xref: /llvm-project/lld/ELF/Driver.cpp (revision f10441ad003236ef3b9e5415a571d2be0c0ce5ce)
1 //===- Driver.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The driver drives the entire linking process. It is responsible for
10 // parsing command line options and doing whatever it is instructed to do.
11 //
12 // One notable thing in the LLD's driver when compared to other linkers is
13 // that the LLD's driver is agnostic on the host operating system.
14 // Other linkers usually have implicit default values (such as a dynamic
15 // linker path or library paths) for each host OS.
16 //
17 // I don't think implicit default values are useful because they are
18 // usually explicitly specified by the compiler ctx.driver. They can even
19 // be harmful when you are doing cross-linking. Therefore, in LLD, we
20 // simply trust the compiler driver to pass all required options and
21 // don't try to make effort on our side.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "Driver.h"
26 #include "Config.h"
27 #include "ICF.h"
28 #include "InputFiles.h"
29 #include "InputSection.h"
30 #include "LTO.h"
31 #include "LinkerScript.h"
32 #include "MarkLive.h"
33 #include "OutputSections.h"
34 #include "ScriptParser.h"
35 #include "SymbolTable.h"
36 #include "Symbols.h"
37 #include "SyntheticSections.h"
38 #include "Target.h"
39 #include "Writer.h"
40 #include "lld/Common/Args.h"
41 #include "lld/Common/CommonLinkerContext.h"
42 #include "lld/Common/Driver.h"
43 #include "lld/Common/ErrorHandler.h"
44 #include "lld/Common/Filesystem.h"
45 #include "lld/Common/Memory.h"
46 #include "lld/Common/Strings.h"
47 #include "lld/Common/TargetOptionsCommandFlags.h"
48 #include "lld/Common/Version.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Config/llvm-config.h"
54 #include "llvm/LTO/LTO.h"
55 #include "llvm/Object/Archive.h"
56 #include "llvm/Object/IRObjectFile.h"
57 #include "llvm/Remarks/HotnessThresholdParser.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/Compression.h"
61 #include "llvm/Support/FileSystem.h"
62 #include "llvm/Support/GlobPattern.h"
63 #include "llvm/Support/LEB128.h"
64 #include "llvm/Support/Parallel.h"
65 #include "llvm/Support/Path.h"
66 #include "llvm/Support/TarWriter.h"
67 #include "llvm/Support/TargetSelect.h"
68 #include "llvm/Support/TimeProfiler.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <cstdlib>
71 #include <tuple>
72 #include <utility>
73 
74 using namespace llvm;
75 using namespace llvm::ELF;
76 using namespace llvm::object;
77 using namespace llvm::sys;
78 using namespace llvm::support;
79 using namespace lld;
80 using namespace lld::elf;
81 
82 static void setConfigs(Ctx &ctx, opt::InputArgList &args);
83 static void readConfigs(Ctx &ctx, opt::InputArgList &args);
84 
85 ELFSyncStream elf::Log(Ctx &ctx) { return {ctx, DiagLevel::Log}; }
86 ELFSyncStream elf::Msg(Ctx &ctx) { return {ctx, DiagLevel::Msg}; }
87 ELFSyncStream elf::Warn(Ctx &ctx) { return {ctx, DiagLevel::Warn}; }
88 ELFSyncStream elf::Err(Ctx &ctx) {
89   return {ctx, ctx.arg.noinhibitExec ? DiagLevel::Warn : DiagLevel::Err};
90 }
91 ELFSyncStream elf::ErrAlways(Ctx &ctx) { return {ctx, DiagLevel::Err}; }
92 ELFSyncStream elf::Fatal(Ctx &ctx) { return {ctx, DiagLevel::Fatal}; }
93 uint64_t elf::errCount(Ctx &ctx) { return ctx.e.errorCount; }
94 
95 ELFSyncStream elf::InternalErr(Ctx &ctx, const uint8_t *buf) {
96   ELFSyncStream s(ctx, DiagLevel::Err);
97   s << "internal linker error: ";
98   return s;
99 }
100 
101 Ctx::Ctx() : driver(*this) {}
102 
103 llvm::raw_fd_ostream Ctx::openAuxiliaryFile(llvm::StringRef filename,
104                                             std::error_code &ec) {
105   using namespace llvm::sys::fs;
106   OpenFlags flags =
107       auxiliaryFiles.insert(filename).second ? OF_None : OF_Append;
108   if (e.disableOutput && filename == "-") {
109 #ifdef _WIN32
110     filename = "NUL";
111 #else
112     filename = "/dev/null";
113 #endif
114   }
115   return {filename, ec, flags};
116 }
117 
118 namespace lld {
119 namespace elf {
120 bool link(ArrayRef<const char *> args, llvm::raw_ostream &stdoutOS,
121           llvm::raw_ostream &stderrOS, bool exitEarly, bool disableOutput) {
122   // This driver-specific context will be freed later by unsafeLldMain().
123   auto *context = new Ctx;
124   Ctx &ctx = *context;
125 
126   context->e.initialize(stdoutOS, stderrOS, exitEarly, disableOutput);
127   context->e.logName = args::getFilenameWithoutExe(args[0]);
128   context->e.errorLimitExceededMsg =
129       "too many errors emitted, stopping now (use "
130       "--error-limit=0 to see all errors)";
131 
132   LinkerScript script(ctx);
133   ctx.script = &script;
134   ctx.symAux.emplace_back();
135   ctx.symtab = std::make_unique<SymbolTable>(ctx);
136 
137   ctx.partitions.clear();
138   ctx.partitions.emplace_back(ctx);
139 
140   ctx.arg.progName = args[0];
141 
142   ctx.driver.linkerMain(args);
143 
144   return errCount(ctx) == 0;
145 }
146 } // namespace elf
147 } // namespace lld
148 
149 // Parses a linker -m option.
150 static std::tuple<ELFKind, uint16_t, uint8_t> parseEmulation(Ctx &ctx,
151                                                              StringRef emul) {
152   uint8_t osabi = 0;
153   StringRef s = emul;
154   if (s.ends_with("_fbsd")) {
155     s = s.drop_back(5);
156     osabi = ELFOSABI_FREEBSD;
157   }
158 
159   std::pair<ELFKind, uint16_t> ret =
160       StringSwitch<std::pair<ELFKind, uint16_t>>(s)
161           .Cases("aarch64elf", "aarch64linux", {ELF64LEKind, EM_AARCH64})
162           .Cases("aarch64elfb", "aarch64linuxb", {ELF64BEKind, EM_AARCH64})
163           .Cases("armelf", "armelf_linux_eabi", {ELF32LEKind, EM_ARM})
164           .Cases("armelfb", "armelfb_linux_eabi", {ELF32BEKind, EM_ARM})
165           .Case("elf32_x86_64", {ELF32LEKind, EM_X86_64})
166           .Cases("elf32btsmip", "elf32btsmipn32", {ELF32BEKind, EM_MIPS})
167           .Cases("elf32ltsmip", "elf32ltsmipn32", {ELF32LEKind, EM_MIPS})
168           .Case("elf32lriscv", {ELF32LEKind, EM_RISCV})
169           .Cases("elf32ppc", "elf32ppclinux", {ELF32BEKind, EM_PPC})
170           .Cases("elf32lppc", "elf32lppclinux", {ELF32LEKind, EM_PPC})
171           .Case("elf32loongarch", {ELF32LEKind, EM_LOONGARCH})
172           .Case("elf64btsmip", {ELF64BEKind, EM_MIPS})
173           .Case("elf64ltsmip", {ELF64LEKind, EM_MIPS})
174           .Case("elf64lriscv", {ELF64LEKind, EM_RISCV})
175           .Case("elf64ppc", {ELF64BEKind, EM_PPC64})
176           .Case("elf64lppc", {ELF64LEKind, EM_PPC64})
177           .Cases("elf_amd64", "elf_x86_64", {ELF64LEKind, EM_X86_64})
178           .Case("elf_i386", {ELF32LEKind, EM_386})
179           .Case("elf_iamcu", {ELF32LEKind, EM_IAMCU})
180           .Case("elf64_sparc", {ELF64BEKind, EM_SPARCV9})
181           .Case("msp430elf", {ELF32LEKind, EM_MSP430})
182           .Case("elf64_amdgpu", {ELF64LEKind, EM_AMDGPU})
183           .Case("elf64loongarch", {ELF64LEKind, EM_LOONGARCH})
184           .Case("elf64_s390", {ELF64BEKind, EM_S390})
185           .Case("hexagonelf", {ELF32LEKind, EM_HEXAGON})
186           .Default({ELFNoneKind, EM_NONE});
187 
188   if (ret.first == ELFNoneKind)
189     ErrAlways(ctx) << "unknown emulation: " << emul;
190   if (ret.second == EM_MSP430)
191     osabi = ELFOSABI_STANDALONE;
192   else if (ret.second == EM_AMDGPU)
193     osabi = ELFOSABI_AMDGPU_HSA;
194   return std::make_tuple(ret.first, ret.second, osabi);
195 }
196 
197 // Returns slices of MB by parsing MB as an archive file.
198 // Each slice consists of a member file in the archive.
199 std::vector<std::pair<MemoryBufferRef, uint64_t>> static getArchiveMembers(
200     Ctx &ctx, MemoryBufferRef mb) {
201   std::unique_ptr<Archive> file =
202       CHECK(Archive::create(mb),
203             mb.getBufferIdentifier() + ": failed to parse archive");
204 
205   std::vector<std::pair<MemoryBufferRef, uint64_t>> v;
206   Error err = Error::success();
207   bool addToTar = file->isThin() && ctx.tar;
208   for (const Archive::Child &c : file->children(err)) {
209     MemoryBufferRef mbref =
210         CHECK(c.getMemoryBufferRef(),
211               mb.getBufferIdentifier() +
212                   ": could not get the buffer for a child of the archive");
213     if (addToTar)
214       ctx.tar->append(relativeToRoot(check(c.getFullName())),
215                       mbref.getBuffer());
216     v.push_back(std::make_pair(mbref, c.getChildOffset()));
217   }
218   if (err)
219     Fatal(ctx) << mb.getBufferIdentifier()
220                << ": Archive::children failed: " << std::move(err);
221 
222   // Take ownership of memory buffers created for members of thin archives.
223   std::vector<std::unique_ptr<MemoryBuffer>> mbs = file->takeThinBuffers();
224   std::move(mbs.begin(), mbs.end(), std::back_inserter(ctx.memoryBuffers));
225 
226   return v;
227 }
228 
229 static bool isBitcode(MemoryBufferRef mb) {
230   return identify_magic(mb.getBuffer()) == llvm::file_magic::bitcode;
231 }
232 
233 bool LinkerDriver::tryAddFatLTOFile(MemoryBufferRef mb, StringRef archiveName,
234                                     uint64_t offsetInArchive, bool lazy) {
235   if (!ctx.arg.fatLTOObjects)
236     return false;
237   Expected<MemoryBufferRef> fatLTOData =
238       IRObjectFile::findBitcodeInMemBuffer(mb);
239   if (errorToBool(fatLTOData.takeError()))
240     return false;
241   files.push_back(std::make_unique<BitcodeFile>(ctx, *fatLTOData, archiveName,
242                                                 offsetInArchive, lazy));
243   return true;
244 }
245 
246 // Opens a file and create a file object. Path has to be resolved already.
247 void LinkerDriver::addFile(StringRef path, bool withLOption) {
248   using namespace sys::fs;
249 
250   std::optional<MemoryBufferRef> buffer = readFile(ctx, path);
251   if (!buffer)
252     return;
253   MemoryBufferRef mbref = *buffer;
254 
255   if (ctx.arg.formatBinary) {
256     files.push_back(std::make_unique<BinaryFile>(ctx, mbref));
257     return;
258   }
259 
260   switch (identify_magic(mbref.getBuffer())) {
261   case file_magic::unknown:
262     readLinkerScript(ctx, mbref);
263     return;
264   case file_magic::archive: {
265     auto members = getArchiveMembers(ctx, mbref);
266     if (inWholeArchive) {
267       for (const std::pair<MemoryBufferRef, uint64_t> &p : members) {
268         if (isBitcode(p.first))
269           files.push_back(std::make_unique<BitcodeFile>(ctx, p.first, path,
270                                                         p.second, false));
271         else if (!tryAddFatLTOFile(p.first, path, p.second, false))
272           files.push_back(createObjFile(ctx, p.first, path));
273       }
274       return;
275     }
276 
277     archiveFiles.emplace_back(path, members.size());
278 
279     // Handle archives and --start-lib/--end-lib using the same code path. This
280     // scans all the ELF relocatable object files and bitcode files in the
281     // archive rather than just the index file, with the benefit that the
282     // symbols are only loaded once. For many projects archives see high
283     // utilization rates and it is a net performance win. --start-lib scans
284     // symbols in the same order that llvm-ar adds them to the index, so in the
285     // common case the semantics are identical. If the archive symbol table was
286     // created in a different order, or is incomplete, this strategy has
287     // different semantics. Such output differences are considered user error.
288     //
289     // All files within the archive get the same group ID to allow mutual
290     // references for --warn-backrefs.
291     SaveAndRestore saved(isInGroup, true);
292     for (const std::pair<MemoryBufferRef, uint64_t> &p : members) {
293       auto magic = identify_magic(p.first.getBuffer());
294       if (magic == file_magic::elf_relocatable) {
295         if (!tryAddFatLTOFile(p.first, path, p.second, true))
296           files.push_back(createObjFile(ctx, p.first, path, true));
297       } else if (magic == file_magic::bitcode)
298         files.push_back(
299             std::make_unique<BitcodeFile>(ctx, p.first, path, p.second, true));
300       else
301         Warn(ctx) << path << ": archive member '"
302                   << p.first.getBufferIdentifier()
303                   << "' is neither ET_REL nor LLVM bitcode";
304     }
305     if (!saved.get())
306       ++nextGroupId;
307     return;
308   }
309   case file_magic::elf_shared_object: {
310     if (ctx.arg.isStatic) {
311       ErrAlways(ctx) << "attempted static link of dynamic object " << path;
312       return;
313     }
314 
315     // Shared objects are identified by soname. soname is (if specified)
316     // DT_SONAME and falls back to filename. If a file was specified by -lfoo,
317     // the directory part is ignored. Note that path may be a temporary and
318     // cannot be stored into SharedFile::soName.
319     path = mbref.getBufferIdentifier();
320     auto f = std::make_unique<SharedFile>(
321         ctx, mbref, withLOption ? path::filename(path) : path);
322     f->init();
323     files.push_back(std::move(f));
324     return;
325   }
326   case file_magic::bitcode:
327     files.push_back(std::make_unique<BitcodeFile>(ctx, mbref, "", 0, inLib));
328     break;
329   case file_magic::elf_relocatable:
330     if (!tryAddFatLTOFile(mbref, "", 0, inLib))
331       files.push_back(createObjFile(ctx, mbref, "", inLib));
332     break;
333   default:
334     ErrAlways(ctx) << path << ": unknown file type";
335   }
336 }
337 
338 // Add a given library by searching it from input search paths.
339 void LinkerDriver::addLibrary(StringRef name) {
340   if (std::optional<std::string> path = searchLibrary(ctx, name))
341     addFile(ctx.saver.save(*path), /*withLOption=*/true);
342   else
343     ctx.e.error("unable to find library -l" + name, ErrorTag::LibNotFound,
344                 {name});
345 }
346 
347 // This function is called on startup. We need this for LTO since
348 // LTO calls LLVM functions to compile bitcode files to native code.
349 // Technically this can be delayed until we read bitcode files, but
350 // we don't bother to do lazily because the initialization is fast.
351 static void initLLVM() {
352   InitializeAllTargets();
353   InitializeAllTargetMCs();
354   InitializeAllAsmPrinters();
355   InitializeAllAsmParsers();
356 }
357 
358 // Some command line options or some combinations of them are not allowed.
359 // This function checks for such errors.
360 static void checkOptions(Ctx &ctx) {
361   // The MIPS ABI as of 2016 does not support the GNU-style symbol lookup
362   // table which is a relatively new feature.
363   if (ctx.arg.emachine == EM_MIPS && ctx.arg.gnuHash)
364     ErrAlways(ctx)
365         << "the .gnu.hash section is not compatible with the MIPS target";
366 
367   if (ctx.arg.emachine == EM_ARM) {
368     if (!ctx.arg.cmseImplib) {
369       if (!ctx.arg.cmseInputLib.empty())
370         ErrAlways(ctx) << "--in-implib may not be used without --cmse-implib";
371       if (!ctx.arg.cmseOutputLib.empty())
372         ErrAlways(ctx) << "--out-implib may not be used without --cmse-implib";
373     }
374   } else {
375     if (ctx.arg.cmseImplib)
376       ErrAlways(ctx) << "--cmse-implib is only supported on ARM targets";
377     if (!ctx.arg.cmseInputLib.empty())
378       ErrAlways(ctx) << "--in-implib is only supported on ARM targets";
379     if (!ctx.arg.cmseOutputLib.empty())
380       ErrAlways(ctx) << "--out-implib is only supported on ARM targets";
381   }
382 
383   if (ctx.arg.fixCortexA53Errata843419 && ctx.arg.emachine != EM_AARCH64)
384     ErrAlways(ctx)
385         << "--fix-cortex-a53-843419 is only supported on AArch64 targets";
386 
387   if (ctx.arg.fixCortexA8 && ctx.arg.emachine != EM_ARM)
388     ErrAlways(ctx) << "--fix-cortex-a8 is only supported on ARM targets";
389 
390   if (ctx.arg.armBe8 && ctx.arg.emachine != EM_ARM)
391     ErrAlways(ctx) << "--be8 is only supported on ARM targets";
392 
393   if (ctx.arg.fixCortexA8 && !ctx.arg.isLE)
394     ErrAlways(ctx) << "--fix-cortex-a8 is not supported on big endian targets";
395 
396   if (ctx.arg.tocOptimize && ctx.arg.emachine != EM_PPC64)
397     ErrAlways(ctx) << "--toc-optimize is only supported on PowerPC64 targets";
398 
399   if (ctx.arg.pcRelOptimize && ctx.arg.emachine != EM_PPC64)
400     ErrAlways(ctx) << "--pcrel-optimize is only supported on PowerPC64 targets";
401 
402   if (ctx.arg.relaxGP && ctx.arg.emachine != EM_RISCV)
403     ErrAlways(ctx) << "--relax-gp is only supported on RISC-V targets";
404 
405   if (ctx.arg.pie && ctx.arg.shared)
406     ErrAlways(ctx) << "-shared and -pie may not be used together";
407 
408   if (!ctx.arg.shared && !ctx.arg.filterList.empty())
409     ErrAlways(ctx) << "-F may not be used without -shared";
410 
411   if (!ctx.arg.shared && !ctx.arg.auxiliaryList.empty())
412     ErrAlways(ctx) << "-f may not be used without -shared";
413 
414   if (ctx.arg.strip == StripPolicy::All && ctx.arg.emitRelocs)
415     ErrAlways(ctx) << "--strip-all and --emit-relocs may not be used together";
416 
417   if (ctx.arg.zText && ctx.arg.zIfuncNoplt)
418     ErrAlways(ctx) << "-z text and -z ifunc-noplt may not be used together";
419 
420   if (ctx.arg.relocatable) {
421     if (ctx.arg.shared)
422       ErrAlways(ctx) << "-r and -shared may not be used together";
423     if (ctx.arg.gdbIndex)
424       ErrAlways(ctx) << "-r and --gdb-index may not be used together";
425     if (ctx.arg.icf != ICFLevel::None)
426       ErrAlways(ctx) << "-r and --icf may not be used together";
427     if (ctx.arg.pie)
428       ErrAlways(ctx) << "-r and -pie may not be used together";
429     if (ctx.arg.exportDynamic)
430       ErrAlways(ctx) << "-r and --export-dynamic may not be used together";
431     if (ctx.arg.debugNames)
432       ErrAlways(ctx) << "-r and --debug-names may not be used together";
433     if (!ctx.arg.zSectionHeader)
434       ErrAlways(ctx) << "-r and -z nosectionheader may not be used together";
435   }
436 
437   if (ctx.arg.executeOnly) {
438     if (ctx.arg.emachine != EM_AARCH64)
439       ErrAlways(ctx) << "--execute-only is only supported on AArch64 targets";
440 
441     if (ctx.arg.singleRoRx && !ctx.script->hasSectionsCommand)
442       ErrAlways(ctx)
443           << "--execute-only and --no-rosegment cannot be used together";
444   }
445 
446   if (ctx.arg.zRetpolineplt && ctx.arg.zForceIbt)
447     ErrAlways(ctx) << "-z force-ibt may not be used with -z retpolineplt";
448 
449   if (ctx.arg.emachine != EM_AARCH64) {
450     if (ctx.arg.zPacPlt)
451       ErrAlways(ctx) << "-z pac-plt only supported on AArch64";
452     if (ctx.arg.zForceBti)
453       ErrAlways(ctx) << "-z force-bti only supported on AArch64";
454     if (ctx.arg.zBtiReport != "none")
455       ErrAlways(ctx) << "-z bti-report only supported on AArch64";
456     if (ctx.arg.zPauthReport != "none")
457       ErrAlways(ctx) << "-z pauth-report only supported on AArch64";
458     if (ctx.arg.zGcsReport != "none")
459       ErrAlways(ctx) << "-z gcs-report only supported on AArch64";
460     if (ctx.arg.zGcs != GcsPolicy::Implicit)
461       ErrAlways(ctx) << "-z gcs only supported on AArch64";
462   }
463 
464   if (ctx.arg.emachine != EM_386 && ctx.arg.emachine != EM_X86_64 &&
465       ctx.arg.zCetReport != "none")
466     ErrAlways(ctx) << "-z cet-report only supported on X86 and X86_64";
467 }
468 
469 static const char *getReproduceOption(opt::InputArgList &args) {
470   if (auto *arg = args.getLastArg(OPT_reproduce))
471     return arg->getValue();
472   return getenv("LLD_REPRODUCE");
473 }
474 
475 static bool hasZOption(opt::InputArgList &args, StringRef key) {
476   bool ret = false;
477   for (auto *arg : args.filtered(OPT_z))
478     if (key == arg->getValue()) {
479       ret = true;
480       arg->claim();
481     }
482   return ret;
483 }
484 
485 static bool getZFlag(opt::InputArgList &args, StringRef k1, StringRef k2,
486                      bool defaultValue) {
487   for (auto *arg : args.filtered(OPT_z)) {
488     StringRef v = arg->getValue();
489     if (k1 == v)
490       defaultValue = true;
491     else if (k2 == v)
492       defaultValue = false;
493     else
494       continue;
495     arg->claim();
496   }
497   return defaultValue;
498 }
499 
500 static SeparateSegmentKind getZSeparate(opt::InputArgList &args) {
501   auto ret = SeparateSegmentKind::None;
502   for (auto *arg : args.filtered(OPT_z)) {
503     StringRef v = arg->getValue();
504     if (v == "noseparate-code")
505       ret = SeparateSegmentKind::None;
506     else if (v == "separate-code")
507       ret = SeparateSegmentKind::Code;
508     else if (v == "separate-loadable-segments")
509       ret = SeparateSegmentKind::Loadable;
510     else
511       continue;
512     arg->claim();
513   }
514   return ret;
515 }
516 
517 static GnuStackKind getZGnuStack(opt::InputArgList &args) {
518   auto ret = GnuStackKind::NoExec;
519   for (auto *arg : args.filtered(OPT_z)) {
520     StringRef v = arg->getValue();
521     if (v == "execstack")
522       ret = GnuStackKind::Exec;
523     else if (v == "noexecstack")
524       ret = GnuStackKind::NoExec;
525     else if (v == "nognustack")
526       ret = GnuStackKind::None;
527     else
528       continue;
529     arg->claim();
530   }
531   return ret;
532 }
533 
534 static uint8_t getZStartStopVisibility(Ctx &ctx, opt::InputArgList &args) {
535   uint8_t ret = STV_PROTECTED;
536   for (auto *arg : args.filtered(OPT_z)) {
537     std::pair<StringRef, StringRef> kv = StringRef(arg->getValue()).split('=');
538     if (kv.first == "start-stop-visibility") {
539       arg->claim();
540       if (kv.second == "default")
541         ret = STV_DEFAULT;
542       else if (kv.second == "internal")
543         ret = STV_INTERNAL;
544       else if (kv.second == "hidden")
545         ret = STV_HIDDEN;
546       else if (kv.second == "protected")
547         ret = STV_PROTECTED;
548       else
549         ErrAlways(ctx) << "unknown -z start-stop-visibility= value: "
550                        << StringRef(kv.second);
551     }
552   }
553   return ret;
554 }
555 
556 static GcsPolicy getZGcs(Ctx &ctx, opt::InputArgList &args) {
557   GcsPolicy ret = GcsPolicy::Implicit;
558   for (auto *arg : args.filtered(OPT_z)) {
559     std::pair<StringRef, StringRef> kv = StringRef(arg->getValue()).split('=');
560     if (kv.first == "gcs") {
561       arg->claim();
562       if (kv.second == "implicit")
563         ret = GcsPolicy::Implicit;
564       else if (kv.second == "never")
565         ret = GcsPolicy::Never;
566       else if (kv.second == "always")
567         ret = GcsPolicy::Always;
568       else
569         ErrAlways(ctx) << "unknown -z gcs= value: " << kv.second;
570     }
571   }
572   return ret;
573 }
574 
575 // Report a warning for an unknown -z option.
576 static void checkZOptions(Ctx &ctx, opt::InputArgList &args) {
577   // This function is called before getTarget(), when certain options are not
578   // initialized yet. Claim them here.
579   args::getZOptionValue(args, OPT_z, "max-page-size", 0);
580   args::getZOptionValue(args, OPT_z, "common-page-size", 0);
581   getZFlag(args, "rel", "rela", false);
582   for (auto *arg : args.filtered(OPT_z))
583     if (!arg->isClaimed())
584       Warn(ctx) << "unknown -z value: " << StringRef(arg->getValue());
585 }
586 
587 constexpr const char *saveTempsValues[] = {
588     "resolution", "preopt",     "promote", "internalize",  "import",
589     "opt",        "precodegen", "prelink", "combinedindex"};
590 
591 LinkerDriver::LinkerDriver(Ctx &ctx) : ctx(ctx) {}
592 
593 void LinkerDriver::linkerMain(ArrayRef<const char *> argsArr) {
594   ELFOptTable parser;
595   opt::InputArgList args = parser.parse(ctx, argsArr.slice(1));
596 
597   // Interpret these flags early because Err/Warn depend on them.
598   ctx.e.errorLimit = args::getInteger(args, OPT_error_limit, 20);
599   ctx.e.fatalWarnings =
600       args.hasFlag(OPT_fatal_warnings, OPT_no_fatal_warnings, false) &&
601       !args.hasArg(OPT_no_warnings);
602   ctx.e.suppressWarnings = args.hasArg(OPT_no_warnings);
603 
604   // Handle -help
605   if (args.hasArg(OPT_help)) {
606     printHelp(ctx);
607     return;
608   }
609 
610   // Handle -v or -version.
611   //
612   // A note about "compatible with GNU linkers" message: this is a hack for
613   // scripts generated by GNU Libtool up to 2021-10 to recognize LLD as
614   // a GNU compatible linker. See
615   // <https://lists.gnu.org/archive/html/libtool/2017-01/msg00007.html>.
616   //
617   // This is somewhat ugly hack, but in reality, we had no choice other
618   // than doing this. Considering the very long release cycle of Libtool,
619   // it is not easy to improve it to recognize LLD as a GNU compatible
620   // linker in a timely manner. Even if we can make it, there are still a
621   // lot of "configure" scripts out there that are generated by old version
622   // of Libtool. We cannot convince every software developer to migrate to
623   // the latest version and re-generate scripts. So we have this hack.
624   if (args.hasArg(OPT_v) || args.hasArg(OPT_version))
625     Msg(ctx) << getLLDVersion() << " (compatible with GNU linkers)";
626 
627   if (const char *path = getReproduceOption(args)) {
628     // Note that --reproduce is a debug option so you can ignore it
629     // if you are trying to understand the whole picture of the code.
630     Expected<std::unique_ptr<TarWriter>> errOrWriter =
631         TarWriter::create(path, path::stem(path));
632     if (errOrWriter) {
633       ctx.tar = std::move(*errOrWriter);
634       ctx.tar->append("response.txt", createResponseFile(args));
635       ctx.tar->append("version.txt", getLLDVersion() + "\n");
636       StringRef ltoSampleProfile = args.getLastArgValue(OPT_lto_sample_profile);
637       if (!ltoSampleProfile.empty())
638         readFile(ctx, ltoSampleProfile);
639     } else {
640       ErrAlways(ctx) << "--reproduce: " << errOrWriter.takeError();
641     }
642   }
643 
644   readConfigs(ctx, args);
645   checkZOptions(ctx, args);
646 
647   // The behavior of -v or --version is a bit strange, but this is
648   // needed for compatibility with GNU linkers.
649   if (args.hasArg(OPT_v) && !args.hasArg(OPT_INPUT))
650     return;
651   if (args.hasArg(OPT_version))
652     return;
653 
654   // Initialize time trace profiler.
655   if (ctx.arg.timeTraceEnabled)
656     timeTraceProfilerInitialize(ctx.arg.timeTraceGranularity, ctx.arg.progName);
657 
658   {
659     llvm::TimeTraceScope timeScope("ExecuteLinker");
660 
661     initLLVM();
662     createFiles(args);
663     if (errCount(ctx))
664       return;
665 
666     inferMachineType();
667     setConfigs(ctx, args);
668     checkOptions(ctx);
669     if (errCount(ctx))
670       return;
671 
672     invokeELFT(link, args);
673   }
674 
675   if (ctx.arg.timeTraceEnabled) {
676     checkError(ctx.e, timeTraceProfilerWrite(
677                           args.getLastArgValue(OPT_time_trace_eq).str(),
678                           ctx.arg.outputFile));
679     timeTraceProfilerCleanup();
680   }
681 }
682 
683 static std::string getRpath(opt::InputArgList &args) {
684   SmallVector<StringRef, 0> v = args::getStrings(args, OPT_rpath);
685   return llvm::join(v.begin(), v.end(), ":");
686 }
687 
688 // Determines what we should do if there are remaining unresolved
689 // symbols after the name resolution.
690 static void setUnresolvedSymbolPolicy(Ctx &ctx, opt::InputArgList &args) {
691   UnresolvedPolicy errorOrWarn = args.hasFlag(OPT_error_unresolved_symbols,
692                                               OPT_warn_unresolved_symbols, true)
693                                      ? UnresolvedPolicy::ReportError
694                                      : UnresolvedPolicy::Warn;
695   // -shared implies --unresolved-symbols=ignore-all because missing
696   // symbols are likely to be resolved at runtime.
697   bool diagRegular = !ctx.arg.shared, diagShlib = !ctx.arg.shared;
698 
699   for (const opt::Arg *arg : args) {
700     switch (arg->getOption().getID()) {
701     case OPT_unresolved_symbols: {
702       StringRef s = arg->getValue();
703       if (s == "ignore-all") {
704         diagRegular = false;
705         diagShlib = false;
706       } else if (s == "ignore-in-object-files") {
707         diagRegular = false;
708         diagShlib = true;
709       } else if (s == "ignore-in-shared-libs") {
710         diagRegular = true;
711         diagShlib = false;
712       } else if (s == "report-all") {
713         diagRegular = true;
714         diagShlib = true;
715       } else {
716         ErrAlways(ctx) << "unknown --unresolved-symbols value: " << s;
717       }
718       break;
719     }
720     case OPT_no_undefined:
721       diagRegular = true;
722       break;
723     case OPT_z:
724       if (StringRef(arg->getValue()) == "defs")
725         diagRegular = true;
726       else if (StringRef(arg->getValue()) == "undefs")
727         diagRegular = false;
728       else
729         break;
730       arg->claim();
731       break;
732     case OPT_allow_shlib_undefined:
733       diagShlib = false;
734       break;
735     case OPT_no_allow_shlib_undefined:
736       diagShlib = true;
737       break;
738     }
739   }
740 
741   ctx.arg.unresolvedSymbols =
742       diagRegular ? errorOrWarn : UnresolvedPolicy::Ignore;
743   ctx.arg.unresolvedSymbolsInShlib =
744       diagShlib ? errorOrWarn : UnresolvedPolicy::Ignore;
745 }
746 
747 static Target2Policy getTarget2(Ctx &ctx, opt::InputArgList &args) {
748   StringRef s = args.getLastArgValue(OPT_target2, "got-rel");
749   if (s == "rel")
750     return Target2Policy::Rel;
751   if (s == "abs")
752     return Target2Policy::Abs;
753   if (s == "got-rel")
754     return Target2Policy::GotRel;
755   ErrAlways(ctx) << "unknown --target2 option: " << s;
756   return Target2Policy::GotRel;
757 }
758 
759 static bool isOutputFormatBinary(Ctx &ctx, opt::InputArgList &args) {
760   StringRef s = args.getLastArgValue(OPT_oformat, "elf");
761   if (s == "binary")
762     return true;
763   if (!s.starts_with("elf"))
764     ErrAlways(ctx) << "unknown --oformat value: " << s;
765   return false;
766 }
767 
768 static DiscardPolicy getDiscard(opt::InputArgList &args) {
769   auto *arg =
770       args.getLastArg(OPT_discard_all, OPT_discard_locals, OPT_discard_none);
771   if (!arg)
772     return DiscardPolicy::Default;
773   if (arg->getOption().getID() == OPT_discard_all)
774     return DiscardPolicy::All;
775   if (arg->getOption().getID() == OPT_discard_locals)
776     return DiscardPolicy::Locals;
777   return DiscardPolicy::None;
778 }
779 
780 static StringRef getDynamicLinker(Ctx &ctx, opt::InputArgList &args) {
781   auto *arg = args.getLastArg(OPT_dynamic_linker, OPT_no_dynamic_linker);
782   if (!arg)
783     return "";
784   if (arg->getOption().getID() == OPT_no_dynamic_linker) {
785     // --no-dynamic-linker suppresses undefined weak symbols in .dynsym
786     ctx.arg.noDynamicLinker = true;
787     return "";
788   }
789   return arg->getValue();
790 }
791 
792 static int getMemtagMode(Ctx &ctx, opt::InputArgList &args) {
793   StringRef memtagModeArg = args.getLastArgValue(OPT_android_memtag_mode);
794   if (memtagModeArg.empty()) {
795     if (ctx.arg.androidMemtagStack)
796       Warn(ctx) << "--android-memtag-mode is unspecified, leaving "
797                    "--android-memtag-stack a no-op";
798     else if (ctx.arg.androidMemtagHeap)
799       Warn(ctx) << "--android-memtag-mode is unspecified, leaving "
800                    "--android-memtag-heap a no-op";
801     return ELF::NT_MEMTAG_LEVEL_NONE;
802   }
803 
804   if (memtagModeArg == "sync")
805     return ELF::NT_MEMTAG_LEVEL_SYNC;
806   if (memtagModeArg == "async")
807     return ELF::NT_MEMTAG_LEVEL_ASYNC;
808   if (memtagModeArg == "none")
809     return ELF::NT_MEMTAG_LEVEL_NONE;
810 
811   ErrAlways(ctx) << "unknown --android-memtag-mode value: \"" << memtagModeArg
812                  << "\", should be one of {async, sync, none}";
813   return ELF::NT_MEMTAG_LEVEL_NONE;
814 }
815 
816 static ICFLevel getICF(opt::InputArgList &args) {
817   auto *arg = args.getLastArg(OPT_icf_none, OPT_icf_safe, OPT_icf_all);
818   if (!arg || arg->getOption().getID() == OPT_icf_none)
819     return ICFLevel::None;
820   if (arg->getOption().getID() == OPT_icf_safe)
821     return ICFLevel::Safe;
822   return ICFLevel::All;
823 }
824 
825 static StripPolicy getStrip(Ctx &ctx, opt::InputArgList &args) {
826   if (args.hasArg(OPT_relocatable))
827     return StripPolicy::None;
828   if (!ctx.arg.zSectionHeader)
829     return StripPolicy::All;
830 
831   auto *arg = args.getLastArg(OPT_strip_all, OPT_strip_debug);
832   if (!arg)
833     return StripPolicy::None;
834   if (arg->getOption().getID() == OPT_strip_all)
835     return StripPolicy::All;
836   return StripPolicy::Debug;
837 }
838 
839 static uint64_t parseSectionAddress(Ctx &ctx, StringRef s,
840                                     opt::InputArgList &args,
841                                     const opt::Arg &arg) {
842   uint64_t va = 0;
843   s.consume_front("0x");
844   if (!to_integer(s, va, 16))
845     ErrAlways(ctx) << "invalid argument: " << arg.getAsString(args);
846   return va;
847 }
848 
849 static StringMap<uint64_t> getSectionStartMap(Ctx &ctx,
850                                               opt::InputArgList &args) {
851   StringMap<uint64_t> ret;
852   for (auto *arg : args.filtered(OPT_section_start)) {
853     StringRef name;
854     StringRef addr;
855     std::tie(name, addr) = StringRef(arg->getValue()).split('=');
856     ret[name] = parseSectionAddress(ctx, addr, args, *arg);
857   }
858 
859   if (auto *arg = args.getLastArg(OPT_Ttext))
860     ret[".text"] = parseSectionAddress(ctx, arg->getValue(), args, *arg);
861   if (auto *arg = args.getLastArg(OPT_Tdata))
862     ret[".data"] = parseSectionAddress(ctx, arg->getValue(), args, *arg);
863   if (auto *arg = args.getLastArg(OPT_Tbss))
864     ret[".bss"] = parseSectionAddress(ctx, arg->getValue(), args, *arg);
865   return ret;
866 }
867 
868 static SortSectionPolicy getSortSection(Ctx &ctx, opt::InputArgList &args) {
869   StringRef s = args.getLastArgValue(OPT_sort_section);
870   if (s == "alignment")
871     return SortSectionPolicy::Alignment;
872   if (s == "name")
873     return SortSectionPolicy::Name;
874   if (!s.empty())
875     ErrAlways(ctx) << "unknown --sort-section rule: " << s;
876   return SortSectionPolicy::Default;
877 }
878 
879 static OrphanHandlingPolicy getOrphanHandling(Ctx &ctx,
880                                               opt::InputArgList &args) {
881   StringRef s = args.getLastArgValue(OPT_orphan_handling, "place");
882   if (s == "warn")
883     return OrphanHandlingPolicy::Warn;
884   if (s == "error")
885     return OrphanHandlingPolicy::Error;
886   if (s != "place")
887     ErrAlways(ctx) << "unknown --orphan-handling mode: " << s;
888   return OrphanHandlingPolicy::Place;
889 }
890 
891 // Parse --build-id or --build-id=<style>. We handle "tree" as a
892 // synonym for "sha1" because all our hash functions including
893 // --build-id=sha1 are actually tree hashes for performance reasons.
894 static std::pair<BuildIdKind, SmallVector<uint8_t, 0>>
895 getBuildId(Ctx &ctx, opt::InputArgList &args) {
896   auto *arg = args.getLastArg(OPT_build_id);
897   if (!arg)
898     return {BuildIdKind::None, {}};
899 
900   StringRef s = arg->getValue();
901   if (s == "fast")
902     return {BuildIdKind::Fast, {}};
903   if (s == "md5")
904     return {BuildIdKind::Md5, {}};
905   if (s == "sha1" || s == "tree")
906     return {BuildIdKind::Sha1, {}};
907   if (s == "uuid")
908     return {BuildIdKind::Uuid, {}};
909   if (s.starts_with("0x"))
910     return {BuildIdKind::Hexstring, parseHex(s.substr(2))};
911 
912   if (s != "none")
913     ErrAlways(ctx) << "unknown --build-id style: " << s;
914   return {BuildIdKind::None, {}};
915 }
916 
917 static std::pair<bool, bool> getPackDynRelocs(Ctx &ctx,
918                                               opt::InputArgList &args) {
919   StringRef s = args.getLastArgValue(OPT_pack_dyn_relocs, "none");
920   if (s == "android")
921     return {true, false};
922   if (s == "relr")
923     return {false, true};
924   if (s == "android+relr")
925     return {true, true};
926 
927   if (s != "none")
928     ErrAlways(ctx) << "unknown --pack-dyn-relocs format: " << s;
929   return {false, false};
930 }
931 
932 static void readCallGraph(Ctx &ctx, MemoryBufferRef mb) {
933   // Build a map from symbol name to section
934   DenseMap<StringRef, Symbol *> map;
935   for (ELFFileBase *file : ctx.objectFiles)
936     for (Symbol *sym : file->getSymbols())
937       map[sym->getName()] = sym;
938 
939   auto findSection = [&](StringRef name) -> InputSectionBase * {
940     Symbol *sym = map.lookup(name);
941     if (!sym) {
942       if (ctx.arg.warnSymbolOrdering)
943         Warn(ctx) << mb.getBufferIdentifier() << ": no such symbol: " << name;
944       return nullptr;
945     }
946     maybeWarnUnorderableSymbol(ctx, sym);
947 
948     if (Defined *dr = dyn_cast_or_null<Defined>(sym))
949       return dyn_cast_or_null<InputSectionBase>(dr->section);
950     return nullptr;
951   };
952 
953   for (StringRef line : args::getLines(mb)) {
954     SmallVector<StringRef, 3> fields;
955     line.split(fields, ' ');
956     uint64_t count;
957 
958     if (fields.size() != 3 || !to_integer(fields[2], count)) {
959       ErrAlways(ctx) << mb.getBufferIdentifier() << ": parse error";
960       return;
961     }
962 
963     if (InputSectionBase *from = findSection(fields[0]))
964       if (InputSectionBase *to = findSection(fields[1]))
965         ctx.arg.callGraphProfile[std::make_pair(from, to)] += count;
966   }
967 }
968 
969 // If SHT_LLVM_CALL_GRAPH_PROFILE and its relocation section exist, returns
970 // true and populates cgProfile and symbolIndices.
971 template <class ELFT>
972 static bool
973 processCallGraphRelocations(Ctx &ctx, SmallVector<uint32_t, 32> &symbolIndices,
974                             ArrayRef<typename ELFT::CGProfile> &cgProfile,
975                             ObjFile<ELFT> *inputObj) {
976   if (inputObj->cgProfileSectionIndex == SHN_UNDEF)
977     return false;
978 
979   ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
980       inputObj->template getELFShdrs<ELFT>();
981   symbolIndices.clear();
982   const ELFFile<ELFT> &obj = inputObj->getObj();
983   cgProfile =
984       check(obj.template getSectionContentsAsArray<typename ELFT::CGProfile>(
985           objSections[inputObj->cgProfileSectionIndex]));
986 
987   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
988     const Elf_Shdr_Impl<ELFT> &sec = objSections[i];
989     if (sec.sh_info == inputObj->cgProfileSectionIndex) {
990       if (sec.sh_type == SHT_CREL) {
991         auto crels =
992             CHECK(obj.crels(sec), "could not retrieve cg profile rela section");
993         for (const auto &rel : crels.first)
994           symbolIndices.push_back(rel.getSymbol(false));
995         for (const auto &rel : crels.second)
996           symbolIndices.push_back(rel.getSymbol(false));
997         break;
998       }
999       if (sec.sh_type == SHT_RELA) {
1000         ArrayRef<typename ELFT::Rela> relas =
1001             CHECK(obj.relas(sec), "could not retrieve cg profile rela section");
1002         for (const typename ELFT::Rela &rel : relas)
1003           symbolIndices.push_back(rel.getSymbol(ctx.arg.isMips64EL));
1004         break;
1005       }
1006       if (sec.sh_type == SHT_REL) {
1007         ArrayRef<typename ELFT::Rel> rels =
1008             CHECK(obj.rels(sec), "could not retrieve cg profile rel section");
1009         for (const typename ELFT::Rel &rel : rels)
1010           symbolIndices.push_back(rel.getSymbol(ctx.arg.isMips64EL));
1011         break;
1012       }
1013     }
1014   }
1015   if (symbolIndices.empty())
1016     Warn(ctx)
1017         << "SHT_LLVM_CALL_GRAPH_PROFILE exists, but relocation section doesn't";
1018   return !symbolIndices.empty();
1019 }
1020 
1021 template <class ELFT> static void readCallGraphsFromObjectFiles(Ctx &ctx) {
1022   SmallVector<uint32_t, 32> symbolIndices;
1023   ArrayRef<typename ELFT::CGProfile> cgProfile;
1024   for (auto file : ctx.objectFiles) {
1025     auto *obj = cast<ObjFile<ELFT>>(file);
1026     if (!processCallGraphRelocations(ctx, symbolIndices, cgProfile, obj))
1027       continue;
1028 
1029     if (symbolIndices.size() != cgProfile.size() * 2)
1030       Fatal(ctx) << "number of relocations doesn't match Weights";
1031 
1032     for (uint32_t i = 0, size = cgProfile.size(); i < size; ++i) {
1033       const Elf_CGProfile_Impl<ELFT> &cgpe = cgProfile[i];
1034       uint32_t fromIndex = symbolIndices[i * 2];
1035       uint32_t toIndex = symbolIndices[i * 2 + 1];
1036       auto *fromSym = dyn_cast<Defined>(&obj->getSymbol(fromIndex));
1037       auto *toSym = dyn_cast<Defined>(&obj->getSymbol(toIndex));
1038       if (!fromSym || !toSym)
1039         continue;
1040 
1041       auto *from = dyn_cast_or_null<InputSectionBase>(fromSym->section);
1042       auto *to = dyn_cast_or_null<InputSectionBase>(toSym->section);
1043       if (from && to)
1044         ctx.arg.callGraphProfile[{from, to}] += cgpe.cgp_weight;
1045     }
1046   }
1047 }
1048 
1049 template <class ELFT>
1050 static void ltoValidateAllVtablesHaveTypeInfos(Ctx &ctx,
1051                                                opt::InputArgList &args) {
1052   DenseSet<StringRef> typeInfoSymbols;
1053   SmallSetVector<StringRef, 0> vtableSymbols;
1054   auto processVtableAndTypeInfoSymbols = [&](StringRef name) {
1055     if (name.consume_front("_ZTI"))
1056       typeInfoSymbols.insert(name);
1057     else if (name.consume_front("_ZTV"))
1058       vtableSymbols.insert(name);
1059   };
1060 
1061   // Examine all native symbol tables.
1062   for (ELFFileBase *f : ctx.objectFiles) {
1063     using Elf_Sym = typename ELFT::Sym;
1064     for (const Elf_Sym &s : f->template getGlobalELFSyms<ELFT>()) {
1065       if (s.st_shndx != SHN_UNDEF) {
1066         StringRef name = check(s.getName(f->getStringTable()));
1067         processVtableAndTypeInfoSymbols(name);
1068       }
1069     }
1070   }
1071 
1072   for (SharedFile *f : ctx.sharedFiles) {
1073     using Elf_Sym = typename ELFT::Sym;
1074     for (const Elf_Sym &s : f->template getELFSyms<ELFT>()) {
1075       if (s.st_shndx != SHN_UNDEF) {
1076         StringRef name = check(s.getName(f->getStringTable()));
1077         processVtableAndTypeInfoSymbols(name);
1078       }
1079     }
1080   }
1081 
1082   SmallSetVector<StringRef, 0> vtableSymbolsWithNoRTTI;
1083   for (StringRef s : vtableSymbols)
1084     if (!typeInfoSymbols.count(s))
1085       vtableSymbolsWithNoRTTI.insert(s);
1086 
1087   // Remove known safe symbols.
1088   for (auto *arg : args.filtered(OPT_lto_known_safe_vtables)) {
1089     StringRef knownSafeName = arg->getValue();
1090     if (!knownSafeName.consume_front("_ZTV"))
1091       ErrAlways(ctx)
1092           << "--lto-known-safe-vtables=: expected symbol to start with _ZTV, "
1093              "but got "
1094           << knownSafeName;
1095     Expected<GlobPattern> pat = GlobPattern::create(knownSafeName);
1096     if (!pat)
1097       ErrAlways(ctx) << "--lto-known-safe-vtables=: " << pat.takeError();
1098     vtableSymbolsWithNoRTTI.remove_if(
1099         [&](StringRef s) { return pat->match(s); });
1100   }
1101 
1102   ctx.ltoAllVtablesHaveTypeInfos = vtableSymbolsWithNoRTTI.empty();
1103   // Check for unmatched RTTI symbols
1104   for (StringRef s : vtableSymbolsWithNoRTTI) {
1105     Msg(ctx) << "--lto-validate-all-vtables-have-type-infos: RTTI missing for "
1106                 "vtable "
1107                 "_ZTV"
1108              << s << ", --lto-whole-program-visibility disabled";
1109   }
1110 }
1111 
1112 static CGProfileSortKind getCGProfileSortKind(Ctx &ctx,
1113                                               opt::InputArgList &args) {
1114   StringRef s = args.getLastArgValue(OPT_call_graph_profile_sort, "cdsort");
1115   if (s == "hfsort")
1116     return CGProfileSortKind::Hfsort;
1117   if (s == "cdsort")
1118     return CGProfileSortKind::Cdsort;
1119   if (s != "none")
1120     ErrAlways(ctx) << "unknown --call-graph-profile-sort= value: " << s;
1121   return CGProfileSortKind::None;
1122 }
1123 
1124 static DebugCompressionType getCompressionType(Ctx &ctx, StringRef s,
1125                                                StringRef option) {
1126   DebugCompressionType type = StringSwitch<DebugCompressionType>(s)
1127                                   .Case("zlib", DebugCompressionType::Zlib)
1128                                   .Case("zstd", DebugCompressionType::Zstd)
1129                                   .Default(DebugCompressionType::None);
1130   if (type == DebugCompressionType::None) {
1131     if (s != "none")
1132       ErrAlways(ctx) << "unknown " << option << " value: " << s;
1133   } else if (const char *reason = compression::getReasonIfUnsupported(
1134                  compression::formatFor(type))) {
1135     ErrAlways(ctx) << option << ": " << reason;
1136   }
1137   return type;
1138 }
1139 
1140 static StringRef getAliasSpelling(opt::Arg *arg) {
1141   if (const opt::Arg *alias = arg->getAlias())
1142     return alias->getSpelling();
1143   return arg->getSpelling();
1144 }
1145 
1146 static std::pair<StringRef, StringRef>
1147 getOldNewOptions(Ctx &ctx, opt::InputArgList &args, unsigned id) {
1148   auto *arg = args.getLastArg(id);
1149   if (!arg)
1150     return {"", ""};
1151 
1152   StringRef s = arg->getValue();
1153   std::pair<StringRef, StringRef> ret = s.split(';');
1154   if (ret.second.empty())
1155     ErrAlways(ctx) << getAliasSpelling(arg)
1156                    << " expects 'old;new' format, but got " << s;
1157   return ret;
1158 }
1159 
1160 // Parse options of the form "old;new[;extra]".
1161 static std::tuple<StringRef, StringRef, StringRef>
1162 getOldNewOptionsExtra(Ctx &ctx, opt::InputArgList &args, unsigned id) {
1163   auto [oldDir, second] = getOldNewOptions(ctx, args, id);
1164   auto [newDir, extraDir] = second.split(';');
1165   return {oldDir, newDir, extraDir};
1166 }
1167 
1168 // Parse the symbol ordering file and warn for any duplicate entries.
1169 static SmallVector<StringRef, 0> getSymbolOrderingFile(Ctx &ctx,
1170                                                        MemoryBufferRef mb) {
1171   SetVector<StringRef, SmallVector<StringRef, 0>> names;
1172   for (StringRef s : args::getLines(mb))
1173     if (!names.insert(s) && ctx.arg.warnSymbolOrdering)
1174       Warn(ctx) << mb.getBufferIdentifier()
1175                 << ": duplicate ordered symbol: " << s;
1176 
1177   return names.takeVector();
1178 }
1179 
1180 static bool getIsRela(Ctx &ctx, opt::InputArgList &args) {
1181   // The psABI specifies the default relocation entry format.
1182   bool rela = is_contained({EM_AARCH64, EM_AMDGPU, EM_HEXAGON, EM_LOONGARCH,
1183                             EM_PPC, EM_PPC64, EM_RISCV, EM_S390, EM_X86_64},
1184                            ctx.arg.emachine);
1185   // If -z rel or -z rela is specified, use the last option.
1186   for (auto *arg : args.filtered(OPT_z)) {
1187     StringRef s(arg->getValue());
1188     if (s == "rel")
1189       rela = false;
1190     else if (s == "rela")
1191       rela = true;
1192     else
1193       continue;
1194     arg->claim();
1195   }
1196   return rela;
1197 }
1198 
1199 static void parseClangOption(Ctx &ctx, StringRef opt, const Twine &msg) {
1200   std::string err;
1201   raw_string_ostream os(err);
1202 
1203   const char *argv[] = {ctx.arg.progName.data(), opt.data()};
1204   if (cl::ParseCommandLineOptions(2, argv, "", &os))
1205     return;
1206   ErrAlways(ctx) << msg << ": " << StringRef(err).trim();
1207 }
1208 
1209 // Checks the parameter of the bti-report and cet-report options.
1210 static bool isValidReportString(StringRef arg) {
1211   return arg == "none" || arg == "warning" || arg == "error";
1212 }
1213 
1214 // Process a remap pattern 'from-glob=to-file'.
1215 static bool remapInputs(Ctx &ctx, StringRef line, const Twine &location) {
1216   SmallVector<StringRef, 0> fields;
1217   line.split(fields, '=');
1218   if (fields.size() != 2 || fields[1].empty()) {
1219     ErrAlways(ctx) << location << ": parse error, not 'from-glob=to-file'";
1220     return true;
1221   }
1222   if (!hasWildcard(fields[0]))
1223     ctx.arg.remapInputs[fields[0]] = fields[1];
1224   else if (Expected<GlobPattern> pat = GlobPattern::create(fields[0]))
1225     ctx.arg.remapInputsWildcards.emplace_back(std::move(*pat), fields[1]);
1226   else {
1227     ErrAlways(ctx) << location << ": " << pat.takeError() << ": " << fields[0];
1228     return true;
1229   }
1230   return false;
1231 }
1232 
1233 // Initializes Config members by the command line options.
1234 static void readConfigs(Ctx &ctx, opt::InputArgList &args) {
1235   ctx.e.verbose = args.hasArg(OPT_verbose);
1236   ctx.e.vsDiagnostics =
1237       args.hasArg(OPT_visual_studio_diagnostics_format, false);
1238 
1239   ctx.arg.allowMultipleDefinition =
1240       hasZOption(args, "muldefs") ||
1241       args.hasFlag(OPT_allow_multiple_definition,
1242                    OPT_no_allow_multiple_definition, false);
1243   ctx.arg.androidMemtagHeap =
1244       args.hasFlag(OPT_android_memtag_heap, OPT_no_android_memtag_heap, false);
1245   ctx.arg.androidMemtagStack = args.hasFlag(OPT_android_memtag_stack,
1246                                             OPT_no_android_memtag_stack, false);
1247   ctx.arg.fatLTOObjects =
1248       args.hasFlag(OPT_fat_lto_objects, OPT_no_fat_lto_objects, false);
1249   ctx.arg.androidMemtagMode = getMemtagMode(ctx, args);
1250   ctx.arg.auxiliaryList = args::getStrings(args, OPT_auxiliary);
1251   ctx.arg.armBe8 = args.hasArg(OPT_be8);
1252   if (opt::Arg *arg = args.getLastArg(
1253           OPT_Bno_symbolic, OPT_Bsymbolic_non_weak_functions,
1254           OPT_Bsymbolic_functions, OPT_Bsymbolic_non_weak, OPT_Bsymbolic)) {
1255     if (arg->getOption().matches(OPT_Bsymbolic_non_weak_functions))
1256       ctx.arg.bsymbolic = BsymbolicKind::NonWeakFunctions;
1257     else if (arg->getOption().matches(OPT_Bsymbolic_functions))
1258       ctx.arg.bsymbolic = BsymbolicKind::Functions;
1259     else if (arg->getOption().matches(OPT_Bsymbolic_non_weak))
1260       ctx.arg.bsymbolic = BsymbolicKind::NonWeak;
1261     else if (arg->getOption().matches(OPT_Bsymbolic))
1262       ctx.arg.bsymbolic = BsymbolicKind::All;
1263   }
1264   ctx.arg.callGraphProfileSort = getCGProfileSortKind(ctx, args);
1265   ctx.arg.checkSections =
1266       args.hasFlag(OPT_check_sections, OPT_no_check_sections, true);
1267   ctx.arg.chroot = args.getLastArgValue(OPT_chroot);
1268   if (auto *arg = args.getLastArg(OPT_compress_debug_sections)) {
1269     ctx.arg.compressDebugSections =
1270         getCompressionType(ctx, arg->getValue(), "--compress-debug-sections");
1271   }
1272   ctx.arg.cref = args.hasArg(OPT_cref);
1273   ctx.arg.optimizeBBJumps =
1274       args.hasFlag(OPT_optimize_bb_jumps, OPT_no_optimize_bb_jumps, false);
1275   ctx.arg.debugNames = args.hasFlag(OPT_debug_names, OPT_no_debug_names, false);
1276   ctx.arg.demangle = args.hasFlag(OPT_demangle, OPT_no_demangle, true);
1277   ctx.arg.dependencyFile = args.getLastArgValue(OPT_dependency_file);
1278   ctx.arg.dependentLibraries =
1279       args.hasFlag(OPT_dependent_libraries, OPT_no_dependent_libraries, true);
1280   ctx.arg.disableVerify = args.hasArg(OPT_disable_verify);
1281   ctx.arg.discard = getDiscard(args);
1282   ctx.arg.dwoDir = args.getLastArgValue(OPT_plugin_opt_dwo_dir_eq);
1283   ctx.arg.dynamicLinker = getDynamicLinker(ctx, args);
1284   ctx.arg.ehFrameHdr =
1285       args.hasFlag(OPT_eh_frame_hdr, OPT_no_eh_frame_hdr, false);
1286   ctx.arg.emitLLVM = args.hasArg(OPT_lto_emit_llvm);
1287   ctx.arg.emitRelocs = args.hasArg(OPT_emit_relocs);
1288   ctx.arg.enableNewDtags =
1289       args.hasFlag(OPT_enable_new_dtags, OPT_disable_new_dtags, true);
1290   ctx.arg.enableNonContiguousRegions =
1291       args.hasArg(OPT_enable_non_contiguous_regions);
1292   ctx.arg.entry = args.getLastArgValue(OPT_entry);
1293 
1294   ctx.e.errorHandlingScript = args.getLastArgValue(OPT_error_handling_script);
1295 
1296   ctx.arg.executeOnly =
1297       args.hasFlag(OPT_execute_only, OPT_no_execute_only, false);
1298   ctx.arg.exportDynamic =
1299       args.hasFlag(OPT_export_dynamic, OPT_no_export_dynamic, false) ||
1300       args.hasArg(OPT_shared);
1301   ctx.arg.filterList = args::getStrings(args, OPT_filter);
1302   ctx.arg.fini = args.getLastArgValue(OPT_fini, "_fini");
1303   ctx.arg.fixCortexA53Errata843419 =
1304       args.hasArg(OPT_fix_cortex_a53_843419) && !args.hasArg(OPT_relocatable);
1305   ctx.arg.cmseImplib = args.hasArg(OPT_cmse_implib);
1306   ctx.arg.cmseInputLib = args.getLastArgValue(OPT_in_implib);
1307   ctx.arg.cmseOutputLib = args.getLastArgValue(OPT_out_implib);
1308   ctx.arg.fixCortexA8 =
1309       args.hasArg(OPT_fix_cortex_a8) && !args.hasArg(OPT_relocatable);
1310   ctx.arg.fortranCommon =
1311       args.hasFlag(OPT_fortran_common, OPT_no_fortran_common, false);
1312   ctx.arg.gcSections = args.hasFlag(OPT_gc_sections, OPT_no_gc_sections, false);
1313   ctx.arg.gnuUnique = args.hasFlag(OPT_gnu_unique, OPT_no_gnu_unique, true);
1314   ctx.arg.gdbIndex = args.hasFlag(OPT_gdb_index, OPT_no_gdb_index, false);
1315   ctx.arg.icf = getICF(args);
1316   ctx.arg.ignoreDataAddressEquality =
1317       args.hasArg(OPT_ignore_data_address_equality);
1318   ctx.arg.ignoreFunctionAddressEquality =
1319       args.hasArg(OPT_ignore_function_address_equality);
1320   ctx.arg.init = args.getLastArgValue(OPT_init, "_init");
1321   ctx.arg.ltoAAPipeline = args.getLastArgValue(OPT_lto_aa_pipeline);
1322   ctx.arg.ltoCSProfileGenerate = args.hasArg(OPT_lto_cs_profile_generate);
1323   ctx.arg.ltoCSProfileFile = args.getLastArgValue(OPT_lto_cs_profile_file);
1324   ctx.arg.ltoPGOWarnMismatch = args.hasFlag(OPT_lto_pgo_warn_mismatch,
1325                                             OPT_no_lto_pgo_warn_mismatch, true);
1326   ctx.arg.ltoDebugPassManager = args.hasArg(OPT_lto_debug_pass_manager);
1327   ctx.arg.ltoEmitAsm = args.hasArg(OPT_lto_emit_asm);
1328   ctx.arg.ltoNewPmPasses = args.getLastArgValue(OPT_lto_newpm_passes);
1329   ctx.arg.ltoWholeProgramVisibility =
1330       args.hasFlag(OPT_lto_whole_program_visibility,
1331                    OPT_no_lto_whole_program_visibility, false);
1332   ctx.arg.ltoValidateAllVtablesHaveTypeInfos =
1333       args.hasFlag(OPT_lto_validate_all_vtables_have_type_infos,
1334                    OPT_no_lto_validate_all_vtables_have_type_infos, false);
1335   ctx.arg.ltoo = args::getInteger(args, OPT_lto_O, 2);
1336   if (ctx.arg.ltoo > 3)
1337     ErrAlways(ctx) << "invalid optimization level for LTO: " << ctx.arg.ltoo;
1338   unsigned ltoCgo =
1339       args::getInteger(args, OPT_lto_CGO, args::getCGOptLevel(ctx.arg.ltoo));
1340   if (auto level = CodeGenOpt::getLevel(ltoCgo))
1341     ctx.arg.ltoCgo = *level;
1342   else
1343     ErrAlways(ctx) << "invalid codegen optimization level for LTO: " << ltoCgo;
1344   ctx.arg.ltoObjPath = args.getLastArgValue(OPT_lto_obj_path_eq);
1345   ctx.arg.ltoPartitions = args::getInteger(args, OPT_lto_partitions, 1);
1346   ctx.arg.ltoSampleProfile = args.getLastArgValue(OPT_lto_sample_profile);
1347   ctx.arg.ltoBBAddrMap =
1348       args.hasFlag(OPT_lto_basic_block_address_map,
1349                    OPT_no_lto_basic_block_address_map, false);
1350   ctx.arg.ltoBasicBlockSections =
1351       args.getLastArgValue(OPT_lto_basic_block_sections);
1352   ctx.arg.ltoUniqueBasicBlockSectionNames =
1353       args.hasFlag(OPT_lto_unique_basic_block_section_names,
1354                    OPT_no_lto_unique_basic_block_section_names, false);
1355   ctx.arg.mapFile = args.getLastArgValue(OPT_Map);
1356   ctx.arg.mipsGotSize = args::getInteger(args, OPT_mips_got_size, 0xfff0);
1357   ctx.arg.mergeArmExidx =
1358       args.hasFlag(OPT_merge_exidx_entries, OPT_no_merge_exidx_entries, true);
1359   ctx.arg.mmapOutputFile =
1360       args.hasFlag(OPT_mmap_output_file, OPT_no_mmap_output_file, true);
1361   ctx.arg.nmagic = args.hasFlag(OPT_nmagic, OPT_no_nmagic, false);
1362   ctx.arg.noinhibitExec = args.hasArg(OPT_noinhibit_exec);
1363   ctx.arg.nostdlib = args.hasArg(OPT_nostdlib);
1364   ctx.arg.oFormatBinary = isOutputFormatBinary(ctx, args);
1365   ctx.arg.omagic = args.hasFlag(OPT_omagic, OPT_no_omagic, false);
1366   ctx.arg.optRemarksFilename = args.getLastArgValue(OPT_opt_remarks_filename);
1367   ctx.arg.optStatsFilename = args.getLastArgValue(OPT_plugin_opt_stats_file);
1368 
1369   // Parse remarks hotness threshold. Valid value is either integer or 'auto'.
1370   if (auto *arg = args.getLastArg(OPT_opt_remarks_hotness_threshold)) {
1371     auto resultOrErr = remarks::parseHotnessThresholdOption(arg->getValue());
1372     if (!resultOrErr)
1373       ErrAlways(ctx) << arg->getSpelling() << ": invalid argument '"
1374                      << arg->getValue()
1375                      << "', only integer or 'auto' is supported";
1376     else
1377       ctx.arg.optRemarksHotnessThreshold = *resultOrErr;
1378   }
1379 
1380   ctx.arg.optRemarksPasses = args.getLastArgValue(OPT_opt_remarks_passes);
1381   ctx.arg.optRemarksWithHotness = args.hasArg(OPT_opt_remarks_with_hotness);
1382   ctx.arg.optRemarksFormat = args.getLastArgValue(OPT_opt_remarks_format);
1383   ctx.arg.optimize = args::getInteger(args, OPT_O, 1);
1384   ctx.arg.orphanHandling = getOrphanHandling(ctx, args);
1385   ctx.arg.outputFile = args.getLastArgValue(OPT_o);
1386   ctx.arg.packageMetadata = args.getLastArgValue(OPT_package_metadata);
1387   ctx.arg.pie = args.hasFlag(OPT_pie, OPT_no_pie, false);
1388   ctx.arg.printIcfSections =
1389       args.hasFlag(OPT_print_icf_sections, OPT_no_print_icf_sections, false);
1390   ctx.arg.printGcSections =
1391       args.hasFlag(OPT_print_gc_sections, OPT_no_print_gc_sections, false);
1392   ctx.arg.printMemoryUsage = args.hasArg(OPT_print_memory_usage);
1393   ctx.arg.printArchiveStats = args.getLastArgValue(OPT_print_archive_stats);
1394   ctx.arg.printSymbolOrder = args.getLastArgValue(OPT_print_symbol_order);
1395   ctx.arg.rejectMismatch = !args.hasArg(OPT_no_warn_mismatch);
1396   ctx.arg.relax = args.hasFlag(OPT_relax, OPT_no_relax, true);
1397   ctx.arg.relaxGP = args.hasFlag(OPT_relax_gp, OPT_no_relax_gp, false);
1398   ctx.arg.rpath = getRpath(args);
1399   ctx.arg.relocatable = args.hasArg(OPT_relocatable);
1400   ctx.arg.resolveGroups =
1401       !args.hasArg(OPT_relocatable) || args.hasArg(OPT_force_group_allocation);
1402 
1403   if (args.hasArg(OPT_save_temps)) {
1404     // --save-temps implies saving all temps.
1405     for (const char *s : saveTempsValues)
1406       ctx.arg.saveTempsArgs.insert(s);
1407   } else {
1408     for (auto *arg : args.filtered(OPT_save_temps_eq)) {
1409       StringRef s = arg->getValue();
1410       if (llvm::is_contained(saveTempsValues, s))
1411         ctx.arg.saveTempsArgs.insert(s);
1412       else
1413         ErrAlways(ctx) << "unknown --save-temps value: " << s;
1414     }
1415   }
1416 
1417   ctx.arg.searchPaths = args::getStrings(args, OPT_library_path);
1418   ctx.arg.sectionStartMap = getSectionStartMap(ctx, args);
1419   ctx.arg.shared = args.hasArg(OPT_shared);
1420   if (args.hasArg(OPT_randomize_section_padding))
1421     ctx.arg.randomizeSectionPadding =
1422         args::getInteger(args, OPT_randomize_section_padding, 0);
1423   ctx.arg.singleRoRx = !args.hasFlag(OPT_rosegment, OPT_no_rosegment, true);
1424   ctx.arg.soName = args.getLastArgValue(OPT_soname);
1425   ctx.arg.sortSection = getSortSection(ctx, args);
1426   ctx.arg.splitStackAdjustSize =
1427       args::getInteger(args, OPT_split_stack_adjust_size, 16384);
1428   ctx.arg.zSectionHeader =
1429       getZFlag(args, "sectionheader", "nosectionheader", true);
1430   ctx.arg.strip = getStrip(ctx, args); // needs zSectionHeader
1431   ctx.arg.sysroot = args.getLastArgValue(OPT_sysroot);
1432   ctx.arg.target1Rel = args.hasFlag(OPT_target1_rel, OPT_target1_abs, false);
1433   ctx.arg.target2 = getTarget2(ctx, args);
1434   ctx.arg.thinLTOCacheDir = args.getLastArgValue(OPT_thinlto_cache_dir);
1435   ctx.arg.thinLTOCachePolicy = CHECK(
1436       parseCachePruningPolicy(args.getLastArgValue(OPT_thinlto_cache_policy)),
1437       "--thinlto-cache-policy: invalid cache policy");
1438   ctx.arg.thinLTOEmitImportsFiles = args.hasArg(OPT_thinlto_emit_imports_files);
1439   ctx.arg.thinLTOEmitIndexFiles = args.hasArg(OPT_thinlto_emit_index_files) ||
1440                                   args.hasArg(OPT_thinlto_index_only) ||
1441                                   args.hasArg(OPT_thinlto_index_only_eq);
1442   ctx.arg.thinLTOIndexOnly = args.hasArg(OPT_thinlto_index_only) ||
1443                              args.hasArg(OPT_thinlto_index_only_eq);
1444   ctx.arg.thinLTOIndexOnlyArg = args.getLastArgValue(OPT_thinlto_index_only_eq);
1445   ctx.arg.thinLTOObjectSuffixReplace =
1446       getOldNewOptions(ctx, args, OPT_thinlto_object_suffix_replace_eq);
1447   std::tie(ctx.arg.thinLTOPrefixReplaceOld, ctx.arg.thinLTOPrefixReplaceNew,
1448            ctx.arg.thinLTOPrefixReplaceNativeObject) =
1449       getOldNewOptionsExtra(ctx, args, OPT_thinlto_prefix_replace_eq);
1450   if (ctx.arg.thinLTOEmitIndexFiles && !ctx.arg.thinLTOIndexOnly) {
1451     if (args.hasArg(OPT_thinlto_object_suffix_replace_eq))
1452       ErrAlways(ctx) << "--thinlto-object-suffix-replace is not supported with "
1453                         "--thinlto-emit-index-files";
1454     else if (args.hasArg(OPT_thinlto_prefix_replace_eq))
1455       ErrAlways(ctx) << "--thinlto-prefix-replace is not supported with "
1456                         "--thinlto-emit-index-files";
1457   }
1458   if (!ctx.arg.thinLTOPrefixReplaceNativeObject.empty() &&
1459       ctx.arg.thinLTOIndexOnlyArg.empty()) {
1460     ErrAlways(ctx)
1461         << "--thinlto-prefix-replace=old_dir;new_dir;obj_dir must be used with "
1462            "--thinlto-index-only=";
1463   }
1464   ctx.arg.thinLTOModulesToCompile =
1465       args::getStrings(args, OPT_thinlto_single_module_eq);
1466   ctx.arg.timeTraceEnabled =
1467       args.hasArg(OPT_time_trace_eq) && !ctx.e.disableOutput;
1468   ctx.arg.timeTraceGranularity =
1469       args::getInteger(args, OPT_time_trace_granularity, 500);
1470   ctx.arg.trace = args.hasArg(OPT_trace);
1471   ctx.arg.undefined = args::getStrings(args, OPT_undefined);
1472   ctx.arg.undefinedVersion =
1473       args.hasFlag(OPT_undefined_version, OPT_no_undefined_version, false);
1474   ctx.arg.unique = args.hasArg(OPT_unique);
1475   ctx.arg.useAndroidRelrTags = args.hasFlag(
1476       OPT_use_android_relr_tags, OPT_no_use_android_relr_tags, false);
1477   ctx.arg.warnBackrefs =
1478       args.hasFlag(OPT_warn_backrefs, OPT_no_warn_backrefs, false);
1479   ctx.arg.warnCommon = args.hasFlag(OPT_warn_common, OPT_no_warn_common, false);
1480   ctx.arg.warnSymbolOrdering =
1481       args.hasFlag(OPT_warn_symbol_ordering, OPT_no_warn_symbol_ordering, true);
1482   ctx.arg.whyExtract = args.getLastArgValue(OPT_why_extract);
1483   ctx.arg.zCombreloc = getZFlag(args, "combreloc", "nocombreloc", true);
1484   ctx.arg.zCopyreloc = getZFlag(args, "copyreloc", "nocopyreloc", true);
1485   ctx.arg.zForceBti = hasZOption(args, "force-bti");
1486   ctx.arg.zForceIbt = hasZOption(args, "force-ibt");
1487   ctx.arg.zGcs = getZGcs(ctx, args);
1488   ctx.arg.zGlobal = hasZOption(args, "global");
1489   ctx.arg.zGnustack = getZGnuStack(args);
1490   ctx.arg.zHazardplt = hasZOption(args, "hazardplt");
1491   ctx.arg.zIfuncNoplt = hasZOption(args, "ifunc-noplt");
1492   ctx.arg.zInitfirst = hasZOption(args, "initfirst");
1493   ctx.arg.zInterpose = hasZOption(args, "interpose");
1494   ctx.arg.zKeepTextSectionPrefix = getZFlag(
1495       args, "keep-text-section-prefix", "nokeep-text-section-prefix", false);
1496   ctx.arg.zLrodataAfterBss =
1497       getZFlag(args, "lrodata-after-bss", "nolrodata-after-bss", false);
1498   ctx.arg.zNoBtCfi = hasZOption(args, "nobtcfi");
1499   ctx.arg.zNodefaultlib = hasZOption(args, "nodefaultlib");
1500   ctx.arg.zNodelete = hasZOption(args, "nodelete");
1501   ctx.arg.zNodlopen = hasZOption(args, "nodlopen");
1502   ctx.arg.zNow = getZFlag(args, "now", "lazy", false);
1503   ctx.arg.zOrigin = hasZOption(args, "origin");
1504   ctx.arg.zPacPlt = hasZOption(args, "pac-plt");
1505   ctx.arg.zRelro = getZFlag(args, "relro", "norelro", true);
1506   ctx.arg.zRetpolineplt = hasZOption(args, "retpolineplt");
1507   ctx.arg.zRodynamic = hasZOption(args, "rodynamic");
1508   ctx.arg.zSeparate = getZSeparate(args);
1509   ctx.arg.zShstk = hasZOption(args, "shstk");
1510   ctx.arg.zStackSize = args::getZOptionValue(args, OPT_z, "stack-size", 0);
1511   ctx.arg.zStartStopGC =
1512       getZFlag(args, "start-stop-gc", "nostart-stop-gc", true);
1513   ctx.arg.zStartStopVisibility = getZStartStopVisibility(ctx, args);
1514   ctx.arg.zText = getZFlag(args, "text", "notext", true);
1515   ctx.arg.zWxneeded = hasZOption(args, "wxneeded");
1516   setUnresolvedSymbolPolicy(ctx, args);
1517   ctx.arg.power10Stubs = args.getLastArgValue(OPT_power10_stubs_eq) != "no";
1518 
1519   if (opt::Arg *arg = args.getLastArg(OPT_eb, OPT_el)) {
1520     if (arg->getOption().matches(OPT_eb))
1521       ctx.arg.optEB = true;
1522     else
1523       ctx.arg.optEL = true;
1524   }
1525 
1526   for (opt::Arg *arg : args.filtered(OPT_remap_inputs)) {
1527     StringRef value(arg->getValue());
1528     remapInputs(ctx, value, arg->getSpelling());
1529   }
1530   for (opt::Arg *arg : args.filtered(OPT_remap_inputs_file)) {
1531     StringRef filename(arg->getValue());
1532     std::optional<MemoryBufferRef> buffer = readFile(ctx, filename);
1533     if (!buffer)
1534       continue;
1535     // Parse 'from-glob=to-file' lines, ignoring #-led comments.
1536     for (auto [lineno, line] : llvm::enumerate(args::getLines(*buffer)))
1537       if (remapInputs(ctx, line, filename + ":" + Twine(lineno + 1)))
1538         break;
1539   }
1540 
1541   for (opt::Arg *arg : args.filtered(OPT_shuffle_sections)) {
1542     constexpr StringRef errPrefix = "--shuffle-sections=: ";
1543     std::pair<StringRef, StringRef> kv = StringRef(arg->getValue()).split('=');
1544     if (kv.first.empty() || kv.second.empty()) {
1545       ErrAlways(ctx) << errPrefix << "expected <section_glob>=<seed>, but got '"
1546                      << arg->getValue() << "'";
1547       continue;
1548     }
1549     // Signed so that <section_glob>=-1 is allowed.
1550     int64_t v;
1551     if (!to_integer(kv.second, v))
1552       ErrAlways(ctx) << errPrefix << "expected an integer, but got '"
1553                      << kv.second << "'";
1554     else if (Expected<GlobPattern> pat = GlobPattern::create(kv.first))
1555       ctx.arg.shuffleSections.emplace_back(std::move(*pat), uint32_t(v));
1556     else
1557       ErrAlways(ctx) << errPrefix << pat.takeError() << ": " << kv.first;
1558   }
1559 
1560   auto reports = {std::make_pair("bti-report", &ctx.arg.zBtiReport),
1561                   std::make_pair("cet-report", &ctx.arg.zCetReport),
1562                   std::make_pair("gcs-report", &ctx.arg.zGcsReport),
1563                   std::make_pair("pauth-report", &ctx.arg.zPauthReport)};
1564   for (opt::Arg *arg : args.filtered(OPT_z)) {
1565     std::pair<StringRef, StringRef> option =
1566         StringRef(arg->getValue()).split('=');
1567     for (auto reportArg : reports) {
1568       if (option.first != reportArg.first)
1569         continue;
1570       arg->claim();
1571       if (!isValidReportString(option.second)) {
1572         ErrAlways(ctx) << "-z " << reportArg.first << "= parameter "
1573                        << option.second << " is not recognized";
1574         continue;
1575       }
1576       *reportArg.second = option.second;
1577     }
1578   }
1579 
1580   for (opt::Arg *arg : args.filtered(OPT_compress_sections)) {
1581     SmallVector<StringRef, 0> fields;
1582     StringRef(arg->getValue()).split(fields, '=');
1583     if (fields.size() != 2 || fields[1].empty()) {
1584       ErrAlways(ctx) << arg->getSpelling()
1585                      << ": parse error, not 'section-glob=[none|zlib|zstd]'";
1586       continue;
1587     }
1588     auto [typeStr, levelStr] = fields[1].split(':');
1589     auto type = getCompressionType(ctx, typeStr, arg->getSpelling());
1590     unsigned level = 0;
1591     if (fields[1].size() != typeStr.size() &&
1592         !llvm::to_integer(levelStr, level)) {
1593       ErrAlways(ctx)
1594           << arg->getSpelling()
1595           << ": expected a non-negative integer compression level, but got '"
1596           << levelStr << "'";
1597     }
1598     if (Expected<GlobPattern> pat = GlobPattern::create(fields[0])) {
1599       ctx.arg.compressSections.emplace_back(std::move(*pat), type, level);
1600     } else {
1601       ErrAlways(ctx) << arg->getSpelling() << ": " << pat.takeError();
1602       continue;
1603     }
1604   }
1605 
1606   for (opt::Arg *arg : args.filtered(OPT_z)) {
1607     std::pair<StringRef, StringRef> option =
1608         StringRef(arg->getValue()).split('=');
1609     if (option.first != "dead-reloc-in-nonalloc")
1610       continue;
1611     arg->claim();
1612     constexpr StringRef errPrefix = "-z dead-reloc-in-nonalloc=: ";
1613     std::pair<StringRef, StringRef> kv = option.second.split('=');
1614     if (kv.first.empty() || kv.second.empty()) {
1615       ErrAlways(ctx) << errPrefix << "expected <section_glob>=<value>";
1616       continue;
1617     }
1618     uint64_t v;
1619     if (!to_integer(kv.second, v))
1620       ErrAlways(ctx) << errPrefix
1621                      << "expected a non-negative integer, but got '"
1622                      << kv.second << "'";
1623     else if (Expected<GlobPattern> pat = GlobPattern::create(kv.first))
1624       ctx.arg.deadRelocInNonAlloc.emplace_back(std::move(*pat), v);
1625     else
1626       ErrAlways(ctx) << errPrefix << pat.takeError() << ": " << kv.first;
1627   }
1628 
1629   cl::ResetAllOptionOccurrences();
1630 
1631   // Parse LTO options.
1632   if (auto *arg = args.getLastArg(OPT_plugin_opt_mcpu_eq))
1633     parseClangOption(ctx, ctx.saver.save("-mcpu=" + StringRef(arg->getValue())),
1634                      arg->getSpelling());
1635 
1636   for (opt::Arg *arg : args.filtered(OPT_plugin_opt_eq_minus))
1637     parseClangOption(ctx, std::string("-") + arg->getValue(),
1638                      arg->getSpelling());
1639 
1640   // GCC collect2 passes -plugin-opt=path/to/lto-wrapper with an absolute or
1641   // relative path. Just ignore. If not ended with "lto-wrapper" (or
1642   // "lto-wrapper.exe" for GCC cross-compiled for Windows), consider it an
1643   // unsupported LLVMgold.so option and error.
1644   for (opt::Arg *arg : args.filtered(OPT_plugin_opt_eq)) {
1645     StringRef v(arg->getValue());
1646     if (!v.ends_with("lto-wrapper") && !v.ends_with("lto-wrapper.exe"))
1647       ErrAlways(ctx) << arg->getSpelling() << ": unknown plugin option '"
1648                      << arg->getValue() << "'";
1649   }
1650 
1651   ctx.arg.passPlugins = args::getStrings(args, OPT_load_pass_plugins);
1652 
1653   // Parse -mllvm options.
1654   for (const auto *arg : args.filtered(OPT_mllvm)) {
1655     parseClangOption(ctx, arg->getValue(), arg->getSpelling());
1656     ctx.arg.mllvmOpts.emplace_back(arg->getValue());
1657   }
1658 
1659   ctx.arg.ltoKind = LtoKind::Default;
1660   if (auto *arg = args.getLastArg(OPT_lto)) {
1661     StringRef s = arg->getValue();
1662     if (s == "thin")
1663       ctx.arg.ltoKind = LtoKind::UnifiedThin;
1664     else if (s == "full")
1665       ctx.arg.ltoKind = LtoKind::UnifiedRegular;
1666     else if (s == "default")
1667       ctx.arg.ltoKind = LtoKind::Default;
1668     else
1669       ErrAlways(ctx) << "unknown LTO mode: " << s;
1670   }
1671 
1672   // --threads= takes a positive integer and provides the default value for
1673   // --thinlto-jobs=. If unspecified, cap the number of threads since
1674   // overhead outweighs optimization for used parallel algorithms for the
1675   // non-LTO parts.
1676   if (auto *arg = args.getLastArg(OPT_threads)) {
1677     StringRef v(arg->getValue());
1678     unsigned threads = 0;
1679     if (!llvm::to_integer(v, threads, 0) || threads == 0)
1680       ErrAlways(ctx) << arg->getSpelling()
1681                      << ": expected a positive integer, but got '"
1682                      << arg->getValue() << "'";
1683     parallel::strategy = hardware_concurrency(threads);
1684     ctx.arg.thinLTOJobs = v;
1685   } else if (parallel::strategy.compute_thread_count() > 16) {
1686     Log(ctx) << "set maximum concurrency to 16, specify --threads= to change";
1687     parallel::strategy = hardware_concurrency(16);
1688   }
1689   if (auto *arg = args.getLastArg(OPT_thinlto_jobs_eq))
1690     ctx.arg.thinLTOJobs = arg->getValue();
1691   ctx.arg.threadCount = parallel::strategy.compute_thread_count();
1692 
1693   if (ctx.arg.ltoPartitions == 0)
1694     ErrAlways(ctx) << "--lto-partitions: number of threads must be > 0";
1695   if (!get_threadpool_strategy(ctx.arg.thinLTOJobs))
1696     ErrAlways(ctx) << "--thinlto-jobs: invalid job count: "
1697                    << ctx.arg.thinLTOJobs;
1698 
1699   if (ctx.arg.splitStackAdjustSize < 0)
1700     ErrAlways(ctx) << "--split-stack-adjust-size: size must be >= 0";
1701 
1702   // The text segment is traditionally the first segment, whose address equals
1703   // the base address. However, lld places the R PT_LOAD first. -Ttext-segment
1704   // is an old-fashioned option that does not play well with lld's layout.
1705   // Suggest --image-base as a likely alternative.
1706   if (args.hasArg(OPT_Ttext_segment))
1707     ErrAlways(ctx)
1708         << "-Ttext-segment is not supported. Use --image-base if you "
1709            "intend to set the base address";
1710 
1711   // Parse ELF{32,64}{LE,BE} and CPU type.
1712   if (auto *arg = args.getLastArg(OPT_m)) {
1713     StringRef s = arg->getValue();
1714     std::tie(ctx.arg.ekind, ctx.arg.emachine, ctx.arg.osabi) =
1715         parseEmulation(ctx, s);
1716     ctx.arg.mipsN32Abi =
1717         (s.starts_with("elf32btsmipn32") || s.starts_with("elf32ltsmipn32"));
1718     ctx.arg.emulation = s;
1719   }
1720 
1721   // Parse --hash-style={sysv,gnu,both}.
1722   if (auto *arg = args.getLastArg(OPT_hash_style)) {
1723     StringRef s = arg->getValue();
1724     if (s == "sysv")
1725       ctx.arg.sysvHash = true;
1726     else if (s == "gnu")
1727       ctx.arg.gnuHash = true;
1728     else if (s == "both")
1729       ctx.arg.sysvHash = ctx.arg.gnuHash = true;
1730     else
1731       ErrAlways(ctx) << "unknown --hash-style: " << s;
1732   }
1733 
1734   if (args.hasArg(OPT_print_map))
1735     ctx.arg.mapFile = "-";
1736 
1737   // Page alignment can be disabled by the -n (--nmagic) and -N (--omagic).
1738   // As PT_GNU_RELRO relies on Paging, do not create it when we have disabled
1739   // it. Also disable RELRO for -r.
1740   if (ctx.arg.nmagic || ctx.arg.omagic || ctx.arg.relocatable)
1741     ctx.arg.zRelro = false;
1742 
1743   std::tie(ctx.arg.buildId, ctx.arg.buildIdVector) = getBuildId(ctx, args);
1744 
1745   if (getZFlag(args, "pack-relative-relocs", "nopack-relative-relocs", false)) {
1746     ctx.arg.relrGlibc = true;
1747     ctx.arg.relrPackDynRelocs = true;
1748   } else {
1749     std::tie(ctx.arg.androidPackDynRelocs, ctx.arg.relrPackDynRelocs) =
1750         getPackDynRelocs(ctx, args);
1751   }
1752 
1753   if (auto *arg = args.getLastArg(OPT_symbol_ordering_file)){
1754     if (args.hasArg(OPT_call_graph_ordering_file))
1755       ErrAlways(ctx) << "--symbol-ordering-file and --call-graph-order-file "
1756                         "may not be used together";
1757     if (auto buffer = readFile(ctx, arg->getValue()))
1758       ctx.arg.symbolOrderingFile = getSymbolOrderingFile(ctx, *buffer);
1759   }
1760 
1761   assert(ctx.arg.versionDefinitions.empty());
1762   ctx.arg.versionDefinitions.push_back(
1763       {"local", (uint16_t)VER_NDX_LOCAL, {}, {}});
1764   ctx.arg.versionDefinitions.push_back(
1765       {"global", (uint16_t)VER_NDX_GLOBAL, {}, {}});
1766 
1767   // If --retain-symbol-file is used, we'll keep only the symbols listed in
1768   // the file and discard all others.
1769   if (auto *arg = args.getLastArg(OPT_retain_symbols_file)) {
1770     ctx.arg.versionDefinitions[VER_NDX_LOCAL].nonLocalPatterns.push_back(
1771         {"*", /*isExternCpp=*/false, /*hasWildcard=*/true});
1772     if (std::optional<MemoryBufferRef> buffer = readFile(ctx, arg->getValue()))
1773       for (StringRef s : args::getLines(*buffer))
1774         ctx.arg.versionDefinitions[VER_NDX_GLOBAL].nonLocalPatterns.push_back(
1775             {s, /*isExternCpp=*/false, /*hasWildcard=*/false});
1776   }
1777 
1778   for (opt::Arg *arg : args.filtered(OPT_warn_backrefs_exclude)) {
1779     StringRef pattern(arg->getValue());
1780     if (Expected<GlobPattern> pat = GlobPattern::create(pattern))
1781       ctx.arg.warnBackrefsExclude.push_back(std::move(*pat));
1782     else
1783       ErrAlways(ctx) << arg->getSpelling() << ": " << pat.takeError() << ": "
1784                      << pattern;
1785   }
1786 
1787   // For -no-pie and -pie, --export-dynamic-symbol specifies defined symbols
1788   // which should be exported. For -shared, references to matched non-local
1789   // STV_DEFAULT symbols are not bound to definitions within the shared object,
1790   // even if other options express a symbolic intention: -Bsymbolic,
1791   // -Bsymbolic-functions (if STT_FUNC), --dynamic-list.
1792   for (auto *arg : args.filtered(OPT_export_dynamic_symbol))
1793     ctx.arg.dynamicList.push_back(
1794         {arg->getValue(), /*isExternCpp=*/false,
1795          /*hasWildcard=*/hasWildcard(arg->getValue())});
1796 
1797   // --export-dynamic-symbol-list specifies a list of --export-dynamic-symbol
1798   // patterns. --dynamic-list is --export-dynamic-symbol-list plus -Bsymbolic
1799   // like semantics.
1800   ctx.arg.symbolic =
1801       ctx.arg.bsymbolic == BsymbolicKind::All || args.hasArg(OPT_dynamic_list);
1802   for (auto *arg :
1803        args.filtered(OPT_dynamic_list, OPT_export_dynamic_symbol_list))
1804     if (std::optional<MemoryBufferRef> buffer = readFile(ctx, arg->getValue()))
1805       readDynamicList(ctx, *buffer);
1806 
1807   for (auto *arg : args.filtered(OPT_version_script))
1808     if (std::optional<std::string> path = searchScript(ctx, arg->getValue())) {
1809       if (std::optional<MemoryBufferRef> buffer = readFile(ctx, *path))
1810         readVersionScript(ctx, *buffer);
1811     } else {
1812       ErrAlways(ctx) << "cannot find version script " << arg->getValue();
1813     }
1814 }
1815 
1816 // Some Config members do not directly correspond to any particular
1817 // command line options, but computed based on other Config values.
1818 // This function initialize such members. See Config.h for the details
1819 // of these values.
1820 static void setConfigs(Ctx &ctx, opt::InputArgList &args) {
1821   ELFKind k = ctx.arg.ekind;
1822   uint16_t m = ctx.arg.emachine;
1823 
1824   ctx.arg.copyRelocs = (ctx.arg.relocatable || ctx.arg.emitRelocs);
1825   ctx.arg.is64 = (k == ELF64LEKind || k == ELF64BEKind);
1826   ctx.arg.isLE = (k == ELF32LEKind || k == ELF64LEKind);
1827   ctx.arg.endianness = ctx.arg.isLE ? endianness::little : endianness::big;
1828   ctx.arg.isMips64EL = (k == ELF64LEKind && m == EM_MIPS);
1829   ctx.arg.isPic = ctx.arg.pie || ctx.arg.shared;
1830   ctx.arg.picThunk = args.hasArg(OPT_pic_veneer, ctx.arg.isPic);
1831   ctx.arg.wordsize = ctx.arg.is64 ? 8 : 4;
1832 
1833   // ELF defines two different ways to store relocation addends as shown below:
1834   //
1835   //  Rel: Addends are stored to the location where relocations are applied. It
1836   //  cannot pack the full range of addend values for all relocation types, but
1837   //  this only affects relocation types that we don't support emitting as
1838   //  dynamic relocations (see getDynRel).
1839   //  Rela: Addends are stored as part of relocation entry.
1840   //
1841   // In other words, Rela makes it easy to read addends at the price of extra
1842   // 4 or 8 byte for each relocation entry.
1843   //
1844   // We pick the format for dynamic relocations according to the psABI for each
1845   // processor, but a contrary choice can be made if the dynamic loader
1846   // supports.
1847   ctx.arg.isRela = getIsRela(ctx, args);
1848 
1849   // If the output uses REL relocations we must store the dynamic relocation
1850   // addends to the output sections. We also store addends for RELA relocations
1851   // if --apply-dynamic-relocs is used.
1852   // We default to not writing the addends when using RELA relocations since
1853   // any standard conforming tool can find it in r_addend.
1854   ctx.arg.writeAddends = args.hasFlag(OPT_apply_dynamic_relocs,
1855                                       OPT_no_apply_dynamic_relocs, false) ||
1856                          !ctx.arg.isRela;
1857   // Validation of dynamic relocation addends is on by default for assertions
1858   // builds and disabled otherwise. This check is enabled when writeAddends is
1859   // true.
1860 #ifndef NDEBUG
1861   bool checkDynamicRelocsDefault = true;
1862 #else
1863   bool checkDynamicRelocsDefault = false;
1864 #endif
1865   ctx.arg.checkDynamicRelocs =
1866       args.hasFlag(OPT_check_dynamic_relocations,
1867                    OPT_no_check_dynamic_relocations, checkDynamicRelocsDefault);
1868   ctx.arg.tocOptimize =
1869       args.hasFlag(OPT_toc_optimize, OPT_no_toc_optimize, m == EM_PPC64);
1870   ctx.arg.pcRelOptimize =
1871       args.hasFlag(OPT_pcrel_optimize, OPT_no_pcrel_optimize, m == EM_PPC64);
1872 
1873   if (!args.hasArg(OPT_hash_style)) {
1874     if (ctx.arg.emachine == EM_MIPS)
1875       ctx.arg.sysvHash = true;
1876     else
1877       ctx.arg.sysvHash = ctx.arg.gnuHash = true;
1878   }
1879 
1880   // Set default entry point and output file if not specified by command line or
1881   // linker scripts.
1882   ctx.arg.warnMissingEntry =
1883       (!ctx.arg.entry.empty() || (!ctx.arg.shared && !ctx.arg.relocatable));
1884   if (ctx.arg.entry.empty() && !ctx.arg.relocatable)
1885     ctx.arg.entry = ctx.arg.emachine == EM_MIPS ? "__start" : "_start";
1886   if (ctx.arg.outputFile.empty())
1887     ctx.arg.outputFile = "a.out";
1888 
1889   // Fail early if the output file or map file is not writable. If a user has a
1890   // long link, e.g. due to a large LTO link, they do not wish to run it and
1891   // find that it failed because there was a mistake in their command-line.
1892   {
1893     llvm::TimeTraceScope timeScope("Create output files");
1894     if (auto e = tryCreateFile(ctx.arg.outputFile))
1895       ErrAlways(ctx) << "cannot open output file " << ctx.arg.outputFile << ": "
1896                      << e.message();
1897     if (auto e = tryCreateFile(ctx.arg.mapFile))
1898       ErrAlways(ctx) << "cannot open map file " << ctx.arg.mapFile << ": "
1899                      << e.message();
1900     if (auto e = tryCreateFile(ctx.arg.whyExtract))
1901       ErrAlways(ctx) << "cannot open --why-extract= file " << ctx.arg.whyExtract
1902                      << ": " << e.message();
1903   }
1904 }
1905 
1906 static bool isFormatBinary(Ctx &ctx, StringRef s) {
1907   if (s == "binary")
1908     return true;
1909   if (s == "elf" || s == "default")
1910     return false;
1911   ErrAlways(ctx) << "unknown --format value: " << s
1912                  << " (supported formats: elf, default, binary)";
1913   return false;
1914 }
1915 
1916 void LinkerDriver::createFiles(opt::InputArgList &args) {
1917   llvm::TimeTraceScope timeScope("Load input files");
1918   // For --{push,pop}-state.
1919   std::vector<std::tuple<bool, bool, bool>> stack;
1920 
1921   // -r implies -Bstatic and has precedence over -Bdynamic.
1922   ctx.arg.isStatic = ctx.arg.relocatable;
1923 
1924   // Iterate over argv to process input files and positional arguments.
1925   std::optional<MemoryBufferRef> defaultScript;
1926   nextGroupId = 0;
1927   isInGroup = false;
1928   bool hasInput = false, hasScript = false;
1929   for (auto *arg : args) {
1930     switch (arg->getOption().getID()) {
1931     case OPT_library:
1932       addLibrary(arg->getValue());
1933       hasInput = true;
1934       break;
1935     case OPT_INPUT:
1936       addFile(arg->getValue(), /*withLOption=*/false);
1937       hasInput = true;
1938       break;
1939     case OPT_defsym: {
1940       readDefsym(ctx, MemoryBufferRef(arg->getValue(), "--defsym"));
1941       break;
1942     }
1943     case OPT_script:
1944     case OPT_default_script:
1945       if (std::optional<std::string> path =
1946               searchScript(ctx, arg->getValue())) {
1947         if (std::optional<MemoryBufferRef> mb = readFile(ctx, *path)) {
1948           if (arg->getOption().matches(OPT_default_script)) {
1949             defaultScript = mb;
1950           } else {
1951             readLinkerScript(ctx, *mb);
1952             hasScript = true;
1953           }
1954         }
1955         break;
1956       }
1957       ErrAlways(ctx) << "cannot find linker script " << arg->getValue();
1958       break;
1959     case OPT_as_needed:
1960       ctx.arg.asNeeded = true;
1961       break;
1962     case OPT_format:
1963       ctx.arg.formatBinary = isFormatBinary(ctx, arg->getValue());
1964       break;
1965     case OPT_no_as_needed:
1966       ctx.arg.asNeeded = false;
1967       break;
1968     case OPT_Bstatic:
1969     case OPT_omagic:
1970     case OPT_nmagic:
1971       ctx.arg.isStatic = true;
1972       break;
1973     case OPT_Bdynamic:
1974       if (!ctx.arg.relocatable)
1975         ctx.arg.isStatic = false;
1976       break;
1977     case OPT_whole_archive:
1978       inWholeArchive = true;
1979       break;
1980     case OPT_no_whole_archive:
1981       inWholeArchive = false;
1982       break;
1983     case OPT_just_symbols:
1984       if (std::optional<MemoryBufferRef> mb = readFile(ctx, arg->getValue())) {
1985         files.push_back(createObjFile(ctx, *mb));
1986         files.back()->justSymbols = true;
1987       }
1988       break;
1989     case OPT_in_implib:
1990       if (armCmseImpLib)
1991         ErrAlways(ctx) << "multiple CMSE import libraries not supported";
1992       else if (std::optional<MemoryBufferRef> mb =
1993                    readFile(ctx, arg->getValue()))
1994         armCmseImpLib = createObjFile(ctx, *mb);
1995       break;
1996     case OPT_start_group:
1997       if (isInGroup)
1998         ErrAlways(ctx) << "nested --start-group";
1999       isInGroup = true;
2000       break;
2001     case OPT_end_group:
2002       if (!isInGroup)
2003         ErrAlways(ctx) << "stray --end-group";
2004       isInGroup = false;
2005       ++nextGroupId;
2006       break;
2007     case OPT_start_lib:
2008       if (inLib)
2009         ErrAlways(ctx) << "nested --start-lib";
2010       if (isInGroup)
2011         ErrAlways(ctx) << "may not nest --start-lib in --start-group";
2012       inLib = true;
2013       isInGroup = true;
2014       break;
2015     case OPT_end_lib:
2016       if (!inLib)
2017         ErrAlways(ctx) << "stray --end-lib";
2018       inLib = false;
2019       isInGroup = false;
2020       ++nextGroupId;
2021       break;
2022     case OPT_push_state:
2023       stack.emplace_back(ctx.arg.asNeeded, ctx.arg.isStatic, inWholeArchive);
2024       break;
2025     case OPT_pop_state:
2026       if (stack.empty()) {
2027         ErrAlways(ctx) << "unbalanced --push-state/--pop-state";
2028         break;
2029       }
2030       std::tie(ctx.arg.asNeeded, ctx.arg.isStatic, inWholeArchive) =
2031           stack.back();
2032       stack.pop_back();
2033       break;
2034     }
2035   }
2036 
2037   if (defaultScript && !hasScript)
2038     readLinkerScript(ctx, *defaultScript);
2039   if (files.empty() && !hasInput && errCount(ctx) == 0)
2040     ErrAlways(ctx) << "no input files";
2041 }
2042 
2043 // If -m <machine_type> was not given, infer it from object files.
2044 void LinkerDriver::inferMachineType() {
2045   if (ctx.arg.ekind != ELFNoneKind)
2046     return;
2047 
2048   bool inferred = false;
2049   for (auto &f : files) {
2050     if (f->ekind == ELFNoneKind)
2051       continue;
2052     if (!inferred) {
2053       inferred = true;
2054       ctx.arg.ekind = f->ekind;
2055       ctx.arg.emachine = f->emachine;
2056       ctx.arg.mipsN32Abi = ctx.arg.emachine == EM_MIPS && isMipsN32Abi(ctx, *f);
2057     }
2058     ctx.arg.osabi = f->osabi;
2059     if (f->osabi != ELFOSABI_NONE)
2060       return;
2061   }
2062   if (!inferred)
2063     ErrAlways(ctx)
2064         << "target emulation unknown: -m or at least one .o file required";
2065 }
2066 
2067 // Parse -z max-page-size=<value>. The default value is defined by
2068 // each target.
2069 static uint64_t getMaxPageSize(Ctx &ctx, opt::InputArgList &args) {
2070   uint64_t val = args::getZOptionValue(args, OPT_z, "max-page-size",
2071                                        ctx.target->defaultMaxPageSize);
2072   if (!isPowerOf2_64(val)) {
2073     ErrAlways(ctx) << "max-page-size: value isn't a power of 2";
2074     return ctx.target->defaultMaxPageSize;
2075   }
2076   if (ctx.arg.nmagic || ctx.arg.omagic) {
2077     if (val != ctx.target->defaultMaxPageSize)
2078       Warn(ctx)
2079           << "-z max-page-size set, but paging disabled by omagic or nmagic";
2080     return 1;
2081   }
2082   return val;
2083 }
2084 
2085 // Parse -z common-page-size=<value>. The default value is defined by
2086 // each target.
2087 static uint64_t getCommonPageSize(Ctx &ctx, opt::InputArgList &args) {
2088   uint64_t val = args::getZOptionValue(args, OPT_z, "common-page-size",
2089                                        ctx.target->defaultCommonPageSize);
2090   if (!isPowerOf2_64(val)) {
2091     ErrAlways(ctx) << "common-page-size: value isn't a power of 2";
2092     return ctx.target->defaultCommonPageSize;
2093   }
2094   if (ctx.arg.nmagic || ctx.arg.omagic) {
2095     if (val != ctx.target->defaultCommonPageSize)
2096       Warn(ctx)
2097           << "-z common-page-size set, but paging disabled by omagic or nmagic";
2098     return 1;
2099   }
2100   // commonPageSize can't be larger than maxPageSize.
2101   if (val > ctx.arg.maxPageSize)
2102     val = ctx.arg.maxPageSize;
2103   return val;
2104 }
2105 
2106 // Parses --image-base option.
2107 static std::optional<uint64_t> getImageBase(Ctx &ctx, opt::InputArgList &args) {
2108   // Because we are using `ctx.arg.maxPageSize` here, this function has to be
2109   // called after the variable is initialized.
2110   auto *arg = args.getLastArg(OPT_image_base);
2111   if (!arg)
2112     return std::nullopt;
2113 
2114   StringRef s = arg->getValue();
2115   uint64_t v;
2116   if (!to_integer(s, v)) {
2117     ErrAlways(ctx) << "--image-base: number expected, but got " << s;
2118     return 0;
2119   }
2120   if ((v % ctx.arg.maxPageSize) != 0)
2121     Warn(ctx) << "--image-base: address isn't multiple of page size: " << s;
2122   return v;
2123 }
2124 
2125 // Parses `--exclude-libs=lib,lib,...`.
2126 // The library names may be delimited by commas or colons.
2127 static DenseSet<StringRef> getExcludeLibs(opt::InputArgList &args) {
2128   DenseSet<StringRef> ret;
2129   for (auto *arg : args.filtered(OPT_exclude_libs)) {
2130     StringRef s = arg->getValue();
2131     for (;;) {
2132       size_t pos = s.find_first_of(",:");
2133       if (pos == StringRef::npos)
2134         break;
2135       ret.insert(s.substr(0, pos));
2136       s = s.substr(pos + 1);
2137     }
2138     ret.insert(s);
2139   }
2140   return ret;
2141 }
2142 
2143 // Handles the --exclude-libs option. If a static library file is specified
2144 // by the --exclude-libs option, all public symbols from the archive become
2145 // private unless otherwise specified by version scripts or something.
2146 // A special library name "ALL" means all archive files.
2147 //
2148 // This is not a popular option, but some programs such as bionic libc use it.
2149 static void excludeLibs(Ctx &ctx, opt::InputArgList &args) {
2150   DenseSet<StringRef> libs = getExcludeLibs(args);
2151   bool all = libs.count("ALL");
2152 
2153   auto visit = [&](InputFile *file) {
2154     if (file->archiveName.empty() ||
2155         !(all || libs.count(path::filename(file->archiveName))))
2156       return;
2157     ArrayRef<Symbol *> symbols = file->getSymbols();
2158     if (isa<ELFFileBase>(file))
2159       symbols = cast<ELFFileBase>(file)->getGlobalSymbols();
2160     for (Symbol *sym : symbols) {
2161       if (!sym->isUndefined() && sym->file == file) {
2162         sym->versionId = VER_NDX_LOCAL;
2163         sym->isExported = false;
2164       }
2165     }
2166   };
2167 
2168   for (ELFFileBase *file : ctx.objectFiles)
2169     visit(file);
2170 
2171   for (BitcodeFile *file : ctx.bitcodeFiles)
2172     visit(file);
2173 }
2174 
2175 // Force Sym to be entered in the output.
2176 static void handleUndefined(Ctx &ctx, Symbol *sym, const char *option) {
2177   // Since a symbol may not be used inside the program, LTO may
2178   // eliminate it. Mark the symbol as "used" to prevent it.
2179   sym->isUsedInRegularObj = true;
2180 
2181   if (!sym->isLazy())
2182     return;
2183   sym->extract(ctx);
2184   if (!ctx.arg.whyExtract.empty())
2185     ctx.whyExtractRecords.emplace_back(option, sym->file, *sym);
2186 }
2187 
2188 // As an extension to GNU linkers, lld supports a variant of `-u`
2189 // which accepts wildcard patterns. All symbols that match a given
2190 // pattern are handled as if they were given by `-u`.
2191 static void handleUndefinedGlob(Ctx &ctx, StringRef arg) {
2192   Expected<GlobPattern> pat = GlobPattern::create(arg);
2193   if (!pat) {
2194     ErrAlways(ctx) << "--undefined-glob: " << pat.takeError() << ": " << arg;
2195     return;
2196   }
2197 
2198   // Calling sym->extract() in the loop is not safe because it may add new
2199   // symbols to the symbol table, invalidating the current iterator.
2200   SmallVector<Symbol *, 0> syms;
2201   for (Symbol *sym : ctx.symtab->getSymbols())
2202     if (!sym->isPlaceholder() && pat->match(sym->getName()))
2203       syms.push_back(sym);
2204 
2205   for (Symbol *sym : syms)
2206     handleUndefined(ctx, sym, "--undefined-glob");
2207 }
2208 
2209 static void handleLibcall(Ctx &ctx, StringRef name) {
2210   Symbol *sym = ctx.symtab->find(name);
2211   if (sym && sym->isLazy() && isa<BitcodeFile>(sym->file)) {
2212     if (!ctx.arg.whyExtract.empty())
2213       ctx.whyExtractRecords.emplace_back("<libcall>", sym->file, *sym);
2214     sym->extract(ctx);
2215   }
2216 }
2217 
2218 static void writeArchiveStats(Ctx &ctx) {
2219   if (ctx.arg.printArchiveStats.empty())
2220     return;
2221 
2222   std::error_code ec;
2223   raw_fd_ostream os = ctx.openAuxiliaryFile(ctx.arg.printArchiveStats, ec);
2224   if (ec) {
2225     ErrAlways(ctx) << "--print-archive-stats=: cannot open "
2226                    << ctx.arg.printArchiveStats << ": " << ec.message();
2227     return;
2228   }
2229 
2230   os << "members\textracted\tarchive\n";
2231 
2232   SmallVector<StringRef, 0> archives;
2233   DenseMap<CachedHashStringRef, unsigned> all, extracted;
2234   for (ELFFileBase *file : ctx.objectFiles)
2235     if (file->archiveName.size())
2236       ++extracted[CachedHashStringRef(file->archiveName)];
2237   for (BitcodeFile *file : ctx.bitcodeFiles)
2238     if (file->archiveName.size())
2239       ++extracted[CachedHashStringRef(file->archiveName)];
2240   for (std::pair<StringRef, unsigned> f : ctx.driver.archiveFiles) {
2241     unsigned &v = extracted[CachedHashString(f.first)];
2242     os << f.second << '\t' << v << '\t' << f.first << '\n';
2243     // If the archive occurs multiple times, other instances have a count of 0.
2244     v = 0;
2245   }
2246 }
2247 
2248 static void writeWhyExtract(Ctx &ctx) {
2249   if (ctx.arg.whyExtract.empty())
2250     return;
2251 
2252   std::error_code ec;
2253   raw_fd_ostream os = ctx.openAuxiliaryFile(ctx.arg.whyExtract, ec);
2254   if (ec) {
2255     ErrAlways(ctx) << "cannot open --why-extract= file " << ctx.arg.whyExtract
2256                    << ": " << ec.message();
2257     return;
2258   }
2259 
2260   os << "reference\textracted\tsymbol\n";
2261   for (auto &entry : ctx.whyExtractRecords) {
2262     os << std::get<0>(entry) << '\t' << toStr(ctx, std::get<1>(entry)) << '\t'
2263        << toStr(ctx, std::get<2>(entry)) << '\n';
2264   }
2265 }
2266 
2267 static void reportBackrefs(Ctx &ctx) {
2268   for (auto &ref : ctx.backwardReferences) {
2269     const Symbol &sym = *ref.first;
2270     std::string to = toStr(ctx, ref.second.second);
2271     // Some libraries have known problems and can cause noise. Filter them out
2272     // with --warn-backrefs-exclude=. The value may look like (for --start-lib)
2273     // *.o or (archive member) *.a(*.o).
2274     bool exclude = false;
2275     for (const llvm::GlobPattern &pat : ctx.arg.warnBackrefsExclude)
2276       if (pat.match(to)) {
2277         exclude = true;
2278         break;
2279       }
2280     if (!exclude)
2281       Warn(ctx) << "backward reference detected: " << sym.getName() << " in "
2282                 << ref.second.first << " refers to " << to;
2283   }
2284 }
2285 
2286 // Handle --dependency-file=<path>. If that option is given, lld creates a
2287 // file at a given path with the following contents:
2288 //
2289 //   <output-file>: <input-file> ...
2290 //
2291 //   <input-file>:
2292 //
2293 // where <output-file> is a pathname of an output file and <input-file>
2294 // ... is a list of pathnames of all input files. `make` command can read a
2295 // file in the above format and interpret it as a dependency info. We write
2296 // phony targets for every <input-file> to avoid an error when that file is
2297 // removed.
2298 //
2299 // This option is useful if you want to make your final executable to depend
2300 // on all input files including system libraries. Here is why.
2301 //
2302 // When you write a Makefile, you usually write it so that the final
2303 // executable depends on all user-generated object files. Normally, you
2304 // don't make your executable to depend on system libraries (such as libc)
2305 // because you don't know the exact paths of libraries, even though system
2306 // libraries that are linked to your executable statically are technically a
2307 // part of your program. By using --dependency-file option, you can make
2308 // lld to dump dependency info so that you can maintain exact dependencies
2309 // easily.
2310 static void writeDependencyFile(Ctx &ctx) {
2311   std::error_code ec;
2312   raw_fd_ostream os = ctx.openAuxiliaryFile(ctx.arg.dependencyFile, ec);
2313   if (ec) {
2314     ErrAlways(ctx) << "cannot open " << ctx.arg.dependencyFile << ": "
2315                    << ec.message();
2316     return;
2317   }
2318 
2319   // We use the same escape rules as Clang/GCC which are accepted by Make/Ninja:
2320   // * A space is escaped by a backslash which itself must be escaped.
2321   // * A hash sign is escaped by a single backslash.
2322   // * $ is escapes as $$.
2323   auto printFilename = [](raw_fd_ostream &os, StringRef filename) {
2324     llvm::SmallString<256> nativePath;
2325     llvm::sys::path::native(filename.str(), nativePath);
2326     llvm::sys::path::remove_dots(nativePath, /*remove_dot_dot=*/true);
2327     for (unsigned i = 0, e = nativePath.size(); i != e; ++i) {
2328       if (nativePath[i] == '#') {
2329         os << '\\';
2330       } else if (nativePath[i] == ' ') {
2331         os << '\\';
2332         unsigned j = i;
2333         while (j > 0 && nativePath[--j] == '\\')
2334           os << '\\';
2335       } else if (nativePath[i] == '$') {
2336         os << '$';
2337       }
2338       os << nativePath[i];
2339     }
2340   };
2341 
2342   os << ctx.arg.outputFile << ":";
2343   for (StringRef path : ctx.arg.dependencyFiles) {
2344     os << " \\\n ";
2345     printFilename(os, path);
2346   }
2347   os << "\n";
2348 
2349   for (StringRef path : ctx.arg.dependencyFiles) {
2350     os << "\n";
2351     printFilename(os, path);
2352     os << ":\n";
2353   }
2354 }
2355 
2356 // Replaces common symbols with defined symbols reside in .bss sections.
2357 // This function is called after all symbol names are resolved. As a
2358 // result, the passes after the symbol resolution won't see any
2359 // symbols of type CommonSymbol.
2360 static void replaceCommonSymbols(Ctx &ctx) {
2361   llvm::TimeTraceScope timeScope("Replace common symbols");
2362   for (ELFFileBase *file : ctx.objectFiles) {
2363     if (!file->hasCommonSyms)
2364       continue;
2365     for (Symbol *sym : file->getGlobalSymbols()) {
2366       auto *s = dyn_cast<CommonSymbol>(sym);
2367       if (!s)
2368         continue;
2369 
2370       auto *bss = make<BssSection>(ctx, "COMMON", s->size, s->alignment);
2371       bss->file = s->file;
2372       ctx.inputSections.push_back(bss);
2373       Defined(ctx, s->file, StringRef(), s->binding, s->stOther, s->type,
2374               /*value=*/0, s->size, bss)
2375           .overwrite(*s);
2376     }
2377   }
2378 }
2379 
2380 // The section referred to by `s` is considered address-significant. Set the
2381 // keepUnique flag on the section if appropriate.
2382 static void markAddrsig(bool icfSafe, Symbol *s) {
2383   // We don't need to keep text sections unique under --icf=all even if they
2384   // are address-significant.
2385   if (auto *d = dyn_cast_or_null<Defined>(s))
2386     if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section))
2387       if (icfSafe || !(sec->flags & SHF_EXECINSTR))
2388         sec->keepUnique = true;
2389 }
2390 
2391 // Record sections that define symbols mentioned in --keep-unique <symbol>
2392 // and symbols referred to by address-significance tables. These sections are
2393 // ineligible for ICF.
2394 template <class ELFT>
2395 static void findKeepUniqueSections(Ctx &ctx, opt::InputArgList &args) {
2396   for (auto *arg : args.filtered(OPT_keep_unique)) {
2397     StringRef name = arg->getValue();
2398     auto *d = dyn_cast_or_null<Defined>(ctx.symtab->find(name));
2399     if (!d || !d->section) {
2400       Warn(ctx) << "could not find symbol " << name << " to keep unique";
2401       continue;
2402     }
2403     if (auto *sec = dyn_cast<InputSectionBase>(d->section))
2404       sec->keepUnique = true;
2405   }
2406 
2407   // --icf=all --ignore-data-address-equality means that we can ignore
2408   // the dynsym and address-significance tables entirely.
2409   if (ctx.arg.icf == ICFLevel::All && ctx.arg.ignoreDataAddressEquality)
2410     return;
2411 
2412   // Symbols in the dynsym could be address-significant in other executables
2413   // or DSOs, so we conservatively mark them as address-significant.
2414   bool icfSafe = ctx.arg.icf == ICFLevel::Safe;
2415   for (Symbol *sym : ctx.symtab->getSymbols())
2416     if (sym->includeInDynsym(ctx))
2417       markAddrsig(icfSafe, sym);
2418 
2419   // Visit the address-significance table in each object file and mark each
2420   // referenced symbol as address-significant.
2421   for (InputFile *f : ctx.objectFiles) {
2422     auto *obj = cast<ObjFile<ELFT>>(f);
2423     ArrayRef<Symbol *> syms = obj->getSymbols();
2424     if (obj->addrsigSec) {
2425       ArrayRef<uint8_t> contents =
2426           check(obj->getObj().getSectionContents(*obj->addrsigSec));
2427       const uint8_t *cur = contents.begin();
2428       while (cur != contents.end()) {
2429         unsigned size;
2430         const char *err = nullptr;
2431         uint64_t symIndex = decodeULEB128(cur, &size, contents.end(), &err);
2432         if (err) {
2433           Err(ctx) << f << ": could not decode addrsig section: " << err;
2434           break;
2435         }
2436         markAddrsig(icfSafe, syms[symIndex]);
2437         cur += size;
2438       }
2439     } else {
2440       // If an object file does not have an address-significance table,
2441       // conservatively mark all of its symbols as address-significant.
2442       for (Symbol *s : syms)
2443         markAddrsig(icfSafe, s);
2444     }
2445   }
2446 }
2447 
2448 // This function reads a symbol partition specification section. These sections
2449 // are used to control which partition a symbol is allocated to. See
2450 // https://lld.llvm.org/Partitions.html for more details on partitions.
2451 template <typename ELFT>
2452 static void readSymbolPartitionSection(Ctx &ctx, InputSectionBase *s) {
2453   // Read the relocation that refers to the partition's entry point symbol.
2454   Symbol *sym;
2455   const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
2456   auto readEntry = [](InputFile *file, const auto &rels) -> Symbol * {
2457     for (const auto &rel : rels)
2458       return &file->getRelocTargetSym(rel);
2459     return nullptr;
2460   };
2461   if (rels.areRelocsCrel())
2462     sym = readEntry(s->file, rels.crels);
2463   else if (rels.areRelocsRel())
2464     sym = readEntry(s->file, rels.rels);
2465   else
2466     sym = readEntry(s->file, rels.relas);
2467   if (!isa_and_nonnull<Defined>(sym) || !sym->isExported)
2468     return;
2469 
2470   StringRef partName = reinterpret_cast<const char *>(s->content().data());
2471   for (Partition &part : ctx.partitions) {
2472     if (part.name == partName) {
2473       sym->partition = part.getNumber(ctx);
2474       return;
2475     }
2476   }
2477 
2478   // Forbid partitions from being used on incompatible targets, and forbid them
2479   // from being used together with various linker features that assume a single
2480   // set of output sections.
2481   if (ctx.script->hasSectionsCommand)
2482     ErrAlways(ctx) << s->file
2483                    << ": partitions cannot be used with the SECTIONS command";
2484   if (ctx.script->hasPhdrsCommands())
2485     ErrAlways(ctx) << s->file
2486                    << ": partitions cannot be used with the PHDRS command";
2487   if (!ctx.arg.sectionStartMap.empty())
2488     ErrAlways(ctx) << s->file
2489                    << ": partitions cannot be used with "
2490                       "--section-start, -Ttext, -Tdata or -Tbss";
2491   if (ctx.arg.emachine == EM_MIPS)
2492     ErrAlways(ctx) << s->file << ": partitions cannot be used on this target";
2493 
2494   // Impose a limit of no more than 254 partitions. This limit comes from the
2495   // sizes of the Partition fields in InputSectionBase and Symbol, as well as
2496   // the amount of space devoted to the partition number in RankFlags.
2497   if (ctx.partitions.size() == 254)
2498     Fatal(ctx) << "may not have more than 254 partitions";
2499 
2500   ctx.partitions.emplace_back(ctx);
2501   Partition &newPart = ctx.partitions.back();
2502   newPart.name = partName;
2503   sym->partition = newPart.getNumber(ctx);
2504 }
2505 
2506 static void markBuffersAsDontNeed(Ctx &ctx, bool skipLinkedOutput) {
2507   // With --thinlto-index-only, all buffers are nearly unused from now on
2508   // (except symbol/section names used by infrequent passes). Mark input file
2509   // buffers as MADV_DONTNEED so that these pages can be reused by the expensive
2510   // thin link, saving memory.
2511   if (skipLinkedOutput) {
2512     for (MemoryBuffer &mb : llvm::make_pointee_range(ctx.memoryBuffers))
2513       mb.dontNeedIfMmap();
2514     return;
2515   }
2516 
2517   // Otherwise, just mark MemoryBuffers backing BitcodeFiles.
2518   DenseSet<const char *> bufs;
2519   for (BitcodeFile *file : ctx.bitcodeFiles)
2520     bufs.insert(file->mb.getBufferStart());
2521   for (BitcodeFile *file : ctx.lazyBitcodeFiles)
2522     bufs.insert(file->mb.getBufferStart());
2523   for (MemoryBuffer &mb : llvm::make_pointee_range(ctx.memoryBuffers))
2524     if (bufs.count(mb.getBufferStart()))
2525       mb.dontNeedIfMmap();
2526 }
2527 
2528 // This function is where all the optimizations of link-time
2529 // optimization takes place. When LTO is in use, some input files are
2530 // not in native object file format but in the LLVM bitcode format.
2531 // This function compiles bitcode files into a few big native files
2532 // using LLVM functions and replaces bitcode symbols with the results.
2533 // Because all bitcode files that the program consists of are passed to
2534 // the compiler at once, it can do a whole-program optimization.
2535 template <class ELFT>
2536 void LinkerDriver::compileBitcodeFiles(bool skipLinkedOutput) {
2537   llvm::TimeTraceScope timeScope("LTO");
2538   // Compile bitcode files and replace bitcode symbols.
2539   lto.reset(new BitcodeCompiler(ctx));
2540   for (BitcodeFile *file : ctx.bitcodeFiles)
2541     lto->add(*file);
2542 
2543   if (!ctx.bitcodeFiles.empty())
2544     markBuffersAsDontNeed(ctx, skipLinkedOutput);
2545 
2546   ltoObjectFiles = lto->compile();
2547   for (auto &file : ltoObjectFiles) {
2548     auto *obj = cast<ObjFile<ELFT>>(file.get());
2549     obj->parse(/*ignoreComdats=*/true);
2550 
2551     // For defined symbols in non-relocatable output,
2552     // compute isExported and parse '@'.
2553     if (!ctx.arg.relocatable)
2554       for (Symbol *sym : obj->getGlobalSymbols()) {
2555         if (!sym->isDefined())
2556           continue;
2557         if (ctx.hasDynsym && sym->includeInDynsym(ctx))
2558           sym->isExported = true;
2559         if (sym->hasVersionSuffix)
2560           sym->parseSymbolVersion(ctx);
2561       }
2562     ctx.objectFiles.push_back(obj);
2563   }
2564 }
2565 
2566 // The --wrap option is a feature to rename symbols so that you can write
2567 // wrappers for existing functions. If you pass `--wrap=foo`, all
2568 // occurrences of symbol `foo` are resolved to `__wrap_foo` (so, you are
2569 // expected to write `__wrap_foo` function as a wrapper). The original
2570 // symbol becomes accessible as `__real_foo`, so you can call that from your
2571 // wrapper.
2572 //
2573 // This data structure is instantiated for each --wrap option.
2574 struct WrappedSymbol {
2575   Symbol *sym;
2576   Symbol *real;
2577   Symbol *wrap;
2578 };
2579 
2580 // Handles --wrap option.
2581 //
2582 // This function instantiates wrapper symbols. At this point, they seem
2583 // like they are not being used at all, so we explicitly set some flags so
2584 // that LTO won't eliminate them.
2585 static std::vector<WrappedSymbol> addWrappedSymbols(Ctx &ctx,
2586                                                     opt::InputArgList &args) {
2587   std::vector<WrappedSymbol> v;
2588   DenseSet<StringRef> seen;
2589   auto &ss = ctx.saver;
2590   for (auto *arg : args.filtered(OPT_wrap)) {
2591     StringRef name = arg->getValue();
2592     if (!seen.insert(name).second)
2593       continue;
2594 
2595     Symbol *sym = ctx.symtab->find(name);
2596     if (!sym)
2597       continue;
2598 
2599     Symbol *wrap =
2600         ctx.symtab->addUnusedUndefined(ss.save("__wrap_" + name), sym->binding);
2601 
2602     // If __real_ is referenced, pull in the symbol if it is lazy. Do this after
2603     // processing __wrap_ as that may have referenced __real_.
2604     StringRef realName = ctx.saver.save("__real_" + name);
2605     if (Symbol *real = ctx.symtab->find(realName)) {
2606       ctx.symtab->addUnusedUndefined(name, sym->binding);
2607       // Update sym's binding, which will replace real's later in
2608       // SymbolTable::wrap.
2609       sym->binding = real->binding;
2610     }
2611 
2612     Symbol *real = ctx.symtab->addUnusedUndefined(realName);
2613     v.push_back({sym, real, wrap});
2614 
2615     // We want to tell LTO not to inline symbols to be overwritten
2616     // because LTO doesn't know the final symbol contents after renaming.
2617     real->scriptDefined = true;
2618     sym->scriptDefined = true;
2619 
2620     // If a symbol is referenced in any object file, bitcode file or shared
2621     // object, mark its redirection target (foo for __real_foo and __wrap_foo
2622     // for foo) as referenced after redirection, which will be used to tell LTO
2623     // to not eliminate the redirection target. If the object file defining the
2624     // symbol also references it, we cannot easily distinguish the case from
2625     // cases where the symbol is not referenced. Retain the redirection target
2626     // in this case because we choose to wrap symbol references regardless of
2627     // whether the symbol is defined
2628     // (https://sourceware.org/bugzilla/show_bug.cgi?id=26358).
2629     if (real->referenced || real->isDefined())
2630       sym->referencedAfterWrap = true;
2631     if (sym->referenced || sym->isDefined())
2632       wrap->referencedAfterWrap = true;
2633   }
2634   return v;
2635 }
2636 
2637 static void combineVersionedSymbol(Ctx &ctx, Symbol &sym,
2638                                    DenseMap<Symbol *, Symbol *> &map) {
2639   const char *suffix1 = sym.getVersionSuffix();
2640   if (suffix1[0] != '@' || suffix1[1] == '@')
2641     return;
2642 
2643   // Check the existing symbol foo. We have two special cases to handle:
2644   //
2645   // * There is a definition of foo@v1 and foo@@v1.
2646   // * There is a definition of foo@v1 and foo.
2647   Defined *sym2 = dyn_cast_or_null<Defined>(ctx.symtab->find(sym.getName()));
2648   if (!sym2)
2649     return;
2650   const char *suffix2 = sym2->getVersionSuffix();
2651   if (suffix2[0] == '@' && suffix2[1] == '@' &&
2652       strcmp(suffix1 + 1, suffix2 + 2) == 0) {
2653     // foo@v1 and foo@@v1 should be merged, so redirect foo@v1 to foo@@v1.
2654     map.try_emplace(&sym, sym2);
2655     // If both foo@v1 and foo@@v1 are defined and non-weak, report a
2656     // duplicate definition error.
2657     if (sym.isDefined()) {
2658       sym2->checkDuplicate(ctx, cast<Defined>(sym));
2659       sym2->resolve(ctx, cast<Defined>(sym));
2660     } else if (sym.isUndefined()) {
2661       sym2->resolve(ctx, cast<Undefined>(sym));
2662     } else {
2663       sym2->resolve(ctx, cast<SharedSymbol>(sym));
2664     }
2665     // Eliminate foo@v1 from the symbol table.
2666     sym.symbolKind = Symbol::PlaceholderKind;
2667     sym.isUsedInRegularObj = false;
2668   } else if (auto *sym1 = dyn_cast<Defined>(&sym)) {
2669     if (sym2->versionId > VER_NDX_GLOBAL
2670             ? ctx.arg.versionDefinitions[sym2->versionId].name == suffix1 + 1
2671             : sym1->section == sym2->section && sym1->value == sym2->value) {
2672       // Due to an assembler design flaw, if foo is defined, .symver foo,
2673       // foo@v1 defines both foo and foo@v1. Unless foo is bound to a
2674       // different version, GNU ld makes foo@v1 canonical and eliminates
2675       // foo. Emulate its behavior, otherwise we would have foo or foo@@v1
2676       // beside foo@v1. foo@v1 and foo combining does not apply if they are
2677       // not defined in the same place.
2678       map.try_emplace(sym2, &sym);
2679       sym2->symbolKind = Symbol::PlaceholderKind;
2680       sym2->isUsedInRegularObj = false;
2681     }
2682   }
2683 }
2684 
2685 // Do renaming for --wrap and foo@v1 by updating pointers to symbols.
2686 //
2687 // When this function is executed, only InputFiles and symbol table
2688 // contain pointers to symbol objects. We visit them to replace pointers,
2689 // so that wrapped symbols are swapped as instructed by the command line.
2690 static void redirectSymbols(Ctx &ctx, ArrayRef<WrappedSymbol> wrapped) {
2691   llvm::TimeTraceScope timeScope("Redirect symbols");
2692   DenseMap<Symbol *, Symbol *> map;
2693   for (const WrappedSymbol &w : wrapped) {
2694     map[w.sym] = w.wrap;
2695     map[w.real] = w.sym;
2696   }
2697 
2698   // If there are version definitions (versionDefinitions.size() > 2), enumerate
2699   // symbols with a non-default version (foo@v1) and check whether it should be
2700   // combined with foo or foo@@v1.
2701   if (ctx.arg.versionDefinitions.size() > 2)
2702     for (Symbol *sym : ctx.symtab->getSymbols())
2703       if (sym->hasVersionSuffix)
2704         combineVersionedSymbol(ctx, *sym, map);
2705 
2706   if (map.empty())
2707     return;
2708 
2709   // Update pointers in input files.
2710   parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) {
2711     for (Symbol *&sym : file->getMutableGlobalSymbols())
2712       if (Symbol *s = map.lookup(sym))
2713         sym = s;
2714   });
2715 
2716   // Update pointers in the symbol table.
2717   for (const WrappedSymbol &w : wrapped)
2718     ctx.symtab->wrap(w.sym, w.real, w.wrap);
2719 }
2720 
2721 // To enable CET (x86's hardware-assisted control flow enforcement), each
2722 // source file must be compiled with -fcf-protection. Object files compiled
2723 // with the flag contain feature flags indicating that they are compatible
2724 // with CET. We enable the feature only when all object files are compatible
2725 // with CET.
2726 //
2727 // This is also the case with AARCH64's BTI and PAC which use the similar
2728 // GNU_PROPERTY_AARCH64_FEATURE_1_AND mechanism.
2729 //
2730 // For AArch64 PAuth-enabled object files, the core info of all of them must
2731 // match. Missing info for some object files with matching info for remaining
2732 // ones can be allowed (see -z pauth-report).
2733 static void readSecurityNotes(Ctx &ctx) {
2734   if (ctx.arg.emachine != EM_386 && ctx.arg.emachine != EM_X86_64 &&
2735       ctx.arg.emachine != EM_AARCH64)
2736     return;
2737 
2738   ctx.arg.andFeatures = -1;
2739 
2740   StringRef referenceFileName;
2741   if (ctx.arg.emachine == EM_AARCH64) {
2742     auto it = llvm::find_if(ctx.objectFiles, [](const ELFFileBase *f) {
2743       return !f->aarch64PauthAbiCoreInfo.empty();
2744     });
2745     if (it != ctx.objectFiles.end()) {
2746       ctx.aarch64PauthAbiCoreInfo = (*it)->aarch64PauthAbiCoreInfo;
2747       referenceFileName = (*it)->getName();
2748     }
2749   }
2750   bool hasValidPauthAbiCoreInfo = llvm::any_of(
2751       ctx.aarch64PauthAbiCoreInfo, [](uint8_t c) { return c != 0; });
2752 
2753   auto report = [&](StringRef config) -> ELFSyncStream {
2754     if (config == "error")
2755       return {ctx, DiagLevel::Err};
2756     else if (config == "warning")
2757       return {ctx, DiagLevel::Warn};
2758     return {ctx, DiagLevel::None};
2759   };
2760   auto reportUnless = [&](StringRef config, bool cond) -> ELFSyncStream {
2761     if (cond)
2762       return {ctx, DiagLevel::None};
2763     return report(config);
2764   };
2765   for (ELFFileBase *f : ctx.objectFiles) {
2766     uint32_t features = f->andFeatures;
2767 
2768     reportUnless(ctx.arg.zBtiReport,
2769                  features & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2770         << f
2771         << ": -z bti-report: file does not have "
2772            "GNU_PROPERTY_AARCH64_FEATURE_1_BTI property";
2773 
2774     reportUnless(ctx.arg.zGcsReport,
2775                  features & GNU_PROPERTY_AARCH64_FEATURE_1_GCS)
2776         << f
2777         << ": -z gcs-report: file does not have "
2778            "GNU_PROPERTY_AARCH64_FEATURE_1_GCS property";
2779 
2780     reportUnless(ctx.arg.zCetReport, features & GNU_PROPERTY_X86_FEATURE_1_IBT)
2781         << f
2782         << ": -z cet-report: file does not have "
2783            "GNU_PROPERTY_X86_FEATURE_1_IBT property";
2784 
2785     reportUnless(ctx.arg.zCetReport,
2786                  features & GNU_PROPERTY_X86_FEATURE_1_SHSTK)
2787         << f
2788         << ": -z cet-report: file does not have "
2789            "GNU_PROPERTY_X86_FEATURE_1_SHSTK property";
2790 
2791     if (ctx.arg.zForceBti && !(features & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)) {
2792       features |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
2793       if (ctx.arg.zBtiReport == "none")
2794         Warn(ctx) << f
2795                   << ": -z force-bti: file does not have "
2796                      "GNU_PROPERTY_AARCH64_FEATURE_1_BTI property";
2797     } else if (ctx.arg.zForceIbt &&
2798                !(features & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
2799       if (ctx.arg.zCetReport == "none")
2800         Warn(ctx) << f
2801                   << ": -z force-ibt: file does not have "
2802                      "GNU_PROPERTY_X86_FEATURE_1_IBT property";
2803       features |= GNU_PROPERTY_X86_FEATURE_1_IBT;
2804     }
2805     if (ctx.arg.zPacPlt && !(hasValidPauthAbiCoreInfo ||
2806                              (features & GNU_PROPERTY_AARCH64_FEATURE_1_PAC))) {
2807       Warn(ctx) << f
2808                 << ": -z pac-plt: file does not have "
2809                    "GNU_PROPERTY_AARCH64_FEATURE_1_PAC property and no valid "
2810                    "PAuth core info present for this link job";
2811       features |= GNU_PROPERTY_AARCH64_FEATURE_1_PAC;
2812     }
2813     ctx.arg.andFeatures &= features;
2814 
2815     if (ctx.aarch64PauthAbiCoreInfo.empty())
2816       continue;
2817 
2818     if (f->aarch64PauthAbiCoreInfo.empty()) {
2819       report(ctx.arg.zPauthReport)
2820           << f
2821           << ": -z pauth-report: file does not have AArch64 "
2822              "PAuth core info while '"
2823           << referenceFileName << "' has one";
2824       continue;
2825     }
2826 
2827     if (ctx.aarch64PauthAbiCoreInfo != f->aarch64PauthAbiCoreInfo)
2828       Err(ctx) << "incompatible values of AArch64 PAuth core info found\n>>> "
2829                << referenceFileName << ": 0x"
2830                << toHex(ctx.aarch64PauthAbiCoreInfo, /*LowerCase=*/true)
2831                << "\n>>> " << f << ": 0x"
2832                << toHex(f->aarch64PauthAbiCoreInfo, /*LowerCase=*/true);
2833   }
2834 
2835   // Force enable Shadow Stack.
2836   if (ctx.arg.zShstk)
2837     ctx.arg.andFeatures |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;
2838 
2839   // Force enable/disable GCS
2840   if (ctx.arg.zGcs == GcsPolicy::Always)
2841     ctx.arg.andFeatures |= GNU_PROPERTY_AARCH64_FEATURE_1_GCS;
2842   else if (ctx.arg.zGcs == GcsPolicy::Never)
2843     ctx.arg.andFeatures &= ~GNU_PROPERTY_AARCH64_FEATURE_1_GCS;
2844 }
2845 
2846 static void initSectionsAndLocalSyms(ELFFileBase *file, bool ignoreComdats) {
2847   switch (file->ekind) {
2848   case ELF32LEKind:
2849     cast<ObjFile<ELF32LE>>(file)->initSectionsAndLocalSyms(ignoreComdats);
2850     break;
2851   case ELF32BEKind:
2852     cast<ObjFile<ELF32BE>>(file)->initSectionsAndLocalSyms(ignoreComdats);
2853     break;
2854   case ELF64LEKind:
2855     cast<ObjFile<ELF64LE>>(file)->initSectionsAndLocalSyms(ignoreComdats);
2856     break;
2857   case ELF64BEKind:
2858     cast<ObjFile<ELF64BE>>(file)->initSectionsAndLocalSyms(ignoreComdats);
2859     break;
2860   default:
2861     llvm_unreachable("");
2862   }
2863 }
2864 
2865 static void postParseObjectFile(ELFFileBase *file) {
2866   switch (file->ekind) {
2867   case ELF32LEKind:
2868     cast<ObjFile<ELF32LE>>(file)->postParse();
2869     break;
2870   case ELF32BEKind:
2871     cast<ObjFile<ELF32BE>>(file)->postParse();
2872     break;
2873   case ELF64LEKind:
2874     cast<ObjFile<ELF64LE>>(file)->postParse();
2875     break;
2876   case ELF64BEKind:
2877     cast<ObjFile<ELF64BE>>(file)->postParse();
2878     break;
2879   default:
2880     llvm_unreachable("");
2881   }
2882 }
2883 
2884 // Do actual linking. Note that when this function is called,
2885 // all linker scripts have already been parsed.
2886 template <class ELFT> void LinkerDriver::link(opt::InputArgList &args) {
2887   llvm::TimeTraceScope timeScope("Link", StringRef("LinkerDriver::Link"));
2888 
2889   // Handle --trace-symbol.
2890   for (auto *arg : args.filtered(OPT_trace_symbol))
2891     ctx.symtab->insert(arg->getValue())->traced = true;
2892 
2893   ctx.internalFile = createInternalFile(ctx, "<internal>");
2894 
2895   // Handle -u/--undefined before input files. If both a.a and b.so define foo,
2896   // -u foo a.a b.so will extract a.a.
2897   for (StringRef name : ctx.arg.undefined)
2898     ctx.symtab->addUnusedUndefined(name)->referenced = true;
2899 
2900   parseFiles(ctx, files);
2901 
2902   // Dynamic linking is used if there is an input DSO,
2903   // or -shared or non-static pie is specified.
2904   ctx.hasDynsym = !ctx.sharedFiles.empty() || ctx.arg.shared ||
2905                   (ctx.arg.pie && !ctx.arg.noDynamicLinker);
2906   // Create dynamic sections for dynamic linking and static PIE.
2907   ctx.arg.hasDynSymTab = ctx.hasDynsym || ctx.arg.isPic;
2908 
2909   // If an entry symbol is in a static archive, pull out that file now.
2910   if (Symbol *sym = ctx.symtab->find(ctx.arg.entry))
2911     handleUndefined(ctx, sym, "--entry");
2912 
2913   // Handle the `--undefined-glob <pattern>` options.
2914   for (StringRef pat : args::getStrings(args, OPT_undefined_glob))
2915     handleUndefinedGlob(ctx, pat);
2916 
2917   // After potential archive member extraction involving ENTRY and
2918   // -u/--undefined-glob, check whether PROVIDE symbols should be defined (the
2919   // RHS may refer to definitions in just extracted object files).
2920   ctx.script->addScriptReferencedSymbolsToSymTable();
2921 
2922   // Prevent LTO from removing any definition referenced by -u.
2923   for (StringRef name : ctx.arg.undefined)
2924     if (Defined *sym = dyn_cast_or_null<Defined>(ctx.symtab->find(name)))
2925       sym->isUsedInRegularObj = true;
2926 
2927   // Mark -init and -fini symbols so that the LTO doesn't eliminate them.
2928   if (Symbol *sym = dyn_cast_or_null<Defined>(ctx.symtab->find(ctx.arg.init)))
2929     sym->isUsedInRegularObj = true;
2930   if (Symbol *sym = dyn_cast_or_null<Defined>(ctx.symtab->find(ctx.arg.fini)))
2931     sym->isUsedInRegularObj = true;
2932 
2933   // If any of our inputs are bitcode files, the LTO code generator may create
2934   // references to certain library functions that might not be explicit in the
2935   // bitcode file's symbol table. If any of those library functions are defined
2936   // in a bitcode file in an archive member, we need to arrange to use LTO to
2937   // compile those archive members by adding them to the link beforehand.
2938   //
2939   // However, adding all libcall symbols to the link can have undesired
2940   // consequences. For example, the libgcc implementation of
2941   // __sync_val_compare_and_swap_8 on 32-bit ARM pulls in an .init_array entry
2942   // that aborts the program if the Linux kernel does not support 64-bit
2943   // atomics, which would prevent the program from running even if it does not
2944   // use 64-bit atomics.
2945   //
2946   // Therefore, we only add libcall symbols to the link before LTO if we have
2947   // to, i.e. if the symbol's definition is in bitcode. Any other required
2948   // libcall symbols will be added to the link after LTO when we add the LTO
2949   // object file to the link.
2950   if (!ctx.bitcodeFiles.empty()) {
2951     llvm::Triple TT(ctx.bitcodeFiles.front()->obj->getTargetTriple());
2952     for (auto *s : lto::LTO::getRuntimeLibcallSymbols(TT))
2953       handleLibcall(ctx, s);
2954   }
2955 
2956   // Archive members defining __wrap symbols may be extracted.
2957   std::vector<WrappedSymbol> wrapped = addWrappedSymbols(ctx, args);
2958 
2959   // No more lazy bitcode can be extracted at this point. Do post parse work
2960   // like checking duplicate symbols.
2961   parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
2962     initSectionsAndLocalSyms(file, /*ignoreComdats=*/false);
2963   });
2964   parallelForEach(ctx.objectFiles, postParseObjectFile);
2965   parallelForEach(ctx.bitcodeFiles,
2966                   [](BitcodeFile *file) { file->postParse(); });
2967   for (auto &it : ctx.nonPrevailingSyms) {
2968     Symbol &sym = *it.first;
2969     Undefined(sym.file, sym.getName(), sym.binding, sym.stOther, sym.type,
2970               it.second)
2971         .overwrite(sym);
2972     cast<Undefined>(sym).nonPrevailing = true;
2973   }
2974   ctx.nonPrevailingSyms.clear();
2975   for (const DuplicateSymbol &d : ctx.duplicates)
2976     reportDuplicate(ctx, *d.sym, d.file, d.section, d.value);
2977   ctx.duplicates.clear();
2978 
2979   // Return if there were name resolution errors.
2980   if (errCount(ctx))
2981     return;
2982 
2983   // We want to declare linker script's symbols early,
2984   // so that we can version them.
2985   // They also might be exported if referenced by DSOs.
2986   ctx.script->declareSymbols();
2987 
2988   // Handle --exclude-libs. This is before scanVersionScript() due to a
2989   // workaround for Android ndk: for a defined versioned symbol in an archive
2990   // without a version node in the version script, Android does not expect a
2991   // 'has undefined version' error in -shared --exclude-libs=ALL mode (PR36295).
2992   // GNU ld errors in this case.
2993   if (args.hasArg(OPT_exclude_libs))
2994     excludeLibs(ctx, args);
2995 
2996   // Create elfHeader early. We need a dummy section in
2997   // addReservedSymbols to mark the created symbols as not absolute.
2998   ctx.out.elfHeader = std::make_unique<OutputSection>(ctx, "", 0, SHF_ALLOC);
2999 
3000   // We need to create some reserved symbols such as _end. Create them.
3001   if (!ctx.arg.relocatable)
3002     addReservedSymbols(ctx);
3003 
3004   // Apply version scripts.
3005   //
3006   // For a relocatable output, version scripts don't make sense, and
3007   // parsing a symbol version string (e.g. dropping "@ver1" from a symbol
3008   // name "foo@ver1") rather do harm, so we don't call this if -r is given.
3009   if (!ctx.arg.relocatable) {
3010     llvm::TimeTraceScope timeScope("Process symbol versions");
3011     ctx.symtab->scanVersionScript();
3012 
3013     parseVersionAndComputeIsPreemptible(ctx);
3014   }
3015 
3016   // Skip the normal linked output if some LTO options are specified.
3017   //
3018   // For --thinlto-index-only, index file creation is performed in
3019   // compileBitcodeFiles, so we are done afterwards. --plugin-opt=emit-llvm and
3020   // --plugin-opt=emit-asm create output files in bitcode or assembly code,
3021   // respectively. When only certain thinLTO modules are specified for
3022   // compilation, the intermediate object file are the expected output.
3023   const bool skipLinkedOutput = ctx.arg.thinLTOIndexOnly || ctx.arg.emitLLVM ||
3024                                 ctx.arg.ltoEmitAsm ||
3025                                 !ctx.arg.thinLTOModulesToCompile.empty();
3026 
3027   // Handle --lto-validate-all-vtables-have-type-infos.
3028   if (ctx.arg.ltoValidateAllVtablesHaveTypeInfos)
3029     ltoValidateAllVtablesHaveTypeInfos<ELFT>(ctx, args);
3030 
3031   // Do link-time optimization if given files are LLVM bitcode files.
3032   // This compiles bitcode files into real object files.
3033   //
3034   // With this the symbol table should be complete. After this, no new names
3035   // except a few linker-synthesized ones will be added to the symbol table.
3036   const size_t numObjsBeforeLTO = ctx.objectFiles.size();
3037   const size_t numInputFilesBeforeLTO = ctx.driver.files.size();
3038   compileBitcodeFiles<ELFT>(skipLinkedOutput);
3039 
3040   // Symbol resolution finished. Report backward reference problems,
3041   // --print-archive-stats=, and --why-extract=.
3042   reportBackrefs(ctx);
3043   writeArchiveStats(ctx);
3044   writeWhyExtract(ctx);
3045   if (errCount(ctx))
3046     return;
3047 
3048   // Bail out if normal linked output is skipped due to LTO.
3049   if (skipLinkedOutput)
3050     return;
3051 
3052   // compileBitcodeFiles may have produced lto.tmp object files. After this, no
3053   // more file will be added.
3054   auto newObjectFiles = ArrayRef(ctx.objectFiles).slice(numObjsBeforeLTO);
3055   parallelForEach(newObjectFiles, [](ELFFileBase *file) {
3056     initSectionsAndLocalSyms(file, /*ignoreComdats=*/true);
3057   });
3058   parallelForEach(newObjectFiles, postParseObjectFile);
3059   for (const DuplicateSymbol &d : ctx.duplicates)
3060     reportDuplicate(ctx, *d.sym, d.file, d.section, d.value);
3061 
3062   // ELF dependent libraries may have introduced new input files after LTO has
3063   // completed. This is an error if the files haven't already been parsed, since
3064   // changing the symbol table could break the semantic assumptions of LTO.
3065   auto newInputFiles = ArrayRef(ctx.driver.files).slice(numInputFilesBeforeLTO);
3066   if (!newInputFiles.empty()) {
3067     DenseSet<StringRef> oldFilenames;
3068     for (auto &f : ArrayRef(ctx.driver.files).slice(0, numInputFilesBeforeLTO))
3069       oldFilenames.insert(f->getName());
3070     for (auto &newFile : newInputFiles)
3071       if (!oldFilenames.contains(newFile->getName()))
3072         Err(ctx) << "input file '" << newFile->getName() << "' added after LTO";
3073   }
3074 
3075   // Handle --exclude-libs again because lto.tmp may reference additional
3076   // libcalls symbols defined in an excluded archive. This may override
3077   // versionId set by scanVersionScript() and isExported.
3078   if (args.hasArg(OPT_exclude_libs))
3079     excludeLibs(ctx, args);
3080 
3081   // Record [__acle_se_<sym>, <sym>] pairs for later processing.
3082   processArmCmseSymbols(ctx);
3083 
3084   // Apply symbol renames for --wrap and combine foo@v1 and foo@@v1.
3085   redirectSymbols(ctx, wrapped);
3086 
3087   // Replace common symbols with regular symbols.
3088   replaceCommonSymbols(ctx);
3089 
3090   {
3091     llvm::TimeTraceScope timeScope("Aggregate sections");
3092     // Now that we have a complete list of input files.
3093     // Beyond this point, no new files are added.
3094     // Aggregate all input sections into one place.
3095     for (InputFile *f : ctx.objectFiles) {
3096       for (InputSectionBase *s : f->getSections()) {
3097         if (!s || s == &InputSection::discarded)
3098           continue;
3099         if (LLVM_UNLIKELY(isa<EhInputSection>(s)))
3100           ctx.ehInputSections.push_back(cast<EhInputSection>(s));
3101         else
3102           ctx.inputSections.push_back(s);
3103       }
3104     }
3105     for (BinaryFile *f : ctx.binaryFiles)
3106       for (InputSectionBase *s : f->getSections())
3107         ctx.inputSections.push_back(cast<InputSection>(s));
3108   }
3109 
3110   {
3111     llvm::TimeTraceScope timeScope("Strip sections");
3112     if (ctx.hasSympart.load(std::memory_order_relaxed)) {
3113       llvm::erase_if(ctx.inputSections, [&ctx = ctx](InputSectionBase *s) {
3114         if (s->type != SHT_LLVM_SYMPART)
3115           return false;
3116         readSymbolPartitionSection<ELFT>(ctx, s);
3117         return true;
3118       });
3119     }
3120     // We do not want to emit debug sections if --strip-all
3121     // or --strip-debug are given.
3122     if (ctx.arg.strip != StripPolicy::None) {
3123       llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3124         if (isDebugSection(*s))
3125           return true;
3126         if (auto *isec = dyn_cast<InputSection>(s))
3127           if (InputSectionBase *rel = isec->getRelocatedSection())
3128             if (isDebugSection(*rel))
3129               return true;
3130 
3131         return false;
3132       });
3133     }
3134   }
3135 
3136   // Since we now have a complete set of input files, we can create
3137   // a .d file to record build dependencies.
3138   if (!ctx.arg.dependencyFile.empty())
3139     writeDependencyFile(ctx);
3140 
3141   // Now that the number of partitions is fixed, save a pointer to the main
3142   // partition.
3143   ctx.mainPart = &ctx.partitions[0];
3144 
3145   // Read .note.gnu.property sections from input object files which
3146   // contain a hint to tweak linker's and loader's behaviors.
3147   readSecurityNotes(ctx);
3148 
3149   // The Target instance handles target-specific stuff, such as applying
3150   // relocations or writing a PLT section. It also contains target-dependent
3151   // values such as a default image base address.
3152   setTarget(ctx);
3153 
3154   ctx.arg.eflags = ctx.target->calcEFlags();
3155   // maxPageSize (sometimes called abi page size) is the maximum page size that
3156   // the output can be run on. For example if the OS can use 4k or 64k page
3157   // sizes then maxPageSize must be 64k for the output to be useable on both.
3158   // All important alignment decisions must use this value.
3159   ctx.arg.maxPageSize = getMaxPageSize(ctx, args);
3160   // commonPageSize is the most common page size that the output will be run on.
3161   // For example if an OS can use 4k or 64k page sizes and 4k is more common
3162   // than 64k then commonPageSize is set to 4k. commonPageSize can be used for
3163   // optimizations such as DATA_SEGMENT_ALIGN in linker scripts. LLD's use of it
3164   // is limited to writing trap instructions on the last executable segment.
3165   ctx.arg.commonPageSize = getCommonPageSize(ctx, args);
3166 
3167   ctx.arg.imageBase = getImageBase(ctx, args);
3168 
3169   // This adds a .comment section containing a version string.
3170   if (!ctx.arg.relocatable)
3171     ctx.inputSections.push_back(createCommentSection(ctx));
3172 
3173   // Split SHF_MERGE and .eh_frame sections into pieces in preparation for garbage collection.
3174   splitSections<ELFT>(ctx);
3175 
3176   // Garbage collection and removal of shared symbols from unused shared objects.
3177   markLive<ELFT>(ctx);
3178 
3179   // Make copies of any input sections that need to be copied into each
3180   // partition.
3181   copySectionsIntoPartitions(ctx);
3182 
3183   if (canHaveMemtagGlobals(ctx)) {
3184     llvm::TimeTraceScope timeScope("Process memory tagged symbols");
3185     createTaggedSymbols(ctx);
3186   }
3187 
3188   // Create synthesized sections such as .got and .plt. This is called before
3189   // processSectionCommands() so that they can be placed by SECTIONS commands.
3190   createSyntheticSections<ELFT>(ctx);
3191 
3192   // Some input sections that are used for exception handling need to be moved
3193   // into synthetic sections. Do that now so that they aren't assigned to
3194   // output sections in the usual way.
3195   if (!ctx.arg.relocatable)
3196     combineEhSections(ctx);
3197 
3198   // Merge .riscv.attributes sections.
3199   if (ctx.arg.emachine == EM_RISCV)
3200     mergeRISCVAttributesSections(ctx);
3201 
3202   {
3203     llvm::TimeTraceScope timeScope("Assign sections");
3204 
3205     // Create output sections described by SECTIONS commands.
3206     ctx.script->processSectionCommands();
3207 
3208     // Linker scripts control how input sections are assigned to output
3209     // sections. Input sections that were not handled by scripts are called
3210     // "orphans", and they are assigned to output sections by the default rule.
3211     // Process that.
3212     ctx.script->addOrphanSections();
3213   }
3214 
3215   {
3216     llvm::TimeTraceScope timeScope("Merge/finalize input sections");
3217 
3218     // Migrate InputSectionDescription::sectionBases to sections. This includes
3219     // merging MergeInputSections into a single MergeSyntheticSection. From this
3220     // point onwards InputSectionDescription::sections should be used instead of
3221     // sectionBases.
3222     for (SectionCommand *cmd : ctx.script->sectionCommands)
3223       if (auto *osd = dyn_cast<OutputDesc>(cmd))
3224         osd->osec.finalizeInputSections();
3225   }
3226 
3227   // Two input sections with different output sections should not be folded.
3228   // ICF runs after processSectionCommands() so that we know the output sections.
3229   if (ctx.arg.icf != ICFLevel::None) {
3230     findKeepUniqueSections<ELFT>(ctx, args);
3231     doIcf<ELFT>(ctx);
3232   }
3233 
3234   // Read the callgraph now that we know what was gced or icfed
3235   if (ctx.arg.callGraphProfileSort != CGProfileSortKind::None) {
3236     if (auto *arg = args.getLastArg(OPT_call_graph_ordering_file)) {
3237       if (std::optional<MemoryBufferRef> buffer =
3238               readFile(ctx, arg->getValue()))
3239         readCallGraph(ctx, *buffer);
3240     } else
3241       readCallGraphsFromObjectFiles<ELFT>(ctx);
3242   }
3243 
3244   // Write the result to the file.
3245   writeResult<ELFT>(ctx);
3246 }
3247