1 //===- Writer.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Writer.h" 10 #include "Config.h" 11 #include "InputChunks.h" 12 #include "InputElement.h" 13 #include "MapFile.h" 14 #include "OutputSections.h" 15 #include "OutputSegment.h" 16 #include "Relocations.h" 17 #include "SymbolTable.h" 18 #include "SyntheticSections.h" 19 #include "WriterUtils.h" 20 #include "lld/Common/Arrays.h" 21 #include "lld/Common/CommonLinkerContext.h" 22 #include "lld/Common/Strings.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringMap.h" 29 #include "llvm/BinaryFormat/Wasm.h" 30 #include "llvm/BinaryFormat/WasmTraits.h" 31 #include "llvm/Support/FileOutputBuffer.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/FormatVariadic.h" 34 #include "llvm/Support/LEB128.h" 35 #include "llvm/Support/Parallel.h" 36 #include "llvm/Support/RandomNumberGenerator.h" 37 #include "llvm/Support/SHA1.h" 38 #include "llvm/Support/xxhash.h" 39 40 #include <cstdarg> 41 #include <map> 42 #include <optional> 43 44 #define DEBUG_TYPE "lld" 45 46 using namespace llvm; 47 using namespace llvm::wasm; 48 49 namespace lld::wasm { 50 static constexpr int stackAlignment = 16; 51 static constexpr int heapAlignment = 16; 52 53 namespace { 54 55 // The writer writes a SymbolTable result to a file. 56 class Writer { 57 public: 58 void run(); 59 60 private: 61 void openFile(); 62 63 bool needsPassiveInitialization(const OutputSegment *segment); 64 bool hasPassiveInitializedSegments(); 65 66 void createSyntheticInitFunctions(); 67 void createInitMemoryFunction(); 68 void createStartFunction(); 69 void createApplyDataRelocationsFunction(); 70 void createApplyGlobalRelocationsFunction(); 71 void createApplyTLSRelocationsFunction(); 72 void createApplyGlobalTLSRelocationsFunction(); 73 void createCallCtorsFunction(); 74 void createInitTLSFunction(); 75 void createCommandExportWrappers(); 76 void createCommandExportWrapper(uint32_t functionIndex, DefinedFunction *f); 77 78 void assignIndexes(); 79 void populateSymtab(); 80 void populateProducers(); 81 void populateTargetFeatures(); 82 // populateTargetFeatures happens early on so some checks are delayed 83 // until imports and exports are finalized. There are run unstead 84 // in checkImportExportTargetFeatures 85 void checkImportExportTargetFeatures(); 86 void calculateInitFunctions(); 87 void calculateImports(); 88 void calculateExports(); 89 void calculateCustomSections(); 90 void calculateTypes(); 91 void createOutputSegments(); 92 OutputSegment *createOutputSegment(StringRef name); 93 void combineOutputSegments(); 94 void layoutMemory(); 95 void createHeader(); 96 97 void addSection(OutputSection *sec); 98 99 void addSections(); 100 101 void createCustomSections(); 102 void createSyntheticSections(); 103 void createSyntheticSectionsPostLayout(); 104 void finalizeSections(); 105 106 // Custom sections 107 void createRelocSections(); 108 109 void writeHeader(); 110 void writeSections(); 111 void writeBuildId(); 112 113 uint64_t fileSize = 0; 114 115 std::vector<WasmInitEntry> initFunctions; 116 llvm::MapVector<StringRef, std::vector<InputChunk *>> customSectionMapping; 117 118 // Stable storage for command export wrapper function name strings. 119 std::list<std::string> commandExportWrapperNames; 120 121 // Elements that are used to construct the final output 122 std::string header; 123 std::vector<OutputSection *> outputSections; 124 125 std::unique_ptr<FileOutputBuffer> buffer; 126 127 std::vector<OutputSegment *> segments; 128 llvm::SmallDenseMap<StringRef, OutputSegment *> segmentMap; 129 }; 130 131 } // anonymous namespace 132 133 void Writer::calculateCustomSections() { 134 log("calculateCustomSections"); 135 bool stripDebug = ctx.arg.stripDebug || ctx.arg.stripAll; 136 for (ObjFile *file : ctx.objectFiles) { 137 for (InputChunk *section : file->customSections) { 138 // Exclude COMDAT sections that are not selected for inclusion 139 if (section->discarded) 140 continue; 141 // Ignore empty custom sections. In particular objcopy/strip will 142 // sometimes replace stripped sections with empty custom sections to 143 // avoid section re-numbering. 144 if (section->getSize() == 0) 145 continue; 146 StringRef name = section->name; 147 // These custom sections are known the linker and synthesized rather than 148 // blindly copied. 149 if (name == "linking" || name == "name" || name == "producers" || 150 name == "target_features" || name.starts_with("reloc.")) 151 continue; 152 // These custom sections are generated by `clang -fembed-bitcode`. 153 // These are used by the rust toolchain to ship LTO data along with 154 // compiled object code, but they don't want this included in the linker 155 // output. 156 if (name == ".llvmbc" || name == ".llvmcmd") 157 continue; 158 // Strip debug section in that option was specified. 159 if (stripDebug && name.starts_with(".debug_")) 160 continue; 161 // Otherwise include custom sections by default and concatenate their 162 // contents. 163 customSectionMapping[name].push_back(section); 164 } 165 } 166 } 167 168 void Writer::createCustomSections() { 169 log("createCustomSections"); 170 for (auto &pair : customSectionMapping) { 171 StringRef name = pair.first; 172 LLVM_DEBUG(dbgs() << "createCustomSection: " << name << "\n"); 173 174 OutputSection *sec = make<CustomSection>(std::string(name), pair.second); 175 if (ctx.arg.relocatable || ctx.arg.emitRelocs) { 176 auto *sym = make<OutputSectionSymbol>(sec); 177 out.linkingSec->addToSymtab(sym); 178 sec->sectionSym = sym; 179 } 180 addSection(sec); 181 } 182 } 183 184 // Create relocations sections in the final output. 185 // These are only created when relocatable output is requested. 186 void Writer::createRelocSections() { 187 log("createRelocSections"); 188 // Don't use iterator here since we are adding to OutputSection 189 size_t origSize = outputSections.size(); 190 for (size_t i = 0; i < origSize; i++) { 191 LLVM_DEBUG(dbgs() << "check section " << i << "\n"); 192 OutputSection *sec = outputSections[i]; 193 194 // Count the number of needed sections. 195 uint32_t count = sec->getNumRelocations(); 196 if (!count) 197 continue; 198 199 StringRef name; 200 if (sec->type == WASM_SEC_DATA) 201 name = "reloc.DATA"; 202 else if (sec->type == WASM_SEC_CODE) 203 name = "reloc.CODE"; 204 else if (sec->type == WASM_SEC_CUSTOM) 205 name = saver().save("reloc." + sec->name); 206 else 207 llvm_unreachable( 208 "relocations only supported for code, data, or custom sections"); 209 210 addSection(make<RelocSection>(name, sec)); 211 } 212 } 213 214 void Writer::populateProducers() { 215 for (ObjFile *file : ctx.objectFiles) { 216 const WasmProducerInfo &info = file->getWasmObj()->getProducerInfo(); 217 out.producersSec->addInfo(info); 218 } 219 } 220 221 void Writer::writeHeader() { 222 memcpy(buffer->getBufferStart(), header.data(), header.size()); 223 } 224 225 void Writer::writeSections() { 226 uint8_t *buf = buffer->getBufferStart(); 227 parallelForEach(outputSections, [buf](OutputSection *s) { 228 assert(s->isNeeded()); 229 s->writeTo(buf); 230 }); 231 } 232 233 // Computes a hash value of Data using a given hash function. 234 // In order to utilize multiple cores, we first split data into 1MB 235 // chunks, compute a hash for each chunk, and then compute a hash value 236 // of the hash values. 237 238 static void 239 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf, 240 llvm::ArrayRef<uint8_t> data, 241 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) { 242 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024); 243 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size()); 244 245 // Compute hash values. 246 parallelFor(0, chunks.size(), [&](size_t i) { 247 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]); 248 }); 249 250 // Write to the final output buffer. 251 hashFn(hashBuf.data(), hashes); 252 } 253 254 static void makeUUID(unsigned version, llvm::ArrayRef<uint8_t> fileHash, 255 llvm::MutableArrayRef<uint8_t> output) { 256 assert((version == 4 || version == 5) && "Unknown UUID version"); 257 assert(output.size() == 16 && "Wrong size for UUID output"); 258 if (version == 5) { 259 // Build a valid v5 UUID from a hardcoded (randomly-generated) namespace 260 // UUID, and the computed hash of the output. 261 std::array<uint8_t, 16> namespaceUUID{0xA1, 0xFA, 0x48, 0x2D, 0x0E, 0x22, 262 0x03, 0x8D, 0x33, 0x8B, 0x52, 0x1C, 263 0xD6, 0xD2, 0x12, 0xB2}; 264 SHA1 sha; 265 sha.update(namespaceUUID); 266 sha.update(fileHash); 267 auto s = sha.final(); 268 std::copy(s.data(), &s.data()[output.size()], output.data()); 269 } else if (version == 4) { 270 if (auto ec = llvm::getRandomBytes(output.data(), output.size())) 271 error("entropy source failure: " + ec.message()); 272 } 273 // Set the UUID version and variant fields. 274 // The version is the upper nibble of byte 6 (0b0101xxxx or 0b0100xxxx) 275 output[6] = (static_cast<uint8_t>(version) << 4) | (output[6] & 0xF); 276 277 // The variant is DCE 1.1/ISO 11578 (0b10xxxxxx) 278 output[8] &= 0xBF; 279 output[8] |= 0x80; 280 } 281 282 void Writer::writeBuildId() { 283 if (!out.buildIdSec->isNeeded()) 284 return; 285 if (ctx.arg.buildId == BuildIdKind::Hexstring) { 286 out.buildIdSec->writeBuildId(ctx.arg.buildIdVector); 287 return; 288 } 289 290 // Compute a hash of all sections of the output file. 291 size_t hashSize = out.buildIdSec->hashSize; 292 std::vector<uint8_t> buildId(hashSize); 293 llvm::ArrayRef<uint8_t> buf{buffer->getBufferStart(), size_t(fileSize)}; 294 295 switch (ctx.arg.buildId) { 296 case BuildIdKind::Fast: { 297 std::vector<uint8_t> fileHash(8); 298 computeHash(fileHash, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) { 299 support::endian::write64le(dest, xxh3_64bits(arr)); 300 }); 301 makeUUID(5, fileHash, buildId); 302 break; 303 } 304 case BuildIdKind::Sha1: 305 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) { 306 memcpy(dest, SHA1::hash(arr).data(), hashSize); 307 }); 308 break; 309 case BuildIdKind::Uuid: 310 makeUUID(4, {}, buildId); 311 break; 312 default: 313 llvm_unreachable("unknown BuildIdKind"); 314 } 315 out.buildIdSec->writeBuildId(buildId); 316 } 317 318 static void setGlobalPtr(DefinedGlobal *g, uint64_t memoryPtr) { 319 LLVM_DEBUG(dbgs() << "setGlobalPtr " << g->getName() << " -> " << memoryPtr << "\n"); 320 g->global->setPointerValue(memoryPtr); 321 } 322 323 // Fix the memory layout of the output binary. This assigns memory offsets 324 // to each of the input data sections as well as the explicit stack region. 325 // The default memory layout is as follows, from low to high. 326 // 327 // - initialized data (starting at ctx.arg.globalBase) 328 // - BSS data (not currently implemented in llvm) 329 // - explicit stack (ctx.arg.ZStackSize) 330 // - heap start / unallocated 331 // 332 // The --stack-first option means that stack is placed before any static data. 333 // This can be useful since it means that stack overflow traps immediately 334 // rather than overwriting global data, but also increases code size since all 335 // static data loads and stores requires larger offsets. 336 void Writer::layoutMemory() { 337 uint64_t memoryPtr = 0; 338 339 auto placeStack = [&]() { 340 if (ctx.arg.relocatable || ctx.isPic) 341 return; 342 memoryPtr = alignTo(memoryPtr, stackAlignment); 343 if (WasmSym::stackLow) 344 WasmSym::stackLow->setVA(memoryPtr); 345 if (ctx.arg.zStackSize != alignTo(ctx.arg.zStackSize, stackAlignment)) 346 error("stack size must be " + Twine(stackAlignment) + "-byte aligned"); 347 log("mem: stack size = " + Twine(ctx.arg.zStackSize)); 348 log("mem: stack base = " + Twine(memoryPtr)); 349 memoryPtr += ctx.arg.zStackSize; 350 setGlobalPtr(cast<DefinedGlobal>(WasmSym::stackPointer), memoryPtr); 351 if (WasmSym::stackHigh) 352 WasmSym::stackHigh->setVA(memoryPtr); 353 log("mem: stack top = " + Twine(memoryPtr)); 354 }; 355 356 if (ctx.arg.stackFirst) { 357 placeStack(); 358 if (ctx.arg.globalBase) { 359 if (ctx.arg.globalBase < memoryPtr) { 360 error("--global-base cannot be less than stack size when --stack-first is used"); 361 return; 362 } 363 memoryPtr = ctx.arg.globalBase; 364 } 365 } else { 366 memoryPtr = ctx.arg.globalBase; 367 } 368 369 log("mem: global base = " + Twine(memoryPtr)); 370 if (WasmSym::globalBase) 371 WasmSym::globalBase->setVA(memoryPtr); 372 373 uint64_t dataStart = memoryPtr; 374 375 // Arbitrarily set __dso_handle handle to point to the start of the data 376 // segments. 377 if (WasmSym::dsoHandle) 378 WasmSym::dsoHandle->setVA(dataStart); 379 380 out.dylinkSec->memAlign = 0; 381 for (OutputSegment *seg : segments) { 382 out.dylinkSec->memAlign = std::max(out.dylinkSec->memAlign, seg->alignment); 383 memoryPtr = alignTo(memoryPtr, 1ULL << seg->alignment); 384 seg->startVA = memoryPtr; 385 log(formatv("mem: {0,-15} offset={1,-8} size={2,-8} align={3}", seg->name, 386 memoryPtr, seg->size, seg->alignment)); 387 388 if (!ctx.arg.relocatable && seg->isTLS()) { 389 if (WasmSym::tlsSize) { 390 auto *tlsSize = cast<DefinedGlobal>(WasmSym::tlsSize); 391 setGlobalPtr(tlsSize, seg->size); 392 } 393 if (WasmSym::tlsAlign) { 394 auto *tlsAlign = cast<DefinedGlobal>(WasmSym::tlsAlign); 395 setGlobalPtr(tlsAlign, int64_t{1} << seg->alignment); 396 } 397 if (!ctx.arg.sharedMemory && WasmSym::tlsBase) { 398 auto *tlsBase = cast<DefinedGlobal>(WasmSym::tlsBase); 399 setGlobalPtr(tlsBase, memoryPtr); 400 } 401 } 402 403 memoryPtr += seg->size; 404 } 405 406 // Make space for the memory initialization flag 407 if (ctx.arg.sharedMemory && hasPassiveInitializedSegments()) { 408 memoryPtr = alignTo(memoryPtr, 4); 409 WasmSym::initMemoryFlag = symtab->addSyntheticDataSymbol( 410 "__wasm_init_memory_flag", WASM_SYMBOL_VISIBILITY_HIDDEN); 411 WasmSym::initMemoryFlag->markLive(); 412 WasmSym::initMemoryFlag->setVA(memoryPtr); 413 log(formatv("mem: {0,-15} offset={1,-8} size={2,-8} align={3}", 414 "__wasm_init_memory_flag", memoryPtr, 4, 4)); 415 memoryPtr += 4; 416 } 417 418 if (WasmSym::dataEnd) 419 WasmSym::dataEnd->setVA(memoryPtr); 420 421 uint64_t staticDataSize = memoryPtr - dataStart; 422 log("mem: static data = " + Twine(staticDataSize)); 423 if (ctx.isPic) 424 out.dylinkSec->memSize = staticDataSize; 425 426 if (!ctx.arg.stackFirst) 427 placeStack(); 428 429 if (WasmSym::heapBase) { 430 // Set `__heap_base` to follow the end of the stack or global data. The 431 // fact that this comes last means that a malloc/brk implementation can 432 // grow the heap at runtime. 433 // We'll align the heap base here because memory allocators might expect 434 // __heap_base to be aligned already. 435 memoryPtr = alignTo(memoryPtr, heapAlignment); 436 log("mem: heap base = " + Twine(memoryPtr)); 437 WasmSym::heapBase->setVA(memoryPtr); 438 } 439 440 uint64_t maxMemorySetting = 1ULL << 32; 441 if (ctx.arg.is64.value_or(false)) { 442 // TODO: Update once we decide on a reasonable limit here: 443 // https://github.com/WebAssembly/memory64/issues/33 444 maxMemorySetting = 1ULL << 34; 445 } 446 447 if (ctx.arg.initialHeap != 0) { 448 if (ctx.arg.initialHeap != alignTo(ctx.arg.initialHeap, WasmPageSize)) 449 error("initial heap must be " + Twine(WasmPageSize) + "-byte aligned"); 450 uint64_t maxInitialHeap = maxMemorySetting - memoryPtr; 451 if (ctx.arg.initialHeap > maxInitialHeap) 452 error("initial heap too large, cannot be greater than " + 453 Twine(maxInitialHeap)); 454 memoryPtr += ctx.arg.initialHeap; 455 } 456 457 if (ctx.arg.initialMemory != 0) { 458 if (ctx.arg.initialMemory != alignTo(ctx.arg.initialMemory, WasmPageSize)) 459 error("initial memory must be " + Twine(WasmPageSize) + "-byte aligned"); 460 if (memoryPtr > ctx.arg.initialMemory) 461 error("initial memory too small, " + Twine(memoryPtr) + " bytes needed"); 462 if (ctx.arg.initialMemory > maxMemorySetting) 463 error("initial memory too large, cannot be greater than " + 464 Twine(maxMemorySetting)); 465 memoryPtr = ctx.arg.initialMemory; 466 } 467 468 memoryPtr = alignTo(memoryPtr, WasmPageSize); 469 470 out.memorySec->numMemoryPages = memoryPtr / WasmPageSize; 471 log("mem: total pages = " + Twine(out.memorySec->numMemoryPages)); 472 473 if (WasmSym::heapEnd) { 474 // Set `__heap_end` to follow the end of the statically allocated linear 475 // memory. The fact that this comes last means that a malloc/brk 476 // implementation can grow the heap at runtime. 477 log("mem: heap end = " + Twine(memoryPtr)); 478 WasmSym::heapEnd->setVA(memoryPtr); 479 } 480 481 uint64_t maxMemory = 0; 482 if (ctx.arg.maxMemory != 0) { 483 if (ctx.arg.maxMemory != alignTo(ctx.arg.maxMemory, WasmPageSize)) 484 error("maximum memory must be " + Twine(WasmPageSize) + "-byte aligned"); 485 if (memoryPtr > ctx.arg.maxMemory) 486 error("maximum memory too small, " + Twine(memoryPtr) + " bytes needed"); 487 if (ctx.arg.maxMemory > maxMemorySetting) 488 error("maximum memory too large, cannot be greater than " + 489 Twine(maxMemorySetting)); 490 491 maxMemory = ctx.arg.maxMemory; 492 } else if (ctx.arg.noGrowableMemory) { 493 maxMemory = memoryPtr; 494 } 495 496 // If no maxMemory config was supplied but we are building with 497 // shared memory, we need to pick a sensible upper limit. 498 if (ctx.arg.sharedMemory && maxMemory == 0) { 499 if (ctx.isPic) 500 maxMemory = maxMemorySetting; 501 else 502 maxMemory = memoryPtr; 503 } 504 505 if (maxMemory != 0) { 506 out.memorySec->maxMemoryPages = maxMemory / WasmPageSize; 507 log("mem: max pages = " + Twine(out.memorySec->maxMemoryPages)); 508 } 509 } 510 511 void Writer::addSection(OutputSection *sec) { 512 if (!sec->isNeeded()) 513 return; 514 log("addSection: " + toString(*sec)); 515 sec->sectionIndex = outputSections.size(); 516 outputSections.push_back(sec); 517 } 518 519 // If a section name is valid as a C identifier (which is rare because of 520 // the leading '.'), linkers are expected to define __start_<secname> and 521 // __stop_<secname> symbols. They are at beginning and end of the section, 522 // respectively. This is not requested by the ELF standard, but GNU ld and 523 // gold provide the feature, and used by many programs. 524 static void addStartStopSymbols(const OutputSegment *seg) { 525 StringRef name = seg->name; 526 if (!isValidCIdentifier(name)) 527 return; 528 LLVM_DEBUG(dbgs() << "addStartStopSymbols: " << name << "\n"); 529 uint64_t start = seg->startVA; 530 uint64_t stop = start + seg->size; 531 symtab->addOptionalDataSymbol(saver().save("__start_" + name), start); 532 symtab->addOptionalDataSymbol(saver().save("__stop_" + name), stop); 533 } 534 535 void Writer::addSections() { 536 addSection(out.dylinkSec); 537 addSection(out.typeSec); 538 addSection(out.importSec); 539 addSection(out.functionSec); 540 addSection(out.tableSec); 541 addSection(out.memorySec); 542 addSection(out.tagSec); 543 addSection(out.globalSec); 544 addSection(out.exportSec); 545 addSection(out.startSec); 546 addSection(out.elemSec); 547 addSection(out.dataCountSec); 548 549 addSection(make<CodeSection>(out.functionSec->inputFunctions)); 550 addSection(make<DataSection>(segments)); 551 552 createCustomSections(); 553 554 addSection(out.linkingSec); 555 if (ctx.arg.emitRelocs || ctx.arg.relocatable) { 556 createRelocSections(); 557 } 558 559 addSection(out.nameSec); 560 addSection(out.producersSec); 561 addSection(out.targetFeaturesSec); 562 addSection(out.buildIdSec); 563 } 564 565 void Writer::finalizeSections() { 566 for (OutputSection *s : outputSections) { 567 s->setOffset(fileSize); 568 s->finalizeContents(); 569 fileSize += s->getSize(); 570 } 571 } 572 573 void Writer::populateTargetFeatures() { 574 StringMap<std::string> used; 575 StringMap<std::string> disallowed; 576 SmallSet<std::string, 8> &allowed = out.targetFeaturesSec->features; 577 bool tlsUsed = false; 578 579 if (ctx.isPic) { 580 // This should not be necessary because all PIC objects should 581 // contain the mutable-globals feature. 582 // TODO (https://github.com/llvm/llvm-project/issues/51681) 583 allowed.insert("mutable-globals"); 584 } 585 586 if (ctx.arg.extraFeatures.has_value()) { 587 auto &extraFeatures = *ctx.arg.extraFeatures; 588 allowed.insert(extraFeatures.begin(), extraFeatures.end()); 589 } 590 591 // Only infer used features if user did not specify features 592 bool inferFeatures = !ctx.arg.features.has_value(); 593 594 if (!inferFeatures) { 595 auto &explicitFeatures = *ctx.arg.features; 596 allowed.insert(explicitFeatures.begin(), explicitFeatures.end()); 597 if (!ctx.arg.checkFeatures) 598 goto done; 599 } 600 601 // Find the sets of used and disallowed features 602 for (ObjFile *file : ctx.objectFiles) { 603 StringRef fileName(file->getName()); 604 for (auto &feature : file->getWasmObj()->getTargetFeatures()) { 605 switch (feature.Prefix) { 606 case WASM_FEATURE_PREFIX_USED: 607 used.insert({feature.Name, std::string(fileName)}); 608 break; 609 case WASM_FEATURE_PREFIX_DISALLOWED: 610 disallowed.insert({feature.Name, std::string(fileName)}); 611 break; 612 default: 613 error("Unrecognized feature policy prefix " + 614 std::to_string(feature.Prefix)); 615 } 616 } 617 618 // Find TLS data segments 619 auto isTLS = [](InputChunk *segment) { 620 return segment->live && segment->isTLS(); 621 }; 622 tlsUsed = tlsUsed || llvm::any_of(file->segments, isTLS); 623 } 624 625 if (inferFeatures) 626 for (const auto &key : used.keys()) 627 allowed.insert(std::string(key)); 628 629 if (!ctx.arg.checkFeatures) 630 goto done; 631 632 if (ctx.arg.sharedMemory) { 633 if (disallowed.count("shared-mem")) 634 error("--shared-memory is disallowed by " + disallowed["shared-mem"] + 635 " because it was not compiled with 'atomics' or 'bulk-memory' " 636 "features."); 637 638 for (auto feature : {"atomics", "bulk-memory"}) 639 if (!allowed.count(feature)) 640 error(StringRef("'") + feature + 641 "' feature must be used in order to use shared memory"); 642 } 643 644 if (tlsUsed) { 645 for (auto feature : {"atomics", "bulk-memory"}) 646 if (!allowed.count(feature)) 647 error(StringRef("'") + feature + 648 "' feature must be used in order to use thread-local storage"); 649 } 650 651 // Validate that used features are allowed in output 652 if (!inferFeatures) { 653 for (const auto &feature : used.keys()) { 654 if (!allowed.count(std::string(feature))) 655 error(Twine("Target feature '") + feature + "' used by " + 656 used[feature] + " is not allowed."); 657 } 658 } 659 660 // Validate the disallowed constraints for each file 661 for (ObjFile *file : ctx.objectFiles) { 662 StringRef fileName(file->getName()); 663 SmallSet<std::string, 8> objectFeatures; 664 for (const auto &feature : file->getWasmObj()->getTargetFeatures()) { 665 if (feature.Prefix == WASM_FEATURE_PREFIX_DISALLOWED) 666 continue; 667 objectFeatures.insert(feature.Name); 668 if (disallowed.count(feature.Name)) 669 error(Twine("Target feature '") + feature.Name + "' used in " + 670 fileName + " is disallowed by " + disallowed[feature.Name] + 671 ". Use --no-check-features to suppress."); 672 } 673 } 674 675 done: 676 // Normally we don't include bss segments in the binary. In particular if 677 // memory is not being imported then we can assume its zero initialized. 678 // In the case the memory is imported, and we can use the memory.fill 679 // instruction, then we can also avoid including the segments. 680 // Finally, if we are emitting relocations, they may refer to locations within 681 // the bss segments, so these segments need to exist in the binary. 682 if (ctx.arg.emitRelocs || 683 (ctx.arg.memoryImport.has_value() && !allowed.count("bulk-memory"))) 684 ctx.emitBssSegments = true; 685 686 if (allowed.count("extended-const")) 687 ctx.arg.extendedConst = true; 688 689 for (auto &feature : allowed) 690 log("Allowed feature: " + feature); 691 } 692 693 void Writer::checkImportExportTargetFeatures() { 694 if (ctx.arg.relocatable || !ctx.arg.checkFeatures) 695 return; 696 697 if (out.targetFeaturesSec->features.count("mutable-globals") == 0) { 698 for (const Symbol *sym : out.importSec->importedSymbols) { 699 if (auto *global = dyn_cast<GlobalSymbol>(sym)) { 700 if (global->getGlobalType()->Mutable) { 701 error(Twine("mutable global imported but 'mutable-globals' feature " 702 "not present in inputs: `") + 703 toString(*sym) + "`. Use --no-check-features to suppress."); 704 } 705 } 706 } 707 for (const Symbol *sym : out.exportSec->exportedSymbols) { 708 if (isa<GlobalSymbol>(sym)) { 709 error(Twine("mutable global exported but 'mutable-globals' feature " 710 "not present in inputs: `") + 711 toString(*sym) + "`. Use --no-check-features to suppress."); 712 } 713 } 714 } 715 } 716 717 static bool shouldImport(Symbol *sym) { 718 // We don't generate imports for data symbols. They however can be imported 719 // as GOT entries. 720 if (isa<DataSymbol>(sym)) 721 return false; 722 if (!sym->isLive()) 723 return false; 724 if (!sym->isUsedInRegularObj) 725 return false; 726 727 // When a symbol is weakly defined in a shared library we need to allow 728 // it to be overridden by another module so need to both import 729 // and export the symbol. 730 if (ctx.arg.shared && sym->isWeak() && !sym->isUndefined() && 731 !sym->isHidden()) 732 return true; 733 if (sym->isShared()) 734 return true; 735 if (!sym->isUndefined()) 736 return false; 737 if (sym->isWeak() && !ctx.arg.relocatable && !ctx.isPic) 738 return false; 739 740 // In PIC mode we only need to import functions when they are called directly. 741 // Indirect usage all goes via GOT imports. 742 if (ctx.isPic) { 743 if (auto *f = dyn_cast<UndefinedFunction>(sym)) 744 if (!f->isCalledDirectly) 745 return false; 746 } 747 748 if (ctx.isPic || ctx.arg.relocatable || ctx.arg.importUndefined || 749 ctx.arg.unresolvedSymbols == UnresolvedPolicy::ImportDynamic) 750 return true; 751 if (ctx.arg.allowUndefinedSymbols.count(sym->getName()) != 0) 752 return true; 753 754 return sym->isImported(); 755 } 756 757 void Writer::calculateImports() { 758 // Some inputs require that the indirect function table be assigned to table 759 // number 0, so if it is present and is an import, allocate it before any 760 // other tables. 761 if (WasmSym::indirectFunctionTable && 762 shouldImport(WasmSym::indirectFunctionTable)) 763 out.importSec->addImport(WasmSym::indirectFunctionTable); 764 765 for (Symbol *sym : symtab->symbols()) { 766 if (!shouldImport(sym)) 767 continue; 768 if (sym == WasmSym::indirectFunctionTable) 769 continue; 770 LLVM_DEBUG(dbgs() << "import: " << sym->getName() << "\n"); 771 out.importSec->addImport(sym); 772 } 773 } 774 775 void Writer::calculateExports() { 776 if (ctx.arg.relocatable) 777 return; 778 779 if (!ctx.arg.relocatable && ctx.arg.memoryExport.has_value()) { 780 out.exportSec->exports.push_back( 781 WasmExport{*ctx.arg.memoryExport, WASM_EXTERNAL_MEMORY, 0}); 782 } 783 784 unsigned globalIndex = 785 out.importSec->getNumImportedGlobals() + out.globalSec->numGlobals(); 786 787 for (Symbol *sym : symtab->symbols()) { 788 if (!sym->isExported()) 789 continue; 790 if (!sym->isLive()) 791 continue; 792 if (isa<SharedFunctionSymbol>(sym) || sym->isShared()) 793 continue; 794 795 StringRef name = sym->getName(); 796 LLVM_DEBUG(dbgs() << "Export: " << name << "\n"); 797 WasmExport export_; 798 if (auto *f = dyn_cast<DefinedFunction>(sym)) { 799 if (std::optional<StringRef> exportName = f->function->getExportName()) { 800 name = *exportName; 801 } 802 export_ = {name, WASM_EXTERNAL_FUNCTION, f->getExportedFunctionIndex()}; 803 } else if (auto *g = dyn_cast<DefinedGlobal>(sym)) { 804 if (g->getGlobalType()->Mutable && !g->getFile() && !g->forceExport) { 805 // Avoid exporting mutable globals are linker synthesized (e.g. 806 // __stack_pointer or __tls_base) unless they are explicitly exported 807 // from the command line. 808 // Without this check `--export-all` would cause any program using the 809 // stack pointer to export a mutable global even if none of the input 810 // files were built with the `mutable-globals` feature. 811 continue; 812 } 813 export_ = {name, WASM_EXTERNAL_GLOBAL, g->getGlobalIndex()}; 814 } else if (auto *t = dyn_cast<DefinedTag>(sym)) { 815 export_ = {name, WASM_EXTERNAL_TAG, t->getTagIndex()}; 816 } else if (auto *d = dyn_cast<DefinedData>(sym)) { 817 out.globalSec->dataAddressGlobals.push_back(d); 818 export_ = {name, WASM_EXTERNAL_GLOBAL, globalIndex++}; 819 } else { 820 auto *t = cast<DefinedTable>(sym); 821 export_ = {name, WASM_EXTERNAL_TABLE, t->getTableNumber()}; 822 } 823 824 out.exportSec->exports.push_back(export_); 825 out.exportSec->exportedSymbols.push_back(sym); 826 } 827 } 828 829 void Writer::populateSymtab() { 830 if (!ctx.arg.relocatable && !ctx.arg.emitRelocs) 831 return; 832 833 for (Symbol *sym : symtab->symbols()) 834 if (sym->isUsedInRegularObj && sym->isLive() && !sym->isShared()) 835 out.linkingSec->addToSymtab(sym); 836 837 for (ObjFile *file : ctx.objectFiles) { 838 LLVM_DEBUG(dbgs() << "Local symtab entries: " << file->getName() << "\n"); 839 for (Symbol *sym : file->getSymbols()) 840 if (sym->isLocal() && !isa<SectionSymbol>(sym) && sym->isLive()) 841 out.linkingSec->addToSymtab(sym); 842 } 843 } 844 845 void Writer::calculateTypes() { 846 // The output type section is the union of the following sets: 847 // 1. Any signature used in the TYPE relocation 848 // 2. The signatures of all imported functions 849 // 3. The signatures of all defined functions 850 // 4. The signatures of all imported tags 851 // 5. The signatures of all defined tags 852 853 for (ObjFile *file : ctx.objectFiles) { 854 ArrayRef<WasmSignature> types = file->getWasmObj()->types(); 855 for (uint32_t i = 0; i < types.size(); i++) 856 if (file->typeIsUsed[i]) 857 file->typeMap[i] = out.typeSec->registerType(types[i]); 858 } 859 860 for (const Symbol *sym : out.importSec->importedSymbols) { 861 if (auto *f = dyn_cast<FunctionSymbol>(sym)) 862 out.typeSec->registerType(*f->signature); 863 else if (auto *t = dyn_cast<TagSymbol>(sym)) 864 out.typeSec->registerType(*t->signature); 865 } 866 867 for (const InputFunction *f : out.functionSec->inputFunctions) 868 out.typeSec->registerType(f->signature); 869 870 for (const InputTag *t : out.tagSec->inputTags) 871 out.typeSec->registerType(t->signature); 872 } 873 874 // In a command-style link, create a wrapper for each exported symbol 875 // which calls the constructors and destructors. 876 void Writer::createCommandExportWrappers() { 877 // This logic doesn't currently support Emscripten-style PIC mode. 878 assert(!ctx.isPic); 879 880 // If there are no ctors and there's no libc `__wasm_call_dtors` to 881 // call, don't wrap the exports. 882 if (initFunctions.empty() && WasmSym::callDtors == nullptr) 883 return; 884 885 std::vector<DefinedFunction *> toWrap; 886 887 for (Symbol *sym : symtab->symbols()) 888 if (sym->isExported()) 889 if (auto *f = dyn_cast<DefinedFunction>(sym)) 890 toWrap.push_back(f); 891 892 for (auto *f : toWrap) { 893 auto funcNameStr = (f->getName() + ".command_export").str(); 894 commandExportWrapperNames.push_back(funcNameStr); 895 const std::string &funcName = commandExportWrapperNames.back(); 896 897 auto func = make<SyntheticFunction>(*f->getSignature(), funcName); 898 if (f->function->getExportName()) 899 func->setExportName(f->function->getExportName()->str()); 900 else 901 func->setExportName(f->getName().str()); 902 903 DefinedFunction *def = 904 symtab->addSyntheticFunction(funcName, f->flags, func); 905 def->markLive(); 906 907 def->flags |= WASM_SYMBOL_EXPORTED; 908 def->flags &= ~WASM_SYMBOL_VISIBILITY_HIDDEN; 909 def->forceExport = f->forceExport; 910 911 f->flags |= WASM_SYMBOL_VISIBILITY_HIDDEN; 912 f->flags &= ~WASM_SYMBOL_EXPORTED; 913 f->forceExport = false; 914 915 out.functionSec->addFunction(func); 916 917 createCommandExportWrapper(f->getFunctionIndex(), def); 918 } 919 } 920 921 static void finalizeIndirectFunctionTable() { 922 if (!WasmSym::indirectFunctionTable) 923 return; 924 925 if (shouldImport(WasmSym::indirectFunctionTable) && 926 !WasmSym::indirectFunctionTable->hasTableNumber()) { 927 // Processing -Bsymbolic relocations resulted in a late requirement that the 928 // indirect function table be present, and we are running in --import-table 929 // mode. Add the table now to the imports section. Otherwise it will be 930 // added to the tables section later in assignIndexes. 931 out.importSec->addImport(WasmSym::indirectFunctionTable); 932 } 933 934 uint32_t tableSize = ctx.arg.tableBase + out.elemSec->numEntries(); 935 WasmLimits limits = {0, tableSize, 0}; 936 if (WasmSym::indirectFunctionTable->isDefined() && !ctx.arg.growableTable) { 937 limits.Flags |= WASM_LIMITS_FLAG_HAS_MAX; 938 limits.Maximum = limits.Minimum; 939 } 940 if (ctx.arg.is64.value_or(false)) 941 limits.Flags |= WASM_LIMITS_FLAG_IS_64; 942 WasmSym::indirectFunctionTable->setLimits(limits); 943 } 944 945 static void scanRelocations() { 946 for (ObjFile *file : ctx.objectFiles) { 947 LLVM_DEBUG(dbgs() << "scanRelocations: " << file->getName() << "\n"); 948 for (InputChunk *chunk : file->functions) 949 scanRelocations(chunk); 950 for (InputChunk *chunk : file->segments) 951 scanRelocations(chunk); 952 for (auto &p : file->customSections) 953 scanRelocations(p); 954 } 955 } 956 957 void Writer::assignIndexes() { 958 // Seal the import section, since other index spaces such as function and 959 // global are effected by the number of imports. 960 out.importSec->seal(); 961 962 for (InputFunction *func : ctx.syntheticFunctions) 963 out.functionSec->addFunction(func); 964 965 for (ObjFile *file : ctx.objectFiles) { 966 LLVM_DEBUG(dbgs() << "Functions: " << file->getName() << "\n"); 967 for (InputFunction *func : file->functions) 968 out.functionSec->addFunction(func); 969 } 970 971 for (InputGlobal *global : ctx.syntheticGlobals) 972 out.globalSec->addGlobal(global); 973 974 for (ObjFile *file : ctx.objectFiles) { 975 LLVM_DEBUG(dbgs() << "Globals: " << file->getName() << "\n"); 976 for (InputGlobal *global : file->globals) 977 out.globalSec->addGlobal(global); 978 } 979 980 for (ObjFile *file : ctx.objectFiles) { 981 LLVM_DEBUG(dbgs() << "Tags: " << file->getName() << "\n"); 982 for (InputTag *tag : file->tags) 983 out.tagSec->addTag(tag); 984 } 985 986 for (ObjFile *file : ctx.objectFiles) { 987 LLVM_DEBUG(dbgs() << "Tables: " << file->getName() << "\n"); 988 for (InputTable *table : file->tables) 989 out.tableSec->addTable(table); 990 } 991 992 for (InputTable *table : ctx.syntheticTables) 993 out.tableSec->addTable(table); 994 995 out.globalSec->assignIndexes(); 996 out.tableSec->assignIndexes(); 997 } 998 999 static StringRef getOutputDataSegmentName(const InputChunk &seg) { 1000 // We always merge .tbss and .tdata into a single TLS segment so all TLS 1001 // symbols are be relative to single __tls_base. 1002 if (seg.isTLS()) 1003 return ".tdata"; 1004 if (!ctx.arg.mergeDataSegments) 1005 return seg.name; 1006 if (seg.name.starts_with(".text.")) 1007 return ".text"; 1008 if (seg.name.starts_with(".data.")) 1009 return ".data"; 1010 if (seg.name.starts_with(".bss.")) 1011 return ".bss"; 1012 if (seg.name.starts_with(".rodata.")) 1013 return ".rodata"; 1014 return seg.name; 1015 } 1016 1017 OutputSegment *Writer::createOutputSegment(StringRef name) { 1018 LLVM_DEBUG(dbgs() << "new segment: " << name << "\n"); 1019 OutputSegment *s = make<OutputSegment>(name); 1020 if (ctx.arg.sharedMemory) 1021 s->initFlags = WASM_DATA_SEGMENT_IS_PASSIVE; 1022 if (!ctx.arg.relocatable && name.starts_with(".bss")) 1023 s->isBss = true; 1024 segments.push_back(s); 1025 return s; 1026 } 1027 1028 void Writer::createOutputSegments() { 1029 for (ObjFile *file : ctx.objectFiles) { 1030 for (InputChunk *segment : file->segments) { 1031 if (!segment->live) 1032 continue; 1033 StringRef name = getOutputDataSegmentName(*segment); 1034 OutputSegment *s = nullptr; 1035 // When running in relocatable mode we can't merge segments that are part 1036 // of comdat groups since the ultimate linker needs to be able exclude or 1037 // include them individually. 1038 if (ctx.arg.relocatable && !segment->getComdatName().empty()) { 1039 s = createOutputSegment(name); 1040 } else { 1041 if (segmentMap.count(name) == 0) 1042 segmentMap[name] = createOutputSegment(name); 1043 s = segmentMap[name]; 1044 } 1045 s->addInputSegment(segment); 1046 } 1047 } 1048 1049 // Sort segments by type, placing .bss last 1050 std::stable_sort(segments.begin(), segments.end(), 1051 [](const OutputSegment *a, const OutputSegment *b) { 1052 auto order = [](StringRef name) { 1053 return StringSwitch<int>(name) 1054 .StartsWith(".tdata", 0) 1055 .StartsWith(".rodata", 1) 1056 .StartsWith(".data", 2) 1057 .StartsWith(".bss", 4) 1058 .Default(3); 1059 }; 1060 return order(a->name) < order(b->name); 1061 }); 1062 1063 for (size_t i = 0; i < segments.size(); ++i) 1064 segments[i]->index = i; 1065 1066 // Merge MergeInputSections into a single MergeSyntheticSection. 1067 LLVM_DEBUG(dbgs() << "-- finalize input semgments\n"); 1068 for (OutputSegment *seg : segments) 1069 seg->finalizeInputSegments(); 1070 } 1071 1072 void Writer::combineOutputSegments() { 1073 // With PIC code we currently only support a single active data segment since 1074 // we only have a single __memory_base to use as our base address. This pass 1075 // combines all data segments into a single .data segment. 1076 // This restriction does not apply when the extended const extension is 1077 // available: https://github.com/WebAssembly/extended-const 1078 assert(!ctx.arg.extendedConst); 1079 assert(ctx.isPic && !ctx.arg.sharedMemory); 1080 if (segments.size() <= 1) 1081 return; 1082 OutputSegment *combined = make<OutputSegment>(".data"); 1083 combined->startVA = segments[0]->startVA; 1084 for (OutputSegment *s : segments) { 1085 bool first = true; 1086 for (InputChunk *inSeg : s->inputSegments) { 1087 if (first) 1088 inSeg->alignment = std::max(inSeg->alignment, s->alignment); 1089 first = false; 1090 #ifndef NDEBUG 1091 uint64_t oldVA = inSeg->getVA(); 1092 #endif 1093 combined->addInputSegment(inSeg); 1094 #ifndef NDEBUG 1095 uint64_t newVA = inSeg->getVA(); 1096 LLVM_DEBUG(dbgs() << "added input segment. name=" << inSeg->name 1097 << " oldVA=" << oldVA << " newVA=" << newVA << "\n"); 1098 assert(oldVA == newVA); 1099 #endif 1100 } 1101 } 1102 1103 segments = {combined}; 1104 } 1105 1106 static void createFunction(DefinedFunction *func, StringRef bodyContent) { 1107 std::string functionBody; 1108 { 1109 raw_string_ostream os(functionBody); 1110 writeUleb128(os, bodyContent.size(), "function size"); 1111 os << bodyContent; 1112 } 1113 ArrayRef<uint8_t> body = arrayRefFromStringRef(saver().save(functionBody)); 1114 cast<SyntheticFunction>(func->function)->setBody(body); 1115 } 1116 1117 bool Writer::needsPassiveInitialization(const OutputSegment *segment) { 1118 // If bulk memory features is supported then we can perform bss initialization 1119 // (via memory.fill) during `__wasm_init_memory`. 1120 if (ctx.arg.memoryImport.has_value() && !segment->requiredInBinary()) 1121 return true; 1122 return segment->initFlags & WASM_DATA_SEGMENT_IS_PASSIVE; 1123 } 1124 1125 bool Writer::hasPassiveInitializedSegments() { 1126 return llvm::any_of(segments, [this](const OutputSegment *s) { 1127 return this->needsPassiveInitialization(s); 1128 }); 1129 } 1130 1131 void Writer::createSyntheticInitFunctions() { 1132 if (ctx.arg.relocatable) 1133 return; 1134 1135 static WasmSignature nullSignature = {{}, {}}; 1136 1137 createApplyDataRelocationsFunction(); 1138 1139 // Passive segments are used to avoid memory being reinitialized on each 1140 // thread's instantiation. These passive segments are initialized and 1141 // dropped in __wasm_init_memory, which is registered as the start function 1142 // We also initialize bss segments (using memory.fill) as part of this 1143 // function. 1144 if (hasPassiveInitializedSegments()) { 1145 WasmSym::initMemory = symtab->addSyntheticFunction( 1146 "__wasm_init_memory", WASM_SYMBOL_VISIBILITY_HIDDEN, 1147 make<SyntheticFunction>(nullSignature, "__wasm_init_memory")); 1148 WasmSym::initMemory->markLive(); 1149 if (ctx.arg.sharedMemory) { 1150 // This global is assigned during __wasm_init_memory in the shared memory 1151 // case. 1152 WasmSym::tlsBase->markLive(); 1153 } 1154 } 1155 1156 if (ctx.arg.sharedMemory) { 1157 if (out.globalSec->needsTLSRelocations()) { 1158 WasmSym::applyGlobalTLSRelocs = symtab->addSyntheticFunction( 1159 "__wasm_apply_global_tls_relocs", WASM_SYMBOL_VISIBILITY_HIDDEN, 1160 make<SyntheticFunction>(nullSignature, 1161 "__wasm_apply_global_tls_relocs")); 1162 WasmSym::applyGlobalTLSRelocs->markLive(); 1163 // TLS relocations depend on the __tls_base symbols 1164 WasmSym::tlsBase->markLive(); 1165 } 1166 1167 auto hasTLSRelocs = [](const OutputSegment *segment) { 1168 if (segment->isTLS()) 1169 for (const auto* is: segment->inputSegments) 1170 if (is->getRelocations().size()) 1171 return true; 1172 return false; 1173 }; 1174 if (llvm::any_of(segments, hasTLSRelocs)) { 1175 WasmSym::applyTLSRelocs = symtab->addSyntheticFunction( 1176 "__wasm_apply_tls_relocs", WASM_SYMBOL_VISIBILITY_HIDDEN, 1177 make<SyntheticFunction>(nullSignature, 1178 "__wasm_apply_tls_relocs")); 1179 WasmSym::applyTLSRelocs->markLive(); 1180 } 1181 } 1182 1183 if (ctx.isPic && out.globalSec->needsRelocations()) { 1184 WasmSym::applyGlobalRelocs = symtab->addSyntheticFunction( 1185 "__wasm_apply_global_relocs", WASM_SYMBOL_VISIBILITY_HIDDEN, 1186 make<SyntheticFunction>(nullSignature, "__wasm_apply_global_relocs")); 1187 WasmSym::applyGlobalRelocs->markLive(); 1188 } 1189 1190 // If there is only one start function we can just use that function 1191 // itself as the Wasm start function, otherwise we need to synthesize 1192 // a new function to call them in sequence. 1193 if (WasmSym::applyGlobalRelocs && WasmSym::initMemory) { 1194 WasmSym::startFunction = symtab->addSyntheticFunction( 1195 "__wasm_start", WASM_SYMBOL_VISIBILITY_HIDDEN, 1196 make<SyntheticFunction>(nullSignature, "__wasm_start")); 1197 WasmSym::startFunction->markLive(); 1198 } 1199 } 1200 1201 void Writer::createInitMemoryFunction() { 1202 LLVM_DEBUG(dbgs() << "createInitMemoryFunction\n"); 1203 assert(WasmSym::initMemory); 1204 assert(hasPassiveInitializedSegments()); 1205 uint64_t flagAddress; 1206 if (ctx.arg.sharedMemory) { 1207 assert(WasmSym::initMemoryFlag); 1208 flagAddress = WasmSym::initMemoryFlag->getVA(); 1209 } 1210 bool is64 = ctx.arg.is64.value_or(false); 1211 std::string bodyContent; 1212 { 1213 raw_string_ostream os(bodyContent); 1214 // Initialize memory in a thread-safe manner. The thread that successfully 1215 // increments the flag from 0 to 1 is responsible for performing the memory 1216 // initialization. Other threads go sleep on the flag until the first thread 1217 // finishing initializing memory, increments the flag to 2, and wakes all 1218 // the other threads. Once the flag has been set to 2, subsequently started 1219 // threads will skip the sleep. All threads unconditionally drop their 1220 // passive data segments once memory has been initialized. The generated 1221 // code is as follows: 1222 // 1223 // (func $__wasm_init_memory 1224 // (block $drop 1225 // (block $wait 1226 // (block $init 1227 // (br_table $init $wait $drop 1228 // (i32.atomic.rmw.cmpxchg align=2 offset=0 1229 // (i32.const $__init_memory_flag) 1230 // (i32.const 0) 1231 // (i32.const 1) 1232 // ) 1233 // ) 1234 // ) ;; $init 1235 // ( ... initialize data segments ... ) 1236 // (i32.atomic.store align=2 offset=0 1237 // (i32.const $__init_memory_flag) 1238 // (i32.const 2) 1239 // ) 1240 // (drop 1241 // (i32.atomic.notify align=2 offset=0 1242 // (i32.const $__init_memory_flag) 1243 // (i32.const -1u) 1244 // ) 1245 // ) 1246 // (br $drop) 1247 // ) ;; $wait 1248 // (drop 1249 // (i32.atomic.wait align=2 offset=0 1250 // (i32.const $__init_memory_flag) 1251 // (i32.const 1) 1252 // (i32.const -1) 1253 // ) 1254 // ) 1255 // ) ;; $drop 1256 // ( ... drop data segments ... ) 1257 // ) 1258 // 1259 // When we are building with PIC, calculate the flag location using: 1260 // 1261 // (global.get $__memory_base) 1262 // (i32.const $__init_memory_flag) 1263 // (i32.const 1) 1264 1265 auto writeGetFlagAddress = [&]() { 1266 if (ctx.isPic) { 1267 writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get"); 1268 writeUleb128(os, 0, "local 0"); 1269 } else { 1270 writePtrConst(os, flagAddress, is64, "flag address"); 1271 } 1272 }; 1273 1274 if (ctx.arg.sharedMemory) { 1275 // With PIC code we cache the flag address in local 0 1276 if (ctx.isPic) { 1277 writeUleb128(os, 1, "num local decls"); 1278 writeUleb128(os, 2, "local count"); 1279 writeU8(os, is64 ? WASM_TYPE_I64 : WASM_TYPE_I32, "address type"); 1280 writeU8(os, WASM_OPCODE_GLOBAL_GET, "GLOBAL_GET"); 1281 writeUleb128(os, WasmSym::memoryBase->getGlobalIndex(), "memory_base"); 1282 writePtrConst(os, flagAddress, is64, "flag address"); 1283 writeU8(os, is64 ? WASM_OPCODE_I64_ADD : WASM_OPCODE_I32_ADD, "add"); 1284 writeU8(os, WASM_OPCODE_LOCAL_SET, "local.set"); 1285 writeUleb128(os, 0, "local 0"); 1286 } else { 1287 writeUleb128(os, 0, "num locals"); 1288 } 1289 1290 // Set up destination blocks 1291 writeU8(os, WASM_OPCODE_BLOCK, "block $drop"); 1292 writeU8(os, WASM_TYPE_NORESULT, "block type"); 1293 writeU8(os, WASM_OPCODE_BLOCK, "block $wait"); 1294 writeU8(os, WASM_TYPE_NORESULT, "block type"); 1295 writeU8(os, WASM_OPCODE_BLOCK, "block $init"); 1296 writeU8(os, WASM_TYPE_NORESULT, "block type"); 1297 1298 // Atomically check whether we win the race. 1299 writeGetFlagAddress(); 1300 writeI32Const(os, 0, "expected flag value"); 1301 writeI32Const(os, 1, "new flag value"); 1302 writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix"); 1303 writeUleb128(os, WASM_OPCODE_I32_RMW_CMPXCHG, "i32.atomic.rmw.cmpxchg"); 1304 writeMemArg(os, 2, 0); 1305 1306 // Based on the value, decide what to do next. 1307 writeU8(os, WASM_OPCODE_BR_TABLE, "br_table"); 1308 writeUleb128(os, 2, "label vector length"); 1309 writeUleb128(os, 0, "label $init"); 1310 writeUleb128(os, 1, "label $wait"); 1311 writeUleb128(os, 2, "default label $drop"); 1312 1313 // Initialize passive data segments 1314 writeU8(os, WASM_OPCODE_END, "end $init"); 1315 } else { 1316 writeUleb128(os, 0, "num local decls"); 1317 } 1318 1319 for (const OutputSegment *s : segments) { 1320 if (needsPassiveInitialization(s)) { 1321 // For passive BSS segments we can simple issue a memory.fill(0). 1322 // For non-BSS segments we do a memory.init. Both these 1323 // instructions take as their first argument the destination 1324 // address. 1325 writePtrConst(os, s->startVA, is64, "destination address"); 1326 if (ctx.isPic) { 1327 writeU8(os, WASM_OPCODE_GLOBAL_GET, "GLOBAL_GET"); 1328 writeUleb128(os, WasmSym::memoryBase->getGlobalIndex(), 1329 "__memory_base"); 1330 writeU8(os, is64 ? WASM_OPCODE_I64_ADD : WASM_OPCODE_I32_ADD, 1331 "i32.add"); 1332 } 1333 1334 // When we initialize the TLS segment we also set the `__tls_base` 1335 // global. This allows the runtime to use this static copy of the 1336 // TLS data for the first/main thread. 1337 if (ctx.arg.sharedMemory && s->isTLS()) { 1338 if (ctx.isPic) { 1339 // Cache the result of the addionion in local 0 1340 writeU8(os, WASM_OPCODE_LOCAL_TEE, "local.tee"); 1341 writeUleb128(os, 1, "local 1"); 1342 } else { 1343 writePtrConst(os, s->startVA, is64, "destination address"); 1344 } 1345 writeU8(os, WASM_OPCODE_GLOBAL_SET, "GLOBAL_SET"); 1346 writeUleb128(os, WasmSym::tlsBase->getGlobalIndex(), 1347 "__tls_base"); 1348 if (ctx.isPic) { 1349 writeU8(os, WASM_OPCODE_LOCAL_GET, "local.tee"); 1350 writeUleb128(os, 1, "local 1"); 1351 } 1352 } 1353 1354 if (s->isBss) { 1355 writeI32Const(os, 0, "fill value"); 1356 writePtrConst(os, s->size, is64, "memory region size"); 1357 writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix"); 1358 writeUleb128(os, WASM_OPCODE_MEMORY_FILL, "memory.fill"); 1359 writeU8(os, 0, "memory index immediate"); 1360 } else { 1361 writeI32Const(os, 0, "source segment offset"); 1362 writeI32Const(os, s->size, "memory region size"); 1363 writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix"); 1364 writeUleb128(os, WASM_OPCODE_MEMORY_INIT, "memory.init"); 1365 writeUleb128(os, s->index, "segment index immediate"); 1366 writeU8(os, 0, "memory index immediate"); 1367 } 1368 } 1369 } 1370 1371 if (ctx.arg.sharedMemory) { 1372 // Set flag to 2 to mark end of initialization 1373 writeGetFlagAddress(); 1374 writeI32Const(os, 2, "flag value"); 1375 writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix"); 1376 writeUleb128(os, WASM_OPCODE_I32_ATOMIC_STORE, "i32.atomic.store"); 1377 writeMemArg(os, 2, 0); 1378 1379 // Notify any waiters that memory initialization is complete 1380 writeGetFlagAddress(); 1381 writeI32Const(os, -1, "number of waiters"); 1382 writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix"); 1383 writeUleb128(os, WASM_OPCODE_ATOMIC_NOTIFY, "atomic.notify"); 1384 writeMemArg(os, 2, 0); 1385 writeU8(os, WASM_OPCODE_DROP, "drop"); 1386 1387 // Branch to drop the segments 1388 writeU8(os, WASM_OPCODE_BR, "br"); 1389 writeUleb128(os, 1, "label $drop"); 1390 1391 // Wait for the winning thread to initialize memory 1392 writeU8(os, WASM_OPCODE_END, "end $wait"); 1393 writeGetFlagAddress(); 1394 writeI32Const(os, 1, "expected flag value"); 1395 writeI64Const(os, -1, "timeout"); 1396 1397 writeU8(os, WASM_OPCODE_ATOMICS_PREFIX, "atomics prefix"); 1398 writeUleb128(os, WASM_OPCODE_I32_ATOMIC_WAIT, "i32.atomic.wait"); 1399 writeMemArg(os, 2, 0); 1400 writeU8(os, WASM_OPCODE_DROP, "drop"); 1401 1402 // Unconditionally drop passive data segments 1403 writeU8(os, WASM_OPCODE_END, "end $drop"); 1404 } 1405 1406 for (const OutputSegment *s : segments) { 1407 if (needsPassiveInitialization(s) && !s->isBss) { 1408 // The TLS region should not be dropped since its is needed 1409 // during the initialization of each thread (__wasm_init_tls). 1410 if (ctx.arg.sharedMemory && s->isTLS()) 1411 continue; 1412 // data.drop instruction 1413 writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix"); 1414 writeUleb128(os, WASM_OPCODE_DATA_DROP, "data.drop"); 1415 writeUleb128(os, s->index, "segment index immediate"); 1416 } 1417 } 1418 1419 // End the function 1420 writeU8(os, WASM_OPCODE_END, "END"); 1421 } 1422 1423 createFunction(WasmSym::initMemory, bodyContent); 1424 } 1425 1426 void Writer::createStartFunction() { 1427 // If the start function exists when we have more than one function to call. 1428 if (WasmSym::initMemory && WasmSym::applyGlobalRelocs) { 1429 assert(WasmSym::startFunction); 1430 std::string bodyContent; 1431 { 1432 raw_string_ostream os(bodyContent); 1433 writeUleb128(os, 0, "num locals"); 1434 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1435 writeUleb128(os, WasmSym::applyGlobalRelocs->getFunctionIndex(), 1436 "function index"); 1437 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1438 writeUleb128(os, WasmSym::initMemory->getFunctionIndex(), 1439 "function index"); 1440 writeU8(os, WASM_OPCODE_END, "END"); 1441 } 1442 createFunction(WasmSym::startFunction, bodyContent); 1443 } else if (WasmSym::initMemory) { 1444 WasmSym::startFunction = WasmSym::initMemory; 1445 } else if (WasmSym::applyGlobalRelocs) { 1446 WasmSym::startFunction = WasmSym::applyGlobalRelocs; 1447 } 1448 } 1449 1450 // For -shared (PIC) output, we create create a synthetic function which will 1451 // apply any relocations to the data segments on startup. This function is 1452 // called `__wasm_apply_data_relocs` and is expected to be called before 1453 // any user code (i.e. before `__wasm_call_ctors`). 1454 void Writer::createApplyDataRelocationsFunction() { 1455 LLVM_DEBUG(dbgs() << "createApplyDataRelocationsFunction\n"); 1456 // First write the body's contents to a string. 1457 std::string bodyContent; 1458 { 1459 raw_string_ostream os(bodyContent); 1460 writeUleb128(os, 0, "num locals"); 1461 bool generated = false; 1462 for (const OutputSegment *seg : segments) 1463 if (!ctx.arg.sharedMemory || !seg->isTLS()) 1464 for (const InputChunk *inSeg : seg->inputSegments) 1465 generated |= inSeg->generateRelocationCode(os); 1466 1467 if (!generated) { 1468 LLVM_DEBUG(dbgs() << "skipping empty __wasm_apply_data_relocs\n"); 1469 return; 1470 } 1471 writeU8(os, WASM_OPCODE_END, "END"); 1472 } 1473 1474 // __wasm_apply_data_relocs 1475 // Function that applies relocations to data segment post-instantiation. 1476 static WasmSignature nullSignature = {{}, {}}; 1477 auto def = symtab->addSyntheticFunction( 1478 "__wasm_apply_data_relocs", 1479 WASM_SYMBOL_VISIBILITY_DEFAULT | WASM_SYMBOL_EXPORTED, 1480 make<SyntheticFunction>(nullSignature, "__wasm_apply_data_relocs")); 1481 def->markLive(); 1482 1483 createFunction(def, bodyContent); 1484 } 1485 1486 void Writer::createApplyTLSRelocationsFunction() { 1487 LLVM_DEBUG(dbgs() << "createApplyTLSRelocationsFunction\n"); 1488 std::string bodyContent; 1489 { 1490 raw_string_ostream os(bodyContent); 1491 writeUleb128(os, 0, "num locals"); 1492 for (const OutputSegment *seg : segments) 1493 if (seg->isTLS()) 1494 for (const InputChunk *inSeg : seg->inputSegments) 1495 inSeg->generateRelocationCode(os); 1496 1497 writeU8(os, WASM_OPCODE_END, "END"); 1498 } 1499 1500 createFunction(WasmSym::applyTLSRelocs, bodyContent); 1501 } 1502 1503 // Similar to createApplyDataRelocationsFunction but generates relocation code 1504 // for WebAssembly globals. Because these globals are not shared between threads 1505 // these relocation need to run on every thread. 1506 void Writer::createApplyGlobalRelocationsFunction() { 1507 // First write the body's contents to a string. 1508 std::string bodyContent; 1509 { 1510 raw_string_ostream os(bodyContent); 1511 writeUleb128(os, 0, "num locals"); 1512 out.globalSec->generateRelocationCode(os, false); 1513 writeU8(os, WASM_OPCODE_END, "END"); 1514 } 1515 1516 createFunction(WasmSym::applyGlobalRelocs, bodyContent); 1517 } 1518 1519 // Similar to createApplyGlobalRelocationsFunction but for 1520 // TLS symbols. This cannot be run during the start function 1521 // but must be delayed until __wasm_init_tls is called. 1522 void Writer::createApplyGlobalTLSRelocationsFunction() { 1523 // First write the body's contents to a string. 1524 std::string bodyContent; 1525 { 1526 raw_string_ostream os(bodyContent); 1527 writeUleb128(os, 0, "num locals"); 1528 out.globalSec->generateRelocationCode(os, true); 1529 writeU8(os, WASM_OPCODE_END, "END"); 1530 } 1531 1532 createFunction(WasmSym::applyGlobalTLSRelocs, bodyContent); 1533 } 1534 1535 // Create synthetic "__wasm_call_ctors" function based on ctor functions 1536 // in input object. 1537 void Writer::createCallCtorsFunction() { 1538 // If __wasm_call_ctors isn't referenced, there aren't any ctors, don't 1539 // define the `__wasm_call_ctors` function. 1540 if (!WasmSym::callCtors->isLive() && initFunctions.empty()) 1541 return; 1542 1543 // First write the body's contents to a string. 1544 std::string bodyContent; 1545 { 1546 raw_string_ostream os(bodyContent); 1547 writeUleb128(os, 0, "num locals"); 1548 1549 // Call constructors 1550 for (const WasmInitEntry &f : initFunctions) { 1551 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1552 writeUleb128(os, f.sym->getFunctionIndex(), "function index"); 1553 for (size_t i = 0; i < f.sym->signature->Returns.size(); i++) { 1554 writeU8(os, WASM_OPCODE_DROP, "DROP"); 1555 } 1556 } 1557 1558 writeU8(os, WASM_OPCODE_END, "END"); 1559 } 1560 1561 createFunction(WasmSym::callCtors, bodyContent); 1562 } 1563 1564 // Create a wrapper around a function export which calls the 1565 // static constructors and destructors. 1566 void Writer::createCommandExportWrapper(uint32_t functionIndex, 1567 DefinedFunction *f) { 1568 // First write the body's contents to a string. 1569 std::string bodyContent; 1570 { 1571 raw_string_ostream os(bodyContent); 1572 writeUleb128(os, 0, "num locals"); 1573 1574 // Call `__wasm_call_ctors` which call static constructors (and 1575 // applies any runtime relocations in Emscripten-style PIC mode) 1576 if (WasmSym::callCtors->isLive()) { 1577 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1578 writeUleb128(os, WasmSym::callCtors->getFunctionIndex(), 1579 "function index"); 1580 } 1581 1582 // Call the user's code, leaving any return values on the operand stack. 1583 for (size_t i = 0; i < f->signature->Params.size(); ++i) { 1584 writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get"); 1585 writeUleb128(os, i, "local index"); 1586 } 1587 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1588 writeUleb128(os, functionIndex, "function index"); 1589 1590 // Call the function that calls the destructors. 1591 if (DefinedFunction *callDtors = WasmSym::callDtors) { 1592 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1593 writeUleb128(os, callDtors->getFunctionIndex(), "function index"); 1594 } 1595 1596 // End the function, returning the return values from the user's code. 1597 writeU8(os, WASM_OPCODE_END, "END"); 1598 } 1599 1600 createFunction(f, bodyContent); 1601 } 1602 1603 void Writer::createInitTLSFunction() { 1604 std::string bodyContent; 1605 { 1606 raw_string_ostream os(bodyContent); 1607 1608 OutputSegment *tlsSeg = nullptr; 1609 for (auto *seg : segments) { 1610 if (seg->name == ".tdata") { 1611 tlsSeg = seg; 1612 break; 1613 } 1614 } 1615 1616 writeUleb128(os, 0, "num locals"); 1617 if (tlsSeg) { 1618 writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get"); 1619 writeUleb128(os, 0, "local index"); 1620 1621 writeU8(os, WASM_OPCODE_GLOBAL_SET, "global.set"); 1622 writeUleb128(os, WasmSym::tlsBase->getGlobalIndex(), "global index"); 1623 1624 // FIXME(wvo): this local needs to be I64 in wasm64, or we need an extend op. 1625 writeU8(os, WASM_OPCODE_LOCAL_GET, "local.get"); 1626 writeUleb128(os, 0, "local index"); 1627 1628 writeI32Const(os, 0, "segment offset"); 1629 1630 writeI32Const(os, tlsSeg->size, "memory region size"); 1631 1632 writeU8(os, WASM_OPCODE_MISC_PREFIX, "bulk-memory prefix"); 1633 writeUleb128(os, WASM_OPCODE_MEMORY_INIT, "MEMORY.INIT"); 1634 writeUleb128(os, tlsSeg->index, "segment index immediate"); 1635 writeU8(os, 0, "memory index immediate"); 1636 } 1637 1638 if (WasmSym::applyTLSRelocs) { 1639 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1640 writeUleb128(os, WasmSym::applyTLSRelocs->getFunctionIndex(), 1641 "function index"); 1642 } 1643 1644 if (WasmSym::applyGlobalTLSRelocs) { 1645 writeU8(os, WASM_OPCODE_CALL, "CALL"); 1646 writeUleb128(os, WasmSym::applyGlobalTLSRelocs->getFunctionIndex(), 1647 "function index"); 1648 } 1649 writeU8(os, WASM_OPCODE_END, "end function"); 1650 } 1651 1652 createFunction(WasmSym::initTLS, bodyContent); 1653 } 1654 1655 // Populate InitFunctions vector with init functions from all input objects. 1656 // This is then used either when creating the output linking section or to 1657 // synthesize the "__wasm_call_ctors" function. 1658 void Writer::calculateInitFunctions() { 1659 if (!ctx.arg.relocatable && !WasmSym::callCtors->isLive()) 1660 return; 1661 1662 for (ObjFile *file : ctx.objectFiles) { 1663 const WasmLinkingData &l = file->getWasmObj()->linkingData(); 1664 for (const WasmInitFunc &f : l.InitFunctions) { 1665 FunctionSymbol *sym = file->getFunctionSymbol(f.Symbol); 1666 // comdat exclusions can cause init functions be discarded. 1667 if (sym->isDiscarded() || !sym->isLive()) 1668 continue; 1669 if (sym->signature->Params.size() != 0) 1670 error("constructor functions cannot take arguments: " + toString(*sym)); 1671 LLVM_DEBUG(dbgs() << "initFunctions: " << toString(*sym) << "\n"); 1672 initFunctions.emplace_back(WasmInitEntry{sym, f.Priority}); 1673 } 1674 } 1675 1676 // Sort in order of priority (lowest first) so that they are called 1677 // in the correct order. 1678 llvm::stable_sort(initFunctions, 1679 [](const WasmInitEntry &l, const WasmInitEntry &r) { 1680 return l.priority < r.priority; 1681 }); 1682 } 1683 1684 void Writer::createSyntheticSections() { 1685 out.dylinkSec = make<DylinkSection>(); 1686 out.typeSec = make<TypeSection>(); 1687 out.importSec = make<ImportSection>(); 1688 out.functionSec = make<FunctionSection>(); 1689 out.tableSec = make<TableSection>(); 1690 out.memorySec = make<MemorySection>(); 1691 out.tagSec = make<TagSection>(); 1692 out.globalSec = make<GlobalSection>(); 1693 out.exportSec = make<ExportSection>(); 1694 out.startSec = make<StartSection>(); 1695 out.elemSec = make<ElemSection>(); 1696 out.producersSec = make<ProducersSection>(); 1697 out.targetFeaturesSec = make<TargetFeaturesSection>(); 1698 out.buildIdSec = make<BuildIdSection>(); 1699 } 1700 1701 void Writer::createSyntheticSectionsPostLayout() { 1702 out.dataCountSec = make<DataCountSection>(segments); 1703 out.linkingSec = make<LinkingSection>(initFunctions, segments); 1704 out.nameSec = make<NameSection>(segments); 1705 } 1706 1707 void Writer::run() { 1708 // For PIC code the table base is assigned dynamically by the loader. 1709 // For non-PIC, we start at 1 so that accessing table index 0 always traps. 1710 if (!ctx.isPic && WasmSym::definedTableBase) 1711 WasmSym::definedTableBase->setVA(ctx.arg.tableBase); 1712 1713 log("-- createOutputSegments"); 1714 createOutputSegments(); 1715 log("-- createSyntheticSections"); 1716 createSyntheticSections(); 1717 log("-- layoutMemory"); 1718 layoutMemory(); 1719 1720 if (!ctx.arg.relocatable) { 1721 // Create linker synthesized __start_SECNAME/__stop_SECNAME symbols 1722 // This has to be done after memory layout is performed. 1723 for (const OutputSegment *seg : segments) { 1724 addStartStopSymbols(seg); 1725 } 1726 } 1727 1728 for (auto &pair : ctx.arg.exportedSymbols) { 1729 Symbol *sym = symtab->find(pair.first()); 1730 if (sym && sym->isDefined()) 1731 sym->forceExport = true; 1732 } 1733 1734 // Delay reporting errors about explicit exports until after 1735 // addStartStopSymbols which can create optional symbols. 1736 for (auto &name : ctx.arg.requiredExports) { 1737 Symbol *sym = symtab->find(name); 1738 if (!sym || !sym->isDefined()) { 1739 if (ctx.arg.unresolvedSymbols == UnresolvedPolicy::ReportError) 1740 error(Twine("symbol exported via --export not found: ") + name); 1741 if (ctx.arg.unresolvedSymbols == UnresolvedPolicy::Warn) 1742 warn(Twine("symbol exported via --export not found: ") + name); 1743 } 1744 } 1745 1746 log("-- populateTargetFeatures"); 1747 populateTargetFeatures(); 1748 1749 // When outputting PIC code each segment lives at at fixes offset from the 1750 // `__memory_base` import. Unless we support the extended const expression we 1751 // can't do addition inside the constant expression, so we much combine the 1752 // segments into a single one that can live at `__memory_base`. 1753 if (ctx.isPic && !ctx.arg.extendedConst && !ctx.arg.sharedMemory) { 1754 // In shared memory mode all data segments are passive and initialized 1755 // via __wasm_init_memory. 1756 log("-- combineOutputSegments"); 1757 combineOutputSegments(); 1758 } 1759 1760 log("-- createSyntheticSectionsPostLayout"); 1761 createSyntheticSectionsPostLayout(); 1762 log("-- populateProducers"); 1763 populateProducers(); 1764 log("-- calculateImports"); 1765 calculateImports(); 1766 log("-- scanRelocations"); 1767 scanRelocations(); 1768 log("-- finalizeIndirectFunctionTable"); 1769 finalizeIndirectFunctionTable(); 1770 log("-- createSyntheticInitFunctions"); 1771 createSyntheticInitFunctions(); 1772 log("-- assignIndexes"); 1773 assignIndexes(); 1774 log("-- calculateInitFunctions"); 1775 calculateInitFunctions(); 1776 1777 if (!ctx.arg.relocatable) { 1778 // Create linker synthesized functions 1779 if (WasmSym::applyGlobalRelocs) 1780 createApplyGlobalRelocationsFunction(); 1781 if (WasmSym::applyTLSRelocs) 1782 createApplyTLSRelocationsFunction(); 1783 if (WasmSym::applyGlobalTLSRelocs) 1784 createApplyGlobalTLSRelocationsFunction(); 1785 if (WasmSym::initMemory) 1786 createInitMemoryFunction(); 1787 createStartFunction(); 1788 1789 createCallCtorsFunction(); 1790 1791 // Create export wrappers for commands if needed. 1792 // 1793 // If the input contains a call to `__wasm_call_ctors`, either in one of 1794 // the input objects or an explicit export from the command-line, we 1795 // assume ctors and dtors are taken care of already. 1796 if (!ctx.arg.relocatable && !ctx.isPic && 1797 !WasmSym::callCtors->isUsedInRegularObj && 1798 !WasmSym::callCtors->isExported()) { 1799 log("-- createCommandExportWrappers"); 1800 createCommandExportWrappers(); 1801 } 1802 } 1803 1804 if (WasmSym::initTLS && WasmSym::initTLS->isLive()) { 1805 log("-- createInitTLSFunction"); 1806 createInitTLSFunction(); 1807 } 1808 1809 if (errorCount()) 1810 return; 1811 1812 log("-- calculateTypes"); 1813 calculateTypes(); 1814 log("-- calculateExports"); 1815 calculateExports(); 1816 log("-- calculateCustomSections"); 1817 calculateCustomSections(); 1818 log("-- populateSymtab"); 1819 populateSymtab(); 1820 log("-- checkImportExportTargetFeatures"); 1821 checkImportExportTargetFeatures(); 1822 log("-- addSections"); 1823 addSections(); 1824 1825 if (errorHandler().verbose) { 1826 log("Defined Functions: " + Twine(out.functionSec->inputFunctions.size())); 1827 log("Defined Globals : " + Twine(out.globalSec->numGlobals())); 1828 log("Defined Tags : " + Twine(out.tagSec->inputTags.size())); 1829 log("Defined Tables : " + Twine(out.tableSec->inputTables.size())); 1830 log("Function Imports : " + 1831 Twine(out.importSec->getNumImportedFunctions())); 1832 log("Global Imports : " + Twine(out.importSec->getNumImportedGlobals())); 1833 log("Tag Imports : " + Twine(out.importSec->getNumImportedTags())); 1834 log("Table Imports : " + Twine(out.importSec->getNumImportedTables())); 1835 } 1836 1837 createHeader(); 1838 log("-- finalizeSections"); 1839 finalizeSections(); 1840 1841 log("-- writeMapFile"); 1842 writeMapFile(outputSections); 1843 1844 log("-- openFile"); 1845 openFile(); 1846 if (errorCount()) 1847 return; 1848 1849 writeHeader(); 1850 1851 log("-- writeSections"); 1852 writeSections(); 1853 writeBuildId(); 1854 if (errorCount()) 1855 return; 1856 1857 if (Error e = buffer->commit()) 1858 fatal("failed to write output '" + buffer->getPath() + 1859 "': " + toString(std::move(e))); 1860 } 1861 1862 // Open a result file. 1863 void Writer::openFile() { 1864 log("writing: " + ctx.arg.outputFile); 1865 1866 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr = 1867 FileOutputBuffer::create(ctx.arg.outputFile, fileSize, 1868 FileOutputBuffer::F_executable); 1869 1870 if (!bufferOrErr) 1871 error("failed to open " + ctx.arg.outputFile + ": " + 1872 toString(bufferOrErr.takeError())); 1873 else 1874 buffer = std::move(*bufferOrErr); 1875 } 1876 1877 void Writer::createHeader() { 1878 raw_string_ostream os(header); 1879 writeBytes(os, WasmMagic, sizeof(WasmMagic), "wasm magic"); 1880 writeU32(os, WasmVersion, "wasm version"); 1881 fileSize += header.size(); 1882 } 1883 1884 void writeResult() { Writer().run(); } 1885 1886 } // namespace wasm::lld 1887