xref: /llvm-project/libcxx/test/std/numerics/rand/rand.dist/rand.dist.norm/rand.dist.norm.chisq/eval.pass.cpp (revision 09e3a360581dc36d0820d3fb6da9bd7cfed87b5d)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // REQUIRES: long_tests
10 
11 // <random>
12 
13 // template<class RealType = double>
14 // class chi_squared_distribution
15 
16 // template<class _URNG> result_type operator()(_URNG& g);
17 
18 #include <random>
19 #include <cassert>
20 #include <cmath>
21 #include <cstddef>
22 #include <numeric>
23 #include <vector>
24 
25 #include "test_macros.h"
26 
27 template <class T>
28 inline
29 T
30 sqr(T x)
31 {
32     return x * x;
33 }
34 
35 int main(int, char**)
36 {
37     {
38         typedef std::chi_squared_distribution<> D;
39         typedef std::minstd_rand G;
40         G g;
41         D d(0.5);
42         const int N = 1000000;
43         std::vector<D::result_type> u;
44         for (int i = 0; i < N; ++i)
45         {
46             D::result_type v = d(g);
47             assert(d.min() < v);
48             u.push_back(v);
49         }
50         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
51         double var = 0;
52         double skew = 0;
53         double kurtosis = 0;
54         for (std::size_t i = 0; i < u.size(); ++i)
55         {
56             double dbl = (u[i] - mean);
57             double d2 = sqr(dbl);
58             var += d2;
59             skew += dbl * d2;
60             kurtosis += d2 * d2;
61         }
62         var /= u.size();
63         double dev = std::sqrt(var);
64         skew /= u.size() * dev * var;
65         kurtosis /= u.size() * var * var;
66         kurtosis -= 3;
67         double x_mean = d.n();
68         double x_var = 2 * d.n();
69         double x_skew = std::sqrt(8 / d.n());
70         double x_kurtosis = 12 / d.n();
71         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
72         assert(std::abs((var - x_var) / x_var) < 0.01);
73         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
74         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
75     }
76     {
77         typedef std::chi_squared_distribution<> D;
78         typedef std::minstd_rand G;
79         G g;
80         D d(1);
81         const int N = 1000000;
82         std::vector<D::result_type> u;
83         for (int i = 0; i < N; ++i)
84         {
85             D::result_type v = d(g);
86             assert(d.min() < v);
87             u.push_back(v);
88         }
89         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
90         double var = 0;
91         double skew = 0;
92         double kurtosis = 0;
93         for (std::size_t i = 0; i < u.size(); ++i)
94         {
95             double dbl = (u[i] - mean);
96             double d2 = sqr(dbl);
97             var += d2;
98             skew += dbl * d2;
99             kurtosis += d2 * d2;
100         }
101         var /= u.size();
102         double dev = std::sqrt(var);
103         skew /= u.size() * dev * var;
104         kurtosis /= u.size() * var * var;
105         kurtosis -= 3;
106         double x_mean = d.n();
107         double x_var = 2 * d.n();
108         double x_skew = std::sqrt(8 / d.n());
109         double x_kurtosis = 12 / d.n();
110         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
111         assert(std::abs((var - x_var) / x_var) < 0.01);
112         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
113         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
114     }
115     {
116         typedef std::chi_squared_distribution<> D;
117         typedef std::mt19937 G;
118         G g;
119         D d(2);
120         const int N = 1000000;
121         std::vector<D::result_type> u;
122         for (int i = 0; i < N; ++i)
123         {
124             D::result_type v = d(g);
125             assert(d.min() < v);
126             u.push_back(v);
127         }
128         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
129         double var = 0;
130         double skew = 0;
131         double kurtosis = 0;
132         for (std::size_t i = 0; i < u.size(); ++i)
133         {
134             double dbl = (u[i] - mean);
135             double d2 = sqr(dbl);
136             var += d2;
137             skew += dbl * d2;
138             kurtosis += d2 * d2;
139         }
140         var /= u.size();
141         double dev = std::sqrt(var);
142         skew /= u.size() * dev * var;
143         kurtosis /= u.size() * var * var;
144         kurtosis -= 3;
145         double x_mean = d.n();
146         double x_var = 2 * d.n();
147         double x_skew = std::sqrt(8 / d.n());
148         double x_kurtosis = 12 / d.n();
149         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
150         assert(std::abs((var - x_var) / x_var) < 0.01);
151         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
152         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
153     }
154 
155   return 0;
156 }
157