xref: /llvm-project/lld/wasm/Writer.cpp (revision 3792b36234b6c87d728f0a905543e284bf961460)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "Config.h"
11 #include "InputChunks.h"
12 #include "InputElement.h"
13 #include "MapFile.h"
14 #include "OutputSections.h"
15 #include "OutputSegment.h"
16 #include "Relocations.h"
17 #include "SymbolTable.h"
18 #include "SyntheticSections.h"
19 #include "WriterUtils.h"
20 #include "lld/Common/Arrays.h"
21 #include "lld/Common/CommonLinkerContext.h"
22 #include "lld/Common/Strings.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/BinaryFormat/Wasm.h"
30 #include "llvm/BinaryFormat/WasmTraits.h"
31 #include "llvm/Support/FileOutputBuffer.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/FormatVariadic.h"
34 #include "llvm/Support/LEB128.h"
35 #include "llvm/Support/Parallel.h"
36 #include "llvm/Support/RandomNumberGenerator.h"
37 #include "llvm/Support/SHA1.h"
38 #include "llvm/Support/xxhash.h"
39 
40 #include <cstdarg>
41 #include <map>
42 #include <optional>
43 
44 #define DEBUG_TYPE "lld"
45 
46 using namespace llvm;
47 using namespace llvm::wasm;
48 
49 namespace lld::wasm {
50 static constexpr int stackAlignment = 16;
51 static constexpr int heapAlignment = 16;
52 
53 namespace {
54 
55 // The writer writes a SymbolTable result to a file.
56 class Writer {
57 public:
58   void run();
59 
60 private:
61   void openFile();
62 
63   bool needsPassiveInitialization(const OutputSegment *segment);
64   bool hasPassiveInitializedSegments();
65 
66   void createSyntheticInitFunctions();
67   void createInitMemoryFunction();
68   void createStartFunction();
69   void createApplyDataRelocationsFunction();
70   void createApplyGlobalRelocationsFunction();
71   void createApplyTLSRelocationsFunction();
72   void createApplyGlobalTLSRelocationsFunction();
73   void createCallCtorsFunction();
74   void createInitTLSFunction();
75   void createCommandExportWrappers();
76   void createCommandExportWrapper(uint32_t functionIndex, DefinedFunction *f);
77 
78   void assignIndexes();
79   void populateSymtab();
80   void populateProducers();
81   void populateTargetFeatures();
82   // populateTargetFeatures happens early on so some checks are delayed
83   // until imports and exports are finalized.  There are run unstead
84   // in checkImportExportTargetFeatures
85   void checkImportExportTargetFeatures();
86   void calculateInitFunctions();
87   void calculateImports();
88   void calculateExports();
89   void calculateCustomSections();
90   void calculateTypes();
91   void createOutputSegments();
92   OutputSegment *createOutputSegment(StringRef name);
93   void combineOutputSegments();
94   void layoutMemory();
95   void createHeader();
96 
97   void addSection(OutputSection *sec);
98 
99   void addSections();
100 
101   void createCustomSections();
102   void createSyntheticSections();
103   void createSyntheticSectionsPostLayout();
104   void finalizeSections();
105 
106   // Custom sections
107   void createRelocSections();
108 
109   void writeHeader();
110   void writeSections();
111   void writeBuildId();
112 
113   uint64_t fileSize = 0;
114 
115   std::vector<WasmInitEntry> initFunctions;
116   llvm::MapVector<StringRef, std::vector<InputChunk *>> customSectionMapping;
117 
118   // Stable storage for command export wrapper function name strings.
119   std::list<std::string> commandExportWrapperNames;
120 
121   // Elements that are used to construct the final output
122   std::string header;
123   std::vector<OutputSection *> outputSections;
124 
125   std::unique_ptr<FileOutputBuffer> buffer;
126 
127   std::vector<OutputSegment *> segments;
128   llvm::SmallDenseMap<StringRef, OutputSegment *> segmentMap;
129 };
130 
131 } // anonymous namespace
132 
133 void Writer::calculateCustomSections() {
134   log("calculateCustomSections");
135   bool stripDebug = ctx.arg.stripDebug || ctx.arg.stripAll;
136   for (ObjFile *file : ctx.objectFiles) {
137     for (InputChunk *section : file->customSections) {
138       // Exclude COMDAT sections that are not selected for inclusion
139       if (section->discarded)
140         continue;
141       // Ignore empty custom sections.  In particular objcopy/strip will
142       // sometimes replace stripped sections with empty custom sections to
143       // avoid section re-numbering.
144       if (section->getSize() == 0)
145         continue;
146       StringRef name = section->name;
147       // These custom sections are known the linker and synthesized rather than
148       // blindly copied.
149       if (name == "linking" || name == "name" || name == "producers" ||
150           name == "target_features" || name.starts_with("reloc."))
151         continue;
152       // These custom sections are generated by `clang -fembed-bitcode`.
153       // These are used by the rust toolchain to ship LTO data along with
154       // compiled object code, but they don't want this included in the linker
155       // output.
156       if (name == ".llvmbc" || name == ".llvmcmd")
157         continue;
158       // Strip debug section in that option was specified.
159       if (stripDebug && name.starts_with(".debug_"))
160         continue;
161       // Otherwise include custom sections by default and concatenate their
162       // contents.
163       customSectionMapping[name].push_back(section);
164     }
165   }
166 }
167 
168 void Writer::createCustomSections() {
169   log("createCustomSections");
170   for (auto &pair : customSectionMapping) {
171     StringRef name = pair.first;
172     LLVM_DEBUG(dbgs() << "createCustomSection: " << name << "\n");
173 
174     OutputSection *sec = make<CustomSection>(std::string(name), pair.second);
175     if (ctx.arg.relocatable || ctx.arg.emitRelocs) {
176       auto *sym = make<OutputSectionSymbol>(sec);
177       out.linkingSec->addToSymtab(sym);
178       sec->sectionSym = sym;
179     }
180     addSection(sec);
181   }
182 }
183 
184 // Create relocations sections in the final output.
185 // These are only created when relocatable output is requested.
186 void Writer::createRelocSections() {
187   log("createRelocSections");
188   // Don't use iterator here since we are adding to OutputSection
189   size_t origSize = outputSections.size();
190   for (size_t i = 0; i < origSize; i++) {
191     LLVM_DEBUG(dbgs() << "check section " << i << "\n");
192     OutputSection *sec = outputSections[i];
193 
194     // Count the number of needed sections.
195     uint32_t count = sec->getNumRelocations();
196     if (!count)
197       continue;
198 
199     StringRef name;
200     if (sec->type == WASM_SEC_DATA)
201       name = "reloc.DATA";
202     else if (sec->type == WASM_SEC_CODE)
203       name = "reloc.CODE";
204     else if (sec->type == WASM_SEC_CUSTOM)
205       name = saver().save("reloc." + sec->name);
206     else
207       llvm_unreachable(
208           "relocations only supported for code, data, or custom sections");
209 
210     addSection(make<RelocSection>(name, sec));
211   }
212 }
213 
214 void Writer::populateProducers() {
215   for (ObjFile *file : ctx.objectFiles) {
216     const WasmProducerInfo &info = file->getWasmObj()->getProducerInfo();
217     out.producersSec->addInfo(info);
218   }
219 }
220 
221 void Writer::writeHeader() {
222   memcpy(buffer->getBufferStart(), header.data(), header.size());
223 }
224 
225 void Writer::writeSections() {
226   uint8_t *buf = buffer->getBufferStart();
227   parallelForEach(outputSections, [buf](OutputSection *s) {
228     assert(s->isNeeded());
229     s->writeTo(buf);
230   });
231 }
232 
233 // Computes a hash value of Data using a given hash function.
234 // In order to utilize multiple cores, we first split data into 1MB
235 // chunks, compute a hash for each chunk, and then compute a hash value
236 // of the hash values.
237 
238 static void
239 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
240             llvm::ArrayRef<uint8_t> data,
241             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
242   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
243   std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
244 
245   // Compute hash values.
246   parallelFor(0, chunks.size(), [&](size_t i) {
247     hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
248   });
249 
250   // Write to the final output buffer.
251   hashFn(hashBuf.data(), hashes);
252 }
253 
254 static void makeUUID(unsigned version, llvm::ArrayRef<uint8_t> fileHash,
255                      llvm::MutableArrayRef<uint8_t> output) {
256   assert((version == 4 || version == 5) && "Unknown UUID version");
257   assert(output.size() == 16 && "Wrong size for UUID output");
258   if (version == 5) {
259     // Build a valid v5 UUID from a hardcoded (randomly-generated) namespace
260     // UUID, and the computed hash of the output.
261     std::array<uint8_t, 16> namespaceUUID{0xA1, 0xFA, 0x48, 0x2D, 0x0E, 0x22,
262                                           0x03, 0x8D, 0x33, 0x8B, 0x52, 0x1C,
263                                           0xD6, 0xD2, 0x12, 0xB2};
264     SHA1 sha;
265     sha.update(namespaceUUID);
266     sha.update(fileHash);
267     auto s = sha.final();
268     std::copy(s.data(), &s.data()[output.size()], output.data());
269   } else if (version == 4) {
270     if (auto ec = llvm::getRandomBytes(output.data(), output.size()))
271       error("entropy source failure: " + ec.message());
272   }
273   // Set the UUID version and variant fields.
274   // The version is the upper nibble of byte 6 (0b0101xxxx or 0b0100xxxx)
275   output[6] = (static_cast<uint8_t>(version) << 4) | (output[6] & 0xF);
276 
277   // The variant is DCE 1.1/ISO 11578 (0b10xxxxxx)
278   output[8] &= 0xBF;
279   output[8] |= 0x80;
280 }
281 
282 void Writer::writeBuildId() {
283   if (!out.buildIdSec->isNeeded())
284     return;
285   if (ctx.arg.buildId == BuildIdKind::Hexstring) {
286     out.buildIdSec->writeBuildId(ctx.arg.buildIdVector);
287     return;
288   }
289 
290   // Compute a hash of all sections of the output file.
291   size_t hashSize = out.buildIdSec->hashSize;
292   std::vector<uint8_t> buildId(hashSize);
293   llvm::ArrayRef<uint8_t> buf{buffer->getBufferStart(), size_t(fileSize)};
294 
295   switch (ctx.arg.buildId) {
296   case BuildIdKind::Fast: {
297     std::vector<uint8_t> fileHash(8);
298     computeHash(fileHash, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
299       support::endian::write64le(dest, xxh3_64bits(arr));
300     });
301     makeUUID(5, fileHash, buildId);
302     break;
303   }
304   case BuildIdKind::Sha1:
305     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
306       memcpy(dest, SHA1::hash(arr).data(), hashSize);
307     });
308     break;
309   case BuildIdKind::Uuid:
310     makeUUID(4, {}, buildId);
311     break;
312   default:
313     llvm_unreachable("unknown BuildIdKind");
314   }
315   out.buildIdSec->writeBuildId(buildId);
316 }
317 
318 static void setGlobalPtr(DefinedGlobal *g, uint64_t memoryPtr) {
319   LLVM_DEBUG(dbgs() << "setGlobalPtr " << g->getName() << " -> " << memoryPtr << "\n");
320   g->global->setPointerValue(memoryPtr);
321 }
322 
323 // Fix the memory layout of the output binary.  This assigns memory offsets
324 // to each of the input data sections as well as the explicit stack region.
325 // The default memory layout is as follows, from low to high.
326 //
327 //  - initialized data (starting at ctx.arg.globalBase)
328 //  - BSS data (not currently implemented in llvm)
329 //  - explicit stack (ctx.arg.ZStackSize)
330 //  - heap start / unallocated
331 //
332 // The --stack-first option means that stack is placed before any static data.
333 // This can be useful since it means that stack overflow traps immediately
334 // rather than overwriting global data, but also increases code size since all
335 // static data loads and stores requires larger offsets.
336 void Writer::layoutMemory() {
337   uint64_t memoryPtr = 0;
338 
339   auto placeStack = [&]() {
340     if (ctx.arg.relocatable || ctx.isPic)
341       return;
342     memoryPtr = alignTo(memoryPtr, stackAlignment);
343     if (WasmSym::stackLow)
344       WasmSym::stackLow->setVA(memoryPtr);
345     if (ctx.arg.zStackSize != alignTo(ctx.arg.zStackSize, stackAlignment))
346       error("stack size must be " + Twine(stackAlignment) + "-byte aligned");
347     log("mem: stack size  = " + Twine(ctx.arg.zStackSize));
348     log("mem: stack base  = " + Twine(memoryPtr));
349     memoryPtr += ctx.arg.zStackSize;
350     setGlobalPtr(cast<DefinedGlobal>(WasmSym::stackPointer), memoryPtr);
351     if (WasmSym::stackHigh)
352       WasmSym::stackHigh->setVA(memoryPtr);
353     log("mem: stack top   = " + Twine(memoryPtr));
354   };
355 
356   if (ctx.arg.stackFirst) {
357     placeStack();
358     if (ctx.arg.globalBase) {
359       if (ctx.arg.globalBase < memoryPtr) {
360         error("--global-base cannot be less than stack size when --stack-first is used");
361         return;
362       }
363       memoryPtr = ctx.arg.globalBase;
364     }
365   } else {
366     memoryPtr = ctx.arg.globalBase;
367   }
368 
369   log("mem: global base = " + Twine(memoryPtr));
370   if (WasmSym::globalBase)
371     WasmSym::globalBase->setVA(memoryPtr);
372 
373   uint64_t dataStart = memoryPtr;
374 
375   // Arbitrarily set __dso_handle handle to point to the start of the data
376   // segments.
377   if (WasmSym::dsoHandle)
378     WasmSym::dsoHandle->setVA(dataStart);
379 
380   out.dylinkSec->memAlign = 0;
381   for (OutputSegment *seg : segments) {
382     out.dylinkSec->memAlign = std::max(out.dylinkSec->memAlign, seg->alignment);
383     memoryPtr = alignTo(memoryPtr, 1ULL << seg->alignment);
384     seg->startVA = memoryPtr;
385     log(formatv("mem: {0,-15} offset={1,-8} size={2,-8} align={3}", seg->name,
386                 memoryPtr, seg->size, seg->alignment));
387 
388     if (!ctx.arg.relocatable && seg->isTLS()) {
389       if (WasmSym::tlsSize) {
390         auto *tlsSize = cast<DefinedGlobal>(WasmSym::tlsSize);
391         setGlobalPtr(tlsSize, seg->size);
392       }
393       if (WasmSym::tlsAlign) {
394         auto *tlsAlign = cast<DefinedGlobal>(WasmSym::tlsAlign);
395         setGlobalPtr(tlsAlign, int64_t{1} << seg->alignment);
396       }
397       if (!ctx.arg.sharedMemory && WasmSym::tlsBase) {
398         auto *tlsBase = cast<DefinedGlobal>(WasmSym::tlsBase);
399         setGlobalPtr(tlsBase, memoryPtr);
400       }
401     }
402 
403     memoryPtr += seg->size;
404   }
405 
406   // Make space for the memory initialization flag
407   if (ctx.arg.sharedMemory && hasPassiveInitializedSegments()) {
408     memoryPtr = alignTo(memoryPtr, 4);
409     WasmSym::initMemoryFlag = symtab->addSyntheticDataSymbol(
410         "__wasm_init_memory_flag", WASM_SYMBOL_VISIBILITY_HIDDEN);
411     WasmSym::initMemoryFlag->markLive();
412     WasmSym::initMemoryFlag->setVA(memoryPtr);
413     log(formatv("mem: {0,-15} offset={1,-8} size={2,-8} align={3}",
414                 "__wasm_init_memory_flag", memoryPtr, 4, 4));
415     memoryPtr += 4;
416   }
417 
418   if (WasmSym::dataEnd)
419     WasmSym::dataEnd->setVA(memoryPtr);
420 
421   uint64_t staticDataSize = memoryPtr - dataStart;
422   log("mem: static data = " + Twine(staticDataSize));
423   if (ctx.isPic)
424     out.dylinkSec->memSize = staticDataSize;
425 
426   if (!ctx.arg.stackFirst)
427     placeStack();
428 
429   if (WasmSym::heapBase) {
430     // Set `__heap_base` to follow the end of the stack or global data. The
431     // fact that this comes last means that a malloc/brk implementation can
432     // grow the heap at runtime.
433     // We'll align the heap base here because memory allocators might expect
434     // __heap_base to be aligned already.
435     memoryPtr = alignTo(memoryPtr, heapAlignment);
436     log("mem: heap base   = " + Twine(memoryPtr));
437     WasmSym::heapBase->setVA(memoryPtr);
438   }
439 
440   uint64_t maxMemorySetting = 1ULL << 32;
441   if (ctx.arg.is64.value_or(false)) {
442     // TODO: Update once we decide on a reasonable limit here:
443     // https://github.com/WebAssembly/memory64/issues/33
444     maxMemorySetting = 1ULL << 34;
445   }
446 
447   if (ctx.arg.initialHeap != 0) {
448     if (ctx.arg.initialHeap != alignTo(ctx.arg.initialHeap, WasmPageSize))
449       error("initial heap must be " + Twine(WasmPageSize) + "-byte aligned");
450     uint64_t maxInitialHeap = maxMemorySetting - memoryPtr;
451     if (ctx.arg.initialHeap > maxInitialHeap)
452       error("initial heap too large, cannot be greater than " +
453             Twine(maxInitialHeap));
454     memoryPtr += ctx.arg.initialHeap;
455   }
456 
457   if (ctx.arg.initialMemory != 0) {
458     if (ctx.arg.initialMemory != alignTo(ctx.arg.initialMemory, WasmPageSize))
459       error("initial memory must be " + Twine(WasmPageSize) + "-byte aligned");
460     if (memoryPtr > ctx.arg.initialMemory)
461       error("initial memory too small, " + Twine(memoryPtr) + " bytes needed");
462     if (ctx.arg.initialMemory > maxMemorySetting)
463       error("initial memory too large, cannot be greater than " +
464             Twine(maxMemorySetting));
465     memoryPtr = ctx.arg.initialMemory;
466   }
467 
468   memoryPtr = alignTo(memoryPtr, WasmPageSize);
469 
470   out.memorySec->numMemoryPages = memoryPtr / WasmPageSize;
471   log("mem: total pages = " + Twine(out.memorySec->numMemoryPages));
472 
473   if (WasmSym::heapEnd) {
474     // Set `__heap_end` to follow the end of the statically allocated linear
475     // memory. The fact that this comes last means that a malloc/brk
476     // implementation can grow the heap at runtime.
477     log("mem: heap end    = " + Twine(memoryPtr));
478     WasmSym::heapEnd->setVA(memoryPtr);
479   }
480 
481   uint64_t maxMemory = 0;
482   if (ctx.arg.maxMemory != 0) {
483     if (ctx.arg.maxMemory != alignTo(ctx.arg.maxMemory, WasmPageSize))
484       error("maximum memory must be " + Twine(WasmPageSize) + "-byte aligned");
485     if (memoryPtr > ctx.arg.maxMemory)
486       error("maximum memory too small, " + Twine(memoryPtr) + " bytes needed");
487     if (ctx.arg.maxMemory > maxMemorySetting)
488       error("maximum memory too large, cannot be greater than " +
489             Twine(maxMemorySetting));
490 
491     maxMemory = ctx.arg.maxMemory;
492   } else if (ctx.arg.noGrowableMemory) {
493     maxMemory = memoryPtr;
494   }
495 
496   // If no maxMemory config was supplied but we are building with
497   // shared memory, we need to pick a sensible upper limit.
498   if (ctx.arg.sharedMemory && maxMemory == 0) {
499     if (ctx.isPic)
500       maxMemory = maxMemorySetting;
501     else
502       maxMemory = memoryPtr;
503   }
504 
505   if (maxMemory != 0) {
506     out.memorySec->maxMemoryPages = maxMemory / WasmPageSize;
507     log("mem: max pages   = " + Twine(out.memorySec->maxMemoryPages));
508   }
509 }
510 
511 void Writer::addSection(OutputSection *sec) {
512   if (!sec->isNeeded())
513     return;
514   log("addSection: " + toString(*sec));
515   sec->sectionIndex = outputSections.size();
516   outputSections.push_back(sec);
517 }
518 
519 // If a section name is valid as a C identifier (which is rare because of
520 // the leading '.'), linkers are expected to define __start_<secname> and
521 // __stop_<secname> symbols. They are at beginning and end of the section,
522 // respectively. This is not requested by the ELF standard, but GNU ld and
523 // gold provide the feature, and used by many programs.
524 static void addStartStopSymbols(const OutputSegment *seg) {
525   StringRef name = seg->name;
526   if (!isValidCIdentifier(name))
527     return;
528   LLVM_DEBUG(dbgs() << "addStartStopSymbols: " << name << "\n");
529   uint64_t start = seg->startVA;
530   uint64_t stop = start + seg->size;
531   symtab->addOptionalDataSymbol(saver().save("__start_" + name), start);
532   symtab->addOptionalDataSymbol(saver().save("__stop_" + name), stop);
533 }
534 
535 void Writer::addSections() {
536   addSection(out.dylinkSec);
537   addSection(out.typeSec);
538   addSection(out.importSec);
539   addSection(out.functionSec);
540   addSection(out.tableSec);
541   addSection(out.memorySec);
542   addSection(out.tagSec);
543   addSection(out.globalSec);
544   addSection(out.exportSec);
545   addSection(out.startSec);
546   addSection(out.elemSec);
547   addSection(out.dataCountSec);
548 
549   addSection(make<CodeSection>(out.functionSec->inputFunctions));
550   addSection(make<DataSection>(segments));
551 
552   createCustomSections();
553 
554   addSection(out.linkingSec);
555   if (ctx.arg.emitRelocs || ctx.arg.relocatable) {
556     createRelocSections();
557   }
558 
559   addSection(out.nameSec);
560   addSection(out.producersSec);
561   addSection(out.targetFeaturesSec);
562   addSection(out.buildIdSec);
563 }
564 
565 void Writer::finalizeSections() {
566   for (OutputSection *s : outputSections) {
567     s->setOffset(fileSize);
568     s->finalizeContents();
569     fileSize += s->getSize();
570   }
571 }
572 
573 void Writer::populateTargetFeatures() {
574   StringMap<std::string> used;
575   StringMap<std::string> disallowed;
576   SmallSet<std::string, 8> &allowed = out.targetFeaturesSec->features;
577   bool tlsUsed = false;
578 
579   if (ctx.isPic) {
580     // This should not be necessary because all PIC objects should
581     // contain the mutable-globals feature.
582     // TODO (https://github.com/llvm/llvm-project/issues/51681)
583     allowed.insert("mutable-globals");
584   }
585 
586   if (ctx.arg.extraFeatures.has_value()) {
587     auto &extraFeatures = *ctx.arg.extraFeatures;
588     allowed.insert(extraFeatures.begin(), extraFeatures.end());
589   }
590 
591   // Only infer used features if user did not specify features
592   bool inferFeatures = !ctx.arg.features.has_value();
593 
594   if (!inferFeatures) {
595     auto &explicitFeatures = *ctx.arg.features;
596     allowed.insert(explicitFeatures.begin(), explicitFeatures.end());
597     if (!ctx.arg.checkFeatures)
598       goto done;
599   }
600 
601   // Find the sets of used and disallowed features
602   for (ObjFile *file : ctx.objectFiles) {
603     StringRef fileName(file->getName());
604     for (auto &feature : file->getWasmObj()->getTargetFeatures()) {
605       switch (feature.Prefix) {
606       case WASM_FEATURE_PREFIX_USED:
607         used.insert({feature.Name, std::string(fileName)});
608         break;
609       case WASM_FEATURE_PREFIX_DISALLOWED:
610         disallowed.insert({feature.Name, std::string(fileName)});
611         break;
612       default:
613         error("Unrecognized feature policy prefix " +
614               std::to_string(feature.Prefix));
615       }
616     }
617 
618     // Find TLS data segments
619     auto isTLS = [](InputChunk *segment) {
620       return segment->live && segment->isTLS();
621     };
622     tlsUsed = tlsUsed || llvm::any_of(file->segments, isTLS);
623   }
624 
625   if (inferFeatures)
626     for (const auto &key : used.keys())
627       allowed.insert(std::string(key));
628 
629   if (!ctx.arg.checkFeatures)
630     goto done;
631 
632   if (ctx.arg.sharedMemory) {
633     if (disallowed.count("shared-mem"))
634       error("--shared-memory is disallowed by " + disallowed["shared-mem"] +
635             " because it was not compiled with 'atomics' or 'bulk-memory' "
636             "features.");
637 
638     for (auto feature : {"atomics", "bulk-memory"})
639       if (!allowed.count(feature))
640         error(StringRef("'") + feature +
641               "' feature must be used in order to use shared memory");
642   }
643 
644   if (tlsUsed) {
645     for (auto feature : {"atomics", "bulk-memory"})
646       if (!allowed.count(feature))
647         error(StringRef("'") + feature +
648               "' feature must be used in order to use thread-local storage");
649   }
650 
651   // Validate that used features are allowed in output
652   if (!inferFeatures) {
653     for (const auto &feature : used.keys()) {
654       if (!allowed.count(std::string(feature)))
655         error(Twine("Target feature '") + feature + "' used by " +
656               used[feature] + " is not allowed.");
657     }
658   }
659 
660   // Validate the disallowed constraints for each file
661   for (ObjFile *file : ctx.objectFiles) {
662     StringRef fileName(file->getName());
663     SmallSet<std::string, 8> objectFeatures;
664     for (const auto &feature : file->getWasmObj()->getTargetFeatures()) {
665       if (feature.Prefix == WASM_FEATURE_PREFIX_DISALLOWED)
666         continue;
667       objectFeatures.insert(feature.Name);
668       if (disallowed.count(feature.Name))
669         error(Twine("Target feature '") + feature.Name + "' used in " +
670               fileName + " is disallowed by " + disallowed[feature.Name] +
671               ". Use --no-check-features to suppress.");
672     }
673   }
674 
675 done:
676   // Normally we don't include bss segments in the binary.  In particular if
677   // memory is not being imported then we can assume its zero initialized.
678   // In the case the memory is imported, and we can use the memory.fill
679   // instruction, then we can also avoid including the segments.
680   // Finally, if we are emitting relocations, they may refer to locations within
681   // the bss segments, so these segments need to exist in the binary.
682   if (ctx.arg.emitRelocs ||
683       (ctx.arg.memoryImport.has_value() && !allowed.count("bulk-memory")))
684     ctx.emitBssSegments = true;
685 
686   if (allowed.count("extended-const"))
687     ctx.arg.extendedConst = true;
688 
689   for (auto &feature : allowed)
690     log("Allowed feature: " + feature);
691 }
692 
693 void Writer::checkImportExportTargetFeatures() {
694   if (ctx.arg.relocatable || !ctx.arg.checkFeatures)
695     return;
696 
697   if (out.targetFeaturesSec->features.count("mutable-globals") == 0) {
698     for (const Symbol *sym : out.importSec->importedSymbols) {
699       if (auto *global = dyn_cast<GlobalSymbol>(sym)) {
700         if (global->getGlobalType()->Mutable) {
701           error(Twine("mutable global imported but 'mutable-globals' feature "
702                       "not present in inputs: `") +
703                 toString(*sym) + "`. Use --no-check-features to suppress.");
704         }
705       }
706     }
707     for (const Symbol *sym : out.exportSec->exportedSymbols) {
708       if (isa<GlobalSymbol>(sym)) {
709         error(Twine("mutable global exported but 'mutable-globals' feature "
710                     "not present in inputs: `") +
711               toString(*sym) + "`. Use --no-check-features to suppress.");
712       }
713     }
714   }
715 }
716 
717 static bool shouldImport(Symbol *sym) {
718   // We don't generate imports for data symbols. They however can be imported
719   // as GOT entries.
720   if (isa<DataSymbol>(sym))
721     return false;
722   if (!sym->isLive())
723     return false;
724   if (!sym->isUsedInRegularObj)
725     return false;
726 
727   // When a symbol is weakly defined in a shared library we need to allow
728   // it to be overridden by another module so need to both import
729   // and export the symbol.
730   if (ctx.arg.shared && sym->isWeak() && !sym->isUndefined() &&
731       !sym->isHidden())
732     return true;
733   if (sym->isShared())
734     return true;
735   if (!sym->isUndefined())
736     return false;
737   if (sym->isWeak() && !ctx.arg.relocatable && !ctx.isPic)
738     return false;
739 
740   // In PIC mode we only need to import functions when they are called directly.
741   // Indirect usage all goes via GOT imports.
742   if (ctx.isPic) {
743     if (auto *f = dyn_cast<UndefinedFunction>(sym))
744       if (!f->isCalledDirectly)
745         return false;
746   }
747 
748   if (ctx.isPic || ctx.arg.relocatable || ctx.arg.importUndefined ||
749       ctx.arg.unresolvedSymbols == UnresolvedPolicy::ImportDynamic)
750     return true;
751   if (ctx.arg.allowUndefinedSymbols.count(sym->getName()) != 0)
752     return true;
753 
754   return sym->isImported();
755 }
756 
757 void Writer::calculateImports() {
758   // Some inputs require that the indirect function table be assigned to table
759   // number 0, so if it is present and is an import, allocate it before any
760   // other tables.
761   if (WasmSym::indirectFunctionTable &&
762       shouldImport(WasmSym::indirectFunctionTable))
763     out.importSec->addImport(WasmSym::indirectFunctionTable);
764 
765   for (Symbol *sym : symtab->symbols()) {
766     if (!shouldImport(sym))
767       continue;
768     if (sym == WasmSym::indirectFunctionTable)
769       continue;
770     LLVM_DEBUG(dbgs() << "import: " << sym->getName() << "\n");
771     out.importSec->addImport(sym);
772   }
773 }
774 
775 void Writer::calculateExports() {
776   if (ctx.arg.relocatable)
777     return;
778 
779   if (!ctx.arg.relocatable && ctx.arg.memoryExport.has_value()) {
780     out.exportSec->exports.push_back(
781         WasmExport{*ctx.arg.memoryExport, WASM_EXTERNAL_MEMORY, 0});
782   }
783 
784   unsigned globalIndex =
785       out.importSec->getNumImportedGlobals() + out.globalSec->numGlobals();
786 
787   for (Symbol *sym : symtab->symbols()) {
788     if (!sym->isExported())
789       continue;
790     if (!sym->isLive())
791       continue;
792     if (isa<SharedFunctionSymbol>(sym) || sym->isShared())
793       continue;
794 
795     StringRef name = sym->getName();
796     LLVM_DEBUG(dbgs() << "Export: " << name << "\n");
797     WasmExport export_;
798     if (auto *f = dyn_cast<DefinedFunction>(sym)) {
799       if (std::optional<StringRef> exportName = f->function->getExportName()) {
800         name = *exportName;
801       }
802       export_ = {name, WASM_EXTERNAL_FUNCTION, f->getExportedFunctionIndex()};
803     } else if (auto *g = dyn_cast<DefinedGlobal>(sym)) {
804       if (g->getGlobalType()->Mutable && !g->getFile() && !g->forceExport) {
805         // Avoid exporting mutable globals are linker synthesized (e.g.
806         // __stack_pointer or __tls_base) unless they are explicitly exported
807         // from the command line.
808         // Without this check `--export-all` would cause any program using the
809         // stack pointer to export a mutable global even if none of the input
810         // files were built with the `mutable-globals` feature.
811         continue;
812       }
813       export_ = {name, WASM_EXTERNAL_GLOBAL, g->getGlobalIndex()};
814     } else if (auto *t = dyn_cast<DefinedTag>(sym)) {
815       export_ = {name, WASM_EXTERNAL_TAG, t->getTagIndex()};
816     } else if (auto *d = dyn_cast<DefinedData>(sym)) {
817       out.globalSec->dataAddressGlobals.push_back(d);
818       export_ = {name, WASM_EXTERNAL_GLOBAL, globalIndex++};
819     } else {
820       auto *t = cast<DefinedTable>(sym);
821       export_ = {name, WASM_EXTERNAL_TABLE, t->getTableNumber()};
822     }
823 
824     out.exportSec->exports.push_back(export_);
825     out.exportSec->exportedSymbols.push_back(sym);
826   }
827 }
828 
829 void Writer::populateSymtab() {
830   if (!ctx.arg.relocatable && !ctx.arg.emitRelocs)
831     return;
832 
833   for (Symbol *sym : symtab->symbols())
834     if (sym->isUsedInRegularObj && sym->isLive() && !sym->isShared())
835       out.linkingSec->addToSymtab(sym);
836 
837   for (ObjFile *file : ctx.objectFiles) {
838     LLVM_DEBUG(dbgs() << "Local symtab entries: " << file->getName() << "\n");
839     for (Symbol *sym : file->getSymbols())
840       if (sym->isLocal() && !isa<SectionSymbol>(sym) && sym->isLive())
841         out.linkingSec->addToSymtab(sym);
842   }
843 }
844 
845 void Writer::calculateTypes() {
846   // The output type section is the union of the following sets:
847   // 1. Any signature used in the TYPE relocation
848   // 2. The signatures of all imported functions
849   // 3. The signatures of all defined functions
850   // 4. The signatures of all imported tags
851   // 5. The signatures of all defined tags
852 
853   for (ObjFile *file : ctx.objectFiles) {
854     ArrayRef<WasmSignature> types = file->getWasmObj()->types();
855     for (uint32_t i = 0; i < types.size(); i++)
856       if (file->typeIsUsed[i])
857         file->typeMap[i] = out.typeSec->registerType(types[i]);
858   }
859 
860   for (const Symbol *sym : out.importSec->importedSymbols) {
861     if (auto *f = dyn_cast<FunctionSymbol>(sym))
862       out.typeSec->registerType(*f->signature);
863     else if (auto *t = dyn_cast<TagSymbol>(sym))
864       out.typeSec->registerType(*t->signature);
865   }
866 
867   for (const InputFunction *f : out.functionSec->inputFunctions)
868     out.typeSec->registerType(f->signature);
869 
870   for (const InputTag *t : out.tagSec->inputTags)
871     out.typeSec->registerType(t->signature);
872 }
873 
874 // In a command-style link, create a wrapper for each exported symbol
875 // which calls the constructors and destructors.
876 void Writer::createCommandExportWrappers() {
877   // This logic doesn't currently support Emscripten-style PIC mode.
878   assert(!ctx.isPic);
879 
880   // If there are no ctors and there's no libc `__wasm_call_dtors` to
881   // call, don't wrap the exports.
882   if (initFunctions.empty() && WasmSym::callDtors == nullptr)
883     return;
884 
885   std::vector<DefinedFunction *> toWrap;
886 
887   for (Symbol *sym : symtab->symbols())
888     if (sym->isExported())
889       if (auto *f = dyn_cast<DefinedFunction>(sym))
890         toWrap.push_back(f);
891 
892   for (auto *f : toWrap) {
893     auto funcNameStr = (f->getName() + ".command_export").str();
894     commandExportWrapperNames.push_back(funcNameStr);
895     const std::string &funcName = commandExportWrapperNames.back();
896 
897     auto func = make<SyntheticFunction>(*f->getSignature(), funcName);
898     if (f->function->getExportName())
899       func->setExportName(f->function->getExportName()->str());
900     else
901       func->setExportName(f->getName().str());
902 
903     DefinedFunction *def =
904         symtab->addSyntheticFunction(funcName, f->flags, func);
905     def->markLive();
906 
907     def->flags |= WASM_SYMBOL_EXPORTED;
908     def->flags &= ~WASM_SYMBOL_VISIBILITY_HIDDEN;
909     def->forceExport = f->forceExport;
910 
911     f->flags |= WASM_SYMBOL_VISIBILITY_HIDDEN;
912     f->flags &= ~WASM_SYMBOL_EXPORTED;
913     f->forceExport = false;
914 
915     out.functionSec->addFunction(func);
916 
917     createCommandExportWrapper(f->getFunctionIndex(), def);
918   }
919 }
920 
921 static void finalizeIndirectFunctionTable() {
922   if (!WasmSym::indirectFunctionTable)
923     return;
924 
925   if (shouldImport(WasmSym::indirectFunctionTable) &&
926       !WasmSym::indirectFunctionTable->hasTableNumber()) {
927     // Processing -Bsymbolic relocations resulted in a late requirement that the
928     // indirect function table be present, and we are running in --import-table
929     // mode.  Add the table now to the imports section.  Otherwise it will be
930     // added to the tables section later in assignIndexes.
931     out.importSec->addImport(WasmSym::indirectFunctionTable);
932   }
933 
934   uint32_t tableSize = ctx.arg.tableBase + out.elemSec->numEntries();
935   WasmLimits limits = {0, tableSize, 0};
936   if (WasmSym::indirectFunctionTable->isDefined() && !ctx.arg.growableTable) {
937     limits.Flags |= WASM_LIMITS_FLAG_HAS_MAX;
938     limits.Maximum = limits.Minimum;
939   }
940   if (ctx.arg.is64.value_or(false))
941     limits.Flags |= WASM_LIMITS_FLAG_IS_64;
942   WasmSym::indirectFunctionTable->setLimits(limits);
943 }
944 
945 static void scanRelocations() {
946   for (ObjFile *file : ctx.objectFiles) {
947     LLVM_DEBUG(dbgs() << "scanRelocations: " << file->getName() << "\n");
948     for (InputChunk *chunk : file->functions)
949       scanRelocations(chunk);
950     for (InputChunk *chunk : file->segments)
951       scanRelocations(chunk);
952     for (auto &p : file->customSections)
953       scanRelocations(p);
954   }
955 }
956 
957 void Writer::assignIndexes() {
958   // Seal the import section, since other index spaces such as function and
959   // global are effected by the number of imports.
960   out.importSec->seal();
961 
962   for (InputFunction *func : ctx.syntheticFunctions)
963     out.functionSec->addFunction(func);
964 
965   for (ObjFile *file : ctx.objectFiles) {
966     LLVM_DEBUG(dbgs() << "Functions: " << file->getName() << "\n");
967     for (InputFunction *func : file->functions)
968       out.functionSec->addFunction(func);
969   }
970 
971   for (InputGlobal *global : ctx.syntheticGlobals)
972     out.globalSec->addGlobal(global);
973 
974   for (ObjFile *file : ctx.objectFiles) {
975     LLVM_DEBUG(dbgs() << "Globals: " << file->getName() << "\n");
976     for (InputGlobal *global : file->globals)
977       out.globalSec->addGlobal(global);
978   }
979 
980   for (ObjFile *file : ctx.objectFiles) {
981     LLVM_DEBUG(dbgs() << "Tags: " << file->getName() << "\n");
982     for (InputTag *tag : file->tags)
983       out.tagSec->addTag(tag);
984   }
985 
986   for (ObjFile *file : ctx.objectFiles) {
987     LLVM_DEBUG(dbgs() << "Tables: " << file->getName() << "\n");
988     for (InputTable *table : file->tables)
989       out.tableSec->addTable(table);
990   }
991 
992   for (InputTable *table : ctx.syntheticTables)
993     out.tableSec->addTable(table);
994 
995   out.globalSec->assignIndexes();
996   out.tableSec->assignIndexes();
997 }
998 
999 static StringRef getOutputDataSegmentName(const InputChunk &seg) {
1000   // We always merge .tbss and .tdata into a single TLS segment so all TLS
1001   // symbols are be relative to single __tls_base.
1002   if (seg.isTLS())
1003     return ".tdata";
1004   if (!ctx.arg.mergeDataSegments)
1005     return seg.name;
1006   if (seg.name.starts_with(".text."))
1007     return ".text";
1008   if (seg.name.starts_with(".data."))
1009     return ".data";
1010   if (seg.name.starts_with(".bss."))
1011     return ".bss";
1012   if (seg.name.starts_with(".rodata."))
1013     return ".rodata";
1014   return seg.name;
1015 }
1016 
1017 OutputSegment *Writer::createOutputSegment(StringRef name) {
1018   LLVM_DEBUG(dbgs() << "new segment: " << name << "\n");
1019   OutputSegment *s = make<OutputSegment>(name);
1020   if (ctx.arg.sharedMemory)
1021     s->initFlags = WASM_DATA_SEGMENT_IS_PASSIVE;
1022   if (!ctx.arg.relocatable && name.starts_with(".bss"))
1023     s->isBss = true;
1024   segments.push_back(s);
1025   return s;
1026 }
1027 
1028 void Writer::createOutputSegments() {
1029   for (ObjFile *file : ctx.objectFiles) {
1030     for (InputChunk *segment : file->segments) {
1031       if (!segment->live)
1032         continue;
1033       StringRef name = getOutputDataSegmentName(*segment);
1034       OutputSegment *s = nullptr;
1035       // When running in relocatable mode we can't merge segments that are part
1036       // of comdat groups since the ultimate linker needs to be able exclude or
1037       // include them individually.
1038       if (ctx.arg.relocatable && !segment->getComdatName().empty()) {
1039         s = createOutputSegment(name);
1040       } else {
1041         if (segmentMap.count(name) == 0)
1042           segmentMap[name] = createOutputSegment(name);
1043         s = segmentMap[name];
1044       }
1045       s->addInputSegment(segment);
1046     }
1047   }
1048 
1049   // Sort segments by type, placing .bss last
1050   std::stable_sort(segments.begin(), segments.end(),
1051                    [](const OutputSegment *a, const OutputSegment *b) {
1052                      auto order = [](StringRef name) {
1053                        return StringSwitch<int>(name)
1054                            .StartsWith(".tdata", 0)
1055                            .StartsWith(".rodata", 1)
1056                            .StartsWith(".data", 2)
1057                            .StartsWith(".bss", 4)
1058                            .Default(3);
1059                      };
1060                      return order(a->name) < order(b->name);
1061                    });
1062 
1063   for (size_t i = 0; i < segments.size(); ++i)
1064     segments[i]->index = i;
1065 
1066   // Merge MergeInputSections into a single MergeSyntheticSection.
1067   LLVM_DEBUG(dbgs() << "-- finalize input semgments\n");
1068   for (OutputSegment *seg : segments)
1069     seg->finalizeInputSegments();
1070 }
1071 
1072 void Writer::combineOutputSegments() {
1073   // With PIC code we currently only support a single active data segment since
1074   // we only have a single __memory_base to use as our base address.  This pass
1075   // combines all data segments into a single .data segment.
1076   // This restriction does not apply when the extended const extension is
1077   // available: https://github.com/WebAssembly/extended-const
1078   assert(!ctx.arg.extendedConst);
1079   assert(ctx.isPic && !ctx.arg.sharedMemory);
1080   if (segments.size() <= 1)
1081     return;
1082   OutputSegment *combined = make<OutputSegment>(".data");
1083   combined->startVA = segments[0]->startVA;
1084   for (OutputSegment *s : segments) {
1085     bool first = true;
1086     for (InputChunk *inSeg : s->inputSegments) {
1087       if (first)
1088         inSeg->alignment = std::max(inSeg->alignment, s->alignment);
1089       first = false;
1090 #ifndef NDEBUG
1091       uint64_t oldVA = inSeg->getVA();
1092 #endif
1093       combined->addInputSegment(inSeg);
1094 #ifndef NDEBUG
1095       uint64_t newVA = inSeg->getVA();
1096       LLVM_DEBUG(dbgs() << "added input segment. name=" << inSeg->name
1097                         << " oldVA=" << oldVA << " newVA=" << newVA << "\n");
1098       assert(oldVA == newVA);
1099 #endif
1100     }
1101   }
1102 
1103   segments = {combined};
1104 }
1105 
1106 static void createFunction(DefinedFunction *func, StringRef bodyContent) {
1107   std::string functionBody;
1108   {
1109     raw_string_ostream os(functionBody);
1110     writeUleb128(os, bodyContent.size(), "function size");
1111     os << bodyContent;
1112   }
1113   ArrayRef<uint8_t> body = arrayRefFromStringRef(saver().save(functionBody));
1114   cast<SyntheticFunction>(func->function)->setBody(body);
1115 }
1116 
1117 bool Writer::needsPassiveInitialization(const OutputSegment *segment) {
1118   // If bulk memory features is supported then we can perform bss initialization
1119   // (via memory.fill) during `__wasm_init_memory`.
1120   if (ctx.arg.memoryImport.has_value() && !segment->requiredInBinary())
1121     return true;
1122   return segment->initFlags & WASM_DATA_SEGMENT_IS_PASSIVE;
1123 }
1124 
1125 bool Writer::hasPassiveInitializedSegments() {
1126   return llvm::any_of(segments, [this](const OutputSegment *s) {
1127     return this->needsPassiveInitialization(s);
1128   });
1129 }
1130 
1131 void Writer::createSyntheticInitFunctions() {
1132   if (ctx.arg.relocatable)
1133     return;
1134 
1135   static WasmSignature nullSignature = {{}, {}};
1136 
1137   createApplyDataRelocationsFunction();
1138 
1139   // Passive segments are used to avoid memory being reinitialized on each
1140   // thread's instantiation. These passive segments are initialized and
1141   // dropped in __wasm_init_memory, which is registered as the start function
1142   // We also initialize bss segments (using memory.fill) as part of this
1143   // function.
1144   if (hasPassiveInitializedSegments()) {
1145     WasmSym::initMemory = symtab->addSyntheticFunction(
1146         "__wasm_init_memory", WASM_SYMBOL_VISIBILITY_HIDDEN,
1147         make<SyntheticFunction>(nullSignature, "__wasm_init_memory"));
1148     WasmSym::initMemory->markLive();
1149     if (ctx.arg.sharedMemory) {
1150       // This global is assigned during  __wasm_init_memory in the shared memory
1151       // case.
1152       WasmSym::tlsBase->markLive();
1153     }
1154   }
1155 
1156   if (ctx.arg.sharedMemory) {
1157     if (out.globalSec->needsTLSRelocations()) {
1158       WasmSym::applyGlobalTLSRelocs = symtab->addSyntheticFunction(
1159           "__wasm_apply_global_tls_relocs", WASM_SYMBOL_VISIBILITY_HIDDEN,
1160           make<SyntheticFunction>(nullSignature,
1161                                   "__wasm_apply_global_tls_relocs"));
1162       WasmSym::applyGlobalTLSRelocs->markLive();
1163       // TLS relocations depend on  the __tls_base symbols
1164       WasmSym::tlsBase->markLive();
1165     }
1166 
1167     auto hasTLSRelocs = [](const OutputSegment *segment) {
1168       if (segment->isTLS())
1169         for (const auto* is: segment->inputSegments)
1170           if (is->getRelocations().size())
1171             return true;
1172       return false;
1173     };
1174     if (llvm::any_of(segments, hasTLSRelocs)) {
1175       WasmSym::applyTLSRelocs = symtab->addSyntheticFunction(
1176           "__wasm_apply_tls_relocs", WASM_SYMBOL_VISIBILITY_HIDDEN,
1177           make<SyntheticFunction>(nullSignature,
1178                                   "__wasm_apply_tls_relocs"));
1179       WasmSym::applyTLSRelocs->markLive();
1180     }
1181   }
1182 
1183   if (ctx.isPic && out.globalSec->needsRelocations()) {
1184     WasmSym::applyGlobalRelocs = symtab->addSyntheticFunction(
1185         "__wasm_apply_global_relocs", WASM_SYMBOL_VISIBILITY_HIDDEN,
1186         make<SyntheticFunction>(nullSignature, "__wasm_apply_global_relocs"));
1187     WasmSym::applyGlobalRelocs->markLive();
1188   }
1189 
1190   // If there is only one start function we can just use that function
1191   // itself as the Wasm start function, otherwise we need to synthesize
1192   // a new function to call them in sequence.
1193   if (WasmSym::applyGlobalRelocs && WasmSym::initMemory) {
1194     WasmSym::startFunction = symtab->addSyntheticFunction(
1195         "__wasm_start", WASM_SYMBOL_VISIBILITY_HIDDEN,
1196         make<SyntheticFunction>(nullSignature, "__wasm_start"));
1197     WasmSym::startFunction->markLive();
1198   }
1199 }
1200 
1201 void Writer::createInitMemoryFunction() {
1202   LLVM_DEBUG(dbgs() << "createInitMemoryFunction\n");
1203   assert(WasmSym::initMemory);
1204   assert(hasPassiveInitializedSegments());
1205   uint64_t flagAddress;
1206   if (ctx.arg.sharedMemory) {
1207     assert(WasmSym::initMemoryFlag);
1208     flagAddress = WasmSym::initMemoryFlag->getVA();
1209   }
1210   bool is64 = ctx.arg.is64.value_or(false);
1211   std::string bodyContent;
1212   {
1213     raw_string_ostream os(bodyContent);
1214     // Initialize memory in a thread-safe manner. The thread that successfully
1215     // increments the flag from 0 to 1 is responsible for performing the memory
1216     // initialization. Other threads go sleep on the flag until the first thread
1217     // finishing initializing memory, increments the flag to 2, and wakes all
1218     // the other threads. Once the flag has been set to 2, subsequently started
1219     // threads will skip the sleep. All threads unconditionally drop their
1220     // passive data segments once memory has been initialized. The generated
1221     // code is as follows:
1222     //
1223     // (func $__wasm_init_memory
1224     //  (block $drop
1225     //   (block $wait
1226     //    (block $init
1227     //     (br_table $init $wait $drop
1228     //      (i32.atomic.rmw.cmpxchg align=2 offset=0
1229     //       (i32.const $__init_memory_flag)
1230     //       (i32.const 0)
1231     //       (i32.const 1)
1232     //      )
1233     //     )
1234     //    ) ;; $init
1235     //    ( ... initialize data segments ... )
1236     //    (i32.atomic.store align=2 offset=0
1237     //     (i32.const $__init_memory_flag)
1238     //     (i32.const 2)
1239     //    )
1240     //    (drop
1241     //     (i32.atomic.notify align=2 offset=0
1242     //      (i32.const $__init_memory_flag)
1243     //      (i32.const -1u)
1244     //     )
1245     //    )
1246     //    (br $drop)
1247     //   ) ;; $wait
1248     //   (drop
1249     //    (i32.atomic.wait align=2 offset=0
1250     //     (i32.const $__init_memory_flag)
1251     //     (i32.const 1)
1252     //     (i32.const -1)
1253     //    )
1254     //   )
1255     //  ) ;; $drop
1256     //  ( ... drop data segments ... )
1257     // )
1258     //
1259     // When we are building with PIC, calculate the flag location using:
1260     //
1261     //    (global.get $__memory_base)
1262     //    (i32.const $__init_memory_flag)
1263     //    (i32.const 1)
1264 
1265     auto writeGetFlagAddress = [&]() {
1266       if (ctx.isPic) {
1267         writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get");
1268         writeUleb128(os, 0, "local 0");
1269       } else {
1270         writePtrConst(os, flagAddress, is64, "flag address");
1271       }
1272     };
1273 
1274     if (ctx.arg.sharedMemory) {
1275       // With PIC code we cache the flag address in local 0
1276       if (ctx.isPic) {
1277         writeUleb128(os, 1, "num local decls");
1278         writeUleb128(os, 2, "local count");
1279         writeU8(os, is64 ? WASM_TYPE_I64 : WASM_TYPE_I32, "address type");
1280         writeU8(os, WASM_OPCODE_GLOBAL_GET, "GLOBAL_GET");
1281         writeUleb128(os, WasmSym::memoryBase->getGlobalIndex(), "memory_base");
1282         writePtrConst(os, flagAddress, is64, "flag address");
1283         writeU8(os, is64 ? WASM_OPCODE_I64_ADD : WASM_OPCODE_I32_ADD, "add");
1284         writeU8(os, WASM_OPCODE_LOCAL_SET, "local.set");
1285         writeUleb128(os, 0, "local 0");
1286       } else {
1287         writeUleb128(os, 0, "num locals");
1288       }
1289 
1290       // Set up destination blocks
1291       writeU8(os, WASM_OPCODE_BLOCK, "block $drop");
1292       writeU8(os, WASM_TYPE_NORESULT, "block type");
1293       writeU8(os, WASM_OPCODE_BLOCK, "block $wait");
1294       writeU8(os, WASM_TYPE_NORESULT, "block type");
1295       writeU8(os, WASM_OPCODE_BLOCK, "block $init");
1296       writeU8(os, WASM_TYPE_NORESULT, "block type");
1297 
1298       // Atomically check whether we win the race.
1299       writeGetFlagAddress();
1300       writeI32Const(os, 0, "expected flag value");
1301       writeI32Const(os, 1, "new flag value");
1302       writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix");
1303       writeUleb128(os, WASM_OPCODE_I32_RMW_CMPXCHG, "i32.atomic.rmw.cmpxchg");
1304       writeMemArg(os, 2, 0);
1305 
1306       // Based on the value, decide what to do next.
1307       writeU8(os, WASM_OPCODE_BR_TABLE, "br_table");
1308       writeUleb128(os, 2, "label vector length");
1309       writeUleb128(os, 0, "label $init");
1310       writeUleb128(os, 1, "label $wait");
1311       writeUleb128(os, 2, "default label $drop");
1312 
1313       // Initialize passive data segments
1314       writeU8(os, WASM_OPCODE_END, "end $init");
1315     } else {
1316       writeUleb128(os, 0, "num local decls");
1317     }
1318 
1319     for (const OutputSegment *s : segments) {
1320       if (needsPassiveInitialization(s)) {
1321         // For passive BSS segments we can simple issue a memory.fill(0).
1322         // For non-BSS segments we do a memory.init.  Both these
1323         // instructions take as their first argument the destination
1324         // address.
1325         writePtrConst(os, s->startVA, is64, "destination address");
1326         if (ctx.isPic) {
1327           writeU8(os, WASM_OPCODE_GLOBAL_GET, "GLOBAL_GET");
1328           writeUleb128(os, WasmSym::memoryBase->getGlobalIndex(),
1329                        "__memory_base");
1330           writeU8(os, is64 ? WASM_OPCODE_I64_ADD : WASM_OPCODE_I32_ADD,
1331                   "i32.add");
1332         }
1333 
1334         // When we initialize the TLS segment we also set the `__tls_base`
1335         // global.  This allows the runtime to use this static copy of the
1336         // TLS data for the first/main thread.
1337         if (ctx.arg.sharedMemory && s->isTLS()) {
1338           if (ctx.isPic) {
1339             // Cache the result of the addionion in local 0
1340             writeU8(os, WASM_OPCODE_LOCAL_TEE, "local.tee");
1341             writeUleb128(os, 1, "local 1");
1342           } else {
1343             writePtrConst(os, s->startVA, is64, "destination address");
1344           }
1345           writeU8(os, WASM_OPCODE_GLOBAL_SET, "GLOBAL_SET");
1346           writeUleb128(os, WasmSym::tlsBase->getGlobalIndex(),
1347                        "__tls_base");
1348           if (ctx.isPic) {
1349             writeU8(os, WASM_OPCODE_LOCAL_GET, "local.tee");
1350             writeUleb128(os, 1, "local 1");
1351           }
1352         }
1353 
1354         if (s->isBss) {
1355           writeI32Const(os, 0, "fill value");
1356           writePtrConst(os, s->size, is64, "memory region size");
1357           writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix");
1358           writeUleb128(os, WASM_OPCODE_MEMORY_FILL, "memory.fill");
1359           writeU8(os, 0, "memory index immediate");
1360         } else {
1361           writeI32Const(os, 0, "source segment offset");
1362           writeI32Const(os, s->size, "memory region size");
1363           writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix");
1364           writeUleb128(os, WASM_OPCODE_MEMORY_INIT, "memory.init");
1365           writeUleb128(os, s->index, "segment index immediate");
1366           writeU8(os, 0, "memory index immediate");
1367         }
1368       }
1369     }
1370 
1371     if (ctx.arg.sharedMemory) {
1372       // Set flag to 2 to mark end of initialization
1373       writeGetFlagAddress();
1374       writeI32Const(os, 2, "flag value");
1375       writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix");
1376       writeUleb128(os, WASM_OPCODE_I32_ATOMIC_STORE, "i32.atomic.store");
1377       writeMemArg(os, 2, 0);
1378 
1379       // Notify any waiters that memory initialization is complete
1380       writeGetFlagAddress();
1381       writeI32Const(os, -1, "number of waiters");
1382       writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix");
1383       writeUleb128(os, WASM_OPCODE_ATOMIC_NOTIFY, "atomic.notify");
1384       writeMemArg(os, 2, 0);
1385       writeU8(os, WASM_OPCODE_DROP, "drop");
1386 
1387       // Branch to drop the segments
1388       writeU8(os, WASM_OPCODE_BR, "br");
1389       writeUleb128(os, 1, "label $drop");
1390 
1391       // Wait for the winning thread to initialize memory
1392       writeU8(os, WASM_OPCODE_END, "end $wait");
1393       writeGetFlagAddress();
1394       writeI32Const(os, 1, "expected flag value");
1395       writeI64Const(os, -1, "timeout");
1396 
1397       writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix");
1398       writeUleb128(os, WASM_OPCODE_I32_ATOMIC_WAIT, "i32.atomic.wait");
1399       writeMemArg(os, 2, 0);
1400       writeU8(os, WASM_OPCODE_DROP, "drop");
1401 
1402       // Unconditionally drop passive data segments
1403       writeU8(os, WASM_OPCODE_END, "end $drop");
1404     }
1405 
1406     for (const OutputSegment *s : segments) {
1407       if (needsPassiveInitialization(s) && !s->isBss) {
1408         // The TLS region should not be dropped since its is needed
1409         // during the initialization of each thread (__wasm_init_tls).
1410         if (ctx.arg.sharedMemory && s->isTLS())
1411           continue;
1412         // data.drop instruction
1413         writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix");
1414         writeUleb128(os, WASM_OPCODE_DATA_DROP, "data.drop");
1415         writeUleb128(os, s->index, "segment index immediate");
1416       }
1417     }
1418 
1419     // End the function
1420     writeU8(os, WASM_OPCODE_END, "END");
1421   }
1422 
1423   createFunction(WasmSym::initMemory, bodyContent);
1424 }
1425 
1426 void Writer::createStartFunction() {
1427   // If the start function exists when we have more than one function to call.
1428   if (WasmSym::initMemory && WasmSym::applyGlobalRelocs) {
1429     assert(WasmSym::startFunction);
1430     std::string bodyContent;
1431     {
1432       raw_string_ostream os(bodyContent);
1433       writeUleb128(os, 0, "num locals");
1434       writeU8(os, WASM_OPCODE_CALL, "CALL");
1435       writeUleb128(os, WasmSym::applyGlobalRelocs->getFunctionIndex(),
1436                    "function index");
1437       writeU8(os, WASM_OPCODE_CALL, "CALL");
1438       writeUleb128(os, WasmSym::initMemory->getFunctionIndex(),
1439                    "function index");
1440       writeU8(os, WASM_OPCODE_END, "END");
1441     }
1442     createFunction(WasmSym::startFunction, bodyContent);
1443   } else if (WasmSym::initMemory) {
1444     WasmSym::startFunction = WasmSym::initMemory;
1445   } else if (WasmSym::applyGlobalRelocs) {
1446     WasmSym::startFunction = WasmSym::applyGlobalRelocs;
1447   }
1448 }
1449 
1450 // For -shared (PIC) output, we create create a synthetic function which will
1451 // apply any relocations to the data segments on startup.  This function is
1452 // called `__wasm_apply_data_relocs` and is expected to be called before
1453 // any user code (i.e. before `__wasm_call_ctors`).
1454 void Writer::createApplyDataRelocationsFunction() {
1455   LLVM_DEBUG(dbgs() << "createApplyDataRelocationsFunction\n");
1456   // First write the body's contents to a string.
1457   std::string bodyContent;
1458   {
1459     raw_string_ostream os(bodyContent);
1460     writeUleb128(os, 0, "num locals");
1461     bool generated = false;
1462     for (const OutputSegment *seg : segments)
1463       if (!ctx.arg.sharedMemory || !seg->isTLS())
1464         for (const InputChunk *inSeg : seg->inputSegments)
1465           generated |= inSeg->generateRelocationCode(os);
1466 
1467     if (!generated) {
1468       LLVM_DEBUG(dbgs() << "skipping empty __wasm_apply_data_relocs\n");
1469       return;
1470     }
1471     writeU8(os, WASM_OPCODE_END, "END");
1472   }
1473 
1474   // __wasm_apply_data_relocs
1475   // Function that applies relocations to data segment post-instantiation.
1476   static WasmSignature nullSignature = {{}, {}};
1477   auto def = symtab->addSyntheticFunction(
1478       "__wasm_apply_data_relocs",
1479       WASM_SYMBOL_VISIBILITY_DEFAULT | WASM_SYMBOL_EXPORTED,
1480       make<SyntheticFunction>(nullSignature, "__wasm_apply_data_relocs"));
1481   def->markLive();
1482 
1483   createFunction(def, bodyContent);
1484 }
1485 
1486 void Writer::createApplyTLSRelocationsFunction() {
1487   LLVM_DEBUG(dbgs() << "createApplyTLSRelocationsFunction\n");
1488   std::string bodyContent;
1489   {
1490     raw_string_ostream os(bodyContent);
1491     writeUleb128(os, 0, "num locals");
1492     for (const OutputSegment *seg : segments)
1493       if (seg->isTLS())
1494         for (const InputChunk *inSeg : seg->inputSegments)
1495           inSeg->generateRelocationCode(os);
1496 
1497     writeU8(os, WASM_OPCODE_END, "END");
1498   }
1499 
1500   createFunction(WasmSym::applyTLSRelocs, bodyContent);
1501 }
1502 
1503 // Similar to createApplyDataRelocationsFunction but generates relocation code
1504 // for WebAssembly globals. Because these globals are not shared between threads
1505 // these relocation need to run on every thread.
1506 void Writer::createApplyGlobalRelocationsFunction() {
1507   // First write the body's contents to a string.
1508   std::string bodyContent;
1509   {
1510     raw_string_ostream os(bodyContent);
1511     writeUleb128(os, 0, "num locals");
1512     out.globalSec->generateRelocationCode(os, false);
1513     writeU8(os, WASM_OPCODE_END, "END");
1514   }
1515 
1516   createFunction(WasmSym::applyGlobalRelocs, bodyContent);
1517 }
1518 
1519 // Similar to createApplyGlobalRelocationsFunction but for
1520 // TLS symbols.  This cannot be run during the start function
1521 // but must be delayed until __wasm_init_tls is called.
1522 void Writer::createApplyGlobalTLSRelocationsFunction() {
1523   // First write the body's contents to a string.
1524   std::string bodyContent;
1525   {
1526     raw_string_ostream os(bodyContent);
1527     writeUleb128(os, 0, "num locals");
1528     out.globalSec->generateRelocationCode(os, true);
1529     writeU8(os, WASM_OPCODE_END, "END");
1530   }
1531 
1532   createFunction(WasmSym::applyGlobalTLSRelocs, bodyContent);
1533 }
1534 
1535 // Create synthetic "__wasm_call_ctors" function based on ctor functions
1536 // in input object.
1537 void Writer::createCallCtorsFunction() {
1538   // If __wasm_call_ctors isn't referenced, there aren't any ctors, don't
1539   // define the `__wasm_call_ctors` function.
1540   if (!WasmSym::callCtors->isLive() && initFunctions.empty())
1541     return;
1542 
1543   // First write the body's contents to a string.
1544   std::string bodyContent;
1545   {
1546     raw_string_ostream os(bodyContent);
1547     writeUleb128(os, 0, "num locals");
1548 
1549     // Call constructors
1550     for (const WasmInitEntry &f : initFunctions) {
1551       writeU8(os, WASM_OPCODE_CALL, "CALL");
1552       writeUleb128(os, f.sym->getFunctionIndex(), "function index");
1553       for (size_t i = 0; i < f.sym->signature->Returns.size(); i++) {
1554         writeU8(os, WASM_OPCODE_DROP, "DROP");
1555       }
1556     }
1557 
1558     writeU8(os, WASM_OPCODE_END, "END");
1559   }
1560 
1561   createFunction(WasmSym::callCtors, bodyContent);
1562 }
1563 
1564 // Create a wrapper around a function export which calls the
1565 // static constructors and destructors.
1566 void Writer::createCommandExportWrapper(uint32_t functionIndex,
1567                                         DefinedFunction *f) {
1568   // First write the body's contents to a string.
1569   std::string bodyContent;
1570   {
1571     raw_string_ostream os(bodyContent);
1572     writeUleb128(os, 0, "num locals");
1573 
1574     // Call `__wasm_call_ctors` which call static constructors (and
1575     // applies any runtime relocations in Emscripten-style PIC mode)
1576     if (WasmSym::callCtors->isLive()) {
1577       writeU8(os, WASM_OPCODE_CALL, "CALL");
1578       writeUleb128(os, WasmSym::callCtors->getFunctionIndex(),
1579                    "function index");
1580     }
1581 
1582     // Call the user's code, leaving any return values on the operand stack.
1583     for (size_t i = 0; i < f->signature->Params.size(); ++i) {
1584       writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get");
1585       writeUleb128(os, i, "local index");
1586     }
1587     writeU8(os, WASM_OPCODE_CALL, "CALL");
1588     writeUleb128(os, functionIndex, "function index");
1589 
1590     // Call the function that calls the destructors.
1591     if (DefinedFunction *callDtors = WasmSym::callDtors) {
1592       writeU8(os, WASM_OPCODE_CALL, "CALL");
1593       writeUleb128(os, callDtors->getFunctionIndex(), "function index");
1594     }
1595 
1596     // End the function, returning the return values from the user's code.
1597     writeU8(os, WASM_OPCODE_END, "END");
1598   }
1599 
1600   createFunction(f, bodyContent);
1601 }
1602 
1603 void Writer::createInitTLSFunction() {
1604   std::string bodyContent;
1605   {
1606     raw_string_ostream os(bodyContent);
1607 
1608     OutputSegment *tlsSeg = nullptr;
1609     for (auto *seg : segments) {
1610       if (seg->name == ".tdata") {
1611         tlsSeg = seg;
1612         break;
1613       }
1614     }
1615 
1616     writeUleb128(os, 0, "num locals");
1617     if (tlsSeg) {
1618       writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get");
1619       writeUleb128(os, 0, "local index");
1620 
1621       writeU8(os, WASM_OPCODE_GLOBAL_SET, "global.set");
1622       writeUleb128(os, WasmSym::tlsBase->getGlobalIndex(), "global index");
1623 
1624       // FIXME(wvo): this local needs to be I64 in wasm64, or we need an extend op.
1625       writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get");
1626       writeUleb128(os, 0, "local index");
1627 
1628       writeI32Const(os, 0, "segment offset");
1629 
1630       writeI32Const(os, tlsSeg->size, "memory region size");
1631 
1632       writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix");
1633       writeUleb128(os, WASM_OPCODE_MEMORY_INIT, "MEMORY.INIT");
1634       writeUleb128(os, tlsSeg->index, "segment index immediate");
1635       writeU8(os, 0, "memory index immediate");
1636     }
1637 
1638     if (WasmSym::applyTLSRelocs) {
1639       writeU8(os, WASM_OPCODE_CALL, "CALL");
1640       writeUleb128(os, WasmSym::applyTLSRelocs->getFunctionIndex(),
1641                    "function index");
1642     }
1643 
1644     if (WasmSym::applyGlobalTLSRelocs) {
1645       writeU8(os, WASM_OPCODE_CALL, "CALL");
1646       writeUleb128(os, WasmSym::applyGlobalTLSRelocs->getFunctionIndex(),
1647                    "function index");
1648     }
1649     writeU8(os, WASM_OPCODE_END, "end function");
1650   }
1651 
1652   createFunction(WasmSym::initTLS, bodyContent);
1653 }
1654 
1655 // Populate InitFunctions vector with init functions from all input objects.
1656 // This is then used either when creating the output linking section or to
1657 // synthesize the "__wasm_call_ctors" function.
1658 void Writer::calculateInitFunctions() {
1659   if (!ctx.arg.relocatable && !WasmSym::callCtors->isLive())
1660     return;
1661 
1662   for (ObjFile *file : ctx.objectFiles) {
1663     const WasmLinkingData &l = file->getWasmObj()->linkingData();
1664     for (const WasmInitFunc &f : l.InitFunctions) {
1665       FunctionSymbol *sym = file->getFunctionSymbol(f.Symbol);
1666       // comdat exclusions can cause init functions be discarded.
1667       if (sym->isDiscarded() || !sym->isLive())
1668         continue;
1669       if (sym->signature->Params.size() != 0)
1670         error("constructor functions cannot take arguments: " + toString(*sym));
1671       LLVM_DEBUG(dbgs() << "initFunctions: " << toString(*sym) << "\n");
1672       initFunctions.emplace_back(WasmInitEntry{sym, f.Priority});
1673     }
1674   }
1675 
1676   // Sort in order of priority (lowest first) so that they are called
1677   // in the correct order.
1678   llvm::stable_sort(initFunctions,
1679                     [](const WasmInitEntry &l, const WasmInitEntry &r) {
1680                       return l.priority < r.priority;
1681                     });
1682 }
1683 
1684 void Writer::createSyntheticSections() {
1685   out.dylinkSec = make<DylinkSection>();
1686   out.typeSec = make<TypeSection>();
1687   out.importSec = make<ImportSection>();
1688   out.functionSec = make<FunctionSection>();
1689   out.tableSec = make<TableSection>();
1690   out.memorySec = make<MemorySection>();
1691   out.tagSec = make<TagSection>();
1692   out.globalSec = make<GlobalSection>();
1693   out.exportSec = make<ExportSection>();
1694   out.startSec = make<StartSection>();
1695   out.elemSec = make<ElemSection>();
1696   out.producersSec = make<ProducersSection>();
1697   out.targetFeaturesSec = make<TargetFeaturesSection>();
1698   out.buildIdSec = make<BuildIdSection>();
1699 }
1700 
1701 void Writer::createSyntheticSectionsPostLayout() {
1702   out.dataCountSec = make<DataCountSection>(segments);
1703   out.linkingSec = make<LinkingSection>(initFunctions, segments);
1704   out.nameSec = make<NameSection>(segments);
1705 }
1706 
1707 void Writer::run() {
1708   // For PIC code the table base is assigned dynamically by the loader.
1709   // For non-PIC, we start at 1 so that accessing table index 0 always traps.
1710   if (!ctx.isPic && WasmSym::definedTableBase)
1711     WasmSym::definedTableBase->setVA(ctx.arg.tableBase);
1712 
1713   log("-- createOutputSegments");
1714   createOutputSegments();
1715   log("-- createSyntheticSections");
1716   createSyntheticSections();
1717   log("-- layoutMemory");
1718   layoutMemory();
1719 
1720   if (!ctx.arg.relocatable) {
1721     // Create linker synthesized __start_SECNAME/__stop_SECNAME symbols
1722     // This has to be done after memory layout is performed.
1723     for (const OutputSegment *seg : segments) {
1724       addStartStopSymbols(seg);
1725     }
1726   }
1727 
1728   for (auto &pair : ctx.arg.exportedSymbols) {
1729     Symbol *sym = symtab->find(pair.first());
1730     if (sym && sym->isDefined())
1731       sym->forceExport = true;
1732   }
1733 
1734   // Delay reporting errors about explicit exports until after
1735   // addStartStopSymbols which can create optional symbols.
1736   for (auto &name : ctx.arg.requiredExports) {
1737     Symbol *sym = symtab->find(name);
1738     if (!sym || !sym->isDefined()) {
1739       if (ctx.arg.unresolvedSymbols == UnresolvedPolicy::ReportError)
1740         error(Twine("symbol exported via --export not found: ") + name);
1741       if (ctx.arg.unresolvedSymbols == UnresolvedPolicy::Warn)
1742         warn(Twine("symbol exported via --export not found: ") + name);
1743     }
1744   }
1745 
1746   log("-- populateTargetFeatures");
1747   populateTargetFeatures();
1748 
1749   // When outputting PIC code each segment lives at at fixes offset from the
1750   // `__memory_base` import.  Unless we support the extended const expression we
1751   // can't do addition inside the constant expression, so we much combine the
1752   // segments into a single one that can live at `__memory_base`.
1753   if (ctx.isPic && !ctx.arg.extendedConst && !ctx.arg.sharedMemory) {
1754     // In shared memory mode all data segments are passive and initialized
1755     // via __wasm_init_memory.
1756     log("-- combineOutputSegments");
1757     combineOutputSegments();
1758   }
1759 
1760   log("-- createSyntheticSectionsPostLayout");
1761   createSyntheticSectionsPostLayout();
1762   log("-- populateProducers");
1763   populateProducers();
1764   log("-- calculateImports");
1765   calculateImports();
1766   log("-- scanRelocations");
1767   scanRelocations();
1768   log("-- finalizeIndirectFunctionTable");
1769   finalizeIndirectFunctionTable();
1770   log("-- createSyntheticInitFunctions");
1771   createSyntheticInitFunctions();
1772   log("-- assignIndexes");
1773   assignIndexes();
1774   log("-- calculateInitFunctions");
1775   calculateInitFunctions();
1776 
1777   if (!ctx.arg.relocatable) {
1778     // Create linker synthesized functions
1779     if (WasmSym::applyGlobalRelocs)
1780       createApplyGlobalRelocationsFunction();
1781     if (WasmSym::applyTLSRelocs)
1782       createApplyTLSRelocationsFunction();
1783     if (WasmSym::applyGlobalTLSRelocs)
1784       createApplyGlobalTLSRelocationsFunction();
1785     if (WasmSym::initMemory)
1786       createInitMemoryFunction();
1787     createStartFunction();
1788 
1789     createCallCtorsFunction();
1790 
1791     // Create export wrappers for commands if needed.
1792     //
1793     // If the input contains a call to `__wasm_call_ctors`, either in one of
1794     // the input objects or an explicit export from the command-line, we
1795     // assume ctors and dtors are taken care of already.
1796     if (!ctx.arg.relocatable && !ctx.isPic &&
1797         !WasmSym::callCtors->isUsedInRegularObj &&
1798         !WasmSym::callCtors->isExported()) {
1799       log("-- createCommandExportWrappers");
1800       createCommandExportWrappers();
1801     }
1802   }
1803 
1804   if (WasmSym::initTLS && WasmSym::initTLS->isLive()) {
1805     log("-- createInitTLSFunction");
1806     createInitTLSFunction();
1807   }
1808 
1809   if (errorCount())
1810     return;
1811 
1812   log("-- calculateTypes");
1813   calculateTypes();
1814   log("-- calculateExports");
1815   calculateExports();
1816   log("-- calculateCustomSections");
1817   calculateCustomSections();
1818   log("-- populateSymtab");
1819   populateSymtab();
1820   log("-- checkImportExportTargetFeatures");
1821   checkImportExportTargetFeatures();
1822   log("-- addSections");
1823   addSections();
1824 
1825   if (errorHandler().verbose) {
1826     log("Defined Functions: " + Twine(out.functionSec->inputFunctions.size()));
1827     log("Defined Globals  : " + Twine(out.globalSec->numGlobals()));
1828     log("Defined Tags     : " + Twine(out.tagSec->inputTags.size()));
1829     log("Defined Tables   : " + Twine(out.tableSec->inputTables.size()));
1830     log("Function Imports : " +
1831         Twine(out.importSec->getNumImportedFunctions()));
1832     log("Global Imports   : " + Twine(out.importSec->getNumImportedGlobals()));
1833     log("Tag Imports      : " + Twine(out.importSec->getNumImportedTags()));
1834     log("Table Imports    : " + Twine(out.importSec->getNumImportedTables()));
1835   }
1836 
1837   createHeader();
1838   log("-- finalizeSections");
1839   finalizeSections();
1840 
1841   log("-- writeMapFile");
1842   writeMapFile(outputSections);
1843 
1844   log("-- openFile");
1845   openFile();
1846   if (errorCount())
1847     return;
1848 
1849   writeHeader();
1850 
1851   log("-- writeSections");
1852   writeSections();
1853   writeBuildId();
1854   if (errorCount())
1855     return;
1856 
1857   if (Error e = buffer->commit())
1858     fatal("failed to write output '" + buffer->getPath() +
1859           "': " + toString(std::move(e)));
1860 }
1861 
1862 // Open a result file.
1863 void Writer::openFile() {
1864   log("writing: " + ctx.arg.outputFile);
1865 
1866   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
1867       FileOutputBuffer::create(ctx.arg.outputFile, fileSize,
1868                                FileOutputBuffer::F_executable);
1869 
1870   if (!bufferOrErr)
1871     error("failed to open " + ctx.arg.outputFile + ": " +
1872           toString(bufferOrErr.takeError()));
1873   else
1874     buffer = std::move(*bufferOrErr);
1875 }
1876 
1877 void Writer::createHeader() {
1878   raw_string_ostream os(header);
1879   writeBytes(os, WasmMagic, sizeof(WasmMagic), "wasm magic");
1880   writeU32(os, WasmVersion, "wasm version");
1881   fileSize += header.size();
1882 }
1883 
1884 void writeResult() { Writer().run(); }
1885 
1886 } // namespace wasm::lld
1887