xref: /llvm-project/lldb/docs/resources/formatterbytecode.rst (revision ee1adc5aab4fb517314358ce03cfda426da9c4ce)
1Formatter Bytecode
2==================
3
4Background
5----------
6
7LLDB provides rich customization options to display data types (see :doc:`/use/variable/`). To use custom data formatters, developers need to edit the global `~/.lldbinit` file to make sure they are found and loaded. In addition to this rather manual workflow, developers or library authors can ship ship data formatters with their code in a format that allows LLDB automatically find them and run them securely.
8
9An end-to-end example of such a workflow is the Swift `DebugDescription` macro (see https://www.swift.org/blog/announcing-swift-6/#debugging ) that translates Swift string interpolation into LLDB summary strings, and puts them into a `.lldbsummaries` section, where LLDB can find them.
10
11This document describes a minimal bytecode tailored to running LLDB formatters. It defines a human-readable assembler representation for the language, an efficient binary encoding, a virtual machine for evaluating it, and format for embedding formatters into binary containers.
12
13Goals
14~~~~~
15
16Provide an efficient and secure encoding for data formatters that can be used as a compilation target from user-friendly representations (such as DIL, Swift DebugDescription, or NatVis).
17
18Non-goals
19~~~~~~~~~
20
21While humans could write the assembler syntax, making it user-friendly is not a goal. It is meant to be used as a compilation target for higher-level, language-specific affordances.
22
23Design of the virtual machine
24-----------------------------
25
26The LLDB formatter virtual machine uses a stack-based bytecode, comparable with DWARF expressions, but with higher-level data types and functions.
27
28The virtual machine has two stacks, a data and a control stack. The control stack is kept separate to make it easier to reason about the security aspects of the virtual machine.
29
30Data types
31~~~~~~~~~~
32
33All objects on the data stack must have one of the following data types. These data types are "host" data types, in LLDB parlance.
34
35* *String* (UTF-8)
36* *Int* (64 bit)
37* *UInt* (64 bit)
38* *Object* (Basically an `SBValue`)
39* *Type* (Basically an `SBType`)
40* *Selector* (One of the predefine functions)
41
42*Object* and *Type* are opaque, they can only be used as a parameters of `call`.
43
44Instruction set
45---------------
46
47Stack operations
48~~~~~~~~~~~~~~~~
49
50These instructions manipulate the data stack directly.
51
52========  ==========  ===========================
53 Opcode    Mnemonic    Stack effect
54--------  ----------  ---------------------------
55 0x00      `dup`       `(x -> x x)`
56 0x01      `drop`      `(x y -> x)`
57 0x02      `pick`      `(x ... UInt -> x ... x)`
58 0x03      `over`      `(x y -> x y x)`
59 0x04      `swap`      `(x y -> y x)`
60 0x05      `rot`       `(x y z -> z x y)`
61========  ==========  ===========================
62
63Control flow
64~~~~~~~~~~~~
65
66These manipulate the control stack and program counter. Both `if` and `ifelse` expect a `UInt` at the top of the data stack to represent the condition.
67
68========  ==========  ============================================================
69 Opcode    Mnemonic    Description
70--------  ----------  ------------------------------------------------------------
71 0x10       `{`        push a code block address onto the control stack
72  --        `}`        (technically not an opcode) syntax for end of code block
73 0x11      `if`        `(UInt -> )` pop a block from the control stack,
74                       if the top of the data stack is nonzero, execute it
75 0x12      `ifelse`    `(UInt -> )` pop two blocks from the control stack, if
76                       the top of the data stack is nonzero, execute the first,
77                       otherwise the second.
78 0x13      `return`    pop the entire control stack and return
79========  ==========  ============================================================
80
81Literals for basic types
82~~~~~~~~~~~~~~~~~~~~~~~~
83
84========  ===========  ============================================================
85 Opcode    Mnemonic    Description
86--------  -----------  ------------------------------------------------------------
87 0x20      `123u`      `( -> UInt)` push an unsigned 64-bit host integer
88 0x21      `123`       `( -> Int)` push a signed 64-bit host integer
89 0x22      `"abc"`     `( -> String)` push a UTF-8 host string
90 0x23      `@strlen`   `( -> Selector)` push one of the predefined function
91                       selectors. See `call`.
92========  ===========  ============================================================
93
94Conversion operations
95~~~~~~~~~~~~~~~~~~~~~
96
97========  ===========  ================================================================
98 Opcode    Mnemonic    Description
99--------  -----------  ----------------------------------------------------------------
100 0x2a      `as_int`   `( UInt -> Int)` reinterpret a UInt as an Int
101 0x2b      `as_uint`  `( Int -> UInt)` reinterpret an Int as a UInt
102 0x2c      `is_null`  `( Object -> UInt )` check an object for null `(object ? 0 : 1)`
103========  ===========  ================================================================
104
105
106Arithmetic, logic, and comparison operations
107~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
108
109All of these operations are only defined for `Int` and `UInt` and both operands need to be of the same type. The `>>` operator is an arithmetic shift if the parameters are of type `Int`, otherwise it's a logical shift to the right.
110
111========  ==========  ===========================
112 Opcode    Mnemonic    Stack effect
113--------  ----------  ---------------------------
114 0x30      `+`         `(x y -> [x+y])`
115 0x31      `-`          etc ...
116 0x32      `*`
117 0x33      `/`
118 0x34      `%`
119 0x35      `<<`
120 0x36      `>>`
121 0x40      `~`
122 0x41      `|`
123 0x42      `^`
124 0x50      `=`
125 0x51      `!=`
126 0x52      `<`
127 0x53      `>`
128 0x54      `=<`
129 0x55      `>=`
130========  ==========  ===========================
131
132Function calls
133~~~~~~~~~~~~~~
134
135For security reasons the list of functions callable with `call` is predefined. The supported functions are either existing methods on `SBValue`, or string formatting operations.
136
137========  ==========  ============================================
138 Opcode    Mnemonic    Stack effect
139--------  ----------  --------------------------------------------
140 0x60      `call`      `(Object argN ... arg0 Selector -> retval)`
141========  ==========  ============================================
142
143Method is one of a predefined set of *Selectors*.
144
145====  ============================  ===================================================  ==================================
146Sel.  Mnemonic                      Stack Effect                                         Description
147----  ----------------------------  ---------------------------------------------------  ----------------------------------
1480x00  `summary`                     `(Object @summary -> String)`                        `SBValue::GetSummary`
1490x01  `type_summary`                `(Object @type_summary -> String)`                   `SBValue::GetTypeSummary`
1500x10  `get_num_children`            `(Object @get_num_children -> UInt)`                 `SBValue::GetNumChildren`
1510x11  `get_child_at_index`          `(Object UInt @get_child_at_index -> Object)`        `SBValue::GetChildAtIndex`
1520x12  `get_child_with_name`         `(Object String @get_child_with_name -> Object)`     `SBValue::GetChildAtIndex`
1530x13  `get_child_index`             `(Object String @get_child_index -> UInt)`           `SBValue::GetChildIndex`
1540x15  `get_type`                    `(Object @get_type -> Type)`                         `SBValue::GetType`
1550x16  `get_template_argument_type`  `(Object UInt @get_template_argument_type -> Type)`  `SBValue::GetTemplateArgumentType`
1560x17  `cast`                        `(Object Type @cast -> Object)`                      `SBValue::Cast`
1570x20  `get_value`                   `(Object @get_value -> Object)`                      `SBValue::GetValue`
1580x21  `get_value_as_unsigned`       `(Object @get_value_as_unsigned -> UInt)`            `SBValue::GetValueAsUnsigned`
1590x22  `get_value_as_signed`         `(Object @get_value_as_signed -> Int)`               `SBValue::GetValueAsSigned`
1600x23  `get_value_as_address`        `(Object @get_value_as_address -> UInt)`             `SBValue::GetValueAsAddress`
1610x40  `read_memory_byte`            `(UInt @read_memory_byte -> UInt)`                   `Target::ReadMemory`
1620x41  `read_memory_uint32`          `(UInt @read_memory_uint32 -> UInt)`                 `Target::ReadMemory`
1630x42  `read_memory_int32`           `(UInt @read_memory_int32 -> Int)`                   `Target::ReadMemory`
1640x43  `read_memory_uint64`          `(UInt @read_memory_uint64 -> UInt)`                 `Target::ReadMemory`
1650x44  `read_memory_int64`           `(UInt @read_memory_int64 -> Int)`                   `Target::ReadMemory`
1660x45  `read_memory_address`         `(UInt @read_memory_uint64 -> UInt)`                 `Target::ReadMemory`
1670x46  `read_memory`                 `(UInt Type @read_memory -> Object)`                 `Target::ReadMemory`
1680x50  `fmt`                         `(String arg0 ... @fmt -> String)`                   `llvm::format`
1690x51  `sprintf`                     `(String arg0 ... sprintf -> String)`                `sprintf`
1700x52  `strlen`                      `(String strlen -> String)`                          `strlen in bytes`
171====  ============================  ===================================================  ==================================
172
173Byte Code
174~~~~~~~~~
175
176Most instructions are just a single byte opcode. The only exceptions are the literals:
177
178* *String*: Length in bytes encoded as ULEB128, followed length bytes
179* *Int*: LEB128
180* *UInt*: ULEB128
181* *Selector*: ULEB128
182
183Embedding
184~~~~~~~~~
185
186Expression programs are embedded into an `.lldbformatters` section (an evolution of the Swift `.lldbsummaries` section) that is a dictionary of type names/regexes and descriptions. It consists of a list of records. Each record starts with the following header:
187
188* Version number (ULEB128)
189* Remaining size of the record (minus the header) (ULEB128)
190
191The version number is increased whenever an incompatible change is made. Adding new opcodes or selectors is not an incompatible change since consumers can unambiguously detect this and report an error.
192
193Space between two records may be padded with NULL bytes.
194
195In version 1, a record consists of a dictionary key, which is a type name or regex.
196
197* Length of the key in bytes (ULEB128)
198* The key (UTF-8)
199
200A regex has to start with `^`, which is part of the regular expression.
201
202After this comes a flag bitfield, which is a ULEB-encoded `lldb::TypeOptions` bitfield.
203
204* Flags (ULEB128)
205
206
207This is followed by one or more dictionary values that immediately follow each other and entirely fill out the record size from the header. Each expression program has the following layout:
208
209* Function signature (1 byte)
210* Length of the program (ULEB128)
211* The program bytecode
212
213The possible function signatures are:
214
215=========  ====================== ==========================
216Signature    Mnemonic             Stack Effect
217---------  ---------------------- --------------------------
218  0x00     `@summary`             `(Object -> String)`
219  0x01     `@init`                `(Object -> Object+)`
220  0x02     `@get_num_children`    `(Object+ -> UInt)`
221  0x03     `@get_child_index`     `(Object+ String -> UInt)`
222  0x04     `@get_child_at_index`  `(Object+ UInt -> Object)`
223  0x05     `@get_value`           `(Object+ -> String)`
224=========  ====================== ==========================
225
226If not specified, the init function defaults to an empty function that just passes the Object along. Its results may be cached and allow common prep work to be done for an Object that can be reused by subsequent calls to the other methods. This way subsequent calls to `@get_child_at_index` can avoid recomputing shared information, for example.
227
228While it is more efficient to store multiple programs per type key, this is not a requirement. LLDB will merge all entries. If there are conflicts the result is undefined.
229
230Execution model
231~~~~~~~~~~~~~~~
232
233Execution begins at the first byte in the program. The program counter of the virtual machine starts at offset 0 of the bytecode and may never move outside the range of the program as defined in the header. The data stack starts with one Object or the result of the `@init` function (`Object+` in the table above).
234
235Error handling
236~~~~~~~~~~~~~~
237
238In version 1 errors are unrecoverable, the entire expression will fail if any kind of error is encountered.
239
240