xref: /llvm-project/llvm/docs/SPIRVUsage.rst (revision aa07f922103ebe8e78c8da4c754b43af3c129f3e)
1=============================
2User Guide for SPIR-V Target
3=============================
4
5.. contents::
6   :local:
7
8.. toctree::
9   :hidden:
10
11Introduction
12============
13
14The SPIR-V target provides code generation for the SPIR-V binary format described
15in  `the official SPIR-V specification <https://www.khronos.org/registry/SPIR-V/>`_.
16
17Usage
18=====
19
20The SPIR-V backend can be invoked either from LLVM's Static Compiler (llc) or Clang,
21allowing developers to compile LLVM intermediate language (IL) files or OpenCL kernel
22sources directly to SPIR-V. This section outlines the usage of various commands to
23leverage the SPIR-V backend for different purposes.
24
25Static Compiler Commands
26------------------------
27
281. **Basic SPIR-V Compilation**
29   Command: `llc -mtriple=spirv32-unknown-unknown input.ll -o output.spvt`
30   Description: This command compiles an LLVM IL file (`input.ll`) to a SPIR-V binary (`output.spvt`) for a 32-bit architecture.
31
322. **Compilation with Extensions and Optimization**
33   Command: `llc -O1 -mtriple=spirv64-unknown-unknown --spirv-ext=+SPV_INTEL_arbitrary_precision_integers input.ll -o output.spvt`
34   Description: Compiles an LLVM IL file to SPIR-V with (`-O1`) optimizations, targeting a 64-bit architecture. It enables the SPV_INTEL_arbitrary_precision_integers extension.
35
363. **Compilation with experimental NonSemantic.Shader.DebugInfo.100 support**
37   Command: `llc --spv-emit-nonsemantic-debug-info --spirv-ext=+SPV_KHR_non_semantic_info input.ll -o output.spvt`
38   Description: Compiles an LLVM IL file to SPIR-V with additional NonSemantic.Shader.DebugInfo.100 instructions. It enables the required SPV_KHR_non_semantic_info extension.
39
404. **SPIR-V Binary Generation**
41   Command: `llc -O0 -mtriple=spirv64-unknown-unknown -filetype=obj input.ll -o output.spvt`
42   Description: Generates a SPIR-V object file (`output.spvt`) from an LLVM module, targeting a 64-bit SPIR-V architecture with no optimizations.
43
44Clang Commands
45--------------
46
471. **SPIR-V Generation**
48   Command: `clang –target=spirv64 input.cl`
49   Description: Generates a SPIR-V file directly from an OpenCL kernel source file (`input.cl`).
50
51Compiler Options
52================
53
54.. _spirv-target-triples:
55
56Target Triples
57--------------
58
59For cross-compilation into SPIR-V use option
60
61``-target <Architecture><Subarchitecture>-<Vendor>-<OS>-<Environment>``
62
63to specify the target triple:
64
65  .. table:: SPIR-V Architectures
66
67     ============ ==============================================================
68     Architecture Description
69     ============ ==============================================================
70     ``spirv32``   SPIR-V with 32-bit pointer width.
71     ``spirv64``   SPIR-V with 64-bit pointer width.
72     ``spirv``     SPIR-V with logical memory layout.
73     ============ ==============================================================
74
75  .. table:: SPIR-V Subarchitectures
76
77     =============== ==============================================================
78     Subarchitecture Description
79     =============== ==============================================================
80     *<empty>*        SPIR-V version deduced by backend based on the input.
81     ``v1.0``         SPIR-V version 1.0.
82     ``v1.1``         SPIR-V version 1.1.
83     ``v1.2``         SPIR-V version 1.2.
84     ``v1.3``         SPIR-V version 1.3.
85     ``v1.4``         SPIR-V version 1.4.
86     ``v1.5``         SPIR-V version 1.5.
87     ``v1.6``         SPIR-V version 1.6.
88     =============== ==============================================================
89
90  .. table:: SPIR-V Vendors
91
92     ===================== ==============================================================
93     Vendor                Description
94     ===================== ==============================================================
95     *<empty>*/``unknown``  Generic SPIR-V target without any vendor-specific settings.
96     ``amd``                AMDGCN SPIR-V target, with support for target specific
97                            builtins and ASM, meant to be consumed by AMDGCN toolchains.
98     ===================== ==============================================================
99
100  .. table:: Operating Systems
101
102     ===================== ==============================================================
103     OS                    Description
104     ===================== ==============================================================
105     *<empty>*/``unknown``  Defaults to the OpenCL runtime.
106     ``vulkan``             Vulkan shader runtime.
107     ``vulkan1.2``          Vulkan 1.2 runtime, corresponding to SPIR-V 1.5.
108     ``vulkan1.3``          Vulkan 1.3 runtime, corresponding to SPIR-V 1.6.
109     ``amdhsa``             AMDHSA runtime, meant to be used on HSA compatible runtimes,
110                            corresponding to SPIR-V 1.6.
111     ===================== ==============================================================
112
113  .. table:: SPIR-V Environments
114
115     ===================== ==============================================================
116     Environment           Description
117     ===================== ==============================================================
118     *<empty>*/``unknown``  OpenCL environment or deduced by backend based on the input.
119     ===================== ==============================================================
120
121Example:
122
123``-target spirv64v1.0`` can be used to compile for SPIR-V version 1.0 with 64-bit pointer width.
124
125``-target spirv64-amd-amdhsa`` can be used to compile for AMDGCN flavoured SPIR-V with 64-bit pointer width.
126
127.. _spirv-extensions:
128
129Extensions
130----------
131
132The SPIR-V backend supports a variety of `extensions <https://github.com/KhronosGroup/SPIRV-Registry/tree/main/extensions>`_
133that enable or enhance features beyond the core SPIR-V specification.
134These extensions can be enabled using the ``-spirv-extensions`` option
135followed by the name of the extension(s) you wish to enable. Below is a
136list of supported SPIR-V extensions, sorted alphabetically by their extension names:
137
138.. list-table:: Supported SPIR-V Extensions
139   :widths: 50 150
140   :header-rows: 1
141
142   * - Extension Name
143     - Description
144   * - ``SPV_EXT_arithmetic_fence``
145     - Adds an instruction that prevents fast-math optimizations between its argument and the expression that contains it.
146   * - ``SPV_EXT_demote_to_helper_invocation``
147     - Adds an instruction that demotes a fragment shader invocation to a helper invocation.
148   * - ``SPV_EXT_optnone``
149     - Adds OptNoneEXT value for Function Control mask that indicates a request to not optimize the function.
150   * - ``SPV_EXT_shader_atomic_float16_add``
151     - Extends the SPV_EXT_shader_atomic_float_add extension to support atomically adding to 16-bit floating-point numbers in memory.
152   * - ``SPV_EXT_shader_atomic_float_add``
153     - Adds atomic add instruction on floating-point numbers.
154   * - ``SPV_EXT_shader_atomic_float_min_max``
155     - Adds atomic min and max instruction on floating-point numbers.
156   * - ``SPV_INTEL_arbitrary_precision_integers``
157     - Allows generating arbitrary width integer types.
158   * - ``SPV_INTEL_bfloat16_conversion``
159     - Adds instructions to convert between single-precision 32-bit floating-point values and 16-bit bfloat16 values.
160   * - ``SPV_INTEL_cache_controls``
161     - Allows cache control information to be applied to memory access instructions.
162   * - ``SPV_INTEL_float_controls2``
163     - Adds execution modes and decorations to control floating-point computations.
164   * - ``SPV_INTEL_function_pointers``
165     - Allows translation of function pointers.
166   * - ``SPV_INTEL_inline_assembly``
167     - Allows to use inline assembly.
168   * - ``SPV_INTEL_global_variable_host_access``
169     - Adds decorations that can be applied to global (module scope) variables.
170   * - ``SPV_INTEL_global_variable_fpga_decorations``
171     - Adds decorations that can be applied to global (module scope) variables to help code generation for FPGA devices.
172   * - ``SPV_INTEL_media_block_io``
173     - Adds additional subgroup block read and write functionality that allow applications to flexibly specify the width and height of the block to read from or write to a 2D image.
174   * - ``SPV_INTEL_optnone``
175     - Adds OptNoneINTEL value for Function Control mask that indicates a request to not optimize the function.
176   * - ``SPV_INTEL_split_barrier``
177     - Adds SPIR-V instructions to split a control barrier into two separate operations: the first indicates that an invocation has "arrived" at the barrier but should continue executing, and the second indicates that an invocation should "wait" for other invocations to arrive at the barrier before executing further.
178   * - ``SPV_INTEL_subgroups``
179     - Allows work items in a subgroup to share data without the use of local memory and work group barriers, and to utilize specialized hardware to load and store blocks of data from images or buffers.
180   * - ``SPV_INTEL_usm_storage_classes``
181     - Introduces two new storage classes that are subclasses of the CrossWorkgroup storage class that provides additional information that can enable optimization.
182   * - ``SPV_INTEL_variable_length_array``
183     - Allows to allocate local arrays whose number of elements is unknown at compile time.
184   * - ``SPV_INTEL_joint_matrix``
185     - Adds few matrix capabilities on top of SPV_KHR_cooperative_matrix extension, such as matrix prefetch, get element coordinate and checked load/store/construct instructions, tensor float 32 and bfloat type interpretations for multuply-add instruction.
186   * - ``SPV_KHR_bit_instructions``
187     - Enables bit instructions to be used by SPIR-V modules without requiring the Shader capability.
188   * - ``SPV_KHR_expect_assume``
189     - Provides additional information to a compiler, similar to the llvm.assume and llvm.expect intrinsics.
190   * - ``SPV_KHR_float_controls``
191     - Provides new execution modes to control floating-point computations by overriding an implementation’s default behavior for rounding modes, denormals, signed zero, and infinities.
192   * - ``SPV_KHR_integer_dot_product``
193     - Adds instructions for dot product operations on integer vectors with optional accumulation. Integer vectors includes 4-component vector of 8 bit integers and 4-component vectors of 8 bit integers packed into 32-bit integers.
194   * - ``SPV_KHR_linkonce_odr``
195     - Allows to use the LinkOnceODR linkage type that lets a function or global variable to be merged with other functions or global variables of the same name when linkage occurs.
196   * - ``SPV_KHR_no_integer_wrap_decoration``
197     - Adds decorations to indicate that a given instruction does not cause integer wrapping.
198   * - ``SPV_KHR_shader_clock``
199     - Adds the extension cl_khr_kernel_clock that adds the ability for a kernel to sample the value from clocks provided by compute units.
200   * - ``SPV_KHR_subgroup_rotate``
201     - Adds a new instruction that enables rotating values across invocations within a subgroup.
202   * - ``SPV_KHR_uniform_group_instructions``
203     - Allows support for additional group operations within uniform control flow.
204   * - ``SPV_KHR_non_semantic_info``
205     - Adds the ability to declare extended instruction sets that have no semantic impact and can be safely removed from a module.
206
207To enable multiple extensions, list them separated by spaces. For example, to enable support for atomic operations on floating-point numbers and arbitrary precision integers, use:
208
209``-spirv-ext=+SPV_EXT_shader_atomic_float_add,+SPV_INTEL_arbitrary_precision_integers``
210
211To enable all extensions, use the following option:
212``-spirv-ext=all``
213
214To enable all extensions except specified, specify ``all`` followed by a list of disallowed extensions. For example:
215``-spirv-ext=all,-SPV_INTEL_arbitrary_precision_integers``
216
217SPIR-V representation in LLVM IR
218================================
219
220SPIR-V is intentionally designed for seamless integration with various Intermediate
221Representations (IRs), including LLVM IR, facilitating straightforward mappings for
222most of its entities. The development of the SPIR-V backend has been guided by a
223principle of compatibility with the `Khronos Group SPIR-V LLVM Translator <https://github.com/KhronosGroup/SPIRV-LLVM-Translator>`_.
224Consequently, the input representation accepted by the SPIR-V backend aligns closely
225with that detailed in `the SPIR-V Representation in LLVM document <https://github.com/KhronosGroup/SPIRV-LLVM-Translator/blob/main/docs/SPIRVRepresentationInLLVM.rst>`_.
226This document, along with the sections that follow, delineate the main points and focus
227on any differences between the LLVM IR that this backend processes and the conventions
228used by other tools.
229
230.. _spirv-special-types:
231
232Special types
233-------------
234
235SPIR-V specifies several kinds of opaque types. These types are represented
236using target extension types and are represented as follows:
237
238  .. table:: SPIR-V Opaque Types
239
240     ================== ====================== ===========================================================================================
241     SPIR-V Type        LLVM type name         LLVM type arguments
242     ================== ====================== ===========================================================================================
243     OpTypeImage        ``spirv.Image``        sampled type, dimensionality, depth, arrayed, MS, sampled, image format, [access qualifier]
244     OpTypeSampler      ``spirv.Sampler``      (none)
245     OpTypeSampledImage ``spirv.SampledImage`` sampled type, dimensionality, depth, arrayed, MS, sampled, image format, [access qualifier]
246     OpTypeEvent        ``spirv.Event``        (none)
247     OpTypeDeviceEvent  ``spirv.DeviceEvent``  (none)
248     OpTypeReserveId    ``spirv.ReserveId``    (none)
249     OpTypeQueue        ``spirv.Queue``        (none)
250     OpTypePipe         ``spirv.Pipe``         access qualifier
251     OpTypePipeStorage  ``spirv.PipeStorage``  (none)
252     ================== ====================== ===========================================================================================
253
254All integer arguments take the same value as they do in their `corresponding
255SPIR-V instruction <https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_type_declaration_instructions>`_.
256For example, the OpenCL type ``image2d_depth_ro_t`` would be represented in
257SPIR-V IR as ``target("spirv.Image", void, 1, 1, 0, 0, 0, 0, 0)``, with its
258dimensionality parameter as ``1`` meaning 2D. Sampled image types include the
259parameters of its underlying image type, so that a sampled image for the
260previous type has the representation
261``target("spirv.SampledImage, void, 1, 1, 0, 0, 0, 0, 0)``.
262
263.. _spirv-intrinsics:
264
265Target Intrinsics
266-----------------
267
268The SPIR-V backend employs several LLVM IR intrinsics that facilitate various low-level
269operations essential for generating correct and efficient SPIR-V code. These intrinsics
270cover a range of functionalities from type assignment and memory management to control
271flow and atomic operations. Below is a detailed table of selected intrinsics used in the
272SPIR-V backend, along with their descriptions and argument details.
273
274.. list-table:: LLVM IR Intrinsics for SPIR-V
275   :widths: 25 15 20 40
276   :header-rows: 1
277
278   * - Intrinsic ID
279     - Return Type
280     - Argument Types
281     - Description
282   * - `int_spv_assign_type`
283     - None
284     - `[Type, Metadata]`
285     - Associates a type with metadata, crucial for maintaining type information in SPIR-V structures. Not emitted directly but supports the type system internally.
286   * - `int_spv_assign_ptr_type`
287     - None
288     - `[Type, Metadata, Integer]`
289     - Similar to `int_spv_assign_type`, but for pointer types with an additional integer specifying the storage class. Supports SPIR-V's detailed pointer type system. Not emitted directly.
290   * - `int_spv_assign_name`
291     - None
292     - `[Type, Vararg]`
293     - Assigns names to types or values, enhancing readability and debuggability of SPIR-V code. Not emitted directly but used for metadata enrichment.
294   * - `int_spv_value_md`
295     - None
296     - `[Metadata]`
297     - Assigns a set of attributes (such as name and data type) to a value that is the argument of the associated `llvm.fake.use` intrinsic call. The latter is used as a mean to map virtual registers created by IRTranslator to the original value.
298   * - `int_spv_assign_decoration`
299     - None
300     - `[Type, Metadata]`
301     - Assigns decoration to values by associating them with metadatas. Not emitted directly but used to support SPIR-V representation in LLVM IR.
302   * - `int_spv_track_constant`
303     - Type
304     - `[Type, Metadata]`
305     - Tracks constants in the SPIR-V module. Essential for optimizing and reducing redundancy. Emitted for internal use only.
306   * - `int_spv_init_global`
307     - None
308     - `[Type, Type]`
309     - Initializes global variables, a necessary step for ensuring correct global state management in SPIR-V. Emitted for internal use only.
310   * - `int_spv_unref_global`
311     - None
312     - `[Type]`
313     - Manages the lifetime of global variables by marking them as unreferenced, thus enabling optimizations related to global variable usage. Emitted for internal use only.
314   * - `int_spv_gep`
315     - Pointer
316     - `[Boolean, Type, Vararg]`
317     - Computes the address of a sub-element of an aggregate type. Critical for accessing array elements and structure fields. Supports conditionally addressing elements in a generic way.
318   * - `int_spv_load`
319     - 32-bit Integer
320     - `[Pointer, 16-bit Integer, 8-bit Integer]`
321     - Loads a value from a memory location. The additional integers specify memory access and alignment details, vital for ensuring correct and efficient memory operations.
322   * - `int_spv_store`
323     - None
324     - `[Type, Pointer, 16-bit Integer, 8-bit Integer]`
325     - Stores a value to a memory location. Like `int_spv_load`, it includes specifications for memory access and alignment, essential for memory operations.
326   * - `int_spv_extractv`
327     - Type
328     - `[32-bit Integer, Vararg]`
329     - Extracts a value from a vector, allowing for vector operations within SPIR-V. Enables manipulation of vector components.
330   * - `int_spv_insertv`
331     - 32-bit Integer
332     - `[32-bit Integer, Type, Vararg]`
333     - Inserts a value into a vector. Complementary to `int_spv_extractv`, it facilitates the construction and manipulation of vectors.
334   * - `int_spv_extractelt`
335     - Type
336     - `[Type, Any Integer]`
337     - Extracts an element from an aggregate type based on an index. Essential for operations on arrays and vectors.
338   * - `int_spv_insertelt`
339     - Type
340     - `[Type, Type, Any Integer]`
341     - Inserts an element into an aggregate type at a specified index. Allows for building and modifying arrays and vectors.
342   * - `int_spv_const_composite`
343     - Type
344     - `[Vararg]`
345     - Constructs a composite type from given elements. Key for creating arrays, structs, and vectors from individual components.
346   * - `int_spv_bitcast`
347     - Type
348     - `[Type]`
349     - Performs a bit-wise cast between types. Critical for type conversions that do not change the bit representation.
350   * - `int_spv_ptrcast`
351     - Type
352     - `[Type, Metadata, Integer]`
353     - Casts pointers between different types. Similar to `int_spv_bitcast` but specifically for pointers, taking into account SPIR-V's strict type system.
354   * - `int_spv_switch`
355     - None
356     - `[Type, Vararg]`
357     - Implements a multi-way branch based on a value. Enables complex control flow structures, similar to the switch statement in high-level languages.
358   * - `int_spv_cmpxchg`
359     - 32-bit Integer
360     - `[Type, Vararg]`
361     - Performs an atomic compare-and-exchange operation. Crucial for synchronization and concurrency control in compute shaders.
362   * - `int_spv_unreachable`
363     - None
364     - `[]`
365     - Marks a point in the code that should never be reached, enabling optimizations by indicating unreachable code paths.
366   * - `int_spv_alloca`
367     - Type
368     - `[]`
369     - Allocates memory on the stack. Fundamental for local variable storage in functions.
370   * - `int_spv_alloca_array`
371     - Type
372     - `[Any Integer]`
373     - Allocates an array on the stack. Extends `int_spv_alloca` to support array allocations, essential for temporary arrays.
374   * - `int_spv_undef`
375     - 32-bit Integer
376     - `[]`
377     - Generates an undefined value. Useful for optimizations and indicating uninitialized variables.
378   * - `int_spv_inline_asm`
379     - None
380     - `[Metadata, Metadata, Vararg]`
381     - Associates inline assembly features to inline assembly call instances by creating metadatas and preserving original arguments. Not emitted directly but used to support SPIR-V representation in LLVM IR.
382   * - `int_spv_assume`
383     - None
384     - `[1-bit Integer]`
385     - Provides hints to the optimizer about assumptions that can be made about program state. Improves optimization potential.
386   * - `int_spv_expect`
387     - Any Integer Type
388     - `[Type, Type]`
389     - Guides branch prediction by indicating expected branch paths. Enhances performance by optimizing common code paths.
390   * - `int_spv_thread_id`
391     - 32-bit Integer
392     - `[32-bit Integer]`
393     - Retrieves the thread ID within a workgroup. Essential for identifying execution context in parallel compute operations.
394   * - `int_spv_create_handle`
395     - Pointer
396     - `[8-bit Integer]`
397     - Creates a resource handle for graphics or compute resources. Facilitates the management and use of resources in shaders.
398   * - `int_spv_resource_handlefrombinding`
399     - spirv.Image
400     - `[32-bit Integer set, 32-bit Integer binding, 32-bit Integer arraySize, 32-bit Integer index, bool isUniformIndex]`
401     - Returns the handle for the resource at the given set and binding.\
402       If `arraySize > 1`, then the binding represents an array of resources\
403       of the given size, and the handle for the resource at the given index is returned.\
404       If the index is possibly non-uniform, then `isUniformIndex` must get set to true.
405   * - `int_spv_typeBufferLoad`
406     - Scalar or vector
407     - `[spirv.Image ImageBuffer, 32-bit Integer coordinate]`
408     - Loads a value from a Vulkan image buffer at the given coordinate. The \
409       image buffer data is assumed to be stored as a 4-element vector. If the \
410       return type is a scalar, then the first element of the vector is \
411       returned. If the return type is an n-element vector, then the first \
412       n-elements of the 4-element vector are returned.
413   * - `int_spv_resource_store_typedbuffer`
414     - void
415     - `[spirv.Image Image, 32-bit Integer coordinate, vec4 data]`
416     - Stores the data to the image buffer at the given coordinate. The \
417       data must be a 4-element vector.
418
419.. _spirv-builtin-functions:
420
421Builtin Functions
422-----------------
423
424The following section highlights the representation of SPIR-V builtins in LLVM IR,
425emphasizing builtins that do not have direct counterparts in LLVM.
426
427Instructions as Function Calls
428~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
429
430SPIR-V builtins without direct LLVM counterparts are represented as LLVM function calls.
431These functions, termed SPIR-V builtin functions, follow an IA64 mangling scheme with
432SPIR-V-specific extensions. Parsing non-mangled calls to builtins is supported in some cases,
433but not tested extensively. The general format is:
434
435.. code-block:: c
436
437  __spirv_{OpCodeName}{_OptionalPostfixes}
438
439Where `{OpCodeName}` is the SPIR-V opcode name sans the "Op" prefix, and
440`{OptionalPostfixes}` are decoration-specific postfixes, if any. The mangling and
441postfixes allow for the representation of SPIR-V's rich instruction set within LLVM's
442framework.
443
444Extended Instruction Sets
445~~~~~~~~~~~~~~~~~~~~~~~~~
446
447SPIR-V defines several extended instruction sets for additional functionalities, such as
448OpenCL-specific operations. In LLVM IR, these are represented by function calls to
449mangled builtins and selected based on the environment. For example:
450
451.. code-block:: c
452
453  acos_f32
454
455represents the `acos` function from the OpenCL extended instruction set for a float32
456input.
457
458Builtin Variables
459~~~~~~~~~~~~~~~~~
460
461SPIR-V builtin variables, which provide access to special hardware or execution model
462properties, are mapped to either LLVM function calls or LLVM global variables. The
463representation follows the naming convention:
464
465.. code-block:: c
466
467  __spirv_BuiltIn{VariableName}
468
469For instance, the SPIR-V builtin `GlobalInvocationId` is accessible in LLVM IR as
470`__spirv_BuiltInGlobalInvocationId`.
471
472Vector Load and Store Builtins
473~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
474
475SPIR-V's capabilities for loading and storing vectors are represented in LLVM IR using
476functions that mimic the SPIR-V instructions. These builtins handle cases that LLVM's
477native instructions do not directly support, enabling fine-grained control over memory
478operations.
479
480Atomic Operations
481~~~~~~~~~~~~~~~~~
482
483SPIR-V's atomic operations, especially those operating on floating-point data, are
484represented in LLVM IR with corresponding function calls. These builtins ensure
485atomicity in operations where LLVM might not have direct support, essential for parallel
486execution and synchronization.
487
488Image Operations
489~~~~~~~~~~~~~~~~
490
491SPIR-V provides extensive support for image and sampler operations, which LLVM
492represents through function calls to builtins. These include image reads, writes, and
493queries, allowing detailed manipulation of image data and parameters.
494
495Group and Subgroup Operations
496~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
497
498For workgroup and subgroup operations, LLVM uses function calls to represent SPIR-V's
499group-based instructions. These builtins facilitate group synchronization, data sharing,
500and collective operations essential for efficient parallel computation.
501