1 //===- Chunks.cpp ---------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Chunks.h" 10 #include "COFFLinkerContext.h" 11 #include "InputFiles.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "Writer.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/Endian.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <algorithm> 24 #include <iterator> 25 26 using namespace llvm; 27 using namespace llvm::object; 28 using namespace llvm::support; 29 using namespace llvm::support::endian; 30 using namespace llvm::COFF; 31 using llvm::support::ulittle32_t; 32 33 namespace lld::coff { 34 35 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h, Kind k) 36 : Chunk(k), file(f), header(h), repl(this) { 37 // Initialize relocs. 38 if (file) 39 setRelocs(file->getCOFFObj()->getRelocations(header)); 40 41 // Initialize sectionName. 42 StringRef sectionName; 43 if (file) { 44 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header)) 45 sectionName = *e; 46 } 47 sectionNameData = sectionName.data(); 48 sectionNameSize = sectionName.size(); 49 50 setAlignment(header->getAlignment()); 51 52 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA); 53 54 // If linker GC is disabled, every chunk starts out alive. If linker GC is 55 // enabled, treat non-comdat sections as roots. Generally optimized object 56 // files will be built with -ffunction-sections or /Gy, so most things worth 57 // stripping will be in a comdat. 58 if (file) 59 live = !file->symtab.ctx.config.doGC || !isCOMDAT(); 60 else 61 live = true; 62 } 63 64 // SectionChunk is one of the most frequently allocated classes, so it is 65 // important to keep it as compact as possible. As of this writing, the number 66 // below is the size of this class on x64 platforms. 67 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly"); 68 69 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); } 70 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); } 71 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); } 72 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); } 73 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); } 74 75 // Verify that given sections are appropriate targets for SECREL 76 // relocations. This check is relaxed because unfortunately debug 77 // sections have section-relative relocations against absolute symbols. 78 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) { 79 if (os) 80 return true; 81 if (sec->isCodeView()) 82 return false; 83 error("SECREL relocation cannot be applied to absolute symbols"); 84 return false; 85 } 86 87 static void applySecRel(const SectionChunk *sec, uint8_t *off, 88 OutputSection *os, uint64_t s) { 89 if (!checkSecRel(sec, os)) 90 return; 91 uint64_t secRel = s - os->getRVA(); 92 if (secRel > UINT32_MAX) { 93 error("overflow in SECREL relocation in section: " + sec->getSectionName()); 94 return; 95 } 96 add32(off, secRel); 97 } 98 99 static void applySecIdx(uint8_t *off, OutputSection *os, 100 unsigned numOutputSections) { 101 // numOutputSections is the largest valid section index. Make sure that 102 // it fits in 16 bits. 103 assert(numOutputSections <= 0xffff && "size of outputSections is too big"); 104 105 // Absolute symbol doesn't have section index, but section index relocation 106 // against absolute symbol should be resolved to one plus the last output 107 // section index. This is required for compatibility with MSVC. 108 if (os) 109 add16(off, os->sectionIndex); 110 else 111 add16(off, numOutputSections + 1); 112 } 113 114 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, 115 uint64_t s, uint64_t p, 116 uint64_t imageBase) const { 117 switch (type) { 118 case IMAGE_REL_AMD64_ADDR32: 119 add32(off, s + imageBase); 120 break; 121 case IMAGE_REL_AMD64_ADDR64: 122 add64(off, s + imageBase); 123 break; 124 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break; 125 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break; 126 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break; 127 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break; 128 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break; 129 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break; 130 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break; 131 case IMAGE_REL_AMD64_SECTION: 132 applySecIdx(off, os, file->symtab.ctx.outputSections.size()); 133 break; 134 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break; 135 default: 136 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 137 toString(file)); 138 } 139 } 140 141 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, 142 uint64_t s, uint64_t p, 143 uint64_t imageBase) const { 144 switch (type) { 145 case IMAGE_REL_I386_ABSOLUTE: break; 146 case IMAGE_REL_I386_DIR32: 147 add32(off, s + imageBase); 148 break; 149 case IMAGE_REL_I386_DIR32NB: add32(off, s); break; 150 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break; 151 case IMAGE_REL_I386_SECTION: 152 applySecIdx(off, os, file->symtab.ctx.outputSections.size()); 153 break; 154 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break; 155 default: 156 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 157 toString(file)); 158 } 159 } 160 161 static void applyMOV(uint8_t *off, uint16_t v) { 162 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf)); 163 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff)); 164 } 165 166 static uint16_t readMOV(uint8_t *off, bool movt) { 167 uint16_t op1 = read16le(off); 168 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240)) 169 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 170 " instruction in MOV32T relocation"); 171 uint16_t op2 = read16le(off + 2); 172 if ((op2 & 0x8000) != 0) 173 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") + 174 " instruction in MOV32T relocation"); 175 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) | 176 ((op1 & 0x000f) << 12); 177 } 178 179 void applyMOV32T(uint8_t *off, uint32_t v) { 180 uint16_t immW = readMOV(off, false); // read MOVW operand 181 uint16_t immT = readMOV(off + 4, true); // read MOVT operand 182 uint32_t imm = immW | (immT << 16); 183 v += imm; // add the immediate offset 184 applyMOV(off, v); // set MOVW operand 185 applyMOV(off + 4, v >> 16); // set MOVT operand 186 } 187 188 static void applyBranch20T(uint8_t *off, int32_t v) { 189 if (!isInt<21>(v)) 190 error("relocation out of range"); 191 uint32_t s = v < 0 ? 1 : 0; 192 uint32_t j1 = (v >> 19) & 1; 193 uint32_t j2 = (v >> 18) & 1; 194 or16(off, (s << 10) | ((v >> 12) & 0x3f)); 195 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 196 } 197 198 void applyBranch24T(uint8_t *off, int32_t v) { 199 if (!isInt<25>(v)) 200 error("relocation out of range"); 201 uint32_t s = v < 0 ? 1 : 0; 202 uint32_t j1 = ((~v >> 23) & 1) ^ s; 203 uint32_t j2 = ((~v >> 22) & 1) ^ s; 204 or16(off, (s << 10) | ((v >> 12) & 0x3ff)); 205 // Clear out the J1 and J2 bits which may be set. 206 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff)); 207 } 208 209 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, 210 uint64_t s, uint64_t p, 211 uint64_t imageBase) const { 212 // Pointer to thumb code must have the LSB set. 213 uint64_t sx = s; 214 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE)) 215 sx |= 1; 216 switch (type) { 217 case IMAGE_REL_ARM_ADDR32: 218 add32(off, sx + imageBase); 219 break; 220 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break; 221 case IMAGE_REL_ARM_MOV32T: 222 applyMOV32T(off, sx + imageBase); 223 break; 224 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break; 225 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break; 226 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break; 227 case IMAGE_REL_ARM_SECTION: 228 applySecIdx(off, os, file->symtab.ctx.outputSections.size()); 229 break; 230 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break; 231 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break; 232 default: 233 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 234 toString(file)); 235 } 236 } 237 238 // Interpret the existing immediate value as a byte offset to the 239 // target symbol, then update the instruction with the immediate as 240 // the page offset from the current instruction to the target. 241 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) { 242 uint32_t orig = read32le(off); 243 int64_t imm = 244 SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC)); 245 s += imm; 246 imm = (s >> shift) - (p >> shift); 247 uint32_t immLo = (imm & 0x3) << 29; 248 uint32_t immHi = (imm & 0x1FFFFC) << 3; 249 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); 250 write32le(off, (orig & ~mask) | immLo | immHi); 251 } 252 253 // Update the immediate field in a AARCH64 ldr, str, and add instruction. 254 // Optionally limit the range of the written immediate by one or more bits 255 // (rangeLimit). 256 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) { 257 uint32_t orig = read32le(off); 258 imm += (orig >> 10) & 0xFFF; 259 orig &= ~(0xFFF << 10); 260 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10)); 261 } 262 263 // Add the 12 bit page offset to the existing immediate. 264 // Ldr/str instructions store the opcode immediate scaled 265 // by the load/store size (giving a larger range for larger 266 // loads/stores). The immediate is always (both before and after 267 // fixing up the relocation) stored scaled similarly. 268 // Even if larger loads/stores have a larger range, limit the 269 // effective offset to 12 bit, since it is intended to be a 270 // page offset. 271 static void applyArm64Ldr(uint8_t *off, uint64_t imm) { 272 uint32_t orig = read32le(off); 273 uint32_t size = orig >> 30; 274 // 0x04000000 indicates SIMD/FP registers 275 // 0x00800000 indicates 128 bit 276 if ((orig & 0x4800000) == 0x4800000) 277 size += 4; 278 if ((imm & ((1 << size) - 1)) != 0) 279 error("misaligned ldr/str offset"); 280 applyArm64Imm(off, imm >> size, size); 281 } 282 283 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off, 284 OutputSection *os, uint64_t s) { 285 if (checkSecRel(sec, os)) 286 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0); 287 } 288 289 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off, 290 OutputSection *os, uint64_t s) { 291 if (!checkSecRel(sec, os)) 292 return; 293 uint64_t secRel = (s - os->getRVA()) >> 12; 294 if (0xfff < secRel) { 295 error("overflow in SECREL_HIGH12A relocation in section: " + 296 sec->getSectionName()); 297 return; 298 } 299 applyArm64Imm(off, secRel & 0xfff, 0); 300 } 301 302 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off, 303 OutputSection *os, uint64_t s) { 304 if (checkSecRel(sec, os)) 305 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff); 306 } 307 308 void applyArm64Branch26(uint8_t *off, int64_t v) { 309 if (!isInt<28>(v)) 310 error("relocation out of range"); 311 or32(off, (v & 0x0FFFFFFC) >> 2); 312 } 313 314 static void applyArm64Branch19(uint8_t *off, int64_t v) { 315 if (!isInt<21>(v)) 316 error("relocation out of range"); 317 or32(off, (v & 0x001FFFFC) << 3); 318 } 319 320 static void applyArm64Branch14(uint8_t *off, int64_t v) { 321 if (!isInt<16>(v)) 322 error("relocation out of range"); 323 or32(off, (v & 0x0000FFFC) << 3); 324 } 325 326 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, 327 uint64_t s, uint64_t p, 328 uint64_t imageBase) const { 329 switch (type) { 330 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break; 331 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break; 332 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break; 333 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break; 334 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break; 335 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break; 336 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break; 337 case IMAGE_REL_ARM64_ADDR32: 338 add32(off, s + imageBase); 339 break; 340 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break; 341 case IMAGE_REL_ARM64_ADDR64: 342 add64(off, s + imageBase); 343 break; 344 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break; 345 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break; 346 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break; 347 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break; 348 case IMAGE_REL_ARM64_SECTION: 349 applySecIdx(off, os, file->symtab.ctx.outputSections.size()); 350 break; 351 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break; 352 default: 353 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " + 354 toString(file)); 355 } 356 } 357 358 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk, 359 Defined *sym, 360 const coff_relocation &rel, 361 bool isMinGW) { 362 // Don't report these errors when the relocation comes from a debug info 363 // section or in mingw mode. MinGW mode object files (built by GCC) can 364 // have leftover sections with relocations against discarded comdat 365 // sections. Such sections are left as is, with relocations untouched. 366 if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW) 367 return; 368 369 // Get the name of the symbol. If it's null, it was discarded early, so we 370 // have to go back to the object file. 371 ObjFile *file = fromChunk->file; 372 std::string name; 373 if (sym) { 374 name = toString(file->symtab.ctx, *sym); 375 } else { 376 COFFSymbolRef coffSym = 377 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex)); 378 name = maybeDemangleSymbol( 379 file->symtab.ctx, check(file->getCOFFObj()->getSymbolName(coffSym))); 380 } 381 382 std::vector<std::string> symbolLocations = 383 getSymbolLocations(file, rel.SymbolTableIndex); 384 385 std::string out; 386 llvm::raw_string_ostream os(out); 387 os << "relocation against symbol in discarded section: " + name; 388 for (const std::string &s : symbolLocations) 389 os << s; 390 error(out); 391 } 392 393 void SectionChunk::writeTo(uint8_t *buf) const { 394 if (!hasData) 395 return; 396 // Copy section contents from source object file to output file. 397 ArrayRef<uint8_t> a = getContents(); 398 if (!a.empty()) 399 memcpy(buf, a.data(), a.size()); 400 401 // Apply relocations. 402 size_t inputSize = getSize(); 403 for (const coff_relocation &rel : getRelocs()) { 404 // Check for an invalid relocation offset. This check isn't perfect, because 405 // we don't have the relocation size, which is only known after checking the 406 // machine and relocation type. As a result, a relocation may overwrite the 407 // beginning of the following input section. 408 if (rel.VirtualAddress >= inputSize) { 409 error("relocation points beyond the end of its parent section"); 410 continue; 411 } 412 413 applyRelocation(buf + rel.VirtualAddress, rel); 414 } 415 416 // Write the offset to EC entry thunk preceding section contents. The low bit 417 // is always set, so it's effectively an offset from the last byte of the 418 // offset. 419 if (Defined *entryThunk = getEntryThunk()) 420 write32le(buf - sizeof(uint32_t), entryThunk->getRVA() - rva + 1); 421 } 422 423 void SectionChunk::applyRelocation(uint8_t *off, 424 const coff_relocation &rel) const { 425 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 426 427 // Get the output section of the symbol for this relocation. The output 428 // section is needed to compute SECREL and SECTION relocations used in debug 429 // info. 430 Chunk *c = sym ? sym->getChunk() : nullptr; 431 COFFLinkerContext &ctx = file->symtab.ctx; 432 OutputSection *os = c ? ctx.getOutputSection(c) : nullptr; 433 434 // Skip the relocation if it refers to a discarded section, and diagnose it 435 // as an error if appropriate. If a symbol was discarded early, it may be 436 // null. If it was discarded late, the output section will be null, unless 437 // it was an absolute or synthetic symbol. 438 if (!sym || 439 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) { 440 maybeReportRelocationToDiscarded(this, sym, rel, ctx.config.mingw); 441 return; 442 } 443 444 uint64_t s = sym->getRVA(); 445 446 // Compute the RVA of the relocation for relative relocations. 447 uint64_t p = rva + rel.VirtualAddress; 448 uint64_t imageBase = ctx.config.imageBase; 449 switch (getArch()) { 450 case Triple::x86_64: 451 applyRelX64(off, rel.Type, os, s, p, imageBase); 452 break; 453 case Triple::x86: 454 applyRelX86(off, rel.Type, os, s, p, imageBase); 455 break; 456 case Triple::thumb: 457 applyRelARM(off, rel.Type, os, s, p, imageBase); 458 break; 459 case Triple::aarch64: 460 applyRelARM64(off, rel.Type, os, s, p, imageBase); 461 break; 462 default: 463 llvm_unreachable("unknown machine type"); 464 } 465 } 466 467 // Defend against unsorted relocations. This may be overly conservative. 468 void SectionChunk::sortRelocations() { 469 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) { 470 return l.VirtualAddress < r.VirtualAddress; 471 }; 472 if (llvm::is_sorted(getRelocs(), cmpByVa)) 473 return; 474 warn("some relocations in " + file->getName() + " are not sorted"); 475 MutableArrayRef<coff_relocation> newRelocs( 476 bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize); 477 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation)); 478 llvm::sort(newRelocs, cmpByVa); 479 setRelocs(newRelocs); 480 } 481 482 // Similar to writeTo, but suitable for relocating a subsection of the overall 483 // section. 484 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec, 485 ArrayRef<uint8_t> subsec, 486 uint32_t &nextRelocIndex, 487 uint8_t *buf) const { 488 assert(!subsec.empty() && !sec.empty()); 489 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() && 490 "subsection is not part of this section"); 491 size_t vaBegin = std::distance(sec.begin(), subsec.begin()); 492 size_t vaEnd = std::distance(sec.begin(), subsec.end()); 493 memcpy(buf, subsec.data(), subsec.size()); 494 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) { 495 const coff_relocation &rel = relocsData[nextRelocIndex]; 496 // Only apply relocations that apply to this subsection. These checks 497 // assume that all subsections completely contain their relocations. 498 // Relocations must not straddle the beginning or end of a subsection. 499 if (rel.VirtualAddress < vaBegin) 500 continue; 501 if (rel.VirtualAddress + 1 >= vaEnd) 502 break; 503 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel); 504 } 505 } 506 507 void SectionChunk::addAssociative(SectionChunk *child) { 508 // Insert the child section into the list of associated children. Keep the 509 // list ordered by section name so that ICF does not depend on section order. 510 assert(child->assocChildren == nullptr && 511 "associated sections cannot have their own associated children"); 512 SectionChunk *prev = this; 513 SectionChunk *next = assocChildren; 514 for (; next != nullptr; prev = next, next = next->assocChildren) { 515 if (next->getSectionName() <= child->getSectionName()) 516 break; 517 } 518 519 // Insert child between prev and next. 520 assert(prev->assocChildren == next); 521 prev->assocChildren = child; 522 child->assocChildren = next; 523 } 524 525 static uint8_t getBaserelType(const coff_relocation &rel, 526 Triple::ArchType arch) { 527 switch (arch) { 528 case Triple::x86_64: 529 if (rel.Type == IMAGE_REL_AMD64_ADDR64) 530 return IMAGE_REL_BASED_DIR64; 531 if (rel.Type == IMAGE_REL_AMD64_ADDR32) 532 return IMAGE_REL_BASED_HIGHLOW; 533 return IMAGE_REL_BASED_ABSOLUTE; 534 case Triple::x86: 535 if (rel.Type == IMAGE_REL_I386_DIR32) 536 return IMAGE_REL_BASED_HIGHLOW; 537 return IMAGE_REL_BASED_ABSOLUTE; 538 case Triple::thumb: 539 if (rel.Type == IMAGE_REL_ARM_ADDR32) 540 return IMAGE_REL_BASED_HIGHLOW; 541 if (rel.Type == IMAGE_REL_ARM_MOV32T) 542 return IMAGE_REL_BASED_ARM_MOV32T; 543 return IMAGE_REL_BASED_ABSOLUTE; 544 case Triple::aarch64: 545 if (rel.Type == IMAGE_REL_ARM64_ADDR64) 546 return IMAGE_REL_BASED_DIR64; 547 return IMAGE_REL_BASED_ABSOLUTE; 548 default: 549 llvm_unreachable("unknown machine type"); 550 } 551 } 552 553 // Windows-specific. 554 // Collect all locations that contain absolute addresses, which need to be 555 // fixed by the loader if load-time relocation is needed. 556 // Only called when base relocation is enabled. 557 void SectionChunk::getBaserels(std::vector<Baserel> *res) { 558 for (const coff_relocation &rel : getRelocs()) { 559 uint8_t ty = getBaserelType(rel, getArch()); 560 if (ty == IMAGE_REL_BASED_ABSOLUTE) 561 continue; 562 Symbol *target = file->getSymbol(rel.SymbolTableIndex); 563 if (!target || isa<DefinedAbsolute>(target)) 564 continue; 565 res->emplace_back(rva + rel.VirtualAddress, ty); 566 } 567 568 // Insert a 64-bit relocation for CHPEMetadataPointer in the native load 569 // config of a hybrid ARM64X image. Its value will be set in prepareLoadConfig 570 // to match the value in the EC load config, which is expected to be 571 // a relocatable pointer to the __chpe_metadata symbol. 572 COFFLinkerContext &ctx = file->symtab.ctx; 573 if (ctx.hybridSymtab && ctx.symtab.loadConfigSym && 574 ctx.symtab.loadConfigSym->getChunk() == this && 575 ctx.hybridSymtab->loadConfigSym && 576 ctx.symtab.loadConfigSize >= 577 offsetof(coff_load_configuration64, CHPEMetadataPointer) + 578 sizeof(coff_load_configuration64::CHPEMetadataPointer)) 579 res->emplace_back( 580 ctx.symtab.loadConfigSym->getRVA() + 581 offsetof(coff_load_configuration64, CHPEMetadataPointer), 582 IMAGE_REL_BASED_DIR64); 583 } 584 585 // MinGW specific. 586 // Check whether a static relocation of type Type can be deferred and 587 // handled at runtime as a pseudo relocation (for references to a module 588 // local variable, which turned out to actually need to be imported from 589 // another DLL) This returns the size the relocation is supposed to update, 590 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo 591 // relocation. 592 static int getRuntimePseudoRelocSize(uint16_t type, Triple::ArchType arch) { 593 // Relocations that either contain an absolute address, or a plain 594 // relative offset, since the runtime pseudo reloc implementation 595 // adds 8/16/32/64 bit values to a memory address. 596 // 597 // Given a pseudo relocation entry, 598 // 599 // typedef struct { 600 // DWORD sym; 601 // DWORD target; 602 // DWORD flags; 603 // } runtime_pseudo_reloc_item_v2; 604 // 605 // the runtime relocation performs this adjustment: 606 // *(base + .target) += *(base + .sym) - (base + .sym) 607 // 608 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64, 609 // IMAGE_REL_I386_DIR32, where the memory location initially contains 610 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32), 611 // where the memory location originally contains the relative offset to the 612 // IAT slot. 613 // 614 // This requires the target address to be writable, either directly out of 615 // the image, or temporarily changed at runtime with VirtualProtect. 616 // Since this only operates on direct address values, it doesn't work for 617 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations. 618 switch (arch) { 619 case Triple::x86_64: 620 switch (type) { 621 case IMAGE_REL_AMD64_ADDR64: 622 return 64; 623 case IMAGE_REL_AMD64_ADDR32: 624 case IMAGE_REL_AMD64_REL32: 625 case IMAGE_REL_AMD64_REL32_1: 626 case IMAGE_REL_AMD64_REL32_2: 627 case IMAGE_REL_AMD64_REL32_3: 628 case IMAGE_REL_AMD64_REL32_4: 629 case IMAGE_REL_AMD64_REL32_5: 630 return 32; 631 default: 632 return 0; 633 } 634 case Triple::x86: 635 switch (type) { 636 case IMAGE_REL_I386_DIR32: 637 case IMAGE_REL_I386_REL32: 638 return 32; 639 default: 640 return 0; 641 } 642 case Triple::thumb: 643 switch (type) { 644 case IMAGE_REL_ARM_ADDR32: 645 return 32; 646 default: 647 return 0; 648 } 649 case Triple::aarch64: 650 switch (type) { 651 case IMAGE_REL_ARM64_ADDR64: 652 return 64; 653 case IMAGE_REL_ARM64_ADDR32: 654 return 32; 655 default: 656 return 0; 657 } 658 default: 659 llvm_unreachable("unknown machine type"); 660 } 661 } 662 663 // MinGW specific. 664 // Append information to the provided vector about all relocations that 665 // need to be handled at runtime as runtime pseudo relocations (references 666 // to a module local variable, which turned out to actually need to be 667 // imported from another DLL). 668 void SectionChunk::getRuntimePseudoRelocs( 669 std::vector<RuntimePseudoReloc> &res) { 670 for (const coff_relocation &rel : getRelocs()) { 671 auto *target = 672 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex)); 673 if (!target || !target->isRuntimePseudoReloc) 674 continue; 675 // If the target doesn't have a chunk allocated, it may be a 676 // DefinedImportData symbol which ended up unnecessary after GC. 677 // Normally we wouldn't eliminate section chunks that are referenced, but 678 // references within DWARF sections don't count for keeping section chunks 679 // alive. Thus such dangling references in DWARF sections are expected. 680 if (!target->getChunk()) 681 continue; 682 int sizeInBits = getRuntimePseudoRelocSize(rel.Type, getArch()); 683 if (sizeInBits == 0) { 684 error("unable to automatically import from " + target->getName() + 685 " with relocation type " + 686 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " + 687 toString(file)); 688 continue; 689 } 690 int addressSizeInBits = file->symtab.ctx.config.is64() ? 64 : 32; 691 if (sizeInBits < addressSizeInBits) { 692 warn("runtime pseudo relocation in " + toString(file) + " against " + 693 "symbol " + target->getName() + " is too narrow (only " + 694 Twine(sizeInBits) + " bits wide); this can fail at runtime " + 695 "depending on memory layout"); 696 } 697 // sizeInBits is used to initialize the Flags field; currently no 698 // other flags are defined. 699 res.emplace_back(target, this, rel.VirtualAddress, sizeInBits); 700 } 701 } 702 703 bool SectionChunk::isCOMDAT() const { 704 return header->Characteristics & IMAGE_SCN_LNK_COMDAT; 705 } 706 707 void SectionChunk::printDiscardedMessage() const { 708 // Removed by dead-stripping. If it's removed by ICF, ICF already 709 // printed out the name, so don't repeat that here. 710 if (sym && this == repl) 711 log("Discarded " + sym->getName()); 712 } 713 714 StringRef SectionChunk::getDebugName() const { 715 if (sym) 716 return sym->getName(); 717 return ""; 718 } 719 720 ArrayRef<uint8_t> SectionChunk::getContents() const { 721 ArrayRef<uint8_t> a; 722 cantFail(file->getCOFFObj()->getSectionContents(header, a)); 723 return a; 724 } 725 726 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() { 727 assert(isCodeView()); 728 return consumeDebugMagic(getContents(), getSectionName()); 729 } 730 731 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data, 732 StringRef sectionName) { 733 if (data.empty()) 734 return {}; 735 736 // First 4 bytes are section magic. 737 if (data.size() < 4) 738 fatal("the section is too short: " + sectionName); 739 740 if (!sectionName.starts_with(".debug$")) 741 fatal("invalid section: " + sectionName); 742 743 uint32_t magic = support::endian::read32le(data.data()); 744 uint32_t expectedMagic = sectionName == ".debug$H" 745 ? DEBUG_HASHES_SECTION_MAGIC 746 : DEBUG_SECTION_MAGIC; 747 if (magic != expectedMagic) { 748 warn("ignoring section " + sectionName + " with unrecognized magic 0x" + 749 utohexstr(magic)); 750 return {}; 751 } 752 return data.slice(4); 753 } 754 755 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections, 756 StringRef name) { 757 for (SectionChunk *c : sections) 758 if (c->getSectionName() == name) 759 return c; 760 return nullptr; 761 } 762 763 void SectionChunk::replace(SectionChunk *other) { 764 p2Align = std::max(p2Align, other->p2Align); 765 other->repl = repl; 766 other->live = false; 767 } 768 769 uint32_t SectionChunk::getSectionNumber() const { 770 DataRefImpl r; 771 r.p = reinterpret_cast<uintptr_t>(header); 772 SectionRef s(r, file->getCOFFObj()); 773 return s.getIndex() + 1; 774 } 775 776 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) { 777 // The value of a common symbol is its size. Align all common symbols smaller 778 // than 32 bytes naturally, i.e. round the size up to the next power of two. 779 // This is what MSVC link.exe does. 780 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue())))); 781 hasData = false; 782 } 783 784 uint32_t CommonChunk::getOutputCharacteristics() const { 785 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ | 786 IMAGE_SCN_MEM_WRITE; 787 } 788 789 void StringChunk::writeTo(uint8_t *buf) const { 790 memcpy(buf, str.data(), str.size()); 791 buf[str.size()] = '\0'; 792 } 793 794 ImportThunkChunk::ImportThunkChunk(COFFLinkerContext &ctx, Defined *s) 795 : NonSectionCodeChunk(ImportThunkKind), live(!ctx.config.doGC), 796 impSymbol(s), ctx(ctx) {} 797 798 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s) 799 : ImportThunkChunk(ctx, s) { 800 // Intel Optimization Manual says that all branch targets 801 // should be 16-byte aligned. MSVC linker does this too. 802 setAlignment(16); 803 } 804 805 void ImportThunkChunkX64::writeTo(uint8_t *buf) const { 806 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 807 // The first two bytes is a JMP instruction. Fill its operand. 808 write32le(buf + 2, impSymbol->getRVA() - rva - getSize()); 809 } 810 811 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) { 812 res->emplace_back(getRVA() + 2, ctx.config.machine); 813 } 814 815 void ImportThunkChunkX86::writeTo(uint8_t *buf) const { 816 memcpy(buf, importThunkX86, sizeof(importThunkX86)); 817 // The first two bytes is a JMP instruction. Fill its operand. 818 write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase); 819 } 820 821 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) { 822 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T); 823 } 824 825 void ImportThunkChunkARM::writeTo(uint8_t *buf) const { 826 memcpy(buf, importThunkARM, sizeof(importThunkARM)); 827 // Fix mov.w and mov.t operands. 828 applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase); 829 } 830 831 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const { 832 int64_t off = impSymbol->getRVA() & 0xfff; 833 memcpy(buf, importThunkARM64, sizeof(importThunkARM64)); 834 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12); 835 applyArm64Ldr(buf + 4, off); 836 } 837 838 // A Thumb2, PIC, non-interworking range extension thunk. 839 const uint8_t armThunk[] = { 840 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4) 841 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4) 842 0xe7, 0x44, // L1: add pc, ip 843 }; 844 845 size_t RangeExtensionThunkARM::getSize() const { 846 assert(ctx.config.machine == ARMNT); 847 (void)&ctx; 848 return sizeof(armThunk); 849 } 850 851 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const { 852 assert(ctx.config.machine == ARMNT); 853 uint64_t offset = target->getRVA() - rva - 12; 854 memcpy(buf, armThunk, sizeof(armThunk)); 855 applyMOV32T(buf, uint32_t(offset)); 856 } 857 858 // A position independent ARM64 adrp+add thunk, with a maximum range of 859 // +/- 4 GB, which is enough for any PE-COFF. 860 const uint8_t arm64Thunk[] = { 861 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest 862 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest 863 0x00, 0x02, 0x1f, 0xd6, // br x16 864 }; 865 866 size_t RangeExtensionThunkARM64::getSize() const { return sizeof(arm64Thunk); } 867 868 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const { 869 memcpy(buf, arm64Thunk, sizeof(arm64Thunk)); 870 applyArm64Addr(buf + 0, target->getRVA(), rva, 12); 871 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0); 872 } 873 874 LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s) 875 : sym(s), ctx(c) { 876 setAlignment(ctx.config.wordsize); 877 } 878 879 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) { 880 res->emplace_back(getRVA(), ctx.config.machine); 881 } 882 883 size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; } 884 885 void LocalImportChunk::writeTo(uint8_t *buf) const { 886 if (ctx.config.is64()) { 887 write64le(buf, sym->getRVA() + ctx.config.imageBase); 888 } else { 889 write32le(buf, sym->getRVA() + ctx.config.imageBase); 890 } 891 } 892 893 void RVATableChunk::writeTo(uint8_t *buf) const { 894 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf); 895 size_t cnt = 0; 896 for (const ChunkAndOffset &co : syms) 897 begin[cnt++] = co.inputChunk->getRVA() + co.offset; 898 llvm::sort(begin, begin + cnt); 899 assert(std::unique(begin, begin + cnt) == begin + cnt && 900 "RVA tables should be de-duplicated"); 901 } 902 903 void RVAFlagTableChunk::writeTo(uint8_t *buf) const { 904 struct RVAFlag { 905 ulittle32_t rva; 906 uint8_t flag; 907 }; 908 auto flags = 909 MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size()); 910 for (auto t : zip(syms, flags)) { 911 const auto &sym = std::get<0>(t); 912 auto &flag = std::get<1>(t); 913 flag.rva = sym.inputChunk->getRVA() + sym.offset; 914 flag.flag = 0; 915 } 916 llvm::sort(flags, 917 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; }); 918 assert(llvm::unique(flags, [](const RVAFlag &a, 919 const RVAFlag &b) { return a.rva == b.rva; }) == 920 flags.end() && 921 "RVA tables should be de-duplicated"); 922 } 923 924 size_t ECCodeMapChunk::getSize() const { 925 return map.size() * sizeof(chpe_range_entry); 926 } 927 928 void ECCodeMapChunk::writeTo(uint8_t *buf) const { 929 auto table = reinterpret_cast<chpe_range_entry *>(buf); 930 for (uint32_t i = 0; i < map.size(); i++) { 931 const ECCodeMapEntry &entry = map[i]; 932 uint32_t start = entry.first->getRVA(); 933 table[i].StartOffset = start | entry.type; 934 table[i].Length = entry.last->getRVA() + entry.last->getSize() - start; 935 } 936 } 937 938 // MinGW specific, for the "automatic import of variables from DLLs" feature. 939 size_t PseudoRelocTableChunk::getSize() const { 940 if (relocs.empty()) 941 return 0; 942 return 12 + 12 * relocs.size(); 943 } 944 945 // MinGW specific. 946 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const { 947 if (relocs.empty()) 948 return; 949 950 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf); 951 // This is the list header, to signal the runtime pseudo relocation v2 952 // format. 953 table[0] = 0; 954 table[1] = 0; 955 table[2] = 1; 956 957 size_t idx = 3; 958 for (const RuntimePseudoReloc &rpr : relocs) { 959 table[idx + 0] = rpr.sym->getRVA(); 960 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset; 961 table[idx + 2] = rpr.flags; 962 idx += 3; 963 } 964 } 965 966 // Windows-specific. This class represents a block in .reloc section. 967 // The format is described here. 968 // 969 // On Windows, each DLL is linked against a fixed base address and 970 // usually loaded to that address. However, if there's already another 971 // DLL that overlaps, the loader has to relocate it. To do that, DLLs 972 // contain .reloc sections which contain offsets that need to be fixed 973 // up at runtime. If the loader finds that a DLL cannot be loaded to its 974 // desired base address, it loads it to somewhere else, and add <actual 975 // base address> - <desired base address> to each offset that is 976 // specified by the .reloc section. In ELF terms, .reloc sections 977 // contain relative relocations in REL format (as opposed to RELA.) 978 // 979 // This already significantly reduces the size of relocations compared 980 // to ELF .rel.dyn, but Windows does more to reduce it (probably because 981 // it was invented for PCs in the late '80s or early '90s.) Offsets in 982 // .reloc are grouped by page where the page size is 12 bits, and 983 // offsets sharing the same page address are stored consecutively to 984 // represent them with less space. This is very similar to the page 985 // table which is grouped by (multiple stages of) pages. 986 // 987 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00, 988 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4 989 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they 990 // are represented like this: 991 // 992 // 0x00000 -- page address (4 bytes) 993 // 16 -- size of this block (4 bytes) 994 // 0xA030 -- entries (2 bytes each) 995 // 0xA500 996 // 0xA700 997 // 0xAA00 998 // 0x20000 -- page address (4 bytes) 999 // 12 -- size of this block (4 bytes) 1000 // 0xA004 -- entries (2 bytes each) 1001 // 0xA008 1002 // 1003 // Usually we have a lot of relocations for each page, so the number of 1004 // bytes for one .reloc entry is close to 2 bytes on average. 1005 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) { 1006 // Block header consists of 4 byte page RVA and 4 byte block size. 1007 // Each entry is 2 byte. Last entry may be padding. 1008 data.resize(alignTo((end - begin) * 2 + 8, 4)); 1009 uint8_t *p = data.data(); 1010 write32le(p, page); 1011 write32le(p + 4, data.size()); 1012 p += 8; 1013 for (Baserel *i = begin; i != end; ++i) { 1014 write16le(p, (i->type << 12) | (i->rva - page)); 1015 p += 2; 1016 } 1017 } 1018 1019 void BaserelChunk::writeTo(uint8_t *buf) const { 1020 memcpy(buf, data.data(), data.size()); 1021 } 1022 1023 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) { 1024 return is64Bit(machine) ? IMAGE_REL_BASED_DIR64 : IMAGE_REL_BASED_HIGHLOW; 1025 } 1026 1027 MergeChunk::MergeChunk(uint32_t alignment) 1028 : builder(StringTableBuilder::RAW, llvm::Align(alignment)) { 1029 setAlignment(alignment); 1030 } 1031 1032 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) { 1033 assert(isPowerOf2_32(c->getAlignment())); 1034 uint8_t p2Align = llvm::Log2_32(c->getAlignment()); 1035 assert(p2Align < std::size(ctx.mergeChunkInstances)); 1036 auto *&mc = ctx.mergeChunkInstances[p2Align]; 1037 if (!mc) 1038 mc = make<MergeChunk>(c->getAlignment()); 1039 mc->sections.push_back(c); 1040 } 1041 1042 void MergeChunk::finalizeContents() { 1043 assert(!finalized && "should only finalize once"); 1044 for (SectionChunk *c : sections) 1045 if (c->live) 1046 builder.add(toStringRef(c->getContents())); 1047 builder.finalize(); 1048 finalized = true; 1049 } 1050 1051 void MergeChunk::assignSubsectionRVAs() { 1052 for (SectionChunk *c : sections) { 1053 if (!c->live) 1054 continue; 1055 size_t off = builder.getOffset(toStringRef(c->getContents())); 1056 c->setRVA(rva + off); 1057 } 1058 } 1059 1060 uint32_t MergeChunk::getOutputCharacteristics() const { 1061 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA; 1062 } 1063 1064 size_t MergeChunk::getSize() const { 1065 return builder.getSize(); 1066 } 1067 1068 void MergeChunk::writeTo(uint8_t *buf) const { 1069 builder.write(buf); 1070 } 1071 1072 // MinGW specific. 1073 size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; } 1074 1075 void AbsolutePointerChunk::writeTo(uint8_t *buf) const { 1076 if (ctx.config.is64()) { 1077 write64le(buf, value); 1078 } else { 1079 write32le(buf, value); 1080 } 1081 } 1082 1083 void ECExportThunkChunk::writeTo(uint8_t *buf) const { 1084 memcpy(buf, ECExportThunkCode, sizeof(ECExportThunkCode)); 1085 write32le(buf + 10, target->getRVA() - rva - 14); 1086 } 1087 1088 size_t CHPECodeRangesChunk::getSize() const { 1089 return exportThunks.size() * sizeof(chpe_code_range_entry); 1090 } 1091 1092 void CHPECodeRangesChunk::writeTo(uint8_t *buf) const { 1093 auto ranges = reinterpret_cast<chpe_code_range_entry *>(buf); 1094 1095 for (uint32_t i = 0; i < exportThunks.size(); i++) { 1096 Chunk *thunk = exportThunks[i].first; 1097 uint32_t start = thunk->getRVA(); 1098 ranges[i].StartRva = start; 1099 ranges[i].EndRva = start + thunk->getSize(); 1100 ranges[i].EntryPoint = start; 1101 } 1102 } 1103 1104 size_t CHPERedirectionChunk::getSize() const { 1105 // Add an extra +1 for a terminator entry. 1106 return (exportThunks.size() + 1) * sizeof(chpe_redirection_entry); 1107 } 1108 1109 void CHPERedirectionChunk::writeTo(uint8_t *buf) const { 1110 auto entries = reinterpret_cast<chpe_redirection_entry *>(buf); 1111 1112 for (uint32_t i = 0; i < exportThunks.size(); i++) { 1113 entries[i].Source = exportThunks[i].first->getRVA(); 1114 entries[i].Destination = exportThunks[i].second->getRVA(); 1115 } 1116 } 1117 1118 ImportThunkChunkARM64EC::ImportThunkChunkARM64EC(ImportFile *file) 1119 : ImportThunkChunk(file->symtab.ctx, file->impSym), file(file) {} 1120 1121 size_t ImportThunkChunkARM64EC::getSize() const { 1122 if (!extended) 1123 return sizeof(importThunkARM64EC); 1124 // The last instruction is replaced with an inline range extension thunk. 1125 return sizeof(importThunkARM64EC) + sizeof(arm64Thunk) - sizeof(uint32_t); 1126 } 1127 1128 void ImportThunkChunkARM64EC::writeTo(uint8_t *buf) const { 1129 memcpy(buf, importThunkARM64EC, sizeof(importThunkARM64EC)); 1130 applyArm64Addr(buf, file->impSym->getRVA(), rva, 12); 1131 applyArm64Ldr(buf + 4, file->impSym->getRVA() & 0xfff); 1132 1133 // The exit thunk may be missing. This can happen if the application only 1134 // references a function by its address (in which case the thunk is never 1135 // actually used, but is still required to fill the auxiliary IAT), or in 1136 // cases of hand-written assembly calling an imported ARM64EC function (where 1137 // the exit thunk is ignored by __icall_helper_arm64ec). In such cases, MSVC 1138 // link.exe uses 0 as the RVA. 1139 uint32_t exitThunkRVA = exitThunk ? exitThunk->getRVA() : 0; 1140 applyArm64Addr(buf + 8, exitThunkRVA, rva + 8, 12); 1141 applyArm64Imm(buf + 12, exitThunkRVA & 0xfff, 0); 1142 1143 Defined *helper = cast<Defined>(file->symtab.ctx.config.arm64ECIcallHelper); 1144 if (extended) { 1145 // Replace last instruction with an inline range extension thunk. 1146 memcpy(buf + 16, arm64Thunk, sizeof(arm64Thunk)); 1147 applyArm64Addr(buf + 16, helper->getRVA(), rva + 16, 12); 1148 applyArm64Imm(buf + 20, helper->getRVA() & 0xfff, 0); 1149 } else { 1150 applyArm64Branch26(buf + 16, helper->getRVA() - rva - 16); 1151 } 1152 } 1153 1154 bool ImportThunkChunkARM64EC::verifyRanges() { 1155 if (extended) 1156 return true; 1157 auto helper = cast<Defined>(file->symtab.ctx.config.arm64ECIcallHelper); 1158 return isInt<28>(helper->getRVA() - rva - 16); 1159 } 1160 1161 uint32_t ImportThunkChunkARM64EC::extendRanges() { 1162 if (extended || verifyRanges()) 1163 return 0; 1164 extended = true; 1165 // The last instruction is replaced with an inline range extension thunk. 1166 return sizeof(arm64Thunk) - sizeof(uint32_t); 1167 } 1168 1169 uint64_t Arm64XRelocVal::get() const { 1170 return (sym ? sym->getRVA() : 0) + (chunk ? chunk->getRVA() : 0) + value; 1171 } 1172 1173 size_t Arm64XDynamicRelocEntry::getSize() const { 1174 switch (type) { 1175 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL: 1176 return sizeof(uint16_t); // Just a header. 1177 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE: 1178 return sizeof(uint16_t) + size; // A header and a payload. 1179 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA: 1180 return 2 * sizeof(uint16_t); // A header and a delta. 1181 } 1182 llvm_unreachable("invalid type"); 1183 } 1184 1185 void Arm64XDynamicRelocEntry::writeTo(uint8_t *buf) const { 1186 auto out = reinterpret_cast<ulittle16_t *>(buf); 1187 *out = (offset.get() & 0xfff) | (type << 12); 1188 1189 switch (type) { 1190 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL: 1191 *out |= ((bit_width(size) - 1) << 14); // Encode the size. 1192 break; 1193 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE: 1194 *out |= ((bit_width(size) - 1) << 14); // Encode the size. 1195 switch (size) { 1196 case 2: 1197 out[1] = value.get(); 1198 break; 1199 case 4: 1200 *reinterpret_cast<ulittle32_t *>(out + 1) = value.get(); 1201 break; 1202 case 8: 1203 *reinterpret_cast<ulittle64_t *>(out + 1) = value.get(); 1204 break; 1205 default: 1206 llvm_unreachable("invalid size"); 1207 } 1208 break; 1209 case IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA: 1210 int delta = value.get(); 1211 // Negative offsets use a sign bit in the header. 1212 if (delta < 0) { 1213 *out |= 1 << 14; 1214 delta = -delta; 1215 } 1216 // Depending on the value, the delta is encoded with a shift of 2 or 3 bits. 1217 if (delta & 7) { 1218 assert(!(delta & 3)); 1219 delta >>= 2; 1220 } else { 1221 *out |= (1 << 15); 1222 delta >>= 3; 1223 } 1224 out[1] = delta; 1225 assert(!(delta & ~0xffff)); 1226 break; 1227 } 1228 } 1229 1230 void DynamicRelocsChunk::finalize() { 1231 llvm::stable_sort(arm64xRelocs, [=](const Arm64XDynamicRelocEntry &a, 1232 const Arm64XDynamicRelocEntry &b) { 1233 return a.offset.get() < b.offset.get(); 1234 }); 1235 1236 size = sizeof(coff_dynamic_reloc_table) + sizeof(coff_dynamic_relocation64); 1237 uint32_t prevPage = 0xfff; 1238 1239 for (const Arm64XDynamicRelocEntry &entry : arm64xRelocs) { 1240 uint32_t page = entry.offset.get() & ~0xfff; 1241 if (page != prevPage) { 1242 size = alignTo(size, sizeof(uint32_t)) + 1243 sizeof(coff_base_reloc_block_header); 1244 prevPage = page; 1245 } 1246 size += entry.getSize(); 1247 } 1248 1249 size = alignTo(size, sizeof(uint32_t)); 1250 } 1251 1252 // Set the reloc value. The reloc entry must be allocated beforehand. 1253 void DynamicRelocsChunk::set(uint32_t rva, Arm64XRelocVal value) { 1254 auto entry = 1255 llvm::find_if(arm64xRelocs, [rva](const Arm64XDynamicRelocEntry &e) { 1256 return e.offset.get() == rva; 1257 }); 1258 assert(entry != arm64xRelocs.end()); 1259 assert(!entry->value.get()); 1260 entry->value = value; 1261 } 1262 1263 void DynamicRelocsChunk::writeTo(uint8_t *buf) const { 1264 auto table = reinterpret_cast<coff_dynamic_reloc_table *>(buf); 1265 table->Version = 1; 1266 table->Size = sizeof(coff_dynamic_relocation64); 1267 buf += sizeof(*table); 1268 1269 auto header = reinterpret_cast<coff_dynamic_relocation64 *>(buf); 1270 header->Symbol = IMAGE_DYNAMIC_RELOCATION_ARM64X; 1271 buf += sizeof(*header); 1272 1273 coff_base_reloc_block_header *pageHeader = nullptr; 1274 size_t relocSize = 0; 1275 for (const Arm64XDynamicRelocEntry &entry : arm64xRelocs) { 1276 uint32_t page = entry.offset.get() & ~0xfff; 1277 if (!pageHeader || page != pageHeader->PageRVA) { 1278 relocSize = alignTo(relocSize, sizeof(uint32_t)); 1279 if (pageHeader) 1280 pageHeader->BlockSize = 1281 buf + relocSize - reinterpret_cast<uint8_t *>(pageHeader); 1282 pageHeader = 1283 reinterpret_cast<coff_base_reloc_block_header *>(buf + relocSize); 1284 pageHeader->PageRVA = page; 1285 relocSize += sizeof(*pageHeader); 1286 } 1287 1288 entry.writeTo(buf + relocSize); 1289 relocSize += entry.getSize(); 1290 } 1291 relocSize = alignTo(relocSize, sizeof(uint32_t)); 1292 pageHeader->BlockSize = 1293 buf + relocSize - reinterpret_cast<uint8_t *>(pageHeader); 1294 1295 header->BaseRelocSize = relocSize; 1296 table->Size += relocSize; 1297 assert(size == sizeof(*table) + sizeof(*header) + relocSize); 1298 } 1299 1300 } // namespace lld::coff 1301