1 //===-- AffinePromotion.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation is a prototype that promote FIR loops operations
10 // to affine dialect operations.
11 // It is not part of the production pipeline and would need more work in order
12 // to be used in production.
13 // More information can be found in this presentation:
14 // https://slides.com/rajanwalia/deck
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "flang/Optimizer/Dialect/FIRDialect.h"
19 #include "flang/Optimizer/Dialect/FIROps.h"
20 #include "flang/Optimizer/Dialect/FIRType.h"
21 #include "flang/Optimizer/Transforms/Passes.h"
22 #include "mlir/Dialect/Affine/IR/AffineOps.h"
23 #include "mlir/Dialect/Func/IR/FuncOps.h"
24 #include "mlir/Dialect/SCF/IR/SCF.h"
25 #include "mlir/IR/BuiltinAttributes.h"
26 #include "mlir/IR/IntegerSet.h"
27 #include "mlir/IR/Visitors.h"
28 #include "mlir/Transforms/DialectConversion.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/Support/Debug.h"
31 #include <optional>
32
33 namespace fir {
34 #define GEN_PASS_DEF_AFFINEDIALECTPROMOTION
35 #include "flang/Optimizer/Transforms/Passes.h.inc"
36 } // namespace fir
37
38 #define DEBUG_TYPE "flang-affine-promotion"
39
40 using namespace fir;
41 using namespace mlir;
42
43 namespace {
44 struct AffineLoopAnalysis;
45 struct AffineIfAnalysis;
46
47 /// Stores analysis objects for all loops and if operations inside a function
48 /// these analysis are used twice, first for marking operations for rewrite and
49 /// second when doing rewrite.
50 struct AffineFunctionAnalysis {
AffineFunctionAnalysis__anond3ac08d00111::AffineFunctionAnalysis51 explicit AffineFunctionAnalysis(mlir::func::FuncOp funcOp) {
52 for (fir::DoLoopOp op : funcOp.getOps<fir::DoLoopOp>())
53 loopAnalysisMap.try_emplace(op, op, *this);
54 }
55
56 AffineLoopAnalysis getChildLoopAnalysis(fir::DoLoopOp op) const;
57
58 AffineIfAnalysis getChildIfAnalysis(fir::IfOp op) const;
59
60 llvm::DenseMap<mlir::Operation *, AffineLoopAnalysis> loopAnalysisMap;
61 llvm::DenseMap<mlir::Operation *, AffineIfAnalysis> ifAnalysisMap;
62 };
63 } // namespace
64
analyzeCoordinate(mlir::Value coordinate,mlir::Operation * op)65 static bool analyzeCoordinate(mlir::Value coordinate, mlir::Operation *op) {
66 if (auto blockArg = mlir::dyn_cast<mlir::BlockArgument>(coordinate)) {
67 if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp()))
68 return true;
69 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a "
70 "loop induction variable (owner not loopOp)\n";
71 op->dump());
72 return false;
73 }
74 LLVM_DEBUG(
75 llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a loop "
76 "induction variable (not a block argument)\n";
77 op->dump(); coordinate.getDefiningOp()->dump());
78 return false;
79 }
80
81 namespace {
82 struct AffineLoopAnalysis {
83 AffineLoopAnalysis() = default;
84
AffineLoopAnalysis__anond3ac08d00211::AffineLoopAnalysis85 explicit AffineLoopAnalysis(fir::DoLoopOp op, AffineFunctionAnalysis &afa)
86 : legality(analyzeLoop(op, afa)) {}
87
canPromoteToAffine__anond3ac08d00211::AffineLoopAnalysis88 bool canPromoteToAffine() { return legality; }
89
90 private:
analyzeBody__anond3ac08d00211::AffineLoopAnalysis91 bool analyzeBody(fir::DoLoopOp loopOperation,
92 AffineFunctionAnalysis &functionAnalysis) {
93 for (auto loopOp : loopOperation.getOps<fir::DoLoopOp>()) {
94 auto analysis = functionAnalysis.loopAnalysisMap
95 .try_emplace(loopOp, loopOp, functionAnalysis)
96 .first->getSecond();
97 if (!analysis.canPromoteToAffine())
98 return false;
99 }
100 for (auto ifOp : loopOperation.getOps<fir::IfOp>())
101 functionAnalysis.ifAnalysisMap.try_emplace(ifOp, ifOp, functionAnalysis);
102 return true;
103 }
104
analyzeLoop__anond3ac08d00211::AffineLoopAnalysis105 bool analyzeLoop(fir::DoLoopOp loopOperation,
106 AffineFunctionAnalysis &functionAnalysis) {
107 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: \n"; loopOperation.dump(););
108 return analyzeMemoryAccess(loopOperation) &&
109 analyzeBody(loopOperation, functionAnalysis);
110 }
111
analyzeReference__anond3ac08d00211::AffineLoopAnalysis112 bool analyzeReference(mlir::Value memref, mlir::Operation *op) {
113 if (auto acoOp = memref.getDefiningOp<ArrayCoorOp>()) {
114 if (mlir::isa<fir::BoxType>(acoOp.getMemref().getType())) {
115 // TODO: Look if and how fir.box can be promoted to affine.
116 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: cannot promote loop, "
117 "array memory operation uses fir.box\n";
118 op->dump(); acoOp.dump(););
119 return false;
120 }
121 bool canPromote = true;
122 for (auto coordinate : acoOp.getIndices())
123 canPromote = canPromote && analyzeCoordinate(coordinate, op);
124 return canPromote;
125 }
126 if (auto coOp = memref.getDefiningOp<CoordinateOp>()) {
127 LLVM_DEBUG(llvm::dbgs()
128 << "AffineLoopAnalysis: cannot promote loop, "
129 "array memory operation uses non ArrayCoorOp\n";
130 op->dump(); coOp.dump(););
131
132 return false;
133 }
134 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: unknown type of memory "
135 "reference for array load\n";
136 op->dump(););
137 return false;
138 }
139
analyzeMemoryAccess__anond3ac08d00211::AffineLoopAnalysis140 bool analyzeMemoryAccess(fir::DoLoopOp loopOperation) {
141 for (auto loadOp : loopOperation.getOps<fir::LoadOp>())
142 if (!analyzeReference(loadOp.getMemref(), loadOp))
143 return false;
144 for (auto storeOp : loopOperation.getOps<fir::StoreOp>())
145 if (!analyzeReference(storeOp.getMemref(), storeOp))
146 return false;
147 return true;
148 }
149
150 bool legality{};
151 };
152 } // namespace
153
154 AffineLoopAnalysis
getChildLoopAnalysis(fir::DoLoopOp op) const155 AffineFunctionAnalysis::getChildLoopAnalysis(fir::DoLoopOp op) const {
156 auto it = loopAnalysisMap.find_as(op);
157 if (it == loopAnalysisMap.end()) {
158 LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n";
159 op.dump(););
160 op.emitError("error in fetching loop analysis in AffineFunctionAnalysis\n");
161 return {};
162 }
163 return it->getSecond();
164 }
165
166 namespace {
167 /// Calculates arguments for creating an IntegerSet. symCount, dimCount are the
168 /// final number of symbols and dimensions of the affine map. Integer set if
169 /// possible is in Optional IntegerSet.
170 struct AffineIfCondition {
171 using MaybeAffineExpr = std::optional<mlir::AffineExpr>;
172
AffineIfCondition__anond3ac08d00311::AffineIfCondition173 explicit AffineIfCondition(mlir::Value fc) : firCondition(fc) {
174 if (auto condDef = firCondition.getDefiningOp<mlir::arith::CmpIOp>())
175 fromCmpIOp(condDef);
176 }
177
hasIntegerSet__anond3ac08d00311::AffineIfCondition178 bool hasIntegerSet() const { return integerSet.has_value(); }
179
getIntegerSet__anond3ac08d00311::AffineIfCondition180 mlir::IntegerSet getIntegerSet() const {
181 assert(hasIntegerSet() && "integer set is missing");
182 return *integerSet;
183 }
184
getAffineArgs__anond3ac08d00311::AffineIfCondition185 mlir::ValueRange getAffineArgs() const { return affineArgs; }
186
187 private:
affineBinaryOp__anond3ac08d00311::AffineIfCondition188 MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, mlir::Value lhs,
189 mlir::Value rhs) {
190 return affineBinaryOp(kind, toAffineExpr(lhs), toAffineExpr(rhs));
191 }
192
affineBinaryOp__anond3ac08d00311::AffineIfCondition193 MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, MaybeAffineExpr lhs,
194 MaybeAffineExpr rhs) {
195 if (lhs && rhs)
196 return mlir::getAffineBinaryOpExpr(kind, *lhs, *rhs);
197 return {};
198 }
199
toAffineExpr__anond3ac08d00311::AffineIfCondition200 MaybeAffineExpr toAffineExpr(MaybeAffineExpr e) { return e; }
201
toAffineExpr__anond3ac08d00311::AffineIfCondition202 MaybeAffineExpr toAffineExpr(int64_t value) {
203 return {mlir::getAffineConstantExpr(value, firCondition.getContext())};
204 }
205
206 /// Returns an AffineExpr if it is a result of operations that can be done
207 /// in an affine expression, this includes -, +, *, rem, constant.
208 /// block arguments of a loopOp or forOp are used as dimensions
toAffineExpr__anond3ac08d00311::AffineIfCondition209 MaybeAffineExpr toAffineExpr(mlir::Value value) {
210 if (auto op = value.getDefiningOp<mlir::arith::SubIOp>())
211 return affineBinaryOp(
212 mlir::AffineExprKind::Add, toAffineExpr(op.getLhs()),
213 affineBinaryOp(mlir::AffineExprKind::Mul, toAffineExpr(op.getRhs()),
214 toAffineExpr(-1)));
215 if (auto op = value.getDefiningOp<mlir::arith::AddIOp>())
216 return affineBinaryOp(mlir::AffineExprKind::Add, op.getLhs(),
217 op.getRhs());
218 if (auto op = value.getDefiningOp<mlir::arith::MulIOp>())
219 return affineBinaryOp(mlir::AffineExprKind::Mul, op.getLhs(),
220 op.getRhs());
221 if (auto op = value.getDefiningOp<mlir::arith::RemUIOp>())
222 return affineBinaryOp(mlir::AffineExprKind::Mod, op.getLhs(),
223 op.getRhs());
224 if (auto op = value.getDefiningOp<mlir::arith::ConstantOp>())
225 if (auto intConstant = mlir::dyn_cast<IntegerAttr>(op.getValue()))
226 return toAffineExpr(intConstant.getInt());
227 if (auto blockArg = mlir::dyn_cast<mlir::BlockArgument>(value)) {
228 affineArgs.push_back(value);
229 if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp()) ||
230 isa<mlir::affine::AffineForOp>(blockArg.getOwner()->getParentOp()))
231 return {mlir::getAffineDimExpr(dimCount++, value.getContext())};
232 return {mlir::getAffineSymbolExpr(symCount++, value.getContext())};
233 }
234 return {};
235 }
236
fromCmpIOp__anond3ac08d00311::AffineIfCondition237 void fromCmpIOp(mlir::arith::CmpIOp cmpOp) {
238 auto lhsAffine = toAffineExpr(cmpOp.getLhs());
239 auto rhsAffine = toAffineExpr(cmpOp.getRhs());
240 if (!lhsAffine || !rhsAffine)
241 return;
242 auto constraintPair =
243 constraint(cmpOp.getPredicate(), *rhsAffine - *lhsAffine);
244 if (!constraintPair)
245 return;
246 integerSet = mlir::IntegerSet::get(
247 dimCount, symCount, {constraintPair->first}, {constraintPair->second});
248 }
249
250 std::optional<std::pair<AffineExpr, bool>>
constraint__anond3ac08d00311::AffineIfCondition251 constraint(mlir::arith::CmpIPredicate predicate, mlir::AffineExpr basic) {
252 switch (predicate) {
253 case mlir::arith::CmpIPredicate::slt:
254 return {std::make_pair(basic - 1, false)};
255 case mlir::arith::CmpIPredicate::sle:
256 return {std::make_pair(basic, false)};
257 case mlir::arith::CmpIPredicate::sgt:
258 return {std::make_pair(1 - basic, false)};
259 case mlir::arith::CmpIPredicate::sge:
260 return {std::make_pair(0 - basic, false)};
261 case mlir::arith::CmpIPredicate::eq:
262 return {std::make_pair(basic, true)};
263 default:
264 return {};
265 }
266 }
267
268 llvm::SmallVector<mlir::Value> affineArgs;
269 std::optional<mlir::IntegerSet> integerSet;
270 mlir::Value firCondition;
271 unsigned symCount{0u};
272 unsigned dimCount{0u};
273 };
274 } // namespace
275
276 namespace {
277 /// Analysis for affine promotion of fir.if
278 struct AffineIfAnalysis {
279 AffineIfAnalysis() = default;
280
AffineIfAnalysis__anond3ac08d00411::AffineIfAnalysis281 explicit AffineIfAnalysis(fir::IfOp op, AffineFunctionAnalysis &afa)
282 : legality(analyzeIf(op, afa)) {}
283
canPromoteToAffine__anond3ac08d00411::AffineIfAnalysis284 bool canPromoteToAffine() { return legality; }
285
286 private:
analyzeIf__anond3ac08d00411::AffineIfAnalysis287 bool analyzeIf(fir::IfOp op, AffineFunctionAnalysis &afa) {
288 if (op.getNumResults() == 0)
289 return true;
290 LLVM_DEBUG(llvm::dbgs()
291 << "AffineIfAnalysis: not promoting as op has results\n";);
292 return false;
293 }
294
295 bool legality{};
296 };
297 } // namespace
298
299 AffineIfAnalysis
getChildIfAnalysis(fir::IfOp op) const300 AffineFunctionAnalysis::getChildIfAnalysis(fir::IfOp op) const {
301 auto it = ifAnalysisMap.find_as(op);
302 if (it == ifAnalysisMap.end()) {
303 LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n";
304 op.dump(););
305 op.emitError("error in fetching if analysis in AffineFunctionAnalysis\n");
306 return {};
307 }
308 return it->getSecond();
309 }
310
311 /// AffineMap rewriting fir.array_coor operation to affine apply,
312 /// %dim = fir.gendim %lowerBound, %upperBound, %stride
313 /// %a = fir.array_coor %arr(%dim) %i
314 /// returning affineMap = affine_map<(i)[lb, ub, st] -> (i*st - lb)>
createArrayIndexAffineMap(unsigned dimensions,MLIRContext * context)315 static mlir::AffineMap createArrayIndexAffineMap(unsigned dimensions,
316 MLIRContext *context) {
317 auto index = mlir::getAffineConstantExpr(0, context);
318 auto accuExtent = mlir::getAffineConstantExpr(1, context);
319 for (unsigned i = 0; i < dimensions; ++i) {
320 mlir::AffineExpr idx = mlir::getAffineDimExpr(i, context),
321 lowerBound = mlir::getAffineSymbolExpr(i * 3, context),
322 currentExtent =
323 mlir::getAffineSymbolExpr(i * 3 + 1, context),
324 stride = mlir::getAffineSymbolExpr(i * 3 + 2, context),
325 currentPart = (idx * stride - lowerBound) * accuExtent;
326 index = currentPart + index;
327 accuExtent = accuExtent * currentExtent;
328 }
329 return mlir::AffineMap::get(dimensions, dimensions * 3, index);
330 }
331
constantIntegerLike(const mlir::Value value)332 static std::optional<int64_t> constantIntegerLike(const mlir::Value value) {
333 if (auto definition = value.getDefiningOp<mlir::arith::ConstantOp>())
334 if (auto stepAttr = mlir::dyn_cast<IntegerAttr>(definition.getValue()))
335 return stepAttr.getInt();
336 return {};
337 }
338
coordinateArrayElement(fir::ArrayCoorOp op)339 static mlir::Type coordinateArrayElement(fir::ArrayCoorOp op) {
340 if (auto refType =
341 mlir::dyn_cast_or_null<ReferenceType>(op.getMemref().getType())) {
342 if (auto seqType =
343 mlir::dyn_cast_or_null<SequenceType>(refType.getEleTy())) {
344 return seqType.getEleTy();
345 }
346 }
347 op.emitError(
348 "AffineLoopConversion: array type in coordinate operation not valid\n");
349 return mlir::Type();
350 }
351
populateIndexArgs(fir::ArrayCoorOp acoOp,fir::ShapeOp shape,SmallVectorImpl<mlir::Value> & indexArgs,mlir::PatternRewriter & rewriter)352 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeOp shape,
353 SmallVectorImpl<mlir::Value> &indexArgs,
354 mlir::PatternRewriter &rewriter) {
355 auto one = rewriter.create<mlir::arith::ConstantOp>(
356 acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1));
357 auto extents = shape.getExtents();
358 for (auto i = extents.begin(); i < extents.end(); i++) {
359 indexArgs.push_back(one);
360 indexArgs.push_back(*i);
361 indexArgs.push_back(one);
362 }
363 }
364
populateIndexArgs(fir::ArrayCoorOp acoOp,fir::ShapeShiftOp shape,SmallVectorImpl<mlir::Value> & indexArgs,mlir::PatternRewriter & rewriter)365 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeShiftOp shape,
366 SmallVectorImpl<mlir::Value> &indexArgs,
367 mlir::PatternRewriter &rewriter) {
368 auto one = rewriter.create<mlir::arith::ConstantOp>(
369 acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1));
370 auto extents = shape.getPairs();
371 for (auto i = extents.begin(); i < extents.end();) {
372 indexArgs.push_back(*i++);
373 indexArgs.push_back(*i++);
374 indexArgs.push_back(one);
375 }
376 }
377
populateIndexArgs(fir::ArrayCoorOp acoOp,fir::SliceOp slice,SmallVectorImpl<mlir::Value> & indexArgs,mlir::PatternRewriter & rewriter)378 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::SliceOp slice,
379 SmallVectorImpl<mlir::Value> &indexArgs,
380 mlir::PatternRewriter &rewriter) {
381 auto extents = slice.getTriples();
382 for (auto i = extents.begin(); i < extents.end();) {
383 indexArgs.push_back(*i++);
384 indexArgs.push_back(*i++);
385 indexArgs.push_back(*i++);
386 }
387 }
388
populateIndexArgs(fir::ArrayCoorOp acoOp,SmallVectorImpl<mlir::Value> & indexArgs,mlir::PatternRewriter & rewriter)389 static void populateIndexArgs(fir::ArrayCoorOp acoOp,
390 SmallVectorImpl<mlir::Value> &indexArgs,
391 mlir::PatternRewriter &rewriter) {
392 if (auto shape = acoOp.getShape().getDefiningOp<ShapeOp>())
393 return populateIndexArgs(acoOp, shape, indexArgs, rewriter);
394 if (auto shapeShift = acoOp.getShape().getDefiningOp<ShapeShiftOp>())
395 return populateIndexArgs(acoOp, shapeShift, indexArgs, rewriter);
396 if (auto slice = acoOp.getShape().getDefiningOp<SliceOp>())
397 return populateIndexArgs(acoOp, slice, indexArgs, rewriter);
398 }
399
400 /// Returns affine.apply and fir.convert from array_coor and gendims
401 static std::pair<affine::AffineApplyOp, fir::ConvertOp>
createAffineOps(mlir::Value arrayRef,mlir::PatternRewriter & rewriter)402 createAffineOps(mlir::Value arrayRef, mlir::PatternRewriter &rewriter) {
403 auto acoOp = arrayRef.getDefiningOp<ArrayCoorOp>();
404 auto affineMap =
405 createArrayIndexAffineMap(acoOp.getIndices().size(), acoOp.getContext());
406 SmallVector<mlir::Value> indexArgs;
407 indexArgs.append(acoOp.getIndices().begin(), acoOp.getIndices().end());
408
409 populateIndexArgs(acoOp, indexArgs, rewriter);
410
411 auto affineApply = rewriter.create<affine::AffineApplyOp>(
412 acoOp.getLoc(), affineMap, indexArgs);
413 auto arrayElementType = coordinateArrayElement(acoOp);
414 auto newType =
415 mlir::MemRefType::get({mlir::ShapedType::kDynamic}, arrayElementType);
416 auto arrayConvert = rewriter.create<fir::ConvertOp>(acoOp.getLoc(), newType,
417 acoOp.getMemref());
418 return std::make_pair(affineApply, arrayConvert);
419 }
420
rewriteLoad(fir::LoadOp loadOp,mlir::PatternRewriter & rewriter)421 static void rewriteLoad(fir::LoadOp loadOp, mlir::PatternRewriter &rewriter) {
422 rewriter.setInsertionPoint(loadOp);
423 auto affineOps = createAffineOps(loadOp.getMemref(), rewriter);
424 rewriter.replaceOpWithNewOp<affine::AffineLoadOp>(
425 loadOp, affineOps.second.getResult(), affineOps.first.getResult());
426 }
427
rewriteStore(fir::StoreOp storeOp,mlir::PatternRewriter & rewriter)428 static void rewriteStore(fir::StoreOp storeOp,
429 mlir::PatternRewriter &rewriter) {
430 rewriter.setInsertionPoint(storeOp);
431 auto affineOps = createAffineOps(storeOp.getMemref(), rewriter);
432 rewriter.replaceOpWithNewOp<affine::AffineStoreOp>(
433 storeOp, storeOp.getValue(), affineOps.second.getResult(),
434 affineOps.first.getResult());
435 }
436
rewriteMemoryOps(Block * block,mlir::PatternRewriter & rewriter)437 static void rewriteMemoryOps(Block *block, mlir::PatternRewriter &rewriter) {
438 for (auto &bodyOp : block->getOperations()) {
439 if (isa<fir::LoadOp>(bodyOp))
440 rewriteLoad(cast<fir::LoadOp>(bodyOp), rewriter);
441 if (isa<fir::StoreOp>(bodyOp))
442 rewriteStore(cast<fir::StoreOp>(bodyOp), rewriter);
443 }
444 }
445
446 namespace {
447 /// Convert `fir.do_loop` to `affine.for`, creates fir.convert for arrays to
448 /// memref, rewrites array_coor to affine.apply with affine_map. Rewrites fir
449 /// loads and stores to affine.
450 class AffineLoopConversion : public mlir::OpRewritePattern<fir::DoLoopOp> {
451 public:
452 using OpRewritePattern::OpRewritePattern;
AffineLoopConversion(mlir::MLIRContext * context,AffineFunctionAnalysis & afa)453 AffineLoopConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa)
454 : OpRewritePattern(context), functionAnalysis(afa) {}
455
456 llvm::LogicalResult
matchAndRewrite(fir::DoLoopOp loop,mlir::PatternRewriter & rewriter) const457 matchAndRewrite(fir::DoLoopOp loop,
458 mlir::PatternRewriter &rewriter) const override {
459 LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: rewriting loop:\n";
460 loop.dump(););
461 LLVM_ATTRIBUTE_UNUSED auto loopAnalysis =
462 functionAnalysis.getChildLoopAnalysis(loop);
463 auto &loopOps = loop.getBody()->getOperations();
464 auto loopAndIndex = createAffineFor(loop, rewriter);
465 auto affineFor = loopAndIndex.first;
466 auto inductionVar = loopAndIndex.second;
467
468 rewriter.startOpModification(affineFor.getOperation());
469 affineFor.getBody()->getOperations().splice(
470 std::prev(affineFor.getBody()->end()), loopOps, loopOps.begin(),
471 std::prev(loopOps.end()));
472 rewriter.finalizeOpModification(affineFor.getOperation());
473
474 rewriter.startOpModification(loop.getOperation());
475 loop.getInductionVar().replaceAllUsesWith(inductionVar);
476 rewriter.finalizeOpModification(loop.getOperation());
477
478 rewriteMemoryOps(affineFor.getBody(), rewriter);
479
480 LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: loop rewriten to:\n";
481 affineFor.dump(););
482 rewriter.replaceOp(loop, affineFor.getOperation()->getResults());
483 return success();
484 }
485
486 private:
487 std::pair<affine::AffineForOp, mlir::Value>
createAffineFor(fir::DoLoopOp op,mlir::PatternRewriter & rewriter) const488 createAffineFor(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const {
489 if (auto constantStep = constantIntegerLike(op.getStep()))
490 if (*constantStep > 0)
491 return positiveConstantStep(op, *constantStep, rewriter);
492 return genericBounds(op, rewriter);
493 }
494
495 // when step for the loop is positive compile time constant
496 std::pair<affine::AffineForOp, mlir::Value>
positiveConstantStep(fir::DoLoopOp op,int64_t step,mlir::PatternRewriter & rewriter) const497 positiveConstantStep(fir::DoLoopOp op, int64_t step,
498 mlir::PatternRewriter &rewriter) const {
499 auto affineFor = rewriter.create<affine::AffineForOp>(
500 op.getLoc(), ValueRange(op.getLowerBound()),
501 mlir::AffineMap::get(0, 1,
502 mlir::getAffineSymbolExpr(0, op.getContext())),
503 ValueRange(op.getUpperBound()),
504 mlir::AffineMap::get(0, 1,
505 1 + mlir::getAffineSymbolExpr(0, op.getContext())),
506 step);
507 return std::make_pair(affineFor, affineFor.getInductionVar());
508 }
509
510 std::pair<affine::AffineForOp, mlir::Value>
genericBounds(fir::DoLoopOp op,mlir::PatternRewriter & rewriter) const511 genericBounds(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const {
512 auto lowerBound = mlir::getAffineSymbolExpr(0, op.getContext());
513 auto upperBound = mlir::getAffineSymbolExpr(1, op.getContext());
514 auto step = mlir::getAffineSymbolExpr(2, op.getContext());
515 mlir::AffineMap upperBoundMap = mlir::AffineMap::get(
516 0, 3, (upperBound - lowerBound + step).floorDiv(step));
517 auto genericUpperBound = rewriter.create<affine::AffineApplyOp>(
518 op.getLoc(), upperBoundMap,
519 ValueRange({op.getLowerBound(), op.getUpperBound(), op.getStep()}));
520 auto actualIndexMap = mlir::AffineMap::get(
521 1, 2,
522 (lowerBound + mlir::getAffineDimExpr(0, op.getContext())) *
523 mlir::getAffineSymbolExpr(1, op.getContext()));
524
525 auto affineFor = rewriter.create<affine::AffineForOp>(
526 op.getLoc(), ValueRange(),
527 AffineMap::getConstantMap(0, op.getContext()),
528 genericUpperBound.getResult(),
529 mlir::AffineMap::get(0, 1,
530 1 + mlir::getAffineSymbolExpr(0, op.getContext())),
531 1);
532 rewriter.setInsertionPointToStart(affineFor.getBody());
533 auto actualIndex = rewriter.create<affine::AffineApplyOp>(
534 op.getLoc(), actualIndexMap,
535 ValueRange(
536 {affineFor.getInductionVar(), op.getLowerBound(), op.getStep()}));
537 return std::make_pair(affineFor, actualIndex.getResult());
538 }
539
540 AffineFunctionAnalysis &functionAnalysis;
541 };
542
543 /// Convert `fir.if` to `affine.if`.
544 class AffineIfConversion : public mlir::OpRewritePattern<fir::IfOp> {
545 public:
546 using OpRewritePattern::OpRewritePattern;
AffineIfConversion(mlir::MLIRContext * context,AffineFunctionAnalysis & afa)547 AffineIfConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa)
548 : OpRewritePattern(context) {}
549 llvm::LogicalResult
matchAndRewrite(fir::IfOp op,mlir::PatternRewriter & rewriter) const550 matchAndRewrite(fir::IfOp op,
551 mlir::PatternRewriter &rewriter) const override {
552 LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: rewriting if:\n";
553 op.dump(););
554 auto &ifOps = op.getThenRegion().front().getOperations();
555 auto affineCondition = AffineIfCondition(op.getCondition());
556 if (!affineCondition.hasIntegerSet()) {
557 LLVM_DEBUG(
558 llvm::dbgs()
559 << "AffineIfConversion: couldn't calculate affine condition\n";);
560 return failure();
561 }
562 auto affineIf = rewriter.create<affine::AffineIfOp>(
563 op.getLoc(), affineCondition.getIntegerSet(),
564 affineCondition.getAffineArgs(), !op.getElseRegion().empty());
565 rewriter.startOpModification(affineIf);
566 affineIf.getThenBlock()->getOperations().splice(
567 std::prev(affineIf.getThenBlock()->end()), ifOps, ifOps.begin(),
568 std::prev(ifOps.end()));
569 if (!op.getElseRegion().empty()) {
570 auto &otherOps = op.getElseRegion().front().getOperations();
571 affineIf.getElseBlock()->getOperations().splice(
572 std::prev(affineIf.getElseBlock()->end()), otherOps, otherOps.begin(),
573 std::prev(otherOps.end()));
574 }
575 rewriter.finalizeOpModification(affineIf);
576 rewriteMemoryOps(affineIf.getBody(), rewriter);
577
578 LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: if converted to:\n";
579 affineIf.dump(););
580 rewriter.replaceOp(op, affineIf.getOperation()->getResults());
581 return success();
582 }
583 };
584
585 /// Promote fir.do_loop and fir.if to affine.for and affine.if, in the cases
586 /// where such a promotion is possible.
587 class AffineDialectPromotion
588 : public fir::impl::AffineDialectPromotionBase<AffineDialectPromotion> {
589 public:
runOnOperation()590 void runOnOperation() override {
591
592 auto *context = &getContext();
593 auto function = getOperation();
594 markAllAnalysesPreserved();
595 auto functionAnalysis = AffineFunctionAnalysis(function);
596 mlir::RewritePatternSet patterns(context);
597 patterns.insert<AffineIfConversion>(context, functionAnalysis);
598 patterns.insert<AffineLoopConversion>(context, functionAnalysis);
599 mlir::ConversionTarget target = *context;
600 target.addLegalDialect<mlir::affine::AffineDialect, FIROpsDialect,
601 mlir::scf::SCFDialect, mlir::arith::ArithDialect,
602 mlir::func::FuncDialect>();
603 target.addDynamicallyLegalOp<IfOp>([&functionAnalysis](fir::IfOp op) {
604 return !(functionAnalysis.getChildIfAnalysis(op).canPromoteToAffine());
605 });
606 target.addDynamicallyLegalOp<DoLoopOp>([&functionAnalysis](
607 fir::DoLoopOp op) {
608 return !(functionAnalysis.getChildLoopAnalysis(op).canPromoteToAffine());
609 });
610
611 LLVM_DEBUG(llvm::dbgs()
612 << "AffineDialectPromotion: running promotion on: \n";
613 function.print(llvm::dbgs()););
614 // apply the patterns
615 if (mlir::failed(mlir::applyPartialConversion(function, target,
616 std::move(patterns)))) {
617 mlir::emitError(mlir::UnknownLoc::get(context),
618 "error in converting to affine dialect\n");
619 signalPassFailure();
620 }
621 }
622 };
623 } // namespace
624
625 /// Convert FIR loop constructs to the Affine dialect
createPromoteToAffinePass()626 std::unique_ptr<mlir::Pass> fir::createPromoteToAffinePass() {
627 return std::make_unique<AffineDialectPromotion>();
628 }
629