xref: /llvm-project/lldb/test/API/tools/lldb-server/main.cpp (revision 09531ede6d5622da68941902072dbca517d31318)
1 #include <atomic>
2 #include <cassert>
3 #include <chrono>
4 #include <cstdlib>
5 #include <cstring>
6 #include <errno.h>
7 #include <future>
8 #include <inttypes.h>
9 #include <memory>
10 #include <mutex>
11 #if !defined(_WIN32)
12 #include <pthread.h>
13 #include <signal.h>
14 #include <unistd.h>
15 #endif
16 #include "thread.h"
17 #include <setjmp.h>
18 #include <stdint.h>
19 #include <stdio.h>
20 #include <string.h>
21 #include <string>
22 #include <thread>
23 #include <time.h>
24 #include <vector>
25 #if defined(__APPLE__)
26 #include <TargetConditionals.h>
27 #endif
28 
29 static const char *const PRINT_PID_COMMAND = "print-pid";
30 
31 static bool g_print_thread_ids = false;
32 static std::mutex g_print_mutex;
33 static bool g_threads_do_segfault = false;
34 
35 static std::mutex g_jump_buffer_mutex;
36 static jmp_buf g_jump_buffer;
37 static bool g_is_segfaulting = false;
38 
39 static char g_message[256];
40 
41 static volatile char g_c1 = '0';
42 static volatile char g_c2 = '1';
43 
print_pid()44 static void print_pid() {
45 #if defined(_WIN32)
46   fprintf(stderr, "PID: %d\n", ::GetCurrentProcessId());
47 #else
48   fprintf(stderr, "PID: %d\n", getpid());
49 #endif
50 }
51 
signal_handler(int signo)52 static void signal_handler(int signo) {
53 #if defined(_WIN32)
54   // No signal support on Windows.
55 #else
56   const char *signal_name = nullptr;
57   switch (signo) {
58   case SIGUSR1:
59     signal_name = "SIGUSR1";
60     break;
61   case SIGSEGV:
62     signal_name = "SIGSEGV";
63     break;
64   default:
65     signal_name = nullptr;
66   }
67 
68   // Print notice that we received the signal on a given thread.
69   char buf[100];
70   if (signal_name)
71     snprintf(buf, sizeof(buf), "received %s on thread id: %" PRIx64 "\n", signal_name, get_thread_id());
72   else
73     snprintf(buf, sizeof(buf), "received signo %d (%s) on thread id: %" PRIx64 "\n", signo, strsignal(signo), get_thread_id());
74   write(STDOUT_FILENO, buf, strlen(buf));
75 
76   // Reset the signal handler if we're one of the expected signal handlers.
77   switch (signo) {
78   case SIGSEGV:
79     if (g_is_segfaulting) {
80       // Fix up the pointer we're writing to.  This needs to happen if nothing
81       // intercepts the SIGSEGV (i.e. if somebody runs this from the command
82       // line).
83       longjmp(g_jump_buffer, 1);
84     }
85     break;
86   case SIGUSR1:
87     if (g_is_segfaulting) {
88       // Fix up the pointer we're writing to.  This is used to test gdb remote
89       // signal delivery. A SIGSEGV will be raised when the thread is created,
90       // switched out for a SIGUSR1, and then this code still needs to fix the
91       // seg fault. (i.e. if somebody runs this from the command line).
92       longjmp(g_jump_buffer, 1);
93     }
94     break;
95   }
96 
97   // Reset the signal handler.
98   sig_t sig_result = signal(signo, signal_handler);
99   if (sig_result == SIG_ERR) {
100     fprintf(stderr, "failed to set signal handler: errno=%d\n", errno);
101     exit(1);
102   }
103 #endif
104 }
105 
swap_chars()106 static void swap_chars() {
107 #if defined(__x86_64__) || defined(__i386__)
108   asm volatile("movb %1, (%2)\n\t"
109                "movb %0, (%3)\n\t"
110                "movb %0, (%2)\n\t"
111                "movb %1, (%3)\n\t"
112                :
113                : "i"('0'), "i"('1'), "r"(&g_c1), "r"(&g_c2)
114                : "memory");
115 #elif defined(__aarch64__)
116   asm volatile("strb %w1, [%2]\n\t"
117                "strb %w0, [%3]\n\t"
118                "strb %w0, [%2]\n\t"
119                "strb %w1, [%3]\n\t"
120                :
121                : "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
122                : "memory");
123 #elif defined(__arm__)
124   asm volatile("strb %1, [%2]\n\t"
125                "strb %0, [%3]\n\t"
126                "strb %0, [%2]\n\t"
127                "strb %1, [%3]\n\t"
128                :
129                : "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
130                : "memory");
131 #else
132 #warning This may generate unpredictible assembly and cause the single-stepping test to fail.
133 #warning Please add appropriate assembly for your target.
134   g_c1 = '1';
135   g_c2 = '0';
136 
137   g_c1 = '0';
138   g_c2 = '1';
139 #endif
140 }
141 
trap()142 static void trap() {
143 #if defined(__x86_64__) || defined(__i386__)
144   asm volatile("int3");
145 #elif defined(__aarch64__)
146   asm volatile("brk #0xf000");
147 #elif defined(__arm__)
148   asm volatile("udf #254");
149 #elif defined(__powerpc__)
150   asm volatile("trap");
151 #elif __has_builtin(__builtin_debugtrap())
152   __builtin_debugtrap();
153 #else
154 #warning Don't know how to generate a trap. Some tests may fail.
155 #endif
156 }
157 
158 static void hello() {
159   std::lock_guard<std::mutex> lock(g_print_mutex);
160   printf("hello, world\n");
161 }
162 
163 static void *thread_func(std::promise<void> ready) {
164   ready.set_value();
165   static std::atomic<int> s_thread_index(1);
166   const int this_thread_index = s_thread_index++;
167   if (g_print_thread_ids) {
168     std::lock_guard<std::mutex> lock(g_print_mutex);
169     printf("thread %d id: %" PRIx64 "\n", this_thread_index, get_thread_id());
170   }
171 
172   if (g_threads_do_segfault) {
173     // Sleep for a number of seconds based on the thread index.
174     // TODO add ability to send commands to test exe so we can
175     // handle timing more precisely.  This is clunky.  All we're
176     // trying to do is add predictability as to the timing of
177     // signal generation by created threads.
178     int sleep_seconds = 2 * (this_thread_index - 1);
179     std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds));
180 
181     // Test creating a SEGV.
182     {
183       std::lock_guard<std::mutex> lock(g_jump_buffer_mutex);
184       g_is_segfaulting = true;
185       int *bad_p = nullptr;
186       if (setjmp(g_jump_buffer) == 0) {
187         // Force a seg fault signal on this thread.
188         *bad_p = 0;
189       } else {
190         // Tell the system we're no longer seg faulting.
191         // Used by the SIGUSR1 signal handler that we inject
192         // in place of the SIGSEGV so it only tries to
193         // recover from the SIGSEGV if this seg fault code
194         // was in play.
195         g_is_segfaulting = false;
196       }
197     }
198 
199     {
200       std::lock_guard<std::mutex> lock(g_print_mutex);
201       printf("thread %" PRIx64 ": past SIGSEGV\n", get_thread_id());
202     }
203   }
204 
205   int sleep_seconds_remaining = 60;
206   std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds_remaining));
207 
208   return nullptr;
209 }
210 
consume_front(std::string & str,const std::string & front)211 static bool consume_front(std::string &str, const std::string &front) {
212   if (str.find(front) != 0)
213     return false;
214 
215   str = str.substr(front.size());
216   return true;
217 }
218 
main(int argc,char ** argv)219 int main(int argc, char **argv) {
220   lldb_enable_attach();
221 
222   std::vector<std::thread> threads;
223   std::unique_ptr<uint8_t[]> heap_array_up;
224   int return_value = 0;
225 
226 #if !defined(_WIN32)
227   bool is_child = false;
228 
229   // Set the signal handler.
230   sig_t sig_result = signal(SIGALRM, signal_handler);
231   if (sig_result == SIG_ERR) {
232     fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno);
233     exit(1);
234   }
235 
236   sig_result = signal(SIGUSR1, signal_handler);
237   if (sig_result == SIG_ERR) {
238     fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
239     exit(1);
240   }
241 
242   sig_result = signal(SIGSEGV, signal_handler);
243   if (sig_result == SIG_ERR) {
244     fprintf(stderr, "failed to set SIGSEGV handler: errno=%d\n", errno);
245     exit(1);
246   }
247 
248   sig_result = signal(SIGCHLD, SIG_IGN);
249   if (sig_result == SIG_ERR) {
250     fprintf(stderr, "failed to set SIGCHLD handler: errno=%d\n", errno);
251     exit(1);
252   }
253 #endif
254 
255   // Process command line args.
256   for (int i = 1; i < argc; ++i) {
257     std::string arg = argv[i];
258     if (consume_front(arg, "stderr:")) {
259       // Treat remainder as text to go to stderr.
260       fprintf(stderr, "%s\n", arg.c_str());
261     } else if (consume_front(arg, "retval:")) {
262       // Treat as the return value for the program.
263       return_value = std::atoi(arg.c_str());
264     } else if (consume_front(arg, "sleep:")) {
265       // Treat as the amount of time to have this process sleep (in seconds).
266       int sleep_seconds_remaining = std::atoi(arg.c_str());
267 
268       // Loop around, sleeping until all sleep time is used up.  Note that
269       // signals will cause sleep to end early with the number of seconds
270       // remaining.
271       std::this_thread::sleep_for(
272           std::chrono::seconds(sleep_seconds_remaining));
273 
274     } else if (consume_front(arg, "set-message:")) {
275       // Copy the contents after "set-message:" to the g_message buffer.
276       // Used for reading inferior memory and verifying contents match
277       // expectations.
278       strncpy(g_message, arg.c_str(), sizeof(g_message));
279 
280       // Ensure we're null terminated.
281       g_message[sizeof(g_message) - 1] = '\0';
282 
283     } else if (consume_front(arg, "print-message:")) {
284       std::lock_guard<std::mutex> lock(g_print_mutex);
285       printf("message: %s\n", g_message);
286     } else if (consume_front(arg, "get-data-address-hex:")) {
287       volatile void *data_p = nullptr;
288 
289       if (arg == "g_message")
290         data_p = &g_message[0];
291       else if (arg == "g_c1")
292         data_p = &g_c1;
293       else if (arg == "g_c2")
294         data_p = &g_c2;
295 
296       std::lock_guard<std::mutex> lock(g_print_mutex);
297       printf("data address: %p\n", data_p);
298     } else if (consume_front(arg, "get-heap-address-hex:")) {
299       // Create a byte array if not already present.
300       if (!heap_array_up)
301         heap_array_up.reset(new uint8_t[32]);
302 
303       std::lock_guard<std::mutex> lock(g_print_mutex);
304       printf("heap address: %p\n", heap_array_up.get());
305 
306     } else if (consume_front(arg, "get-stack-address-hex:")) {
307       std::lock_guard<std::mutex> lock(g_print_mutex);
308       printf("stack address: %p\n", &return_value);
309     } else if (consume_front(arg, "get-code-address-hex:")) {
310       void (*func_p)() = nullptr;
311 
312       if (arg == "hello")
313         func_p = hello;
314       else if (arg == "swap_chars")
315         func_p = swap_chars;
316 
317       std::lock_guard<std::mutex> lock(g_print_mutex);
318       printf("code address: %p\n", func_p);
319     } else if (consume_front(arg, "call-function:")) {
320       void (*func_p)() = nullptr;
321 
322       if (arg == "hello")
323         func_p = hello;
324       else if (arg == "swap_chars")
325         func_p = swap_chars;
326       func_p();
327 #if !defined(_WIN32) && !defined(TARGET_OS_WATCH) && !defined(TARGET_OS_TV)
328     } else if (arg == "fork") {
329       pid_t fork_pid = fork();
330       assert(fork_pid != -1);
331       is_child = fork_pid == 0;
332     } else if (arg == "vfork") {
333       if (vfork() == 0)
334         _exit(0);
335     } else if (consume_front(arg, "process:sync:")) {
336       // this is only valid after fork
337       const char *filenames[] = {"parent", "child"};
338       std::string my_file = arg + "." + filenames[is_child];
339       std::string other_file = arg + "." + filenames[!is_child];
340 
341       // indicate that we're ready
342       FILE *f = fopen(my_file.c_str(), "w");
343       assert(f);
344       fclose(f);
345 
346       // wait for the other process to be ready
347       for (int i = 0; i < 5; ++i) {
348         f = fopen(other_file.c_str(), "r");
349         if (f)
350           break;
351         std::this_thread::sleep_for(std::chrono::milliseconds(125 * (1<<i)));
352       }
353       assert(f);
354       fclose(f);
355 #endif
356     } else if (consume_front(arg, "thread:new")) {
357       std::promise<void> promise;
358       std::future<void> ready = promise.get_future();
359       threads.push_back(std::thread(thread_func, std::move(promise)));
360       ready.wait();
361     } else if (consume_front(arg, "thread:print-ids")) {
362       // Turn on thread id announcing.
363       g_print_thread_ids = true;
364 
365       // And announce us.
366       {
367         std::lock_guard<std::mutex> lock(g_print_mutex);
368         printf("thread 0 id: %" PRIx64 "\n", get_thread_id());
369       }
370     } else if (consume_front(arg, "thread:segfault")) {
371       g_threads_do_segfault = true;
372     } else if (consume_front(arg, "print-pid")) {
373       print_pid();
374     } else if (consume_front(arg, "print-env:")) {
375       // Print the value of specified envvar to stdout.
376       const char *value = getenv(arg.c_str());
377       printf("%s\n", value ? value : "__unset__");
378     } else if (consume_front(arg, "trap")) {
379       trap();
380 #if !defined(_WIN32)
381     } else if (arg == "stop") {
382       raise(SIGINT);
383 #endif
384     } else {
385       // Treat the argument as text for stdout.
386       printf("%s\n", argv[i]);
387     }
388   }
389 
390   // If we launched any threads, join them
391   for (std::vector<std::thread>::iterator it = threads.begin();
392        it != threads.end(); ++it)
393     it->join();
394 
395   return return_value;
396 }
397