xref: /llvm-project/libcxx/test/std/numerics/c.math/hermite.pass.cpp (revision f343fee8c5c9526b3cf62ee6d450c44b69a47e87)
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // UNSUPPORTED: c++03, c++11, c++14
10 
11 // <cmath>
12 
13 // double         hermite(unsigned n, double x);
14 // float          hermite(unsigned n, float x);
15 // long double    hermite(unsigned n, long double x);
16 // float          hermitef(unsigned n, float x);
17 // long double    hermitel(unsigned n, long double x);
18 // template <class Integer>
19 // double         hermite(unsigned n, Integer x);
20 
21 #include <array>
22 #include <cassert>
23 #include <cmath>
24 #include <limits>
25 #include <vector>
26 
27 #include "type_algorithms.h"
28 
29 template <class Real>
30 constexpr unsigned get_maximal_order() {
31   if constexpr (std::numeric_limits<Real>::is_iec559)
32     return 128;
33   else { // Workaround for z/OS HexFloat.
34     // Note |H_n(x)| < 10^75 for n < 39 and x in sample_points().
35     static_assert(std::numeric_limits<Real>::max_exponent10 == 75);
36     return 39;
37   }
38 }
39 
40 template <class T>
41 std::array<T, 11> sample_points() {
42   return {-12.34, -7.42, -1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 1.0, 5.67, 15.67};
43 }
44 
45 template <class Real>
46 class CompareFloatingValues {
47 private:
48   Real abs_tol;
49   Real rel_tol;
50 
51 public:
52   CompareFloatingValues() {
53     abs_tol = []() -> Real {
54       if (std::is_same_v<Real, float>)
55         return 1e-5f;
56       else if (std::is_same_v<Real, double>)
57         return 1e-11;
58       else
59         return 1e-12l;
60     }();
61 
62     rel_tol = abs_tol;
63   }
64 
65   bool operator()(Real result, Real expected) const {
66     if (std::isinf(expected) && std::isinf(result))
67       return result == expected;
68 
69     if (std::isnan(expected) || std::isnan(result))
70       return false;
71 
72     Real tol = abs_tol + std::abs(expected) * rel_tol;
73     return std::abs(result - expected) < tol;
74   }
75 };
76 
77 // Roots are taken from
78 // Salzer, Herbert E., Ruth Zucker, and Ruth Capuano.
79 // Table of the zeros and weight factors of the first twenty Hermite
80 // polynomials. US Government Printing Office, 1952.
81 template <class T>
82 std::vector<T> get_roots(unsigned n) {
83   switch (n) {
84   case 0:
85     return {};
86   case 1:
87     return {T(0)};
88   case 2:
89     return {T(0.707106781186548)};
90   case 3:
91     return {T(0), T(1.224744871391589)};
92   case 4:
93     return {T(0.524647623275290), T(1.650680123885785)};
94   case 5:
95     return {T(0), T(0.958572464613819), T(2.020182870456086)};
96   case 6:
97     return {T(0.436077411927617), T(1.335849074013697), T(2.350604973674492)};
98   case 7:
99     return {T(0), T(0.816287882858965), T(1.673551628767471), T(2.651961356835233)};
100   case 8:
101     return {T(0.381186990207322), T(1.157193712446780), T(1.981656756695843), T(2.930637420257244)};
102   case 9:
103     return {T(0), T(0.723551018752838), T(1.468553289216668), T(2.266580584531843), T(3.190993201781528)};
104   case 10:
105     return {
106         T(0.342901327223705), T(1.036610829789514), T(1.756683649299882), T(2.532731674232790), T(3.436159118837738)};
107   case 11:
108     return {T(0),
109             T(0.65680956682100),
110             T(1.326557084494933),
111             T(2.025948015825755),
112             T(2.783290099781652),
113             T(3.668470846559583)};
114 
115   case 12:
116     return {T(0.314240376254359),
117             T(0.947788391240164),
118             T(1.597682635152605),
119             T(2.279507080501060),
120             T(3.020637025120890),
121             T(3.889724897869782)};
122 
123   case 13:
124     return {T(0),
125             T(0.605763879171060),
126             T(1.220055036590748),
127             T(1.853107651601512),
128             T(2.519735685678238),
129             T(3.246608978372410),
130             T(4.101337596178640)};
131 
132   case 14:
133     return {T(0.29174551067256),
134             T(0.87871378732940),
135             T(1.47668273114114),
136             T(2.09518325850772),
137             T(2.74847072498540),
138             T(3.46265693360227),
139             T(4.30444857047363)};
140 
141   case 15:
142     return {T(0.00000000000000),
143             T(0.56506958325558),
144             T(1.13611558521092),
145             T(1.71999257518649),
146             T(2.32573248617386),
147             T(2.96716692790560),
148             T(3.66995037340445),
149             T(4.49999070730939)};
150 
151   case 16:
152     return {T(0.27348104613815),
153             T(0.82295144914466),
154             T(1.38025853919888),
155             T(1.95178799091625),
156             T(2.54620215784748),
157             T(3.17699916197996),
158             T(3.86944790486012),
159             T(4.68873893930582)};
160 
161   case 17:
162     return {T(0),
163             T(0.5316330013427),
164             T(1.0676487257435),
165             T(1.6129243142212),
166             T(2.1735028266666),
167             T(2.7577629157039),
168             T(3.3789320911415),
169             T(4.0619466758755),
170             T(4.8713451936744)};
171 
172   case 18:
173     return {T(0.2582677505191),
174             T(0.7766829192674),
175             T(1.3009208583896),
176             T(1.8355316042616),
177             T(2.3862990891667),
178             T(2.9613775055316),
179             T(3.5737690684863),
180             T(4.2481178735681),
181             T(5.0483640088745)};
182 
183   case 19:
184     return {T(0),
185             T(0.5035201634239),
186             T(1.0103683871343),
187             T(1.5241706193935),
188             T(2.0492317098506),
189             T(2.5911337897945),
190             T(3.1578488183476),
191             T(3.7621873519640),
192             T(4.4285328066038),
193             T(5.2202716905375)};
194 
195   case 20:
196     return {T(0.2453407083009),
197             T(0.7374737285454),
198             T(1.2340762153953),
199             T(1.7385377121166),
200             T(2.2549740020893),
201             T(2.7888060584281),
202             T(3.347854567332),
203             T(3.9447640401156),
204             T(4.6036824495507),
205             T(5.3874808900112)};
206 
207   default: // polynom degree n>20 is unsupported
208     assert(false);
209     return {T(-42)};
210   }
211 }
212 
213 template <class Real>
214 void test() {
215   if constexpr (
216       std::numeric_limits<Real>::has_quiet_NaN &&
217       std::numeric_limits<
218           Real>::has_signaling_NaN) { // checks if NaNs are reported correctly (i.e. output == input for input == NaN)
219     using nl = std::numeric_limits<Real>;
220     for (Real NaN : {nl::quiet_NaN(), nl::signaling_NaN()})
221       for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
222         assert(std::isnan(std::hermite(n, NaN)));
223   }
224 
225   if constexpr (std::numeric_limits<Real>::has_quiet_NaN &&
226                 std::numeric_limits<
227                     Real>::has_signaling_NaN) { // simple sample points for n=0..127 should not produce NaNs.
228     for (Real x : sample_points<Real>())
229       for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
230         assert(!std::isnan(std::hermite(n, x)));
231   }
232 
233   { // checks std::hermite(n, x) for n=0..5 against analytic polynoms
234     const auto h0 = [](Real) -> Real { return 1; };
235     const auto h1 = [](Real y) -> Real { return 2 * y; };
236     const auto h2 = [](Real y) -> Real { return 4 * y * y - 2; };
237     const auto h3 = [](Real y) -> Real { return y * (8 * y * y - 12); };
238     const auto h4 = [](Real y) -> Real { return (16 * std::pow(y, 4) - 48 * y * y + 12); };
239     const auto h5 = [](Real y) -> Real { return y * (32 * std::pow(y, 4) - 160 * y * y + 120); };
240 
241     for (Real x : sample_points<Real>()) {
242       const CompareFloatingValues<Real> compare;
243       assert(compare(std::hermite(0, x), h0(x)));
244       assert(compare(std::hermite(1, x), h1(x)));
245       assert(compare(std::hermite(2, x), h2(x)));
246       assert(compare(std::hermite(3, x), h3(x)));
247       assert(compare(std::hermite(4, x), h4(x)));
248       assert(compare(std::hermite(5, x), h5(x)));
249     }
250   }
251 
252   { // checks std::hermitef for bitwise equality with std::hermite(unsigned, float)
253     if constexpr (std::is_same_v<Real, float>)
254       for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
255         for (float x : sample_points<float>())
256           assert(std::hermite(n, x) == std::hermitef(n, x));
257   }
258 
259   { // checks std::hermitel for bitwise equality with std::hermite(unsigned, long double)
260     if constexpr (std::is_same_v<Real, long double>)
261       for (unsigned n = 0; n < get_maximal_order<Real>(); ++n)
262         for (long double x : sample_points<long double>())
263           assert(std::hermite(n, x) == std::hermitel(n, x));
264   }
265 
266   { // Checks if the characteristic recurrence relation holds:    H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)
267     for (Real x : sample_points<Real>()) {
268       for (unsigned n = 1; n < get_maximal_order<Real>() - 1; ++n) {
269         Real H_next            = std::hermite(n + 1, x);
270         Real H_next_recurrence = 2 * (x * std::hermite(n, x) - n * std::hermite(n - 1, x));
271 
272         if (std::isinf(H_next))
273           break;
274         const CompareFloatingValues<Real> compare;
275         assert(compare(H_next, H_next_recurrence));
276       }
277     }
278   }
279 
280   { // sanity checks: hermite polynoms need to change signs at (simple) roots. checked upto order n<=20.
281 
282     // root tolerance: must be smaller than the smallest difference between adjacent roots
283     Real tol = []() -> Real {
284       if (std::is_same_v<Real, float>)
285         return 1e-5f;
286       else if (std::is_same_v<Real, double>)
287         return 1e-9;
288       else
289         return 1e-10l;
290     }();
291 
292     const auto is_sign_change = [tol](unsigned n, Real x) -> bool {
293       return std::hermite(n, x - tol) * std::hermite(n, x + tol) < 0;
294     };
295 
296     for (unsigned n = 0; n <= 20u; ++n) {
297       for (Real x : get_roots<Real>(n)) {
298         // the roots are symmetric: if x is a root, so is -x
299         if (x > 0)
300           assert(is_sign_change(n, -x));
301         assert(is_sign_change(n, x));
302       }
303     }
304   }
305 
306   if constexpr (std::numeric_limits<Real>::has_infinity) { // check input infinity is handled correctly
307     Real inf = std::numeric_limits<Real>::infinity();
308     for (unsigned n = 1; n < get_maximal_order<Real>(); ++n) {
309       assert(std::hermite(n, +inf) == inf);
310       assert(std::hermite(n, -inf) == ((n & 1) ? -inf : inf));
311     }
312   }
313 
314   if constexpr (std::numeric_limits<
315                     Real>::has_infinity) { // check: if overflow occurs that it is mapped to the correct infinity
316     if constexpr (std::is_same_v<Real, double>) {
317       // Q: Why only double?
318       // A: The numeric values (e.g. overflow threshold `n`) below are different for other types.
319       static_assert(sizeof(double) == 8);
320       for (unsigned n = 0; n < get_maximal_order<Real>(); ++n) {
321         // Q: Why n=111 and x=300?
322         // A: Both are chosen s.t. the first overlow occurs for some `n<get_maximal_order<Real>()`.
323         if (n < 111) {
324           assert(std::isfinite(std::hermite(n, +300.0)));
325           assert(std::isfinite(std::hermite(n, -300.0)));
326         } else {
327           double inf = std::numeric_limits<double>::infinity();
328           assert(std::hermite(n, +300.0) == inf);
329           assert(std::hermite(n, -300.0) == ((n & 1) ? -inf : inf));
330         }
331       }
332     }
333   }
334 }
335 
336 struct TestFloat {
337   template <class Real>
338   void operator()() {
339     test<Real>();
340   }
341 };
342 
343 struct TestInt {
344   template <class Integer>
345   void operator()() {
346     // checks that std::hermite(unsigned, Integer) actually wraps std::hermite(unsigned, double)
347     for (unsigned n = 0; n < get_maximal_order<double>(); ++n)
348       for (Integer x : {-42, -7, -5, -1, 0, 1, 5, 7, 42})
349         assert(std::hermite(n, x) == std::hermite(n, static_cast<double>(x)));
350   }
351 };
352 
353 int main() {
354   types::for_each(types::floating_point_types(), TestFloat());
355   types::for_each(types::type_list<short, int, long, long long>(), TestInt());
356 }
357