1.. role:: raw-html(raw) 2 :format: html 3 4======================== 5LLVM Bitcode File Format 6======================== 7 8.. contents:: 9 :local: 10 11Abstract 12======== 13 14This document describes the LLVM bitstream file format and the encoding of the 15LLVM IR into it. 16 17Overview 18======== 19 20What is commonly known as the LLVM bitcode file format (also, sometimes 21anachronistically known as bytecode) is actually two things: a `bitstream 22container format`_ and an `encoding of LLVM IR`_ into the container format. 23 24The bitstream format is an abstract encoding of structured data, very similar to 25XML in some ways. Like XML, bitstream files contain tags, and nested 26structures, and you can parse the file without having to understand the tags. 27Unlike XML, the bitstream format is a binary encoding, and unlike XML it 28provides a mechanism for the file to self-describe "abbreviations", which are 29effectively size optimizations for the content. 30 31LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a 32`native object file`_. Both of these mechanisms make it easy to embed extra 33data along with LLVM IR files. 34 35This document first describes the LLVM bitstream format, describes the wrapper 36format, then describes the record structure used by LLVM IR files. 37 38.. _bitstream container format: 39 40Bitstream Format 41================ 42 43The bitstream format is literally a stream of bits, with a very simple 44structure. This structure consists of the following concepts: 45 46* A "`magic number`_" that identifies the contents of the stream. 47 48* Encoding `primitives`_ like variable bit-rate integers. 49 50* `Blocks`_, which define nested content. 51 52* `Data Records`_, which describe entities within the file. 53 54* Abbreviations, which specify compression optimizations for the file. 55 56Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be 57used to dump and inspect arbitrary bitstreams, which is very useful for 58understanding the encoding. 59 60.. _magic number: 61 62Magic Numbers 63------------- 64 65The first four bytes of a bitstream are used as an application-specific magic 66number. Generic bitcode tools may look at the first four bytes to determine 67whether the stream is a known stream type. However, these tools should *not* 68determine whether a bitstream is valid based on its magic number alone. New 69application-specific bitstream formats are being developed all the time; tools 70should not reject them just because they have a hitherto unseen magic number. 71 72.. _primitives: 73 74Primitives 75---------- 76 77A bitstream literally consists of a stream of bits, which are read in order 78starting with the least significant bit of each byte. The stream is made up of 79a number of primitive values that encode a stream of unsigned integer values. 80These integers are encoded in two ways: either as `Fixed Width Integers`_ or as 81`Variable Width Integers`_. 82 83.. _Fixed Width Integers: 84.. _fixed-width value: 85 86Fixed Width Integers 87^^^^^^^^^^^^^^^^^^^^ 88 89Fixed-width integer values have their low bits emitted directly to the file. 90For example, a 3-bit integer value encodes 1 as 001. Fixed width integers are 91used when there are a well-known number of options for a field. For example, 92boolean values are usually encoded with a 1-bit wide integer. 93 94.. _Variable Width Integers: 95.. _Variable Width Integer: 96.. _variable-width value: 97 98Variable Width Integers 99^^^^^^^^^^^^^^^^^^^^^^^ 100 101Variable-width integer (VBR) values encode values of arbitrary size, optimizing 102for the case where the values are small. Given a 4-bit VBR field, any 3-bit 103value (0 through 7) is encoded directly, with the high bit set to zero. Values 104larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all 105but the last set the high bit. 106 107For example, the value 30 (0x1E) is encoded as 62 (0b0011'1110) when emitted as 108a vbr4 value. The first set of four bits starting from the least significant 109indicates the value 6 (110) with a continuation piece (indicated by a high bit 110of 1). The next set of four bits indicates a value of 24 (011 << 3) with no 111continuation. The sum (6+24) yields the value 30. 112 113.. _char6-encoded value: 114 1156-bit characters 116^^^^^^^^^^^^^^^^ 117 1186-bit characters encode common characters into a fixed 6-bit field. They 119represent the following characters with the following 6-bit values: 120 121:: 122 123 'a' .. 'z' --- 0 .. 25 124 'A' .. 'Z' --- 26 .. 51 125 '0' .. '9' --- 52 .. 61 126 '.' --- 62 127 '_' --- 63 128 129This encoding is only suitable for encoding characters and strings that consist 130only of the above characters. It is completely incapable of encoding characters 131not in the set. 132 133Word Alignment 134^^^^^^^^^^^^^^ 135 136Occasionally, it is useful to emit zero bits until the bitstream is a multiple 137of 32 bits. This ensures that the bit position in the stream can be represented 138as a multiple of 32-bit words. 139 140Abbreviation IDs 141---------------- 142 143A bitstream is a sequential series of `Blocks`_ and `Data Records`_. Both of 144these start with an abbreviation ID encoded as a fixed-bitwidth field. The 145width is specified by the current block, as described below. The value of the 146abbreviation ID specifies either a builtin ID (which have special meanings, 147defined below) or one of the abbreviation IDs defined for the current block by 148the stream itself. 149 150The set of builtin abbrev IDs is: 151 152* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block. 153 154* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new 155 block. 156 157* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation. 158 159* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an 160 unabbreviated record. 161 162Abbreviation IDs 4 and above are defined by the stream itself, and specify an 163`abbreviated record encoding`_. 164 165.. _Blocks: 166 167Blocks 168------ 169 170Blocks in a bitstream denote nested regions of the stream, and are identified by 171a content-specific id number (for example, LLVM IR uses an ID of 12 to represent 172function bodies). Block IDs 0-7 are reserved for `standard blocks`_ whose 173meaning is defined by Bitcode; block IDs 8 and greater are application 174specific. Nested blocks capture the hierarchical structure of the data encoded 175in it, and various properties are associated with blocks as the file is parsed. 176Block definitions allow the reader to efficiently skip blocks in constant time 177if the reader wants a summary of blocks, or if it wants to efficiently skip data 178it does not understand. The LLVM IR reader uses this mechanism to skip function 179bodies, lazily reading them on demand. 180 181When reading and encoding the stream, several properties are maintained for the 182block. In particular, each block maintains: 183 184#. A current abbrev id width. This value starts at 2 at the beginning of the 185 stream, and is set every time a block record is entered. The block entry 186 specifies the abbrev id width for the body of the block. 187 188#. A set of abbreviations. Abbreviations may be defined within a block, in 189 which case they are only defined in that block (neither subblocks nor 190 enclosing blocks see the abbreviation). Abbreviations can also be defined 191 inside a `BLOCKINFO`_ block, in which case they are defined in all blocks 192 that match the ID that the ``BLOCKINFO`` block is describing. 193 194As sub blocks are entered, these properties are saved and the new sub-block has 195its own set of abbreviations, and its own abbrev id width. When a sub-block is 196popped, the saved values are restored. 197 198.. _ENTER_SUBBLOCK: 199 200ENTER_SUBBLOCK Encoding 201^^^^^^^^^^^^^^^^^^^^^^^ 202 203:raw-html:`<tt>` 204[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32] 205:raw-html:`</tt>` 206 207The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block 208record. The ``blockid`` value is encoded as an 8-bit VBR identifier, and 209indicates the type of block being entered, which can be a `standard block`_ or 210an application-specific block. The ``newabbrevlen`` value is a 4-bit VBR, which 211specifies the abbrev id width for the sub-block. The ``blocklen`` value is a 21232-bit aligned value that specifies the size of the subblock in 32-bit 213words. This value allows the reader to skip over the entire block in one jump. 214 215.. _END_BLOCK: 216 217END_BLOCK Encoding 218^^^^^^^^^^^^^^^^^^ 219 220``[END_BLOCK, <align32bits>]`` 221 222The ``END_BLOCK`` abbreviation ID specifies the end of the current block record. 223Its end is aligned to 32-bits to ensure that the size of the block is an even 224multiple of 32-bits. 225 226.. _Data Records: 227 228Data Records 229------------ 230 231Data records consist of a record code and a number of (up to) 64-bit integer 232values. The interpretation of the code and values is application specific and 233may vary between different block types. Records can be encoded either using an 234unabbrev record, or with an abbreviation. In the LLVM IR format, for example, 235there is a record which encodes the target triple of a module. The code is 236``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the 237characters in the string. 238 239.. _UNABBREV_RECORD: 240 241UNABBREV_RECORD Encoding 242^^^^^^^^^^^^^^^^^^^^^^^^ 243 244:raw-html:`<tt>` 245[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...] 246:raw-html:`</tt>` 247 248An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both 249completely general and extremely inefficient. It can describe an arbitrary 250record by emitting the code and operands as VBRs. 251 252For example, emitting an LLVM IR target triple as an unabbreviated record 253requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the 254``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal 255to the number of operands, and a vbr6 for each character. Because there are no 256letters with values less than 32, each letter would need to be emitted as at 257least a two-part VBR, which means that each letter would require at least 12 258bits. This is not an efficient encoding, but it is fully general. 259 260.. _abbreviated record encoding: 261 262Abbreviated Record Encoding 263^^^^^^^^^^^^^^^^^^^^^^^^^^^ 264 265``[<abbrevid>, fields...]`` 266 267An abbreviated record is an abbreviation id followed by a set of fields that are 268encoded according to the `abbreviation definition`_. This allows records to be 269encoded significantly more densely than records encoded with the 270`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in 271the stream itself, which allows the files to be completely self describing. The 272actual encoding of abbreviations is defined below. 273 274The record code, which is the first field of an abbreviated record, may be 275encoded in the abbreviation definition (as a literal operand) or supplied in the 276abbreviated record (as a Fixed or VBR operand value). 277 278.. _abbreviation definition: 279 280Abbreviations 281------------- 282 283Abbreviations are an important form of compression for bitstreams. The idea is 284to specify a dense encoding for a class of records once, then use that encoding 285to emit many records. It takes space to emit the encoding into the file, but 286the space is recouped (hopefully plus some) when the records that use it are 287emitted. 288 289Abbreviations can be determined dynamically per client, per file. Because the 290abbreviations are stored in the bitstream itself, different streams of the same 291format can contain different sets of abbreviations according to the needs of the 292specific stream. As a concrete example, LLVM IR files usually emit an 293abbreviation for binary operators. If a specific LLVM module contained no or 294few binary operators, the abbreviation does not need to be emitted. 295 296.. _DEFINE_ABBREV: 297 298DEFINE_ABBREV Encoding 299^^^^^^^^^^^^^^^^^^^^^^ 300 301:raw-html:`<tt>` 302[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...] 303:raw-html:`</tt>` 304 305A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined 306abbreviations in the scope of this block. This definition only exists inside 307this immediate block --- it is not visible in subblocks or enclosing blocks. 308Abbreviations are implicitly assigned IDs sequentially starting from 4 (the 309first application-defined abbreviation ID). Any abbreviations defined in a 310``BLOCKINFO`` record for the particular block type receive IDs first, in order, 311followed by any abbreviations defined within the block itself. Abbreviated data 312records reference this ID to indicate what abbreviation they are invoking. 313 314An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed 315by a VBR that specifies the number of abbrev operands, then the abbrev operands 316themselves. Abbreviation operands come in three forms. They all start with a 317single bit that indicates whether the abbrev operand is a literal operand (when 318the bit is 1) or an encoding operand (when the bit is 0). 319 320#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\ 321 :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in 322 the result is always a single specific value. This specific value is emitted 323 as a vbr8 after the bit indicating that it is a literal operand. 324 325#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 326 :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data 327 are just emitted as their code. 328 329#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\ 330 :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do 331 have extra data are emitted as their code, followed by the extra data. 332 333The possible operand encodings are: 334 335* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose 336 width is specified by the operand's extra data. 337 338* VBR (code 2): The field should be emitted as a `variable-width value`_, whose 339 width is specified by the operand's extra data. 340 341* Array (code 3): This field is an array of values. The array operand has no 342 extra data, but expects another operand to follow it, indicating the element 343 type of the array. When reading an array in an abbreviated record, the first 344 integer is a vbr6 that indicates the array length, followed by the encoded 345 elements of the array. An array may only occur as the last operand of an 346 abbreviation (except for the one final operand that gives the array's 347 type). 348 349* Char6 (code 4): This field should be emitted as a `char6-encoded value`_. 350 This operand type takes no extra data. Char6 encoding is normally used as an 351 array element type. 352 353* Blob (code 5): This field is emitted as a vbr6, followed by padding to a 354 32-bit boundary (for alignment) and an array of 8-bit objects. The array of 355 bytes is further followed by tail padding to ensure that its total length is a 356 multiple of 4 bytes. This makes it very efficient for the reader to decode 357 the data without having to make a copy of it: it can use a pointer to the data 358 in the mapped in file and poke directly at it. A blob may only occur as the 359 last operand of an abbreviation. 360 361For example, target triples in LLVM modules are encoded as a record of the form 362``[TRIPLE, 'a', 'b', 'c', 'd']``. Consider if the bitstream emitted the 363following abbrev entry: 364 365:: 366 367 [0, Fixed, 4] 368 [0, Array] 369 [0, Char6] 370 371When emitting a record with this abbreviation, the above entry would be emitted 372as: 373 374:raw-html:`<tt><blockquote>` 375[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`] 376:raw-html:`</blockquote></tt>` 377 378These values are: 379 380#. The first value, 4, is the abbreviation ID for this abbreviation. 381 382#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR 383 file ``MODULE_BLOCK`` blocks. 384 385#. The third value, 4, is the length of the array. 386 387#. The rest of the values are the char6 encoded values for ``"abcd"``. 388 389With this abbreviation, the triple is emitted with only 37 bits (assuming a 390abbrev id width of 3). Without the abbreviation, significantly more space would 391be required to emit the target triple. Also, because the ``TRIPLE`` value is 392not emitted as a literal in the abbreviation, the abbreviation can also be used 393for any other string value. 394 395.. _standard blocks: 396.. _standard block: 397 398Standard Blocks 399--------------- 400 401In addition to the basic block structure and record encodings, the bitstream 402also defines specific built-in block types. These block types specify how the 403stream is to be decoded or other metadata. In the future, new standard blocks 404may be added. Block IDs 0-7 are reserved for standard blocks. 405 406.. _BLOCKINFO: 407 408#0 - BLOCKINFO Block 409^^^^^^^^^^^^^^^^^^^^ 410 411The ``BLOCKINFO`` block allows the description of metadata for other blocks. 412The currently specified records are: 413 414:: 415 416 [SETBID (#1), blockid] 417 [DEFINE_ABBREV, ...] 418 [BLOCKNAME, ...name...] 419 [SETRECORDNAME, RecordID, ...name...] 420 421The ``SETBID`` record (code 1) indicates which block ID is being described. 422``SETBID`` records can occur multiple times throughout the block to change which 423block ID is being described. There must be a ``SETBID`` record prior to any 424other records. 425 426Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but 427unlike their occurrence in normal blocks, the abbreviation is defined for blocks 428matching the block ID we are describing, *not* the ``BLOCKINFO`` block 429itself. The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation 430IDs as described in `DEFINE_ABBREV`_. 431 432The ``BLOCKNAME`` record (code 2) can optionally occur in this block. The 433elements of the record are the bytes of the string name of the block. 434llvm-bcanalyzer can use this to dump out bitcode files symbolically. 435 436The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block. 437The first operand value is a record ID number, and the rest of the elements of 438the record are the bytes for the string name of the record. llvm-bcanalyzer can 439use this to dump out bitcode files symbolically. 440 441Note that although the data in ``BLOCKINFO`` blocks is described as "metadata," 442the abbreviations they contain are essential for parsing records from the 443corresponding blocks. It is not safe to skip them. 444 445.. _wrapper: 446 447Bitcode Wrapper Format 448====================== 449 450Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper 451structure. This structure contains a simple header that indicates the offset 452and size of the embedded BC file. This allows additional information to be 453stored alongside the BC file. The structure of this file header is: 454 455:raw-html:`<tt><blockquote>` 456[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`] 457:raw-html:`</blockquote></tt>` 458 459Each of the fields are 32-bit fields stored in little endian form (as with the 460rest of the bitcode file fields). The Magic number is always ``0x0B17C0DE`` and 461the version is currently always ``0``. The Offset field is the offset in bytes 462to the start of the bitcode stream in the file, and the Size field is the size 463in bytes of the stream. CPUType is a target-specific value that can be used to 464encode the CPU of the target. 465 466.. _native object file: 467 468Native Object File Wrapper Format 469================================= 470 471Bitcode files for LLVM IR may also be wrapped in a native object file 472(i.e. ELF, COFF, Mach-O). The bitcode must be stored in a section of the object 473file named ``__LLVM,__bitcode`` for MachO or ``.llvmbc`` for the other object 474formats. ELF objects additionally support a ``.llvm.lto`` section for 475:doc:`FatLTO`, which contains bitcode suitable for LTO compilation (i.e. bitcode 476that has gone through a pre-link LTO pipeline). The ``.llvmbc`` section 477predates FatLTO support in LLVM, and may not always contain bitcode that is 478suitable for LTO (i.e. from ``-fembed-bitcode``). The wrapper format is useful 479for accommodating LTO in compilation pipelines where intermediate objects must 480be native object files which contain metadata in other sections. 481 482Not all tools support this format. For example, lld and the gold plugin will 483ignore the ``.llvmbc`` section when linking object files, but can use 484``.llvm.lto`` sections when passed the correct command line options. 485 486.. _encoding of LLVM IR: 487 488LLVM IR Encoding 489================ 490 491LLVM IR is encoded into a bitstream by defining blocks and records. It uses 492blocks for things like constant pools, functions, symbol tables, etc. It uses 493records for things like instructions, global variable descriptors, type 494descriptions, etc. This document does not describe the set of abbreviations 495that the writer uses, as these are fully self-described in the file, and the 496reader is not allowed to build in any knowledge of this. 497 498Basics 499------ 500 501LLVM IR Magic Number 502^^^^^^^^^^^^^^^^^^^^ 503 504The magic number for LLVM IR files is: 505 506:raw-html:`<tt><blockquote>` 507['B'\ :sub:`8`, 'C'\ :sub:`8`, 0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`] 508:raw-html:`</blockquote></tt>` 509 510.. _Signed VBRs: 511 512Signed VBRs 513^^^^^^^^^^^ 514 515`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized 516unsigned values, but is an extremely inefficient for encoding signed values, as 517signed values are otherwise treated as maximally large unsigned values. 518 519As such, signed VBR values of a specific width are emitted as follows: 520 521* Positive values are emitted as VBRs of the specified width, but with their 522 value shifted left by one. 523 524* Negative values are emitted as VBRs of the specified width, but the negated 525 value is shifted left by one, and the low bit is set. 526 527With this encoding, small positive and small negative values can both be emitted 528efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and 529``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks. 530It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1. 531 532LLVM IR Blocks 533^^^^^^^^^^^^^^ 534 535LLVM IR is defined with the following blocks: 536 537* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire 538 module, and describes a variety of per-module information. 539 540* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes. 541 542* 10 --- `PARAMATTR_GROUP_BLOCK`_ --- This describes the attribute group table. 543 544* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or 545 function. 546 547* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body. 548 549* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table. 550 551* 15 --- `METADATA_BLOCK`_ --- This describes metadata items. 552 553* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata 554 with function instruction values. 555 556* 17 --- `TYPE_BLOCK`_ --- This describes all of the types in the module. 557 558* 23 --- `STRTAB_BLOCK`_ --- The bitcode file's string table. 559 560.. _MODULE_BLOCK: 561 562MODULE_BLOCK Contents 563--------------------- 564 565The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files, 566and each module in a bitcode file must contain exactly one. A bitcode file with 567multi-module bitcode is valid. In addition to records (described below) 568containing information about the module, a ``MODULE_BLOCK`` block may contain 569the following sub-blocks: 570 571* `BLOCKINFO`_ 572* `PARAMATTR_BLOCK`_ 573* `PARAMATTR_GROUP_BLOCK`_ 574* `TYPE_BLOCK`_ 575* `VALUE_SYMTAB_BLOCK`_ 576* `CONSTANTS_BLOCK`_ 577* `FUNCTION_BLOCK`_ 578* `METADATA_BLOCK`_ 579 580.. _MODULE_CODE_VERSION: 581 582MODULE_CODE_VERSION Record 583^^^^^^^^^^^^^^^^^^^^^^^^^^ 584 585``[VERSION, version#]`` 586 587The ``VERSION`` record (code 1) contains a single value indicating the format 588version. Versions 0, 1 and 2 are supported at this time. The difference between 589version 0 and 1 is in the encoding of instruction operands in 590each `FUNCTION_BLOCK`_. 591 592In version 0, each value defined by an instruction is assigned an ID 593unique to the function. Function-level value IDs are assigned starting from 594``NumModuleValues`` since they share the same namespace as module-level 595values. The value enumerator resets after each function. When a value is 596an operand of an instruction, the value ID is used to represent the operand. 597For large functions or large modules, these operand values can be large. 598 599The encoding in version 1 attempts to avoid large operand values 600in common cases. Instead of using the value ID directly, operands are 601encoded as relative to the current instruction. Thus, if an operand 602is the value defined by the previous instruction, the operand 603will be encoded as 1. 604 605For example, instead of 606 607.. code-block:: none 608 609 #n = load #n-1 610 #n+1 = icmp eq #n, #const0 611 br #n+1, label #(bb1), label #(bb2) 612 613version 1 will encode the instructions as 614 615.. code-block:: none 616 617 #n = load #1 618 #n+1 = icmp eq #1, (#n+1)-#const0 619 br #1, label #(bb1), label #(bb2) 620 621Note in the example that operands which are constants also use 622the relative encoding, while operands like basic block labels 623do not use the relative encoding. 624 625Forward references will result in a negative value. 626This can be inefficient, as operands are normally encoded 627as unsigned VBRs. However, forward references are rare, except in the 628case of phi instructions. For phi instructions, operands are encoded as 629`Signed VBRs`_ to deal with forward references. 630 631In version 2, the meaning of module records ``FUNCTION``, ``GLOBALVAR``, 632``ALIAS``, ``IFUNC`` and ``COMDAT`` change such that the first two operands 633specify an offset and size of a string in a string table (see `STRTAB_BLOCK 634Contents`_), the function name is removed from the ``FNENTRY`` record in the 635value symbol table, and the top-level ``VALUE_SYMTAB_BLOCK`` may only contain 636``FNENTRY`` records. 637 638MODULE_CODE_TRIPLE Record 639^^^^^^^^^^^^^^^^^^^^^^^^^ 640 641``[TRIPLE, ...string...]`` 642 643The ``TRIPLE`` record (code 2) contains a variable number of values representing 644the bytes of the ``target triple`` specification string. 645 646MODULE_CODE_DATALAYOUT Record 647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 648 649``[DATALAYOUT, ...string...]`` 650 651The ``DATALAYOUT`` record (code 3) contains a variable number of values 652representing the bytes of the ``target datalayout`` specification string. 653 654MODULE_CODE_ASM Record 655^^^^^^^^^^^^^^^^^^^^^^ 656 657``[ASM, ...string...]`` 658 659The ``ASM`` record (code 4) contains a variable number of values representing 660the bytes of ``module asm`` strings, with individual assembly blocks separated 661by newline (ASCII 10) characters. 662 663.. _MODULE_CODE_SECTIONNAME: 664 665MODULE_CODE_SECTIONNAME Record 666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 667 668``[SECTIONNAME, ...string...]`` 669 670The ``SECTIONNAME`` record (code 5) contains a variable number of values 671representing the bytes of a single section name string. There should be one 672``SECTIONNAME`` record for each section name referenced (e.g., in global 673variable or function ``section`` attributes) within the module. These records 674can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR`` 675or ``FUNCTION`` records. 676 677MODULE_CODE_DEPLIB Record 678^^^^^^^^^^^^^^^^^^^^^^^^^ 679 680``[DEPLIB, ...string...]`` 681 682The ``DEPLIB`` record (code 6) contains a variable number of values representing 683the bytes of a single dependent library name string, one of the libraries 684mentioned in a ``deplibs`` declaration. There should be one ``DEPLIB`` record 685for each library name referenced. 686 687MODULE_CODE_GLOBALVAR Record 688^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 689 690``[GLOBALVAR, strtab offset, strtab size, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat, attributes, preemptionspecifier]`` 691 692The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a 693global variable. The operand fields are: 694 695* *strtab offset*, *strtab size*: Specifies the name of the global variable. 696 See `STRTAB_BLOCK Contents`_. 697 698* *pointer type*: The type index of the pointer type used to point to this 699 global variable 700 701* *isconst*: Non-zero if the variable is treated as constant within the module, 702 or zero if it is not 703 704* *initid*: If non-zero, the value index of the initializer for this variable, 705 plus 1. 706 707.. _linkage type: 708 709* *linkage*: An encoding of the linkage type for this variable: 710 711 * ``external``: code 0 712 * ``weak``: code 1 713 * ``appending``: code 2 714 * ``internal``: code 3 715 * ``linkonce``: code 4 716 * ``dllimport``: code 5 717 * ``dllexport``: code 6 718 * ``extern_weak``: code 7 719 * ``common``: code 8 720 * ``private``: code 9 721 * ``weak_odr``: code 10 722 * ``linkonce_odr``: code 11 723 * ``available_externally``: code 12 724 * deprecated : code 13 725 * deprecated : code 14 726 727* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1 728 729* *section*: If non-zero, the 1-based section index in the table of 730 `MODULE_CODE_SECTIONNAME`_ entries. 731 732.. _visibility: 733 734* *visibility*: If present, an encoding of the visibility of this variable: 735 736 * ``default``: code 0 737 * ``hidden``: code 1 738 * ``protected``: code 2 739 740.. _bcthreadlocal: 741 742* *threadlocal*: If present, an encoding of the thread local storage mode of the 743 variable: 744 745 * ``not thread local``: code 0 746 * ``thread local; default TLS model``: code 1 747 * ``localdynamic``: code 2 748 * ``initialexec``: code 3 749 * ``localexec``: code 4 750 751.. _bcunnamedaddr: 752 753* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this 754 variable: 755 756 * not ``unnamed_addr``: code 0 757 * ``unnamed_addr``: code 1 758 * ``local_unnamed_addr``: code 2 759 760.. _bcdllstorageclass: 761 762* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable: 763 764 * ``default``: code 0 765 * ``dllimport``: code 1 766 * ``dllexport``: code 2 767 768* *comdat*: An encoding of the COMDAT of this function 769 770* *attributes*: If nonzero, the 1-based index into the table of AttributeLists. 771 772.. _bcpreemptionspecifier: 773 774* *preemptionspecifier*: If present, an encoding of the runtime preemption specifier of this variable: 775 776 * ``dso_preemptable``: code 0 777 * ``dso_local``: code 1 778 779.. _FUNCTION: 780 781MODULE_CODE_FUNCTION Record 782^^^^^^^^^^^^^^^^^^^^^^^^^^^ 783 784``[FUNCTION, strtab offset, strtab size, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn, preemptionspecifier]`` 785 786The ``FUNCTION`` record (code 8) marks the declaration or definition of a 787function. The operand fields are: 788 789* *strtab offset*, *strtab size*: Specifies the name of the function. 790 See `STRTAB_BLOCK Contents`_. 791 792* *type*: The type index of the function type describing this function 793 794* *callingconv*: The calling convention number: 795 * ``ccc``: code 0 796 * ``fastcc``: code 8 797 * ``coldcc``: code 9 798 * ``anyregcc``: code 13 799 * ``preserve_mostcc``: code 14 800 * ``preserve_allcc``: code 15 801 * ``swiftcc`` : code 16 802 * ``cxx_fast_tlscc``: code 17 803 * ``tailcc`` : code 18 804 * ``cfguard_checkcc`` : code 19 805 * ``swifttailcc`` : code 20 806 * ``x86_stdcallcc``: code 64 807 * ``x86_fastcallcc``: code 65 808 * ``arm_apcscc``: code 66 809 * ``arm_aapcscc``: code 67 810 * ``arm_aapcs_vfpcc``: code 68 811 812* isproto*: Non-zero if this entry represents a declaration rather than a 813 definition 814 815* *linkage*: An encoding of the `linkage type`_ for this function 816 817* *paramattr*: If nonzero, the 1-based parameter attribute index into the table 818 of `PARAMATTR_CODE_ENTRY`_ entries. 819 820* *alignment*: The logarithm base 2 of the function's requested alignment, plus 821 1 822 823* *section*: If non-zero, the 1-based section index in the table of 824 `MODULE_CODE_SECTIONNAME`_ entries. 825 826* *visibility*: An encoding of the `visibility`_ of this function 827 828* *gc*: If present and nonzero, the 1-based garbage collector index in the table 829 of `MODULE_CODE_GCNAME`_ entries. 830 831* *unnamed_addr*: If present, an encoding of the 832 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function 833 834* *prologuedata*: If non-zero, the value index of the prologue data for this function, 835 plus 1. 836 837* *dllstorageclass*: An encoding of the 838 :ref:`dllstorageclass<bcdllstorageclass>` of this function 839 840* *comdat*: An encoding of the COMDAT of this function 841 842* *prefixdata*: If non-zero, the value index of the prefix data for this function, 843 plus 1. 844 845* *personalityfn*: If non-zero, the value index of the personality function for this function, 846 plus 1. 847 848* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this function. 849 850MODULE_CODE_ALIAS Record 851^^^^^^^^^^^^^^^^^^^^^^^^ 852 853``[ALIAS, strtab offset, strtab size, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr, preemptionspecifier]`` 854 855The ``ALIAS`` record (code 9) marks the definition of an alias. The operand 856fields are 857 858* *strtab offset*, *strtab size*: Specifies the name of the alias. 859 See `STRTAB_BLOCK Contents`_. 860 861* *alias type*: The type index of the alias 862 863* *aliasee val#*: The value index of the aliased value 864 865* *linkage*: An encoding of the `linkage type`_ for this alias 866 867* *visibility*: If present, an encoding of the `visibility`_ of the alias 868 869* *dllstorageclass*: If present, an encoding of the 870 :ref:`dllstorageclass<bcdllstorageclass>` of the alias 871 872* *threadlocal*: If present, an encoding of the 873 :ref:`thread local property<bcthreadlocal>` of the alias 874 875* *unnamed_addr*: If present, an encoding of the 876 :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias 877 878* *preemptionspecifier*: If present, an encoding of the :ref:`runtime preemption specifier<bcpreemptionspecifier>` of this alias. 879 880.. _MODULE_CODE_GCNAME: 881 882MODULE_CODE_GCNAME Record 883^^^^^^^^^^^^^^^^^^^^^^^^^ 884 885``[GCNAME, ...string...]`` 886 887The ``GCNAME`` record (code 11) contains a variable number of values 888representing the bytes of a single garbage collector name string. There should 889be one ``GCNAME`` record for each garbage collector name referenced in function 890``gc`` attributes within the module. These records can be referenced by 1-based 891index in the *gc* fields of ``FUNCTION`` records. 892 893.. _PARAMATTR_BLOCK: 894 895PARAMATTR_BLOCK Contents 896------------------------ 897 898The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the 899attributes of function parameters. These entries are referenced by 1-based index 900in the *paramattr* field of module block `FUNCTION`_ records, or within the 901*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records. 902 903Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique 904(i.e., no two indices represent equivalent attribute lists). 905 906.. _PARAMATTR_CODE_ENTRY: 907 908PARAMATTR_CODE_ENTRY Record 909^^^^^^^^^^^^^^^^^^^^^^^^^^^ 910 911``[ENTRY, attrgrp0, attrgrp1, ...]`` 912 913The ``ENTRY`` record (code 2) contains a variable number of values describing a 914unique set of function parameter attributes. Each *attrgrp* value is used as a 915key with which to look up an entry in the attribute group table described 916in the ``PARAMATTR_GROUP_BLOCK`` block. 917 918.. _PARAMATTR_CODE_ENTRY_OLD: 919 920PARAMATTR_CODE_ENTRY_OLD Record 921^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 922 923.. note:: 924 This is a legacy encoding for attributes, produced by LLVM versions 3.2 and 925 earlier. It is guaranteed to be understood by the current LLVM version, as 926 specified in the :ref:`IR backwards compatibility` policy. 927 928``[ENTRY, paramidx0, attr0, paramidx1, attr1...]`` 929 930The ``ENTRY`` record (code 1) contains an even number of values describing a 931unique set of function parameter attributes. Each *paramidx* value indicates 932which set of attributes is represented, with 0 representing the return value 933attributes, 0xFFFFFFFF representing function attributes, and other values 934representing 1-based function parameters. Each *attr* value is a bitmap with the 935following interpretation: 936 937* bit 0: ``zeroext`` 938* bit 1: ``signext`` 939* bit 2: ``noreturn`` 940* bit 3: ``inreg`` 941* bit 4: ``sret`` 942* bit 5: ``nounwind`` 943* bit 6: ``noalias`` 944* bit 7: ``byval`` 945* bit 8: ``nest`` 946* bit 9: ``readnone`` 947* bit 10: ``readonly`` 948* bit 11: ``noinline`` 949* bit 12: ``alwaysinline`` 950* bit 13: ``optsize`` 951* bit 14: ``ssp`` 952* bit 15: ``sspreq`` 953* bits 16-31: ``align n`` 954* bit 32: ``nocapture`` 955* bit 33: ``noredzone`` 956* bit 34: ``noimplicitfloat`` 957* bit 35: ``naked`` 958* bit 36: ``inlinehint`` 959* bits 37-39: ``alignstack n``, represented as the logarithm 960 base 2 of the requested alignment, plus 1 961 962.. _PARAMATTR_GROUP_BLOCK: 963 964PARAMATTR_GROUP_BLOCK Contents 965------------------------------ 966 967The ``PARAMATTR_GROUP_BLOCK`` block (id 10) contains a table of entries 968describing the attribute groups present in the module. These entries can be 969referenced within ``PARAMATTR_CODE_ENTRY`` entries. 970 971.. _PARAMATTR_GRP_CODE_ENTRY: 972 973PARAMATTR_GRP_CODE_ENTRY Record 974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 975 976``[ENTRY, grpid, paramidx, attr0, attr1, ...]`` 977 978The ``ENTRY`` record (code 3) contains *grpid* and *paramidx* values, followed 979by a variable number of values describing a unique group of attributes. The 980*grpid* value is a unique key for the attribute group, which can be referenced 981within ``PARAMATTR_CODE_ENTRY`` entries. The *paramidx* value indicates which 982set of attributes is represented, with 0 representing the return value 983attributes, 0xFFFFFFFF representing function attributes, and other values 984representing 1-based function parameters. 985 986Each *attr* is itself represented as a variable number of values: 987 988``kind, key [, ...], [value [, ...]]`` 989 990Each attribute is either a well-known LLVM attribute (possibly with an integer 991value associated with it), or an arbitrary string (possibly with an arbitrary 992string value associated with it). The *kind* value is an integer code 993distinguishing between these possibilities: 994 995* code 0: well-known attribute 996* code 1: well-known attribute with an integer value 997* code 3: string attribute 998* code 4: string attribute with a string value 999 1000For well-known attributes (code 0 or 1), the *key* value is an integer code 1001identifying the attribute. For attributes with an integer argument (code 1), 1002the *value* value indicates the argument. 1003 1004For string attributes (code 3 or 4), the *key* value is actually a variable 1005number of values representing the bytes of a null-terminated string. For 1006attributes with a string argument (code 4), the *value* value is similarly a 1007variable number of values representing the bytes of a null-terminated string. 1008 1009The integer codes are mapped to attributes as described in the 1010``AttributeKindCodes`` enumeration in the file `LLVMBitCodes.h 1011<https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/Bitcode/LLVMBitCodes.h>`_. 1012 1013For example: 1014 1015:: 1016 1017 enum AttributeKindCodes { 1018 // = 0 is unused 1019 ATTR_KIND_ALIGNMENT = 1, 1020 ATTR_KIND_ALWAYS_INLINE = 2, 1021 ... 1022 } 1023 1024Correspond to: 1025 1026* code 1: ``align(<n>)`` 1027* code 2: ``alwaysinline`` 1028 1029The mappings between the enumeration and the attribute name string may be found 1030in the file `Attributes.td 1031<https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/IR/Attributes.td>`_. 1032 1033.. note:: 1034 The ``allocsize`` attribute has a special encoding for its arguments. Its two 1035 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1036 (i.e. ``(EltSizeParam << 32) | NumEltsParam``), with ``NumEltsParam`` taking on 1037 the sentinel value -1 if it is not specified. 1038 1039.. note:: 1040 The ``vscale_range`` attribute has a special encoding for its arguments. Its two 1041 arguments, which are 32-bit integers, are packed into one 64-bit integer value 1042 (i.e. ``(Min << 32) | Max``), with ``Max`` taking on the value of ``Min`` if 1043 it is not specified. 1044 1045.. _TYPE_BLOCK: 1046 1047TYPE_BLOCK Contents 1048------------------- 1049 1050The ``TYPE_BLOCK`` block (id 17) contains records which constitute a table of 1051type operator entries used to represent types referenced within an LLVM 1052module. Each record (with the exception of `NUMENTRY`_) generates a single type 1053table entry, which may be referenced by 0-based index from instructions, 1054constants, metadata, type symbol table entries, or other type operator records. 1055 1056Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is 1057unique (i.e., no two indices represent structurally equivalent types). 1058 1059.. _TYPE_CODE_NUMENTRY: 1060.. _NUMENTRY: 1061 1062TYPE_CODE_NUMENTRY Record 1063^^^^^^^^^^^^^^^^^^^^^^^^^ 1064 1065``[NUMENTRY, numentries]`` 1066 1067The ``NUMENTRY`` record (code 1) contains a single value which indicates the 1068total number of type code entries in the type table of the module. If present, 1069``NUMENTRY`` should be the first record in the block. 1070 1071TYPE_CODE_VOID Record 1072^^^^^^^^^^^^^^^^^^^^^ 1073 1074``[VOID]`` 1075 1076The ``VOID`` record (code 2) adds a ``void`` type to the type table. 1077 1078TYPE_CODE_HALF Record 1079^^^^^^^^^^^^^^^^^^^^^ 1080 1081``[HALF]`` 1082 1083The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to 1084the type table. 1085 1086TYPE_CODE_BFLOAT Record 1087^^^^^^^^^^^^^^^^^^^^^^^ 1088 1089``[BFLOAT]`` 1090 1091The ``BFLOAT`` record (code 23) adds a ``bfloat`` (16-bit brain floating point) 1092type to the type table. 1093 1094TYPE_CODE_FLOAT Record 1095^^^^^^^^^^^^^^^^^^^^^^ 1096 1097``[FLOAT]`` 1098 1099The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to 1100the type table. 1101 1102TYPE_CODE_DOUBLE Record 1103^^^^^^^^^^^^^^^^^^^^^^^ 1104 1105``[DOUBLE]`` 1106 1107The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to 1108the type table. 1109 1110TYPE_CODE_LABEL Record 1111^^^^^^^^^^^^^^^^^^^^^^ 1112 1113``[LABEL]`` 1114 1115The ``LABEL`` record (code 5) adds a ``label`` type to the type table. 1116 1117TYPE_CODE_OPAQUE Record 1118^^^^^^^^^^^^^^^^^^^^^^^ 1119 1120``[OPAQUE]`` 1121 1122The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table, with 1123a name defined by a previously encountered ``STRUCT_NAME`` record. Note that 1124distinct ``opaque`` types are not unified. 1125 1126TYPE_CODE_INTEGER Record 1127^^^^^^^^^^^^^^^^^^^^^^^^ 1128 1129``[INTEGER, width]`` 1130 1131The ``INTEGER`` record (code 7) adds an integer type to the type table. The 1132single *width* field indicates the width of the integer type. 1133 1134TYPE_CODE_POINTER Record 1135^^^^^^^^^^^^^^^^^^^^^^^^ 1136 1137``[POINTER, pointee type, address space]`` 1138 1139The ``POINTER`` record (code 8) adds a pointer type to the type table. The 1140operand fields are 1141 1142* *pointee type*: The type index of the pointed-to type 1143 1144* *address space*: If supplied, the target-specific numbered address space where 1145 the pointed-to object resides. Otherwise, the default address space is zero. 1146 1147TYPE_CODE_FUNCTION_OLD Record 1148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1149 1150.. note:: 1151 This is a legacy encoding for functions, produced by LLVM versions 3.0 and 1152 earlier. It is guaranteed to be understood by the current LLVM version, as 1153 specified in the :ref:`IR backwards compatibility` policy. 1154 1155``[FUNCTION_OLD, vararg, ignored, retty, ...paramty... ]`` 1156 1157The ``FUNCTION_OLD`` record (code 9) adds a function type to the type table. 1158The operand fields are 1159 1160* *vararg*: Non-zero if the type represents a varargs function 1161 1162* *ignored*: This value field is present for backward compatibility only, and is 1163 ignored 1164 1165* *retty*: The type index of the function's return type 1166 1167* *paramty*: Zero or more type indices representing the parameter types of the 1168 function 1169 1170TYPE_CODE_ARRAY Record 1171^^^^^^^^^^^^^^^^^^^^^^ 1172 1173``[ARRAY, numelts, eltty]`` 1174 1175The ``ARRAY`` record (code 11) adds an array type to the type table. The 1176operand fields are 1177 1178* *numelts*: The number of elements in arrays of this type 1179 1180* *eltty*: The type index of the array element type 1181 1182TYPE_CODE_VECTOR Record 1183^^^^^^^^^^^^^^^^^^^^^^^ 1184 1185``[VECTOR, numelts, eltty]`` 1186 1187The ``VECTOR`` record (code 12) adds a vector type to the type table. The 1188operand fields are 1189 1190* *numelts*: The number of elements in vectors of this type 1191 1192* *eltty*: The type index of the vector element type 1193 1194TYPE_CODE_X86_FP80 Record 1195^^^^^^^^^^^^^^^^^^^^^^^^^ 1196 1197``[X86_FP80]`` 1198 1199The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point) 1200type to the type table. 1201 1202TYPE_CODE_FP128 Record 1203^^^^^^^^^^^^^^^^^^^^^^ 1204 1205``[FP128]`` 1206 1207The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type 1208to the type table. 1209 1210TYPE_CODE_PPC_FP128 Record 1211^^^^^^^^^^^^^^^^^^^^^^^^^^ 1212 1213``[PPC_FP128]`` 1214 1215The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point) 1216type to the type table. 1217 1218TYPE_CODE_METADATA Record 1219^^^^^^^^^^^^^^^^^^^^^^^^^ 1220 1221``[METADATA]`` 1222 1223The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table. 1224 1225TYPE_CODE_X86_MMX Record 1226^^^^^^^^^^^^^^^^^^^^^^^^ 1227 1228``[X86_MMX]`` 1229 1230The ``X86_MMX`` record (code 17) is deprecated, and imported as a <1 x i64> vector. 1231 1232TYPE_CODE_STRUCT_ANON Record 1233^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1234 1235``[STRUCT_ANON, ispacked, ...eltty...]`` 1236 1237The ``STRUCT_ANON`` record (code 18) adds a literal struct type to the type 1238table. The operand fields are 1239 1240* *ispacked*: Non-zero if the type represents a packed structure 1241 1242* *eltty*: Zero or more type indices representing the element types of the 1243 structure 1244 1245TYPE_CODE_STRUCT_NAME Record 1246^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1247 1248``[STRUCT_NAME, ...string...]`` 1249 1250The ``STRUCT_NAME`` record (code 19) contains a variable number of values 1251representing the bytes of a struct name. The next ``OPAQUE`` or 1252``STRUCT_NAMED`` record will use this name. 1253 1254TYPE_CODE_STRUCT_NAMED Record 1255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1256 1257``[STRUCT_NAMED, ispacked, ...eltty...]`` 1258 1259The ``STRUCT_NAMED`` record (code 20) adds an identified struct type to the 1260type table, with a name defined by a previously encountered ``STRUCT_NAME`` 1261record. The operand fields are 1262 1263* *ispacked*: Non-zero if the type represents a packed structure 1264 1265* *eltty*: Zero or more type indices representing the element types of the 1266 structure 1267 1268TYPE_CODE_FUNCTION Record 1269^^^^^^^^^^^^^^^^^^^^^^^^^ 1270 1271``[FUNCTION, vararg, retty, ...paramty... ]`` 1272 1273The ``FUNCTION`` record (code 21) adds a function type to the type table. The 1274operand fields are 1275 1276* *vararg*: Non-zero if the type represents a varargs function 1277 1278* *retty*: The type index of the function's return type 1279 1280* *paramty*: Zero or more type indices representing the parameter types of the 1281 function 1282 1283TYPE_CODE_X86_AMX Record 1284^^^^^^^^^^^^^^^^^^^^^^^^ 1285 1286``[X86_AMX]`` 1287 1288The ``X86_AMX`` record (code 24) adds an ``x86_amx`` type to the type table. 1289 1290TYPE_CODE_TARGET_TYPE Record 1291^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1292 1293``[TARGET_TYPE, num_tys, ...ty_params..., ...int_params... ]`` 1294 1295The ``TARGET_TYPE`` record (code 26) adds a target extension type to the type 1296table, with a name defined by a previously encountered ``STRUCT_NAME`` record. 1297The operand fields are 1298 1299* *num_tys*: The number of parameters that are types (as opposed to integers) 1300 1301* *ty_params*: Type indices that represent type parameters 1302 1303* *int_params*: Numbers that correspond to the integer parameters. 1304 1305.. _CONSTANTS_BLOCK: 1306 1307CONSTANTS_BLOCK Contents 1308------------------------ 1309 1310The ``CONSTANTS_BLOCK`` block (id 11) ... 1311 1312.. _FUNCTION_BLOCK: 1313 1314FUNCTION_BLOCK Contents 1315----------------------- 1316 1317The ``FUNCTION_BLOCK`` block (id 12) ... 1318 1319In addition to the record types described below, a ``FUNCTION_BLOCK`` block may 1320contain the following sub-blocks: 1321 1322* `CONSTANTS_BLOCK`_ 1323* `VALUE_SYMTAB_BLOCK`_ 1324* `METADATA_ATTACHMENT`_ 1325 1326.. _VALUE_SYMTAB_BLOCK: 1327 1328VALUE_SYMTAB_BLOCK Contents 1329--------------------------- 1330 1331The ``VALUE_SYMTAB_BLOCK`` block (id 14) ... 1332 1333.. _METADATA_BLOCK: 1334 1335METADATA_BLOCK Contents 1336----------------------- 1337 1338The ``METADATA_BLOCK`` block (id 15) ... 1339 1340.. _METADATA_ATTACHMENT: 1341 1342METADATA_ATTACHMENT Contents 1343---------------------------- 1344 1345The ``METADATA_ATTACHMENT`` block (id 16) ... 1346 1347.. _STRTAB_BLOCK: 1348 1349STRTAB_BLOCK Contents 1350--------------------- 1351 1352The ``STRTAB`` block (id 23) contains a single record (``STRTAB_BLOB``, id 1) 1353with a single blob operand containing the bitcode file's string table. 1354 1355Strings in the string table are not null terminated. A record's *strtab 1356offset* and *strtab size* operands specify the byte offset and size of a 1357string within the string table. 1358 1359The string table is used by all preceding blocks in the bitcode file that are 1360not succeeded by another intervening ``STRTAB`` block. Normally a bitcode 1361file will have a single string table, but it may have more than one if it 1362was created by binary concatenation of multiple bitcode files. 1363