1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // UNSUPPORTED: no-threads, c++03
10 
11 // <condition_variable>
12 
13 // class condition_variable_any;
14 
15 // template <class Lock, class Duration, class Predicate>
16 //     bool
17 //     wait_until(Lock& lock,
18 //                const chrono::time_point<Clock, Duration>& abs_time,
19 //                Predicate pred);
20 
21 #include <condition_variable>
22 #include <atomic>
23 #include <cassert>
24 #include <chrono>
25 #include <mutex>
26 #include <thread>
27 
28 #include "make_test_thread.h"
29 #include "test_macros.h"
30 
31 struct TestClock {
32   typedef std::chrono::milliseconds duration;
33   typedef duration::rep rep;
34   typedef duration::period period;
35   typedef std::chrono::time_point<TestClock> time_point;
36   static const bool is_steady = true;
37 
nowTestClock38   static time_point now() {
39     using namespace std::chrono;
40     return time_point(duration_cast<duration>(steady_clock::now().time_since_epoch()));
41   }
42 };
43 
44 template <class Mutex>
45 struct MyLock : std::unique_lock<Mutex> {
46   using std::unique_lock<Mutex>::unique_lock;
47 };
48 
49 template <class Lock, class Clock>
test()50 void test() {
51   using Mutex = typename Lock::mutex_type;
52   // Test unblocking via a call to notify_one() in another thread.
53   //
54   // To test this, we set a very long timeout in wait_until() and we try to minimize
55   // the likelihood that we got awoken by a spurious wakeup by updating the
56   // likely_spurious flag only immediately before we perform the notification.
57   {
58     std::atomic<bool> ready(false);
59     std::atomic<bool> likely_spurious(true);
60     auto timeout = Clock::now() + std::chrono::seconds(3600);
61     std::condition_variable_any cv;
62     Mutex mutex;
63 
64     std::thread t1 = support::make_test_thread([&] {
65       Lock lock(mutex);
66       ready       = true;
67       bool result = cv.wait_until(lock, timeout, [&] { return !likely_spurious; });
68       assert(result); // return value should be true since we didn't time out
69       assert(Clock::now() < timeout);
70     });
71 
72     std::thread t2 = support::make_test_thread([&] {
73       while (!ready) {
74         // spin
75       }
76 
77       // Acquire the same mutex as t1. This ensures that the condition variable has started
78       // waiting (and hence released that mutex).
79       Lock lock(mutex);
80 
81       likely_spurious = false;
82       lock.unlock();
83       cv.notify_one();
84     });
85 
86     t2.join();
87     t1.join();
88   }
89 
90   // Test unblocking via a timeout.
91   //
92   // To test this, we create a thread that waits on a condition variable with a certain
93   // timeout, and we never awaken it. The "stop waiting" predicate always returns false,
94   // which means that we can't get out of the wait via a spurious wakeup.
95   {
96     auto timeout = Clock::now() + std::chrono::milliseconds(250);
97     std::condition_variable_any cv;
98     Mutex mutex;
99 
100     std::thread t1 = support::make_test_thread([&] {
101       Lock lock(mutex);
102       bool result = cv.wait_until(lock, timeout, [] { return false; }); // never stop waiting (until timeout)
103       assert(!result); // return value should be false since the predicate returns false after the timeout
104       assert(Clock::now() >= timeout);
105     });
106 
107     t1.join();
108   }
109 
110   // Test unblocking via a spurious wakeup.
111   //
112   // To test this, we set a fairly long timeout in wait_until() and we basically never
113   // wake up the condition variable. This way, we are hoping to get out of the wait
114   // via a spurious wakeup.
115   //
116   // However, since spurious wakeups are not required to even happen, this test is
117   // only trying to trigger that code path, but not actually asserting that it is
118   // taken. In particular, we do need to eventually ensure we get out of the wait
119   // by standard means, so we actually wake up the thread at the end.
120   {
121     std::atomic<bool> ready(false);
122     std::atomic<bool> awoken(false);
123     auto timeout = Clock::now() + std::chrono::seconds(3600);
124     std::condition_variable_any cv;
125     Mutex mutex;
126 
127     std::thread t1 = support::make_test_thread([&] {
128       Lock lock(mutex);
129       ready       = true;
130       bool result = cv.wait_until(lock, timeout, [&] { return true; });
131       awoken      = true;
132       assert(result);                 // return value should be true since we didn't time out
133       assert(Clock::now() < timeout); // can technically fail if t2 never executes and we timeout, but very unlikely
134     });
135 
136     std::thread t2 = support::make_test_thread([&] {
137       while (!ready) {
138         // spin
139       }
140 
141       // Acquire the same mutex as t1. This ensures that the condition variable has started
142       // waiting (and hence released that mutex).
143       Lock lock(mutex);
144       lock.unlock();
145 
146       // Give some time for t1 to be awoken spuriously so that code path is used.
147       std::this_thread::sleep_for(std::chrono::seconds(1));
148 
149       // We would want to assert that the thread has been awoken after this time,
150       // however nothing guarantees us that it ever gets spuriously awoken, so
151       // we can't really check anything. This is still left here as documentation.
152       bool woke = awoken.load();
153       assert(woke || !woke);
154 
155       // Whatever happened, actually awaken the condition variable to ensure the test
156       // doesn't keep running until the timeout.
157       cv.notify_one();
158     });
159 
160     t2.join();
161     t1.join();
162   }
163 }
164 
main(int,char **)165 int main(int, char**) {
166   // Run on multiple threads to speed up the test, and because it ought to work anyways.
167   std::thread tests[] = {
168       support::make_test_thread([] {
169         test<std::unique_lock<std::mutex>, TestClock>();
170         test<std::unique_lock<std::mutex>, std::chrono::steady_clock>();
171       }),
172       support::make_test_thread([] {
173         test<std::unique_lock<std::timed_mutex>, TestClock>();
174         test<std::unique_lock<std::timed_mutex>, std::chrono::steady_clock>();
175       }),
176       support::make_test_thread([] {
177         test<MyLock<std::mutex>, TestClock>();
178         test<MyLock<std::mutex>, std::chrono::steady_clock>();
179       }),
180       support::make_test_thread([] {
181         test<MyLock<std::timed_mutex>, TestClock>();
182         test<MyLock<std::timed_mutex>, std::chrono::steady_clock>();
183       })};
184 
185   for (std::thread& t : tests)
186     t.join();
187 
188   return 0;
189 }
190