xref: /llvm-project/llvm/include/llvm/Analysis/AliasAnalysis.h (revision 778138114e9e42e28fcb51c0a38224e667a3790c)
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/ModRef.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <optional>
51 #include <vector>
52 
53 namespace llvm {
54 
55 class AtomicCmpXchgInst;
56 class BasicBlock;
57 class CatchPadInst;
58 class CatchReturnInst;
59 class DominatorTree;
60 class FenceInst;
61 class LoopInfo;
62 class TargetLibraryInfo;
63 
64 /// The possible results of an alias query.
65 ///
66 /// These results are always computed between two MemoryLocation objects as
67 /// a query to some alias analysis.
68 ///
69 /// Note that these are unscoped enumerations because we would like to support
70 /// implicitly testing a result for the existence of any possible aliasing with
71 /// a conversion to bool, but an "enum class" doesn't support this. The
72 /// canonical names from the literature are suffixed and unique anyways, and so
73 /// they serve as global constants in LLVM for these results.
74 ///
75 /// See docs/AliasAnalysis.html for more information on the specific meanings
76 /// of these values.
77 class AliasResult {
78 private:
79   static const int OffsetBits = 23;
80   static const int AliasBits = 8;
81   static_assert(AliasBits + 1 + OffsetBits <= 32,
82                 "AliasResult size is intended to be 4 bytes!");
83 
84   unsigned int Alias : AliasBits;
85   unsigned int HasOffset : 1;
86   signed int Offset : OffsetBits;
87 
88 public:
89   enum Kind : uint8_t {
90     /// The two locations do not alias at all.
91     ///
92     /// This value is arranged to convert to false, while all other values
93     /// convert to true. This allows a boolean context to convert the result to
94     /// a binary flag indicating whether there is the possibility of aliasing.
95     NoAlias = 0,
96     /// The two locations may or may not alias. This is the least precise
97     /// result.
98     MayAlias,
99     /// The two locations alias, but only due to a partial overlap.
100     PartialAlias,
101     /// The two locations precisely alias each other.
102     MustAlias,
103   };
104   static_assert(MustAlias < (1 << AliasBits),
105                 "Not enough bit field size for the enum!");
106 
107   explicit AliasResult() = delete;
108   constexpr AliasResult(const Kind &Alias)
109       : Alias(Alias), HasOffset(false), Offset(0) {}
110 
111   operator Kind() const { return static_cast<Kind>(Alias); }
112 
113   bool operator==(const AliasResult &Other) const {
114     return Alias == Other.Alias && HasOffset == Other.HasOffset &&
115            Offset == Other.Offset;
116   }
117   bool operator!=(const AliasResult &Other) const { return !(*this == Other); }
118 
119   bool operator==(Kind K) const { return Alias == K; }
120   bool operator!=(Kind K) const { return !(*this == K); }
121 
122   constexpr bool hasOffset() const { return HasOffset; }
123   constexpr int32_t getOffset() const {
124     assert(HasOffset && "No offset!");
125     return Offset;
126   }
127   void setOffset(int32_t NewOffset) {
128     if (isInt<OffsetBits>(NewOffset)) {
129       HasOffset = true;
130       Offset = NewOffset;
131     }
132   }
133 
134   /// Helper for processing AliasResult for swapped memory location pairs.
135   void swap(bool DoSwap = true) {
136     if (DoSwap && hasOffset())
137       setOffset(-getOffset());
138   }
139 };
140 
141 static_assert(sizeof(AliasResult) == 4,
142               "AliasResult size is intended to be 4 bytes!");
143 
144 /// << operator for AliasResult.
145 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
146 
147 /// Virtual base class for providers of capture analysis.
148 struct CaptureAnalysis {
149   virtual ~CaptureAnalysis() = 0;
150 
151   /// Check whether Object is not captured before instruction I. If OrAt is
152   /// true, captures by instruction I itself are also considered.
153   ///
154   /// If I is nullptr, then captures at any point will be considered.
155   virtual bool isNotCapturedBefore(const Value *Object, const Instruction *I,
156                                    bool OrAt) = 0;
157 };
158 
159 /// Context-free CaptureAnalysis provider, which computes and caches whether an
160 /// object is captured in the function at all, but does not distinguish whether
161 /// it was captured before or after the context instruction.
162 class SimpleCaptureAnalysis final : public CaptureAnalysis {
163   SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
164 
165 public:
166   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
167                            bool OrAt) override;
168 };
169 
170 /// Context-sensitive CaptureAnalysis provider, which computes and caches the
171 /// earliest common dominator closure of all captures. It provides a good
172 /// approximation to a precise "captures before" analysis.
173 class EarliestEscapeAnalysis final : public CaptureAnalysis {
174   DominatorTree &DT;
175   const LoopInfo *LI;
176 
177   /// Map from identified local object to an instruction before which it does
178   /// not escape, or nullptr if it never escapes. The "earliest" instruction
179   /// may be a conservative approximation, e.g. the first instruction in the
180   /// function is always a legal choice.
181   DenseMap<const Value *, Instruction *> EarliestEscapes;
182 
183   /// Reverse map from instruction to the objects it is the earliest escape for.
184   /// This is used for cache invalidation purposes.
185   DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
186 
187 public:
188   EarliestEscapeAnalysis(DominatorTree &DT, const LoopInfo *LI = nullptr)
189       : DT(DT), LI(LI) {}
190 
191   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
192                            bool OrAt) override;
193 
194   void removeInstruction(Instruction *I);
195 };
196 
197 /// Cache key for BasicAA results. It only includes the pointer and size from
198 /// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes
199 /// the value of MayBeCrossIteration, which may affect BasicAA results.
200 struct AACacheLoc {
201   using PtrTy = PointerIntPair<const Value *, 1, bool>;
202   PtrTy Ptr;
203   LocationSize Size;
204 
205   AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {}
206   AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration)
207       : Ptr(Ptr, MayBeCrossIteration), Size(Size) {}
208 };
209 
210 template <> struct DenseMapInfo<AACacheLoc> {
211   static inline AACacheLoc getEmptyKey() {
212     return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(),
213             DenseMapInfo<LocationSize>::getEmptyKey()};
214   }
215   static inline AACacheLoc getTombstoneKey() {
216     return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(),
217             DenseMapInfo<LocationSize>::getTombstoneKey()};
218   }
219   static unsigned getHashValue(const AACacheLoc &Val) {
220     return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^
221            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
222   }
223   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
224     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
225   }
226 };
227 
228 class AAResults;
229 
230 /// This class stores info we want to provide to or retain within an alias
231 /// query. By default, the root query is stateless and starts with a freshly
232 /// constructed info object. Specific alias analyses can use this query info to
233 /// store per-query state that is important for recursive or nested queries to
234 /// avoid recomputing. To enable preserving this state across multiple queries
235 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
236 /// The information stored in an `AAQueryInfo` is currently limitted to the
237 /// caches used by BasicAA, but can further be extended to fit other AA needs.
238 class AAQueryInfo {
239 public:
240   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
241   struct CacheEntry {
242     /// Cache entry is neither an assumption nor does it use a (non-definitive)
243     /// assumption.
244     static constexpr int Definitive = -2;
245     /// Cache entry is not an assumption itself, but may be using an assumption
246     /// from higher up the stack.
247     static constexpr int AssumptionBased = -1;
248 
249     AliasResult Result;
250     /// Number of times a NoAlias assumption has been used, 0 for assumptions
251     /// that have not been used. Can also take one of the Definitive or
252     /// AssumptionBased values documented above.
253     int NumAssumptionUses;
254 
255     /// Whether this is a definitive (non-assumption) result.
256     bool isDefinitive() const { return NumAssumptionUses == Definitive; }
257     /// Whether this is an assumption that has not been proven yet.
258     bool isAssumption() const { return NumAssumptionUses >= 0; }
259   };
260 
261   // Alias analysis result aggregration using which this query is performed.
262   // Can be used to perform recursive queries.
263   AAResults &AAR;
264 
265   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
266   AliasCacheT AliasCache;
267 
268   CaptureAnalysis *CA;
269 
270   /// Query depth used to distinguish recursive queries.
271   unsigned Depth = 0;
272 
273   /// How many active NoAlias assumption uses there are.
274   int NumAssumptionUses = 0;
275 
276   /// Location pairs for which an assumption based result is currently stored.
277   /// Used to remove all potentially incorrect results from the cache if an
278   /// assumption is disproven.
279   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
280 
281   /// Tracks whether the accesses may be on different cycle iterations.
282   ///
283   /// When interpret "Value" pointer equality as value equality we need to make
284   /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
285   /// come from different "iterations" of a cycle and see different values for
286   /// the same "Value" pointer.
287   ///
288   /// The following example shows the problem:
289   ///   %p = phi(%alloca1, %addr2)
290   ///   %l = load %ptr
291   ///   %addr1 = gep, %alloca2, 0, %l
292   ///   %addr2 = gep  %alloca2, 0, (%l + 1)
293   ///      alias(%p, %addr1) -> MayAlias !
294   ///   store %l, ...
295   bool MayBeCrossIteration = false;
296 
297   /// Whether alias analysis is allowed to use the dominator tree, for use by
298   /// passes that lazily update the DT while performing AA queries.
299   bool UseDominatorTree = true;
300 
301   AAQueryInfo(AAResults &AAR, CaptureAnalysis *CA) : AAR(AAR), CA(CA) {}
302 };
303 
304 /// AAQueryInfo that uses SimpleCaptureAnalysis.
305 class SimpleAAQueryInfo : public AAQueryInfo {
306   SimpleCaptureAnalysis CA;
307 
308 public:
309   SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CA) {}
310 };
311 
312 class BatchAAResults;
313 
314 class AAResults {
315 public:
316   // Make these results default constructable and movable. We have to spell
317   // these out because MSVC won't synthesize them.
318   AAResults(const TargetLibraryInfo &TLI);
319   AAResults(AAResults &&Arg);
320   ~AAResults();
321 
322   /// Register a specific AA result.
323   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
324     // FIXME: We should use a much lighter weight system than the usual
325     // polymorphic pattern because we don't own AAResult. It should
326     // ideally involve two pointers and no separate allocation.
327     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
328   }
329 
330   /// Register a function analysis ID that the results aggregation depends on.
331   ///
332   /// This is used in the new pass manager to implement the invalidation logic
333   /// where we must invalidate the results aggregation if any of our component
334   /// analyses become invalid.
335   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
336 
337   /// Handle invalidation events in the new pass manager.
338   ///
339   /// The aggregation is invalidated if any of the underlying analyses is
340   /// invalidated.
341   bool invalidate(Function &F, const PreservedAnalyses &PA,
342                   FunctionAnalysisManager::Invalidator &Inv);
343 
344   //===--------------------------------------------------------------------===//
345   /// \name Alias Queries
346   /// @{
347 
348   /// The main low level interface to the alias analysis implementation.
349   /// Returns an AliasResult indicating whether the two pointers are aliased to
350   /// each other. This is the interface that must be implemented by specific
351   /// alias analysis implementations.
352   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
353 
354   /// A convenience wrapper around the primary \c alias interface.
355   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
356                     LocationSize V2Size) {
357     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
358   }
359 
360   /// A convenience wrapper around the primary \c alias interface.
361   AliasResult alias(const Value *V1, const Value *V2) {
362     return alias(MemoryLocation::getBeforeOrAfter(V1),
363                  MemoryLocation::getBeforeOrAfter(V2));
364   }
365 
366   /// A trivial helper function to check to see if the specified pointers are
367   /// no-alias.
368   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
369     return alias(LocA, LocB) == AliasResult::NoAlias;
370   }
371 
372   /// A convenience wrapper around the \c isNoAlias helper interface.
373   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
374                  LocationSize V2Size) {
375     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
376   }
377 
378   /// A convenience wrapper around the \c isNoAlias helper interface.
379   bool isNoAlias(const Value *V1, const Value *V2) {
380     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
381                      MemoryLocation::getBeforeOrAfter(V2));
382   }
383 
384   /// A trivial helper function to check to see if the specified pointers are
385   /// must-alias.
386   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
387     return alias(LocA, LocB) == AliasResult::MustAlias;
388   }
389 
390   /// A convenience wrapper around the \c isMustAlias helper interface.
391   bool isMustAlias(const Value *V1, const Value *V2) {
392     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
393            AliasResult::MustAlias;
394   }
395 
396   /// Checks whether the given location points to constant memory, or if
397   /// \p OrLocal is true whether it points to a local alloca.
398   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
399     return isNoModRef(getModRefInfoMask(Loc, OrLocal));
400   }
401 
402   /// A convenience wrapper around the primary \c pointsToConstantMemory
403   /// interface.
404   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
405     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
406   }
407 
408   /// @}
409   //===--------------------------------------------------------------------===//
410   /// \name Simple mod/ref information
411   /// @{
412 
413   /// Returns a bitmask that should be unconditionally applied to the ModRef
414   /// info of a memory location. This allows us to eliminate Mod and/or Ref
415   /// from the ModRef info based on the knowledge that the memory location
416   /// points to constant and/or locally-invariant memory.
417   ///
418   /// If IgnoreLocals is true, then this method returns NoModRef for memory
419   /// that points to a local alloca.
420   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
421                                bool IgnoreLocals = false);
422 
423   /// A convenience wrapper around the primary \c getModRefInfoMask
424   /// interface.
425   ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) {
426     return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals);
427   }
428 
429   /// Get the ModRef info associated with a pointer argument of a call. The
430   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
431   /// that these bits do not necessarily account for the overall behavior of
432   /// the function, but rather only provide additional per-argument
433   /// information.
434   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
435 
436   /// Return the behavior of the given call site.
437   MemoryEffects getMemoryEffects(const CallBase *Call);
438 
439   /// Return the behavior when calling the given function.
440   MemoryEffects getMemoryEffects(const Function *F);
441 
442   /// Checks if the specified call is known to never read or write memory.
443   ///
444   /// Note that if the call only reads from known-constant memory, it is also
445   /// legal to return true. Also, calls that unwind the stack are legal for
446   /// this predicate.
447   ///
448   /// Many optimizations (such as CSE and LICM) can be performed on such calls
449   /// without worrying about aliasing properties, and many calls have this
450   /// property (e.g. calls to 'sin' and 'cos').
451   ///
452   /// This property corresponds to the GCC 'const' attribute.
453   bool doesNotAccessMemory(const CallBase *Call) {
454     return getMemoryEffects(Call).doesNotAccessMemory();
455   }
456 
457   /// Checks if the specified function is known to never read or write memory.
458   ///
459   /// Note that if the function only reads from known-constant memory, it is
460   /// also legal to return true. Also, function that unwind the stack are legal
461   /// for this predicate.
462   ///
463   /// Many optimizations (such as CSE and LICM) can be performed on such calls
464   /// to such functions without worrying about aliasing properties, and many
465   /// functions have this property (e.g. 'sin' and 'cos').
466   ///
467   /// This property corresponds to the GCC 'const' attribute.
468   bool doesNotAccessMemory(const Function *F) {
469     return getMemoryEffects(F).doesNotAccessMemory();
470   }
471 
472   /// Checks if the specified call is known to only read from non-volatile
473   /// memory (or not access memory at all).
474   ///
475   /// Calls that unwind the stack are legal for this predicate.
476   ///
477   /// This property allows many common optimizations to be performed in the
478   /// absence of interfering store instructions, such as CSE of strlen calls.
479   ///
480   /// This property corresponds to the GCC 'pure' attribute.
481   bool onlyReadsMemory(const CallBase *Call) {
482     return getMemoryEffects(Call).onlyReadsMemory();
483   }
484 
485   /// Checks if the specified function is known to only read from non-volatile
486   /// memory (or not access memory at all).
487   ///
488   /// Functions that unwind the stack are legal for this predicate.
489   ///
490   /// This property allows many common optimizations to be performed in the
491   /// absence of interfering store instructions, such as CSE of strlen calls.
492   ///
493   /// This property corresponds to the GCC 'pure' attribute.
494   bool onlyReadsMemory(const Function *F) {
495     return getMemoryEffects(F).onlyReadsMemory();
496   }
497 
498   /// Check whether or not an instruction may read or write the optionally
499   /// specified memory location.
500   ///
501   ///
502   /// An instruction that doesn't read or write memory may be trivially LICM'd
503   /// for example.
504   ///
505   /// For function calls, this delegates to the alias-analysis specific
506   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
507   /// helpers above.
508   ModRefInfo getModRefInfo(const Instruction *I,
509                            const std::optional<MemoryLocation> &OptLoc) {
510     SimpleAAQueryInfo AAQIP(*this);
511     return getModRefInfo(I, OptLoc, AAQIP);
512   }
513 
514   /// A convenience wrapper for constructing the memory location.
515   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
516                            LocationSize Size) {
517     return getModRefInfo(I, MemoryLocation(P, Size));
518   }
519 
520   /// Return information about whether a call and an instruction may refer to
521   /// the same memory locations.
522   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
523 
524   /// Return information about whether a particular call site modifies
525   /// or reads the specified memory location \p MemLoc before instruction \p I
526   /// in a BasicBlock.
527   ModRefInfo callCapturesBefore(const Instruction *I,
528                                 const MemoryLocation &MemLoc,
529                                 DominatorTree *DT) {
530     SimpleAAQueryInfo AAQIP(*this);
531     return callCapturesBefore(I, MemLoc, DT, AAQIP);
532   }
533 
534   /// A convenience wrapper to synthesize a memory location.
535   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
536                                 LocationSize Size, DominatorTree *DT) {
537     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
538   }
539 
540   /// @}
541   //===--------------------------------------------------------------------===//
542   /// \name Higher level methods for querying mod/ref information.
543   /// @{
544 
545   /// Check if it is possible for execution of the specified basic block to
546   /// modify the location Loc.
547   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
548 
549   /// A convenience wrapper synthesizing a memory location.
550   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
551                            LocationSize Size) {
552     return canBasicBlockModify(BB, MemoryLocation(P, Size));
553   }
554 
555   /// Check if it is possible for the execution of the specified instructions
556   /// to mod\ref (according to the mode) the location Loc.
557   ///
558   /// The instructions to consider are all of the instructions in the range of
559   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
560   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
561                                  const MemoryLocation &Loc,
562                                  const ModRefInfo Mode);
563 
564   /// A convenience wrapper synthesizing a memory location.
565   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
566                                  const Value *Ptr, LocationSize Size,
567                                  const ModRefInfo Mode) {
568     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
569   }
570 
571   // CtxI can be nullptr, in which case the query is whether or not the aliasing
572   // relationship holds through the entire function.
573   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
574                     AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
575 
576   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
577                                bool IgnoreLocals = false);
578   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2,
579                            AAQueryInfo &AAQIP);
580   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
581                            AAQueryInfo &AAQI);
582   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
583                            AAQueryInfo &AAQI);
584   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
585                            AAQueryInfo &AAQI);
586   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
587                            AAQueryInfo &AAQI);
588   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
589                            AAQueryInfo &AAQI);
590   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
591                            AAQueryInfo &AAQI);
592   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
593                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
594   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
595                            AAQueryInfo &AAQI);
596   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
597                            AAQueryInfo &AAQI);
598   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
599                            AAQueryInfo &AAQI);
600   ModRefInfo getModRefInfo(const Instruction *I,
601                            const std::optional<MemoryLocation> &OptLoc,
602                            AAQueryInfo &AAQIP);
603   ModRefInfo callCapturesBefore(const Instruction *I,
604                                 const MemoryLocation &MemLoc, DominatorTree *DT,
605                                 AAQueryInfo &AAQIP);
606   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
607 
608 private:
609   class Concept;
610 
611   template <typename T> class Model;
612 
613   friend class AAResultBase;
614 
615   const TargetLibraryInfo &TLI;
616 
617   std::vector<std::unique_ptr<Concept>> AAs;
618 
619   std::vector<AnalysisKey *> AADeps;
620 
621   friend class BatchAAResults;
622 };
623 
624 /// This class is a wrapper over an AAResults, and it is intended to be used
625 /// only when there are no IR changes inbetween queries. BatchAAResults is
626 /// reusing the same `AAQueryInfo` to preserve the state across queries,
627 /// esentially making AA work in "batch mode". The internal state cannot be
628 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
629 /// or create a new BatchAAResults.
630 class BatchAAResults {
631   AAResults &AA;
632   AAQueryInfo AAQI;
633   SimpleCaptureAnalysis SimpleCA;
634 
635 public:
636   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCA) {}
637   BatchAAResults(AAResults &AAR, CaptureAnalysis *CA)
638       : AA(AAR), AAQI(AAR, CA) {}
639 
640   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
641     return AA.alias(LocA, LocB, AAQI);
642   }
643   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
644     return isNoModRef(AA.getModRefInfoMask(Loc, AAQI, OrLocal));
645   }
646   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
647     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
648   }
649   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
650                                bool IgnoreLocals = false) {
651     return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
652   }
653   ModRefInfo getModRefInfo(const Instruction *I,
654                            const std::optional<MemoryLocation> &OptLoc) {
655     return AA.getModRefInfo(I, OptLoc, AAQI);
656   }
657   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) {
658     return AA.getModRefInfo(I, Call2, AAQI);
659   }
660   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
661     return AA.getArgModRefInfo(Call, ArgIdx);
662   }
663   MemoryEffects getMemoryEffects(const CallBase *Call) {
664     return AA.getMemoryEffects(Call, AAQI);
665   }
666   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
667     return alias(LocA, LocB) == AliasResult::MustAlias;
668   }
669   bool isMustAlias(const Value *V1, const Value *V2) {
670     return alias(MemoryLocation(V1, LocationSize::precise(1)),
671                  MemoryLocation(V2, LocationSize::precise(1))) ==
672            AliasResult::MustAlias;
673   }
674   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
675     return alias(LocA, LocB) == AliasResult::NoAlias;
676   }
677   ModRefInfo callCapturesBefore(const Instruction *I,
678                                 const MemoryLocation &MemLoc,
679                                 DominatorTree *DT) {
680     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
681   }
682 
683   /// Assume that values may come from different cycle iterations.
684   void enableCrossIterationMode() {
685     AAQI.MayBeCrossIteration = true;
686   }
687 
688   /// Disable the use of the dominator tree during alias analysis queries.
689   void disableDominatorTree() { AAQI.UseDominatorTree = false; }
690 };
691 
692 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
693 /// pointer or reference.
694 using AliasAnalysis = AAResults;
695 
696 /// A private abstract base class describing the concept of an individual alias
697 /// analysis implementation.
698 ///
699 /// This interface is implemented by any \c Model instantiation. It is also the
700 /// interface which a type used to instantiate the model must provide.
701 ///
702 /// All of these methods model methods by the same name in the \c
703 /// AAResults class. Only differences and specifics to how the
704 /// implementations are called are documented here.
705 class AAResults::Concept {
706 public:
707   virtual ~Concept() = 0;
708 
709   //===--------------------------------------------------------------------===//
710   /// \name Alias Queries
711   /// @{
712 
713   /// The main low level interface to the alias analysis implementation.
714   /// Returns an AliasResult indicating whether the two pointers are aliased to
715   /// each other. This is the interface that must be implemented by specific
716   /// alias analysis implementations.
717   virtual AliasResult alias(const MemoryLocation &LocA,
718                             const MemoryLocation &LocB, AAQueryInfo &AAQI,
719                             const Instruction *CtxI) = 0;
720 
721   /// @}
722   //===--------------------------------------------------------------------===//
723   /// \name Simple mod/ref information
724   /// @{
725 
726   /// Returns a bitmask that should be unconditionally applied to the ModRef
727   /// info of a memory location. This allows us to eliminate Mod and/or Ref from
728   /// the ModRef info based on the knowledge that the memory location points to
729   /// constant and/or locally-invariant memory.
730   virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
731                                        AAQueryInfo &AAQI,
732                                        bool IgnoreLocals) = 0;
733 
734   /// Get the ModRef info associated with a pointer argument of a callsite. The
735   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
736   /// that these bits do not necessarily account for the overall behavior of
737   /// the function, but rather only provide additional per-argument
738   /// information.
739   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
740                                       unsigned ArgIdx) = 0;
741 
742   /// Return the behavior of the given call site.
743   virtual MemoryEffects getMemoryEffects(const CallBase *Call,
744                                          AAQueryInfo &AAQI) = 0;
745 
746   /// Return the behavior when calling the given function.
747   virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
748 
749   /// getModRefInfo (for call sites) - Return information about whether
750   /// a particular call site modifies or reads the specified memory location.
751   virtual ModRefInfo getModRefInfo(const CallBase *Call,
752                                    const MemoryLocation &Loc,
753                                    AAQueryInfo &AAQI) = 0;
754 
755   /// Return information about whether two call sites may refer to the same set
756   /// of memory locations. See the AA documentation for details:
757   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
758   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
759                                    AAQueryInfo &AAQI) = 0;
760 
761   /// @}
762 };
763 
764 /// A private class template which derives from \c Concept and wraps some other
765 /// type.
766 ///
767 /// This models the concept by directly forwarding each interface point to the
768 /// wrapped type which must implement a compatible interface. This provides
769 /// a type erased binding.
770 template <typename AAResultT> class AAResults::Model final : public Concept {
771   AAResultT &Result;
772 
773 public:
774   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {}
775   ~Model() override = default;
776 
777   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
778                     AAQueryInfo &AAQI, const Instruction *CtxI) override {
779     return Result.alias(LocA, LocB, AAQI, CtxI);
780   }
781 
782   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
783                                bool IgnoreLocals) override {
784     return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
785   }
786 
787   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
788     return Result.getArgModRefInfo(Call, ArgIdx);
789   }
790 
791   MemoryEffects getMemoryEffects(const CallBase *Call,
792                                  AAQueryInfo &AAQI) override {
793     return Result.getMemoryEffects(Call, AAQI);
794   }
795 
796   MemoryEffects getMemoryEffects(const Function *F) override {
797     return Result.getMemoryEffects(F);
798   }
799 
800   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
801                            AAQueryInfo &AAQI) override {
802     return Result.getModRefInfo(Call, Loc, AAQI);
803   }
804 
805   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
806                            AAQueryInfo &AAQI) override {
807     return Result.getModRefInfo(Call1, Call2, AAQI);
808   }
809 };
810 
811 /// A base class to help implement the function alias analysis results concept.
812 ///
813 /// Because of the nature of many alias analysis implementations, they often
814 /// only implement a subset of the interface. This base class will attempt to
815 /// implement the remaining portions of the interface in terms of simpler forms
816 /// of the interface where possible, and otherwise provide conservatively
817 /// correct fallback implementations.
818 ///
819 /// Implementors of an alias analysis should derive from this class, and then
820 /// override specific methods that they wish to customize. There is no need to
821 /// use virtual anywhere.
822 class AAResultBase {
823 protected:
824   explicit AAResultBase() = default;
825 
826   // Provide all the copy and move constructors so that derived types aren't
827   // constrained.
828   AAResultBase(const AAResultBase &Arg) {}
829   AAResultBase(AAResultBase &&Arg) {}
830 
831 public:
832   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
833                     AAQueryInfo &AAQI, const Instruction *I) {
834     return AliasResult::MayAlias;
835   }
836 
837   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
838                                bool IgnoreLocals) {
839     return ModRefInfo::ModRef;
840   }
841 
842   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
843     return ModRefInfo::ModRef;
844   }
845 
846   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) {
847     return MemoryEffects::unknown();
848   }
849 
850   MemoryEffects getMemoryEffects(const Function *F) {
851     return MemoryEffects::unknown();
852   }
853 
854   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
855                            AAQueryInfo &AAQI) {
856     return ModRefInfo::ModRef;
857   }
858 
859   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
860                            AAQueryInfo &AAQI) {
861     return ModRefInfo::ModRef;
862   }
863 };
864 
865 /// Return true if this pointer is returned by a noalias function.
866 bool isNoAliasCall(const Value *V);
867 
868 /// Return true if this pointer refers to a distinct and identifiable object.
869 /// This returns true for:
870 ///    Global Variables and Functions (but not Global Aliases)
871 ///    Allocas
872 ///    ByVal and NoAlias Arguments
873 ///    NoAlias returns (e.g. calls to malloc)
874 ///
875 bool isIdentifiedObject(const Value *V);
876 
877 /// Return true if V is umabigously identified at the function-level.
878 /// Different IdentifiedFunctionLocals can't alias.
879 /// Further, an IdentifiedFunctionLocal can not alias with any function
880 /// arguments other than itself, which is not necessarily true for
881 /// IdentifiedObjects.
882 bool isIdentifiedFunctionLocal(const Value *V);
883 
884 /// Return true if we know V to the base address of the corresponding memory
885 /// object.  This implies that any address less than V must be out of bounds
886 /// for the underlying object.  Note that just being isIdentifiedObject() is
887 /// not enough - For example, a negative offset from a noalias argument or call
888 /// can be inbounds w.r.t the actual underlying object.
889 bool isBaseOfObject(const Value *V);
890 
891 /// Returns true if the pointer is one which would have been considered an
892 /// escape by isNonEscapingLocalObject.
893 bool isEscapeSource(const Value *V);
894 
895 /// Return true if Object memory is not visible after an unwind, in the sense
896 /// that program semantics cannot depend on Object containing any particular
897 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
898 /// to true, then the memory is only not visible if the object has not been
899 /// captured prior to the unwind. Otherwise it is not visible even if captured.
900 bool isNotVisibleOnUnwind(const Value *Object,
901                           bool &RequiresNoCaptureBeforeUnwind);
902 
903 /// Return true if the Object is writable, in the sense that any location based
904 /// on this pointer that can be loaded can also be stored to without trapping.
905 /// Additionally, at the point Object is declared, stores can be introduced
906 /// without data races. At later points, this is only the case if the pointer
907 /// can not escape to a different thread.
908 ///
909 /// If ExplicitlyDereferenceableOnly is set to true, this property only holds
910 /// for the part of Object that is explicitly marked as dereferenceable, e.g.
911 /// using the dereferenceable(N) attribute. It does not necessarily hold for
912 /// parts that are only known to be dereferenceable due to the presence of
913 /// loads.
914 bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly);
915 
916 /// A manager for alias analyses.
917 ///
918 /// This class can have analyses registered with it and when run, it will run
919 /// all of them and aggregate their results into single AA results interface
920 /// that dispatches across all of the alias analysis results available.
921 ///
922 /// Note that the order in which analyses are registered is very significant.
923 /// That is the order in which the results will be aggregated and queried.
924 ///
925 /// This manager effectively wraps the AnalysisManager for registering alias
926 /// analyses. When you register your alias analysis with this manager, it will
927 /// ensure the analysis itself is registered with its AnalysisManager.
928 ///
929 /// The result of this analysis is only invalidated if one of the particular
930 /// aggregated AA results end up being invalidated. This removes the need to
931 /// explicitly preserve the results of `AAManager`. Note that analyses should no
932 /// longer be registered once the `AAManager` is run.
933 class AAManager : public AnalysisInfoMixin<AAManager> {
934 public:
935   using Result = AAResults;
936 
937   /// Register a specific AA result.
938   template <typename AnalysisT> void registerFunctionAnalysis() {
939     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
940   }
941 
942   /// Register a specific AA result.
943   template <typename AnalysisT> void registerModuleAnalysis() {
944     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
945   }
946 
947   Result run(Function &F, FunctionAnalysisManager &AM);
948 
949 private:
950   friend AnalysisInfoMixin<AAManager>;
951 
952   static AnalysisKey Key;
953 
954   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
955                        AAResults &AAResults),
956               4> ResultGetters;
957 
958   template <typename AnalysisT>
959   static void getFunctionAAResultImpl(Function &F,
960                                       FunctionAnalysisManager &AM,
961                                       AAResults &AAResults) {
962     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
963     AAResults.addAADependencyID(AnalysisT::ID());
964   }
965 
966   template <typename AnalysisT>
967   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
968                                     AAResults &AAResults) {
969     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
970     if (auto *R =
971             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
972       AAResults.addAAResult(*R);
973       MAMProxy
974           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
975     }
976   }
977 };
978 
979 /// A wrapper pass to provide the legacy pass manager access to a suitably
980 /// prepared AAResults object.
981 class AAResultsWrapperPass : public FunctionPass {
982   std::unique_ptr<AAResults> AAR;
983 
984 public:
985   static char ID;
986 
987   AAResultsWrapperPass();
988 
989   AAResults &getAAResults() { return *AAR; }
990   const AAResults &getAAResults() const { return *AAR; }
991 
992   bool runOnFunction(Function &F) override;
993 
994   void getAnalysisUsage(AnalysisUsage &AU) const override;
995 };
996 
997 /// A wrapper pass for external alias analyses. This just squirrels away the
998 /// callback used to run any analyses and register their results.
999 struct ExternalAAWrapperPass : ImmutablePass {
1000   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1001 
1002   CallbackT CB;
1003 
1004   static char ID;
1005 
1006   ExternalAAWrapperPass();
1007 
1008   explicit ExternalAAWrapperPass(CallbackT CB);
1009 
1010   void getAnalysisUsage(AnalysisUsage &AU) const override {
1011     AU.setPreservesAll();
1012   }
1013 };
1014 
1015 /// A wrapper pass around a callback which can be used to populate the
1016 /// AAResults in the AAResultsWrapperPass from an external AA.
1017 ///
1018 /// The callback provided here will be used each time we prepare an AAResults
1019 /// object, and will receive a reference to the function wrapper pass, the
1020 /// function, and the AAResults object to populate. This should be used when
1021 /// setting up a custom pass pipeline to inject a hook into the AA results.
1022 ImmutablePass *createExternalAAWrapperPass(
1023     std::function<void(Pass &, Function &, AAResults &)> Callback);
1024 
1025 } // end namespace llvm
1026 
1027 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1028