1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 // <random> 10 11 // class bernoulli_distribution 12 13 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm); 14 15 #include <random> 16 #include <cassert> 17 #include <cmath> 18 #include <cstddef> 19 #include <numeric> 20 #include <vector> 21 22 #include "test_macros.h" 23 24 template <class T> 25 inline 26 T 27 sqr(T x) 28 { 29 return x * x; 30 } 31 32 int main(int, char**) 33 { 34 { 35 typedef std::bernoulli_distribution D; 36 typedef D::param_type P; 37 typedef std::minstd_rand G; 38 G g; 39 D d(.75); 40 P p(.25); 41 const int N = 100000; 42 std::vector<D::result_type> u; 43 for (int i = 0; i < N; ++i) 44 u.push_back(d(g, p)); 45 double mean = std::accumulate(u.begin(), u.end(), 46 double(0)) / u.size(); 47 double var = 0; 48 double skew = 0; 49 double kurtosis = 0; 50 for (std::size_t i = 0; i < u.size(); ++i) 51 { 52 double dbl = (u[i] - mean); 53 double d2 = sqr(dbl); 54 var += d2; 55 skew += dbl * d2; 56 kurtosis += d2 * d2; 57 } 58 var /= u.size(); 59 double dev = std::sqrt(var); 60 skew /= u.size() * dev * var; 61 kurtosis /= u.size() * var * var; 62 kurtosis -= 3; 63 double x_mean = p.p(); 64 double x_var = p.p()*(1-p.p()); 65 double x_skew = (1 - 2 * p.p())/std::sqrt(x_var); 66 double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var; 67 assert(std::abs((mean - x_mean) / x_mean) < 0.01); 68 assert(std::abs((var - x_var) / x_var) < 0.01); 69 assert(std::abs((skew - x_skew) / x_skew) < 0.02); 70 assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05); 71 } 72 { 73 typedef std::bernoulli_distribution D; 74 typedef D::param_type P; 75 typedef std::minstd_rand G; 76 G g; 77 D d(.25); 78 P p(.75); 79 const int N = 100000; 80 std::vector<D::result_type> u; 81 for (int i = 0; i < N; ++i) 82 u.push_back(d(g, p)); 83 double mean = std::accumulate(u.begin(), u.end(), 84 double(0)) / u.size(); 85 double var = 0; 86 double skew = 0; 87 double kurtosis = 0; 88 for (std::size_t i = 0; i < u.size(); ++i) 89 { 90 double dbl = (u[i] - mean); 91 double d2 = sqr(dbl); 92 var += d2; 93 skew += dbl * d2; 94 kurtosis += d2 * d2; 95 } 96 var /= u.size(); 97 double dev = std::sqrt(var); 98 skew /= u.size() * dev * var; 99 kurtosis /= u.size() * var * var; 100 kurtosis -= 3; 101 double x_mean = p.p(); 102 double x_var = p.p()*(1-p.p()); 103 double x_skew = (1 - 2 * p.p())/std::sqrt(x_var); 104 double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var; 105 assert(std::abs((mean - x_mean) / x_mean) < 0.01); 106 assert(std::abs((var - x_var) / x_var) < 0.01); 107 assert(std::abs((skew - x_skew) / x_skew) < 0.02); 108 assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05); 109 } 110 111 return 0; 112 } 113