xref: /llvm-project/llvm/include/llvm/Analysis/CGSCCPassManager.h (revision 0da2ba811ac8a01509bc533428941fb9519c0715)
1 //===- CGSCCPassManager.h - Call graph pass management ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header provides classes for managing passes over SCCs of the call
11 /// graph. These passes form an important component of LLVM's interprocedural
12 /// optimizations. Because they operate on the SCCs of the call graph, and they
13 /// traverse the graph in post-order, they can effectively do pair-wise
14 /// interprocedural optimizations for all call edges in the program while
15 /// incrementally refining it and improving the context of these pair-wise
16 /// optimizations. At each call site edge, the callee has already been
17 /// optimized as much as is possible. This in turn allows very accurate
18 /// analysis of it for IPO.
19 ///
20 /// A secondary more general goal is to be able to isolate optimization on
21 /// unrelated parts of the IR module. This is useful to ensure our
22 /// optimizations are principled and don't miss oportunities where refinement
23 /// of one part of the module influences transformations in another part of the
24 /// module. But this is also useful if we want to parallelize the optimizations
25 /// across common large module graph shapes which tend to be very wide and have
26 /// large regions of unrelated cliques.
27 ///
28 /// To satisfy these goals, we use the LazyCallGraph which provides two graphs
29 /// nested inside each other (and built lazily from the bottom-up): the call
30 /// graph proper, and a reference graph. The reference graph is super set of
31 /// the call graph and is a conservative approximation of what could through
32 /// scalar or CGSCC transforms *become* the call graph. Using this allows us to
33 /// ensure we optimize functions prior to them being introduced into the call
34 /// graph by devirtualization or other technique, and thus ensures that
35 /// subsequent pair-wise interprocedural optimizations observe the optimized
36 /// form of these functions. The (potentially transitive) reference
37 /// reachability used by the reference graph is a conservative approximation
38 /// that still allows us to have independent regions of the graph.
39 ///
40 /// FIXME: There is one major drawback of the reference graph: in its naive
41 /// form it is quadratic because it contains a distinct edge for each
42 /// (potentially indirect) reference, even if are all through some common
43 /// global table of function pointers. This can be fixed in a number of ways
44 /// that essentially preserve enough of the normalization. While it isn't
45 /// expected to completely preclude the usability of this, it will need to be
46 /// addressed.
47 ///
48 ///
49 /// All of these issues are made substantially more complex in the face of
50 /// mutations to the call graph while optimization passes are being run. When
51 /// mutations to the call graph occur we want to achieve two different things:
52 ///
53 /// - We need to update the call graph in-flight and invalidate analyses
54 ///   cached on entities in the graph. Because of the cache-based analysis
55 ///   design of the pass manager, it is essential to have stable identities for
56 ///   the elements of the IR that passes traverse, and to invalidate any
57 ///   analyses cached on these elements as the mutations take place.
58 ///
59 /// - We want to preserve the incremental and post-order traversal of the
60 ///   graph even as it is refined and mutated. This means we want optimization
61 ///   to observe the most refined form of the call graph and to do so in
62 ///   post-order.
63 ///
64 /// To address this, the CGSCC manager uses both worklists that can be expanded
65 /// by passes which transform the IR, and provides invalidation tests to skip
66 /// entries that become dead. This extra data is provided to every SCC pass so
67 /// that it can carefully update the manager's traversal as the call graph
68 /// mutates.
69 ///
70 /// We also provide support for running function passes within the CGSCC walk,
71 /// and there we provide automatic update of the call graph including of the
72 /// pass manager to reflect call graph changes that fall out naturally as part
73 /// of scalar transformations.
74 ///
75 /// The patterns used to ensure the goals of post-order visitation of the fully
76 /// refined graph:
77 ///
78 /// 1) Sink toward the "bottom" as the graph is refined. This means that any
79 ///    iteration continues in some valid post-order sequence after the mutation
80 ///    has altered the structure.
81 ///
82 /// 2) Enqueue in post-order, including the current entity. If the current
83 ///    entity's shape changes, it and everything after it in post-order needs
84 ///    to be visited to observe that shape.
85 ///
86 //===----------------------------------------------------------------------===//
87 
88 #ifndef LLVM_ANALYSIS_CGSCCPASSMANAGER_H
89 #define LLVM_ANALYSIS_CGSCCPASSMANAGER_H
90 
91 #include "llvm/ADT/MapVector.h"
92 #include "llvm/Analysis/LazyCallGraph.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/ValueHandle.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include <cassert>
97 #include <utility>
98 
99 namespace llvm {
100 
101 class Function;
102 template <typename T, unsigned int N> class SmallPriorityWorklist;
103 struct CGSCCUpdateResult;
104 
105 class Module;
106 
107 // Allow debug logging in this inline function.
108 #define DEBUG_TYPE "cgscc"
109 
110 /// Extern template declaration for the analysis set for this IR unit.
111 extern template class AllAnalysesOn<LazyCallGraph::SCC>;
112 
113 extern template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
114 
115 /// The CGSCC analysis manager.
116 ///
117 /// See the documentation for the AnalysisManager template for detail
118 /// documentation. This type serves as a convenient way to refer to this
119 /// construct in the adaptors and proxies used to integrate this into the larger
120 /// pass manager infrastructure.
121 using CGSCCAnalysisManager =
122     AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
123 
124 // Explicit specialization and instantiation declarations for the pass manager.
125 // See the comments on the definition of the specialization for details on how
126 // it differs from the primary template.
127 template <>
128 PreservedAnalyses
129 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
130             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
131                                       CGSCCAnalysisManager &AM,
132                                       LazyCallGraph &G, CGSCCUpdateResult &UR);
133 extern template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
134                                   LazyCallGraph &, CGSCCUpdateResult &>;
135 
136 /// The CGSCC pass manager.
137 ///
138 /// See the documentation for the PassManager template for details. It runs
139 /// a sequence of SCC passes over each SCC that the manager is run over. This
140 /// type serves as a convenient way to refer to this construct.
141 using CGSCCPassManager =
142     PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
143                 CGSCCUpdateResult &>;
144 
145 /// An explicit specialization of the require analysis template pass.
146 template <typename AnalysisT>
147 struct RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC, CGSCCAnalysisManager,
148                            LazyCallGraph &, CGSCCUpdateResult &>
149     : PassInfoMixin<RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC,
150                                         CGSCCAnalysisManager, LazyCallGraph &,
151                                         CGSCCUpdateResult &>> {
152   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
153                         LazyCallGraph &CG, CGSCCUpdateResult &) {
154     (void)AM.template getResult<AnalysisT>(C, CG);
155     return PreservedAnalyses::all();
156   }
157   void printPipeline(raw_ostream &OS,
158                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
159     auto ClassName = AnalysisT::name();
160     auto PassName = MapClassName2PassName(ClassName);
161     OS << "require<" << PassName << '>';
162   }
163 };
164 
165 /// A proxy from a \c CGSCCAnalysisManager to a \c Module.
166 using CGSCCAnalysisManagerModuleProxy =
167     InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
168 
169 /// We need a specialized result for the \c CGSCCAnalysisManagerModuleProxy so
170 /// it can have access to the call graph in order to walk all the SCCs when
171 /// invalidating things.
172 template <> class CGSCCAnalysisManagerModuleProxy::Result {
173 public:
174   explicit Result(CGSCCAnalysisManager &InnerAM, LazyCallGraph &G)
175       : InnerAM(&InnerAM), G(&G) {}
176 
177   /// Accessor for the analysis manager.
178   CGSCCAnalysisManager &getManager() { return *InnerAM; }
179 
180   /// Handler for invalidation of the Module.
181   ///
182   /// If the proxy analysis itself is preserved, then we assume that the set of
183   /// SCCs in the Module hasn't changed. Thus any pointers to SCCs in the
184   /// CGSCCAnalysisManager are still valid, and we don't need to call \c clear
185   /// on the CGSCCAnalysisManager.
186   ///
187   /// Regardless of whether this analysis is marked as preserved, all of the
188   /// analyses in the \c CGSCCAnalysisManager are potentially invalidated based
189   /// on the set of preserved analyses.
190   bool invalidate(Module &M, const PreservedAnalyses &PA,
191                   ModuleAnalysisManager::Invalidator &Inv);
192 
193 private:
194   CGSCCAnalysisManager *InnerAM;
195   LazyCallGraph *G;
196 };
197 
198 /// Provide a specialized run method for the \c CGSCCAnalysisManagerModuleProxy
199 /// so it can pass the lazy call graph to the result.
200 template <>
201 CGSCCAnalysisManagerModuleProxy::Result
202 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM);
203 
204 // Ensure the \c CGSCCAnalysisManagerModuleProxy is provided as an extern
205 // template.
206 extern template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
207 
208 extern template class OuterAnalysisManagerProxy<
209     ModuleAnalysisManager, LazyCallGraph::SCC, LazyCallGraph &>;
210 
211 /// A proxy from a \c ModuleAnalysisManager to an \c SCC.
212 using ModuleAnalysisManagerCGSCCProxy =
213     OuterAnalysisManagerProxy<ModuleAnalysisManager, LazyCallGraph::SCC,
214                               LazyCallGraph &>;
215 
216 /// Support structure for SCC passes to communicate updates the call graph back
217 /// to the CGSCC pass manager infrastructure.
218 ///
219 /// The CGSCC pass manager runs SCC passes which are allowed to update the call
220 /// graph and SCC structures. This means the structure the pass manager works
221 /// on is mutating underneath it. In order to support that, there needs to be
222 /// careful communication about the precise nature and ramifications of these
223 /// updates to the pass management infrastructure.
224 ///
225 /// All SCC passes will have to accept a reference to the management layer's
226 /// update result struct and use it to reflect the results of any CG updates
227 /// performed.
228 ///
229 /// Passes which do not change the call graph structure in any way can just
230 /// ignore this argument to their run method.
231 struct CGSCCUpdateResult {
232   /// Worklist of the SCCs queued for processing.
233   ///
234   /// When a pass refines the graph and creates new SCCs or causes them to have
235   /// a different shape or set of component functions it should add the SCCs to
236   /// this worklist so that we visit them in the refined form.
237   ///
238   /// Note that if the SCCs are part of a RefSCC that is added to the \c
239   /// RCWorklist, they don't need to be added here as visiting the RefSCC will
240   /// be sufficient to re-visit the SCCs within it.
241   ///
242   /// This worklist is in reverse post-order, as we pop off the back in order
243   /// to observe SCCs in post-order. When adding SCCs, clients should add them
244   /// in reverse post-order.
245   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> &CWorklist;
246 
247   /// The set of invalidated SCCs which should be skipped if they are found
248   /// in \c CWorklist.
249   ///
250   /// This is used to quickly prune out SCCs when they get deleted and happen
251   /// to already be on the worklist. We use this primarily to avoid scanning
252   /// the list and removing entries from it.
253   SmallPtrSetImpl<LazyCallGraph::SCC *> &InvalidatedSCCs;
254 
255   /// If non-null, the updated current \c SCC being processed.
256   ///
257   /// This is set when a graph refinement takes place and the "current" point
258   /// in the graph moves "down" or earlier in the post-order walk. This will
259   /// often cause the "current" SCC to be a newly created SCC object and the
260   /// old one to be added to the above worklist. When that happens, this
261   /// pointer is non-null and can be used to continue processing the "top" of
262   /// the post-order walk.
263   LazyCallGraph::SCC *UpdatedC;
264 
265   /// Preserved analyses across SCCs.
266   ///
267   /// We specifically want to allow CGSCC passes to mutate ancestor IR
268   /// (changing both the CG structure and the function IR itself). However,
269   /// this means we need to take special care to correctly mark what analyses
270   /// are preserved *across* SCCs. We have to track this out-of-band here
271   /// because within the main `PassManager` infrastructure we need to mark
272   /// everything within an SCC as preserved in order to avoid repeatedly
273   /// invalidating the same analyses as we unnest pass managers and adaptors.
274   /// So we track the cross-SCC version of the preserved analyses here from any
275   /// code that does direct invalidation of SCC analyses, and then use it
276   /// whenever we move forward in the post-order walk of SCCs before running
277   /// passes over the new SCC.
278   PreservedAnalyses CrossSCCPA;
279 
280   /// A hacky area where the inliner can retain history about inlining
281   /// decisions that mutated the call graph's SCC structure in order to avoid
282   /// infinite inlining. See the comments in the inliner's CG update logic.
283   ///
284   /// FIXME: Keeping this here seems like a big layering issue, we should look
285   /// for a better technique.
286   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
287       &InlinedInternalEdges;
288 
289   /// Functions that a pass has considered to be dead to be removed at the end
290   /// of the call graph walk in batch.
291   SmallVector<Function *, 4> &DeadFunctions;
292 
293   /// Weak VHs to keep track of indirect calls for the purposes of detecting
294   /// devirtualization.
295   ///
296   /// This is a map to avoid having duplicate entries. If a Value is
297   /// deallocated, its corresponding WeakTrackingVH will be nulled out. When
298   /// checking if a Value is in the map or not, also check if the corresponding
299   /// WeakTrackingVH is null to avoid issues with a new Value sharing the same
300   /// address as a deallocated one.
301   SmallMapVector<Value *, WeakTrackingVH, 16> IndirectVHs;
302 };
303 
304 /// The core module pass which does a post-order walk of the SCCs and
305 /// runs a CGSCC pass over each one.
306 ///
307 /// Designed to allow composition of a CGSCCPass(Manager) and
308 /// a ModulePassManager. Note that this pass must be run with a module analysis
309 /// manager as it uses the LazyCallGraph analysis. It will also run the
310 /// \c CGSCCAnalysisManagerModuleProxy analysis prior to running the CGSCC
311 /// pass over the module to enable a \c FunctionAnalysisManager to be used
312 /// within this run safely.
313 class ModuleToPostOrderCGSCCPassAdaptor
314     : public PassInfoMixin<ModuleToPostOrderCGSCCPassAdaptor> {
315 public:
316   using PassConceptT =
317       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
318                           LazyCallGraph &, CGSCCUpdateResult &>;
319 
320   explicit ModuleToPostOrderCGSCCPassAdaptor(std::unique_ptr<PassConceptT> Pass)
321       : Pass(std::move(Pass)) {}
322 
323   ModuleToPostOrderCGSCCPassAdaptor(ModuleToPostOrderCGSCCPassAdaptor &&Arg)
324       : Pass(std::move(Arg.Pass)) {}
325 
326   friend void swap(ModuleToPostOrderCGSCCPassAdaptor &LHS,
327                    ModuleToPostOrderCGSCCPassAdaptor &RHS) {
328     std::swap(LHS.Pass, RHS.Pass);
329   }
330 
331   ModuleToPostOrderCGSCCPassAdaptor &
332   operator=(ModuleToPostOrderCGSCCPassAdaptor RHS) {
333     swap(*this, RHS);
334     return *this;
335   }
336 
337   /// Runs the CGSCC pass across every SCC in the module.
338   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
339 
340   void printPipeline(raw_ostream &OS,
341                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
342     OS << "cgscc(";
343     Pass->printPipeline(OS, MapClassName2PassName);
344     OS << ')';
345   }
346 
347   static bool isRequired() { return true; }
348 
349 private:
350   std::unique_ptr<PassConceptT> Pass;
351 };
352 
353 /// A function to deduce a function pass type and wrap it in the
354 /// templated adaptor.
355 template <typename CGSCCPassT>
356 ModuleToPostOrderCGSCCPassAdaptor
357 createModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT &&Pass) {
358   using PassModelT =
359       detail::PassModel<LazyCallGraph::SCC, CGSCCPassT, CGSCCAnalysisManager,
360                         LazyCallGraph &, CGSCCUpdateResult &>;
361   // Do not use make_unique, it causes too many template instantiations,
362   // causing terrible compile times.
363   return ModuleToPostOrderCGSCCPassAdaptor(
364       std::unique_ptr<ModuleToPostOrderCGSCCPassAdaptor::PassConceptT>(
365           new PassModelT(std::forward<CGSCCPassT>(Pass))));
366 }
367 
368 /// A proxy from a \c FunctionAnalysisManager to an \c SCC.
369 ///
370 /// When a module pass runs and triggers invalidation, both the CGSCC and
371 /// Function analysis manager proxies on the module get an invalidation event.
372 /// We don't want to fully duplicate responsibility for most of the
373 /// invalidation logic. Instead, this layer is only responsible for SCC-local
374 /// invalidation events. We work with the module's FunctionAnalysisManager to
375 /// invalidate function analyses.
376 class FunctionAnalysisManagerCGSCCProxy
377     : public AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy> {
378 public:
379   class Result {
380   public:
381     explicit Result() : FAM(nullptr) {}
382     explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
383 
384     void updateFAM(FunctionAnalysisManager &FAM) { this->FAM = &FAM; }
385     /// Accessor for the analysis manager.
386     FunctionAnalysisManager &getManager() {
387       assert(FAM);
388       return *FAM;
389     }
390 
391     bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
392                     CGSCCAnalysisManager::Invalidator &Inv);
393 
394   private:
395     FunctionAnalysisManager *FAM;
396   };
397 
398   /// Computes the \c FunctionAnalysisManager and stores it in the result proxy.
399   Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &);
400 
401 private:
402   friend AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy>;
403 
404   static AnalysisKey Key;
405 };
406 
407 extern template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
408 
409 /// A proxy from a \c CGSCCAnalysisManager to a \c Function.
410 using CGSCCAnalysisManagerFunctionProxy =
411     OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
412 
413 /// Helper to update the call graph after running a function pass.
414 ///
415 /// Function passes can only mutate the call graph in specific ways. This
416 /// routine provides a helper that updates the call graph in those ways
417 /// including returning whether any changes were made and populating a CG
418 /// update result struct for the overall CGSCC walk.
419 LazyCallGraph::SCC &updateCGAndAnalysisManagerForFunctionPass(
420     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
421     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
422     FunctionAnalysisManager &FAM);
423 
424 /// Helper to update the call graph after running a CGSCC pass.
425 ///
426 /// CGSCC passes can only mutate the call graph in specific ways. This
427 /// routine provides a helper that updates the call graph in those ways
428 /// including returning whether any changes were made and populating a CG
429 /// update result struct for the overall CGSCC walk.
430 LazyCallGraph::SCC &updateCGAndAnalysisManagerForCGSCCPass(
431     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
432     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
433     FunctionAnalysisManager &FAM);
434 
435 /// Adaptor that maps from a SCC to its functions.
436 ///
437 /// Designed to allow composition of a FunctionPass(Manager) and
438 /// a CGSCCPassManager. Note that if this pass is constructed with a pointer
439 /// to a \c CGSCCAnalysisManager it will run the
440 /// \c FunctionAnalysisManagerCGSCCProxy analysis prior to running the function
441 /// pass over the SCC to enable a \c FunctionAnalysisManager to be used
442 /// within this run safely.
443 class CGSCCToFunctionPassAdaptor
444     : public PassInfoMixin<CGSCCToFunctionPassAdaptor> {
445 public:
446   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
447 
448   explicit CGSCCToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
449                                       bool EagerlyInvalidate, bool NoRerun)
450       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate),
451         NoRerun(NoRerun) {}
452 
453   CGSCCToFunctionPassAdaptor(CGSCCToFunctionPassAdaptor &&Arg)
454       : Pass(std::move(Arg.Pass)), EagerlyInvalidate(Arg.EagerlyInvalidate),
455         NoRerun(Arg.NoRerun) {}
456 
457   friend void swap(CGSCCToFunctionPassAdaptor &LHS,
458                    CGSCCToFunctionPassAdaptor &RHS) {
459     std::swap(LHS.Pass, RHS.Pass);
460   }
461 
462   CGSCCToFunctionPassAdaptor &operator=(CGSCCToFunctionPassAdaptor RHS) {
463     swap(*this, RHS);
464     return *this;
465   }
466 
467   /// Runs the function pass across every function in the module.
468   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
469                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
470 
471   void printPipeline(raw_ostream &OS,
472                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
473     OS << "function";
474     if (EagerlyInvalidate || NoRerun) {
475       OS << "<";
476       if (EagerlyInvalidate)
477         OS << "eager-inv";
478       if (EagerlyInvalidate && NoRerun)
479         OS << ";";
480       if (NoRerun)
481         OS << "no-rerun";
482       OS << ">";
483     }
484     OS << '(';
485     Pass->printPipeline(OS, MapClassName2PassName);
486     OS << ')';
487   }
488 
489   static bool isRequired() { return true; }
490 
491 private:
492   std::unique_ptr<PassConceptT> Pass;
493   bool EagerlyInvalidate;
494   bool NoRerun;
495 };
496 
497 /// A function to deduce a function pass type and wrap it in the
498 /// templated adaptor.
499 template <typename FunctionPassT>
500 CGSCCToFunctionPassAdaptor
501 createCGSCCToFunctionPassAdaptor(FunctionPassT &&Pass,
502                                  bool EagerlyInvalidate = false,
503                                  bool NoRerun = false) {
504   using PassModelT =
505       detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>;
506   // Do not use make_unique, it causes too many template instantiations,
507   // causing terrible compile times.
508   return CGSCCToFunctionPassAdaptor(
509       std::unique_ptr<CGSCCToFunctionPassAdaptor::PassConceptT>(
510           new PassModelT(std::forward<FunctionPassT>(Pass))),
511       EagerlyInvalidate, NoRerun);
512 }
513 
514 // A marker to determine if function passes should be run on a function within a
515 // CGSCCToFunctionPassAdaptor. This is used to prevent running an expensive
516 // function pass (manager) on a function multiple times if SCC mutations cause a
517 // function to be visited multiple times and the function is not modified by
518 // other SCC passes.
519 class ShouldNotRunFunctionPassesAnalysis
520     : public AnalysisInfoMixin<ShouldNotRunFunctionPassesAnalysis> {
521 public:
522   static AnalysisKey Key;
523   struct Result {};
524 
525   Result run(Function &F, FunctionAnalysisManager &FAM) { return Result(); }
526 };
527 
528 /// A helper that repeats an SCC pass each time an indirect call is refined to
529 /// a direct call by that pass.
530 ///
531 /// While the CGSCC pass manager works to re-visit SCCs and RefSCCs as they
532 /// change shape, we may also want to repeat an SCC pass if it simply refines
533 /// an indirect call to a direct call, even if doing so does not alter the
534 /// shape of the graph. Note that this only pertains to direct calls to
535 /// functions where IPO across the SCC may be able to compute more precise
536 /// results. For intrinsics, we assume scalar optimizations already can fully
537 /// reason about them.
538 ///
539 /// This repetition has the potential to be very large however, as each one
540 /// might refine a single call site. As a consequence, in practice we use an
541 /// upper bound on the number of repetitions to limit things.
542 class DevirtSCCRepeatedPass : public PassInfoMixin<DevirtSCCRepeatedPass> {
543 public:
544   using PassConceptT =
545       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
546                           LazyCallGraph &, CGSCCUpdateResult &>;
547 
548   explicit DevirtSCCRepeatedPass(std::unique_ptr<PassConceptT> Pass,
549                                  int MaxIterations)
550       : Pass(std::move(Pass)), MaxIterations(MaxIterations) {}
551 
552   /// Runs the wrapped pass up to \c MaxIterations on the SCC, iterating
553   /// whenever an indirect call is refined.
554   PreservedAnalyses run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM,
555                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
556 
557   void printPipeline(raw_ostream &OS,
558                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
559     OS << "devirt<" << MaxIterations << ">(";
560     Pass->printPipeline(OS, MapClassName2PassName);
561     OS << ')';
562   }
563 
564 private:
565   std::unique_ptr<PassConceptT> Pass;
566   int MaxIterations;
567 };
568 
569 /// A function to deduce a function pass type and wrap it in the
570 /// templated adaptor.
571 template <typename CGSCCPassT>
572 DevirtSCCRepeatedPass createDevirtSCCRepeatedPass(CGSCCPassT &&Pass,
573                                                   int MaxIterations) {
574   using PassModelT =
575       detail::PassModel<LazyCallGraph::SCC, CGSCCPassT, CGSCCAnalysisManager,
576                         LazyCallGraph &, CGSCCUpdateResult &>;
577   // Do not use make_unique, it causes too many template instantiations,
578   // causing terrible compile times.
579   return DevirtSCCRepeatedPass(
580       std::unique_ptr<DevirtSCCRepeatedPass::PassConceptT>(
581           new PassModelT(std::forward<CGSCCPassT>(Pass))),
582       MaxIterations);
583 }
584 
585 // Clear out the debug logging macro.
586 #undef DEBUG_TYPE
587 
588 } // end namespace llvm
589 
590 #endif // LLVM_ANALYSIS_CGSCCPASSMANAGER_H
591