xref: /llvm-project/llvm/examples/Kaleidoscope/Chapter7/toy.cpp (revision 81c0f3023fc38e3ea720045407a17f47653ea2ac)
1 #include "../include/KaleidoscopeJIT.h"
2 #include "llvm/ADT/APFloat.h"
3 #include "llvm/ADT/STLExtras.h"
4 #include "llvm/IR/BasicBlock.h"
5 #include "llvm/IR/Constants.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/Function.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/PassManager.h"
13 #include "llvm/IR/Type.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/Passes/PassBuilder.h"
16 #include "llvm/Passes/StandardInstrumentations.h"
17 #include "llvm/Support/TargetSelect.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Transforms/InstCombine/InstCombine.h"
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/Transforms/Scalar/GVN.h"
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
24 #include "llvm/Transforms/Utils/Mem2Reg.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cctype>
28 #include <cstdint>
29 #include <cstdio>
30 #include <cstdlib>
31 #include <map>
32 #include <memory>
33 #include <string>
34 #include <utility>
35 #include <vector>
36 
37 using namespace llvm;
38 using namespace llvm::orc;
39 
40 //===----------------------------------------------------------------------===//
41 // Lexer
42 //===----------------------------------------------------------------------===//
43 
44 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
45 // of these for known things.
46 enum Token {
47   tok_eof = -1,
48 
49   // commands
50   tok_def = -2,
51   tok_extern = -3,
52 
53   // primary
54   tok_identifier = -4,
55   tok_number = -5,
56 
57   // control
58   tok_if = -6,
59   tok_then = -7,
60   tok_else = -8,
61   tok_for = -9,
62   tok_in = -10,
63 
64   // operators
65   tok_binary = -11,
66   tok_unary = -12,
67 
68   // var definition
69   tok_var = -13
70 };
71 
72 static std::string IdentifierStr; // Filled in if tok_identifier
73 static double NumVal;             // Filled in if tok_number
74 
75 /// gettok - Return the next token from standard input.
76 static int gettok() {
77   static int LastChar = ' ';
78 
79   // Skip any whitespace.
80   while (isspace(LastChar))
81     LastChar = getchar();
82 
83   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
84     IdentifierStr = LastChar;
85     while (isalnum((LastChar = getchar())))
86       IdentifierStr += LastChar;
87 
88     if (IdentifierStr == "def")
89       return tok_def;
90     if (IdentifierStr == "extern")
91       return tok_extern;
92     if (IdentifierStr == "if")
93       return tok_if;
94     if (IdentifierStr == "then")
95       return tok_then;
96     if (IdentifierStr == "else")
97       return tok_else;
98     if (IdentifierStr == "for")
99       return tok_for;
100     if (IdentifierStr == "in")
101       return tok_in;
102     if (IdentifierStr == "binary")
103       return tok_binary;
104     if (IdentifierStr == "unary")
105       return tok_unary;
106     if (IdentifierStr == "var")
107       return tok_var;
108     return tok_identifier;
109   }
110 
111   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
112     std::string NumStr;
113     do {
114       NumStr += LastChar;
115       LastChar = getchar();
116     } while (isdigit(LastChar) || LastChar == '.');
117 
118     NumVal = strtod(NumStr.c_str(), nullptr);
119     return tok_number;
120   }
121 
122   if (LastChar == '#') {
123     // Comment until end of line.
124     do
125       LastChar = getchar();
126     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
127 
128     if (LastChar != EOF)
129       return gettok();
130   }
131 
132   // Check for end of file.  Don't eat the EOF.
133   if (LastChar == EOF)
134     return tok_eof;
135 
136   // Otherwise, just return the character as its ascii value.
137   int ThisChar = LastChar;
138   LastChar = getchar();
139   return ThisChar;
140 }
141 
142 //===----------------------------------------------------------------------===//
143 // Abstract Syntax Tree (aka Parse Tree)
144 //===----------------------------------------------------------------------===//
145 
146 namespace {
147 
148 /// ExprAST - Base class for all expression nodes.
149 class ExprAST {
150 public:
151   virtual ~ExprAST() = default;
152 
153   virtual Value *codegen() = 0;
154 };
155 
156 /// NumberExprAST - Expression class for numeric literals like "1.0".
157 class NumberExprAST : public ExprAST {
158   double Val;
159 
160 public:
161   NumberExprAST(double Val) : Val(Val) {}
162 
163   Value *codegen() override;
164 };
165 
166 /// VariableExprAST - Expression class for referencing a variable, like "a".
167 class VariableExprAST : public ExprAST {
168   std::string Name;
169 
170 public:
171   VariableExprAST(const std::string &Name) : Name(Name) {}
172 
173   Value *codegen() override;
174   const std::string &getName() const { return Name; }
175 };
176 
177 /// UnaryExprAST - Expression class for a unary operator.
178 class UnaryExprAST : public ExprAST {
179   char Opcode;
180   std::unique_ptr<ExprAST> Operand;
181 
182 public:
183   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
184       : Opcode(Opcode), Operand(std::move(Operand)) {}
185 
186   Value *codegen() override;
187 };
188 
189 /// BinaryExprAST - Expression class for a binary operator.
190 class BinaryExprAST : public ExprAST {
191   char Op;
192   std::unique_ptr<ExprAST> LHS, RHS;
193 
194 public:
195   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
196                 std::unique_ptr<ExprAST> RHS)
197       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
198 
199   Value *codegen() override;
200 };
201 
202 /// CallExprAST - Expression class for function calls.
203 class CallExprAST : public ExprAST {
204   std::string Callee;
205   std::vector<std::unique_ptr<ExprAST>> Args;
206 
207 public:
208   CallExprAST(const std::string &Callee,
209               std::vector<std::unique_ptr<ExprAST>> Args)
210       : Callee(Callee), Args(std::move(Args)) {}
211 
212   Value *codegen() override;
213 };
214 
215 /// IfExprAST - Expression class for if/then/else.
216 class IfExprAST : public ExprAST {
217   std::unique_ptr<ExprAST> Cond, Then, Else;
218 
219 public:
220   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
221             std::unique_ptr<ExprAST> Else)
222       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
223 
224   Value *codegen() override;
225 };
226 
227 /// ForExprAST - Expression class for for/in.
228 class ForExprAST : public ExprAST {
229   std::string VarName;
230   std::unique_ptr<ExprAST> Start, End, Step, Body;
231 
232 public:
233   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
234              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
235              std::unique_ptr<ExprAST> Body)
236       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
237         Step(std::move(Step)), Body(std::move(Body)) {}
238 
239   Value *codegen() override;
240 };
241 
242 /// VarExprAST - Expression class for var/in
243 class VarExprAST : public ExprAST {
244   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
245   std::unique_ptr<ExprAST> Body;
246 
247 public:
248   VarExprAST(
249       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
250       std::unique_ptr<ExprAST> Body)
251       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
252 
253   Value *codegen() override;
254 };
255 
256 /// PrototypeAST - This class represents the "prototype" for a function,
257 /// which captures its name, and its argument names (thus implicitly the number
258 /// of arguments the function takes), as well as if it is an operator.
259 class PrototypeAST {
260   std::string Name;
261   std::vector<std::string> Args;
262   bool IsOperator;
263   unsigned Precedence; // Precedence if a binary op.
264 
265 public:
266   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
267                bool IsOperator = false, unsigned Prec = 0)
268       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
269         Precedence(Prec) {}
270 
271   Function *codegen();
272   const std::string &getName() const { return Name; }
273 
274   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
275   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
276 
277   char getOperatorName() const {
278     assert(isUnaryOp() || isBinaryOp());
279     return Name[Name.size() - 1];
280   }
281 
282   unsigned getBinaryPrecedence() const { return Precedence; }
283 };
284 
285 /// FunctionAST - This class represents a function definition itself.
286 class FunctionAST {
287   std::unique_ptr<PrototypeAST> Proto;
288   std::unique_ptr<ExprAST> Body;
289 
290 public:
291   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
292               std::unique_ptr<ExprAST> Body)
293       : Proto(std::move(Proto)), Body(std::move(Body)) {}
294 
295   Function *codegen();
296 };
297 
298 } // end anonymous namespace
299 
300 //===----------------------------------------------------------------------===//
301 // Parser
302 //===----------------------------------------------------------------------===//
303 
304 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
305 /// token the parser is looking at.  getNextToken reads another token from the
306 /// lexer and updates CurTok with its results.
307 static int CurTok;
308 static int getNextToken() { return CurTok = gettok(); }
309 
310 /// BinopPrecedence - This holds the precedence for each binary operator that is
311 /// defined.
312 static std::map<char, int> BinopPrecedence;
313 
314 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
315 static int GetTokPrecedence() {
316   if (!isascii(CurTok))
317     return -1;
318 
319   // Make sure it's a declared binop.
320   int TokPrec = BinopPrecedence[CurTok];
321   if (TokPrec <= 0)
322     return -1;
323   return TokPrec;
324 }
325 
326 /// LogError* - These are little helper functions for error handling.
327 std::unique_ptr<ExprAST> LogError(const char *Str) {
328   fprintf(stderr, "Error: %s\n", Str);
329   return nullptr;
330 }
331 
332 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
333   LogError(Str);
334   return nullptr;
335 }
336 
337 static std::unique_ptr<ExprAST> ParseExpression();
338 
339 /// numberexpr ::= number
340 static std::unique_ptr<ExprAST> ParseNumberExpr() {
341   auto Result = std::make_unique<NumberExprAST>(NumVal);
342   getNextToken(); // consume the number
343   return std::move(Result);
344 }
345 
346 /// parenexpr ::= '(' expression ')'
347 static std::unique_ptr<ExprAST> ParseParenExpr() {
348   getNextToken(); // eat (.
349   auto V = ParseExpression();
350   if (!V)
351     return nullptr;
352 
353   if (CurTok != ')')
354     return LogError("expected ')'");
355   getNextToken(); // eat ).
356   return V;
357 }
358 
359 /// identifierexpr
360 ///   ::= identifier
361 ///   ::= identifier '(' expression* ')'
362 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
363   std::string IdName = IdentifierStr;
364 
365   getNextToken(); // eat identifier.
366 
367   if (CurTok != '(') // Simple variable ref.
368     return std::make_unique<VariableExprAST>(IdName);
369 
370   // Call.
371   getNextToken(); // eat (
372   std::vector<std::unique_ptr<ExprAST>> Args;
373   if (CurTok != ')') {
374     while (true) {
375       if (auto Arg = ParseExpression())
376         Args.push_back(std::move(Arg));
377       else
378         return nullptr;
379 
380       if (CurTok == ')')
381         break;
382 
383       if (CurTok != ',')
384         return LogError("Expected ')' or ',' in argument list");
385       getNextToken();
386     }
387   }
388 
389   // Eat the ')'.
390   getNextToken();
391 
392   return std::make_unique<CallExprAST>(IdName, std::move(Args));
393 }
394 
395 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
396 static std::unique_ptr<ExprAST> ParseIfExpr() {
397   getNextToken(); // eat the if.
398 
399   // condition.
400   auto Cond = ParseExpression();
401   if (!Cond)
402     return nullptr;
403 
404   if (CurTok != tok_then)
405     return LogError("expected then");
406   getNextToken(); // eat the then
407 
408   auto Then = ParseExpression();
409   if (!Then)
410     return nullptr;
411 
412   if (CurTok != tok_else)
413     return LogError("expected else");
414 
415   getNextToken();
416 
417   auto Else = ParseExpression();
418   if (!Else)
419     return nullptr;
420 
421   return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
422                                       std::move(Else));
423 }
424 
425 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
426 static std::unique_ptr<ExprAST> ParseForExpr() {
427   getNextToken(); // eat the for.
428 
429   if (CurTok != tok_identifier)
430     return LogError("expected identifier after for");
431 
432   std::string IdName = IdentifierStr;
433   getNextToken(); // eat identifier.
434 
435   if (CurTok != '=')
436     return LogError("expected '=' after for");
437   getNextToken(); // eat '='.
438 
439   auto Start = ParseExpression();
440   if (!Start)
441     return nullptr;
442   if (CurTok != ',')
443     return LogError("expected ',' after for start value");
444   getNextToken();
445 
446   auto End = ParseExpression();
447   if (!End)
448     return nullptr;
449 
450   // The step value is optional.
451   std::unique_ptr<ExprAST> Step;
452   if (CurTok == ',') {
453     getNextToken();
454     Step = ParseExpression();
455     if (!Step)
456       return nullptr;
457   }
458 
459   if (CurTok != tok_in)
460     return LogError("expected 'in' after for");
461   getNextToken(); // eat 'in'.
462 
463   auto Body = ParseExpression();
464   if (!Body)
465     return nullptr;
466 
467   return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
468                                        std::move(Step), std::move(Body));
469 }
470 
471 /// varexpr ::= 'var' identifier ('=' expression)?
472 //                    (',' identifier ('=' expression)?)* 'in' expression
473 static std::unique_ptr<ExprAST> ParseVarExpr() {
474   getNextToken(); // eat the var.
475 
476   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
477 
478   // At least one variable name is required.
479   if (CurTok != tok_identifier)
480     return LogError("expected identifier after var");
481 
482   while (true) {
483     std::string Name = IdentifierStr;
484     getNextToken(); // eat identifier.
485 
486     // Read the optional initializer.
487     std::unique_ptr<ExprAST> Init = nullptr;
488     if (CurTok == '=') {
489       getNextToken(); // eat the '='.
490 
491       Init = ParseExpression();
492       if (!Init)
493         return nullptr;
494     }
495 
496     VarNames.push_back(std::make_pair(Name, std::move(Init)));
497 
498     // End of var list, exit loop.
499     if (CurTok != ',')
500       break;
501     getNextToken(); // eat the ','.
502 
503     if (CurTok != tok_identifier)
504       return LogError("expected identifier list after var");
505   }
506 
507   // At this point, we have to have 'in'.
508   if (CurTok != tok_in)
509     return LogError("expected 'in' keyword after 'var'");
510   getNextToken(); // eat 'in'.
511 
512   auto Body = ParseExpression();
513   if (!Body)
514     return nullptr;
515 
516   return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
517 }
518 
519 /// primary
520 ///   ::= identifierexpr
521 ///   ::= numberexpr
522 ///   ::= parenexpr
523 ///   ::= ifexpr
524 ///   ::= forexpr
525 ///   ::= varexpr
526 static std::unique_ptr<ExprAST> ParsePrimary() {
527   switch (CurTok) {
528   default:
529     return LogError("unknown token when expecting an expression");
530   case tok_identifier:
531     return ParseIdentifierExpr();
532   case tok_number:
533     return ParseNumberExpr();
534   case '(':
535     return ParseParenExpr();
536   case tok_if:
537     return ParseIfExpr();
538   case tok_for:
539     return ParseForExpr();
540   case tok_var:
541     return ParseVarExpr();
542   }
543 }
544 
545 /// unary
546 ///   ::= primary
547 ///   ::= '!' unary
548 static std::unique_ptr<ExprAST> ParseUnary() {
549   // If the current token is not an operator, it must be a primary expr.
550   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
551     return ParsePrimary();
552 
553   // If this is a unary operator, read it.
554   int Opc = CurTok;
555   getNextToken();
556   if (auto Operand = ParseUnary())
557     return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
558   return nullptr;
559 }
560 
561 /// binoprhs
562 ///   ::= ('+' unary)*
563 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
564                                               std::unique_ptr<ExprAST> LHS) {
565   // If this is a binop, find its precedence.
566   while (true) {
567     int TokPrec = GetTokPrecedence();
568 
569     // If this is a binop that binds at least as tightly as the current binop,
570     // consume it, otherwise we are done.
571     if (TokPrec < ExprPrec)
572       return LHS;
573 
574     // Okay, we know this is a binop.
575     int BinOp = CurTok;
576     getNextToken(); // eat binop
577 
578     // Parse the unary expression after the binary operator.
579     auto RHS = ParseUnary();
580     if (!RHS)
581       return nullptr;
582 
583     // If BinOp binds less tightly with RHS than the operator after RHS, let
584     // the pending operator take RHS as its LHS.
585     int NextPrec = GetTokPrecedence();
586     if (TokPrec < NextPrec) {
587       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
588       if (!RHS)
589         return nullptr;
590     }
591 
592     // Merge LHS/RHS.
593     LHS =
594         std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
595   }
596 }
597 
598 /// expression
599 ///   ::= unary binoprhs
600 ///
601 static std::unique_ptr<ExprAST> ParseExpression() {
602   auto LHS = ParseUnary();
603   if (!LHS)
604     return nullptr;
605 
606   return ParseBinOpRHS(0, std::move(LHS));
607 }
608 
609 /// prototype
610 ///   ::= id '(' id* ')'
611 ///   ::= binary LETTER number? (id, id)
612 ///   ::= unary LETTER (id)
613 static std::unique_ptr<PrototypeAST> ParsePrototype() {
614   std::string FnName;
615 
616   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
617   unsigned BinaryPrecedence = 30;
618 
619   switch (CurTok) {
620   default:
621     return LogErrorP("Expected function name in prototype");
622   case tok_identifier:
623     FnName = IdentifierStr;
624     Kind = 0;
625     getNextToken();
626     break;
627   case tok_unary:
628     getNextToken();
629     if (!isascii(CurTok))
630       return LogErrorP("Expected unary operator");
631     FnName = "unary";
632     FnName += (char)CurTok;
633     Kind = 1;
634     getNextToken();
635     break;
636   case tok_binary:
637     getNextToken();
638     if (!isascii(CurTok))
639       return LogErrorP("Expected binary operator");
640     FnName = "binary";
641     FnName += (char)CurTok;
642     Kind = 2;
643     getNextToken();
644 
645     // Read the precedence if present.
646     if (CurTok == tok_number) {
647       if (NumVal < 1 || NumVal > 100)
648         return LogErrorP("Invalid precedence: must be 1..100");
649       BinaryPrecedence = (unsigned)NumVal;
650       getNextToken();
651     }
652     break;
653   }
654 
655   if (CurTok != '(')
656     return LogErrorP("Expected '(' in prototype");
657 
658   std::vector<std::string> ArgNames;
659   while (getNextToken() == tok_identifier)
660     ArgNames.push_back(IdentifierStr);
661   if (CurTok != ')')
662     return LogErrorP("Expected ')' in prototype");
663 
664   // success.
665   getNextToken(); // eat ')'.
666 
667   // Verify right number of names for operator.
668   if (Kind && ArgNames.size() != Kind)
669     return LogErrorP("Invalid number of operands for operator");
670 
671   return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
672                                          BinaryPrecedence);
673 }
674 
675 /// definition ::= 'def' prototype expression
676 static std::unique_ptr<FunctionAST> ParseDefinition() {
677   getNextToken(); // eat def.
678   auto Proto = ParsePrototype();
679   if (!Proto)
680     return nullptr;
681 
682   if (auto E = ParseExpression())
683     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
684   return nullptr;
685 }
686 
687 /// toplevelexpr ::= expression
688 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
689   if (auto E = ParseExpression()) {
690     // Make an anonymous proto.
691     auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
692                                                  std::vector<std::string>());
693     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
694   }
695   return nullptr;
696 }
697 
698 /// external ::= 'extern' prototype
699 static std::unique_ptr<PrototypeAST> ParseExtern() {
700   getNextToken(); // eat extern.
701   return ParsePrototype();
702 }
703 
704 //===----------------------------------------------------------------------===//
705 // Code Generation
706 //===----------------------------------------------------------------------===//
707 
708 static std::unique_ptr<LLVMContext> TheContext;
709 static std::unique_ptr<Module> TheModule;
710 static std::unique_ptr<IRBuilder<>> Builder;
711 static std::map<std::string, AllocaInst *> NamedValues;
712 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
713 static std::unique_ptr<FunctionPassManager> TheFPM;
714 static std::unique_ptr<LoopAnalysisManager> TheLAM;
715 static std::unique_ptr<FunctionAnalysisManager> TheFAM;
716 static std::unique_ptr<CGSCCAnalysisManager> TheCGAM;
717 static std::unique_ptr<ModuleAnalysisManager> TheMAM;
718 static std::unique_ptr<PassInstrumentationCallbacks> ThePIC;
719 static std::unique_ptr<StandardInstrumentations> TheSI;
720 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
721 static ExitOnError ExitOnErr;
722 
723 Value *LogErrorV(const char *Str) {
724   LogError(Str);
725   return nullptr;
726 }
727 
728 Function *getFunction(std::string Name) {
729   // First, see if the function has already been added to the current module.
730   if (auto *F = TheModule->getFunction(Name))
731     return F;
732 
733   // If not, check whether we can codegen the declaration from some existing
734   // prototype.
735   auto FI = FunctionProtos.find(Name);
736   if (FI != FunctionProtos.end())
737     return FI->second->codegen();
738 
739   // If no existing prototype exists, return null.
740   return nullptr;
741 }
742 
743 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
744 /// the function.  This is used for mutable variables etc.
745 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
746                                           StringRef VarName) {
747   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
748                    TheFunction->getEntryBlock().begin());
749   return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
750 }
751 
752 Value *NumberExprAST::codegen() {
753   return ConstantFP::get(*TheContext, APFloat(Val));
754 }
755 
756 Value *VariableExprAST::codegen() {
757   // Look this variable up in the function.
758   AllocaInst *A = NamedValues[Name];
759   if (!A)
760     return LogErrorV("Unknown variable name");
761 
762   // Load the value.
763   return Builder->CreateLoad(A->getAllocatedType(), A, Name.c_str());
764 }
765 
766 Value *UnaryExprAST::codegen() {
767   Value *OperandV = Operand->codegen();
768   if (!OperandV)
769     return nullptr;
770 
771   Function *F = getFunction(std::string("unary") + Opcode);
772   if (!F)
773     return LogErrorV("Unknown unary operator");
774 
775   return Builder->CreateCall(F, OperandV, "unop");
776 }
777 
778 Value *BinaryExprAST::codegen() {
779   // Special case '=' because we don't want to emit the LHS as an expression.
780   if (Op == '=') {
781     // Assignment requires the LHS to be an identifier.
782     // This assume we're building without RTTI because LLVM builds that way by
783     // default.  If you build LLVM with RTTI this can be changed to a
784     // dynamic_cast for automatic error checking.
785     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
786     if (!LHSE)
787       return LogErrorV("destination of '=' must be a variable");
788     // Codegen the RHS.
789     Value *Val = RHS->codegen();
790     if (!Val)
791       return nullptr;
792 
793     // Look up the name.
794     Value *Variable = NamedValues[LHSE->getName()];
795     if (!Variable)
796       return LogErrorV("Unknown variable name");
797 
798     Builder->CreateStore(Val, Variable);
799     return Val;
800   }
801 
802   Value *L = LHS->codegen();
803   Value *R = RHS->codegen();
804   if (!L || !R)
805     return nullptr;
806 
807   switch (Op) {
808   case '+':
809     return Builder->CreateFAdd(L, R, "addtmp");
810   case '-':
811     return Builder->CreateFSub(L, R, "subtmp");
812   case '*':
813     return Builder->CreateFMul(L, R, "multmp");
814   case '<':
815     L = Builder->CreateFCmpULT(L, R, "cmptmp");
816     // Convert bool 0/1 to double 0.0 or 1.0
817     return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
818   default:
819     break;
820   }
821 
822   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
823   // a call to it.
824   Function *F = getFunction(std::string("binary") + Op);
825   assert(F && "binary operator not found!");
826 
827   Value *Ops[] = {L, R};
828   return Builder->CreateCall(F, Ops, "binop");
829 }
830 
831 Value *CallExprAST::codegen() {
832   // Look up the name in the global module table.
833   Function *CalleeF = getFunction(Callee);
834   if (!CalleeF)
835     return LogErrorV("Unknown function referenced");
836 
837   // If argument mismatch error.
838   if (CalleeF->arg_size() != Args.size())
839     return LogErrorV("Incorrect # arguments passed");
840 
841   std::vector<Value *> ArgsV;
842   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
843     ArgsV.push_back(Args[i]->codegen());
844     if (!ArgsV.back())
845       return nullptr;
846   }
847 
848   return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
849 }
850 
851 Value *IfExprAST::codegen() {
852   Value *CondV = Cond->codegen();
853   if (!CondV)
854     return nullptr;
855 
856   // Convert condition to a bool by comparing non-equal to 0.0.
857   CondV = Builder->CreateFCmpONE(
858       CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
859 
860   Function *TheFunction = Builder->GetInsertBlock()->getParent();
861 
862   // Create blocks for the then and else cases.  Insert the 'then' block at the
863   // end of the function.
864   BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
865   BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
866   BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
867 
868   Builder->CreateCondBr(CondV, ThenBB, ElseBB);
869 
870   // Emit then value.
871   Builder->SetInsertPoint(ThenBB);
872 
873   Value *ThenV = Then->codegen();
874   if (!ThenV)
875     return nullptr;
876 
877   Builder->CreateBr(MergeBB);
878   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
879   ThenBB = Builder->GetInsertBlock();
880 
881   // Emit else block.
882   TheFunction->insert(TheFunction->end(), ElseBB);
883   Builder->SetInsertPoint(ElseBB);
884 
885   Value *ElseV = Else->codegen();
886   if (!ElseV)
887     return nullptr;
888 
889   Builder->CreateBr(MergeBB);
890   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
891   ElseBB = Builder->GetInsertBlock();
892 
893   // Emit merge block.
894   TheFunction->insert(TheFunction->end(), MergeBB);
895   Builder->SetInsertPoint(MergeBB);
896   PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
897 
898   PN->addIncoming(ThenV, ThenBB);
899   PN->addIncoming(ElseV, ElseBB);
900   return PN;
901 }
902 
903 // Output for-loop as:
904 //   var = alloca double
905 //   ...
906 //   start = startexpr
907 //   store start -> var
908 //   goto loop
909 // loop:
910 //   ...
911 //   bodyexpr
912 //   ...
913 // loopend:
914 //   step = stepexpr
915 //   endcond = endexpr
916 //
917 //   curvar = load var
918 //   nextvar = curvar + step
919 //   store nextvar -> var
920 //   br endcond, loop, endloop
921 // outloop:
922 Value *ForExprAST::codegen() {
923   Function *TheFunction = Builder->GetInsertBlock()->getParent();
924 
925   // Create an alloca for the variable in the entry block.
926   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
927 
928   // Emit the start code first, without 'variable' in scope.
929   Value *StartVal = Start->codegen();
930   if (!StartVal)
931     return nullptr;
932 
933   // Store the value into the alloca.
934   Builder->CreateStore(StartVal, Alloca);
935 
936   // Make the new basic block for the loop header, inserting after current
937   // block.
938   BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
939 
940   // Insert an explicit fall through from the current block to the LoopBB.
941   Builder->CreateBr(LoopBB);
942 
943   // Start insertion in LoopBB.
944   Builder->SetInsertPoint(LoopBB);
945 
946   // Within the loop, the variable is defined equal to the PHI node.  If it
947   // shadows an existing variable, we have to restore it, so save it now.
948   AllocaInst *OldVal = NamedValues[VarName];
949   NamedValues[VarName] = Alloca;
950 
951   // Emit the body of the loop.  This, like any other expr, can change the
952   // current BB.  Note that we ignore the value computed by the body, but don't
953   // allow an error.
954   if (!Body->codegen())
955     return nullptr;
956 
957   // Emit the step value.
958   Value *StepVal = nullptr;
959   if (Step) {
960     StepVal = Step->codegen();
961     if (!StepVal)
962       return nullptr;
963   } else {
964     // If not specified, use 1.0.
965     StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
966   }
967 
968   // Compute the end condition.
969   Value *EndCond = End->codegen();
970   if (!EndCond)
971     return nullptr;
972 
973   // Reload, increment, and restore the alloca.  This handles the case where
974   // the body of the loop mutates the variable.
975   Value *CurVar =
976       Builder->CreateLoad(Alloca->getAllocatedType(), Alloca, VarName.c_str());
977   Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
978   Builder->CreateStore(NextVar, Alloca);
979 
980   // Convert condition to a bool by comparing non-equal to 0.0.
981   EndCond = Builder->CreateFCmpONE(
982       EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
983 
984   // Create the "after loop" block and insert it.
985   BasicBlock *AfterBB =
986       BasicBlock::Create(*TheContext, "afterloop", TheFunction);
987 
988   // Insert the conditional branch into the end of LoopEndBB.
989   Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
990 
991   // Any new code will be inserted in AfterBB.
992   Builder->SetInsertPoint(AfterBB);
993 
994   // Restore the unshadowed variable.
995   if (OldVal)
996     NamedValues[VarName] = OldVal;
997   else
998     NamedValues.erase(VarName);
999 
1000   // for expr always returns 0.0.
1001   return Constant::getNullValue(Type::getDoubleTy(*TheContext));
1002 }
1003 
1004 Value *VarExprAST::codegen() {
1005   std::vector<AllocaInst *> OldBindings;
1006 
1007   Function *TheFunction = Builder->GetInsertBlock()->getParent();
1008 
1009   // Register all variables and emit their initializer.
1010   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1011     const std::string &VarName = VarNames[i].first;
1012     ExprAST *Init = VarNames[i].second.get();
1013 
1014     // Emit the initializer before adding the variable to scope, this prevents
1015     // the initializer from referencing the variable itself, and permits stuff
1016     // like this:
1017     //  var a = 1 in
1018     //    var a = a in ...   # refers to outer 'a'.
1019     Value *InitVal;
1020     if (Init) {
1021       InitVal = Init->codegen();
1022       if (!InitVal)
1023         return nullptr;
1024     } else { // If not specified, use 0.0.
1025       InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
1026     }
1027 
1028     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1029     Builder->CreateStore(InitVal, Alloca);
1030 
1031     // Remember the old variable binding so that we can restore the binding when
1032     // we unrecurse.
1033     OldBindings.push_back(NamedValues[VarName]);
1034 
1035     // Remember this binding.
1036     NamedValues[VarName] = Alloca;
1037   }
1038 
1039   // Codegen the body, now that all vars are in scope.
1040   Value *BodyVal = Body->codegen();
1041   if (!BodyVal)
1042     return nullptr;
1043 
1044   // Pop all our variables from scope.
1045   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1046     NamedValues[VarNames[i].first] = OldBindings[i];
1047 
1048   // Return the body computation.
1049   return BodyVal;
1050 }
1051 
1052 Function *PrototypeAST::codegen() {
1053   // Make the function type:  double(double,double) etc.
1054   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
1055   FunctionType *FT =
1056       FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
1057 
1058   Function *F =
1059       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1060 
1061   // Set names for all arguments.
1062   unsigned Idx = 0;
1063   for (auto &Arg : F->args())
1064     Arg.setName(Args[Idx++]);
1065 
1066   return F;
1067 }
1068 
1069 Function *FunctionAST::codegen() {
1070   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1071   // reference to it for use below.
1072   auto &P = *Proto;
1073   FunctionProtos[Proto->getName()] = std::move(Proto);
1074   Function *TheFunction = getFunction(P.getName());
1075   if (!TheFunction)
1076     return nullptr;
1077 
1078   // If this is an operator, install it.
1079   if (P.isBinaryOp())
1080     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1081 
1082   // Create a new basic block to start insertion into.
1083   BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
1084   Builder->SetInsertPoint(BB);
1085 
1086   // Record the function arguments in the NamedValues map.
1087   NamedValues.clear();
1088   for (auto &Arg : TheFunction->args()) {
1089     // Create an alloca for this variable.
1090     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1091 
1092     // Store the initial value into the alloca.
1093     Builder->CreateStore(&Arg, Alloca);
1094 
1095     // Add arguments to variable symbol table.
1096     NamedValues[std::string(Arg.getName())] = Alloca;
1097   }
1098 
1099   if (Value *RetVal = Body->codegen()) {
1100     // Finish off the function.
1101     Builder->CreateRet(RetVal);
1102 
1103     // Validate the generated code, checking for consistency.
1104     verifyFunction(*TheFunction);
1105 
1106     // Run the optimizer on the function.
1107     TheFPM->run(*TheFunction, *TheFAM);
1108 
1109     return TheFunction;
1110   }
1111 
1112   // Error reading body, remove function.
1113   TheFunction->eraseFromParent();
1114 
1115   if (P.isBinaryOp())
1116     BinopPrecedence.erase(P.getOperatorName());
1117   return nullptr;
1118 }
1119 
1120 //===----------------------------------------------------------------------===//
1121 // Top-Level parsing and JIT Driver
1122 //===----------------------------------------------------------------------===//
1123 
1124 static void InitializeModuleAndManagers() {
1125   // Open a new context and module.
1126   TheContext = std::make_unique<LLVMContext>();
1127   TheModule = std::make_unique<Module>("KaleidoscopeJIT", *TheContext);
1128   TheModule->setDataLayout(TheJIT->getDataLayout());
1129 
1130   // Create a new builder for the module.
1131   Builder = std::make_unique<IRBuilder<>>(*TheContext);
1132 
1133   // Create new pass and analysis managers.
1134   TheFPM = std::make_unique<FunctionPassManager>();
1135   TheLAM = std::make_unique<LoopAnalysisManager>();
1136   TheFAM = std::make_unique<FunctionAnalysisManager>();
1137   TheCGAM = std::make_unique<CGSCCAnalysisManager>();
1138   TheMAM = std::make_unique<ModuleAnalysisManager>();
1139   ThePIC = std::make_unique<PassInstrumentationCallbacks>();
1140   TheSI = std::make_unique<StandardInstrumentations>(*TheContext,
1141                                                      /*DebugLogging*/ true);
1142   TheSI->registerCallbacks(*ThePIC, TheMAM.get());
1143 
1144   // Add transform passes.
1145   // Promote allocas to registers.
1146   TheFPM->addPass(PromotePass());
1147   // Do simple "peephole" optimizations and bit-twiddling optzns.
1148   TheFPM->addPass(InstCombinePass());
1149   // Reassociate expressions.
1150   TheFPM->addPass(ReassociatePass());
1151   // Eliminate Common SubExpressions.
1152   TheFPM->addPass(GVNPass());
1153   // Simplify the control flow graph (deleting unreachable blocks, etc).
1154   TheFPM->addPass(SimplifyCFGPass());
1155 
1156   // Register analysis passes used in these transform passes.
1157   PassBuilder PB;
1158   PB.registerModuleAnalyses(*TheMAM);
1159   PB.registerFunctionAnalyses(*TheFAM);
1160   PB.crossRegisterProxies(*TheLAM, *TheFAM, *TheCGAM, *TheMAM);
1161 }
1162 
1163 static void HandleDefinition() {
1164   if (auto FnAST = ParseDefinition()) {
1165     if (auto *FnIR = FnAST->codegen()) {
1166       fprintf(stderr, "Read function definition:");
1167       FnIR->print(errs());
1168       fprintf(stderr, "\n");
1169       ExitOnErr(TheJIT->addModule(
1170           ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
1171       InitializeModuleAndManagers();
1172     }
1173   } else {
1174     // Skip token for error recovery.
1175     getNextToken();
1176   }
1177 }
1178 
1179 static void HandleExtern() {
1180   if (auto ProtoAST = ParseExtern()) {
1181     if (auto *FnIR = ProtoAST->codegen()) {
1182       fprintf(stderr, "Read extern: ");
1183       FnIR->print(errs());
1184       fprintf(stderr, "\n");
1185       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1186     }
1187   } else {
1188     // Skip token for error recovery.
1189     getNextToken();
1190   }
1191 }
1192 
1193 static void HandleTopLevelExpression() {
1194   // Evaluate a top-level expression into an anonymous function.
1195   if (auto FnAST = ParseTopLevelExpr()) {
1196     if (FnAST->codegen()) {
1197       // Create a ResourceTracker to track JIT'd memory allocated to our
1198       // anonymous expression -- that way we can free it after executing.
1199       auto RT = TheJIT->getMainJITDylib().createResourceTracker();
1200 
1201       auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1202       ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
1203       InitializeModuleAndManagers();
1204 
1205       // Search the JIT for the __anon_expr symbol.
1206       auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
1207 
1208       // Get the symbol's address and cast it to the right type (takes no
1209       // arguments, returns a double) so we can call it as a native function.
1210       double (*FP)() = ExprSymbol.toPtr<double (*)()>();
1211       fprintf(stderr, "Evaluated to %f\n", FP());
1212 
1213       // Delete the anonymous expression module from the JIT.
1214       ExitOnErr(RT->remove());
1215     }
1216   } else {
1217     // Skip token for error recovery.
1218     getNextToken();
1219   }
1220 }
1221 
1222 /// top ::= definition | external | expression | ';'
1223 static void MainLoop() {
1224   while (true) {
1225     fprintf(stderr, "ready> ");
1226     switch (CurTok) {
1227     case tok_eof:
1228       return;
1229     case ';': // ignore top-level semicolons.
1230       getNextToken();
1231       break;
1232     case tok_def:
1233       HandleDefinition();
1234       break;
1235     case tok_extern:
1236       HandleExtern();
1237       break;
1238     default:
1239       HandleTopLevelExpression();
1240       break;
1241     }
1242   }
1243 }
1244 
1245 //===----------------------------------------------------------------------===//
1246 // "Library" functions that can be "extern'd" from user code.
1247 //===----------------------------------------------------------------------===//
1248 
1249 #ifdef _WIN32
1250 #define DLLEXPORT __declspec(dllexport)
1251 #else
1252 #define DLLEXPORT
1253 #endif
1254 
1255 /// putchard - putchar that takes a double and returns 0.
1256 extern "C" DLLEXPORT double putchard(double X) {
1257   fputc((char)X, stderr);
1258   return 0;
1259 }
1260 
1261 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1262 extern "C" DLLEXPORT double printd(double X) {
1263   fprintf(stderr, "%f\n", X);
1264   return 0;
1265 }
1266 
1267 //===----------------------------------------------------------------------===//
1268 // Main driver code.
1269 //===----------------------------------------------------------------------===//
1270 
1271 int main() {
1272   InitializeNativeTarget();
1273   InitializeNativeTargetAsmPrinter();
1274   InitializeNativeTargetAsmParser();
1275 
1276   // Install standard binary operators.
1277   // 1 is lowest precedence.
1278   BinopPrecedence['='] = 2;
1279   BinopPrecedence['<'] = 10;
1280   BinopPrecedence['+'] = 20;
1281   BinopPrecedence['-'] = 20;
1282   BinopPrecedence['*'] = 40; // highest.
1283 
1284   // Prime the first token.
1285   fprintf(stderr, "ready> ");
1286   getNextToken();
1287 
1288   TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1289 
1290   InitializeModuleAndManagers();
1291 
1292   // Run the main "interpreter loop" now.
1293   MainLoop();
1294 
1295   return 0;
1296 }
1297