xref: /llvm-project/llvm/lib/Analysis/ConstantFolding.cpp (revision 19bd2d610286300707b51135d3cff8bfb74322f0)
1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsNVPTX.h"
49 #include "llvm/IR/IntrinsicsWebAssembly.h"
50 #include "llvm/IR/IntrinsicsX86.h"
51 #include "llvm/IR/NVVMIntrinsicUtils.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include <cassert>
60 #include <cerrno>
61 #include <cfenv>
62 #include <cmath>
63 #include <cstdint>
64 
65 using namespace llvm;
66 
67 namespace {
68 
69 //===----------------------------------------------------------------------===//
70 // Constant Folding internal helper functions
71 //===----------------------------------------------------------------------===//
72 
73 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
74                                         Constant *C, Type *SrcEltTy,
75                                         unsigned NumSrcElts,
76                                         const DataLayout &DL) {
77   // Now that we know that the input value is a vector of integers, just shift
78   // and insert them into our result.
79   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
80   for (unsigned i = 0; i != NumSrcElts; ++i) {
81     Constant *Element;
82     if (DL.isLittleEndian())
83       Element = C->getAggregateElement(NumSrcElts - i - 1);
84     else
85       Element = C->getAggregateElement(i);
86 
87     if (isa_and_nonnull<UndefValue>(Element)) {
88       Result <<= BitShift;
89       continue;
90     }
91 
92     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
93     if (!ElementCI)
94       return ConstantExpr::getBitCast(C, DestTy);
95 
96     Result <<= BitShift;
97     Result |= ElementCI->getValue().zext(Result.getBitWidth());
98   }
99 
100   return nullptr;
101 }
102 
103 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
104 /// This always returns a non-null constant, but it may be a
105 /// ConstantExpr if unfoldable.
106 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
107   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
108          "Invalid constantexpr bitcast!");
109 
110   // Catch the obvious splat cases.
111   if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
112     return Res;
113 
114   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
115     // Handle a vector->scalar integer/fp cast.
116     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
117       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
118       Type *SrcEltTy = VTy->getElementType();
119 
120       // If the vector is a vector of floating point, convert it to vector of int
121       // to simplify things.
122       if (SrcEltTy->isFloatingPointTy()) {
123         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
124         auto *SrcIVTy = FixedVectorType::get(
125             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
126         // Ask IR to do the conversion now that #elts line up.
127         C = ConstantExpr::getBitCast(C, SrcIVTy);
128       }
129 
130       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
131       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
132                                                 SrcEltTy, NumSrcElts, DL))
133         return CE;
134 
135       if (isa<IntegerType>(DestTy))
136         return ConstantInt::get(DestTy, Result);
137 
138       APFloat FP(DestTy->getFltSemantics(), Result);
139       return ConstantFP::get(DestTy->getContext(), FP);
140     }
141   }
142 
143   // The code below only handles casts to vectors currently.
144   auto *DestVTy = dyn_cast<VectorType>(DestTy);
145   if (!DestVTy)
146     return ConstantExpr::getBitCast(C, DestTy);
147 
148   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
149   // vector so the code below can handle it uniformly.
150   if (!isa<VectorType>(C->getType()) &&
151       (isa<ConstantFP>(C) || isa<ConstantInt>(C))) {
152     Constant *Ops = C; // don't take the address of C!
153     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
154   }
155 
156   // Some of what follows may extend to cover scalable vectors but the current
157   // implementation is fixed length specific.
158   if (!isa<FixedVectorType>(C->getType()))
159     return ConstantExpr::getBitCast(C, DestTy);
160 
161   // If this is a bitcast from constant vector -> vector, fold it.
162   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C) &&
163       !isa<ConstantInt>(C) && !isa<ConstantFP>(C))
164     return ConstantExpr::getBitCast(C, DestTy);
165 
166   // If the element types match, IR can fold it.
167   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
168   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
169   if (NumDstElt == NumSrcElt)
170     return ConstantExpr::getBitCast(C, DestTy);
171 
172   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
173   Type *DstEltTy = DestVTy->getElementType();
174 
175   // Otherwise, we're changing the number of elements in a vector, which
176   // requires endianness information to do the right thing.  For example,
177   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
178   // folds to (little endian):
179   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
180   // and to (big endian):
181   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
182 
183   // First thing is first.  We only want to think about integer here, so if
184   // we have something in FP form, recast it as integer.
185   if (DstEltTy->isFloatingPointTy()) {
186     // Fold to an vector of integers with same size as our FP type.
187     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
188     auto *DestIVTy = FixedVectorType::get(
189         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
190     // Recursively handle this integer conversion, if possible.
191     C = FoldBitCast(C, DestIVTy, DL);
192 
193     // Finally, IR can handle this now that #elts line up.
194     return ConstantExpr::getBitCast(C, DestTy);
195   }
196 
197   // Okay, we know the destination is integer, if the input is FP, convert
198   // it to integer first.
199   if (SrcEltTy->isFloatingPointTy()) {
200     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
201     auto *SrcIVTy = FixedVectorType::get(
202         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
203     // Ask IR to do the conversion now that #elts line up.
204     C = ConstantExpr::getBitCast(C, SrcIVTy);
205     assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
206             isa<ConstantDataVector>(C) || isa<ConstantInt>(C)) &&
207            "Constant folding cannot fail for plain fp->int bitcast!");
208   }
209 
210   // Now we know that the input and output vectors are both integer vectors
211   // of the same size, and that their #elements is not the same.  Do the
212   // conversion here, which depends on whether the input or output has
213   // more elements.
214   bool isLittleEndian = DL.isLittleEndian();
215 
216   SmallVector<Constant*, 32> Result;
217   if (NumDstElt < NumSrcElt) {
218     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
219     Constant *Zero = Constant::getNullValue(DstEltTy);
220     unsigned Ratio = NumSrcElt/NumDstElt;
221     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
222     unsigned SrcElt = 0;
223     for (unsigned i = 0; i != NumDstElt; ++i) {
224       // Build each element of the result.
225       Constant *Elt = Zero;
226       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
227       for (unsigned j = 0; j != Ratio; ++j) {
228         Constant *Src = C->getAggregateElement(SrcElt++);
229         if (isa_and_nonnull<UndefValue>(Src))
230           Src = Constant::getNullValue(
231               cast<VectorType>(C->getType())->getElementType());
232         else
233           Src = dyn_cast_or_null<ConstantInt>(Src);
234         if (!Src)  // Reject constantexpr elements.
235           return ConstantExpr::getBitCast(C, DestTy);
236 
237         // Zero extend the element to the right size.
238         Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
239                                       DL);
240         assert(Src && "Constant folding cannot fail on plain integers");
241 
242         // Shift it to the right place, depending on endianness.
243         Src = ConstantFoldBinaryOpOperands(
244             Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
245             DL);
246         assert(Src && "Constant folding cannot fail on plain integers");
247 
248         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
249 
250         // Mix it in.
251         Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
252         assert(Elt && "Constant folding cannot fail on plain integers");
253       }
254       Result.push_back(Elt);
255     }
256     return ConstantVector::get(Result);
257   }
258 
259   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
260   unsigned Ratio = NumDstElt/NumSrcElt;
261   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
262 
263   // Loop over each source value, expanding into multiple results.
264   for (unsigned i = 0; i != NumSrcElt; ++i) {
265     auto *Element = C->getAggregateElement(i);
266 
267     if (!Element) // Reject constantexpr elements.
268       return ConstantExpr::getBitCast(C, DestTy);
269 
270     if (isa<UndefValue>(Element)) {
271       // Correctly Propagate undef values.
272       Result.append(Ratio, UndefValue::get(DstEltTy));
273       continue;
274     }
275 
276     auto *Src = dyn_cast<ConstantInt>(Element);
277     if (!Src)
278       return ConstantExpr::getBitCast(C, DestTy);
279 
280     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
281     for (unsigned j = 0; j != Ratio; ++j) {
282       // Shift the piece of the value into the right place, depending on
283       // endianness.
284       APInt Elt = Src->getValue().lshr(ShiftAmt);
285       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
286 
287       // Truncate and remember this piece.
288       Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
289     }
290   }
291 
292   return ConstantVector::get(Result);
293 }
294 
295 } // end anonymous namespace
296 
297 /// If this constant is a constant offset from a global, return the global and
298 /// the constant. Because of constantexprs, this function is recursive.
299 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
300                                       APInt &Offset, const DataLayout &DL,
301                                       DSOLocalEquivalent **DSOEquiv) {
302   if (DSOEquiv)
303     *DSOEquiv = nullptr;
304 
305   // Trivial case, constant is the global.
306   if ((GV = dyn_cast<GlobalValue>(C))) {
307     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
308     Offset = APInt(BitWidth, 0);
309     return true;
310   }
311 
312   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
313     if (DSOEquiv)
314       *DSOEquiv = FoundDSOEquiv;
315     GV = FoundDSOEquiv->getGlobalValue();
316     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
317     Offset = APInt(BitWidth, 0);
318     return true;
319   }
320 
321   // Otherwise, if this isn't a constant expr, bail out.
322   auto *CE = dyn_cast<ConstantExpr>(C);
323   if (!CE) return false;
324 
325   // Look through ptr->int and ptr->ptr casts.
326   if (CE->getOpcode() == Instruction::PtrToInt ||
327       CE->getOpcode() == Instruction::BitCast)
328     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
329                                       DSOEquiv);
330 
331   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
332   auto *GEP = dyn_cast<GEPOperator>(CE);
333   if (!GEP)
334     return false;
335 
336   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
337   APInt TmpOffset(BitWidth, 0);
338 
339   // If the base isn't a global+constant, we aren't either.
340   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
341                                   DSOEquiv))
342     return false;
343 
344   // Otherwise, add any offset that our operands provide.
345   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
346     return false;
347 
348   Offset = TmpOffset;
349   return true;
350 }
351 
352 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
353                                                const DataLayout &DL) {
354   do {
355     Type *SrcTy = C->getType();
356     if (SrcTy == DestTy)
357       return C;
358 
359     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
360     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
361     if (!TypeSize::isKnownGE(SrcSize, DestSize))
362       return nullptr;
363 
364     // Catch the obvious splat cases (since all-zeros can coerce non-integral
365     // pointers legally).
366     if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
367       return Res;
368 
369     // If the type sizes are the same and a cast is legal, just directly
370     // cast the constant.
371     // But be careful not to coerce non-integral pointers illegally.
372     if (SrcSize == DestSize &&
373         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
374             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
375       Instruction::CastOps Cast = Instruction::BitCast;
376       // If we are going from a pointer to int or vice versa, we spell the cast
377       // differently.
378       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
379         Cast = Instruction::IntToPtr;
380       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
381         Cast = Instruction::PtrToInt;
382 
383       if (CastInst::castIsValid(Cast, C, DestTy))
384         return ConstantFoldCastOperand(Cast, C, DestTy, DL);
385     }
386 
387     // If this isn't an aggregate type, there is nothing we can do to drill down
388     // and find a bitcastable constant.
389     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
390       return nullptr;
391 
392     // We're simulating a load through a pointer that was bitcast to point to
393     // a different type, so we can try to walk down through the initial
394     // elements of an aggregate to see if some part of the aggregate is
395     // castable to implement the "load" semantic model.
396     if (SrcTy->isStructTy()) {
397       // Struct types might have leading zero-length elements like [0 x i32],
398       // which are certainly not what we are looking for, so skip them.
399       unsigned Elem = 0;
400       Constant *ElemC;
401       do {
402         ElemC = C->getAggregateElement(Elem++);
403       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
404       C = ElemC;
405     } else {
406       // For non-byte-sized vector elements, the first element is not
407       // necessarily located at the vector base address.
408       if (auto *VT = dyn_cast<VectorType>(SrcTy))
409         if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
410           return nullptr;
411 
412       C = C->getAggregateElement(0u);
413     }
414   } while (C);
415 
416   return nullptr;
417 }
418 
419 namespace {
420 
421 /// Recursive helper to read bits out of global. C is the constant being copied
422 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
423 /// results into and BytesLeft is the number of bytes left in
424 /// the CurPtr buffer. DL is the DataLayout.
425 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
426                         unsigned BytesLeft, const DataLayout &DL) {
427   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
428          "Out of range access");
429 
430   // If this element is zero or undefined, we can just return since *CurPtr is
431   // zero initialized.
432   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
433     return true;
434 
435   if (auto *CI = dyn_cast<ConstantInt>(C)) {
436     if ((CI->getBitWidth() & 7) != 0)
437       return false;
438     const APInt &Val = CI->getValue();
439     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
440 
441     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
442       unsigned n = ByteOffset;
443       if (!DL.isLittleEndian())
444         n = IntBytes - n - 1;
445       CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
446       ++ByteOffset;
447     }
448     return true;
449   }
450 
451   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
452     if (CFP->getType()->isDoubleTy()) {
453       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
454       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455     }
456     if (CFP->getType()->isFloatTy()){
457       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
458       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
459     }
460     if (CFP->getType()->isHalfTy()){
461       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
462       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
463     }
464     return false;
465   }
466 
467   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
468     const StructLayout *SL = DL.getStructLayout(CS->getType());
469     unsigned Index = SL->getElementContainingOffset(ByteOffset);
470     uint64_t CurEltOffset = SL->getElementOffset(Index);
471     ByteOffset -= CurEltOffset;
472 
473     while (true) {
474       // If the element access is to the element itself and not to tail padding,
475       // read the bytes from the element.
476       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
477 
478       if (ByteOffset < EltSize &&
479           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
480                               BytesLeft, DL))
481         return false;
482 
483       ++Index;
484 
485       // Check to see if we read from the last struct element, if so we're done.
486       if (Index == CS->getType()->getNumElements())
487         return true;
488 
489       // If we read all of the bytes we needed from this element we're done.
490       uint64_t NextEltOffset = SL->getElementOffset(Index);
491 
492       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
493         return true;
494 
495       // Move to the next element of the struct.
496       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
497       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
498       ByteOffset = 0;
499       CurEltOffset = NextEltOffset;
500     }
501     // not reached.
502   }
503 
504   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
505       isa<ConstantDataSequential>(C)) {
506     uint64_t NumElts, EltSize;
507     Type *EltTy;
508     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
509       NumElts = AT->getNumElements();
510       EltTy = AT->getElementType();
511       EltSize = DL.getTypeAllocSize(EltTy);
512     } else {
513       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
514       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
515       // TODO: For non-byte-sized vectors, current implementation assumes there is
516       // padding to the next byte boundary between elements.
517       if (!DL.typeSizeEqualsStoreSize(EltTy))
518         return false;
519 
520       EltSize = DL.getTypeStoreSize(EltTy);
521     }
522     uint64_t Index = ByteOffset / EltSize;
523     uint64_t Offset = ByteOffset - Index * EltSize;
524 
525     for (; Index != NumElts; ++Index) {
526       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
527                               BytesLeft, DL))
528         return false;
529 
530       uint64_t BytesWritten = EltSize - Offset;
531       assert(BytesWritten <= EltSize && "Not indexing into this element?");
532       if (BytesWritten >= BytesLeft)
533         return true;
534 
535       Offset = 0;
536       BytesLeft -= BytesWritten;
537       CurPtr += BytesWritten;
538     }
539     return true;
540   }
541 
542   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
543     if (CE->getOpcode() == Instruction::IntToPtr &&
544         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
545       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
546                                 BytesLeft, DL);
547     }
548   }
549 
550   // Otherwise, unknown initializer type.
551   return false;
552 }
553 
554 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
555                                        int64_t Offset, const DataLayout &DL) {
556   // Bail out early. Not expect to load from scalable global variable.
557   if (isa<ScalableVectorType>(LoadTy))
558     return nullptr;
559 
560   auto *IntType = dyn_cast<IntegerType>(LoadTy);
561 
562   // If this isn't an integer load we can't fold it directly.
563   if (!IntType) {
564     // If this is a non-integer load, we can try folding it as an int load and
565     // then bitcast the result.  This can be useful for union cases.  Note
566     // that address spaces don't matter here since we're not going to result in
567     // an actual new load.
568     if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
569         !LoadTy->isVectorTy())
570       return nullptr;
571 
572     Type *MapTy = Type::getIntNTy(C->getContext(),
573                                   DL.getTypeSizeInBits(LoadTy).getFixedValue());
574     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
575       if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
576         // Materializing a zero can be done trivially without a bitcast
577         return Constant::getNullValue(LoadTy);
578       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
579       Res = FoldBitCast(Res, CastTy, DL);
580       if (LoadTy->isPtrOrPtrVectorTy()) {
581         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
582         if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
583           return Constant::getNullValue(LoadTy);
584         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
585           // Be careful not to replace a load of an addrspace value with an inttoptr here
586           return nullptr;
587         Res = ConstantExpr::getIntToPtr(Res, LoadTy);
588       }
589       return Res;
590     }
591     return nullptr;
592   }
593 
594   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
595   if (BytesLoaded > 32 || BytesLoaded == 0)
596     return nullptr;
597 
598   // If we're not accessing anything in this constant, the result is undefined.
599   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
600     return PoisonValue::get(IntType);
601 
602   // TODO: We should be able to support scalable types.
603   TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
604   if (InitializerSize.isScalable())
605     return nullptr;
606 
607   // If we're not accessing anything in this constant, the result is undefined.
608   if (Offset >= (int64_t)InitializerSize.getFixedValue())
609     return PoisonValue::get(IntType);
610 
611   unsigned char RawBytes[32] = {0};
612   unsigned char *CurPtr = RawBytes;
613   unsigned BytesLeft = BytesLoaded;
614 
615   // If we're loading off the beginning of the global, some bytes may be valid.
616   if (Offset < 0) {
617     CurPtr += -Offset;
618     BytesLeft += Offset;
619     Offset = 0;
620   }
621 
622   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
623     return nullptr;
624 
625   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
626   if (DL.isLittleEndian()) {
627     ResultVal = RawBytes[BytesLoaded - 1];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[BytesLoaded - 1 - i];
631     }
632   } else {
633     ResultVal = RawBytes[0];
634     for (unsigned i = 1; i != BytesLoaded; ++i) {
635       ResultVal <<= 8;
636       ResultVal |= RawBytes[i];
637     }
638   }
639 
640   return ConstantInt::get(IntType->getContext(), ResultVal);
641 }
642 
643 } // anonymous namespace
644 
645 // If GV is a constant with an initializer read its representation starting
646 // at Offset and return it as a constant array of unsigned char.  Otherwise
647 // return null.
648 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
649                                         uint64_t Offset) {
650   if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
651     return nullptr;
652 
653   const DataLayout &DL = GV->getDataLayout();
654   Constant *Init = const_cast<Constant *>(GV->getInitializer());
655   TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
656   if (InitSize < Offset)
657     return nullptr;
658 
659   uint64_t NBytes = InitSize - Offset;
660   if (NBytes > UINT16_MAX)
661     // Bail for large initializers in excess of 64K to avoid allocating
662     // too much memory.
663     // Offset is assumed to be less than or equal than InitSize (this
664     // is enforced in ReadDataFromGlobal).
665     return nullptr;
666 
667   SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
668   unsigned char *CurPtr = RawBytes.data();
669 
670   if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
671     return nullptr;
672 
673   return ConstantDataArray::get(GV->getContext(), RawBytes);
674 }
675 
676 /// If this Offset points exactly to the start of an aggregate element, return
677 /// that element, otherwise return nullptr.
678 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
679                               const DataLayout &DL) {
680   if (Offset.isZero())
681     return Base;
682 
683   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
684     return nullptr;
685 
686   Type *ElemTy = Base->getType();
687   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
688   if (!Offset.isZero() || !Indices[0].isZero())
689     return nullptr;
690 
691   Constant *C = Base;
692   for (const APInt &Index : drop_begin(Indices)) {
693     if (Index.isNegative() || Index.getActiveBits() >= 32)
694       return nullptr;
695 
696     C = C->getAggregateElement(Index.getZExtValue());
697     if (!C)
698       return nullptr;
699   }
700 
701   return C;
702 }
703 
704 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
705                                           const APInt &Offset,
706                                           const DataLayout &DL) {
707   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
708     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
709       return Result;
710 
711   // Explicitly check for out-of-bounds access, so we return poison even if the
712   // constant is a uniform value.
713   TypeSize Size = DL.getTypeAllocSize(C->getType());
714   if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
715     return PoisonValue::get(Ty);
716 
717   // Try an offset-independent fold of a uniform value.
718   if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
719     return Result;
720 
721   // Try hard to fold loads from bitcasted strange and non-type-safe things.
722   if (Offset.getSignificantBits() <= 64)
723     if (Constant *Result =
724             FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
725       return Result;
726 
727   return nullptr;
728 }
729 
730 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
731                                           const DataLayout &DL) {
732   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
733 }
734 
735 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
736                                              APInt Offset,
737                                              const DataLayout &DL) {
738   // We can only fold loads from constant globals with a definitive initializer.
739   // Check this upfront, to skip expensive offset calculations.
740   auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
741   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
742     return nullptr;
743 
744   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
745           DL, Offset, /* AllowNonInbounds */ true));
746 
747   if (C == GV)
748     if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
749                                                      Offset, DL))
750       return Result;
751 
752   // If this load comes from anywhere in a uniform constant global, the value
753   // is always the same, regardless of the loaded offset.
754   return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
755 }
756 
757 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
758                                              const DataLayout &DL) {
759   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
760   return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
761 }
762 
763 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty,
764                                                  const DataLayout &DL) {
765   if (isa<PoisonValue>(C))
766     return PoisonValue::get(Ty);
767   if (isa<UndefValue>(C))
768     return UndefValue::get(Ty);
769   // If padding is needed when storing C to memory, then it isn't considered as
770   // uniform.
771   if (!DL.typeSizeEqualsStoreSize(C->getType()))
772     return nullptr;
773   if (C->isNullValue() && !Ty->isX86_AMXTy())
774     return Constant::getNullValue(Ty);
775   if (C->isAllOnesValue() &&
776       (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
777     return Constant::getAllOnesValue(Ty);
778   return nullptr;
779 }
780 
781 namespace {
782 
783 /// One of Op0/Op1 is a constant expression.
784 /// Attempt to symbolically evaluate the result of a binary operator merging
785 /// these together.  If target data info is available, it is provided as DL,
786 /// otherwise DL is null.
787 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
788                                     const DataLayout &DL) {
789   // SROA
790 
791   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
792   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
793   // bits.
794 
795   if (Opc == Instruction::And) {
796     KnownBits Known0 = computeKnownBits(Op0, DL);
797     KnownBits Known1 = computeKnownBits(Op1, DL);
798     if ((Known1.One | Known0.Zero).isAllOnes()) {
799       // All the bits of Op0 that the 'and' could be masking are already zero.
800       return Op0;
801     }
802     if ((Known0.One | Known1.Zero).isAllOnes()) {
803       // All the bits of Op1 that the 'and' could be masking are already zero.
804       return Op1;
805     }
806 
807     Known0 &= Known1;
808     if (Known0.isConstant())
809       return ConstantInt::get(Op0->getType(), Known0.getConstant());
810   }
811 
812   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
813   // constant.  This happens frequently when iterating over a global array.
814   if (Opc == Instruction::Sub) {
815     GlobalValue *GV1, *GV2;
816     APInt Offs1, Offs2;
817 
818     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
819       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
820         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
821 
822         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
823         // PtrToInt may change the bitwidth so we have convert to the right size
824         // first.
825         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
826                                                 Offs2.zextOrTrunc(OpSize));
827       }
828   }
829 
830   return nullptr;
831 }
832 
833 /// If array indices are not pointer-sized integers, explicitly cast them so
834 /// that they aren't implicitly casted by the getelementptr.
835 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
836                          Type *ResultTy, GEPNoWrapFlags NW,
837                          std::optional<ConstantRange> InRange,
838                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
839   Type *IntIdxTy = DL.getIndexType(ResultTy);
840   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
841 
842   bool Any = false;
843   SmallVector<Constant*, 32> NewIdxs;
844   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
845     if ((i == 1 ||
846          !isa<StructType>(GetElementPtrInst::getIndexedType(
847              SrcElemTy, Ops.slice(1, i - 1)))) &&
848         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
849       Any = true;
850       Type *NewType =
851           Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
852       Constant *NewIdx = ConstantFoldCastOperand(
853           CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
854           DL);
855       if (!NewIdx)
856         return nullptr;
857       NewIdxs.push_back(NewIdx);
858     } else
859       NewIdxs.push_back(Ops[i]);
860   }
861 
862   if (!Any)
863     return nullptr;
864 
865   Constant *C =
866       ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
867   return ConstantFoldConstant(C, DL, TLI);
868 }
869 
870 /// If we can symbolically evaluate the GEP constant expression, do so.
871 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
872                                   ArrayRef<Constant *> Ops,
873                                   const DataLayout &DL,
874                                   const TargetLibraryInfo *TLI) {
875   Type *SrcElemTy = GEP->getSourceElementType();
876   Type *ResTy = GEP->getType();
877   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
878     return nullptr;
879 
880   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
881                                    GEP->getInRange(), DL, TLI))
882     return C;
883 
884   Constant *Ptr = Ops[0];
885   if (!Ptr->getType()->isPointerTy())
886     return nullptr;
887 
888   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
889 
890   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
891     if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
892       return nullptr;
893 
894   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
895   APInt Offset = APInt(
896       BitWidth,
897       DL.getIndexedOffsetInType(
898           SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
899       /*isSigned=*/true, /*implicitTrunc=*/true);
900 
901   std::optional<ConstantRange> InRange = GEP->getInRange();
902   if (InRange)
903     InRange = InRange->sextOrTrunc(BitWidth);
904 
905   // If this is a GEP of a GEP, fold it all into a single GEP.
906   GEPNoWrapFlags NW = GEP->getNoWrapFlags();
907   bool Overflow = false;
908   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
909     NW &= GEP->getNoWrapFlags();
910 
911     SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
912 
913     // Do not try the incorporate the sub-GEP if some index is not a number.
914     bool AllConstantInt = true;
915     for (Value *NestedOp : NestedOps)
916       if (!isa<ConstantInt>(NestedOp)) {
917         AllConstantInt = false;
918         break;
919       }
920     if (!AllConstantInt)
921       break;
922 
923     // TODO: Try to intersect two inrange attributes?
924     if (!InRange) {
925       InRange = GEP->getInRange();
926       if (InRange)
927         // Adjust inrange by offset until now.
928         InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset);
929     }
930 
931     Ptr = cast<Constant>(GEP->getOperand(0));
932     SrcElemTy = GEP->getSourceElementType();
933     Offset = Offset.sadd_ov(
934         APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
935               /*isSigned=*/true, /*implicitTrunc=*/true),
936         Overflow);
937   }
938 
939   // Preserving nusw (without inbounds) also requires that the offset
940   // additions did not overflow.
941   if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
942     NW = NW.withoutNoUnsignedSignedWrap();
943 
944   // If the base value for this address is a literal integer value, fold the
945   // getelementptr to the resulting integer value casted to the pointer type.
946   APInt BasePtr(BitWidth, 0);
947   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
948     if (CE->getOpcode() == Instruction::IntToPtr) {
949       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
950         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
951     }
952   }
953 
954   auto *PTy = cast<PointerType>(Ptr->getType());
955   if ((Ptr->isNullValue() || BasePtr != 0) &&
956       !DL.isNonIntegralPointerType(PTy)) {
957     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
958     return ConstantExpr::getIntToPtr(C, ResTy);
959   }
960 
961   // Try to infer inbounds for GEPs of globals.
962   if (!NW.isInBounds() && Offset.isNonNegative()) {
963     bool CanBeNull, CanBeFreed;
964     uint64_t DerefBytes =
965         Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
966     if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
967       NW |= GEPNoWrapFlags::inBounds();
968   }
969 
970   // nusw + nneg -> nuw
971   if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
972     NW |= GEPNoWrapFlags::noUnsignedWrap();
973 
974   // Otherwise canonicalize this to a single ptradd.
975   LLVMContext &Ctx = Ptr->getContext();
976   return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr,
977                                         ConstantInt::get(Ctx, Offset), NW,
978                                         InRange);
979 }
980 
981 /// Attempt to constant fold an instruction with the
982 /// specified opcode and operands.  If successful, the constant result is
983 /// returned, if not, null is returned.  Note that this function can fail when
984 /// attempting to fold instructions like loads and stores, which have no
985 /// constant expression form.
986 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
987                                        ArrayRef<Constant *> Ops,
988                                        const DataLayout &DL,
989                                        const TargetLibraryInfo *TLI,
990                                        bool AllowNonDeterministic) {
991   Type *DestTy = InstOrCE->getType();
992 
993   if (Instruction::isUnaryOp(Opcode))
994     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
995 
996   if (Instruction::isBinaryOp(Opcode)) {
997     switch (Opcode) {
998     default:
999       break;
1000     case Instruction::FAdd:
1001     case Instruction::FSub:
1002     case Instruction::FMul:
1003     case Instruction::FDiv:
1004     case Instruction::FRem:
1005       // Handle floating point instructions separately to account for denormals
1006       // TODO: If a constant expression is being folded rather than an
1007       // instruction, denormals will not be flushed/treated as zero
1008       if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1009         return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1010                                           AllowNonDeterministic);
1011       }
1012     }
1013     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1014   }
1015 
1016   if (Instruction::isCast(Opcode))
1017     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1018 
1019   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1020     Type *SrcElemTy = GEP->getSourceElementType();
1021     if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
1022       return nullptr;
1023 
1024     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1025       return C;
1026 
1027     return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1028                                           GEP->getNoWrapFlags(),
1029                                           GEP->getInRange());
1030   }
1031 
1032   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1033     return CE->getWithOperands(Ops);
1034 
1035   switch (Opcode) {
1036   default: return nullptr;
1037   case Instruction::ICmp:
1038   case Instruction::FCmp: {
1039     auto *C = cast<CmpInst>(InstOrCE);
1040     return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1041                                            DL, TLI, C);
1042   }
1043   case Instruction::Freeze:
1044     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1045   case Instruction::Call:
1046     if (auto *F = dyn_cast<Function>(Ops.back())) {
1047       const auto *Call = cast<CallBase>(InstOrCE);
1048       if (canConstantFoldCallTo(Call, F))
1049         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1050                                 AllowNonDeterministic);
1051     }
1052     return nullptr;
1053   case Instruction::Select:
1054     return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1055   case Instruction::ExtractElement:
1056     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1057   case Instruction::ExtractValue:
1058     return ConstantFoldExtractValueInstruction(
1059         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1060   case Instruction::InsertElement:
1061     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1062   case Instruction::InsertValue:
1063     return ConstantFoldInsertValueInstruction(
1064         Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1065   case Instruction::ShuffleVector:
1066     return ConstantExpr::getShuffleVector(
1067         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1068   case Instruction::Load: {
1069     const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1070     if (LI->isVolatile())
1071       return nullptr;
1072     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1073   }
1074   }
1075 }
1076 
1077 } // end anonymous namespace
1078 
1079 //===----------------------------------------------------------------------===//
1080 // Constant Folding public APIs
1081 //===----------------------------------------------------------------------===//
1082 
1083 namespace {
1084 
1085 Constant *
1086 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1087                          const TargetLibraryInfo *TLI,
1088                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1089   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1090     return const_cast<Constant *>(C);
1091 
1092   SmallVector<Constant *, 8> Ops;
1093   for (const Use &OldU : C->operands()) {
1094     Constant *OldC = cast<Constant>(&OldU);
1095     Constant *NewC = OldC;
1096     // Recursively fold the ConstantExpr's operands. If we have already folded
1097     // a ConstantExpr, we don't have to process it again.
1098     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1099       auto It = FoldedOps.find(OldC);
1100       if (It == FoldedOps.end()) {
1101         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1102         FoldedOps.insert({OldC, NewC});
1103       } else {
1104         NewC = It->second;
1105       }
1106     }
1107     Ops.push_back(NewC);
1108   }
1109 
1110   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1111     if (Constant *Res = ConstantFoldInstOperandsImpl(
1112             CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1113       return Res;
1114     return const_cast<Constant *>(C);
1115   }
1116 
1117   assert(isa<ConstantVector>(C));
1118   return ConstantVector::get(Ops);
1119 }
1120 
1121 } // end anonymous namespace
1122 
1123 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1124                                         const TargetLibraryInfo *TLI) {
1125   // Handle PHI nodes quickly here...
1126   if (auto *PN = dyn_cast<PHINode>(I)) {
1127     Constant *CommonValue = nullptr;
1128 
1129     SmallDenseMap<Constant *, Constant *> FoldedOps;
1130     for (Value *Incoming : PN->incoming_values()) {
1131       // If the incoming value is undef then skip it.  Note that while we could
1132       // skip the value if it is equal to the phi node itself we choose not to
1133       // because that would break the rule that constant folding only applies if
1134       // all operands are constants.
1135       if (isa<UndefValue>(Incoming))
1136         continue;
1137       // If the incoming value is not a constant, then give up.
1138       auto *C = dyn_cast<Constant>(Incoming);
1139       if (!C)
1140         return nullptr;
1141       // Fold the PHI's operands.
1142       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1143       // If the incoming value is a different constant to
1144       // the one we saw previously, then give up.
1145       if (CommonValue && C != CommonValue)
1146         return nullptr;
1147       CommonValue = C;
1148     }
1149 
1150     // If we reach here, all incoming values are the same constant or undef.
1151     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1152   }
1153 
1154   // Scan the operand list, checking to see if they are all constants, if so,
1155   // hand off to ConstantFoldInstOperandsImpl.
1156   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1157     return nullptr;
1158 
1159   SmallDenseMap<Constant *, Constant *> FoldedOps;
1160   SmallVector<Constant *, 8> Ops;
1161   for (const Use &OpU : I->operands()) {
1162     auto *Op = cast<Constant>(&OpU);
1163     // Fold the Instruction's operands.
1164     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1165     Ops.push_back(Op);
1166   }
1167 
1168   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1169 }
1170 
1171 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1172                                      const TargetLibraryInfo *TLI) {
1173   SmallDenseMap<Constant *, Constant *> FoldedOps;
1174   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1175 }
1176 
1177 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1178                                          ArrayRef<Constant *> Ops,
1179                                          const DataLayout &DL,
1180                                          const TargetLibraryInfo *TLI,
1181                                          bool AllowNonDeterministic) {
1182   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1183                                       AllowNonDeterministic);
1184 }
1185 
1186 Constant *llvm::ConstantFoldCompareInstOperands(
1187     unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1188     const TargetLibraryInfo *TLI, const Instruction *I) {
1189   CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1190   // fold: icmp (inttoptr x), null         -> icmp x, 0
1191   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1192   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1193   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1194   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1195   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1196   //
1197   // FIXME: The following comment is out of data and the DataLayout is here now.
1198   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1199   // around to know if bit truncation is happening.
1200   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1201     if (Ops1->isNullValue()) {
1202       if (CE0->getOpcode() == Instruction::IntToPtr) {
1203         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1204         // Convert the integer value to the right size to ensure we get the
1205         // proper extension or truncation.
1206         if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1207                                                   /*IsSigned*/ false, DL)) {
1208           Constant *Null = Constant::getNullValue(C->getType());
1209           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1210         }
1211       }
1212 
1213       // Only do this transformation if the int is intptrty in size, otherwise
1214       // there is a truncation or extension that we aren't modeling.
1215       if (CE0->getOpcode() == Instruction::PtrToInt) {
1216         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1217         if (CE0->getType() == IntPtrTy) {
1218           Constant *C = CE0->getOperand(0);
1219           Constant *Null = Constant::getNullValue(C->getType());
1220           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1221         }
1222       }
1223     }
1224 
1225     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1226       if (CE0->getOpcode() == CE1->getOpcode()) {
1227         if (CE0->getOpcode() == Instruction::IntToPtr) {
1228           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1229 
1230           // Convert the integer value to the right size to ensure we get the
1231           // proper extension or truncation.
1232           Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1233                                                  /*IsSigned*/ false, DL);
1234           Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1235                                                  /*IsSigned*/ false, DL);
1236           if (C0 && C1)
1237             return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1238         }
1239 
1240         // Only do this transformation if the int is intptrty in size, otherwise
1241         // there is a truncation or extension that we aren't modeling.
1242         if (CE0->getOpcode() == Instruction::PtrToInt) {
1243           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1244           if (CE0->getType() == IntPtrTy &&
1245               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1246             return ConstantFoldCompareInstOperands(
1247                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1248           }
1249         }
1250       }
1251     }
1252 
1253     // Convert pointer comparison (base+offset1) pred (base+offset2) into
1254     // offset1 pred offset2, for the case where the offset is inbounds. This
1255     // only works for equality and unsigned comparison, as inbounds permits
1256     // crossing the sign boundary. However, the offset comparison itself is
1257     // signed.
1258     if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1259       unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1260       APInt Offset0(IndexWidth, 0);
1261       Value *Stripped0 =
1262           Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1263       APInt Offset1(IndexWidth, 0);
1264       Value *Stripped1 =
1265           Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1266       if (Stripped0 == Stripped1)
1267         return ConstantInt::getBool(
1268             Ops0->getContext(),
1269             ICmpInst::compare(Offset0, Offset1,
1270                               ICmpInst::getSignedPredicate(Predicate)));
1271     }
1272   } else if (isa<ConstantExpr>(Ops1)) {
1273     // If RHS is a constant expression, but the left side isn't, swap the
1274     // operands and try again.
1275     Predicate = ICmpInst::getSwappedPredicate(Predicate);
1276     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1277   }
1278 
1279   if (CmpInst::isFPPredicate(Predicate)) {
1280     // Flush any denormal constant float input according to denormal handling
1281     // mode.
1282     Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1283     if (!Ops0)
1284       return nullptr;
1285     Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1286     if (!Ops1)
1287       return nullptr;
1288   }
1289 
1290   return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1291 }
1292 
1293 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1294                                            const DataLayout &DL) {
1295   assert(Instruction::isUnaryOp(Opcode));
1296 
1297   return ConstantFoldUnaryInstruction(Opcode, Op);
1298 }
1299 
1300 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1301                                              Constant *RHS,
1302                                              const DataLayout &DL) {
1303   assert(Instruction::isBinaryOp(Opcode));
1304   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1305     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1306       return C;
1307 
1308   if (ConstantExpr::isDesirableBinOp(Opcode))
1309     return ConstantExpr::get(Opcode, LHS, RHS);
1310   return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1311 }
1312 
1313 static ConstantFP *flushDenormalConstant(Type *Ty, const APFloat &APF,
1314                                          DenormalMode::DenormalModeKind Mode) {
1315   switch (Mode) {
1316   case DenormalMode::Dynamic:
1317     return nullptr;
1318   case DenormalMode::IEEE:
1319     return ConstantFP::get(Ty->getContext(), APF);
1320   case DenormalMode::PreserveSign:
1321     return ConstantFP::get(
1322         Ty->getContext(),
1323         APFloat::getZero(APF.getSemantics(), APF.isNegative()));
1324   case DenormalMode::PositiveZero:
1325     return ConstantFP::get(Ty->getContext(),
1326                            APFloat::getZero(APF.getSemantics(), false));
1327   default:
1328     break;
1329   }
1330 
1331   llvm_unreachable("unknown denormal mode");
1332 }
1333 
1334 /// Return the denormal mode that can be assumed when executing a floating point
1335 /// operation at \p CtxI.
1336 static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty) {
1337   if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1338     return DenormalMode::getDynamic();
1339   return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1340 }
1341 
1342 static ConstantFP *flushDenormalConstantFP(ConstantFP *CFP,
1343                                            const Instruction *Inst,
1344                                            bool IsOutput) {
1345   const APFloat &APF = CFP->getValueAPF();
1346   if (!APF.isDenormal())
1347     return CFP;
1348 
1349   DenormalMode Mode = getInstrDenormalMode(Inst, CFP->getType());
1350   return flushDenormalConstant(CFP->getType(), APF,
1351                                IsOutput ? Mode.Output : Mode.Input);
1352 }
1353 
1354 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *Inst,
1355                                 bool IsOutput) {
1356   if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1357     return flushDenormalConstantFP(CFP, Inst, IsOutput);
1358 
1359   if (isa<ConstantAggregateZero, UndefValue, ConstantExpr>(Operand))
1360     return Operand;
1361 
1362   Type *Ty = Operand->getType();
1363   VectorType *VecTy = dyn_cast<VectorType>(Ty);
1364   if (VecTy) {
1365     if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1366       ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1367       if (!Folded)
1368         return nullptr;
1369       return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1370     }
1371 
1372     Ty = VecTy->getElementType();
1373   }
1374 
1375   if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1376     SmallVector<Constant *, 16> NewElts;
1377     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1378       Constant *Element = CV->getAggregateElement(i);
1379       if (isa<UndefValue>(Element)) {
1380         NewElts.push_back(Element);
1381         continue;
1382       }
1383 
1384       ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1385       if (!CFP)
1386         return nullptr;
1387 
1388       ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1389       if (!Folded)
1390         return nullptr;
1391       NewElts.push_back(Folded);
1392     }
1393 
1394     return ConstantVector::get(NewElts);
1395   }
1396 
1397   if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1398     SmallVector<Constant *, 16> NewElts;
1399     for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1400       const APFloat &Elt = CDV->getElementAsAPFloat(I);
1401       if (!Elt.isDenormal()) {
1402         NewElts.push_back(ConstantFP::get(Ty, Elt));
1403       } else {
1404         DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1405         ConstantFP *Folded =
1406             flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1407         if (!Folded)
1408           return nullptr;
1409         NewElts.push_back(Folded);
1410       }
1411     }
1412 
1413     return ConstantVector::get(NewElts);
1414   }
1415 
1416   return nullptr;
1417 }
1418 
1419 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1420                                            Constant *RHS, const DataLayout &DL,
1421                                            const Instruction *I,
1422                                            bool AllowNonDeterministic) {
1423   if (Instruction::isBinaryOp(Opcode)) {
1424     // Flush denormal inputs if needed.
1425     Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1426     if (!Op0)
1427       return nullptr;
1428     Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1429     if (!Op1)
1430       return nullptr;
1431 
1432     // If nsz or an algebraic FMF flag is set, the result of the FP operation
1433     // may change due to future optimization. Don't constant fold them if
1434     // non-deterministic results are not allowed.
1435     if (!AllowNonDeterministic)
1436       if (auto *FP = dyn_cast_or_null<FPMathOperator>(I))
1437         if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1438             FP->hasAllowContract() || FP->hasAllowReciprocal())
1439           return nullptr;
1440 
1441     // Calculate constant result.
1442     Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1443     if (!C)
1444       return nullptr;
1445 
1446     // Flush denormal output if needed.
1447     C = FlushFPConstant(C, I, /* IsOutput */ true);
1448     if (!C)
1449       return nullptr;
1450 
1451     // The precise NaN value is non-deterministic.
1452     if (!AllowNonDeterministic && C->isNaN())
1453       return nullptr;
1454 
1455     return C;
1456   }
1457   // If instruction lacks a parent/function and the denormal mode cannot be
1458   // determined, use the default (IEEE).
1459   return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1460 }
1461 
1462 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1463                                         Type *DestTy, const DataLayout &DL) {
1464   assert(Instruction::isCast(Opcode));
1465   switch (Opcode) {
1466   default:
1467     llvm_unreachable("Missing case");
1468   case Instruction::PtrToInt:
1469     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1470       Constant *FoldedValue = nullptr;
1471       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1472       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1473       if (CE->getOpcode() == Instruction::IntToPtr) {
1474         // zext/trunc the inttoptr to pointer size.
1475         FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
1476                                               DL.getIntPtrType(CE->getType()),
1477                                               /*IsSigned=*/false, DL);
1478       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1479         // If we have GEP, we can perform the following folds:
1480         // (ptrtoint (gep null, x)) -> x
1481         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1482         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1483         APInt BaseOffset(BitWidth, 0);
1484         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1485             DL, BaseOffset, /*AllowNonInbounds=*/true));
1486         if (Base->isNullValue()) {
1487           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1488         } else {
1489           // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1490           if (GEP->getNumIndices() == 1 &&
1491               GEP->getSourceElementType()->isIntegerTy(8)) {
1492             auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1493             auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1494             Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1495             if (Sub && Sub->getType() == IntIdxTy &&
1496                 Sub->getOpcode() == Instruction::Sub &&
1497                 Sub->getOperand(0)->isNullValue())
1498               FoldedValue = ConstantExpr::getSub(
1499                   ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1500           }
1501         }
1502       }
1503       if (FoldedValue) {
1504         // Do a zext or trunc to get to the ptrtoint dest size.
1505         return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1506                                        DL);
1507       }
1508     }
1509     break;
1510   case Instruction::IntToPtr:
1511     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1512     // the int size is >= the ptr size and the address spaces are the same.
1513     // This requires knowing the width of a pointer, so it can't be done in
1514     // ConstantExpr::getCast.
1515     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1516       if (CE->getOpcode() == Instruction::PtrToInt) {
1517         Constant *SrcPtr = CE->getOperand(0);
1518         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1519         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1520 
1521         if (MidIntSize >= SrcPtrSize) {
1522           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1523           if (SrcAS == DestTy->getPointerAddressSpace())
1524             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1525         }
1526       }
1527     }
1528     break;
1529   case Instruction::Trunc:
1530   case Instruction::ZExt:
1531   case Instruction::SExt:
1532   case Instruction::FPTrunc:
1533   case Instruction::FPExt:
1534   case Instruction::UIToFP:
1535   case Instruction::SIToFP:
1536   case Instruction::FPToUI:
1537   case Instruction::FPToSI:
1538   case Instruction::AddrSpaceCast:
1539     break;
1540   case Instruction::BitCast:
1541     return FoldBitCast(C, DestTy, DL);
1542   }
1543 
1544   if (ConstantExpr::isDesirableCastOp(Opcode))
1545     return ConstantExpr::getCast(Opcode, C, DestTy);
1546   return ConstantFoldCastInstruction(Opcode, C, DestTy);
1547 }
1548 
1549 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy,
1550                                         bool IsSigned, const DataLayout &DL) {
1551   Type *SrcTy = C->getType();
1552   if (SrcTy == DestTy)
1553     return C;
1554   if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1555     return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1556   if (IsSigned)
1557     return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1558   return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1559 }
1560 
1561 //===----------------------------------------------------------------------===//
1562 //  Constant Folding for Calls
1563 //
1564 
1565 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1566   if (Call->isNoBuiltin())
1567     return false;
1568   if (Call->getFunctionType() != F->getFunctionType())
1569     return false;
1570   switch (F->getIntrinsicID()) {
1571   // Operations that do not operate floating-point numbers and do not depend on
1572   // FP environment can be folded even in strictfp functions.
1573   case Intrinsic::bswap:
1574   case Intrinsic::ctpop:
1575   case Intrinsic::ctlz:
1576   case Intrinsic::cttz:
1577   case Intrinsic::fshl:
1578   case Intrinsic::fshr:
1579   case Intrinsic::launder_invariant_group:
1580   case Intrinsic::strip_invariant_group:
1581   case Intrinsic::masked_load:
1582   case Intrinsic::get_active_lane_mask:
1583   case Intrinsic::abs:
1584   case Intrinsic::smax:
1585   case Intrinsic::smin:
1586   case Intrinsic::umax:
1587   case Intrinsic::umin:
1588   case Intrinsic::scmp:
1589   case Intrinsic::ucmp:
1590   case Intrinsic::sadd_with_overflow:
1591   case Intrinsic::uadd_with_overflow:
1592   case Intrinsic::ssub_with_overflow:
1593   case Intrinsic::usub_with_overflow:
1594   case Intrinsic::smul_with_overflow:
1595   case Intrinsic::umul_with_overflow:
1596   case Intrinsic::sadd_sat:
1597   case Intrinsic::uadd_sat:
1598   case Intrinsic::ssub_sat:
1599   case Intrinsic::usub_sat:
1600   case Intrinsic::smul_fix:
1601   case Intrinsic::smul_fix_sat:
1602   case Intrinsic::bitreverse:
1603   case Intrinsic::is_constant:
1604   case Intrinsic::vector_reduce_add:
1605   case Intrinsic::vector_reduce_mul:
1606   case Intrinsic::vector_reduce_and:
1607   case Intrinsic::vector_reduce_or:
1608   case Intrinsic::vector_reduce_xor:
1609   case Intrinsic::vector_reduce_smin:
1610   case Intrinsic::vector_reduce_smax:
1611   case Intrinsic::vector_reduce_umin:
1612   case Intrinsic::vector_reduce_umax:
1613   // Target intrinsics
1614   case Intrinsic::amdgcn_perm:
1615   case Intrinsic::amdgcn_wave_reduce_umin:
1616   case Intrinsic::amdgcn_wave_reduce_umax:
1617   case Intrinsic::amdgcn_s_wqm:
1618   case Intrinsic::amdgcn_s_quadmask:
1619   case Intrinsic::amdgcn_s_bitreplicate:
1620   case Intrinsic::arm_mve_vctp8:
1621   case Intrinsic::arm_mve_vctp16:
1622   case Intrinsic::arm_mve_vctp32:
1623   case Intrinsic::arm_mve_vctp64:
1624   case Intrinsic::aarch64_sve_convert_from_svbool:
1625   // WebAssembly float semantics are always known
1626   case Intrinsic::wasm_trunc_signed:
1627   case Intrinsic::wasm_trunc_unsigned:
1628     return true;
1629 
1630   // Floating point operations cannot be folded in strictfp functions in
1631   // general case. They can be folded if FP environment is known to compiler.
1632   case Intrinsic::minnum:
1633   case Intrinsic::maxnum:
1634   case Intrinsic::minimum:
1635   case Intrinsic::maximum:
1636   case Intrinsic::log:
1637   case Intrinsic::log2:
1638   case Intrinsic::log10:
1639   case Intrinsic::exp:
1640   case Intrinsic::exp2:
1641   case Intrinsic::exp10:
1642   case Intrinsic::sqrt:
1643   case Intrinsic::sin:
1644   case Intrinsic::cos:
1645   case Intrinsic::sincos:
1646   case Intrinsic::pow:
1647   case Intrinsic::powi:
1648   case Intrinsic::ldexp:
1649   case Intrinsic::fma:
1650   case Intrinsic::fmuladd:
1651   case Intrinsic::frexp:
1652   case Intrinsic::fptoui_sat:
1653   case Intrinsic::fptosi_sat:
1654   case Intrinsic::convert_from_fp16:
1655   case Intrinsic::convert_to_fp16:
1656   case Intrinsic::amdgcn_cos:
1657   case Intrinsic::amdgcn_cubeid:
1658   case Intrinsic::amdgcn_cubema:
1659   case Intrinsic::amdgcn_cubesc:
1660   case Intrinsic::amdgcn_cubetc:
1661   case Intrinsic::amdgcn_fmul_legacy:
1662   case Intrinsic::amdgcn_fma_legacy:
1663   case Intrinsic::amdgcn_fract:
1664   case Intrinsic::amdgcn_sin:
1665   // The intrinsics below depend on rounding mode in MXCSR.
1666   case Intrinsic::x86_sse_cvtss2si:
1667   case Intrinsic::x86_sse_cvtss2si64:
1668   case Intrinsic::x86_sse_cvttss2si:
1669   case Intrinsic::x86_sse_cvttss2si64:
1670   case Intrinsic::x86_sse2_cvtsd2si:
1671   case Intrinsic::x86_sse2_cvtsd2si64:
1672   case Intrinsic::x86_sse2_cvttsd2si:
1673   case Intrinsic::x86_sse2_cvttsd2si64:
1674   case Intrinsic::x86_avx512_vcvtss2si32:
1675   case Intrinsic::x86_avx512_vcvtss2si64:
1676   case Intrinsic::x86_avx512_cvttss2si:
1677   case Intrinsic::x86_avx512_cvttss2si64:
1678   case Intrinsic::x86_avx512_vcvtsd2si32:
1679   case Intrinsic::x86_avx512_vcvtsd2si64:
1680   case Intrinsic::x86_avx512_cvttsd2si:
1681   case Intrinsic::x86_avx512_cvttsd2si64:
1682   case Intrinsic::x86_avx512_vcvtss2usi32:
1683   case Intrinsic::x86_avx512_vcvtss2usi64:
1684   case Intrinsic::x86_avx512_cvttss2usi:
1685   case Intrinsic::x86_avx512_cvttss2usi64:
1686   case Intrinsic::x86_avx512_vcvtsd2usi32:
1687   case Intrinsic::x86_avx512_vcvtsd2usi64:
1688   case Intrinsic::x86_avx512_cvttsd2usi:
1689   case Intrinsic::x86_avx512_cvttsd2usi64:
1690     return !Call->isStrictFP();
1691 
1692   // NVVM FMax intrinsics
1693   case Intrinsic::nvvm_fmax_d:
1694   case Intrinsic::nvvm_fmax_f:
1695   case Intrinsic::nvvm_fmax_ftz_f:
1696   case Intrinsic::nvvm_fmax_ftz_nan_f:
1697   case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1698   case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1699   case Intrinsic::nvvm_fmax_nan_f:
1700   case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1701   case Intrinsic::nvvm_fmax_xorsign_abs_f:
1702 
1703   // NVVM FMin intrinsics
1704   case Intrinsic::nvvm_fmin_d:
1705   case Intrinsic::nvvm_fmin_f:
1706   case Intrinsic::nvvm_fmin_ftz_f:
1707   case Intrinsic::nvvm_fmin_ftz_nan_f:
1708   case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1709   case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1710   case Intrinsic::nvvm_fmin_nan_f:
1711   case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1712   case Intrinsic::nvvm_fmin_xorsign_abs_f:
1713 
1714   // NVVM float/double to int32/uint32 conversion intrinsics
1715   case Intrinsic::nvvm_f2i_rm:
1716   case Intrinsic::nvvm_f2i_rn:
1717   case Intrinsic::nvvm_f2i_rp:
1718   case Intrinsic::nvvm_f2i_rz:
1719   case Intrinsic::nvvm_f2i_rm_ftz:
1720   case Intrinsic::nvvm_f2i_rn_ftz:
1721   case Intrinsic::nvvm_f2i_rp_ftz:
1722   case Intrinsic::nvvm_f2i_rz_ftz:
1723   case Intrinsic::nvvm_f2ui_rm:
1724   case Intrinsic::nvvm_f2ui_rn:
1725   case Intrinsic::nvvm_f2ui_rp:
1726   case Intrinsic::nvvm_f2ui_rz:
1727   case Intrinsic::nvvm_f2ui_rm_ftz:
1728   case Intrinsic::nvvm_f2ui_rn_ftz:
1729   case Intrinsic::nvvm_f2ui_rp_ftz:
1730   case Intrinsic::nvvm_f2ui_rz_ftz:
1731   case Intrinsic::nvvm_d2i_rm:
1732   case Intrinsic::nvvm_d2i_rn:
1733   case Intrinsic::nvvm_d2i_rp:
1734   case Intrinsic::nvvm_d2i_rz:
1735   case Intrinsic::nvvm_d2ui_rm:
1736   case Intrinsic::nvvm_d2ui_rn:
1737   case Intrinsic::nvvm_d2ui_rp:
1738   case Intrinsic::nvvm_d2ui_rz:
1739 
1740   // NVVM float/double to int64/uint64 conversion intrinsics
1741   case Intrinsic::nvvm_f2ll_rm:
1742   case Intrinsic::nvvm_f2ll_rn:
1743   case Intrinsic::nvvm_f2ll_rp:
1744   case Intrinsic::nvvm_f2ll_rz:
1745   case Intrinsic::nvvm_f2ll_rm_ftz:
1746   case Intrinsic::nvvm_f2ll_rn_ftz:
1747   case Intrinsic::nvvm_f2ll_rp_ftz:
1748   case Intrinsic::nvvm_f2ll_rz_ftz:
1749   case Intrinsic::nvvm_f2ull_rm:
1750   case Intrinsic::nvvm_f2ull_rn:
1751   case Intrinsic::nvvm_f2ull_rp:
1752   case Intrinsic::nvvm_f2ull_rz:
1753   case Intrinsic::nvvm_f2ull_rm_ftz:
1754   case Intrinsic::nvvm_f2ull_rn_ftz:
1755   case Intrinsic::nvvm_f2ull_rp_ftz:
1756   case Intrinsic::nvvm_f2ull_rz_ftz:
1757   case Intrinsic::nvvm_d2ll_rm:
1758   case Intrinsic::nvvm_d2ll_rn:
1759   case Intrinsic::nvvm_d2ll_rp:
1760   case Intrinsic::nvvm_d2ll_rz:
1761   case Intrinsic::nvvm_d2ull_rm:
1762   case Intrinsic::nvvm_d2ull_rn:
1763   case Intrinsic::nvvm_d2ull_rp:
1764   case Intrinsic::nvvm_d2ull_rz:
1765 
1766   // Sign operations are actually bitwise operations, they do not raise
1767   // exceptions even for SNANs.
1768   case Intrinsic::fabs:
1769   case Intrinsic::copysign:
1770   case Intrinsic::is_fpclass:
1771   // Non-constrained variants of rounding operations means default FP
1772   // environment, they can be folded in any case.
1773   case Intrinsic::ceil:
1774   case Intrinsic::floor:
1775   case Intrinsic::round:
1776   case Intrinsic::roundeven:
1777   case Intrinsic::trunc:
1778   case Intrinsic::nearbyint:
1779   case Intrinsic::rint:
1780   case Intrinsic::canonicalize:
1781   // Constrained intrinsics can be folded if FP environment is known
1782   // to compiler.
1783   case Intrinsic::experimental_constrained_fma:
1784   case Intrinsic::experimental_constrained_fmuladd:
1785   case Intrinsic::experimental_constrained_fadd:
1786   case Intrinsic::experimental_constrained_fsub:
1787   case Intrinsic::experimental_constrained_fmul:
1788   case Intrinsic::experimental_constrained_fdiv:
1789   case Intrinsic::experimental_constrained_frem:
1790   case Intrinsic::experimental_constrained_ceil:
1791   case Intrinsic::experimental_constrained_floor:
1792   case Intrinsic::experimental_constrained_round:
1793   case Intrinsic::experimental_constrained_roundeven:
1794   case Intrinsic::experimental_constrained_trunc:
1795   case Intrinsic::experimental_constrained_nearbyint:
1796   case Intrinsic::experimental_constrained_rint:
1797   case Intrinsic::experimental_constrained_fcmp:
1798   case Intrinsic::experimental_constrained_fcmps:
1799     return true;
1800   default:
1801     return false;
1802   case Intrinsic::not_intrinsic: break;
1803   }
1804 
1805   if (!F->hasName() || Call->isStrictFP())
1806     return false;
1807 
1808   // In these cases, the check of the length is required.  We don't want to
1809   // return true for a name like "cos\0blah" which strcmp would return equal to
1810   // "cos", but has length 8.
1811   StringRef Name = F->getName();
1812   switch (Name[0]) {
1813   default:
1814     return false;
1815   case 'a':
1816     return Name == "acos" || Name == "acosf" ||
1817            Name == "asin" || Name == "asinf" ||
1818            Name == "atan" || Name == "atanf" ||
1819            Name == "atan2" || Name == "atan2f";
1820   case 'c':
1821     return Name == "ceil" || Name == "ceilf" ||
1822            Name == "cos" || Name == "cosf" ||
1823            Name == "cosh" || Name == "coshf";
1824   case 'e':
1825     return Name == "exp" || Name == "expf" || Name == "exp2" ||
1826            Name == "exp2f" || Name == "erf" || Name == "erff";
1827   case 'f':
1828     return Name == "fabs" || Name == "fabsf" ||
1829            Name == "floor" || Name == "floorf" ||
1830            Name == "fmod" || Name == "fmodf";
1831   case 'i':
1832     return Name == "ilogb" || Name == "ilogbf";
1833   case 'l':
1834     return Name == "log" || Name == "logf" || Name == "logl" ||
1835            Name == "log2" || Name == "log2f" || Name == "log10" ||
1836            Name == "log10f" || Name == "logb" || Name == "logbf" ||
1837            Name == "log1p" || Name == "log1pf";
1838   case 'n':
1839     return Name == "nearbyint" || Name == "nearbyintf";
1840   case 'p':
1841     return Name == "pow" || Name == "powf";
1842   case 'r':
1843     return Name == "remainder" || Name == "remainderf" ||
1844            Name == "rint" || Name == "rintf" ||
1845            Name == "round" || Name == "roundf";
1846   case 's':
1847     return Name == "sin" || Name == "sinf" ||
1848            Name == "sinh" || Name == "sinhf" ||
1849            Name == "sqrt" || Name == "sqrtf";
1850   case 't':
1851     return Name == "tan" || Name == "tanf" ||
1852            Name == "tanh" || Name == "tanhf" ||
1853            Name == "trunc" || Name == "truncf";
1854   case '_':
1855     // Check for various function names that get used for the math functions
1856     // when the header files are preprocessed with the macro
1857     // __FINITE_MATH_ONLY__ enabled.
1858     // The '12' here is the length of the shortest name that can match.
1859     // We need to check the size before looking at Name[1] and Name[2]
1860     // so we may as well check a limit that will eliminate mismatches.
1861     if (Name.size() < 12 || Name[1] != '_')
1862       return false;
1863     switch (Name[2]) {
1864     default:
1865       return false;
1866     case 'a':
1867       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1868              Name == "__asin_finite" || Name == "__asinf_finite" ||
1869              Name == "__atan2_finite" || Name == "__atan2f_finite";
1870     case 'c':
1871       return Name == "__cosh_finite" || Name == "__coshf_finite";
1872     case 'e':
1873       return Name == "__exp_finite" || Name == "__expf_finite" ||
1874              Name == "__exp2_finite" || Name == "__exp2f_finite";
1875     case 'l':
1876       return Name == "__log_finite" || Name == "__logf_finite" ||
1877              Name == "__log10_finite" || Name == "__log10f_finite";
1878     case 'p':
1879       return Name == "__pow_finite" || Name == "__powf_finite";
1880     case 's':
1881       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1882     }
1883   }
1884 }
1885 
1886 namespace {
1887 
1888 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1889   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1890     APFloat APF(V);
1891     bool unused;
1892     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1893     return ConstantFP::get(Ty->getContext(), APF);
1894   }
1895   if (Ty->isDoubleTy())
1896     return ConstantFP::get(Ty->getContext(), APFloat(V));
1897   llvm_unreachable("Can only constant fold half/float/double");
1898 }
1899 
1900 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1901 Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
1902   if (Ty->isFP128Ty())
1903     return ConstantFP::get(Ty, V);
1904   llvm_unreachable("Can only constant fold fp128");
1905 }
1906 #endif
1907 
1908 /// Clear the floating-point exception state.
1909 inline void llvm_fenv_clearexcept() {
1910 #if HAVE_DECL_FE_ALL_EXCEPT
1911   feclearexcept(FE_ALL_EXCEPT);
1912 #endif
1913   errno = 0;
1914 }
1915 
1916 /// Test if a floating-point exception was raised.
1917 inline bool llvm_fenv_testexcept() {
1918   int errno_val = errno;
1919   if (errno_val == ERANGE || errno_val == EDOM)
1920     return true;
1921 #if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1922   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1923     return true;
1924 #endif
1925   return false;
1926 }
1927 
1928 static const APFloat FTZPreserveSign(const APFloat &V) {
1929   if (V.isDenormal())
1930     return APFloat::getZero(V.getSemantics(), V.isNegative());
1931   return V;
1932 }
1933 
1934 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1935                          Type *Ty) {
1936   llvm_fenv_clearexcept();
1937   double Result = NativeFP(V.convertToDouble());
1938   if (llvm_fenv_testexcept()) {
1939     llvm_fenv_clearexcept();
1940     return nullptr;
1941   }
1942 
1943   return GetConstantFoldFPValue(Result, Ty);
1944 }
1945 
1946 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1947 Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
1948                             Type *Ty) {
1949   llvm_fenv_clearexcept();
1950   float128 Result = NativeFP(V.convertToQuad());
1951   if (llvm_fenv_testexcept()) {
1952     llvm_fenv_clearexcept();
1953     return nullptr;
1954   }
1955 
1956   return GetConstantFoldFPValue128(Result, Ty);
1957 }
1958 #endif
1959 
1960 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1961                                const APFloat &V, const APFloat &W, Type *Ty) {
1962   llvm_fenv_clearexcept();
1963   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1964   if (llvm_fenv_testexcept()) {
1965     llvm_fenv_clearexcept();
1966     return nullptr;
1967   }
1968 
1969   return GetConstantFoldFPValue(Result, Ty);
1970 }
1971 
1972 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1973   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1974   if (!VT)
1975     return nullptr;
1976 
1977   // This isn't strictly necessary, but handle the special/common case of zero:
1978   // all integer reductions of a zero input produce zero.
1979   if (isa<ConstantAggregateZero>(Op))
1980     return ConstantInt::get(VT->getElementType(), 0);
1981 
1982   // This is the same as the underlying binops - poison propagates.
1983   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1984     return PoisonValue::get(VT->getElementType());
1985 
1986   // TODO: Handle undef.
1987   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1988     return nullptr;
1989 
1990   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1991   if (!EltC)
1992     return nullptr;
1993 
1994   APInt Acc = EltC->getValue();
1995   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1996     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1997       return nullptr;
1998     const APInt &X = EltC->getValue();
1999     switch (IID) {
2000     case Intrinsic::vector_reduce_add:
2001       Acc = Acc + X;
2002       break;
2003     case Intrinsic::vector_reduce_mul:
2004       Acc = Acc * X;
2005       break;
2006     case Intrinsic::vector_reduce_and:
2007       Acc = Acc & X;
2008       break;
2009     case Intrinsic::vector_reduce_or:
2010       Acc = Acc | X;
2011       break;
2012     case Intrinsic::vector_reduce_xor:
2013       Acc = Acc ^ X;
2014       break;
2015     case Intrinsic::vector_reduce_smin:
2016       Acc = APIntOps::smin(Acc, X);
2017       break;
2018     case Intrinsic::vector_reduce_smax:
2019       Acc = APIntOps::smax(Acc, X);
2020       break;
2021     case Intrinsic::vector_reduce_umin:
2022       Acc = APIntOps::umin(Acc, X);
2023       break;
2024     case Intrinsic::vector_reduce_umax:
2025       Acc = APIntOps::umax(Acc, X);
2026       break;
2027     }
2028   }
2029 
2030   return ConstantInt::get(Op->getContext(), Acc);
2031 }
2032 
2033 /// Attempt to fold an SSE floating point to integer conversion of a constant
2034 /// floating point. If roundTowardZero is false, the default IEEE rounding is
2035 /// used (toward nearest, ties to even). This matches the behavior of the
2036 /// non-truncating SSE instructions in the default rounding mode. The desired
2037 /// integer type Ty is used to select how many bits are available for the
2038 /// result. Returns null if the conversion cannot be performed, otherwise
2039 /// returns the Constant value resulting from the conversion.
2040 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2041                                       Type *Ty, bool IsSigned) {
2042   // All of these conversion intrinsics form an integer of at most 64bits.
2043   unsigned ResultWidth = Ty->getIntegerBitWidth();
2044   assert(ResultWidth <= 64 &&
2045          "Can only constant fold conversions to 64 and 32 bit ints");
2046 
2047   uint64_t UIntVal;
2048   bool isExact = false;
2049   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
2050                                               : APFloat::rmNearestTiesToEven;
2051   APFloat::opStatus status =
2052       Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2053                            IsSigned, mode, &isExact);
2054   if (status != APFloat::opOK &&
2055       (!roundTowardZero || status != APFloat::opInexact))
2056     return nullptr;
2057   return ConstantInt::get(Ty, UIntVal, IsSigned);
2058 }
2059 
2060 double getValueAsDouble(ConstantFP *Op) {
2061   Type *Ty = Op->getType();
2062 
2063   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2064     return Op->getValueAPF().convertToDouble();
2065 
2066   bool unused;
2067   APFloat APF = Op->getValueAPF();
2068   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
2069   return APF.convertToDouble();
2070 }
2071 
2072 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2073   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2074     C = &CI->getValue();
2075     return true;
2076   }
2077   if (isa<UndefValue>(Op)) {
2078     C = nullptr;
2079     return true;
2080   }
2081   return false;
2082 }
2083 
2084 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
2085 /// to be folded.
2086 ///
2087 /// \param CI Constrained intrinsic call.
2088 /// \param St Exception flags raised during constant evaluation.
2089 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2090                                APFloat::opStatus St) {
2091   std::optional<RoundingMode> ORM = CI->getRoundingMode();
2092   std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2093 
2094   // If the operation does not change exception status flags, it is safe
2095   // to fold.
2096   if (St == APFloat::opStatus::opOK)
2097     return true;
2098 
2099   // If evaluation raised FP exception, the result can depend on rounding
2100   // mode. If the latter is unknown, folding is not possible.
2101   if (ORM && *ORM == RoundingMode::Dynamic)
2102     return false;
2103 
2104   // If FP exceptions are ignored, fold the call, even if such exception is
2105   // raised.
2106   if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2107     return true;
2108 
2109   // Leave the calculation for runtime so that exception flags be correctly set
2110   // in hardware.
2111   return false;
2112 }
2113 
2114 /// Returns the rounding mode that should be used for constant evaluation.
2115 static RoundingMode
2116 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2117   std::optional<RoundingMode> ORM = CI->getRoundingMode();
2118   if (!ORM || *ORM == RoundingMode::Dynamic)
2119     // Even if the rounding mode is unknown, try evaluating the operation.
2120     // If it does not raise inexact exception, rounding was not applied,
2121     // so the result is exact and does not depend on rounding mode. Whether
2122     // other FP exceptions are raised, it does not depend on rounding mode.
2123     return RoundingMode::NearestTiesToEven;
2124   return *ORM;
2125 }
2126 
2127 /// Try to constant fold llvm.canonicalize for the given caller and value.
2128 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2129                                           const APFloat &Src) {
2130   // Zero, positive and negative, is always OK to fold.
2131   if (Src.isZero()) {
2132     // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2133     return ConstantFP::get(
2134         CI->getContext(),
2135         APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2136   }
2137 
2138   if (!Ty->isIEEELikeFPTy())
2139     return nullptr;
2140 
2141   // Zero is always canonical and the sign must be preserved.
2142   //
2143   // Denorms and nans may have special encodings, but it should be OK to fold a
2144   // totally average number.
2145   if (Src.isNormal() || Src.isInfinity())
2146     return ConstantFP::get(CI->getContext(), Src);
2147 
2148   if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2149     DenormalMode DenormMode =
2150         CI->getFunction()->getDenormalMode(Src.getSemantics());
2151 
2152     if (DenormMode == DenormalMode::getIEEE())
2153       return ConstantFP::get(CI->getContext(), Src);
2154 
2155     if (DenormMode.Input == DenormalMode::Dynamic)
2156       return nullptr;
2157 
2158     // If we know if either input or output is flushed, we can fold.
2159     if ((DenormMode.Input == DenormalMode::Dynamic &&
2160          DenormMode.Output == DenormalMode::IEEE) ||
2161         (DenormMode.Input == DenormalMode::IEEE &&
2162          DenormMode.Output == DenormalMode::Dynamic))
2163       return nullptr;
2164 
2165     bool IsPositive =
2166         (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2167          (DenormMode.Output == DenormalMode::PositiveZero &&
2168           DenormMode.Input == DenormalMode::IEEE));
2169 
2170     return ConstantFP::get(CI->getContext(),
2171                            APFloat::getZero(Src.getSemantics(), !IsPositive));
2172   }
2173 
2174   return nullptr;
2175 }
2176 
2177 static Constant *ConstantFoldScalarCall1(StringRef Name,
2178                                          Intrinsic::ID IntrinsicID,
2179                                          Type *Ty,
2180                                          ArrayRef<Constant *> Operands,
2181                                          const TargetLibraryInfo *TLI,
2182                                          const CallBase *Call) {
2183   assert(Operands.size() == 1 && "Wrong number of operands.");
2184 
2185   if (IntrinsicID == Intrinsic::is_constant) {
2186     // We know we have a "Constant" argument. But we want to only
2187     // return true for manifest constants, not those that depend on
2188     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2189     if (Operands[0]->isManifestConstant())
2190       return ConstantInt::getTrue(Ty->getContext());
2191     return nullptr;
2192   }
2193 
2194   if (isa<PoisonValue>(Operands[0])) {
2195     // TODO: All of these operations should probably propagate poison.
2196     if (IntrinsicID == Intrinsic::canonicalize)
2197       return PoisonValue::get(Ty);
2198   }
2199 
2200   if (isa<UndefValue>(Operands[0])) {
2201     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2202     // ctpop() is between 0 and bitwidth, pick 0 for undef.
2203     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2204     if (IntrinsicID == Intrinsic::cos ||
2205         IntrinsicID == Intrinsic::ctpop ||
2206         IntrinsicID == Intrinsic::fptoui_sat ||
2207         IntrinsicID == Intrinsic::fptosi_sat ||
2208         IntrinsicID == Intrinsic::canonicalize)
2209       return Constant::getNullValue(Ty);
2210     if (IntrinsicID == Intrinsic::bswap ||
2211         IntrinsicID == Intrinsic::bitreverse ||
2212         IntrinsicID == Intrinsic::launder_invariant_group ||
2213         IntrinsicID == Intrinsic::strip_invariant_group)
2214       return Operands[0];
2215   }
2216 
2217   if (isa<ConstantPointerNull>(Operands[0])) {
2218     // launder(null) == null == strip(null) iff in addrspace 0
2219     if (IntrinsicID == Intrinsic::launder_invariant_group ||
2220         IntrinsicID == Intrinsic::strip_invariant_group) {
2221       // If instruction is not yet put in a basic block (e.g. when cloning
2222       // a function during inlining), Call's caller may not be available.
2223       // So check Call's BB first before querying Call->getCaller.
2224       const Function *Caller =
2225           Call->getParent() ? Call->getCaller() : nullptr;
2226       if (Caller &&
2227           !NullPointerIsDefined(
2228               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2229         return Operands[0];
2230       }
2231       return nullptr;
2232     }
2233   }
2234 
2235   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2236     if (IntrinsicID == Intrinsic::convert_to_fp16) {
2237       APFloat Val(Op->getValueAPF());
2238 
2239       bool lost = false;
2240       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2241 
2242       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2243     }
2244 
2245     APFloat U = Op->getValueAPF();
2246 
2247     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2248         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2249       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2250 
2251       if (U.isNaN())
2252         return nullptr;
2253 
2254       unsigned Width = Ty->getIntegerBitWidth();
2255       APSInt Int(Width, !Signed);
2256       bool IsExact = false;
2257       APFloat::opStatus Status =
2258           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2259 
2260       if (Status == APFloat::opOK || Status == APFloat::opInexact)
2261         return ConstantInt::get(Ty, Int);
2262 
2263       return nullptr;
2264     }
2265 
2266     if (IntrinsicID == Intrinsic::fptoui_sat ||
2267         IntrinsicID == Intrinsic::fptosi_sat) {
2268       // convertToInteger() already has the desired saturation semantics.
2269       APSInt Int(Ty->getIntegerBitWidth(),
2270                  IntrinsicID == Intrinsic::fptoui_sat);
2271       bool IsExact;
2272       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2273       return ConstantInt::get(Ty, Int);
2274     }
2275 
2276     if (IntrinsicID == Intrinsic::canonicalize)
2277       return constantFoldCanonicalize(Ty, Call, U);
2278 
2279 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2280     if (Ty->isFP128Ty()) {
2281       if (IntrinsicID == Intrinsic::log) {
2282         float128 Result = logf128(Op->getValueAPF().convertToQuad());
2283         return GetConstantFoldFPValue128(Result, Ty);
2284       }
2285 
2286       LibFunc Fp128Func = NotLibFunc;
2287       if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2288           Fp128Func == LibFunc_logl)
2289         return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2290     }
2291 #endif
2292 
2293     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2294         !Ty->isIntegerTy())
2295       return nullptr;
2296 
2297     // Use internal versions of these intrinsics.
2298 
2299     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2300       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2301       return ConstantFP::get(Ty->getContext(), U);
2302     }
2303 
2304     if (IntrinsicID == Intrinsic::round) {
2305       U.roundToIntegral(APFloat::rmNearestTiesToAway);
2306       return ConstantFP::get(Ty->getContext(), U);
2307     }
2308 
2309     if (IntrinsicID == Intrinsic::roundeven) {
2310       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2311       return ConstantFP::get(Ty->getContext(), U);
2312     }
2313 
2314     if (IntrinsicID == Intrinsic::ceil) {
2315       U.roundToIntegral(APFloat::rmTowardPositive);
2316       return ConstantFP::get(Ty->getContext(), U);
2317     }
2318 
2319     if (IntrinsicID == Intrinsic::floor) {
2320       U.roundToIntegral(APFloat::rmTowardNegative);
2321       return ConstantFP::get(Ty->getContext(), U);
2322     }
2323 
2324     if (IntrinsicID == Intrinsic::trunc) {
2325       U.roundToIntegral(APFloat::rmTowardZero);
2326       return ConstantFP::get(Ty->getContext(), U);
2327     }
2328 
2329     if (IntrinsicID == Intrinsic::fabs) {
2330       U.clearSign();
2331       return ConstantFP::get(Ty->getContext(), U);
2332     }
2333 
2334     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2335       // The v_fract instruction behaves like the OpenCL spec, which defines
2336       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2337       //   there to prevent fract(-small) from returning 1.0. It returns the
2338       //   largest positive floating-point number less than 1.0."
2339       APFloat FloorU(U);
2340       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2341       APFloat FractU(U - FloorU);
2342       APFloat AlmostOne(U.getSemantics(), 1);
2343       AlmostOne.next(/*nextDown*/ true);
2344       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2345     }
2346 
2347     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2348     // raise FP exceptions, unless the argument is signaling NaN.
2349 
2350     std::optional<APFloat::roundingMode> RM;
2351     switch (IntrinsicID) {
2352     default:
2353       break;
2354     case Intrinsic::experimental_constrained_nearbyint:
2355     case Intrinsic::experimental_constrained_rint: {
2356       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2357       RM = CI->getRoundingMode();
2358       if (!RM || *RM == RoundingMode::Dynamic)
2359         return nullptr;
2360       break;
2361     }
2362     case Intrinsic::experimental_constrained_round:
2363       RM = APFloat::rmNearestTiesToAway;
2364       break;
2365     case Intrinsic::experimental_constrained_ceil:
2366       RM = APFloat::rmTowardPositive;
2367       break;
2368     case Intrinsic::experimental_constrained_floor:
2369       RM = APFloat::rmTowardNegative;
2370       break;
2371     case Intrinsic::experimental_constrained_trunc:
2372       RM = APFloat::rmTowardZero;
2373       break;
2374     }
2375     if (RM) {
2376       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2377       if (U.isFinite()) {
2378         APFloat::opStatus St = U.roundToIntegral(*RM);
2379         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2380             St == APFloat::opInexact) {
2381           std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2382           if (EB && *EB == fp::ebStrict)
2383             return nullptr;
2384         }
2385       } else if (U.isSignaling()) {
2386         std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2387         if (EB && *EB != fp::ebIgnore)
2388           return nullptr;
2389         U = APFloat::getQNaN(U.getSemantics());
2390       }
2391       return ConstantFP::get(Ty->getContext(), U);
2392     }
2393 
2394     // NVVM float/double to signed/unsigned int32/int64 conversions:
2395     switch (IntrinsicID) {
2396     // f2i
2397     case Intrinsic::nvvm_f2i_rm:
2398     case Intrinsic::nvvm_f2i_rn:
2399     case Intrinsic::nvvm_f2i_rp:
2400     case Intrinsic::nvvm_f2i_rz:
2401     case Intrinsic::nvvm_f2i_rm_ftz:
2402     case Intrinsic::nvvm_f2i_rn_ftz:
2403     case Intrinsic::nvvm_f2i_rp_ftz:
2404     case Intrinsic::nvvm_f2i_rz_ftz:
2405     // f2ui
2406     case Intrinsic::nvvm_f2ui_rm:
2407     case Intrinsic::nvvm_f2ui_rn:
2408     case Intrinsic::nvvm_f2ui_rp:
2409     case Intrinsic::nvvm_f2ui_rz:
2410     case Intrinsic::nvvm_f2ui_rm_ftz:
2411     case Intrinsic::nvvm_f2ui_rn_ftz:
2412     case Intrinsic::nvvm_f2ui_rp_ftz:
2413     case Intrinsic::nvvm_f2ui_rz_ftz:
2414     // d2i
2415     case Intrinsic::nvvm_d2i_rm:
2416     case Intrinsic::nvvm_d2i_rn:
2417     case Intrinsic::nvvm_d2i_rp:
2418     case Intrinsic::nvvm_d2i_rz:
2419     // d2ui
2420     case Intrinsic::nvvm_d2ui_rm:
2421     case Intrinsic::nvvm_d2ui_rn:
2422     case Intrinsic::nvvm_d2ui_rp:
2423     case Intrinsic::nvvm_d2ui_rz:
2424     // f2ll
2425     case Intrinsic::nvvm_f2ll_rm:
2426     case Intrinsic::nvvm_f2ll_rn:
2427     case Intrinsic::nvvm_f2ll_rp:
2428     case Intrinsic::nvvm_f2ll_rz:
2429     case Intrinsic::nvvm_f2ll_rm_ftz:
2430     case Intrinsic::nvvm_f2ll_rn_ftz:
2431     case Intrinsic::nvvm_f2ll_rp_ftz:
2432     case Intrinsic::nvvm_f2ll_rz_ftz:
2433     // f2ull
2434     case Intrinsic::nvvm_f2ull_rm:
2435     case Intrinsic::nvvm_f2ull_rn:
2436     case Intrinsic::nvvm_f2ull_rp:
2437     case Intrinsic::nvvm_f2ull_rz:
2438     case Intrinsic::nvvm_f2ull_rm_ftz:
2439     case Intrinsic::nvvm_f2ull_rn_ftz:
2440     case Intrinsic::nvvm_f2ull_rp_ftz:
2441     case Intrinsic::nvvm_f2ull_rz_ftz:
2442     // d2ll
2443     case Intrinsic::nvvm_d2ll_rm:
2444     case Intrinsic::nvvm_d2ll_rn:
2445     case Intrinsic::nvvm_d2ll_rp:
2446     case Intrinsic::nvvm_d2ll_rz:
2447     // d2ull
2448     case Intrinsic::nvvm_d2ull_rm:
2449     case Intrinsic::nvvm_d2ull_rn:
2450     case Intrinsic::nvvm_d2ull_rp:
2451     case Intrinsic::nvvm_d2ull_rz: {
2452       // In float-to-integer conversion, NaN inputs are converted to 0.
2453       if (U.isNaN())
2454         return ConstantInt::get(Ty, 0);
2455 
2456       APFloat::roundingMode RMode =
2457           nvvm::GetFPToIntegerRoundingMode(IntrinsicID);
2458       bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2459       bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2460 
2461       APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2462       auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2463 
2464       bool IsExact = false;
2465       APFloat::opStatus Status =
2466           FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2467 
2468       if (Status != APFloat::opInvalidOp)
2469         return ConstantInt::get(Ty, ResInt);
2470       return nullptr;
2471     }
2472     }
2473 
2474     /// We only fold functions with finite arguments. Folding NaN and inf is
2475     /// likely to be aborted with an exception anyway, and some host libms
2476     /// have known errors raising exceptions.
2477     if (!U.isFinite())
2478       return nullptr;
2479 
2480     /// Currently APFloat versions of these functions do not exist, so we use
2481     /// the host native double versions.  Float versions are not called
2482     /// directly but for all these it is true (float)(f((double)arg)) ==
2483     /// f(arg).  Long double not supported yet.
2484     const APFloat &APF = Op->getValueAPF();
2485 
2486     switch (IntrinsicID) {
2487       default: break;
2488       case Intrinsic::log:
2489         return ConstantFoldFP(log, APF, Ty);
2490       case Intrinsic::log2:
2491         // TODO: What about hosts that lack a C99 library?
2492         return ConstantFoldFP(log2, APF, Ty);
2493       case Intrinsic::log10:
2494         // TODO: What about hosts that lack a C99 library?
2495         return ConstantFoldFP(log10, APF, Ty);
2496       case Intrinsic::exp:
2497         return ConstantFoldFP(exp, APF, Ty);
2498       case Intrinsic::exp2:
2499         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2500         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2501       case Intrinsic::exp10:
2502         // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2503         return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2504       case Intrinsic::sin:
2505         return ConstantFoldFP(sin, APF, Ty);
2506       case Intrinsic::cos:
2507         return ConstantFoldFP(cos, APF, Ty);
2508       case Intrinsic::sqrt:
2509         return ConstantFoldFP(sqrt, APF, Ty);
2510       case Intrinsic::amdgcn_cos:
2511       case Intrinsic::amdgcn_sin: {
2512         double V = getValueAsDouble(Op);
2513         if (V < -256.0 || V > 256.0)
2514           // The gfx8 and gfx9 architectures handle arguments outside the range
2515           // [-256, 256] differently. This should be a rare case so bail out
2516           // rather than trying to handle the difference.
2517           return nullptr;
2518         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2519         double V4 = V * 4.0;
2520         if (V4 == floor(V4)) {
2521           // Force exact results for quarter-integer inputs.
2522           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2523           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2524         } else {
2525           if (IsCos)
2526             V = cos(V * 2.0 * numbers::pi);
2527           else
2528             V = sin(V * 2.0 * numbers::pi);
2529         }
2530         return GetConstantFoldFPValue(V, Ty);
2531       }
2532     }
2533 
2534     if (!TLI)
2535       return nullptr;
2536 
2537     LibFunc Func = NotLibFunc;
2538     if (!TLI->getLibFunc(Name, Func))
2539       return nullptr;
2540 
2541     switch (Func) {
2542     default:
2543       break;
2544     case LibFunc_acos:
2545     case LibFunc_acosf:
2546     case LibFunc_acos_finite:
2547     case LibFunc_acosf_finite:
2548       if (TLI->has(Func))
2549         return ConstantFoldFP(acos, APF, Ty);
2550       break;
2551     case LibFunc_asin:
2552     case LibFunc_asinf:
2553     case LibFunc_asin_finite:
2554     case LibFunc_asinf_finite:
2555       if (TLI->has(Func))
2556         return ConstantFoldFP(asin, APF, Ty);
2557       break;
2558     case LibFunc_atan:
2559     case LibFunc_atanf:
2560       if (TLI->has(Func))
2561         return ConstantFoldFP(atan, APF, Ty);
2562       break;
2563     case LibFunc_ceil:
2564     case LibFunc_ceilf:
2565       if (TLI->has(Func)) {
2566         U.roundToIntegral(APFloat::rmTowardPositive);
2567         return ConstantFP::get(Ty->getContext(), U);
2568       }
2569       break;
2570     case LibFunc_cos:
2571     case LibFunc_cosf:
2572       if (TLI->has(Func))
2573         return ConstantFoldFP(cos, APF, Ty);
2574       break;
2575     case LibFunc_cosh:
2576     case LibFunc_coshf:
2577     case LibFunc_cosh_finite:
2578     case LibFunc_coshf_finite:
2579       if (TLI->has(Func))
2580         return ConstantFoldFP(cosh, APF, Ty);
2581       break;
2582     case LibFunc_exp:
2583     case LibFunc_expf:
2584     case LibFunc_exp_finite:
2585     case LibFunc_expf_finite:
2586       if (TLI->has(Func))
2587         return ConstantFoldFP(exp, APF, Ty);
2588       break;
2589     case LibFunc_exp2:
2590     case LibFunc_exp2f:
2591     case LibFunc_exp2_finite:
2592     case LibFunc_exp2f_finite:
2593       if (TLI->has(Func))
2594         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2595         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2596       break;
2597     case LibFunc_fabs:
2598     case LibFunc_fabsf:
2599       if (TLI->has(Func)) {
2600         U.clearSign();
2601         return ConstantFP::get(Ty->getContext(), U);
2602       }
2603       break;
2604     case LibFunc_floor:
2605     case LibFunc_floorf:
2606       if (TLI->has(Func)) {
2607         U.roundToIntegral(APFloat::rmTowardNegative);
2608         return ConstantFP::get(Ty->getContext(), U);
2609       }
2610       break;
2611     case LibFunc_log:
2612     case LibFunc_logf:
2613     case LibFunc_log_finite:
2614     case LibFunc_logf_finite:
2615       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2616         return ConstantFoldFP(log, APF, Ty);
2617       break;
2618     case LibFunc_log2:
2619     case LibFunc_log2f:
2620     case LibFunc_log2_finite:
2621     case LibFunc_log2f_finite:
2622       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2623         // TODO: What about hosts that lack a C99 library?
2624         return ConstantFoldFP(log2, APF, Ty);
2625       break;
2626     case LibFunc_log10:
2627     case LibFunc_log10f:
2628     case LibFunc_log10_finite:
2629     case LibFunc_log10f_finite:
2630       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2631         // TODO: What about hosts that lack a C99 library?
2632         return ConstantFoldFP(log10, APF, Ty);
2633       break;
2634     case LibFunc_ilogb:
2635     case LibFunc_ilogbf:
2636       if (!APF.isZero() && TLI->has(Func))
2637         return ConstantInt::get(Ty, ilogb(APF), true);
2638       break;
2639     case LibFunc_logb:
2640     case LibFunc_logbf:
2641       if (!APF.isZero() && TLI->has(Func))
2642         return ConstantFoldFP(logb, APF, Ty);
2643       break;
2644     case LibFunc_log1p:
2645     case LibFunc_log1pf:
2646       // Implement optional behavior from C's Annex F for +/-0.0.
2647       if (U.isZero())
2648         return ConstantFP::get(Ty->getContext(), U);
2649       if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2650         return ConstantFoldFP(log1p, APF, Ty);
2651       break;
2652     case LibFunc_logl:
2653       return nullptr;
2654     case LibFunc_erf:
2655     case LibFunc_erff:
2656       if (TLI->has(Func))
2657         return ConstantFoldFP(erf, APF, Ty);
2658       break;
2659     case LibFunc_nearbyint:
2660     case LibFunc_nearbyintf:
2661     case LibFunc_rint:
2662     case LibFunc_rintf:
2663       if (TLI->has(Func)) {
2664         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2665         return ConstantFP::get(Ty->getContext(), U);
2666       }
2667       break;
2668     case LibFunc_round:
2669     case LibFunc_roundf:
2670       if (TLI->has(Func)) {
2671         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2672         return ConstantFP::get(Ty->getContext(), U);
2673       }
2674       break;
2675     case LibFunc_sin:
2676     case LibFunc_sinf:
2677       if (TLI->has(Func))
2678         return ConstantFoldFP(sin, APF, Ty);
2679       break;
2680     case LibFunc_sinh:
2681     case LibFunc_sinhf:
2682     case LibFunc_sinh_finite:
2683     case LibFunc_sinhf_finite:
2684       if (TLI->has(Func))
2685         return ConstantFoldFP(sinh, APF, Ty);
2686       break;
2687     case LibFunc_sqrt:
2688     case LibFunc_sqrtf:
2689       if (!APF.isNegative() && TLI->has(Func))
2690         return ConstantFoldFP(sqrt, APF, Ty);
2691       break;
2692     case LibFunc_tan:
2693     case LibFunc_tanf:
2694       if (TLI->has(Func))
2695         return ConstantFoldFP(tan, APF, Ty);
2696       break;
2697     case LibFunc_tanh:
2698     case LibFunc_tanhf:
2699       if (TLI->has(Func))
2700         return ConstantFoldFP(tanh, APF, Ty);
2701       break;
2702     case LibFunc_trunc:
2703     case LibFunc_truncf:
2704       if (TLI->has(Func)) {
2705         U.roundToIntegral(APFloat::rmTowardZero);
2706         return ConstantFP::get(Ty->getContext(), U);
2707       }
2708       break;
2709     }
2710     return nullptr;
2711   }
2712 
2713   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2714     switch (IntrinsicID) {
2715     case Intrinsic::bswap:
2716       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2717     case Intrinsic::ctpop:
2718       return ConstantInt::get(Ty, Op->getValue().popcount());
2719     case Intrinsic::bitreverse:
2720       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2721     case Intrinsic::convert_from_fp16: {
2722       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2723 
2724       bool lost = false;
2725       APFloat::opStatus status = Val.convert(
2726           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2727 
2728       // Conversion is always precise.
2729       (void)status;
2730       assert(status != APFloat::opInexact && !lost &&
2731              "Precision lost during fp16 constfolding");
2732 
2733       return ConstantFP::get(Ty->getContext(), Val);
2734     }
2735 
2736     case Intrinsic::amdgcn_s_wqm: {
2737       uint64_t Val = Op->getZExtValue();
2738       Val |= (Val & 0x5555555555555555ULL) << 1 |
2739              ((Val >> 1) & 0x5555555555555555ULL);
2740       Val |= (Val & 0x3333333333333333ULL) << 2 |
2741              ((Val >> 2) & 0x3333333333333333ULL);
2742       return ConstantInt::get(Ty, Val);
2743     }
2744 
2745     case Intrinsic::amdgcn_s_quadmask: {
2746       uint64_t Val = Op->getZExtValue();
2747       uint64_t QuadMask = 0;
2748       for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
2749         if (!(Val & 0xF))
2750           continue;
2751 
2752         QuadMask |= (1ULL << I);
2753       }
2754       return ConstantInt::get(Ty, QuadMask);
2755     }
2756 
2757     case Intrinsic::amdgcn_s_bitreplicate: {
2758       uint64_t Val = Op->getZExtValue();
2759       Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
2760       Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
2761       Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
2762       Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
2763       Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
2764       Val = Val | Val << 1;
2765       return ConstantInt::get(Ty, Val);
2766     }
2767 
2768     default:
2769       return nullptr;
2770     }
2771   }
2772 
2773   switch (IntrinsicID) {
2774   default: break;
2775   case Intrinsic::vector_reduce_add:
2776   case Intrinsic::vector_reduce_mul:
2777   case Intrinsic::vector_reduce_and:
2778   case Intrinsic::vector_reduce_or:
2779   case Intrinsic::vector_reduce_xor:
2780   case Intrinsic::vector_reduce_smin:
2781   case Intrinsic::vector_reduce_smax:
2782   case Intrinsic::vector_reduce_umin:
2783   case Intrinsic::vector_reduce_umax:
2784     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2785       return C;
2786     break;
2787   }
2788 
2789   // Support ConstantVector in case we have an Undef in the top.
2790   if (isa<ConstantVector>(Operands[0]) ||
2791       isa<ConstantDataVector>(Operands[0])) {
2792     auto *Op = cast<Constant>(Operands[0]);
2793     switch (IntrinsicID) {
2794     default: break;
2795     case Intrinsic::x86_sse_cvtss2si:
2796     case Intrinsic::x86_sse_cvtss2si64:
2797     case Intrinsic::x86_sse2_cvtsd2si:
2798     case Intrinsic::x86_sse2_cvtsd2si64:
2799       if (ConstantFP *FPOp =
2800               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2801         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2802                                            /*roundTowardZero=*/false, Ty,
2803                                            /*IsSigned*/true);
2804       break;
2805     case Intrinsic::x86_sse_cvttss2si:
2806     case Intrinsic::x86_sse_cvttss2si64:
2807     case Intrinsic::x86_sse2_cvttsd2si:
2808     case Intrinsic::x86_sse2_cvttsd2si64:
2809       if (ConstantFP *FPOp =
2810               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2811         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2812                                            /*roundTowardZero=*/true, Ty,
2813                                            /*IsSigned*/true);
2814       break;
2815     }
2816   }
2817 
2818   return nullptr;
2819 }
2820 
2821 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2822                                  const ConstrainedFPIntrinsic *Call) {
2823   APFloat::opStatus St = APFloat::opOK;
2824   auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2825   FCmpInst::Predicate Cond = FCmp->getPredicate();
2826   if (FCmp->isSignaling()) {
2827     if (Op1.isNaN() || Op2.isNaN())
2828       St = APFloat::opInvalidOp;
2829   } else {
2830     if (Op1.isSignaling() || Op2.isSignaling())
2831       St = APFloat::opInvalidOp;
2832   }
2833   bool Result = FCmpInst::compare(Op1, Op2, Cond);
2834   if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2835     return ConstantInt::get(Call->getType()->getScalarType(), Result);
2836   return nullptr;
2837 }
2838 
2839 static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
2840                                       ArrayRef<Constant *> Operands,
2841                                       const TargetLibraryInfo *TLI) {
2842   if (!TLI)
2843     return nullptr;
2844 
2845   LibFunc Func = NotLibFunc;
2846   if (!TLI->getLibFunc(Name, Func))
2847     return nullptr;
2848 
2849   const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
2850   if (!Op1)
2851     return nullptr;
2852 
2853   const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
2854   if (!Op2)
2855     return nullptr;
2856 
2857   const APFloat &Op1V = Op1->getValueAPF();
2858   const APFloat &Op2V = Op2->getValueAPF();
2859 
2860   switch (Func) {
2861   default:
2862     break;
2863   case LibFunc_pow:
2864   case LibFunc_powf:
2865   case LibFunc_pow_finite:
2866   case LibFunc_powf_finite:
2867     if (TLI->has(Func))
2868       return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2869     break;
2870   case LibFunc_fmod:
2871   case LibFunc_fmodf:
2872     if (TLI->has(Func)) {
2873       APFloat V = Op1->getValueAPF();
2874       if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2875         return ConstantFP::get(Ty->getContext(), V);
2876     }
2877     break;
2878   case LibFunc_remainder:
2879   case LibFunc_remainderf:
2880     if (TLI->has(Func)) {
2881       APFloat V = Op1->getValueAPF();
2882       if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2883         return ConstantFP::get(Ty->getContext(), V);
2884     }
2885     break;
2886   case LibFunc_atan2:
2887   case LibFunc_atan2f:
2888     // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2889     // (Solaris), so we do not assume a known result for that.
2890     if (Op1V.isZero() && Op2V.isZero())
2891       return nullptr;
2892     [[fallthrough]];
2893   case LibFunc_atan2_finite:
2894   case LibFunc_atan2f_finite:
2895     if (TLI->has(Func))
2896       return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2897     break;
2898   }
2899 
2900   return nullptr;
2901 }
2902 
2903 static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
2904                                             ArrayRef<Constant *> Operands,
2905                                             const CallBase *Call) {
2906   assert(Operands.size() == 2 && "Wrong number of operands.");
2907 
2908   if (Ty->isFloatingPointTy()) {
2909     // TODO: We should have undef handling for all of the FP intrinsics that
2910     //       are attempted to be folded in this function.
2911     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2912     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2913     switch (IntrinsicID) {
2914     case Intrinsic::maxnum:
2915     case Intrinsic::minnum:
2916     case Intrinsic::maximum:
2917     case Intrinsic::minimum:
2918     case Intrinsic::nvvm_fmax_d:
2919     case Intrinsic::nvvm_fmin_d:
2920       // If one argument is undef, return the other argument.
2921       if (IsOp0Undef)
2922         return Operands[1];
2923       if (IsOp1Undef)
2924         return Operands[0];
2925       break;
2926 
2927     case Intrinsic::nvvm_fmax_f:
2928     case Intrinsic::nvvm_fmax_ftz_f:
2929     case Intrinsic::nvvm_fmax_ftz_nan_f:
2930     case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
2931     case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
2932     case Intrinsic::nvvm_fmax_nan_f:
2933     case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
2934     case Intrinsic::nvvm_fmax_xorsign_abs_f:
2935 
2936     case Intrinsic::nvvm_fmin_f:
2937     case Intrinsic::nvvm_fmin_ftz_f:
2938     case Intrinsic::nvvm_fmin_ftz_nan_f:
2939     case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
2940     case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
2941     case Intrinsic::nvvm_fmin_nan_f:
2942     case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
2943     case Intrinsic::nvvm_fmin_xorsign_abs_f:
2944       // If one arg is undef, the other arg can be returned only if it is
2945       // constant, as we may need to flush it to sign-preserving zero or
2946       // canonicalize the NaN.
2947       if (!IsOp0Undef && !IsOp1Undef)
2948         break;
2949       if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
2950         if (Op->isNaN()) {
2951           APInt NVCanonicalNaN(32, 0x7fffffff);
2952           return ConstantFP::get(
2953               Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
2954         }
2955         if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
2956           return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
2957         else
2958           return Op;
2959       }
2960       break;
2961     }
2962   }
2963 
2964   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2965     const APFloat &Op1V = Op1->getValueAPF();
2966 
2967     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2968       if (Op2->getType() != Op1->getType())
2969         return nullptr;
2970       const APFloat &Op2V = Op2->getValueAPF();
2971 
2972       if (const auto *ConstrIntr =
2973               dyn_cast_if_present<ConstrainedFPIntrinsic>(Call)) {
2974         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2975         APFloat Res = Op1V;
2976         APFloat::opStatus St;
2977         switch (IntrinsicID) {
2978         default:
2979           return nullptr;
2980         case Intrinsic::experimental_constrained_fadd:
2981           St = Res.add(Op2V, RM);
2982           break;
2983         case Intrinsic::experimental_constrained_fsub:
2984           St = Res.subtract(Op2V, RM);
2985           break;
2986         case Intrinsic::experimental_constrained_fmul:
2987           St = Res.multiply(Op2V, RM);
2988           break;
2989         case Intrinsic::experimental_constrained_fdiv:
2990           St = Res.divide(Op2V, RM);
2991           break;
2992         case Intrinsic::experimental_constrained_frem:
2993           St = Res.mod(Op2V);
2994           break;
2995         case Intrinsic::experimental_constrained_fcmp:
2996         case Intrinsic::experimental_constrained_fcmps:
2997           return evaluateCompare(Op1V, Op2V, ConstrIntr);
2998         }
2999         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3000                                St))
3001           return ConstantFP::get(Ty->getContext(), Res);
3002         return nullptr;
3003       }
3004 
3005       switch (IntrinsicID) {
3006       default:
3007         break;
3008       case Intrinsic::copysign:
3009         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
3010       case Intrinsic::minnum:
3011         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
3012       case Intrinsic::maxnum:
3013         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
3014       case Intrinsic::minimum:
3015         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
3016       case Intrinsic::maximum:
3017         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
3018 
3019       case Intrinsic::nvvm_fmax_d:
3020       case Intrinsic::nvvm_fmax_f:
3021       case Intrinsic::nvvm_fmax_ftz_f:
3022       case Intrinsic::nvvm_fmax_ftz_nan_f:
3023       case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3024       case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3025       case Intrinsic::nvvm_fmax_nan_f:
3026       case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3027       case Intrinsic::nvvm_fmax_xorsign_abs_f:
3028 
3029       case Intrinsic::nvvm_fmin_d:
3030       case Intrinsic::nvvm_fmin_f:
3031       case Intrinsic::nvvm_fmin_ftz_f:
3032       case Intrinsic::nvvm_fmin_ftz_nan_f:
3033       case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3034       case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3035       case Intrinsic::nvvm_fmin_nan_f:
3036       case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3037       case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3038 
3039         bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3040                                         IntrinsicID == Intrinsic::nvvm_fmin_d);
3041         bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3042         bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3043         bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3044 
3045         APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3046         APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3047 
3048         bool XorSign = false;
3049         if (IsXorSignAbs) {
3050           XorSign = A.isNegative() ^ B.isNegative();
3051           A = abs(A);
3052           B = abs(B);
3053         }
3054 
3055         bool IsFMax = false;
3056         switch (IntrinsicID) {
3057         case Intrinsic::nvvm_fmax_d:
3058         case Intrinsic::nvvm_fmax_f:
3059         case Intrinsic::nvvm_fmax_ftz_f:
3060         case Intrinsic::nvvm_fmax_ftz_nan_f:
3061         case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3062         case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3063         case Intrinsic::nvvm_fmax_nan_f:
3064         case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3065         case Intrinsic::nvvm_fmax_xorsign_abs_f:
3066           IsFMax = true;
3067           break;
3068         }
3069         APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3070 
3071         if (ShouldCanonicalizeNaNs) {
3072           APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3073           if (A.isNaN() && B.isNaN())
3074             return ConstantFP::get(Ty, NVCanonicalNaN);
3075           else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3076             return ConstantFP::get(Ty, NVCanonicalNaN);
3077         }
3078 
3079         if (A.isNaN() && B.isNaN())
3080           return Operands[1];
3081         else if (A.isNaN())
3082           Res = B;
3083         else if (B.isNaN())
3084           Res = A;
3085 
3086         if (IsXorSignAbs && XorSign != Res.isNegative())
3087           Res.changeSign();
3088 
3089         return ConstantFP::get(Ty->getContext(), Res);
3090       }
3091       }
3092 
3093       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3094         return nullptr;
3095 
3096       switch (IntrinsicID) {
3097       default:
3098         break;
3099       case Intrinsic::pow:
3100         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3101       case Intrinsic::amdgcn_fmul_legacy:
3102         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3103         // NaN or infinity, gives +0.0.
3104         if (Op1V.isZero() || Op2V.isZero())
3105           return ConstantFP::getZero(Ty);
3106         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3107       }
3108 
3109     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3110       switch (IntrinsicID) {
3111       case Intrinsic::ldexp: {
3112         return ConstantFP::get(
3113             Ty->getContext(),
3114             scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3115       }
3116       case Intrinsic::is_fpclass: {
3117         FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3118         bool Result =
3119           ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3120           ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3121           ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3122           ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3123           ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3124           ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3125           ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3126           ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3127           ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3128           ((Mask & fcPosInf) && Op1V.isPosInfinity());
3129         return ConstantInt::get(Ty, Result);
3130       }
3131       case Intrinsic::powi: {
3132         int Exp = static_cast<int>(Op2C->getSExtValue());
3133         switch (Ty->getTypeID()) {
3134         case Type::HalfTyID:
3135         case Type::FloatTyID: {
3136           APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3137           if (Ty->isHalfTy()) {
3138             bool Unused;
3139             Res.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
3140                         &Unused);
3141           }
3142           return ConstantFP::get(Ty->getContext(), Res);
3143         }
3144         case Type::DoubleTyID:
3145           return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3146         default:
3147           return nullptr;
3148         }
3149       }
3150       default:
3151         break;
3152       }
3153     }
3154     return nullptr;
3155   }
3156 
3157   if (Operands[0]->getType()->isIntegerTy() &&
3158       Operands[1]->getType()->isIntegerTy()) {
3159     const APInt *C0, *C1;
3160     if (!getConstIntOrUndef(Operands[0], C0) ||
3161         !getConstIntOrUndef(Operands[1], C1))
3162       return nullptr;
3163 
3164     switch (IntrinsicID) {
3165     default: break;
3166     case Intrinsic::smax:
3167     case Intrinsic::smin:
3168     case Intrinsic::umax:
3169     case Intrinsic::umin:
3170       // This is the same as for binary ops - poison propagates.
3171       // TODO: Poison handling should be consolidated.
3172       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3173         return PoisonValue::get(Ty);
3174 
3175       if (!C0 && !C1)
3176         return UndefValue::get(Ty);
3177       if (!C0 || !C1)
3178         return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3179       return ConstantInt::get(
3180           Ty, ICmpInst::compare(*C0, *C1,
3181                                 MinMaxIntrinsic::getPredicate(IntrinsicID))
3182                   ? *C0
3183                   : *C1);
3184 
3185     case Intrinsic::scmp:
3186     case Intrinsic::ucmp:
3187       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3188         return PoisonValue::get(Ty);
3189 
3190       if (!C0 || !C1)
3191         return ConstantInt::get(Ty, 0);
3192 
3193       int Res;
3194       if (IntrinsicID == Intrinsic::scmp)
3195         Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3196       else
3197         Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3198       return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3199 
3200     case Intrinsic::usub_with_overflow:
3201     case Intrinsic::ssub_with_overflow:
3202       // X - undef -> { 0, false }
3203       // undef - X -> { 0, false }
3204       if (!C0 || !C1)
3205         return Constant::getNullValue(Ty);
3206       [[fallthrough]];
3207     case Intrinsic::uadd_with_overflow:
3208     case Intrinsic::sadd_with_overflow:
3209       // X + undef -> { -1, false }
3210       // undef + x -> { -1, false }
3211       if (!C0 || !C1) {
3212         return ConstantStruct::get(
3213             cast<StructType>(Ty),
3214             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3215              Constant::getNullValue(Ty->getStructElementType(1))});
3216       }
3217       [[fallthrough]];
3218     case Intrinsic::smul_with_overflow:
3219     case Intrinsic::umul_with_overflow: {
3220       // undef * X -> { 0, false }
3221       // X * undef -> { 0, false }
3222       if (!C0 || !C1)
3223         return Constant::getNullValue(Ty);
3224 
3225       APInt Res;
3226       bool Overflow;
3227       switch (IntrinsicID) {
3228       default: llvm_unreachable("Invalid case");
3229       case Intrinsic::sadd_with_overflow:
3230         Res = C0->sadd_ov(*C1, Overflow);
3231         break;
3232       case Intrinsic::uadd_with_overflow:
3233         Res = C0->uadd_ov(*C1, Overflow);
3234         break;
3235       case Intrinsic::ssub_with_overflow:
3236         Res = C0->ssub_ov(*C1, Overflow);
3237         break;
3238       case Intrinsic::usub_with_overflow:
3239         Res = C0->usub_ov(*C1, Overflow);
3240         break;
3241       case Intrinsic::smul_with_overflow:
3242         Res = C0->smul_ov(*C1, Overflow);
3243         break;
3244       case Intrinsic::umul_with_overflow:
3245         Res = C0->umul_ov(*C1, Overflow);
3246         break;
3247       }
3248       Constant *Ops[] = {
3249         ConstantInt::get(Ty->getContext(), Res),
3250         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3251       };
3252       return ConstantStruct::get(cast<StructType>(Ty), Ops);
3253     }
3254     case Intrinsic::uadd_sat:
3255     case Intrinsic::sadd_sat:
3256       // This is the same as for binary ops - poison propagates.
3257       // TODO: Poison handling should be consolidated.
3258       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3259         return PoisonValue::get(Ty);
3260 
3261       if (!C0 && !C1)
3262         return UndefValue::get(Ty);
3263       if (!C0 || !C1)
3264         return Constant::getAllOnesValue(Ty);
3265       if (IntrinsicID == Intrinsic::uadd_sat)
3266         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3267       else
3268         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3269     case Intrinsic::usub_sat:
3270     case Intrinsic::ssub_sat:
3271       // This is the same as for binary ops - poison propagates.
3272       // TODO: Poison handling should be consolidated.
3273       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3274         return PoisonValue::get(Ty);
3275 
3276       if (!C0 && !C1)
3277         return UndefValue::get(Ty);
3278       if (!C0 || !C1)
3279         return Constant::getNullValue(Ty);
3280       if (IntrinsicID == Intrinsic::usub_sat)
3281         return ConstantInt::get(Ty, C0->usub_sat(*C1));
3282       else
3283         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3284     case Intrinsic::cttz:
3285     case Intrinsic::ctlz:
3286       assert(C1 && "Must be constant int");
3287 
3288       // cttz(0, 1) and ctlz(0, 1) are poison.
3289       if (C1->isOne() && (!C0 || C0->isZero()))
3290         return PoisonValue::get(Ty);
3291       if (!C0)
3292         return Constant::getNullValue(Ty);
3293       if (IntrinsicID == Intrinsic::cttz)
3294         return ConstantInt::get(Ty, C0->countr_zero());
3295       else
3296         return ConstantInt::get(Ty, C0->countl_zero());
3297 
3298     case Intrinsic::abs:
3299       assert(C1 && "Must be constant int");
3300       assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3301 
3302       // Undef or minimum val operand with poison min --> poison
3303       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3304         return PoisonValue::get(Ty);
3305 
3306       // Undef operand with no poison min --> 0 (sign bit must be clear)
3307       if (!C0)
3308         return Constant::getNullValue(Ty);
3309 
3310       return ConstantInt::get(Ty, C0->abs());
3311     case Intrinsic::amdgcn_wave_reduce_umin:
3312     case Intrinsic::amdgcn_wave_reduce_umax:
3313       return dyn_cast<Constant>(Operands[0]);
3314     }
3315 
3316     return nullptr;
3317   }
3318 
3319   // Support ConstantVector in case we have an Undef in the top.
3320   if ((isa<ConstantVector>(Operands[0]) ||
3321        isa<ConstantDataVector>(Operands[0])) &&
3322       // Check for default rounding mode.
3323       // FIXME: Support other rounding modes?
3324       isa<ConstantInt>(Operands[1]) &&
3325       cast<ConstantInt>(Operands[1])->getValue() == 4) {
3326     auto *Op = cast<Constant>(Operands[0]);
3327     switch (IntrinsicID) {
3328     default: break;
3329     case Intrinsic::x86_avx512_vcvtss2si32:
3330     case Intrinsic::x86_avx512_vcvtss2si64:
3331     case Intrinsic::x86_avx512_vcvtsd2si32:
3332     case Intrinsic::x86_avx512_vcvtsd2si64:
3333       if (ConstantFP *FPOp =
3334               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3335         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3336                                            /*roundTowardZero=*/false, Ty,
3337                                            /*IsSigned*/true);
3338       break;
3339     case Intrinsic::x86_avx512_vcvtss2usi32:
3340     case Intrinsic::x86_avx512_vcvtss2usi64:
3341     case Intrinsic::x86_avx512_vcvtsd2usi32:
3342     case Intrinsic::x86_avx512_vcvtsd2usi64:
3343       if (ConstantFP *FPOp =
3344               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3345         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3346                                            /*roundTowardZero=*/false, Ty,
3347                                            /*IsSigned*/false);
3348       break;
3349     case Intrinsic::x86_avx512_cvttss2si:
3350     case Intrinsic::x86_avx512_cvttss2si64:
3351     case Intrinsic::x86_avx512_cvttsd2si:
3352     case Intrinsic::x86_avx512_cvttsd2si64:
3353       if (ConstantFP *FPOp =
3354               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3355         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3356                                            /*roundTowardZero=*/true, Ty,
3357                                            /*IsSigned*/true);
3358       break;
3359     case Intrinsic::x86_avx512_cvttss2usi:
3360     case Intrinsic::x86_avx512_cvttss2usi64:
3361     case Intrinsic::x86_avx512_cvttsd2usi:
3362     case Intrinsic::x86_avx512_cvttsd2usi64:
3363       if (ConstantFP *FPOp =
3364               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3365         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3366                                            /*roundTowardZero=*/true, Ty,
3367                                            /*IsSigned*/false);
3368       break;
3369     }
3370   }
3371   return nullptr;
3372 }
3373 
3374 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3375                                                const APFloat &S0,
3376                                                const APFloat &S1,
3377                                                const APFloat &S2) {
3378   unsigned ID;
3379   const fltSemantics &Sem = S0.getSemantics();
3380   APFloat MA(Sem), SC(Sem), TC(Sem);
3381   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3382     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3383       // S2 < 0
3384       ID = 5;
3385       SC = -S0;
3386     } else {
3387       ID = 4;
3388       SC = S0;
3389     }
3390     MA = S2;
3391     TC = -S1;
3392   } else if (abs(S1) >= abs(S0)) {
3393     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3394       // S1 < 0
3395       ID = 3;
3396       TC = -S2;
3397     } else {
3398       ID = 2;
3399       TC = S2;
3400     }
3401     MA = S1;
3402     SC = S0;
3403   } else {
3404     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3405       // S0 < 0
3406       ID = 1;
3407       SC = S2;
3408     } else {
3409       ID = 0;
3410       SC = -S2;
3411     }
3412     MA = S0;
3413     TC = -S1;
3414   }
3415   switch (IntrinsicID) {
3416   default:
3417     llvm_unreachable("unhandled amdgcn cube intrinsic");
3418   case Intrinsic::amdgcn_cubeid:
3419     return APFloat(Sem, ID);
3420   case Intrinsic::amdgcn_cubema:
3421     return MA + MA;
3422   case Intrinsic::amdgcn_cubesc:
3423     return SC;
3424   case Intrinsic::amdgcn_cubetc:
3425     return TC;
3426   }
3427 }
3428 
3429 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3430                                                  Type *Ty) {
3431   const APInt *C0, *C1, *C2;
3432   if (!getConstIntOrUndef(Operands[0], C0) ||
3433       !getConstIntOrUndef(Operands[1], C1) ||
3434       !getConstIntOrUndef(Operands[2], C2))
3435     return nullptr;
3436 
3437   if (!C2)
3438     return UndefValue::get(Ty);
3439 
3440   APInt Val(32, 0);
3441   unsigned NumUndefBytes = 0;
3442   for (unsigned I = 0; I < 32; I += 8) {
3443     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3444     unsigned B = 0;
3445 
3446     if (Sel >= 13)
3447       B = 0xff;
3448     else if (Sel == 12)
3449       B = 0x00;
3450     else {
3451       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3452       if (!Src)
3453         ++NumUndefBytes;
3454       else if (Sel < 8)
3455         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3456       else
3457         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3458     }
3459 
3460     Val.insertBits(B, I, 8);
3461   }
3462 
3463   if (NumUndefBytes == 4)
3464     return UndefValue::get(Ty);
3465 
3466   return ConstantInt::get(Ty, Val);
3467 }
3468 
3469 static Constant *ConstantFoldScalarCall3(StringRef Name,
3470                                          Intrinsic::ID IntrinsicID,
3471                                          Type *Ty,
3472                                          ArrayRef<Constant *> Operands,
3473                                          const TargetLibraryInfo *TLI,
3474                                          const CallBase *Call) {
3475   assert(Operands.size() == 3 && "Wrong number of operands.");
3476 
3477   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3478     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3479       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3480         const APFloat &C1 = Op1->getValueAPF();
3481         const APFloat &C2 = Op2->getValueAPF();
3482         const APFloat &C3 = Op3->getValueAPF();
3483 
3484         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3485           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3486           APFloat Res = C1;
3487           APFloat::opStatus St;
3488           switch (IntrinsicID) {
3489           default:
3490             return nullptr;
3491           case Intrinsic::experimental_constrained_fma:
3492           case Intrinsic::experimental_constrained_fmuladd:
3493             St = Res.fusedMultiplyAdd(C2, C3, RM);
3494             break;
3495           }
3496           if (mayFoldConstrained(
3497                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3498             return ConstantFP::get(Ty->getContext(), Res);
3499           return nullptr;
3500         }
3501 
3502         switch (IntrinsicID) {
3503         default: break;
3504         case Intrinsic::amdgcn_fma_legacy: {
3505           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3506           // NaN or infinity, gives +0.0.
3507           if (C1.isZero() || C2.isZero()) {
3508             // It's tempting to just return C3 here, but that would give the
3509             // wrong result if C3 was -0.0.
3510             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3511           }
3512           [[fallthrough]];
3513         }
3514         case Intrinsic::fma:
3515         case Intrinsic::fmuladd: {
3516           APFloat V = C1;
3517           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3518           return ConstantFP::get(Ty->getContext(), V);
3519         }
3520         case Intrinsic::amdgcn_cubeid:
3521         case Intrinsic::amdgcn_cubema:
3522         case Intrinsic::amdgcn_cubesc:
3523         case Intrinsic::amdgcn_cubetc: {
3524           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3525           return ConstantFP::get(Ty->getContext(), V);
3526         }
3527         }
3528       }
3529     }
3530   }
3531 
3532   if (IntrinsicID == Intrinsic::smul_fix ||
3533       IntrinsicID == Intrinsic::smul_fix_sat) {
3534     // poison * C -> poison
3535     // C * poison -> poison
3536     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3537       return PoisonValue::get(Ty);
3538 
3539     const APInt *C0, *C1;
3540     if (!getConstIntOrUndef(Operands[0], C0) ||
3541         !getConstIntOrUndef(Operands[1], C1))
3542       return nullptr;
3543 
3544     // undef * C -> 0
3545     // C * undef -> 0
3546     if (!C0 || !C1)
3547       return Constant::getNullValue(Ty);
3548 
3549     // This code performs rounding towards negative infinity in case the result
3550     // cannot be represented exactly for the given scale. Targets that do care
3551     // about rounding should use a target hook for specifying how rounding
3552     // should be done, and provide their own folding to be consistent with
3553     // rounding. This is the same approach as used by
3554     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3555     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3556     unsigned Width = C0->getBitWidth();
3557     assert(Scale < Width && "Illegal scale.");
3558     unsigned ExtendedWidth = Width * 2;
3559     APInt Product =
3560         (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3561     if (IntrinsicID == Intrinsic::smul_fix_sat) {
3562       APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3563       APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3564       Product = APIntOps::smin(Product, Max);
3565       Product = APIntOps::smax(Product, Min);
3566     }
3567     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3568   }
3569 
3570   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3571     const APInt *C0, *C1, *C2;
3572     if (!getConstIntOrUndef(Operands[0], C0) ||
3573         !getConstIntOrUndef(Operands[1], C1) ||
3574         !getConstIntOrUndef(Operands[2], C2))
3575       return nullptr;
3576 
3577     bool IsRight = IntrinsicID == Intrinsic::fshr;
3578     if (!C2)
3579       return Operands[IsRight ? 1 : 0];
3580     if (!C0 && !C1)
3581       return UndefValue::get(Ty);
3582 
3583     // The shift amount is interpreted as modulo the bitwidth. If the shift
3584     // amount is effectively 0, avoid UB due to oversized inverse shift below.
3585     unsigned BitWidth = C2->getBitWidth();
3586     unsigned ShAmt = C2->urem(BitWidth);
3587     if (!ShAmt)
3588       return Operands[IsRight ? 1 : 0];
3589 
3590     // (C0 << ShlAmt) | (C1 >> LshrAmt)
3591     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3592     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3593     if (!C0)
3594       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3595     if (!C1)
3596       return ConstantInt::get(Ty, C0->shl(ShlAmt));
3597     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3598   }
3599 
3600   if (IntrinsicID == Intrinsic::amdgcn_perm)
3601     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3602 
3603   return nullptr;
3604 }
3605 
3606 static Constant *ConstantFoldScalarCall(StringRef Name,
3607                                         Intrinsic::ID IntrinsicID,
3608                                         Type *Ty,
3609                                         ArrayRef<Constant *> Operands,
3610                                         const TargetLibraryInfo *TLI,
3611                                         const CallBase *Call) {
3612   if (Operands.size() == 1)
3613     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3614 
3615   if (Operands.size() == 2) {
3616     if (Constant *FoldedLibCall =
3617             ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
3618       return FoldedLibCall;
3619     }
3620     return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
3621   }
3622 
3623   if (Operands.size() == 3)
3624     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3625 
3626   return nullptr;
3627 }
3628 
3629 static Constant *ConstantFoldFixedVectorCall(
3630     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3631     ArrayRef<Constant *> Operands, const DataLayout &DL,
3632     const TargetLibraryInfo *TLI, const CallBase *Call) {
3633   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3634   SmallVector<Constant *, 4> Lane(Operands.size());
3635   Type *Ty = FVTy->getElementType();
3636 
3637   switch (IntrinsicID) {
3638   case Intrinsic::masked_load: {
3639     auto *SrcPtr = Operands[0];
3640     auto *Mask = Operands[2];
3641     auto *Passthru = Operands[3];
3642 
3643     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3644 
3645     SmallVector<Constant *, 32> NewElements;
3646     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3647       auto *MaskElt = Mask->getAggregateElement(I);
3648       if (!MaskElt)
3649         break;
3650       auto *PassthruElt = Passthru->getAggregateElement(I);
3651       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3652       if (isa<UndefValue>(MaskElt)) {
3653         if (PassthruElt)
3654           NewElements.push_back(PassthruElt);
3655         else if (VecElt)
3656           NewElements.push_back(VecElt);
3657         else
3658           return nullptr;
3659       }
3660       if (MaskElt->isNullValue()) {
3661         if (!PassthruElt)
3662           return nullptr;
3663         NewElements.push_back(PassthruElt);
3664       } else if (MaskElt->isOneValue()) {
3665         if (!VecElt)
3666           return nullptr;
3667         NewElements.push_back(VecElt);
3668       } else {
3669         return nullptr;
3670       }
3671     }
3672     if (NewElements.size() != FVTy->getNumElements())
3673       return nullptr;
3674     return ConstantVector::get(NewElements);
3675   }
3676   case Intrinsic::arm_mve_vctp8:
3677   case Intrinsic::arm_mve_vctp16:
3678   case Intrinsic::arm_mve_vctp32:
3679   case Intrinsic::arm_mve_vctp64: {
3680     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3681       unsigned Lanes = FVTy->getNumElements();
3682       uint64_t Limit = Op->getZExtValue();
3683 
3684       SmallVector<Constant *, 16> NCs;
3685       for (unsigned i = 0; i < Lanes; i++) {
3686         if (i < Limit)
3687           NCs.push_back(ConstantInt::getTrue(Ty));
3688         else
3689           NCs.push_back(ConstantInt::getFalse(Ty));
3690       }
3691       return ConstantVector::get(NCs);
3692     }
3693     return nullptr;
3694   }
3695   case Intrinsic::get_active_lane_mask: {
3696     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3697     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3698     if (Op0 && Op1) {
3699       unsigned Lanes = FVTy->getNumElements();
3700       uint64_t Base = Op0->getZExtValue();
3701       uint64_t Limit = Op1->getZExtValue();
3702 
3703       SmallVector<Constant *, 16> NCs;
3704       for (unsigned i = 0; i < Lanes; i++) {
3705         if (Base + i < Limit)
3706           NCs.push_back(ConstantInt::getTrue(Ty));
3707         else
3708           NCs.push_back(ConstantInt::getFalse(Ty));
3709       }
3710       return ConstantVector::get(NCs);
3711     }
3712     return nullptr;
3713   }
3714   default:
3715     break;
3716   }
3717 
3718   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3719     // Gather a column of constants.
3720     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3721       // Some intrinsics use a scalar type for certain arguments.
3722       if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
3723         Lane[J] = Operands[J];
3724         continue;
3725       }
3726 
3727       Constant *Agg = Operands[J]->getAggregateElement(I);
3728       if (!Agg)
3729         return nullptr;
3730 
3731       Lane[J] = Agg;
3732     }
3733 
3734     // Use the regular scalar folding to simplify this column.
3735     Constant *Folded =
3736         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3737     if (!Folded)
3738       return nullptr;
3739     Result[I] = Folded;
3740   }
3741 
3742   return ConstantVector::get(Result);
3743 }
3744 
3745 static Constant *ConstantFoldScalableVectorCall(
3746     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3747     ArrayRef<Constant *> Operands, const DataLayout &DL,
3748     const TargetLibraryInfo *TLI, const CallBase *Call) {
3749   switch (IntrinsicID) {
3750   case Intrinsic::aarch64_sve_convert_from_svbool: {
3751     auto *Src = dyn_cast<Constant>(Operands[0]);
3752     if (!Src || !Src->isNullValue())
3753       break;
3754 
3755     return ConstantInt::getFalse(SVTy);
3756   }
3757   default:
3758     break;
3759   }
3760   return nullptr;
3761 }
3762 
3763 static std::pair<Constant *, Constant *>
3764 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
3765   if (isa<PoisonValue>(Op))
3766     return {Op, PoisonValue::get(IntTy)};
3767 
3768   auto *ConstFP = dyn_cast<ConstantFP>(Op);
3769   if (!ConstFP)
3770     return {};
3771 
3772   const APFloat &U = ConstFP->getValueAPF();
3773   int FrexpExp;
3774   APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
3775   Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
3776 
3777   // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3778   // using undef.
3779   Constant *Result1 = FrexpMant.isFinite()
3780                           ? ConstantInt::getSigned(IntTy, FrexpExp)
3781                           : ConstantInt::getNullValue(IntTy);
3782   return {Result0, Result1};
3783 }
3784 
3785 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3786 static Constant *
3787 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
3788                        StructType *StTy, ArrayRef<Constant *> Operands,
3789                        const DataLayout &DL, const TargetLibraryInfo *TLI,
3790                        const CallBase *Call) {
3791 
3792   switch (IntrinsicID) {
3793   case Intrinsic::frexp: {
3794     Type *Ty0 = StTy->getContainedType(0);
3795     Type *Ty1 = StTy->getContainedType(1)->getScalarType();
3796 
3797     if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
3798       SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
3799       SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
3800 
3801       for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
3802         Constant *Lane = Operands[0]->getAggregateElement(I);
3803         std::tie(Results0[I], Results1[I]) =
3804             ConstantFoldScalarFrexpCall(Lane, Ty1);
3805         if (!Results0[I])
3806           return nullptr;
3807       }
3808 
3809       return ConstantStruct::get(StTy, ConstantVector::get(Results0),
3810                                  ConstantVector::get(Results1));
3811     }
3812 
3813     auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
3814     if (!Result0)
3815       return nullptr;
3816     return ConstantStruct::get(StTy, Result0, Result1);
3817   }
3818   case Intrinsic::sincos: {
3819     Type *Ty = StTy->getContainedType(0);
3820     Type *TyScalar = Ty->getScalarType();
3821 
3822     auto ConstantFoldScalarSincosCall =
3823         [&](Constant *Op) -> std::pair<Constant *, Constant *> {
3824       Constant *SinResult =
3825           ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
3826       Constant *CosResult =
3827           ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
3828       return std::make_pair(SinResult, CosResult);
3829     };
3830 
3831     if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3832       SmallVector<Constant *> SinResults(FVTy->getNumElements());
3833       SmallVector<Constant *> CosResults(FVTy->getNumElements());
3834 
3835       for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3836         Constant *Lane = Operands[0]->getAggregateElement(I);
3837         std::tie(SinResults[I], CosResults[I]) =
3838             ConstantFoldScalarSincosCall(Lane);
3839         if (!SinResults[I] || !CosResults[I])
3840           return nullptr;
3841       }
3842 
3843       return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
3844                                  ConstantVector::get(CosResults));
3845     }
3846 
3847     auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
3848     if (!SinResult || !CosResult)
3849       return nullptr;
3850     return ConstantStruct::get(StTy, SinResult, CosResult);
3851   }
3852   default:
3853     // TODO: Constant folding of vector intrinsics that fall through here does
3854     // not work (e.g. overflow intrinsics)
3855     return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
3856   }
3857 
3858   return nullptr;
3859 }
3860 
3861 } // end anonymous namespace
3862 
3863 Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS,
3864                                             Constant *RHS, Type *Ty,
3865                                             Instruction *FMFSource) {
3866   return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS},
3867                                     dyn_cast_if_present<CallBase>(FMFSource));
3868 }
3869 
3870 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3871                                  ArrayRef<Constant *> Operands,
3872                                  const TargetLibraryInfo *TLI,
3873                                  bool AllowNonDeterministic) {
3874   if (Call->isNoBuiltin())
3875     return nullptr;
3876   if (!F->hasName())
3877     return nullptr;
3878 
3879   // If this is not an intrinsic and not recognized as a library call, bail out.
3880   Intrinsic::ID IID = F->getIntrinsicID();
3881   if (IID == Intrinsic::not_intrinsic) {
3882     if (!TLI)
3883       return nullptr;
3884     LibFunc LibF;
3885     if (!TLI->getLibFunc(*F, LibF))
3886       return nullptr;
3887   }
3888 
3889   // Conservatively assume that floating-point libcalls may be
3890   // non-deterministic.
3891   Type *Ty = F->getReturnType();
3892   if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
3893     return nullptr;
3894 
3895   StringRef Name = F->getName();
3896   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3897     return ConstantFoldFixedVectorCall(
3898         Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
3899 
3900   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3901     return ConstantFoldScalableVectorCall(
3902         Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
3903 
3904   if (auto *StTy = dyn_cast<StructType>(Ty))
3905     return ConstantFoldStructCall(Name, IID, StTy, Operands,
3906                                   F->getDataLayout(), TLI, Call);
3907 
3908   // TODO: If this is a library function, we already discovered that above,
3909   //       so we should pass the LibFunc, not the name (and it might be better
3910   //       still to separate intrinsic handling from libcalls).
3911   return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
3912 }
3913 
3914 bool llvm::isMathLibCallNoop(const CallBase *Call,
3915                              const TargetLibraryInfo *TLI) {
3916   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3917   // (and to some extent ConstantFoldScalarCall).
3918   if (Call->isNoBuiltin() || Call->isStrictFP())
3919     return false;
3920   Function *F = Call->getCalledFunction();
3921   if (!F)
3922     return false;
3923 
3924   LibFunc Func;
3925   if (!TLI || !TLI->getLibFunc(*F, Func))
3926     return false;
3927 
3928   if (Call->arg_size() == 1) {
3929     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3930       const APFloat &Op = OpC->getValueAPF();
3931       switch (Func) {
3932       case LibFunc_logl:
3933       case LibFunc_log:
3934       case LibFunc_logf:
3935       case LibFunc_log2l:
3936       case LibFunc_log2:
3937       case LibFunc_log2f:
3938       case LibFunc_log10l:
3939       case LibFunc_log10:
3940       case LibFunc_log10f:
3941         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3942 
3943       case LibFunc_ilogb:
3944         return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
3945 
3946       case LibFunc_expl:
3947       case LibFunc_exp:
3948       case LibFunc_expf:
3949         // FIXME: These boundaries are slightly conservative.
3950         if (OpC->getType()->isDoubleTy())
3951           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3952         if (OpC->getType()->isFloatTy())
3953           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3954         break;
3955 
3956       case LibFunc_exp2l:
3957       case LibFunc_exp2:
3958       case LibFunc_exp2f:
3959         // FIXME: These boundaries are slightly conservative.
3960         if (OpC->getType()->isDoubleTy())
3961           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3962         if (OpC->getType()->isFloatTy())
3963           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3964         break;
3965 
3966       case LibFunc_sinl:
3967       case LibFunc_sin:
3968       case LibFunc_sinf:
3969       case LibFunc_cosl:
3970       case LibFunc_cos:
3971       case LibFunc_cosf:
3972         return !Op.isInfinity();
3973 
3974       case LibFunc_tanl:
3975       case LibFunc_tan:
3976       case LibFunc_tanf: {
3977         // FIXME: Stop using the host math library.
3978         // FIXME: The computation isn't done in the right precision.
3979         Type *Ty = OpC->getType();
3980         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3981           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3982         break;
3983       }
3984 
3985       case LibFunc_atan:
3986       case LibFunc_atanf:
3987       case LibFunc_atanl:
3988         // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3989         return true;
3990 
3991       case LibFunc_asinl:
3992       case LibFunc_asin:
3993       case LibFunc_asinf:
3994       case LibFunc_acosl:
3995       case LibFunc_acos:
3996       case LibFunc_acosf:
3997         return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
3998                  Op > APFloat::getOne(Op.getSemantics()));
3999 
4000       case LibFunc_sinh:
4001       case LibFunc_cosh:
4002       case LibFunc_sinhf:
4003       case LibFunc_coshf:
4004       case LibFunc_sinhl:
4005       case LibFunc_coshl:
4006         // FIXME: These boundaries are slightly conservative.
4007         if (OpC->getType()->isDoubleTy())
4008           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4009         if (OpC->getType()->isFloatTy())
4010           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4011         break;
4012 
4013       case LibFunc_sqrtl:
4014       case LibFunc_sqrt:
4015       case LibFunc_sqrtf:
4016         return Op.isNaN() || Op.isZero() || !Op.isNegative();
4017 
4018       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4019       // maybe others?
4020       default:
4021         break;
4022       }
4023     }
4024   }
4025 
4026   if (Call->arg_size() == 2) {
4027     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4028     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4029     if (Op0C && Op1C) {
4030       const APFloat &Op0 = Op0C->getValueAPF();
4031       const APFloat &Op1 = Op1C->getValueAPF();
4032 
4033       switch (Func) {
4034       case LibFunc_powl:
4035       case LibFunc_pow:
4036       case LibFunc_powf: {
4037         // FIXME: Stop using the host math library.
4038         // FIXME: The computation isn't done in the right precision.
4039         Type *Ty = Op0C->getType();
4040         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4041           if (Ty == Op1C->getType())
4042             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4043         }
4044         break;
4045       }
4046 
4047       case LibFunc_fmodl:
4048       case LibFunc_fmod:
4049       case LibFunc_fmodf:
4050       case LibFunc_remainderl:
4051       case LibFunc_remainder:
4052       case LibFunc_remainderf:
4053         return Op0.isNaN() || Op1.isNaN() ||
4054                (!Op0.isInfinity() && !Op1.isZero());
4055 
4056       case LibFunc_atan2:
4057       case LibFunc_atan2f:
4058       case LibFunc_atan2l:
4059         // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4060         // GLIBC and MSVC do not appear to raise an error on those, we
4061         // cannot rely on that behavior. POSIX and C11 say that a domain error
4062         // may occur, so allow for that possibility.
4063         return !Op0.isZero() || !Op1.isZero();
4064 
4065       default:
4066         break;
4067       }
4068     }
4069   }
4070 
4071   return false;
4072 }
4073 
4074 void TargetFolder::anchor() {}
4075