xref: /llvm-project/lld/MachO/ConcatOutputSection.cpp (revision 156e6051630d136b48090c0d1cb79a4457564e9d)
1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/BinaryFormat/MachO.h"
18 #include "llvm/Support/ScopedPrinter.h"
19 #include "llvm/Support/TimeProfiler.h"
20 
21 using namespace llvm;
22 using namespace llvm::MachO;
23 using namespace lld;
24 using namespace lld::macho;
25 
26 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections;
27 
28 void ConcatOutputSection::addInput(ConcatInputSection *input) {
29   assert(input->parent == this);
30   if (inputs.empty()) {
31     align = input->align;
32     flags = input->getFlags();
33   } else {
34     align = std::max(align, input->align);
35     finalizeFlags(input);
36   }
37   inputs.push_back(input);
38 }
39 
40 // Branch-range extension can be implemented in two ways, either through ...
41 //
42 // (1) Branch islands: Single branch instructions (also of limited range),
43 //     that might be chained in multiple hops to reach the desired
44 //     destination. On ARM64, as 16 branch islands are needed to hop between
45 //     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
46 //     even when it needs excessive hops.
47 //
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
49 //     register, followed by a register-indirect branch. Thunks are
50 //     constructed to reach any arbitrary address, so need not be
51 //     chained. Although thunks need not be chained, a program might need
52 //     multiple thunks to the same destination distributed throughout a large
53 //     program so that all call sites can have one within range.
54 //
55 // The optimal approach is to mix islands for destinations within two hops,
56 // and use thunks for destinations at greater distance. For now, we only
57 // implement thunks. TODO: Adding support for branch islands!
58 //
59 // Internally -- as expressed in LLD's data structures -- a
60 // branch-range-extension thunk consists of:
61 //
62 // (1) new Defined symbol for the thunk named
63 //     <FUNCTION>.thunk.<SEQUENCE>, which references ...
64 // (2) new InputSection, which contains ...
65 // (3.1) new data for the instructions to load & branch to the far address +
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
67 // (4.1) existing Defined symbol for the real function in __text, or
68 // (4.2) existing DylibSymbol for the real function in a dylib
69 //
70 // Nearly-optimal thunk-placement algorithm features:
71 //
72 // * Single pass: O(n) on the number of call sites.
73 //
74 // * Accounts for the exact space overhead of thunks - no heuristics
75 //
76 // * Exploits the full range of call instructions - forward & backward
77 //
78 // Data:
79 //
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
81 //   to its thunk bookkeeper.
82 //
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
84 //   distant call sites might be unable to reach the same thunk, so multiple
85 //   thunks are necessary to serve all call sites in a very large program. A
86 //   thunkInfo stores state for all thunks associated with a particular
87 //   function:
88 //     (a) thunk symbol
89 //     (b) input section containing stub code, and
90 //     (c) sequence number for the active thunk incarnation.
91 //   When an old thunk goes out of range, we increment the sequence number and
92 //   create a new thunk named <FUNCTION>.thunk.<SEQUENCE>.
93 //
94 // * A thunk consists of
95 //     (a) a Defined symbol pointing to
96 //     (b) an InputSection holding machine code (similar to a MachO stub), and
97 //     (c) relocs referencing the real function for fixing up the stub code.
98 //
99 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
100 //   to the inputs vector. We store new thunks via cheap vector append, rather
101 //   than costly insertion into the inputs vector.
102 //
103 // Control Flow:
104 //
105 // * During address assignment, MergedInputSection::finalize() examines call
106 //   sites by ascending address and creates thunks.  When a function is beyond
107 //   the range of a call site, we need a thunk. Place it at the largest
108 //   available forward address from the call site. Call sites increase
109 //   monotonically and thunks are always placed as far forward as possible;
110 //   thus, we place thunks at monotonically increasing addresses. Once a thunk
111 //   is placed, it and all previous input-section addresses are final.
112 //
113 // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge
114 //   the inputs and thunks vectors (both ordered by ascending address), which
115 //   is simple and cheap.
116 
117 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
118 
119 // Determine whether we need thunks, which depends on the target arch -- RISC
120 // (i.e., ARM) generally does because it has limited-range branch/call
121 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
122 // thunks for programs so large that branch source & destination addresses
123 // might differ more than the range of branch instruction(s).
124 bool TextOutputSection::needsThunks() const {
125   if (!target->usesThunks())
126     return false;
127   uint64_t isecAddr = addr;
128   for (ConcatInputSection *isec : inputs)
129     isecAddr = alignToPowerOf2(isecAddr, isec->align) + isec->getSize();
130   // Other sections besides __text might be small enough to pass this
131   // test but nevertheless need thunks for calling into other sections.
132   // An imperfect heuristic to use in this case is that if a section
133   // we've already processed in this segment needs thunks, so do the
134   // rest.
135   bool needsThunks = parent && parent->needsThunks;
136   if (!needsThunks &&
137       isecAddr - addr + in.stubs->getSize() <=
138           std::min(target->backwardBranchRange, target->forwardBranchRange))
139     return false;
140   // Yes, this program is large enough to need thunks.
141   if (parent) {
142     parent->needsThunks = true;
143   }
144   for (ConcatInputSection *isec : inputs) {
145     for (Reloc &r : isec->relocs) {
146       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
147         continue;
148       auto *sym = cast<Symbol *>(r.referent);
149       // Pre-populate the thunkMap and memoize call site counts for every
150       // InputSection and ThunkInfo. We do this for the benefit of
151       // estimateStubsInRangeVA().
152       ThunkInfo &thunkInfo = thunkMap[sym];
153       // Knowing ThunkInfo call site count will help us know whether or not we
154       // might need to create more for this referent at the time we are
155       // estimating distance to __stubs in estimateStubsInRangeVA().
156       ++thunkInfo.callSiteCount;
157       // We can avoid work on InputSections that have no BRANCH relocs.
158       isec->hasCallSites = true;
159     }
160   }
161   return true;
162 }
163 
164 // Since __stubs is placed after __text, we must estimate the address
165 // beyond which stubs are within range of a simple forward branch.
166 // This is called exactly once, when the last input section has been finalized.
167 uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
168   // Tally the functions which still have call sites remaining to process,
169   // which yields the maximum number of thunks we might yet place.
170   size_t maxPotentialThunks = 0;
171   for (auto &tp : thunkMap) {
172     ThunkInfo &ti = tp.second;
173     // This overcounts: Only sections that are in forward jump range from the
174     // currently-active section get finalized, and all input sections are
175     // finalized when estimateStubsInRangeVA() is called. So only backward
176     // jumps will need thunks, but we count all jumps.
177     if (ti.callSitesUsed < ti.callSiteCount)
178       maxPotentialThunks += 1;
179   }
180   // Tally the total size of input sections remaining to process.
181   uint64_t isecVA = inputs[callIdx]->getVA();
182   uint64_t isecEnd = isecVA;
183   for (size_t i = callIdx; i < inputs.size(); i++) {
184     InputSection *isec = inputs[i];
185     isecEnd = alignToPowerOf2(isecEnd, isec->align) + isec->getSize();
186   }
187 
188   // Tally up any thunks that have already been placed that have VA higher than
189   // inputs[callIdx]. First, find the index of the first thunk that is beyond
190   // the current inputs[callIdx].
191   auto itPostcallIdxThunks =
192       llvm::partition_point(thunks, [isecVA](const ConcatInputSection *t) {
193         return t->getVA() <= isecVA;
194       });
195   uint64_t existingForwardThunks = thunks.end() - itPostcallIdxThunks;
196 
197   uint64_t forwardBranchRange = target->forwardBranchRange;
198   assert(isecEnd > forwardBranchRange &&
199          "should not run thunk insertion if all code fits in jump range");
200   assert(isecEnd - isecVA <= forwardBranchRange &&
201          "should only finalize sections in jump range");
202 
203   // Estimate the maximum size of the code, right before the stubs section.
204   uint64_t maxTextSize = 0;
205   // Add the size of all the inputs, including the unprocessed ones.
206   maxTextSize += isecEnd;
207 
208   // Add the size of the thunks that have already been created that are ahead of
209   // inputs[callIdx]. These are already created thunks that will be interleaved
210   // with inputs[callIdx...end].
211   maxTextSize += existingForwardThunks * target->thunkSize;
212 
213   // Add the size of the thunks that may be created in the future. Since
214   // 'maxPotentialThunks' overcounts, this is an estimate of the upper limit.
215   maxTextSize += maxPotentialThunks * target->thunkSize;
216 
217   // Estimated maximum VA of last stub.
218   uint64_t maxVAOfLastStub = maxTextSize + in.stubs->getSize();
219 
220   // Estimate the address after which call sites can safely call stubs
221   // directly rather than through intermediary thunks.
222   uint64_t stubsInRangeVA = maxVAOfLastStub - forwardBranchRange;
223 
224   log("thunks = " + std::to_string(thunkMap.size()) +
225       ", potential = " + std::to_string(maxPotentialThunks) +
226       ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
227       utohexstr(isecVA) + ", threshold = " + utohexstr(stubsInRangeVA) +
228       ", isecEnd = " + utohexstr(isecEnd) +
229       ", tail = " + utohexstr(isecEnd - isecVA) +
230       ", slop = " + utohexstr(forwardBranchRange - (isecEnd - isecVA)));
231   return stubsInRangeVA;
232 }
233 
234 void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) {
235   size = alignToPowerOf2(size, isec->align);
236   fileSize = alignToPowerOf2(fileSize, isec->align);
237   isec->outSecOff = size;
238   isec->isFinal = true;
239   size += isec->getSize();
240   fileSize += isec->getFileSize();
241 }
242 
243 void ConcatOutputSection::finalizeContents() {
244   for (ConcatInputSection *isec : inputs)
245     finalizeOne(isec);
246 }
247 
248 void TextOutputSection::finalize() {
249   if (!needsThunks()) {
250     for (ConcatInputSection *isec : inputs)
251       finalizeOne(isec);
252     return;
253   }
254 
255   uint64_t forwardBranchRange = target->forwardBranchRange;
256   uint64_t backwardBranchRange = target->backwardBranchRange;
257   uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
258   size_t thunkSize = target->thunkSize;
259   size_t relocCount = 0;
260   size_t callSiteCount = 0;
261   size_t thunkCallCount = 0;
262   size_t thunkCount = 0;
263 
264   // Walk all sections in order. Finalize all sections that are less than
265   // forwardBranchRange in front of it.
266   // isecVA is the address of the current section.
267   // addr + size is the start address of the first non-finalized section.
268 
269   // inputs[finalIdx] is for finalization (address-assignment)
270   size_t finalIdx = 0;
271   // Kick-off by ensuring that the first input section has an address
272   for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
273        ++callIdx) {
274     if (finalIdx == callIdx)
275       finalizeOne(inputs[finalIdx++]);
276     ConcatInputSection *isec = inputs[callIdx];
277     assert(isec->isFinal);
278     uint64_t isecVA = isec->getVA();
279 
280     // Assign addresses up-to the forward branch-range limit.
281     // Every call instruction needs a small number of bytes (on Arm64: 4),
282     // and each inserted thunk needs a slightly larger number of bytes
283     // (on Arm64: 12). If a section starts with a branch instruction and
284     // contains several branch instructions in succession, then the distance
285     // from the current position to the position where the thunks are inserted
286     // grows. So leave room for a bunch of thunks.
287     unsigned slop = 256 * thunkSize;
288     while (finalIdx < endIdx) {
289       uint64_t expectedNewSize =
290           alignToPowerOf2(addr + size, inputs[finalIdx]->align) +
291           inputs[finalIdx]->getSize();
292       if (expectedNewSize >= isecVA + forwardBranchRange - slop)
293         break;
294       finalizeOne(inputs[finalIdx++]);
295     }
296 
297     if (!isec->hasCallSites)
298       continue;
299 
300     if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
301       // When we have finalized all input sections, __stubs (destined
302       // to follow __text) comes within range of forward branches and
303       // we can estimate the threshold address after which we can
304       // reach any stub with a forward branch. Note that although it
305       // sits in the middle of a loop, this code executes only once.
306       // It is in the loop because we need to call it at the proper
307       // time: the earliest call site from which the end of __text
308       // (and start of __stubs) comes within range of a forward branch.
309       stubsInRangeVA = estimateStubsInRangeVA(callIdx);
310     }
311     // Process relocs by ascending address, i.e., ascending offset within isec
312     std::vector<Reloc> &relocs = isec->relocs;
313     // FIXME: This property does not hold for object files produced by ld64's
314     // `-r` mode.
315     assert(is_sorted(relocs,
316                      [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
317     for (Reloc &r : reverse(relocs)) {
318       ++relocCount;
319       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
320         continue;
321       ++callSiteCount;
322       // Calculate branch reachability boundaries
323       uint64_t callVA = isecVA + r.offset;
324       uint64_t lowVA =
325           backwardBranchRange < callVA ? callVA - backwardBranchRange : 0;
326       uint64_t highVA = callVA + forwardBranchRange;
327       // Calculate our call referent address
328       auto *funcSym = cast<Symbol *>(r.referent);
329       ThunkInfo &thunkInfo = thunkMap[funcSym];
330       // The referent is not reachable, so we need to use a thunk ...
331       if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
332         assert(callVA != TargetInfo::outOfRangeVA);
333         // ... Oh, wait! We are close enough to the end that __stubs
334         // are now within range of a simple forward branch.
335         continue;
336       }
337       uint64_t funcVA = funcSym->resolveBranchVA();
338       ++thunkInfo.callSitesUsed;
339       if (lowVA <= funcVA && funcVA <= highVA) {
340         // The referent is reachable with a simple call instruction.
341         continue;
342       }
343       ++thunkInfo.thunkCallCount;
344       ++thunkCallCount;
345       // If an existing thunk is reachable, use it ...
346       if (thunkInfo.sym) {
347         uint64_t thunkVA = thunkInfo.isec->getVA();
348         if (lowVA <= thunkVA && thunkVA <= highVA) {
349           r.referent = thunkInfo.sym;
350           continue;
351         }
352       }
353       // ... otherwise, create a new thunk.
354       if (addr + size > highVA) {
355         // There were too many consecutive branch instructions for `slop`
356         // above. If you hit this: For the current algorithm, just bumping up
357         // slop above and trying again is probably simplest. (See also PR51578
358         // comment 5).
359         fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
360       }
361       thunkInfo.isec =
362           makeSyntheticInputSection(isec->getSegName(), isec->getName());
363       thunkInfo.isec->parent = this;
364       assert(thunkInfo.isec->live);
365 
366       StringRef thunkName = saver().save(funcSym->getName() + ".thunk." +
367                                          std::to_string(thunkInfo.sequence++));
368       if (!isa<Defined>(funcSym) || cast<Defined>(funcSym)->isExternal()) {
369         r.referent = thunkInfo.sym = symtab->addDefined(
370             thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
371             /*isWeakDef=*/false, /*isPrivateExtern=*/true,
372             /*isReferencedDynamically=*/false, /*noDeadStrip=*/false,
373             /*isWeakDefCanBeHidden=*/false);
374       } else {
375         r.referent = thunkInfo.sym = make<Defined>(
376             thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
377             /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/true,
378             /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
379             /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false);
380       }
381       thunkInfo.sym->used = true;
382       target->populateThunk(thunkInfo.isec, funcSym);
383       finalizeOne(thunkInfo.isec);
384       thunks.push_back(thunkInfo.isec);
385       ++thunkCount;
386     }
387   }
388 
389   log("thunks for " + parent->name + "," + name +
390       ": funcs = " + std::to_string(thunkMap.size()) +
391       ", relocs = " + std::to_string(relocCount) +
392       ", all calls = " + std::to_string(callSiteCount) +
393       ", thunk calls = " + std::to_string(thunkCallCount) +
394       ", thunks = " + std::to_string(thunkCount));
395 }
396 
397 void ConcatOutputSection::writeTo(uint8_t *buf) const {
398   for (ConcatInputSection *isec : inputs)
399     isec->writeTo(buf + isec->outSecOff);
400 }
401 
402 void TextOutputSection::writeTo(uint8_t *buf) const {
403   // Merge input sections from thunk & ordinary vectors
404   size_t i = 0, ie = inputs.size();
405   size_t t = 0, te = thunks.size();
406   while (i < ie || t < te) {
407     while (i < ie && (t == te || inputs[i]->empty() ||
408                       inputs[i]->outSecOff < thunks[t]->outSecOff)) {
409       inputs[i]->writeTo(buf + inputs[i]->outSecOff);
410       ++i;
411     }
412     while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
413       thunks[t]->writeTo(buf + thunks[t]->outSecOff);
414       ++t;
415     }
416   }
417 }
418 
419 void ConcatOutputSection::finalizeFlags(InputSection *input) {
420   switch (sectionType(input->getFlags())) {
421   default /*type-unspec'ed*/:
422     // FIXME: Add additional logic here when supporting emitting obj files.
423     break;
424   case S_4BYTE_LITERALS:
425   case S_8BYTE_LITERALS:
426   case S_16BYTE_LITERALS:
427   case S_CSTRING_LITERALS:
428   case S_ZEROFILL:
429   case S_LAZY_SYMBOL_POINTERS:
430   case S_MOD_TERM_FUNC_POINTERS:
431   case S_THREAD_LOCAL_REGULAR:
432   case S_THREAD_LOCAL_ZEROFILL:
433   case S_THREAD_LOCAL_VARIABLES:
434   case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
435   case S_THREAD_LOCAL_VARIABLE_POINTERS:
436   case S_NON_LAZY_SYMBOL_POINTERS:
437   case S_SYMBOL_STUBS:
438     flags |= input->getFlags();
439     break;
440   }
441 }
442 
443 ConcatOutputSection *
444 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) {
445   NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()});
446   ConcatOutputSection *&osec = concatOutputSections[names];
447   if (!osec) {
448     if (isec->getSegName() == segment_names::text &&
449         isec->getName() != section_names::gccExceptTab &&
450         isec->getName() != section_names::ehFrame)
451       osec = make<TextOutputSection>(names.second);
452     else
453       osec = make<ConcatOutputSection>(names.second);
454   }
455   return osec;
456 }
457 
458 NamePair macho::maybeRenameSection(NamePair key) {
459   auto newNames = config->sectionRenameMap.find(key);
460   if (newNames != config->sectionRenameMap.end())
461     return newNames->second;
462   return key;
463 }
464