 if (!L) return true; 4711 4712 BasicBlock *Latch = L->getLoopLatch(); 4713 if (!Latch) 4714 return false; 4715 4716 BranchInst *LoopContinuePredicate = 4717 dyn_cast<BranchInst>(Latch->getTerminator()); 4718 if (!LoopContinuePredicate || 4719 LoopContinuePredicate->isUnconditional()) 4720 return false; 4721 4722 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS, 4723 LoopContinuePredicate->getSuccessor(0) != L->getHeader()); 4724 } 4725 4726 /// isLoopGuardedByCond - Test whether entry to the loop is protected 4727 /// by a conditional between LHS and RHS. This is used to help avoid max 4728 /// expressions in loop trip counts, and to eliminate casts. 4729 bool 4730 ScalarEvolution::isLoopGuardedByCond(const Loop *L, 4731 ICmpInst::Predicate Pred, 4732 const SCEV *LHS, const SCEV *RHS) { 4733 // Interpret a null as meaning no loop, where there is obviously no guard 4734 // (interprocedural conditions notwithstanding). 4735 if (!L) return false; 4736 4737 BasicBlock *Predecessor = getLoopPredecessor(L); 4738 BasicBlock *PredecessorDest = L->getHeader(); 4739 4740 // Starting at the loop predecessor, climb up the predecessor chain, as long 4741 // as there are predecessors that can be found that have unique successors 4742 // leading to the original header. 4743 for (; Predecessor; 4744 PredecessorDest = Predecessor, 4745 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) { 4746 4747 BranchInst *LoopEntryPredicate = 4748 dyn_cast<BranchInst>(Predecessor->getTerminator()); 4749 if (!LoopEntryPredicate || 4750 LoopEntryPredicate->isUnconditional()) 4751 continue; 4752 4753 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS, 4754 LoopEntryPredicate->getSuccessor(0) != PredecessorDest)) 4755 return true; 4756 } 4757 4758 return false; 4759 } 4760 4761 /// isImpliedCond - Test whether the condition described by Pred, LHS, 4762 /// and RHS is true whenever the given Cond value evaluates to true. 4763 bool ScalarEvolution::isImpliedCond(Value *CondValue, 4764 ICmpInst::Predicate Pred, 4765 const SCEV *LHS, const SCEV *RHS, 4766 bool Inverse) { 4767 // Recursivly handle And and Or conditions. 4768 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) { 4769 if (BO->getOpcode() == Instruction::And) { 4770 if (!Inverse) 4771 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4772 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4773 } else if (BO->getOpcode() == Instruction::Or) { 4774 if (Inverse) 4775 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) || 4776 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse); 4777 } 4778 } 4779 4780 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue); 4781 if (!ICI) return false; 4782 4783 // Bail if the ICmp's operands' types are wider than the needed type 4784 // before attempting to call getSCEV on them. This avoids infinite 4785 // recursion, since the analysis of widening casts can require loop 4786 // exit condition information for overflow checking, which would 4787 // lead back here. 4788 if (getTypeSizeInBits(LHS->getType()) < 4789 getTypeSizeInBits(ICI->getOperand(0)->getType())) 4790 return false; 4791 4792 // Now that we found a conditional branch that dominates the loop, check to 4793 // see if it is the comparison we are looking for. 4794 ICmpInst::Predicate FoundPred; 4795 if (Inverse) 4796 FoundPred = ICI->getInversePredicate(); 4797 else 4798 FoundPred = ICI->getPredicate(); 4799 4800 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 4801 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 4802 4803 // Balance the types. The case where FoundLHS' type is wider than 4804 // LHS' type is checked for above. 4805 if (getTypeSizeInBits(LHS->getType()) > 4806 getTypeSizeInBits(FoundLHS->getType())) { 4807 if (CmpInst::isSigned(Pred)) { 4808 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 4809 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 4810 } else { 4811 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 4812 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 4813 } 4814 } 4815 4816 // Canonicalize the query to match the way instcombine will have 4817 // canonicalized the comparison. 4818 // First, put a constant operand on the right. 4819 if (isa<SCEVConstant>(LHS)) { 4820 std::swap(LHS, RHS); 4821 Pred = ICmpInst::getSwappedPredicate(Pred); 4822 } 4823 // Then, canonicalize comparisons with boundary cases. 4824 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 4825 const APInt &RA = RC->getValue()->getValue(); 4826 switch (Pred) { 4827 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4828 case ICmpInst::ICMP_EQ: 4829 case ICmpInst::ICMP_NE: 4830 break; 4831 case ICmpInst::ICMP_UGE: 4832 if ((RA - 1).isMinValue()) { 4833 Pred = ICmpInst::ICMP_NE; 4834 RHS = getConstant(RA - 1); 4835 break; 4836 } 4837 if (RA.isMaxValue()) { 4838 Pred = ICmpInst::ICMP_EQ; 4839 break; 4840 } 4841 if (RA.isMinValue()) return true; 4842 break; 4843 case ICmpInst::ICMP_ULE: 4844 if ((RA + 1).isMaxValue()) { 4845 Pred = ICmpInst::ICMP_NE; 4846 RHS = getConstant(RA + 1); 4847 break; 4848 } 4849 if (RA.isMinValue()) { 4850 Pred = ICmpInst::ICMP_EQ; 4851 break; 4852 } 4853 if (RA.isMaxValue()) return true; 4854 break; 4855 case ICmpInst::ICMP_SGE: 4856 if ((RA - 1).isMinSignedValue()) { 4857 Pred = ICmpInst::ICMP_NE; 4858 RHS = getConstant(RA - 1); 4859 break; 4860 } 4861 if (RA.isMaxSignedValue()) { 4862 Pred = ICmpInst::ICMP_EQ; 4863 break; 4864 } 4865 if (RA.isMinSignedValue()) return true; 4866 break; 4867 case ICmpInst::ICMP_SLE: 4868 if ((RA + 1).isMaxSignedValue()) { 4869 Pred = ICmpInst::ICMP_NE; 4870 RHS = getConstant(RA + 1); 4871 break; 4872 } 4873 if (RA.isMinSignedValue()) { 4874 Pred = ICmpInst::ICMP_EQ; 4875 break; 4876 } 4877 if (RA.isMaxSignedValue()) return true; 4878 break; 4879 case ICmpInst::ICMP_UGT: 4880 if (RA.isMinValue()) { 4881 Pred = ICmpInst::ICMP_NE; 4882 break; 4883 } 4884 if ((RA + 1).isMaxValue()) { 4885 Pred = ICmpInst::ICMP_EQ; 4886 RHS = getConstant(RA + 1); 4887 break; 4888 } 4889 if (RA.isMaxValue()) return false; 4890 break; 4891 case ICmpInst::ICMP_ULT: 4892 if (RA.isMaxValue()) { 4893 Pred = ICmpInst::ICMP_NE; 4894 break; 4895 } 4896 if ((RA - 1).isMinValue()) { 4897 Pred = ICmpInst::ICMP_EQ; 4898 RHS = getConstant(RA - 1); 4899 break; 4900 } 4901 if (RA.isMinValue()) return false; 4902 break; 4903 case ICmpInst::ICMP_SGT: 4904 if (RA.isMinSignedValue()) { 4905 Pred = ICmpInst::ICMP_NE; 4906 break; 4907 } 4908 if ((RA + 1).isMaxSignedValue()) { 4909 Pred = ICmpInst::ICMP_EQ; 4910 RHS = getConstant(RA + 1); 4911 break; 4912 } 4913 if (RA.isMaxSignedValue()) return false; 4914 break; 4915 case ICmpInst::ICMP_SLT: 4916 if (RA.isMaxSignedValue()) { 4917 Pred = ICmpInst::ICMP_NE; 4918 break; 4919 } 4920 if ((RA - 1).isMinSignedValue()) { 4921 Pred = ICmpInst::ICMP_EQ; 4922 RHS = getConstant(RA - 1); 4923 break; 4924 } 4925 if (RA.isMinSignedValue()) return false; 4926 break; 4927 } 4928 } 4929 4930 // Check to see if we can make the LHS or RHS match. 4931 if (LHS == FoundRHS || RHS == FoundLHS) { 4932 if (isa<SCEVConstant>(RHS)) { 4933 std::swap(FoundLHS, FoundRHS); 4934 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 4935 } else { 4936 std::swap(LHS, RHS); 4937 Pred = ICmpInst::getSwappedPredicate(Pred); 4938 } 4939 } 4940 4941 // Check whether the found predicate is the same as the desired predicate. 4942 if (FoundPred == Pred) 4943 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 4944 4945 // Check whether swapping the found predicate makes it the same as the 4946 // desired predicate. 4947 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 4948 if (isa<SCEVConstant>(RHS)) 4949 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 4950 else 4951 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 4952 RHS, LHS, FoundLHS, FoundRHS); 4953 } 4954 4955 // Check whether the actual condition is beyond sufficient. 4956 if (FoundPred == ICmpInst::ICMP_EQ) 4957 if (ICmpInst::isTrueWhenEqual(Pred)) 4958 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 4959 return true; 4960 if (Pred == ICmpInst::ICMP_NE) 4961 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 4962 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 4963 return true; 4964 4965 // Otherwise assume the worst. 4966 return false; 4967 } 4968 4969 /// isImpliedCondOperands - Test whether the condition described by Pred, 4970 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS, 4971 /// and FoundRHS is true. 4972 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 4973 const SCEV *LHS, const SCEV *RHS, 4974 const SCEV *FoundLHS, 4975 const SCEV *FoundRHS) { 4976 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 4977 FoundLHS, FoundRHS) || 4978 // ~x < ~y --> x > y 4979 isImpliedCondOperandsHelper(Pred, LHS, RHS, 4980 getNotSCEV(FoundRHS), 4981 getNotSCEV(FoundLHS)); 4982 } 4983 4984 /// isImpliedCondOperandsHelper - Test whether the condition described by 4985 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred, 4986 /// FoundLHS, and FoundRHS is true. 4987 bool 4988 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 4989 const SCEV *LHS, const SCEV *RHS, 4990 const SCEV *FoundLHS, 4991 const SCEV *FoundRHS) { 4992 switch (Pred) { 4993 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 4994 case ICmpInst::ICMP_EQ: 4995 case ICmpInst::ICMP_NE: 4996 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 4997 return true; 4998 break; 4999 case ICmpInst::ICMP_SLT: 5000 case ICmpInst::ICMP_SLE: 5001 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 5002 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 5003 return true; 5004 break; 5005 case ICmpInst::ICMP_SGT: 5006 case ICmpInst::ICMP_SGE: 5007 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 5008 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 5009 return true; 5010 break; 5011 case ICmpInst::ICMP_ULT: 5012 case ICmpInst::ICMP_ULE: 5013 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 5014 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 5015 return true; 5016 break; 5017 case ICmpInst::ICMP_UGT: 5018 case ICmpInst::ICMP_UGE: 5019 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 5020 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 5021 return true; 5022 break; 5023 } 5024 5025 return false; 5026 } 5027 5028 /// getBECount - Subtract the end and start values and divide by the step, 5029 /// rounding up, to get the number of times the backedge is executed. Return 5030 /// CouldNotCompute if an intermediate computation overflows. 5031 const SCEV *ScalarEvolution::getBECount(const SCEV *Start, 5032 const SCEV *End, 5033 const SCEV *Step, 5034 bool NoWrap) { 5035 assert(!isKnownNegative(Step) && 5036 "This code doesn't handle negative strides yet!"); 5037 5038 const Type *Ty = Start->getType(); 5039 const SCEV *NegOne = getIntegerSCEV(-1, Ty); 5040 const SCEV *Diff = getMinusSCEV(End, Start); 5041 const SCEV *RoundUp = getAddExpr(Step, NegOne); 5042 5043 // Add an adjustment to the difference between End and Start so that 5044 // the division will effectively round up. 5045 const SCEV *Add = getAddExpr(Diff, RoundUp); 5046 5047 if (!NoWrap) { 5048 // Check Add for unsigned overflow. 5049 // TODO: More sophisticated things could be done here. 5050 const Type *WideTy = IntegerType::get(getContext(), 5051 getTypeSizeInBits(Ty) + 1); 5052 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy); 5053 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy); 5054 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp); 5055 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd) 5056 return getCouldNotCompute(); 5057 } 5058 5059 return getUDivExpr(Add, Step); 5060 } 5061 5062 /// HowManyLessThans - Return the number of times a backedge containing the 5063 /// specified less-than comparison will execute. If not computable, return 5064 /// CouldNotCompute. 5065 ScalarEvolution::BackedgeTakenInfo 5066 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 5067 const Loop *L, bool isSigned) { 5068 // Only handle: "ADDREC < LoopInvariant". 5069 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute(); 5070 5071 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS); 5072 if (!AddRec || AddRec->getLoop() != L) 5073 return getCouldNotCompute(); 5074 5075 // Check to see if we have a flag which makes analysis easy. 5076 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() : 5077 AddRec->hasNoUnsignedWrap(); 5078 5079 if (AddRec->isAffine()) { 5080 unsigned BitWidth = getTypeSizeInBits(AddRec->getType()); 5081 const SCEV *Step = AddRec->getStepRecurrence(*this); 5082 5083 if (Step->isZero()) 5084 return getCouldNotCompute(); 5085 if (Step->isOne()) { 5086 // With unit stride, the iteration never steps past the limit value. 5087 } else if (isKnownPositive(Step)) { 5088 // Test whether a positive iteration can step past the limit 5089 // value and past the maximum value for its type in a single step. 5090 // Note that it's not sufficient to check NoWrap here, because even 5091 // though the value after a wrap is undefined, it's not undefined 5092 // behavior, so if wrap does occur, the loop could either terminate or 5093 // loop infinitely, but in either case, the loop is guaranteed to 5094 // iterate at least until the iteration where the wrapping occurs. 5095 const SCEV *One = getIntegerSCEV(1, Step->getType()); 5096 if (isSigned) { 5097 APInt Max = APInt::getSignedMaxValue(BitWidth); 5098 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax()) 5099 .slt(getSignedRange(RHS).getSignedMax())) 5100 return getCouldNotCompute(); 5101 } else { 5102 APInt Max = APInt::getMaxValue(BitWidth); 5103 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax()) 5104 .ult(getUnsignedRange(RHS).getUnsignedMax())) 5105 return getCouldNotCompute(); 5106 } 5107 } else 5108 // TODO: Handle negative strides here and below. 5109 return getCouldNotCompute(); 5110 5111 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant 5112 // m. So, we count the number of iterations in which {n,+,s} < m is true. 5113 // Note that we cannot simply return max(m-n,0)/s because it's not safe to 5114 // treat m-n as signed nor unsigned due to overflow possibility. 5115 5116 // First, we get the value of the LHS in the first iteration: n 5117 const SCEV *Start = AddRec->getOperand(0); 5118 5119 // Determine the minimum constant start value. 5120 const SCEV *MinStart = getConstant(isSigned ? 5121 getSignedRange(Start).getSignedMin() : 5122 getUnsignedRange(Start).getUnsignedMin()); 5123 5124 // If we know that the condition is true in order to enter the loop, 5125 // then we know that it will run exactly (m-n)/s times. Otherwise, we 5126 // only know that it will execute (max(m,n)-n)/s times. In both cases, 5127 // the division must round up. 5128 const SCEV *End = RHS; 5129 if (!isLoopGuardedByCond(L, 5130 isSigned ? ICmpInst::ICMP_SLT : 5131 ICmpInst::ICMP_ULT, 5132 getMinusSCEV(Start, Step), RHS)) 5133 End = isSigned ? getSMaxExpr(RHS, Start) 5134 : getUMaxExpr(RHS, Start); 5135 5136 // Determine the maximum constant end value. 5137 const SCEV *MaxEnd = getConstant(isSigned ? 5138 getSignedRange(End).getSignedMax() : 5139 getUnsignedRange(End).getUnsignedMax()); 5140 5141 // If MaxEnd is within a step of the maximum integer value in its type, 5142 // adjust it down to the minimum value which would produce the same effect. 5143 // This allows the subsequent ceiling divison of (N+(step-1))/step to 5144 // compute the correct value. 5145 const SCEV *StepMinusOne = getMinusSCEV(Step, 5146 getIntegerSCEV(1, Step->getType())); 5147 MaxEnd = isSigned ? 5148 getSMinExpr(MaxEnd, 5149 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)), 5150 StepMinusOne)) : 5151 getUMinExpr(MaxEnd, 5152 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)), 5153 StepMinusOne)); 5154 5155 // Finally, we subtract these two values and divide, rounding up, to get 5156 // the number of times the backedge is executed. 5157 const SCEV *BECount = getBECount(Start, End, Step, NoWrap); 5158 5159 // The maximum backedge count is similar, except using the minimum start 5160 // value and the maximum end value. 5161 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap); 5162 5163 return BackedgeTakenInfo(BECount, MaxBECount); 5164 } 5165 5166 return getCouldNotCompute(); 5167 } 5168 5169 /// getNumIterationsInRange - Return the number of iterations of this loop that 5170 /// produce values in the specified constant range. Another way of looking at 5171 /// this is that it returns the first iteration number where the value is not in 5172 /// the condition, thus computing the exit count. If the iteration count can't 5173 /// be computed, an instance of SCEVCouldNotCompute is returned. 5174 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 5175 ScalarEvolution &SE) const { 5176 if (Range.isFullSet()) // Infinite loop. 5177 return SE.getCouldNotCompute(); 5178 5179 // If the start is a non-zero constant, shift the range to simplify things. 5180 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 5181 if (!SC->getValue()->isZero()) { 5182 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 5183 Operands[0] = SE.getIntegerSCEV(0, SC->getType()); 5184 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop()); 5185 if (const SCEVAddRecExpr *ShiftedAddRec = 5186 dyn_cast<SCEVAddRecExpr>(Shifted)) 5187 return ShiftedAddRec->getNumIterationsInRange( 5188 Range.subtract(SC->getValue()->getValue()), SE); 5189 // This is strange and shouldn't happen. 5190 return SE.getCouldNotCompute(); 5191 } 5192 5193 // The only time we can solve this is when we have all constant indices. 5194 // Otherwise, we cannot determine the overflow conditions. 5195 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 5196 if (!isa<SCEVConstant>(getOperand(i))) 5197 return SE.getCouldNotCompute(); 5198 5199 5200 // Okay at this point we know that all elements of the chrec are constants and 5201 // that the start element is zero. 5202 5203 // First check to see if the range contains zero. If not, the first 5204 // iteration exits. 5205 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 5206 if (!Range.contains(APInt(BitWidth, 0))) 5207 return SE.getIntegerSCEV(0, getType()); 5208 5209 if (isAffine()) { 5210 // If this is an affine expression then we have this situation: 5211 // Solve {0,+,A} in Range === Ax in Range 5212 5213 // We know that zero is in the range. If A is positive then we know that 5214 // the upper value of the range must be the first possible exit value. 5215 // If A is negative then the lower of the range is the last possible loop 5216 // value. Also note that we already checked for a full range. 5217 APInt One(BitWidth,1); 5218 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 5219 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 5220 5221 // The exit value should be (End+A)/A. 5222 APInt ExitVal = (End + A).udiv(A); 5223 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 5224 5225 // Evaluate at the exit value. If we really did fall out of the valid 5226 // range, then we computed our trip count, otherwise wrap around or other 5227 // things must have happened. 5228 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 5229 if (Range.contains(Val->getValue())) 5230 return SE.getCouldNotCompute(); // Something strange happened 5231 5232 // Ensure that the previous value is in the range. This is a sanity check. 5233 assert(Range.contains( 5234 EvaluateConstantChrecAtConstant(this, 5235 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 5236 "Linear scev computation is off in a bad way!"); 5237 return SE.getConstant(ExitValue); 5238 } else if (isQuadratic()) { 5239 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 5240 // quadratic equation to solve it. To do this, we must frame our problem in 5241 // terms of figuring out when zero is crossed, instead of when 5242 // Range.getUpper() is crossed. 5243 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 5244 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 5245 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop()); 5246 5247 // Next, solve the constructed addrec 5248 std::pair<const SCEV *,const SCEV *> Roots = 5249 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 5250 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 5251 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 5252 if (R1) { 5253 // Pick the smallest positive root value. 5254 if (ConstantInt *CB = 5255 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 5256 R1->getValue(), R2->getValue()))) { 5257 if (CB->getZExtValue() == false) 5258 std::swap(R1, R2); // R1 is the minimum root now. 5259 5260 // Make sure the root is not off by one. The returned iteration should 5261 // not be in the range, but the previous one should be. When solving 5262 // for "X*X < 5", for example, we should not return a root of 2. 5263 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 5264 R1->getValue(), 5265 SE); 5266 if (Range.contains(R1Val->getValue())) { 5267 // The next iteration must be out of the range... 5268 ConstantInt *NextVal = 5269 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 5270 5271 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5272 if (!Range.contains(R1Val->getValue())) 5273 return SE.getConstant(NextVal); 5274 return SE.getCouldNotCompute(); // Something strange happened 5275 } 5276 5277 // If R1 was not in the range, then it is a good return value. Make 5278 // sure that R1-1 WAS in the range though, just in case. 5279 ConstantInt *NextVal = 5280 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 5281 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 5282 if (Range.contains(R1Val->getValue())) 5283 return R1; 5284 return SE.getCouldNotCompute(); // Something strange happened 5285 } 5286 } 5287 } 5288 5289 return SE.getCouldNotCompute(); 5290 } 5291 5292 5293 5294 //===----------------------------------------------------------------------===// 5295 // SCEVCallbackVH Class Implementation 5296 //===----------------------------------------------------------------------===// 5297 5298 void ScalarEvolution::SCEVCallbackVH::deleted() { 5299 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5300 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 5301 SE->ConstantEvolutionLoopExitValue.erase(PN); 5302 SE->Scalars.erase(getValPtr()); 5303 // this now dangles! 5304 } 5305 5306 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) { 5307 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 5308 5309 // Forget all the expressions associated with users of the old value, 5310 // so that future queries will recompute the expressions using the new 5311 // value. 5312 SmallVector<User *, 16> Worklist; 5313 SmallPtrSet<User *, 8> Visited; 5314 Value *Old = getValPtr(); 5315 bool DeleteOld = false; 5316 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end(); 5317 UI != UE; ++UI) 5318 Worklist.push_back(*UI); 5319 while (!Worklist.empty()) { 5320 User *U = Worklist.pop_back_val(); 5321 // Deleting the Old value will cause this to dangle. Postpone 5322 // that until everything else is done. 5323 if (U == Old) { 5324 DeleteOld = true; 5325 continue; 5326 } 5327 if (!Visited.insert(U)) 5328 continue; 5329 if (PHINode *PN = dyn_cast<PHINode>(U)) 5330 SE->ConstantEvolutionLoopExitValue.erase(PN); 5331 SE->Scalars.erase(U); 5332 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end(); 5333 UI != UE; ++UI) 5334 Worklist.push_back(*UI); 5335 } 5336 // Delete the Old value if it (indirectly) references itself. 5337 if (DeleteOld) { 5338 if (PHINode *PN = dyn_cast<PHINode>(Old)) 5339 SE->ConstantEvolutionLoopExitValue.erase(PN); 5340 SE->Scalars.erase(Old); 5341 // this now dangles! 5342 } 5343 // this may dangle! 5344 } 5345 5346 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 5347 : CallbackVH(V), SE(se) {} 5348 5349 //===----------------------------------------------------------------------===// 5350 // ScalarEvolution Class Implementation 5351 //===----------------------------------------------------------------------===// 5352 5353 ScalarEvolution::ScalarEvolution() 5354 : FunctionPass(&ID) { 5355 } 5356 5357 bool ScalarEvolution::runOnFunction(Function &F) { 5358 this->F = &F; 5359 LI = &getAnalysis<LoopInfo>(); 5360 TD = getAnalysisIfAvailable<TargetData>(); 5361 DT = &getAnalysis<DominatorTree>(); 5362 return false; 5363 } 5364 5365 void ScalarEvolution::releaseMemory() { 5366 Scalars.clear(); 5367 BackedgeTakenCounts.clear(); 5368 ConstantEvolutionLoopExitValue.clear(); 5369 ValuesAtScopes.clear(); 5370 UniqueSCEVs.clear(); 5371 SCEVAllocator.Reset(); 5372 } 5373 5374 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const { 5375 AU.setPreservesAll(); 5376 AU.addRequiredTransitive<LoopInfo>(); 5377 AU.addRequiredTransitive<DominatorTree>(); 5378 } 5379 5380 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 5381 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 5382 } 5383 5384 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 5385 const Loop *L) { 5386 // Print all inner loops first 5387 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 5388 PrintLoopInfo(OS, SE, *I); 5389 5390 OS << "Loop "; 5391 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5392 OS << ": "; 5393 5394 SmallVector<BasicBlock *, 8> ExitBlocks; 5395 L->getExitBlocks(ExitBlocks); 5396 if (ExitBlocks.size() != 1) 5397 OS << "<multiple exits> "; 5398 5399 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 5400 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 5401 } else { 5402 OS << "Unpredictable backedge-taken count. "; 5403 } 5404 5405 OS << "\n" 5406 "Loop "; 5407 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false); 5408 OS << ": "; 5409 5410 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 5411 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 5412 } else { 5413 OS << "Unpredictable max backedge-taken count. "; 5414 } 5415 5416 OS << "\n"; 5417 } 5418 5419 void ScalarEvolution::print(raw_ostream &OS, const Module *) const { 5420 // ScalarEvolution's implementaiton of the print method is to print 5421 // out SCEV values of all instructions that are interesting. Doing 5422 // this potentially causes it to create new SCEV objects though, 5423 // which technically conflicts with the const qualifier. This isn't 5424 // observable from outside the class though, so casting away the 5425 // const isn't dangerous. 5426 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 5427 5428 OS << "Classifying expressions for: "; 5429 WriteAsOperand(OS, F, /*PrintType=*/false); 5430 OS << "\n"; 5431 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 5432 if (isSCEVable(I->getType())) { 5433 OS << *I << '\n'; 5434 OS << " --> "; 5435 const SCEV *SV = SE.getSCEV(&*I); 5436 SV->print(OS); 5437 5438 const Loop *L = LI->getLoopFor((*I).getParent()); 5439 5440 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 5441 if (AtUse != SV) { 5442 OS << " --> "; 5443 AtUse->print(OS); 5444 } 5445 5446 if (L) { 5447 OS << "\t\t" "Exits: "; 5448 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 5449 if (!ExitValue->isLoopInvariant(L)) { 5450 OS << "<<Unknown>>"; 5451 } else { 5452 OS << *ExitValue; 5453 } 5454 } 5455 5456 OS << "\n"; 5457 } 5458 5459 OS << "Determining loop execution counts for: "; 5460 WriteAsOperand(OS, F, /*PrintType=*/false); 5461 OS << "\n"; 5462 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) 5463 PrintLoopInfo(OS, &SE, *I); 5464 } 5465 5466