1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // UNSUPPORTED: no-threads, c++03
10
11 // <condition_variable>
12
13 // class condition_variable_any;
14
15 // template <class Lock, class Rep, class Period, class Predicate>
16 // bool
17 // wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time,
18 // Predicate pred);
19
20 #include <condition_variable>
21 #include <atomic>
22 #include <cassert>
23 #include <chrono>
24 #include <mutex>
25 #include <thread>
26
27 #include "make_test_thread.h"
28 #include "test_macros.h"
29
30 template <class Mutex>
31 struct MyLock : std::unique_lock<Mutex> {
32 using std::unique_lock<Mutex>::unique_lock;
33 };
34
35 template <class Function>
measure(Function f)36 std::chrono::microseconds measure(Function f) {
37 std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
38 f();
39 std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
40 return std::chrono::duration_cast<std::chrono::microseconds>(end - start);
41 }
42
43 template <class Lock>
test()44 void test() {
45 using Mutex = typename Lock::mutex_type;
46 // Test unblocking via a call to notify_one() in another thread.
47 //
48 // To test this, we set a very long timeout in wait_for() and we try to minimize
49 // the likelihood that we got awoken by a spurious wakeup by updating the
50 // likely_spurious flag only immediately before we perform the notification.
51 {
52 std::atomic<bool> ready(false);
53 std::atomic<bool> likely_spurious(true);
54 auto timeout = std::chrono::seconds(3600);
55 std::condition_variable_any cv;
56 Mutex mutex;
57
58 std::thread t1 = support::make_test_thread([&] {
59 Lock lock(mutex);
60 auto elapsed = measure([&] {
61 ready = true;
62 bool result = cv.wait_for(lock, timeout, [&] { return !likely_spurious; });
63 assert(result); // return value should be true since we didn't time out
64 });
65 assert(elapsed < timeout);
66 });
67
68 std::thread t2 = support::make_test_thread([&] {
69 while (!ready) {
70 // spin
71 }
72
73 // Acquire the same mutex as t1. This ensures that the condition variable has started
74 // waiting (and hence released that mutex).
75 Lock lock(mutex);
76
77 likely_spurious = false;
78 lock.unlock();
79 cv.notify_one();
80 });
81
82 t2.join();
83 t1.join();
84 }
85
86 // Test unblocking via a timeout.
87 //
88 // To test this, we create a thread that waits on a condition variable with a certain
89 // timeout, and we never awaken it. The "stop waiting" predicate always returns false,
90 // which means that we can't get out of the wait via a spurious wakeup.
91 {
92 auto timeout = std::chrono::milliseconds(250);
93 std::condition_variable_any cv;
94 Mutex mutex;
95
96 std::thread t1 = support::make_test_thread([&] {
97 Lock lock(mutex);
98 auto elapsed = measure([&] {
99 bool result = cv.wait_for(lock, timeout, [] { return false; }); // never stop waiting (until timeout)
100 assert(!result); // return value should be false since the predicate returns false after the timeout
101 });
102 assert(elapsed >= timeout);
103 });
104
105 t1.join();
106 }
107
108 // Test unblocking via a spurious wakeup.
109 //
110 // To test this, we set a fairly long timeout in wait_for() and we basically never
111 // wake up the condition variable. This way, we are hoping to get out of the wait
112 // via a spurious wakeup.
113 //
114 // However, since spurious wakeups are not required to even happen, this test is
115 // only trying to trigger that code path, but not actually asserting that it is
116 // taken. In particular, we do need to eventually ensure we get out of the wait
117 // by standard means, so we actually wake up the thread at the end.
118 {
119 std::atomic<bool> ready(false);
120 std::atomic<bool> awoken(false);
121 auto timeout = std::chrono::seconds(3600);
122 std::condition_variable_any cv;
123 Mutex mutex;
124
125 std::thread t1 = support::make_test_thread([&] {
126 Lock lock(mutex);
127 auto elapsed = measure([&] {
128 ready = true;
129 bool result = cv.wait_for(lock, timeout, [&] { return true; });
130 awoken = true;
131 assert(result); // return value should be true since we didn't time out
132 });
133 assert(elapsed < timeout); // can technically fail if t2 never executes and we timeout, but very unlikely
134 });
135
136 std::thread t2 = support::make_test_thread([&] {
137 while (!ready) {
138 // spin
139 }
140
141 // Acquire the same mutex as t1. This ensures that the condition variable has started
142 // waiting (and hence released that mutex).
143 Lock lock(mutex);
144 lock.unlock();
145
146 // Give some time for t1 to be awoken spuriously so that code path is used.
147 std::this_thread::sleep_for(std::chrono::seconds(1));
148
149 // We would want to assert that the thread has been awoken after this time,
150 // however nothing guarantees us that it ever gets spuriously awoken, so
151 // we can't really check anything. This is still left here as documentation.
152 bool woke = awoken.load();
153 assert(woke || !woke);
154
155 // Whatever happened, actually awaken the condition variable to ensure the test
156 // doesn't keep running until the timeout.
157 cv.notify_one();
158 });
159
160 t2.join();
161 t1.join();
162 }
163 }
164
main(int,char **)165 int main(int, char**) {
166 test<std::unique_lock<std::mutex>>();
167 test<std::unique_lock<std::timed_mutex>>();
168 test<MyLock<std::mutex>>();
169 test<MyLock<std::timed_mutex>>();
170 return 0;
171 }
172