1 //===- LinkerScript.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the parser/evaluator of the linker script. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LinkerScript.h" 14 #include "Config.h" 15 #include "InputFiles.h" 16 #include "InputSection.h" 17 #include "OutputSections.h" 18 #include "SymbolTable.h" 19 #include "Symbols.h" 20 #include "SyntheticSections.h" 21 #include "Target.h" 22 #include "Writer.h" 23 #include "lld/Common/CommonLinkerContext.h" 24 #include "lld/Common/Strings.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Endian.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/TimeProfiler.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <limits> 37 #include <string> 38 #include <vector> 39 40 using namespace llvm; 41 using namespace llvm::ELF; 42 using namespace llvm::object; 43 using namespace llvm::support::endian; 44 using namespace lld; 45 using namespace lld::elf; 46 47 static bool isSectionPrefix(StringRef prefix, StringRef name) { 48 return name.consume_front(prefix) && (name.empty() || name[0] == '.'); 49 } 50 51 StringRef LinkerScript::getOutputSectionName(const InputSectionBase *s) const { 52 // This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we 53 // want to emit .rela.text.foo as .rela.text.bar for consistency (this is not 54 // technically required, but not doing it is odd). This code guarantees that. 55 if (auto *isec = dyn_cast<InputSection>(s)) { 56 if (InputSectionBase *rel = isec->getRelocatedSection()) { 57 OutputSection *out = rel->getOutputSection(); 58 if (!out) { 59 assert(ctx.arg.relocatable && (rel->flags & SHF_LINK_ORDER)); 60 return s->name; 61 } 62 StringSaver &ss = ctx.saver; 63 if (s->type == SHT_CREL) 64 return ss.save(".crel" + out->name); 65 if (s->type == SHT_RELA) 66 return ss.save(".rela" + out->name); 67 return ss.save(".rel" + out->name); 68 } 69 } 70 71 if (ctx.arg.relocatable) 72 return s->name; 73 74 // A BssSection created for a common symbol is identified as "COMMON" in 75 // linker scripts. It should go to .bss section. 76 if (s->name == "COMMON") 77 return ".bss"; 78 79 if (hasSectionsCommand) 80 return s->name; 81 82 // When no SECTIONS is specified, emulate GNU ld's internal linker scripts 83 // by grouping sections with certain prefixes. 84 85 // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.", 86 // ".text.unlikely.", ".text.startup." or ".text.exit." before others. 87 // We provide an option -z keep-text-section-prefix to group such sections 88 // into separate output sections. This is more flexible. See also 89 // sortISDBySectionOrder(). 90 // ".text.unknown" means the hotness of the section is unknown. When 91 // SampleFDO is used, if a function doesn't have sample, it could be very 92 // cold or it could be a new function never being sampled. Those functions 93 // will be kept in the ".text.unknown" section. 94 // ".text.split." holds symbols which are split out from functions in other 95 // input sections. For example, with -fsplit-machine-functions, placing the 96 // cold parts in .text.split instead of .text.unlikely mitigates against poor 97 // profile inaccuracy. Techniques such as hugepage remapping can make 98 // conservative decisions at the section granularity. 99 if (isSectionPrefix(".text", s->name)) { 100 if (ctx.arg.zKeepTextSectionPrefix) 101 for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely", 102 ".text.startup", ".text.exit", ".text.split"}) 103 if (isSectionPrefix(v.substr(5), s->name.substr(5))) 104 return v; 105 return ".text"; 106 } 107 108 for (StringRef v : {".data.rel.ro", ".data", ".rodata", 109 ".bss.rel.ro", ".bss", ".ldata", 110 ".lrodata", ".lbss", ".gcc_except_table", 111 ".init_array", ".fini_array", ".tbss", 112 ".tdata", ".ARM.exidx", ".ARM.extab", 113 ".ctors", ".dtors", ".sbss", 114 ".sdata", ".srodata"}) 115 if (isSectionPrefix(v, s->name)) 116 return v; 117 118 return s->name; 119 } 120 121 uint64_t ExprValue::getValue() const { 122 if (sec) 123 return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val), 124 alignment); 125 return alignToPowerOf2(val, alignment); 126 } 127 128 uint64_t ExprValue::getSecAddr() const { 129 return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0; 130 } 131 132 uint64_t ExprValue::getSectionOffset() const { 133 return getValue() - getSecAddr(); 134 } 135 136 // std::unique_ptr<OutputSection> may be incomplete type. 137 LinkerScript::LinkerScript(Ctx &ctx) : ctx(ctx) {} 138 LinkerScript::~LinkerScript() {} 139 140 OutputDesc *LinkerScript::createOutputSection(StringRef name, 141 StringRef location) { 142 OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)]; 143 OutputDesc *sec; 144 if (secRef && secRef->osec.location.empty()) { 145 // There was a forward reference. 146 sec = secRef; 147 } else { 148 descPool.emplace_back( 149 std::make_unique<OutputDesc>(ctx, name, SHT_PROGBITS, 0)); 150 sec = descPool.back().get(); 151 if (!secRef) 152 secRef = sec; 153 } 154 sec->osec.location = std::string(location); 155 return sec; 156 } 157 158 OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) { 159 auto &secRef = nameToOutputSection[CachedHashStringRef(name)]; 160 if (!secRef) { 161 secRef = descPool 162 .emplace_back( 163 std::make_unique<OutputDesc>(ctx, name, SHT_PROGBITS, 0)) 164 .get(); 165 } 166 return secRef; 167 } 168 169 // Expands the memory region by the specified size. 170 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, 171 StringRef secName) { 172 memRegion->curPos += size; 173 } 174 175 void LinkerScript::expandMemoryRegions(uint64_t size) { 176 if (state->memRegion) 177 expandMemoryRegion(state->memRegion, size, state->outSec->name); 178 // Only expand the LMARegion if it is different from memRegion. 179 if (state->lmaRegion && state->memRegion != state->lmaRegion) 180 expandMemoryRegion(state->lmaRegion, size, state->outSec->name); 181 } 182 183 void LinkerScript::expandOutputSection(uint64_t size) { 184 state->outSec->size += size; 185 expandMemoryRegions(size); 186 } 187 188 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { 189 uint64_t val = e().getValue(); 190 // If val is smaller and we are in an output section, record the error and 191 // report it if this is the last assignAddresses iteration. dot may be smaller 192 // if there is another assignAddresses iteration. 193 if (val < dot && inSec) { 194 recordError(loc + ": unable to move location counter (0x" + 195 Twine::utohexstr(dot) + ") backward to 0x" + 196 Twine::utohexstr(val) + " for section '" + state->outSec->name + 197 "'"); 198 } 199 200 // Update to location counter means update to section size. 201 if (inSec) 202 expandOutputSection(val - dot); 203 204 dot = val; 205 } 206 207 // Used for handling linker symbol assignments, for both finalizing 208 // their values and doing early declarations. Returns true if symbol 209 // should be defined from linker script. 210 static bool shouldDefineSym(Ctx &ctx, SymbolAssignment *cmd) { 211 if (cmd->name == ".") 212 return false; 213 214 return !cmd->provide || ctx.script->shouldAddProvideSym(cmd->name); 215 } 216 217 // Called by processSymbolAssignments() to assign definitions to 218 // linker-script-defined symbols. 219 void LinkerScript::addSymbol(SymbolAssignment *cmd) { 220 if (!shouldDefineSym(ctx, cmd)) 221 return; 222 223 // Define a symbol. 224 ExprValue value = cmd->expression(); 225 SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; 226 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 227 228 // When this function is called, section addresses have not been 229 // fixed yet. So, we may or may not know the value of the RHS 230 // expression. 231 // 232 // For example, if an expression is `x = 42`, we know x is always 42. 233 // However, if an expression is `x = .`, there's no way to know its 234 // value at the moment. 235 // 236 // We want to set symbol values early if we can. This allows us to 237 // use symbols as variables in linker scripts. Doing so allows us to 238 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. 239 uint64_t symValue = value.sec ? 0 : value.getValue(); 240 241 Defined newSym(ctx, createInternalFile(ctx, cmd->location), cmd->name, 242 STB_GLOBAL, visibility, value.type, symValue, 0, sec); 243 244 Symbol *sym = ctx.symtab->insert(cmd->name); 245 sym->mergeProperties(newSym); 246 newSym.overwrite(*sym); 247 sym->isUsedInRegularObj = true; 248 cmd->sym = cast<Defined>(sym); 249 } 250 251 // This function is called from LinkerScript::declareSymbols. 252 // It creates a placeholder symbol if needed. 253 void LinkerScript::declareSymbol(SymbolAssignment *cmd) { 254 if (!shouldDefineSym(ctx, cmd)) 255 return; 256 257 uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; 258 Defined newSym(ctx, ctx.internalFile, cmd->name, STB_GLOBAL, visibility, 259 STT_NOTYPE, 0, 0, nullptr); 260 261 // If the symbol is already defined, its order is 0 (with absence indicating 262 // 0); otherwise it's assigned the order of the SymbolAssignment. 263 Symbol *sym = ctx.symtab->insert(cmd->name); 264 if (!sym->isDefined()) 265 ctx.scriptSymOrder.insert({sym, cmd->symOrder}); 266 267 // We can't calculate final value right now. 268 sym->mergeProperties(newSym); 269 newSym.overwrite(*sym); 270 271 cmd->sym = cast<Defined>(sym); 272 cmd->provide = false; 273 sym->isUsedInRegularObj = true; 274 sym->scriptDefined = true; 275 } 276 277 using SymbolAssignmentMap = 278 DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>; 279 280 // Collect section/value pairs of linker-script-defined symbols. This is used to 281 // check whether symbol values converge. 282 static SymbolAssignmentMap 283 getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) { 284 SymbolAssignmentMap ret; 285 for (SectionCommand *cmd : sectionCommands) { 286 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 287 if (assign->sym) // sym is nullptr for dot. 288 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 289 assign->sym->value)); 290 continue; 291 } 292 if (isa<SectionClassDesc>(cmd)) 293 continue; 294 for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands) 295 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 296 if (assign->sym) 297 ret.try_emplace(assign->sym, std::make_pair(assign->sym->section, 298 assign->sym->value)); 299 } 300 return ret; 301 } 302 303 // Returns the lexicographical smallest (for determinism) Defined whose 304 // section/value has changed. 305 static const Defined * 306 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { 307 const Defined *changed = nullptr; 308 for (auto &it : oldValues) { 309 const Defined *sym = it.first; 310 if (std::make_pair(sym->section, sym->value) != it.second && 311 (!changed || sym->getName() < changed->getName())) 312 changed = sym; 313 } 314 return changed; 315 } 316 317 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the 318 // specified output section to the designated place. 319 void LinkerScript::processInsertCommands() { 320 SmallVector<OutputDesc *, 0> moves; 321 for (const InsertCommand &cmd : insertCommands) { 322 if (ctx.arg.enableNonContiguousRegions) 323 ErrAlways(ctx) 324 << "INSERT cannot be used with --enable-non-contiguous-regions"; 325 326 for (StringRef name : cmd.names) { 327 // If base is empty, it may have been discarded by 328 // adjustOutputSections(). We do not handle such output sections. 329 auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) { 330 return isa<OutputDesc>(subCmd) && 331 cast<OutputDesc>(subCmd)->osec.name == name; 332 }); 333 if (from == sectionCommands.end()) 334 continue; 335 moves.push_back(cast<OutputDesc>(*from)); 336 sectionCommands.erase(from); 337 } 338 339 auto insertPos = 340 llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) { 341 auto *to = dyn_cast<OutputDesc>(subCmd); 342 return to != nullptr && to->osec.name == cmd.where; 343 }); 344 if (insertPos == sectionCommands.end()) { 345 ErrAlways(ctx) << "unable to insert " << cmd.names[0] 346 << (cmd.isAfter ? " after " : " before ") << cmd.where; 347 } else { 348 if (cmd.isAfter) 349 ++insertPos; 350 sectionCommands.insert(insertPos, moves.begin(), moves.end()); 351 } 352 moves.clear(); 353 } 354 } 355 356 // Symbols defined in script should not be inlined by LTO. At the same time 357 // we don't know their final values until late stages of link. Here we scan 358 // over symbol assignment commands and create placeholder symbols if needed. 359 void LinkerScript::declareSymbols() { 360 assert(!state); 361 for (SectionCommand *cmd : sectionCommands) { 362 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 363 declareSymbol(assign); 364 continue; 365 } 366 if (isa<SectionClassDesc>(cmd)) 367 continue; 368 369 // If the output section directive has constraints, 370 // we can't say for sure if it is going to be included or not. 371 // Skip such sections for now. Improve the checks if we ever 372 // need symbols from that sections to be declared early. 373 const OutputSection &sec = cast<OutputDesc>(cmd)->osec; 374 if (sec.constraint != ConstraintKind::NoConstraint) 375 continue; 376 for (SectionCommand *cmd : sec.commands) 377 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 378 declareSymbol(assign); 379 } 380 } 381 382 // This function is called from assignAddresses, while we are 383 // fixing the output section addresses. This function is supposed 384 // to set the final value for a given symbol assignment. 385 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { 386 if (cmd->name == ".") { 387 setDot(cmd->expression, cmd->location, inSec); 388 return; 389 } 390 391 if (!cmd->sym) 392 return; 393 394 ExprValue v = cmd->expression(); 395 if (v.isAbsolute()) { 396 cmd->sym->section = nullptr; 397 cmd->sym->value = v.getValue(); 398 } else { 399 cmd->sym->section = v.sec; 400 cmd->sym->value = v.getSectionOffset(); 401 } 402 cmd->sym->type = v.type; 403 } 404 405 bool InputSectionDescription::matchesFile(const InputFile &file) const { 406 if (filePat.isTrivialMatchAll()) 407 return true; 408 409 if (!matchesFileCache || matchesFileCache->first != &file) { 410 if (matchType == MatchType::WholeArchive) { 411 matchesFileCache.emplace(&file, filePat.match(file.archiveName)); 412 } else { 413 if (matchType == MatchType::ArchivesExcluded && !file.archiveName.empty()) 414 matchesFileCache.emplace(&file, false); 415 else 416 matchesFileCache.emplace(&file, filePat.match(file.getNameForScript())); 417 } 418 } 419 420 return matchesFileCache->second; 421 } 422 423 bool SectionPattern::excludesFile(const InputFile &file) const { 424 if (excludedFilePat.empty()) 425 return false; 426 427 if (!excludesFileCache || excludesFileCache->first != &file) 428 excludesFileCache.emplace(&file, 429 excludedFilePat.match(file.getNameForScript())); 430 431 return excludesFileCache->second; 432 } 433 434 bool LinkerScript::shouldKeep(InputSectionBase *s) { 435 for (InputSectionDescription *id : keptSections) 436 if (id->matchesFile(*s->file)) 437 for (SectionPattern &p : id->sectionPatterns) 438 if (p.sectionPat.match(s->name) && 439 (s->flags & id->withFlags) == id->withFlags && 440 (s->flags & id->withoutFlags) == 0) 441 return true; 442 return false; 443 } 444 445 // A helper function for the SORT() command. 446 static bool matchConstraints(ArrayRef<InputSectionBase *> sections, 447 ConstraintKind kind) { 448 if (kind == ConstraintKind::NoConstraint) 449 return true; 450 451 bool isRW = llvm::any_of( 452 sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); 453 454 return (isRW && kind == ConstraintKind::ReadWrite) || 455 (!isRW && kind == ConstraintKind::ReadOnly); 456 } 457 458 static void sortSections(MutableArrayRef<InputSectionBase *> vec, 459 SortSectionPolicy k) { 460 auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { 461 // ">" is not a mistake. Sections with larger alignments are placed 462 // before sections with smaller alignments in order to reduce the 463 // amount of padding necessary. This is compatible with GNU. 464 return a->addralign > b->addralign; 465 }; 466 auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { 467 return a->name < b->name; 468 }; 469 auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { 470 return getPriority(a->name) < getPriority(b->name); 471 }; 472 473 switch (k) { 474 case SortSectionPolicy::Default: 475 case SortSectionPolicy::None: 476 return; 477 case SortSectionPolicy::Alignment: 478 return llvm::stable_sort(vec, alignmentComparator); 479 case SortSectionPolicy::Name: 480 return llvm::stable_sort(vec, nameComparator); 481 case SortSectionPolicy::Priority: 482 return llvm::stable_sort(vec, priorityComparator); 483 case SortSectionPolicy::Reverse: 484 return std::reverse(vec.begin(), vec.end()); 485 } 486 } 487 488 // Sort sections as instructed by SORT-family commands and --sort-section 489 // option. Because SORT-family commands can be nested at most two depth 490 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command 491 // line option is respected even if a SORT command is given, the exact 492 // behavior we have here is a bit complicated. Here are the rules. 493 // 494 // 1. If two SORT commands are given, --sort-section is ignored. 495 // 2. If one SORT command is given, and if it is not SORT_NONE, 496 // --sort-section is handled as an inner SORT command. 497 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. 498 // 4. If no SORT command is given, sort according to --sort-section. 499 static void sortInputSections(Ctx &ctx, MutableArrayRef<InputSectionBase *> vec, 500 SortSectionPolicy outer, 501 SortSectionPolicy inner) { 502 if (outer == SortSectionPolicy::None) 503 return; 504 505 if (inner == SortSectionPolicy::Default) 506 sortSections(vec, ctx.arg.sortSection); 507 else 508 sortSections(vec, inner); 509 sortSections(vec, outer); 510 } 511 512 // Compute and remember which sections the InputSectionDescription matches. 513 SmallVector<InputSectionBase *, 0> 514 LinkerScript::computeInputSections(const InputSectionDescription *cmd, 515 ArrayRef<InputSectionBase *> sections, 516 const SectionBase &outCmd) { 517 SmallVector<InputSectionBase *, 0> ret; 518 DenseSet<InputSectionBase *> spills; 519 520 // Returns whether an input section's flags match the input section 521 // description's specifiers. 522 auto flagsMatch = [cmd](InputSectionBase *sec) { 523 return (sec->flags & cmd->withFlags) == cmd->withFlags && 524 (sec->flags & cmd->withoutFlags) == 0; 525 }; 526 527 // Collects all sections that satisfy constraints of Cmd. 528 if (cmd->classRef.empty()) { 529 DenseSet<size_t> seen; 530 size_t sizeAfterPrevSort = 0; 531 SmallVector<size_t, 0> indexes; 532 auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) { 533 llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin)); 534 for (size_t i = begin; i != end; ++i) 535 ret[i] = sections[indexes[i]]; 536 sortInputSections( 537 ctx, 538 MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin), 539 ctx.arg.sortSection, SortSectionPolicy::None); 540 }; 541 542 for (const SectionPattern &pat : cmd->sectionPatterns) { 543 size_t sizeBeforeCurrPat = ret.size(); 544 545 for (size_t i = 0, e = sections.size(); i != e; ++i) { 546 // Skip if the section is dead or has been matched by a previous pattern 547 // in this input section description. 548 InputSectionBase *sec = sections[i]; 549 if (!sec->isLive() || seen.contains(i)) 550 continue; 551 552 // For --emit-relocs we have to ignore entries like 553 // .rela.dyn : { *(.rela.data) } 554 // which are common because they are in the default bfd script. 555 // We do not ignore SHT_REL[A] linker-synthesized sections here because 556 // want to support scripts that do custom layout for them. 557 if (isa<InputSection>(sec) && 558 cast<InputSection>(sec)->getRelocatedSection()) 559 continue; 560 561 // Check the name early to improve performance in the common case. 562 if (!pat.sectionPat.match(sec->name)) 563 continue; 564 565 if (!cmd->matchesFile(*sec->file) || pat.excludesFile(*sec->file) || 566 sec->parent == &outCmd || !flagsMatch(sec)) 567 continue; 568 569 if (sec->parent) { 570 // Skip if not allowing multiple matches. 571 if (!ctx.arg.enableNonContiguousRegions) 572 continue; 573 574 // Disallow spilling into /DISCARD/; special handling would be needed 575 // for this in address assignment, and the semantics are nebulous. 576 if (outCmd.name == "/DISCARD/") 577 continue; 578 579 // Class definitions cannot contain spills, nor can a class definition 580 // generate a spill in a subsequent match. Those behaviors belong to 581 // class references and additional matches. 582 if (!isa<SectionClass>(outCmd) && !isa<SectionClass>(sec->parent)) 583 spills.insert(sec); 584 } 585 586 ret.push_back(sec); 587 indexes.push_back(i); 588 seen.insert(i); 589 } 590 591 if (pat.sortOuter == SortSectionPolicy::Default) 592 continue; 593 594 // Matched sections are ordered by radix sort with the keys being (SORT*, 595 // --sort-section, input order), where SORT* (if present) is most 596 // significant. 597 // 598 // Matched sections between the previous SORT* and this SORT* are sorted 599 // by (--sort-alignment, input order). 600 sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat); 601 // Matched sections by this SORT* pattern are sorted using all 3 keys. 602 // ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we 603 // just sort by sortOuter and sortInner. 604 sortInputSections( 605 ctx, 606 MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat), 607 pat.sortOuter, pat.sortInner); 608 sizeAfterPrevSort = ret.size(); 609 } 610 611 // Matched sections after the last SORT* are sorted by (--sort-alignment, 612 // input order). 613 sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size()); 614 } else { 615 SectionClassDesc *scd = 616 sectionClasses.lookup(CachedHashStringRef(cmd->classRef)); 617 if (!scd) { 618 Err(ctx) << "undefined section class '" << cmd->classRef << "'"; 619 return ret; 620 } 621 if (!scd->sc.assigned) { 622 Err(ctx) << "section class '" << cmd->classRef << "' referenced by '" 623 << outCmd.name << "' before class definition"; 624 return ret; 625 } 626 627 for (InputSectionDescription *isd : scd->sc.commands) { 628 for (InputSectionBase *sec : isd->sectionBases) { 629 if (sec->parent == &outCmd || !flagsMatch(sec)) 630 continue; 631 bool isSpill = sec->parent && isa<OutputSection>(sec->parent); 632 if (!sec->parent || (isSpill && outCmd.name == "/DISCARD/")) { 633 Err(ctx) << "section '" << sec->name 634 << "' cannot spill from/to /DISCARD/"; 635 continue; 636 } 637 if (isSpill) 638 spills.insert(sec); 639 ret.push_back(sec); 640 } 641 } 642 } 643 644 // The flag --enable-non-contiguous-regions or the section CLASS syntax may 645 // cause sections to match an InputSectionDescription in more than one 646 // OutputSection. Matches after the first were collected in the spills set, so 647 // replace these with potential spill sections. 648 if (!spills.empty()) { 649 for (InputSectionBase *&sec : ret) { 650 if (!spills.contains(sec)) 651 continue; 652 653 // Append the spill input section to the list for the input section, 654 // creating it if necessary. 655 PotentialSpillSection *pss = make<PotentialSpillSection>( 656 *sec, const_cast<InputSectionDescription &>(*cmd)); 657 auto [it, inserted] = 658 potentialSpillLists.try_emplace(sec, PotentialSpillList{pss, pss}); 659 if (!inserted) { 660 PotentialSpillSection *&tail = it->second.tail; 661 tail = tail->next = pss; 662 } 663 sec = pss; 664 } 665 } 666 667 return ret; 668 } 669 670 void LinkerScript::discard(InputSectionBase &s) { 671 if (&s == ctx.in.shStrTab.get()) 672 ErrAlways(ctx) << "discarding " << s.name << " section is not allowed"; 673 674 s.markDead(); 675 s.parent = nullptr; 676 for (InputSection *sec : s.dependentSections) 677 discard(*sec); 678 } 679 680 void LinkerScript::discardSynthetic(OutputSection &outCmd) { 681 for (Partition &part : ctx.partitions) { 682 if (!part.armExidx || !part.armExidx->isLive()) 683 continue; 684 SmallVector<InputSectionBase *, 0> secs( 685 part.armExidx->exidxSections.begin(), 686 part.armExidx->exidxSections.end()); 687 for (SectionCommand *cmd : outCmd.commands) 688 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) 689 for (InputSectionBase *s : computeInputSections(isd, secs, outCmd)) 690 discard(*s); 691 } 692 } 693 694 SmallVector<InputSectionBase *, 0> 695 LinkerScript::createInputSectionList(OutputSection &outCmd) { 696 SmallVector<InputSectionBase *, 0> ret; 697 698 for (SectionCommand *cmd : outCmd.commands) { 699 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) { 700 isd->sectionBases = computeInputSections(isd, ctx.inputSections, outCmd); 701 for (InputSectionBase *s : isd->sectionBases) 702 s->parent = &outCmd; 703 ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end()); 704 } 705 } 706 return ret; 707 } 708 709 // Create output sections described by SECTIONS commands. 710 void LinkerScript::processSectionCommands() { 711 auto process = [this](OutputSection *osec) { 712 SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec); 713 714 // The output section name `/DISCARD/' is special. 715 // Any input section assigned to it is discarded. 716 if (osec->name == "/DISCARD/") { 717 for (InputSectionBase *s : v) 718 discard(*s); 719 discardSynthetic(*osec); 720 osec->commands.clear(); 721 return false; 722 } 723 724 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive 725 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input 726 // sections satisfy a given constraint. If not, a directive is handled 727 // as if it wasn't present from the beginning. 728 // 729 // Because we'll iterate over SectionCommands many more times, the easy 730 // way to "make it as if it wasn't present" is to make it empty. 731 if (!matchConstraints(v, osec->constraint)) { 732 for (InputSectionBase *s : v) 733 s->parent = nullptr; 734 osec->commands.clear(); 735 return false; 736 } 737 738 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign 739 // is given, input sections are aligned to that value, whether the 740 // given value is larger or smaller than the original section alignment. 741 if (osec->subalignExpr) { 742 uint32_t subalign = osec->subalignExpr().getValue(); 743 for (InputSectionBase *s : v) 744 s->addralign = subalign; 745 } 746 747 // Set the partition field the same way OutputSection::recordSection() 748 // does. Partitions cannot be used with the SECTIONS command, so this is 749 // always 1. 750 osec->partition = 1; 751 return true; 752 }; 753 754 // Process OVERWRITE_SECTIONS first so that it can overwrite the main script 755 // or orphans. 756 if (ctx.arg.enableNonContiguousRegions && !overwriteSections.empty()) 757 ErrAlways(ctx) << "OVERWRITE_SECTIONS cannot be used with " 758 "--enable-non-contiguous-regions"; 759 DenseMap<CachedHashStringRef, OutputDesc *> map; 760 size_t i = 0; 761 for (OutputDesc *osd : overwriteSections) { 762 OutputSection *osec = &osd->osec; 763 if (process(osec) && 764 !map.try_emplace(CachedHashStringRef(osec->name), osd).second) 765 Warn(ctx) << "OVERWRITE_SECTIONS specifies duplicate " << osec->name; 766 } 767 for (SectionCommand *&base : sectionCommands) { 768 if (auto *osd = dyn_cast<OutputDesc>(base)) { 769 OutputSection *osec = &osd->osec; 770 if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) { 771 Log(ctx) << overwrite->osec.location << " overwrites " << osec->name; 772 overwrite->osec.sectionIndex = i++; 773 base = overwrite; 774 } else if (process(osec)) { 775 osec->sectionIndex = i++; 776 } 777 } else if (auto *sc = dyn_cast<SectionClassDesc>(base)) { 778 for (InputSectionDescription *isd : sc->sc.commands) { 779 isd->sectionBases = 780 computeInputSections(isd, ctx.inputSections, sc->sc); 781 for (InputSectionBase *s : isd->sectionBases) { 782 // A section class containing a section with different parent isn't 783 // necessarily an error due to --enable-non-contiguous-regions. Such 784 // sections all become potential spills when the class is referenced. 785 if (!s->parent) 786 s->parent = &sc->sc; 787 } 788 } 789 sc->sc.assigned = true; 790 } 791 } 792 793 // Check that input sections cannot spill into or out of INSERT, 794 // since the semantics are nebulous. This is also true for OVERWRITE_SECTIONS, 795 // but no check is needed, since the order of processing ensures they cannot 796 // legally reference classes. 797 if (!potentialSpillLists.empty()) { 798 DenseSet<StringRef> insertNames; 799 for (InsertCommand &ic : insertCommands) 800 insertNames.insert(ic.names.begin(), ic.names.end()); 801 for (SectionCommand *&base : sectionCommands) { 802 auto *osd = dyn_cast<OutputDesc>(base); 803 if (!osd) 804 continue; 805 OutputSection *os = &osd->osec; 806 if (!insertNames.contains(os->name)) 807 continue; 808 for (SectionCommand *sc : os->commands) { 809 auto *isd = dyn_cast<InputSectionDescription>(sc); 810 if (!isd) 811 continue; 812 for (InputSectionBase *isec : isd->sectionBases) 813 if (isa<PotentialSpillSection>(isec) || 814 potentialSpillLists.contains(isec)) 815 Err(ctx) << "section '" << isec->name 816 << "' cannot spill from/to INSERT section '" << os->name 817 << "'"; 818 } 819 } 820 } 821 822 // If an OVERWRITE_SECTIONS specified output section is not in 823 // sectionCommands, append it to the end. The section will be inserted by 824 // orphan placement. 825 for (OutputDesc *osd : overwriteSections) 826 if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX) 827 sectionCommands.push_back(osd); 828 829 // Input sections cannot have a section class parent past this point; they 830 // must have been assigned to an output section. 831 for (const auto &[_, sc] : sectionClasses) { 832 for (InputSectionDescription *isd : sc->sc.commands) { 833 for (InputSectionBase *sec : isd->sectionBases) { 834 if (sec->parent && isa<SectionClass>(sec->parent)) { 835 Err(ctx) << "section class '" << sec->parent->name 836 << "' is unreferenced"; 837 goto nextClass; 838 } 839 } 840 } 841 nextClass:; 842 } 843 } 844 845 void LinkerScript::processSymbolAssignments() { 846 // Dot outside an output section still represents a relative address, whose 847 // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section 848 // that fills the void outside a section. It has an index of one, which is 849 // indistinguishable from any other regular section index. 850 aether = std::make_unique<OutputSection>(ctx, "", 0, SHF_ALLOC); 851 aether->sectionIndex = 1; 852 853 // `st` captures the local AddressState and makes it accessible deliberately. 854 // This is needed as there are some cases where we cannot just thread the 855 // current state through to a lambda function created by the script parser. 856 AddressState st(*this); 857 state = &st; 858 st.outSec = aether.get(); 859 860 for (SectionCommand *cmd : sectionCommands) { 861 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) 862 addSymbol(assign); 863 else if (auto *osd = dyn_cast<OutputDesc>(cmd)) 864 for (SectionCommand *subCmd : osd->osec.commands) 865 if (auto *assign = dyn_cast<SymbolAssignment>(subCmd)) 866 addSymbol(assign); 867 } 868 869 state = nullptr; 870 } 871 872 static OutputSection *findByName(ArrayRef<SectionCommand *> vec, 873 StringRef name) { 874 for (SectionCommand *cmd : vec) 875 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 876 if (osd->osec.name == name) 877 return &osd->osec; 878 return nullptr; 879 } 880 881 static OutputDesc *createSection(Ctx &ctx, InputSectionBase *isec, 882 StringRef outsecName) { 883 OutputDesc *osd = ctx.script->createOutputSection(outsecName, "<internal>"); 884 osd->osec.recordSection(isec); 885 return osd; 886 } 887 888 static OutputDesc *addInputSec(Ctx &ctx, 889 StringMap<TinyPtrVector<OutputSection *>> &map, 890 InputSectionBase *isec, StringRef outsecName) { 891 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r 892 // option is given. A section with SHT_GROUP defines a "section group", and 893 // its members have SHF_GROUP attribute. Usually these flags have already been 894 // stripped by InputFiles.cpp as section groups are processed and uniquified. 895 // However, for the -r option, we want to pass through all section groups 896 // as-is because adding/removing members or merging them with other groups 897 // change their semantics. 898 if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) 899 return createSection(ctx, isec, outsecName); 900 901 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have 902 // relocation sections .rela.foo and .rela.bar for example. Most tools do 903 // not allow multiple REL[A] sections for output section. Hence we 904 // should combine these relocation sections into single output. 905 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any 906 // other REL[A] sections created by linker itself. 907 if (!isa<SyntheticSection>(isec) && isStaticRelSecType(isec->type)) { 908 auto *sec = cast<InputSection>(isec); 909 OutputSection *out = sec->getRelocatedSection()->getOutputSection(); 910 911 if (auto *relSec = out->relocationSection) { 912 relSec->recordSection(sec); 913 return nullptr; 914 } 915 916 OutputDesc *osd = createSection(ctx, isec, outsecName); 917 out->relocationSection = &osd->osec; 918 return osd; 919 } 920 921 // The ELF spec just says 922 // ---------------------------------------------------------------- 923 // In the first phase, input sections that match in name, type and 924 // attribute flags should be concatenated into single sections. 925 // ---------------------------------------------------------------- 926 // 927 // However, it is clear that at least some flags have to be ignored for 928 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be 929 // ignored. We should not have two output .text sections just because one was 930 // in a group and another was not for example. 931 // 932 // It also seems that wording was a late addition and didn't get the 933 // necessary scrutiny. 934 // 935 // Merging sections with different flags is expected by some users. One 936 // reason is that if one file has 937 // 938 // int *const bar __attribute__((section(".foo"))) = (int *)0; 939 // 940 // gcc with -fPIC will produce a read only .foo section. But if another 941 // file has 942 // 943 // int zed; 944 // int *const bar __attribute__((section(".foo"))) = (int *)&zed; 945 // 946 // gcc with -fPIC will produce a read write section. 947 // 948 // Last but not least, when using linker script the merge rules are forced by 949 // the script. Unfortunately, linker scripts are name based. This means that 950 // expressions like *(.foo*) can refer to multiple input sections with 951 // different flags. We cannot put them in different output sections or we 952 // would produce wrong results for 953 // 954 // start = .; *(.foo.*) end = .; *(.bar) 955 // 956 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to 957 // another. The problem is that there is no way to layout those output 958 // sections such that the .foo sections are the only thing between the start 959 // and end symbols. 960 // 961 // Given the above issues, we instead merge sections by name and error on 962 // incompatible types and flags. 963 TinyPtrVector<OutputSection *> &v = map[outsecName]; 964 for (OutputSection *sec : v) { 965 if (sec->partition != isec->partition) 966 continue; 967 968 if (ctx.arg.relocatable && (isec->flags & SHF_LINK_ORDER)) { 969 // Merging two SHF_LINK_ORDER sections with different sh_link fields will 970 // change their semantics, so we only merge them in -r links if they will 971 // end up being linked to the same output section. The casts are fine 972 // because everything in the map was created by the orphan placement code. 973 auto *firstIsec = cast<InputSectionBase>( 974 cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]); 975 OutputSection *firstIsecOut = 976 (firstIsec->flags & SHF_LINK_ORDER) 977 ? firstIsec->getLinkOrderDep()->getOutputSection() 978 : nullptr; 979 if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection()) 980 continue; 981 } 982 983 sec->recordSection(isec); 984 return nullptr; 985 } 986 987 OutputDesc *osd = createSection(ctx, isec, outsecName); 988 v.push_back(&osd->osec); 989 return osd; 990 } 991 992 // Add sections that didn't match any sections command. 993 void LinkerScript::addOrphanSections() { 994 StringMap<TinyPtrVector<OutputSection *>> map; 995 SmallVector<OutputDesc *, 0> v; 996 997 auto add = [&](InputSectionBase *s) { 998 if (s->isLive() && !s->parent) { 999 orphanSections.push_back(s); 1000 1001 StringRef name = getOutputSectionName(s); 1002 if (ctx.arg.unique) { 1003 v.push_back(createSection(ctx, s, name)); 1004 } else if (OutputSection *sec = findByName(sectionCommands, name)) { 1005 sec->recordSection(s); 1006 } else { 1007 if (OutputDesc *osd = addInputSec(ctx, map, s, name)) 1008 v.push_back(osd); 1009 assert(isa<MergeInputSection>(s) || 1010 s->getOutputSection()->sectionIndex == UINT32_MAX); 1011 } 1012 } 1013 }; 1014 1015 // For further --emit-reloc handling code we need target output section 1016 // to be created before we create relocation output section, so we want 1017 // to create target sections first. We do not want priority handling 1018 // for synthetic sections because them are special. 1019 size_t n = 0; 1020 for (InputSectionBase *isec : ctx.inputSections) { 1021 // Process InputSection and MergeInputSection. 1022 if (LLVM_LIKELY(isa<InputSection>(isec))) 1023 ctx.inputSections[n++] = isec; 1024 1025 // In -r links, SHF_LINK_ORDER sections are added while adding their parent 1026 // sections because we need to know the parent's output section before we 1027 // can select an output section for the SHF_LINK_ORDER section. 1028 if (ctx.arg.relocatable && (isec->flags & SHF_LINK_ORDER)) 1029 continue; 1030 1031 if (auto *sec = dyn_cast<InputSection>(isec)) 1032 if (InputSectionBase *rel = sec->getRelocatedSection()) 1033 if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent)) 1034 add(relIS); 1035 add(isec); 1036 if (ctx.arg.relocatable) 1037 for (InputSectionBase *depSec : isec->dependentSections) 1038 if (depSec->flags & SHF_LINK_ORDER) 1039 add(depSec); 1040 } 1041 // Keep just InputSection. 1042 ctx.inputSections.resize(n); 1043 1044 // If no SECTIONS command was given, we should insert sections commands 1045 // before others, so that we can handle scripts which refers them, 1046 // for example: "foo = ABSOLUTE(ADDR(.text)));". 1047 // When SECTIONS command is present we just add all orphans to the end. 1048 if (hasSectionsCommand) 1049 sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); 1050 else 1051 sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); 1052 } 1053 1054 void LinkerScript::diagnoseOrphanHandling() const { 1055 llvm::TimeTraceScope timeScope("Diagnose orphan sections"); 1056 if (ctx.arg.orphanHandling == OrphanHandlingPolicy::Place || 1057 !hasSectionsCommand) 1058 return; 1059 for (const InputSectionBase *sec : orphanSections) { 1060 // .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present, 1061 // automatically. The section is not supposed to be specified by scripts. 1062 if (sec == ctx.in.relroPadding.get()) 1063 continue; 1064 // Input SHT_REL[A] retained by --emit-relocs are ignored by 1065 // computeInputSections(). Don't warn/error. 1066 if (isa<InputSection>(sec) && 1067 cast<InputSection>(sec)->getRelocatedSection()) 1068 continue; 1069 1070 StringRef name = getOutputSectionName(sec); 1071 if (ctx.arg.orphanHandling == OrphanHandlingPolicy::Error) 1072 ErrAlways(ctx) << sec << " is being placed in '" << name << "'"; 1073 else 1074 Warn(ctx) << sec << " is being placed in '" << name << "'"; 1075 } 1076 } 1077 1078 void LinkerScript::diagnoseMissingSGSectionAddress() const { 1079 if (!ctx.arg.cmseImplib || !ctx.in.armCmseSGSection->isNeeded()) 1080 return; 1081 1082 OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs"); 1083 if (sec && !sec->addrExpr && !ctx.arg.sectionStartMap.count(".gnu.sgstubs")) 1084 ErrAlways(ctx) << "no address assigned to the veneers output section " 1085 << sec->name; 1086 } 1087 1088 // This function searches for a memory region to place the given output 1089 // section in. If found, a pointer to the appropriate memory region is 1090 // returned in the first member of the pair. Otherwise, a nullptr is returned. 1091 // The second member of the pair is a hint that should be passed to the 1092 // subsequent call of this method. 1093 std::pair<MemoryRegion *, MemoryRegion *> 1094 LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) { 1095 // Non-allocatable sections are not part of the process image. 1096 if (!(sec->flags & SHF_ALLOC)) { 1097 bool hasInputOrByteCommand = 1098 sec->hasInputSections || 1099 llvm::any_of(sec->commands, [](SectionCommand *comm) { 1100 return ByteCommand::classof(comm); 1101 }); 1102 if (!sec->memoryRegionName.empty() && hasInputOrByteCommand) 1103 Warn(ctx) 1104 << "ignoring memory region assignment for non-allocatable section '" 1105 << sec->name << "'"; 1106 return {nullptr, nullptr}; 1107 } 1108 1109 // If a memory region name was specified in the output section command, 1110 // then try to find that region first. 1111 if (!sec->memoryRegionName.empty()) { 1112 if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) 1113 return {m, m}; 1114 ErrAlways(ctx) << "memory region '" << sec->memoryRegionName 1115 << "' not declared"; 1116 return {nullptr, nullptr}; 1117 } 1118 1119 // If at least one memory region is defined, all sections must 1120 // belong to some memory region. Otherwise, we don't need to do 1121 // anything for memory regions. 1122 if (memoryRegions.empty()) 1123 return {nullptr, nullptr}; 1124 1125 // An orphan section should continue the previous memory region. 1126 if (sec->sectionIndex == UINT32_MAX && hint) 1127 return {hint, hint}; 1128 1129 // See if a region can be found by matching section flags. 1130 for (auto &pair : memoryRegions) { 1131 MemoryRegion *m = pair.second; 1132 if (m->compatibleWith(sec->flags)) 1133 return {m, nullptr}; 1134 } 1135 1136 // Otherwise, no suitable region was found. 1137 ErrAlways(ctx) << "no memory region specified for section '" << sec->name 1138 << "'"; 1139 return {nullptr, nullptr}; 1140 } 1141 1142 static OutputSection *findFirstSection(Ctx &ctx, PhdrEntry *load) { 1143 for (OutputSection *sec : ctx.outputSections) 1144 if (sec->ptLoad == load) 1145 return sec; 1146 return nullptr; 1147 } 1148 1149 // Assign addresses to an output section and offsets to its input sections and 1150 // symbol assignments. Return true if the output section's address has changed. 1151 bool LinkerScript::assignOffsets(OutputSection *sec) { 1152 const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS; 1153 const bool sameMemRegion = state->memRegion == sec->memRegion; 1154 const bool prevLMARegionIsDefault = state->lmaRegion == nullptr; 1155 const uint64_t savedDot = dot; 1156 bool addressChanged = false; 1157 state->memRegion = sec->memRegion; 1158 state->lmaRegion = sec->lmaRegion; 1159 1160 if (!(sec->flags & SHF_ALLOC)) { 1161 // Non-SHF_ALLOC sections have zero addresses. 1162 dot = 0; 1163 } else if (isTbss) { 1164 // Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range 1165 // starts from the end address of the previous tbss section. 1166 if (state->tbssAddr == 0) 1167 state->tbssAddr = dot; 1168 else 1169 dot = state->tbssAddr; 1170 } else { 1171 if (state->memRegion) 1172 dot = state->memRegion->curPos; 1173 if (sec->addrExpr) 1174 setDot(sec->addrExpr, sec->location, false); 1175 1176 // If the address of the section has been moved forward by an explicit 1177 // expression so that it now starts past the current curPos of the enclosing 1178 // region, we need to expand the current region to account for the space 1179 // between the previous section, if any, and the start of this section. 1180 if (state->memRegion && state->memRegion->curPos < dot) 1181 expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos, 1182 sec->name); 1183 } 1184 1185 state->outSec = sec; 1186 if (!(sec->addrExpr && hasSectionsCommand)) { 1187 // ALIGN is respected. sec->alignment is the max of ALIGN and the maximum of 1188 // input section alignments. 1189 const uint64_t pos = dot; 1190 dot = alignToPowerOf2(dot, sec->addralign); 1191 expandMemoryRegions(dot - pos); 1192 } 1193 addressChanged = sec->addr != dot; 1194 sec->addr = dot; 1195 1196 // state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() 1197 // or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA 1198 // region is the default, and the two sections are in the same memory region, 1199 // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates 1200 // heuristics described in 1201 // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html 1202 if (sec->lmaExpr) { 1203 state->lmaOffset = sec->lmaExpr().getValue() - dot; 1204 } else if (MemoryRegion *mr = sec->lmaRegion) { 1205 uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign); 1206 if (mr->curPos < lmaStart) 1207 expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name); 1208 state->lmaOffset = lmaStart - dot; 1209 } else if (!sameMemRegion || !prevLMARegionIsDefault) { 1210 state->lmaOffset = 0; 1211 } 1212 1213 // Propagate state->lmaOffset to the first "non-header" section. 1214 if (PhdrEntry *l = sec->ptLoad) 1215 if (sec == findFirstSection(ctx, l)) 1216 l->lmaOffset = state->lmaOffset; 1217 1218 // We can call this method multiple times during the creation of 1219 // thunks and want to start over calculation each time. 1220 sec->size = 0; 1221 1222 // We visited SectionsCommands from processSectionCommands to 1223 // layout sections. Now, we visit SectionsCommands again to fix 1224 // section offsets. 1225 for (SectionCommand *cmd : sec->commands) { 1226 // This handles the assignments to symbol or to the dot. 1227 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1228 assign->addr = dot; 1229 assignSymbol(assign, true); 1230 assign->size = dot - assign->addr; 1231 continue; 1232 } 1233 1234 // Handle BYTE(), SHORT(), LONG(), or QUAD(). 1235 if (auto *data = dyn_cast<ByteCommand>(cmd)) { 1236 data->offset = dot - sec->addr; 1237 dot += data->size; 1238 expandOutputSection(data->size); 1239 continue; 1240 } 1241 1242 // Handle a single input section description command. 1243 // It calculates and assigns the offsets for each section and also 1244 // updates the output section size. 1245 1246 auto §ions = cast<InputSectionDescription>(cmd)->sections; 1247 for (InputSection *isec : sections) { 1248 assert(isec->getParent() == sec); 1249 if (isa<PotentialSpillSection>(isec)) 1250 continue; 1251 const uint64_t pos = dot; 1252 dot = alignToPowerOf2(dot, isec->addralign); 1253 isec->outSecOff = dot - sec->addr; 1254 dot += isec->getSize(); 1255 1256 // Update output section size after adding each section. This is so that 1257 // SIZEOF works correctly in the case below: 1258 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } 1259 expandOutputSection(dot - pos); 1260 } 1261 } 1262 1263 // If .relro_padding is present, round up the end to a common-page-size 1264 // boundary to protect the last page. 1265 if (ctx.in.relroPadding && sec == ctx.in.relroPadding->getParent()) 1266 expandOutputSection(alignToPowerOf2(dot, ctx.arg.commonPageSize) - dot); 1267 1268 // Non-SHF_ALLOC sections do not affect the addresses of other OutputSections 1269 // as they are not part of the process image. 1270 if (!(sec->flags & SHF_ALLOC)) { 1271 dot = savedDot; 1272 } else if (isTbss) { 1273 // NOBITS TLS sections are similar. Additionally save the end address. 1274 state->tbssAddr = dot; 1275 dot = savedDot; 1276 } 1277 return addressChanged; 1278 } 1279 1280 static bool isDiscardable(const OutputSection &sec) { 1281 if (sec.name == "/DISCARD/") 1282 return true; 1283 1284 // We do not want to remove OutputSections with expressions that reference 1285 // symbols even if the OutputSection is empty. We want to ensure that the 1286 // expressions can be evaluated and report an error if they cannot. 1287 if (sec.expressionsUseSymbols) 1288 return false; 1289 1290 // OutputSections may be referenced by name in ADDR and LOADADDR expressions, 1291 // as an empty Section can has a valid VMA and LMA we keep the OutputSection 1292 // to maintain the integrity of the other Expression. 1293 if (sec.usedInExpression) 1294 return false; 1295 1296 for (SectionCommand *cmd : sec.commands) { 1297 if (auto assign = dyn_cast<SymbolAssignment>(cmd)) 1298 // Don't create empty output sections just for unreferenced PROVIDE 1299 // symbols. 1300 if (assign->name != "." && !assign->sym) 1301 continue; 1302 1303 if (!isa<InputSectionDescription>(*cmd)) 1304 return false; 1305 } 1306 return true; 1307 } 1308 1309 static void maybePropagatePhdrs(OutputSection &sec, 1310 SmallVector<StringRef, 0> &phdrs) { 1311 if (sec.phdrs.empty()) { 1312 // To match the bfd linker script behaviour, only propagate program 1313 // headers to sections that are allocated. 1314 if (sec.flags & SHF_ALLOC) 1315 sec.phdrs = phdrs; 1316 } else { 1317 phdrs = sec.phdrs; 1318 } 1319 } 1320 1321 void LinkerScript::adjustOutputSections() { 1322 // If the output section contains only symbol assignments, create a 1323 // corresponding output section. The issue is what to do with linker script 1324 // like ".foo : { symbol = 42; }". One option would be to convert it to 1325 // "symbol = 42;". That is, move the symbol out of the empty section 1326 // description. That seems to be what bfd does for this simple case. The 1327 // problem is that this is not completely general. bfd will give up and 1328 // create a dummy section too if there is a ". = . + 1" inside the section 1329 // for example. 1330 // Given that we want to create the section, we have to worry what impact 1331 // it will have on the link. For example, if we just create a section with 1332 // 0 for flags, it would change which PT_LOADs are created. 1333 // We could remember that particular section is dummy and ignore it in 1334 // other parts of the linker, but unfortunately there are quite a few places 1335 // that would need to change: 1336 // * The program header creation. 1337 // * The orphan section placement. 1338 // * The address assignment. 1339 // The other option is to pick flags that minimize the impact the section 1340 // will have on the rest of the linker. That is why we copy the flags from 1341 // the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the 1342 // impact low. We do not propagate SHF_EXECINSTR as in some cases this can 1343 // lead to executable writeable section. 1344 uint64_t flags = SHF_ALLOC; 1345 1346 SmallVector<StringRef, 0> defPhdrs; 1347 bool seenRelro = false; 1348 for (SectionCommand *&cmd : sectionCommands) { 1349 if (!isa<OutputDesc>(cmd)) 1350 continue; 1351 auto *sec = &cast<OutputDesc>(cmd)->osec; 1352 1353 // Handle align (e.g. ".foo : ALIGN(16) { ... }"). 1354 if (sec->alignExpr) 1355 sec->addralign = 1356 std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue()); 1357 1358 bool isEmpty = (getFirstInputSection(sec) == nullptr); 1359 bool discardable = isEmpty && isDiscardable(*sec); 1360 // If sec has at least one input section and not discarded, remember its 1361 // flags to be inherited by subsequent output sections. (sec may contain 1362 // just one empty synthetic section.) 1363 if (sec->hasInputSections && !discardable) 1364 flags = sec->flags; 1365 1366 // We do not want to keep any special flags for output section 1367 // in case it is empty. 1368 if (isEmpty) { 1369 sec->flags = 1370 flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE); 1371 sec->sortRank = getSectionRank(ctx, *sec); 1372 } 1373 1374 // The code below may remove empty output sections. We should save the 1375 // specified program headers (if exist) and propagate them to subsequent 1376 // sections which do not specify program headers. 1377 // An example of such a linker script is: 1378 // SECTIONS { .empty : { *(.empty) } :rw 1379 // .foo : { *(.foo) } } 1380 // Note: at this point the order of output sections has not been finalized, 1381 // because orphans have not been inserted into their expected positions. We 1382 // will handle them in adjustSectionsAfterSorting(). 1383 if (sec->sectionIndex != UINT32_MAX) 1384 maybePropagatePhdrs(*sec, defPhdrs); 1385 1386 // Discard .relro_padding if we have not seen one RELRO section. Note: when 1387 // .tbss is the only RELRO section, there is no associated PT_LOAD segment 1388 // (needsPtLoad), so we don't append .relro_padding in the case. 1389 if (ctx.in.relroPadding && ctx.in.relroPadding->getParent() == sec && 1390 !seenRelro) 1391 discardable = true; 1392 if (discardable) { 1393 sec->markDead(); 1394 cmd = nullptr; 1395 } else { 1396 seenRelro |= 1397 sec->relro && !(sec->type == SHT_NOBITS && (sec->flags & SHF_TLS)); 1398 } 1399 } 1400 1401 // It is common practice to use very generic linker scripts. So for any 1402 // given run some of the output sections in the script will be empty. 1403 // We could create corresponding empty output sections, but that would 1404 // clutter the output. 1405 // We instead remove trivially empty sections. The bfd linker seems even 1406 // more aggressive at removing them. 1407 llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; }); 1408 } 1409 1410 void LinkerScript::adjustSectionsAfterSorting() { 1411 // Try and find an appropriate memory region to assign offsets in. 1412 MemoryRegion *hint = nullptr; 1413 for (SectionCommand *cmd : sectionCommands) { 1414 if (auto *osd = dyn_cast<OutputDesc>(cmd)) { 1415 OutputSection *sec = &osd->osec; 1416 if (!sec->lmaRegionName.empty()) { 1417 if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) 1418 sec->lmaRegion = m; 1419 else 1420 ErrAlways(ctx) << "memory region '" << sec->lmaRegionName 1421 << "' not declared"; 1422 } 1423 std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint); 1424 } 1425 } 1426 1427 // If output section command doesn't specify any segments, 1428 // and we haven't previously assigned any section to segment, 1429 // then we simply assign section to the very first load segment. 1430 // Below is an example of such linker script: 1431 // PHDRS { seg PT_LOAD; } 1432 // SECTIONS { .aaa : { *(.aaa) } } 1433 SmallVector<StringRef, 0> defPhdrs; 1434 auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { 1435 return cmd.type == PT_LOAD; 1436 }); 1437 if (firstPtLoad != phdrsCommands.end()) 1438 defPhdrs.push_back(firstPtLoad->name); 1439 1440 // Walk the commands and propagate the program headers to commands that don't 1441 // explicitly specify them. 1442 for (SectionCommand *cmd : sectionCommands) 1443 if (auto *osd = dyn_cast<OutputDesc>(cmd)) 1444 maybePropagatePhdrs(osd->osec, defPhdrs); 1445 } 1446 1447 // When the SECTIONS command is used, try to find an address for the file and 1448 // program headers output sections, which can be added to the first PT_LOAD 1449 // segment when program headers are created. 1450 // 1451 // We check if the headers fit below the first allocated section. If there isn't 1452 // enough space for these sections, we'll remove them from the PT_LOAD segment, 1453 // and we'll also remove the PT_PHDR segment. 1454 void LinkerScript::allocateHeaders( 1455 SmallVector<std::unique_ptr<PhdrEntry>, 0> &phdrs) { 1456 uint64_t min = std::numeric_limits<uint64_t>::max(); 1457 for (OutputSection *sec : ctx.outputSections) 1458 if (sec->flags & SHF_ALLOC) 1459 min = std::min<uint64_t>(min, sec->addr); 1460 1461 auto it = llvm::find_if(phdrs, [](auto &e) { return e->p_type == PT_LOAD; }); 1462 if (it == phdrs.end()) 1463 return; 1464 PhdrEntry *firstPTLoad = it->get(); 1465 1466 bool hasExplicitHeaders = 1467 llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { 1468 return cmd.hasPhdrs || cmd.hasFilehdr; 1469 }); 1470 bool paged = !ctx.arg.omagic && !ctx.arg.nmagic; 1471 uint64_t headerSize = getHeaderSize(ctx); 1472 1473 uint64_t base = 0; 1474 // If SECTIONS is present and the linkerscript is not explicit about program 1475 // headers, only allocate program headers if that would not add a page. 1476 if (hasSectionsCommand && !hasExplicitHeaders) 1477 base = alignDown(min, ctx.arg.maxPageSize); 1478 if ((paged || hasExplicitHeaders) && headerSize <= min - base) { 1479 min = alignDown(min - headerSize, ctx.arg.maxPageSize); 1480 ctx.out.elfHeader->addr = min; 1481 ctx.out.programHeaders->addr = min + ctx.out.elfHeader->size; 1482 return; 1483 } 1484 1485 // Error if we were explicitly asked to allocate headers. 1486 if (hasExplicitHeaders) 1487 ErrAlways(ctx) << "could not allocate headers"; 1488 1489 ctx.out.elfHeader->ptLoad = nullptr; 1490 ctx.out.programHeaders->ptLoad = nullptr; 1491 firstPTLoad->firstSec = findFirstSection(ctx, firstPTLoad); 1492 1493 llvm::erase_if(phdrs, [](auto &e) { return e->p_type == PT_PHDR; }); 1494 } 1495 1496 LinkerScript::AddressState::AddressState(const LinkerScript &script) { 1497 for (auto &mri : script.memoryRegions) { 1498 MemoryRegion *mr = mri.second; 1499 mr->curPos = (mr->origin)().getValue(); 1500 } 1501 } 1502 1503 // Here we assign addresses as instructed by linker script SECTIONS 1504 // sub-commands. Doing that allows us to use final VA values, so here 1505 // we also handle rest commands like symbol assignments and ASSERTs. 1506 // Return an output section that has changed its address or null, and a symbol 1507 // that has changed its section or value (or nullptr if no symbol has changed). 1508 std::pair<const OutputSection *, const Defined *> 1509 LinkerScript::assignAddresses() { 1510 if (hasSectionsCommand) { 1511 // With a linker script, assignment of addresses to headers is covered by 1512 // allocateHeaders(). 1513 dot = ctx.arg.imageBase.value_or(0); 1514 } else { 1515 // Assign addresses to headers right now. 1516 dot = ctx.target->getImageBase(); 1517 ctx.out.elfHeader->addr = dot; 1518 ctx.out.programHeaders->addr = dot + ctx.out.elfHeader->size; 1519 dot += getHeaderSize(ctx); 1520 } 1521 1522 OutputSection *changedOsec = nullptr; 1523 AddressState st(*this); 1524 state = &st; 1525 errorOnMissingSection = true; 1526 st.outSec = aether.get(); 1527 recordedErrors.clear(); 1528 1529 SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); 1530 for (SectionCommand *cmd : sectionCommands) { 1531 if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) { 1532 assign->addr = dot; 1533 assignSymbol(assign, false); 1534 assign->size = dot - assign->addr; 1535 continue; 1536 } 1537 if (isa<SectionClassDesc>(cmd)) 1538 continue; 1539 if (assignOffsets(&cast<OutputDesc>(cmd)->osec) && !changedOsec) 1540 changedOsec = &cast<OutputDesc>(cmd)->osec; 1541 } 1542 1543 state = nullptr; 1544 return {changedOsec, getChangedSymbolAssignment(oldValues)}; 1545 } 1546 1547 static bool hasRegionOverflowed(MemoryRegion *mr) { 1548 if (!mr) 1549 return false; 1550 return mr->curPos - mr->getOrigin() > mr->getLength(); 1551 } 1552 1553 // Spill input sections in reverse order of address assignment to (potentially) 1554 // bring memory regions out of overflow. The size savings of a spill can only be 1555 // estimated, since general linker script arithmetic may occur afterwards. 1556 // Under-estimates may cause unnecessary spills, but over-estimates can always 1557 // be corrected on the next pass. 1558 bool LinkerScript::spillSections() { 1559 if (potentialSpillLists.empty()) 1560 return false; 1561 1562 bool spilled = false; 1563 for (SectionCommand *cmd : reverse(sectionCommands)) { 1564 auto *osd = dyn_cast<OutputDesc>(cmd); 1565 if (!osd) 1566 continue; 1567 OutputSection *osec = &osd->osec; 1568 if (!osec->memRegion) 1569 continue; 1570 1571 // Input sections that have replaced a potential spill and should be removed 1572 // from their input section description. 1573 DenseSet<InputSection *> spilledInputSections; 1574 1575 for (SectionCommand *cmd : reverse(osec->commands)) { 1576 if (!hasRegionOverflowed(osec->memRegion) && 1577 !hasRegionOverflowed(osec->lmaRegion)) 1578 break; 1579 1580 auto *isd = dyn_cast<InputSectionDescription>(cmd); 1581 if (!isd) 1582 continue; 1583 for (InputSection *isec : reverse(isd->sections)) { 1584 // Potential spill locations cannot be spilled. 1585 if (isa<PotentialSpillSection>(isec)) 1586 continue; 1587 1588 // Find the next potential spill location and remove it from the list. 1589 auto it = potentialSpillLists.find(isec); 1590 if (it == potentialSpillLists.end()) 1591 continue; 1592 PotentialSpillList &list = it->second; 1593 PotentialSpillSection *spill = list.head; 1594 if (spill->next) 1595 list.head = spill->next; 1596 else 1597 potentialSpillLists.erase(isec); 1598 1599 // Replace the next spill location with the spilled section and adjust 1600 // its properties to match the new location. Note that the alignment of 1601 // the spill section may have diverged from the original due to e.g. a 1602 // SUBALIGN. Correct assignment requires the spill's alignment to be 1603 // used, not the original. 1604 spilledInputSections.insert(isec); 1605 *llvm::find(spill->isd->sections, spill) = isec; 1606 isec->parent = spill->parent; 1607 isec->addralign = spill->addralign; 1608 1609 // Record the (potential) reduction in the region's end position. 1610 osec->memRegion->curPos -= isec->getSize(); 1611 if (osec->lmaRegion) 1612 osec->lmaRegion->curPos -= isec->getSize(); 1613 1614 // Spilling continues until the end position no longer overflows the 1615 // region. Then, another round of address assignment will either confirm 1616 // the spill's success or lead to yet more spilling. 1617 if (!hasRegionOverflowed(osec->memRegion) && 1618 !hasRegionOverflowed(osec->lmaRegion)) 1619 break; 1620 } 1621 1622 // Remove any spilled input sections to complete their move. 1623 if (!spilledInputSections.empty()) { 1624 spilled = true; 1625 llvm::erase_if(isd->sections, [&](InputSection *isec) { 1626 return spilledInputSections.contains(isec); 1627 }); 1628 } 1629 } 1630 } 1631 1632 return spilled; 1633 } 1634 1635 // Erase any potential spill sections that were not used. 1636 void LinkerScript::erasePotentialSpillSections() { 1637 if (potentialSpillLists.empty()) 1638 return; 1639 1640 // Collect the set of input section descriptions that contain potential 1641 // spills. 1642 DenseSet<InputSectionDescription *> isds; 1643 for (const auto &[_, list] : potentialSpillLists) 1644 for (PotentialSpillSection *s = list.head; s; s = s->next) 1645 isds.insert(s->isd); 1646 1647 for (InputSectionDescription *isd : isds) 1648 llvm::erase_if(isd->sections, [](InputSection *s) { 1649 return isa<PotentialSpillSection>(s); 1650 }); 1651 1652 potentialSpillLists.clear(); 1653 } 1654 1655 // Creates program headers as instructed by PHDRS linker script command. 1656 SmallVector<std::unique_ptr<PhdrEntry>, 0> LinkerScript::createPhdrs() { 1657 SmallVector<std::unique_ptr<PhdrEntry>, 0> ret; 1658 1659 // Process PHDRS and FILEHDR keywords because they are not 1660 // real output sections and cannot be added in the following loop. 1661 for (const PhdrsCommand &cmd : phdrsCommands) { 1662 auto phdr = 1663 std::make_unique<PhdrEntry>(ctx, cmd.type, cmd.flags.value_or(PF_R)); 1664 1665 if (cmd.hasFilehdr) 1666 phdr->add(ctx.out.elfHeader.get()); 1667 if (cmd.hasPhdrs) 1668 phdr->add(ctx.out.programHeaders.get()); 1669 1670 if (cmd.lmaExpr) { 1671 phdr->p_paddr = cmd.lmaExpr().getValue(); 1672 phdr->hasLMA = true; 1673 } 1674 ret.push_back(std::move(phdr)); 1675 } 1676 1677 // Add output sections to program headers. 1678 for (OutputSection *sec : ctx.outputSections) { 1679 // Assign headers specified by linker script 1680 for (size_t id : getPhdrIndices(sec)) { 1681 ret[id]->add(sec); 1682 if (!phdrsCommands[id].flags) 1683 ret[id]->p_flags |= sec->getPhdrFlags(); 1684 } 1685 } 1686 return ret; 1687 } 1688 1689 // Returns true if we should emit an .interp section. 1690 // 1691 // We usually do. But if PHDRS commands are given, and 1692 // no PT_INTERP is there, there's no place to emit an 1693 // .interp, so we don't do that in that case. 1694 bool LinkerScript::needsInterpSection() { 1695 if (phdrsCommands.empty()) 1696 return true; 1697 for (PhdrsCommand &cmd : phdrsCommands) 1698 if (cmd.type == PT_INTERP) 1699 return true; 1700 return false; 1701 } 1702 1703 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { 1704 if (name == ".") { 1705 if (state) 1706 return {state->outSec, false, dot - state->outSec->addr, loc}; 1707 ErrAlways(ctx) << loc << ": unable to get location counter value"; 1708 return 0; 1709 } 1710 1711 if (Symbol *sym = ctx.symtab->find(name)) { 1712 if (auto *ds = dyn_cast<Defined>(sym)) { 1713 ExprValue v{ds->section, false, ds->value, loc}; 1714 // Retain the original st_type, so that the alias will get the same 1715 // behavior in relocation processing. Any operation will reset st_type to 1716 // STT_NOTYPE. 1717 v.type = ds->type; 1718 return v; 1719 } 1720 if (isa<SharedSymbol>(sym)) 1721 if (!errorOnMissingSection) 1722 return {nullptr, false, 0, loc}; 1723 } 1724 1725 ErrAlways(ctx) << loc << ": symbol not found: " << name; 1726 return 0; 1727 } 1728 1729 // Returns the index of the segment named Name. 1730 static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec, 1731 StringRef name) { 1732 for (size_t i = 0; i < vec.size(); ++i) 1733 if (vec[i].name == name) 1734 return i; 1735 return std::nullopt; 1736 } 1737 1738 // Returns indices of ELF headers containing specific section. Each index is a 1739 // zero based number of ELF header listed within PHDRS {} script block. 1740 SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) { 1741 SmallVector<size_t, 0> ret; 1742 1743 for (StringRef s : cmd->phdrs) { 1744 if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s)) 1745 ret.push_back(*idx); 1746 else if (s != "NONE") 1747 ErrAlways(ctx) << cmd->location << ": program header '" << s 1748 << "' is not listed in PHDRS"; 1749 } 1750 return ret; 1751 } 1752 1753 void LinkerScript::printMemoryUsage(raw_ostream& os) { 1754 auto printSize = [&](uint64_t size) { 1755 if ((size & 0x3fffffff) == 0) 1756 os << format_decimal(size >> 30, 10) << " GB"; 1757 else if ((size & 0xfffff) == 0) 1758 os << format_decimal(size >> 20, 10) << " MB"; 1759 else if ((size & 0x3ff) == 0) 1760 os << format_decimal(size >> 10, 10) << " KB"; 1761 else 1762 os << " " << format_decimal(size, 10) << " B"; 1763 }; 1764 os << "Memory region Used Size Region Size %age Used\n"; 1765 for (auto &pair : memoryRegions) { 1766 MemoryRegion *m = pair.second; 1767 uint64_t usedLength = m->curPos - m->getOrigin(); 1768 os << right_justify(m->name, 16) << ": "; 1769 printSize(usedLength); 1770 uint64_t length = m->getLength(); 1771 if (length != 0) { 1772 printSize(length); 1773 double percent = usedLength * 100.0 / length; 1774 os << " " << format("%6.2f%%", percent); 1775 } 1776 os << '\n'; 1777 } 1778 } 1779 1780 void LinkerScript::recordError(const Twine &msg) { 1781 auto &str = recordedErrors.emplace_back(); 1782 msg.toVector(str); 1783 } 1784 1785 static void checkMemoryRegion(Ctx &ctx, const MemoryRegion *region, 1786 const OutputSection *osec, uint64_t addr) { 1787 uint64_t osecEnd = addr + osec->size; 1788 uint64_t regionEnd = region->getOrigin() + region->getLength(); 1789 if (osecEnd > regionEnd) { 1790 ErrAlways(ctx) << "section '" << osec->name << "' will not fit in region '" 1791 << region->name << "': overflowed by " 1792 << (osecEnd - regionEnd) << " bytes"; 1793 } 1794 } 1795 1796 void LinkerScript::checkFinalScriptConditions() const { 1797 for (StringRef err : recordedErrors) 1798 Err(ctx) << err; 1799 for (const OutputSection *sec : ctx.outputSections) { 1800 if (const MemoryRegion *memoryRegion = sec->memRegion) 1801 checkMemoryRegion(ctx, memoryRegion, sec, sec->addr); 1802 if (const MemoryRegion *lmaRegion = sec->lmaRegion) 1803 checkMemoryRegion(ctx, lmaRegion, sec, sec->getLMA()); 1804 } 1805 } 1806 1807 void LinkerScript::addScriptReferencedSymbolsToSymTable() { 1808 // Some symbols (such as __ehdr_start) are defined lazily only when there 1809 // are undefined symbols for them, so we add these to trigger that logic. 1810 auto reference = [&ctx = ctx](StringRef name) { 1811 Symbol *sym = ctx.symtab->addUnusedUndefined(name); 1812 sym->isUsedInRegularObj = true; 1813 sym->referenced = true; 1814 }; 1815 for (StringRef name : referencedSymbols) 1816 reference(name); 1817 1818 // Keeps track of references from which PROVIDE symbols have been added to the 1819 // symbol table. 1820 DenseSet<StringRef> added; 1821 SmallVector<const SmallVector<StringRef, 0> *, 0> symRefsVec; 1822 for (const auto &[name, symRefs] : provideMap) 1823 if (shouldAddProvideSym(name) && added.insert(name).second) 1824 symRefsVec.push_back(&symRefs); 1825 while (symRefsVec.size()) { 1826 for (StringRef name : *symRefsVec.pop_back_val()) { 1827 reference(name); 1828 // Prevent the symbol from being discarded by --gc-sections. 1829 referencedSymbols.push_back(name); 1830 auto it = provideMap.find(name); 1831 if (it != provideMap.end() && shouldAddProvideSym(name) && 1832 added.insert(name).second) { 1833 symRefsVec.push_back(&it->second); 1834 } 1835 } 1836 } 1837 } 1838 1839 bool LinkerScript::shouldAddProvideSym(StringRef symName) { 1840 // This function is called before and after garbage collection. To prevent 1841 // undefined references from the RHS, the result of this function for a 1842 // symbol must be the same for each call. We use unusedProvideSyms to not 1843 // change the return value of a demoted symbol. 1844 Symbol *sym = ctx.symtab->find(symName); 1845 if (!sym) 1846 return false; 1847 if (sym->isDefined() || sym->isCommon()) { 1848 unusedProvideSyms.insert(sym); 1849 return false; 1850 } 1851 return !unusedProvideSyms.count(sym); 1852 } 1853