1 //===----------------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 // <random> 10 11 // class bernoulli_distribution 12 13 // template<class _URNG> result_type operator()(_URNG& g); 14 15 #include <random> 16 #include <cassert> 17 #include <cmath> 18 #include <cstddef> 19 #include <numeric> 20 #include <vector> 21 22 #include "test_macros.h" 23 24 template <class T> 25 inline 26 T 27 sqr(T x) 28 { 29 return x * x; 30 } 31 32 int main(int, char**) 33 { 34 { 35 typedef std::bernoulli_distribution D; 36 typedef std::minstd_rand G; 37 G g; 38 D d(.75); 39 const int N = 100000; 40 std::vector<D::result_type> u; 41 for (int i = 0; i < N; ++i) 42 u.push_back(d(g)); 43 double mean = std::accumulate(u.begin(), u.end(), 44 double(0)) / u.size(); 45 double var = 0; 46 double skew = 0; 47 double kurtosis = 0; 48 for (std::size_t i = 0; i < u.size(); ++i) 49 { 50 double dbl = (u[i] - mean); 51 double d2 = sqr(dbl); 52 var += d2; 53 skew += dbl * d2; 54 kurtosis += d2 * d2; 55 } 56 var /= u.size(); 57 double dev = std::sqrt(var); 58 skew /= u.size() * dev * var; 59 kurtosis /= u.size() * var * var; 60 kurtosis -= 3; 61 double x_mean = d.p(); 62 double x_var = d.p()*(1-d.p()); 63 double x_skew = (1 - 2 * d.p())/std::sqrt(x_var); 64 double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var; 65 assert(std::abs((mean - x_mean) / x_mean) < 0.01); 66 assert(std::abs((var - x_var) / x_var) < 0.01); 67 assert(std::abs((skew - x_skew) / x_skew) < 0.02); 68 assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05); 69 } 70 { 71 typedef std::bernoulli_distribution D; 72 typedef std::minstd_rand G; 73 G g; 74 D d(.25); 75 const int N = 100000; 76 std::vector<D::result_type> u; 77 for (int i = 0; i < N; ++i) 78 u.push_back(d(g)); 79 double mean = std::accumulate(u.begin(), u.end(), 80 double(0)) / u.size(); 81 double var = 0; 82 double skew = 0; 83 double kurtosis = 0; 84 for (std::size_t i = 0; i < u.size(); ++i) 85 { 86 double dbl = (u[i] - mean); 87 double d2 = sqr(dbl); 88 var += d2; 89 skew += dbl * d2; 90 kurtosis += d2 * d2; 91 } 92 var /= u.size(); 93 double dev = std::sqrt(var); 94 skew /= u.size() * dev * var; 95 kurtosis /= u.size() * var * var; 96 kurtosis -= 3; 97 double x_mean = d.p(); 98 double x_var = d.p()*(1-d.p()); 99 double x_skew = (1 - 2 * d.p())/std::sqrt(x_var); 100 double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var; 101 assert(std::abs((mean - x_mean) / x_mean) < 0.01); 102 assert(std::abs((var - x_var) / x_var) < 0.01); 103 assert(std::abs((skew - x_skew) / x_skew) < 0.02); 104 assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05); 105 } 106 107 return 0; 108 } 109