1 //===-- Double-precision x^y function -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "src/math/pow.h" 10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. 11 #include "hdr/errno_macros.h" 12 #include "hdr/fenv_macros.h" 13 #include "src/__support/CPP/bit.h" 14 #include "src/__support/FPUtil/FEnvImpl.h" 15 #include "src/__support/FPUtil/FPBits.h" 16 #include "src/__support/FPUtil/PolyEval.h" 17 #include "src/__support/FPUtil/double_double.h" 18 #include "src/__support/FPUtil/multiply_add.h" 19 #include "src/__support/FPUtil/nearest_integer.h" 20 #include "src/__support/FPUtil/sqrt.h" // Speedup for pow(x, 1/2) = sqrt(x) 21 #include "src/__support/common.h" 22 #include "src/__support/macros/config.h" 23 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 24 25 namespace LIBC_NAMESPACE_DECL { 26 27 using fputil::DoubleDouble; 28 29 namespace { 30 31 // Constants for log2(x) range reduction, generated by Sollya with: 32 // > for i from 0 to 127 do { 33 // r = 2^-8 * ceil( 2^8 * (1 - 2^(-8)) / (1 + i*2^-7) ); 34 // b = nearestint(log2(r) * 2^41) * 2^-41; 35 // c = round(log2(r) - b, D, RN); 36 // print("{", -c, ",", -b, "},"); 37 // }; 38 // This is the same as -log2(RD[i]), with the least significant bits of the 39 // high part set to be 2^-41, so that the sum of high parts + e_x is exact in 40 // double precision. 41 // We also replace the first and the last ones to be 0. 42 constexpr DoubleDouble LOG2_R_DD[128] = { 43 {0.0, 0.0}, 44 {-0x1.19b14945cf6bap-44, 0x1.72c7ba21p-7}, 45 {-0x1.95539356f93dcp-43, 0x1.743ee862p-6}, 46 {0x1.abe0a48f83604p-43, 0x1.184b8e4c5p-5}, 47 {0x1.635577970e04p-43, 0x1.77394c9d9p-5}, 48 {-0x1.401fbaaa67e3cp-45, 0x1.d6ebd1f2p-5}, 49 {-0x1.5b1799ceaeb51p-43, 0x1.1bb32a6008p-4}, 50 {0x1.7c407050799bfp-43, 0x1.4c560fe688p-4}, 51 {0x1.da6339da288fcp-43, 0x1.7d60496cf8p-4}, 52 {0x1.be4f6f22dbbadp-43, 0x1.960caf9ab8p-4}, 53 {-0x1.c760bc9b188c4p-45, 0x1.c7b528b71p-4}, 54 {0x1.164e932b2d51cp-44, 0x1.f9c95dc1dp-4}, 55 {0x1.924ae921f7ecap-45, 0x1.097e38ce6p-3}, 56 {-0x1.6d25a5b8a19b2p-44, 0x1.22dadc2ab4p-3}, 57 {0x1.e50a1644ac794p-43, 0x1.3c6fb650ccp-3}, 58 {0x1.f34baa74a7942p-43, 0x1.494f863b8cp-3}, 59 {-0x1.8f7aac147fdc1p-46, 0x1.633a8bf438p-3}, 60 {0x1.f84be19cb9578p-43, 0x1.7046031c78p-3}, 61 {-0x1.66cccab240e9p-46, 0x1.8a8980abfcp-3}, 62 {-0x1.3f7a55cd2af4cp-47, 0x1.97c1cb13c8p-3}, 63 {0x1.3458cde69308cp-43, 0x1.b2602497d4p-3}, 64 {-0x1.667f21fa8423fp-44, 0x1.bfc67a8p-3}, 65 {0x1.d2fe4574e09b9p-47, 0x1.dac22d3e44p-3}, 66 {0x1.367bde40c5e6dp-43, 0x1.e857d3d36p-3}, 67 {0x1.d45da26510033p-46, 0x1.01d9bbcfa6p-2}, 68 {-0x1.7204f55bbf90dp-44, 0x1.08bce0d96p-2}, 69 {-0x1.d4f1b95e0ff45p-43, 0x1.169c05364p-2}, 70 {0x1.c20d74c0211bfp-44, 0x1.1d982c9d52p-2}, 71 {0x1.ad89a083e072ap-43, 0x1.249cd2b13cp-2}, 72 {0x1.cd0cb4492f1bcp-43, 0x1.32bfee370ep-2}, 73 {-0x1.2101a9685c779p-47, 0x1.39de8e155ap-2}, 74 {0x1.9451cd394fe8dp-43, 0x1.4106017c3ep-2}, 75 {0x1.661e393a16b95p-44, 0x1.4f6fbb2cecp-2}, 76 {-0x1.c6d8d86531d56p-44, 0x1.56b22e6b58p-2}, 77 {0x1.c1c885adb21d3p-43, 0x1.5dfdcf1eeap-2}, 78 {0x1.3bb5921006679p-45, 0x1.6552b49986p-2}, 79 {0x1.1d406db502403p-43, 0x1.6cb0f6865cp-2}, 80 {0x1.55a63e278bad5p-43, 0x1.7b89f02cf2p-2}, 81 {-0x1.66ae2a7ada553p-49, 0x1.8304d90c12p-2}, 82 {-0x1.66cccab240e9p-45, 0x1.8a8980abfcp-2}, 83 {-0x1.62404772a151dp-45, 0x1.921800924ep-2}, 84 {0x1.ac9bca36fd02ep-44, 0x1.99b072a96cp-2}, 85 {0x1.4bc302ffa76fbp-43, 0x1.a8ff97181p-2}, 86 {0x1.01fea1ec47c71p-43, 0x1.b0b67f4f46p-2}, 87 {-0x1.f20203b3186a6p-43, 0x1.b877c57b1cp-2}, 88 {-0x1.2642415d47384p-45, 0x1.c043859e3p-2}, 89 {-0x1.bc76a2753b99bp-50, 0x1.c819dc2d46p-2}, 90 {-0x1.da93ae3a5f451p-43, 0x1.cffae611aep-2}, 91 {-0x1.50e785694a8c6p-43, 0x1.d7e6c0abc4p-2}, 92 {0x1.c56138c894641p-43, 0x1.dfdd89d586p-2}, 93 {0x1.5669df6a2b592p-43, 0x1.e7df5fe538p-2}, 94 {-0x1.ea92d9e0e8ac2p-48, 0x1.efec61b012p-2}, 95 {0x1.a0331af2e6feap-43, 0x1.f804ae8d0cp-2}, 96 {0x1.9518ce032f41dp-48, 0x1.0014332bep-1}, 97 {-0x1.b3b3864c60011p-44, 0x1.042bd4b9a8p-1}, 98 {-0x1.103e8f00d41c8p-45, 0x1.08494c66b9p-1}, 99 {0x1.65be75cc3da17p-43, 0x1.0c6caaf0c5p-1}, 100 {0x1.3676289cd3dd4p-43, 0x1.1096015deep-1}, 101 {-0x1.41dfc7d7c3321p-43, 0x1.14c560fe69p-1}, 102 {0x1.e0cda8bd74461p-44, 0x1.18fadb6e2dp-1}, 103 {0x1.2a606046ad444p-44, 0x1.1d368296b5p-1}, 104 {0x1.f9ea977a639cp-43, 0x1.217868b0c3p-1}, 105 {-0x1.50520a377c7ecp-45, 0x1.25c0a0463cp-1}, 106 {0x1.6e3cb71b554e7p-47, 0x1.2a0f3c3407p-1}, 107 {-0x1.4275f1035e5e8p-48, 0x1.2e644fac05p-1}, 108 {-0x1.4275f1035e5e8p-48, 0x1.2e644fac05p-1}, 109 {-0x1.979a5db68721dp-45, 0x1.32bfee370fp-1}, 110 {0x1.1ee969a95f529p-43, 0x1.37222bb707p-1}, 111 {0x1.bb4b69336b66ep-43, 0x1.3b8b1c68fap-1}, 112 {0x1.d5e6a8a4fb059p-45, 0x1.3ffad4e74fp-1}, 113 {0x1.3106e404cabb7p-44, 0x1.44716a2c08p-1}, 114 {0x1.3106e404cabb7p-44, 0x1.44716a2c08p-1}, 115 {-0x1.9bcaf1aa4168ap-43, 0x1.48eef19318p-1}, 116 {0x1.1646b761c48dep-44, 0x1.4d7380dcc4p-1}, 117 {0x1.2f0c0bfe9dbecp-43, 0x1.51ff2e3021p-1}, 118 {0x1.29904613e33cp-43, 0x1.5692101d9bp-1}, 119 {0x1.1d406db502403p-44, 0x1.5b2c3da197p-1}, 120 {0x1.1d406db502403p-44, 0x1.5b2c3da197p-1}, 121 {-0x1.125d6cbcd1095p-44, 0x1.5fcdce2728p-1}, 122 {-0x1.bd9b32266d92cp-43, 0x1.6476d98adap-1}, 123 {0x1.54243b21709cep-44, 0x1.6927781d93p-1}, 124 {0x1.54243b21709cep-44, 0x1.6927781d93p-1}, 125 {-0x1.ce60916e52e91p-44, 0x1.6ddfc2a79p-1}, 126 {0x1.f1f5ae718f241p-43, 0x1.729fd26b7p-1}, 127 {-0x1.6eb9612e0b4f3p-43, 0x1.7767c12968p-1}, 128 {-0x1.6eb9612e0b4f3p-43, 0x1.7767c12968p-1}, 129 {0x1.fed21f9cb2cc5p-43, 0x1.7c37a9227ep-1}, 130 {0x1.7f5dc57266758p-43, 0x1.810fa51bf6p-1}, 131 {0x1.7f5dc57266758p-43, 0x1.810fa51bf6p-1}, 132 {0x1.5b338360c2ae2p-43, 0x1.85efd062c6p-1}, 133 {-0x1.96fc8f4b56502p-43, 0x1.8ad846cf37p-1}, 134 {-0x1.96fc8f4b56502p-43, 0x1.8ad846cf37p-1}, 135 {-0x1.bdc81c4db3134p-44, 0x1.8fc924c89bp-1}, 136 {0x1.36c101ee1344p-43, 0x1.94c287492cp-1}, 137 {0x1.36c101ee1344p-43, 0x1.94c287492cp-1}, 138 {0x1.e41fa0a62e6aep-44, 0x1.99c48be206p-1}, 139 {-0x1.d97ee9124773bp-46, 0x1.9ecf50bf44p-1}, 140 {-0x1.d97ee9124773bp-46, 0x1.9ecf50bf44p-1}, 141 {-0x1.3f94e00e7d6bcp-46, 0x1.a3e2f4ac44p-1}, 142 {-0x1.6879fa00b120ap-43, 0x1.a8ff971811p-1}, 143 {-0x1.6879fa00b120ap-43, 0x1.a8ff971811p-1}, 144 {0x1.1659d8e2d7d38p-44, 0x1.ae255819fp-1}, 145 {0x1.1e5e0ae0d3f8ap-43, 0x1.b35458761dp-1}, 146 {0x1.1e5e0ae0d3f8ap-43, 0x1.b35458761dp-1}, 147 {0x1.484a15babcf88p-43, 0x1.b88cb9a2abp-1}, 148 {0x1.484a15babcf88p-43, 0x1.b88cb9a2abp-1}, 149 {0x1.871a7610e40bdp-45, 0x1.bdce9dcc96p-1}, 150 {-0x1.2d90e5edaeceep-43, 0x1.c31a27dd01p-1}, 151 {-0x1.2d90e5edaeceep-43, 0x1.c31a27dd01p-1}, 152 {-0x1.5dd31d962d373p-43, 0x1.c86f7b7ea5p-1}, 153 {-0x1.5dd31d962d373p-43, 0x1.c86f7b7ea5p-1}, 154 {-0x1.9ad57391924a7p-43, 0x1.cdcebd2374p-1}, 155 {-0x1.3167ccc538261p-44, 0x1.d338120a6ep-1}, 156 {-0x1.3167ccc538261p-44, 0x1.d338120a6ep-1}, 157 {0x1.c7a4ff65ddbc9p-45, 0x1.d8aba045bp-1}, 158 {0x1.c7a4ff65ddbc9p-45, 0x1.d8aba045bp-1}, 159 {-0x1.f9ab3cf74babap-44, 0x1.de298ec0bbp-1}, 160 {-0x1.f9ab3cf74babap-44, 0x1.de298ec0bbp-1}, 161 {0x1.52842c1c1e586p-43, 0x1.e3b20546f5p-1}, 162 {0x1.52842c1c1e586p-43, 0x1.e3b20546f5p-1}, 163 {0x1.3c6764fc87b4ap-48, 0x1.e9452c8a71p-1}, 164 {0x1.3c6764fc87b4ap-48, 0x1.e9452c8a71p-1}, 165 {-0x1.a0976c0a2827dp-44, 0x1.eee32e2aedp-1}, 166 {-0x1.a0976c0a2827dp-44, 0x1.eee32e2aedp-1}, 167 {-0x1.a45314dc4fc42p-43, 0x1.f48c34bd1fp-1}, 168 {-0x1.a45314dc4fc42p-43, 0x1.f48c34bd1fp-1}, 169 {0x1.ef5d00e390ap-44, 0x1.fa406bd244p-1}, 170 {0.0, 1.0}, 171 }; 172 173 bool is_odd_integer(double x) { 174 using FPBits = fputil::FPBits<double>; 175 FPBits xbits(x); 176 uint64_t x_u = xbits.uintval(); 177 unsigned x_e = static_cast<unsigned>(xbits.get_biased_exponent()); 178 unsigned lsb = 179 static_cast<unsigned>(cpp::countr_zero(x_u | FPBits::EXP_MASK)); 180 constexpr unsigned UNIT_EXPONENT = 181 static_cast<unsigned>(FPBits::EXP_BIAS + FPBits::FRACTION_LEN); 182 return (x_e + lsb == UNIT_EXPONENT); 183 } 184 185 bool is_integer(double x) { 186 using FPBits = fputil::FPBits<double>; 187 FPBits xbits(x); 188 uint64_t x_u = xbits.uintval(); 189 unsigned x_e = static_cast<unsigned>(xbits.get_biased_exponent()); 190 unsigned lsb = 191 static_cast<unsigned>(cpp::countr_zero(x_u | FPBits::EXP_MASK)); 192 constexpr unsigned UNIT_EXPONENT = 193 static_cast<unsigned>(FPBits::EXP_BIAS + FPBits::FRACTION_LEN); 194 return (x_e + lsb >= UNIT_EXPONENT); 195 } 196 197 } // namespace 198 199 LLVM_LIBC_FUNCTION(double, pow, (double x, double y)) { 200 using FPBits = fputil::FPBits<double>; 201 202 FPBits xbits(x), ybits(y); 203 204 bool x_sign = xbits.sign() == Sign::NEG; 205 bool y_sign = ybits.sign() == Sign::NEG; 206 207 FPBits x_abs = xbits.abs(); 208 FPBits y_abs = ybits.abs(); 209 210 uint64_t x_mant = xbits.get_mantissa(); 211 uint64_t y_mant = ybits.get_mantissa(); 212 uint64_t x_u = xbits.uintval(); 213 uint64_t x_a = x_abs.uintval(); 214 uint64_t y_a = y_abs.uintval(); 215 216 double e_x = static_cast<double>(xbits.get_exponent()); 217 uint64_t sign = 0; 218 219 ///////// BEGIN - Check exceptional cases //////////////////////////////////// 220 221 // The double precision number that is closest to 1 is (1 - 2^-53), which has 222 // log2(1 - 2^-53) ~ -1.715...p-53. 223 // So if |y| > |1075 / log2(1 - 2^-53)|, and x is finite: 224 // |y * log2(x)| = 0 or > 1075. 225 // Hence x^y will either overflow or underflow if x is not zero. 226 if (LIBC_UNLIKELY(y_mant == 0 || y_a > 0x43d7'4910'd52d'3052 || 227 x_u == FPBits::one().uintval() || 228 x_u >= FPBits::inf().uintval() || 229 x_u < FPBits::min_normal().uintval())) { 230 // Exceptional exponents. 231 if (y == 0.0) 232 return 1.0; 233 234 switch (y_a) { 235 case 0x3fe0'0000'0000'0000: { // y = +-0.5 236 // TODO: speed up x^(-1/2) with rsqrt(x) when available. 237 if (LIBC_UNLIKELY( 238 (x == 0.0 || x_u == FPBits::inf(Sign::NEG).uintval()))) { 239 // pow(-0, 1/2) = +0 240 // pow(-inf, 1/2) = +inf 241 // Make sure it works correctly for FTZ/DAZ. 242 return y_sign ? 1.0 / (x * x) : (x * x); 243 } 244 return y_sign ? (1.0 / fputil::sqrt<double>(x)) : fputil::sqrt<double>(x); 245 } 246 case 0x3ff0'0000'0000'0000: // y = +-1.0 247 return y_sign ? (1.0 / x) : x; 248 case 0x4000'0000'0000'0000: // y = +-2.0; 249 return y_sign ? (1.0 / (x * x)) : (x * x); 250 } 251 252 // |y| > |1075 / log2(1 - 2^-53)|. 253 if (y_a > 0x43d7'4910'd52d'3052) { 254 if (y_a >= 0x7ff0'0000'0000'0000) { 255 // y is inf or nan 256 if (y_mant != 0) { 257 // y is NaN 258 // pow(1, NaN) = 1 259 // pow(x, NaN) = NaN 260 return (x_u == FPBits::one().uintval()) ? 1.0 : y; 261 } 262 263 // Now y is +-Inf 264 if (x_abs.is_nan()) { 265 // pow(NaN, +-Inf) = NaN 266 return x; 267 } 268 269 if (x_a == 0x3ff0'0000'0000'0000) { 270 // pow(+-1, +-Inf) = 1.0 271 return 1.0; 272 } 273 274 if (x == 0.0 && y_sign) { 275 // pow(+-0, -Inf) = +inf and raise FE_DIVBYZERO 276 fputil::set_errno_if_required(EDOM); 277 fputil::raise_except_if_required(FE_DIVBYZERO); 278 return FPBits::inf().get_val(); 279 } 280 // pow (|x| < 1, -inf) = +inf 281 // pow (|x| < 1, +inf) = 0.0 282 // pow (|x| > 1, -inf) = 0.0 283 // pow (|x| > 1, +inf) = +inf 284 return ((x_a < FPBits::one().uintval()) == y_sign) 285 ? FPBits::inf().get_val() 286 : 0.0; 287 } 288 // x^y will overflow / underflow in double precision. Set y to a 289 // large enough exponent but not too large, so that the computations 290 // won't overflow in double precision. 291 y = y_sign ? -0x1.0p100 : 0x1.0p100; 292 } 293 294 // y is finite and non-zero. 295 296 if (x_u == FPBits::one().uintval()) { 297 // pow(1, y) = 1 298 return 1.0; 299 } 300 301 // TODO: Speed things up with pow(2, y) = exp2(y) and pow(10, y) = exp10(y). 302 303 if (x == 0.0) { 304 bool out_is_neg = x_sign && is_odd_integer(y); 305 if (y_sign) { 306 // pow(0, negative number) = inf 307 fputil::set_errno_if_required(EDOM); 308 fputil::raise_except_if_required(FE_DIVBYZERO); 309 return FPBits::inf(out_is_neg ? Sign::NEG : Sign::POS).get_val(); 310 } 311 // pow(0, positive number) = 0 312 return out_is_neg ? -0.0 : 0.0; 313 } 314 315 if (x_a == FPBits::inf().uintval()) { 316 bool out_is_neg = x_sign && is_odd_integer(y); 317 if (y_sign) 318 return out_is_neg ? -0.0 : 0.0; 319 return FPBits::inf(out_is_neg ? Sign::NEG : Sign::POS).get_val(); 320 } 321 322 if (x_a > FPBits::inf().uintval()) { 323 // x is NaN. 324 // pow (aNaN, 0) is already taken care above. 325 return x; 326 } 327 328 // Normalize denormal inputs. 329 if (x_a < FPBits::min_normal().uintval()) { 330 e_x -= 64.0; 331 x_mant = FPBits(x * 0x1.0p64).get_mantissa(); 332 } 333 334 // x is finite and negative, and y is a finite integer. 335 if (x_sign) { 336 if (is_integer(y)) { 337 x = -x; 338 if (is_odd_integer(y)) 339 // sign = -1.0; 340 sign = 0x8000'0000'0000'0000; 341 } else { 342 // pow( negative, non-integer ) = NaN 343 fputil::set_errno_if_required(EDOM); 344 fputil::raise_except_if_required(FE_INVALID); 345 return FPBits::quiet_nan().get_val(); 346 } 347 } 348 } 349 350 ///////// END - Check exceptional cases ////////////////////////////////////// 351 352 // x^y = 2^( y * log2(x) ) 353 // = 2^( y * ( e_x + log2(m_x) ) ) 354 // First we compute log2(x) = e_x + log2(m_x) 355 356 // Extract exponent field of x. 357 358 // Use the highest 7 fractional bits of m_x as the index for look up tables. 359 unsigned idx_x = static_cast<unsigned>(x_mant >> (FPBits::FRACTION_LEN - 7)); 360 // Add the hidden bit to the mantissa. 361 // 1 <= m_x < 2 362 FPBits m_x = FPBits(x_mant | 0x3ff0'0000'0000'0000); 363 364 // Reduced argument for log2(m_x): 365 // dx = r * m_x - 1. 366 // The computation is exact, and -2^-8 <= dx < 2^-7. 367 // Then m_x = (1 + dx) / r, and 368 // log2(m_x) = log2( (1 + dx) / r ) 369 // = log2(1 + dx) - log2(r). 370 371 // In order for the overall computations x^y = 2^(y * log2(x)) to have the 372 // relative errors < 2^-52 (1ULP), we will need to evaluate the exponent part 373 // y * log2(x) with absolute errors < 2^-52 (or better, 2^-53). Since the 374 // whole exponent range for double precision is bounded by 375 // |y * log2(x)| < 1076 ~ 2^10, we need to evaluate log2(x) with absolute 376 // errors < 2^-53 * 2^-10 = 2^-63. 377 378 // With that requirement, we use the following degree-6 polynomial 379 // approximation: 380 // P(dx) ~ log2(1 + dx) / dx 381 // Generated by Sollya with: 382 // > P = fpminimax(log2(1 + x)/x, 6, [|D...|], [-2^-8, 2^-7]); P; 383 // > dirtyinfnorm(log2(1 + x) - x*P, [-2^-8, 2^-7]); 384 // 0x1.d03cc...p-66 385 constexpr double COEFFS[] = {0x1.71547652b82fep0, -0x1.71547652b82e7p-1, 386 0x1.ec709dc3b1fd5p-2, -0x1.7154766124215p-2, 387 0x1.2776bd90259d8p-2, -0x1.ec586c6f3d311p-3, 388 0x1.9c4775eccf524p-3}; 389 // Error: ulp(dx^2) <= (2^-7)^2 * 2^-52 = 2^-66 390 // Extra errors from various computations and rounding directions, the overall 391 // errors we can be bounded by 2^-65. 392 393 double dx; 394 DoubleDouble dx_c0; 395 396 // Perform exact range reduction and exact product dx * c0. 397 #ifdef LIBC_TARGET_CPU_HAS_FMA 398 dx = fputil::multiply_add(RD[idx_x], m_x.get_val(), -1.0); // Exact 399 dx_c0 = fputil::exact_mult(COEFFS[0], dx); 400 #else 401 double c = FPBits(m_x.uintval() & 0x3fff'e000'0000'0000).get_val(); 402 dx = fputil::multiply_add(RD[idx_x], m_x.get_val() - c, CD[idx_x]); // Exact 403 dx_c0 = fputil::exact_mult<28>(dx, COEFFS[0]); // Exact 404 #endif // LIBC_TARGET_CPU_HAS_FMA 405 406 double dx2 = dx * dx; 407 double c0 = fputil::multiply_add(dx, COEFFS[2], COEFFS[1]); 408 double c1 = fputil::multiply_add(dx, COEFFS[4], COEFFS[3]); 409 double c2 = fputil::multiply_add(dx, COEFFS[6], COEFFS[5]); 410 411 double p = fputil::polyeval(dx2, c0, c1, c2); 412 413 // s = e_x - log2(r) + dx * P(dx) 414 // Absolute error bound: 415 // |log2(x) - log2_x.hi - log2_x.lo| < 2^-65. 416 417 // Notice that e_x - log2(r).hi is exact, so we perform an exact sum of 418 // e_x - log2(r).hi and the high part of the product dx * c0: 419 // log2_x_hi.hi + log2_x_hi.lo = e_x - log2(r).hi + (dx * c0).hi 420 DoubleDouble log2_x_hi = 421 fputil::exact_add(e_x + LOG2_R_DD[idx_x].hi, dx_c0.hi); 422 // The low part is dx^2 * p + low part of (dx * c0) + low part of -log2(r). 423 double log2_x_lo = 424 fputil::multiply_add(dx2, p, dx_c0.lo + LOG2_R_DD[idx_x].lo); 425 // Perform accurate sums. 426 DoubleDouble log2_x = fputil::exact_add(log2_x_hi.hi, log2_x_lo); 427 log2_x.lo += log2_x_hi.lo; 428 429 // To compute 2^(y * log2(x)), we break the exponent into 3 parts: 430 // y * log(2) = hi + mid + lo, where 431 // hi is an integer 432 // mid * 2^6 is an integer 433 // |lo| <= 2^-7 434 // Then: 435 // x^y = 2^(y * log2(x)) = 2^hi * 2^mid * 2^lo, 436 // In which 2^mid is obtained from a look-up table of size 2^6 = 64 elements, 437 // and 2^lo ~ 1 + lo * P(lo). 438 // Thus, we have: 439 // hi + mid = 2^-6 * round( 2^6 * y * log2(x) ) 440 // If we restrict the output such that |hi| < 150, (hi + mid) uses (8 + 6) 441 // bits, hence, if we use double precision to perform 442 // round( 2^6 * y * log2(x)) 443 // the lo part is bounded by 2^-7 + 2^(-(52 - 14)) = 2^-7 + 2^-38 444 445 // In the following computations: 446 // y6 = 2^6 * y 447 // hm = 2^6 * (hi + mid) = round(2^6 * y * log2(x)) ~ round(y6 * s) 448 // lo6 = 2^6 * lo = 2^6 * (y - (hi + mid)) = y6 * log2(x) - hm. 449 double y6 = y * 0x1.0p6; // Exact. 450 451 DoubleDouble y6_log2_x = fputil::exact_mult(y6, log2_x.hi); 452 y6_log2_x.lo = fputil::multiply_add(y6, log2_x.lo, y6_log2_x.lo); 453 454 // Check overflow/underflow. 455 double scale = 1.0; 456 457 // |2^(hi + mid) - exp2_hi_mid| <= ulp(exp2_hi_mid) / 2 458 // Clamp the exponent part into smaller range that fits double precision. 459 // For those exponents that are out of range, the final conversion will round 460 // them correctly to inf/max float or 0/min float accordingly. 461 constexpr double UPPER_EXP_BOUND = 512.0 * 0x1.0p6; 462 if (LIBC_UNLIKELY(FPBits(y6_log2_x.hi).abs().get_val() >= UPPER_EXP_BOUND)) { 463 if (FPBits(y6_log2_x.hi).sign() == Sign::POS) { 464 scale = 0x1.0p512; 465 y6_log2_x.hi -= 512.0 * 64.0; 466 if (y6_log2_x.hi > 513.0 * 64.0) 467 y6_log2_x.hi = 513.0 * 64.0; 468 } else { 469 scale = 0x1.0p-512; 470 y6_log2_x.hi += 512.0 * 64.0; 471 if (y6_log2_x.hi < (-1076.0 + 512.0) * 64.0) 472 y6_log2_x.hi = -564.0 * 64.0; 473 } 474 } 475 476 double hm = fputil::nearest_integer(y6_log2_x.hi); 477 478 // lo6 = 2^6 * lo. 479 double lo6_hi = y6_log2_x.hi - hm; 480 double lo6 = lo6_hi + y6_log2_x.lo; 481 482 int hm_i = static_cast<int>(hm); 483 unsigned idx_y = static_cast<unsigned>(hm_i) & 0x3f; 484 485 // 2^hi 486 int64_t exp2_hi_i = static_cast<int64_t>( 487 static_cast<uint64_t>(static_cast<int64_t>(hm_i >> 6)) 488 << FPBits::FRACTION_LEN); 489 // 2^mid 490 int64_t exp2_mid_hi_i = 491 static_cast<int64_t>(FPBits(EXP2_MID1[idx_y].hi).uintval()); 492 int64_t exp2_mid_lo_i = 493 static_cast<int64_t>(FPBits(EXP2_MID1[idx_y].mid).uintval()); 494 // (-1)^sign * 2^hi * 2^mid 495 // Error <= 2^hi * 2^-53 496 uint64_t exp2_hm_hi_i = 497 static_cast<uint64_t>(exp2_hi_i + exp2_mid_hi_i) + sign; 498 // The low part could be 0. 499 uint64_t exp2_hm_lo_i = 500 idx_y != 0 ? static_cast<uint64_t>(exp2_hi_i + exp2_mid_lo_i) + sign 501 : sign; 502 double exp2_hm_hi = FPBits(exp2_hm_hi_i).get_val(); 503 double exp2_hm_lo = FPBits(exp2_hm_lo_i).get_val(); 504 505 // Degree-5 polynomial approximation P(lo6) ~ 2^(lo6 / 2^6) = 2^(lo). 506 // Generated by Sollya with: 507 // > P = fpminimax(2^(x/64), 5, [|1, D...|], [-2^-1, 2^-1]); 508 // > dirtyinfnorm(2^(x/64) - P, [-0.5, 0.5]); 509 // 0x1.a2b77e618f5c4c176fd11b7659016cde5de83cb72p-60 510 constexpr double EXP2_COEFFS[] = {0x1p0, 511 0x1.62e42fefa39efp-7, 512 0x1.ebfbdff82a23ap-15, 513 0x1.c6b08d7076268p-23, 514 0x1.3b2ad33f8b48bp-31, 515 0x1.5d870c4d84445p-40}; 516 517 double lo6_sqr = lo6 * lo6; 518 519 double d0 = fputil::multiply_add(lo6, EXP2_COEFFS[2], EXP2_COEFFS[1]); 520 double d1 = fputil::multiply_add(lo6, EXP2_COEFFS[4], EXP2_COEFFS[3]); 521 double pp = fputil::polyeval(lo6_sqr, d0, d1, EXP2_COEFFS[5]); 522 523 double r = fputil::multiply_add(exp2_hm_hi * lo6, pp, exp2_hm_lo); 524 r += exp2_hm_hi; 525 526 return r * scale; 527 } 528 529 } // namespace LIBC_NAMESPACE_DECL 530