xref: /llvm-project/llvm/include/llvm/ADT/FunctionExtras.h (revision e8ca306fbefdb8385c53d6cc029251d1d5be7049)
1 //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file provides a collection of function (or more generally, callable)
10 /// type erasure utilities supplementing those provided by the standard library
11 /// in `<function>`.
12 ///
13 /// It provides `unique_function`, which works like `std::function` but supports
14 /// move-only callable objects and const-qualification.
15 ///
16 /// Future plans:
17 /// - Add a `function` that provides ref-qualified support, which doesn't work
18 ///   with `std::function`.
19 /// - Provide support for specifying multiple signatures to type erase callable
20 ///   objects with an overload set, such as those produced by generic lambdas.
21 /// - Expand to include a copyable utility that directly replaces std::function
22 ///   but brings the above improvements.
23 ///
24 /// Note that LLVM's utilities are greatly simplified by not supporting
25 /// allocators.
26 ///
27 /// If the standard library ever begins to provide comparable facilities we can
28 /// consider switching to those.
29 ///
30 //===----------------------------------------------------------------------===//
31 
32 #ifndef LLVM_ADT_FUNCTIONEXTRAS_H
33 #define LLVM_ADT_FUNCTIONEXTRAS_H
34 
35 #include "llvm/ADT/PointerIntPair.h"
36 #include "llvm/ADT/PointerUnion.h"
37 #include "llvm/ADT/STLForwardCompat.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/MemAlloc.h"
40 #include "llvm/Support/type_traits.h"
41 #include <cstring>
42 #include <memory>
43 #include <type_traits>
44 
45 namespace llvm {
46 
47 /// unique_function is a type-erasing functor similar to std::function.
48 ///
49 /// It can hold move-only function objects, like lambdas capturing unique_ptrs.
50 /// Accordingly, it is movable but not copyable.
51 ///
52 /// It supports const-qualification:
53 /// - unique_function<int() const> has a const operator().
54 ///   It can only hold functions which themselves have a const operator().
55 /// - unique_function<int()> has a non-const operator().
56 ///   It can hold functions with a non-const operator(), like mutable lambdas.
57 template <typename FunctionT> class unique_function;
58 
59 namespace detail {
60 
61 template <typename T>
62 using EnableIfTrivial =
63     std::enable_if_t<std::is_trivially_move_constructible<T>::value &&
64                      std::is_trivially_destructible<T>::value>;
65 template <typename CallableT, typename ThisT>
66 using EnableUnlessSameType =
67     std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
68 template <typename CallableT, typename Ret, typename... Params>
69 using EnableIfCallable = std::enable_if_t<std::disjunction<
70     std::is_void<Ret>,
71     std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)),
72                  Ret>,
73     std::is_same<const decltype(std::declval<CallableT>()(
74                      std::declval<Params>()...)),
75                  Ret>,
76     std::is_convertible<decltype(std::declval<CallableT>()(
77                             std::declval<Params>()...)),
78                         Ret>>::value>;
79 
80 template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
81 protected:
82   static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
83   static constexpr size_t InlineStorageAlign = alignof(void *);
84 
85   template <typename T, class = void>
86   struct IsSizeLessThanThresholdT : std::false_type {};
87 
88   template <typename T>
89   struct IsSizeLessThanThresholdT<
90       T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
91 
92   // Provide a type function to map parameters that won't observe extra copies
93   // or moves and which are small enough to likely pass in register to values
94   // and all other types to l-value reference types. We use this to compute the
95   // types used in our erased call utility to minimize copies and moves unless
96   // doing so would force things unnecessarily into memory.
97   //
98   // The heuristic used is related to common ABI register passing conventions.
99   // It doesn't have to be exact though, and in one way it is more strict
100   // because we want to still be able to observe either moves *or* copies.
101   template <typename T> struct AdjustedParamTBase {
102     static_assert(!std::is_reference<T>::value,
103                   "references should be handled by template specialization");
104     using type =
105         std::conditional_t<std::is_trivially_copy_constructible<T>::value &&
106                                std::is_trivially_move_constructible<T>::value &&
107                                IsSizeLessThanThresholdT<T>::value,
108                            T, T &>;
109   };
110 
111   // This specialization ensures that 'AdjustedParam<V<T>&>' or
112   // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
113   // an incomplete type and V a templated type.
114   template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
115   template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
116 
117   template <typename T>
118   using AdjustedParamT = typename AdjustedParamTBase<T>::type;
119 
120   // The type of the erased function pointer we use as a callback to dispatch to
121   // the stored callable when it is trivial to move and destroy.
122   using CallPtrT = ReturnT (*)(void *CallableAddr,
123                                AdjustedParamT<ParamTs>... Params);
124   using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
125   using DestroyPtrT = void (*)(void *CallableAddr);
126 
127   /// A struct to hold a single trivial callback with sufficient alignment for
128   /// our bitpacking.
129   struct alignas(8) TrivialCallback {
130     CallPtrT CallPtr;
131   };
132 
133   /// A struct we use to aggregate three callbacks when we need full set of
134   /// operations.
135   struct alignas(8) NonTrivialCallbacks {
136     CallPtrT CallPtr;
137     MovePtrT MovePtr;
138     DestroyPtrT DestroyPtr;
139   };
140 
141   // Create a pointer union between either a pointer to a static trivial call
142   // pointer in a struct or a pointer to a static struct of the call, move, and
143   // destroy pointers.
144   using CallbackPointerUnionT =
145       PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
146 
147   // The main storage buffer. This will either have a pointer to out-of-line
148   // storage or an inline buffer storing the callable.
149   union StorageUnionT {
150     // For out-of-line storage we keep a pointer to the underlying storage and
151     // the size. This is enough to deallocate the memory.
152     struct OutOfLineStorageT {
153       void *StoragePtr;
154       size_t Size;
155       size_t Alignment;
156     } OutOfLineStorage;
157     static_assert(
158         sizeof(OutOfLineStorageT) <= InlineStorageSize,
159         "Should always use all of the out-of-line storage for inline storage!");
160 
161     // For in-line storage, we just provide an aligned character buffer. We
162     // provide three pointers worth of storage here.
163     // This is mutable as an inlined `const unique_function<void() const>` may
164     // still modify its own mutable members.
165     alignas(InlineStorageAlign) mutable std::byte
166         InlineStorage[InlineStorageSize];
167   } StorageUnion;
168 
169   // A compressed pointer to either our dispatching callback or our table of
170   // dispatching callbacks and the flag for whether the callable itself is
171   // stored inline or not.
172   PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
173 
174   bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
175 
176   bool isTrivialCallback() const {
177     return isa<TrivialCallback *>(CallbackAndInlineFlag.getPointer());
178   }
179 
180   CallPtrT getTrivialCallback() const {
181     return cast<TrivialCallback *>(CallbackAndInlineFlag.getPointer())->CallPtr;
182   }
183 
184   NonTrivialCallbacks *getNonTrivialCallbacks() const {
185     return cast<NonTrivialCallbacks *>(CallbackAndInlineFlag.getPointer());
186   }
187 
188   CallPtrT getCallPtr() const {
189     return isTrivialCallback() ? getTrivialCallback()
190                                : getNonTrivialCallbacks()->CallPtr;
191   }
192 
193   // These three functions are only const in the narrow sense. They return
194   // mutable pointers to function state.
195   // This allows unique_function<T const>::operator() to be const, even if the
196   // underlying functor may be internally mutable.
197   //
198   // const callers must ensure they're only used in const-correct ways.
199   void *getCalleePtr() const {
200     return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
201   }
202   void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
203   void *getOutOfLineStorage() const {
204     return StorageUnion.OutOfLineStorage.StoragePtr;
205   }
206 
207   size_t getOutOfLineStorageSize() const {
208     return StorageUnion.OutOfLineStorage.Size;
209   }
210   size_t getOutOfLineStorageAlignment() const {
211     return StorageUnion.OutOfLineStorage.Alignment;
212   }
213 
214   void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
215     StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
216   }
217 
218   template <typename CalledAsT>
219   static ReturnT CallImpl(void *CallableAddr,
220                           AdjustedParamT<ParamTs>... Params) {
221     auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
222     return Func(std::forward<ParamTs>(Params)...);
223   }
224 
225   template <typename CallableT>
226   static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
227     new (LHSCallableAddr)
228         CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
229   }
230 
231   template <typename CallableT>
232   static void DestroyImpl(void *CallableAddr) noexcept {
233     reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
234   }
235 
236   // The pointers to call/move/destroy functions are determined for each
237   // callable type (and called-as type, which determines the overload chosen).
238   // (definitions are out-of-line).
239 
240   // By default, we need an object that contains all the different
241   // type erased behaviors needed. Create a static instance of the struct type
242   // here and each instance will contain a pointer to it.
243   // Wrap in a struct to avoid https://gcc.gnu.org/PR71954
244   template <typename CallableT, typename CalledAs, typename Enable = void>
245   struct CallbacksHolder {
246     static NonTrivialCallbacks Callbacks;
247   };
248   // See if we can create a trivial callback. We need the callable to be
249   // trivially moved and trivially destroyed so that we don't have to store
250   // type erased callbacks for those operations.
251   template <typename CallableT, typename CalledAs>
252   struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
253     static TrivialCallback Callbacks;
254   };
255 
256   // A simple tag type so the call-as type to be passed to the constructor.
257   template <typename T> struct CalledAs {};
258 
259   // Essentially the "main" unique_function constructor, but subclasses
260   // provide the qualified type to be used for the call.
261   // (We always store a T, even if the call will use a pointer to const T).
262   template <typename CallableT, typename CalledAsT>
263   UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) {
264     bool IsInlineStorage = true;
265     void *CallableAddr = getInlineStorage();
266     if (sizeof(CallableT) > InlineStorageSize ||
267         alignof(CallableT) > InlineStorageAlign) {
268       IsInlineStorage = false;
269       // Allocate out-of-line storage. FIXME: Use an explicit alignment
270       // parameter in C++17 mode.
271       auto Size = sizeof(CallableT);
272       auto Alignment = alignof(CallableT);
273       CallableAddr = allocate_buffer(Size, Alignment);
274       setOutOfLineStorage(CallableAddr, Size, Alignment);
275     }
276 
277     // Now move into the storage.
278     new (CallableAddr) CallableT(std::move(Callable));
279     CallbackAndInlineFlag.setPointerAndInt(
280         &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage);
281   }
282 
283   ~UniqueFunctionBase() {
284     if (!CallbackAndInlineFlag.getPointer())
285       return;
286 
287     // Cache this value so we don't re-check it after type-erased operations.
288     bool IsInlineStorage = isInlineStorage();
289 
290     if (!isTrivialCallback())
291       getNonTrivialCallbacks()->DestroyPtr(
292           IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
293 
294     if (!IsInlineStorage)
295       deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
296                         getOutOfLineStorageAlignment());
297   }
298 
299   UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept {
300     // Copy the callback and inline flag.
301     CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
302 
303     // If the RHS is empty, just copying the above is sufficient.
304     if (!RHS)
305       return;
306 
307     if (!isInlineStorage()) {
308       // The out-of-line case is easiest to move.
309       StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
310     } else if (isTrivialCallback()) {
311       // Move is trivial, just memcpy the bytes across.
312       memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
313     } else {
314       // Non-trivial move, so dispatch to a type-erased implementation.
315       getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
316                                         RHS.getInlineStorage());
317       getNonTrivialCallbacks()->DestroyPtr(RHS.getInlineStorage());
318     }
319 
320     // Clear the old callback and inline flag to get back to as-if-null.
321     RHS.CallbackAndInlineFlag = {};
322 
323 #if !defined(NDEBUG) && !LLVM_ADDRESS_SANITIZER_BUILD
324     // In debug builds without ASan, we also scribble across the rest of the
325     // storage. Scribbling under AddressSanitizer (ASan) is disabled to prevent
326     // overwriting poisoned objects (e.g., annotated short strings).
327     memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
328 #endif
329   }
330 
331   UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept {
332     if (this == &RHS)
333       return *this;
334 
335     // Because we don't try to provide any exception safety guarantees we can
336     // implement move assignment very simply by first destroying the current
337     // object and then move-constructing over top of it.
338     this->~UniqueFunctionBase();
339     new (this) UniqueFunctionBase(std::move(RHS));
340     return *this;
341   }
342 
343   UniqueFunctionBase() = default;
344 
345 public:
346   explicit operator bool() const {
347     return (bool)CallbackAndInlineFlag.getPointer();
348   }
349 };
350 
351 template <typename R, typename... P>
352 template <typename CallableT, typename CalledAsT, typename Enable>
353 typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
354     R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
355     &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
356 
357 template <typename R, typename... P>
358 template <typename CallableT, typename CalledAsT>
359 typename UniqueFunctionBase<R, P...>::TrivialCallback
360     UniqueFunctionBase<R, P...>::CallbacksHolder<
361         CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
362         &CallImpl<CalledAsT>};
363 
364 } // namespace detail
365 
366 template <typename R, typename... P>
367 class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
368   using Base = detail::UniqueFunctionBase<R, P...>;
369 
370 public:
371   unique_function() = default;
372   unique_function(std::nullptr_t) {}
373   unique_function(unique_function &&) = default;
374   unique_function(const unique_function &) = delete;
375   unique_function &operator=(unique_function &&) = default;
376   unique_function &operator=(const unique_function &) = delete;
377 
378   template <typename CallableT>
379   unique_function(
380       CallableT Callable,
381       detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
382       detail::EnableIfCallable<CallableT, R, P...> * = nullptr)
383       : Base(std::forward<CallableT>(Callable),
384              typename Base::template CalledAs<CallableT>{}) {}
385 
386   R operator()(P... Params) {
387     return this->getCallPtr()(this->getCalleePtr(), Params...);
388   }
389 };
390 
391 template <typename R, typename... P>
392 class unique_function<R(P...) const>
393     : public detail::UniqueFunctionBase<R, P...> {
394   using Base = detail::UniqueFunctionBase<R, P...>;
395 
396 public:
397   unique_function() = default;
398   unique_function(std::nullptr_t) {}
399   unique_function(unique_function &&) = default;
400   unique_function(const unique_function &) = delete;
401   unique_function &operator=(unique_function &&) = default;
402   unique_function &operator=(const unique_function &) = delete;
403 
404   template <typename CallableT>
405   unique_function(
406       CallableT Callable,
407       detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
408       detail::EnableIfCallable<const CallableT, R, P...> * = nullptr)
409       : Base(std::forward<CallableT>(Callable),
410              typename Base::template CalledAs<const CallableT>{}) {}
411 
412   R operator()(P... Params) const {
413     return this->getCallPtr()(this->getCalleePtr(), Params...);
414   }
415 };
416 
417 } // end namespace llvm
418 
419 #endif // LLVM_ADT_FUNCTIONEXTRAS_H
420