1 //===-- sanitizer_win.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and ThreadSanitizer 10 // run-time libraries and implements windows-specific functions from 11 // sanitizer_libc.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_platform.h" 15 #if SANITIZER_WINDOWS 16 17 #define WIN32_LEAN_AND_MEAN 18 #define NOGDI 19 #include <windows.h> 20 #include <io.h> 21 #include <psapi.h> 22 #include <stdlib.h> 23 24 #include "sanitizer_common.h" 25 #include "sanitizer_file.h" 26 #include "sanitizer_libc.h" 27 #include "sanitizer_mutex.h" 28 #include "sanitizer_placement_new.h" 29 #include "sanitizer_win_defs.h" 30 31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1 32 #pragma comment(lib, "psapi") 33 #endif 34 #if SANITIZER_WIN_TRACE 35 #include <traceloggingprovider.h> 36 // Windows trace logging provider init 37 #pragma comment(lib, "advapi32.lib") 38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider); 39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp 40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider", 41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b, 42 0x53, 0x0b, 0xd0, 0xf3, 0xfa)); 43 #else 44 #define TraceLoggingUnregister(x) 45 #endif 46 47 // For WaitOnAddress 48 # pragma comment(lib, "synchronization.lib") 49 50 // A macro to tell the compiler that this part of the code cannot be reached, 51 // if the compiler supports this feature. Since we're using this in 52 // code that is called when terminating the process, the expansion of the 53 // macro should not terminate the process to avoid infinite recursion. 54 #if defined(__clang__) 55 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 56 #elif defined(__GNUC__) && \ 57 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)) 58 # define BUILTIN_UNREACHABLE() __builtin_unreachable() 59 #elif defined(_MSC_VER) 60 # define BUILTIN_UNREACHABLE() __assume(0) 61 #else 62 # define BUILTIN_UNREACHABLE() 63 #endif 64 65 namespace __sanitizer { 66 67 #include "sanitizer_syscall_generic.inc" 68 69 // --------------------- sanitizer_common.h 70 uptr GetPageSize() { 71 SYSTEM_INFO si; 72 GetSystemInfo(&si); 73 return si.dwPageSize; 74 } 75 76 uptr GetMmapGranularity() { 77 SYSTEM_INFO si; 78 GetSystemInfo(&si); 79 return si.dwAllocationGranularity; 80 } 81 82 uptr GetMaxUserVirtualAddress() { 83 SYSTEM_INFO si; 84 GetSystemInfo(&si); 85 return (uptr)si.lpMaximumApplicationAddress; 86 } 87 88 uptr GetMaxVirtualAddress() { 89 return GetMaxUserVirtualAddress(); 90 } 91 92 bool FileExists(const char *filename) { 93 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES; 94 } 95 96 bool DirExists(const char *path) { 97 auto attr = ::GetFileAttributesA(path); 98 return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY); 99 } 100 101 uptr internal_getpid() { 102 return GetProcessId(GetCurrentProcess()); 103 } 104 105 int internal_dlinfo(void *handle, int request, void *p) { 106 UNIMPLEMENTED(); 107 } 108 109 // In contrast to POSIX, on Windows GetCurrentThreadId() 110 // returns a system-unique identifier. 111 tid_t GetTid() { 112 return GetCurrentThreadId(); 113 } 114 115 uptr GetThreadSelf() { 116 return GetTid(); 117 } 118 119 #if !SANITIZER_GO 120 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 121 uptr *stack_bottom) { 122 CHECK(stack_top); 123 CHECK(stack_bottom); 124 MEMORY_BASIC_INFORMATION mbi; 125 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0); 126 // FIXME: is it possible for the stack to not be a single allocation? 127 // Are these values what ASan expects to get (reserved, not committed; 128 // including stack guard page) ? 129 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize; 130 *stack_bottom = (uptr)mbi.AllocationBase; 131 } 132 #endif // #if !SANITIZER_GO 133 134 bool ErrorIsOOM(error_t err) { 135 // TODO: This should check which `err`s correspond to OOM. 136 return false; 137 } 138 139 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 140 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 141 if (rv == 0) 142 ReportMmapFailureAndDie(size, mem_type, "allocate", 143 GetLastError(), raw_report); 144 return rv; 145 } 146 147 void UnmapOrDie(void *addr, uptr size, bool raw_report) { 148 if (!size || !addr) 149 return; 150 151 MEMORY_BASIC_INFORMATION mbi; 152 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi))); 153 154 // MEM_RELEASE can only be used to unmap whole regions previously mapped with 155 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that 156 // fails try MEM_DECOMMIT. 157 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { 158 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) { 159 ReportMunmapFailureAndDie(addr, size, GetLastError(), raw_report); 160 } 161 } 162 } 163 164 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type, 165 const char *mmap_type) { 166 error_t last_error = GetLastError(); 167 168 // Assumption: VirtualAlloc is the last system call that was invoked before 169 // this method. 170 // VirtualAlloc emits one of 3 error codes when running out of memory 171 // 1. ERROR_NOT_ENOUGH_MEMORY: 172 // There's not enough memory to execute the command 173 // 2. ERROR_INVALID_PARAMETER: 174 // VirtualAlloc will return this if the request would allocate memory at an 175 // address exceeding or being very close to the maximum application address 176 // (the `lpMaximumApplicationAddress` field within the `SystemInfo` struct). 177 // This does not seem to be officially documented, but is corroborated here: 178 // https://stackoverflow.com/questions/45833674/why-does-virtualalloc-fail-for-lpaddress-greater-than-0x6ffffffffff 179 // 3. ERROR_COMMITMENT_LIMIT: 180 // VirtualAlloc will return this if e.g. the pagefile is too small to commit 181 // the requested amount of memory. 182 if (last_error == ERROR_NOT_ENOUGH_MEMORY || 183 last_error == ERROR_INVALID_PARAMETER || 184 last_error == ERROR_COMMITMENT_LIMIT) 185 return nullptr; 186 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error); 187 } 188 189 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 190 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 191 if (rv == 0) 192 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 193 return rv; 194 } 195 196 // We want to map a chunk of address space aligned to 'alignment'. 197 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 198 const char *mem_type) { 199 CHECK(IsPowerOfTwo(size)); 200 CHECK(IsPowerOfTwo(alignment)); 201 202 // Windows will align our allocations to at least 64K. 203 alignment = Max(alignment, GetMmapGranularity()); 204 205 uptr mapped_addr = 206 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 207 if (!mapped_addr) 208 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 209 210 // If we got it right on the first try, return. Otherwise, unmap it and go to 211 // the slow path. 212 if (IsAligned(mapped_addr, alignment)) 213 return (void*)mapped_addr; 214 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 215 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 216 217 // If we didn't get an aligned address, overallocate, find an aligned address, 218 // unmap, and try to allocate at that aligned address. 219 int retries = 0; 220 const int kMaxRetries = 10; 221 for (; retries < kMaxRetries && 222 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment)); 223 retries++) { 224 // Overallocate size + alignment bytes. 225 mapped_addr = 226 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS); 227 if (!mapped_addr) 228 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 229 230 // Find the aligned address. 231 uptr aligned_addr = RoundUpTo(mapped_addr, alignment); 232 233 // Free the overallocation. 234 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) 235 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); 236 237 // Attempt to allocate exactly the number of bytes we need at the aligned 238 // address. This may fail for a number of reasons, in which case we continue 239 // the loop. 240 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size, 241 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); 242 } 243 244 // Fail if we can't make this work quickly. 245 if (retries == kMaxRetries && mapped_addr == 0) 246 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); 247 248 return (void *)mapped_addr; 249 } 250 251 // ZeroMmapFixedRegion zero's out a region of memory previously returned from a 252 // call to one of the MmapFixed* helpers. On non-windows systems this would be 253 // done with another mmap, but on windows remapping is not an option. 254 // VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the 255 // memory, but we can't do this atomically, so instead we fall back to using 256 // internal_memset. 257 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) { 258 internal_memset((void*) fixed_addr, 0, size); 259 return true; 260 } 261 262 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { 263 // FIXME: is this really "NoReserve"? On Win32 this does not matter much, 264 // but on Win64 it does. 265 (void)name; // unsupported 266 #if !SANITIZER_GO && SANITIZER_WINDOWS64 267 // On asan/Windows64, use MEM_COMMIT would result in error 268 // 1455:ERROR_COMMITMENT_LIMIT. 269 // Asan uses exception handler to commit page on demand. 270 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE); 271 #else 272 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT, 273 PAGE_READWRITE); 274 #endif 275 if (p == 0) { 276 Report("ERROR: %s failed to " 277 "allocate %p (%zd) bytes at %p (error code: %d)\n", 278 SanitizerToolName, size, size, fixed_addr, GetLastError()); 279 return false; 280 } 281 return true; 282 } 283 284 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) { 285 // FIXME: Windows support large pages too. Might be worth checking 286 return MmapFixedNoReserve(fixed_addr, size, name); 287 } 288 289 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by 290 // 'MmapFixedNoAccess'. 291 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) { 292 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 293 MEM_COMMIT, PAGE_READWRITE); 294 if (p == 0) { 295 char mem_type[30]; 296 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p", 297 (void *)fixed_addr); 298 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError()); 299 } 300 return p; 301 } 302 303 // Uses fixed_addr for now. 304 // Will use offset instead once we've implemented this function for real. 305 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) { 306 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size)); 307 } 308 309 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size, 310 const char *name) { 311 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size)); 312 } 313 314 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 315 // Only unmap if it covers the entire range. 316 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_)); 317 // We unmap the whole range, just null out the base. 318 base_ = nullptr; 319 size_ = 0; 320 UnmapOrDie(reinterpret_cast<void*>(addr), size); 321 } 322 323 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) { 324 void *p = VirtualAlloc((LPVOID)fixed_addr, size, 325 MEM_COMMIT, PAGE_READWRITE); 326 if (p == 0) { 327 char mem_type[30]; 328 internal_snprintf(mem_type, sizeof(mem_type), "memory at address %p", 329 (void *)fixed_addr); 330 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); 331 } 332 return p; 333 } 334 335 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 336 // FIXME: make this really NoReserve? 337 return MmapOrDie(size, mem_type); 338 } 339 340 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) { 341 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size); 342 size_ = size; 343 name_ = name; 344 (void)os_handle_; // unsupported 345 return reinterpret_cast<uptr>(base_); 346 } 347 348 349 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 350 (void)name; // unsupported 351 void *res = VirtualAlloc((LPVOID)fixed_addr, size, 352 MEM_RESERVE, PAGE_NOACCESS); 353 if (res == 0) 354 Report("WARNING: %s failed to " 355 "mprotect %p (%zd) bytes at %p (error code: %d)\n", 356 SanitizerToolName, size, size, fixed_addr, GetLastError()); 357 return res; 358 } 359 360 void *MmapNoAccess(uptr size) { 361 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS); 362 if (res == 0) 363 Report("WARNING: %s failed to " 364 "mprotect %p (%zd) bytes (error code: %d)\n", 365 SanitizerToolName, size, size, GetLastError()); 366 return res; 367 } 368 369 bool MprotectNoAccess(uptr addr, uptr size) { 370 DWORD old_protection; 371 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection); 372 } 373 374 bool MprotectReadOnly(uptr addr, uptr size) { 375 DWORD old_protection; 376 return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection); 377 } 378 379 bool MprotectReadWrite(uptr addr, uptr size) { 380 DWORD old_protection; 381 return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection); 382 } 383 384 void ReleaseMemoryPagesToOS(uptr beg, uptr end) { 385 uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()), 386 end_aligned = RoundDownTo(end, GetPageSizeCached()); 387 CHECK(beg < end); // make sure the region is sane 388 if (beg_aligned == end_aligned) // make sure we're freeing at least 1 page; 389 return; 390 UnmapOrDie((void *)beg, end_aligned - beg_aligned); 391 } 392 393 void SetShadowRegionHugePageMode(uptr addr, uptr size) { 394 // FIXME: probably similar to ReleaseMemoryToOS. 395 } 396 397 bool DontDumpShadowMemory(uptr addr, uptr length) { 398 // This is almost useless on 32-bits. 399 // FIXME: add madvise-analog when we move to 64-bits. 400 return true; 401 } 402 403 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, 404 uptr min_shadow_base_alignment, UNUSED uptr &high_mem_end, 405 uptr granularity) { 406 const uptr alignment = 407 Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment); 408 const uptr left_padding = 409 Max<uptr>(granularity, 1ULL << min_shadow_base_alignment); 410 uptr space_size = shadow_size_bytes + left_padding; 411 uptr shadow_start = FindAvailableMemoryRange(space_size, alignment, 412 granularity, nullptr, nullptr); 413 CHECK_NE((uptr)0, shadow_start); 414 CHECK(IsAligned(shadow_start, alignment)); 415 return shadow_start; 416 } 417 418 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 419 uptr *largest_gap_found, 420 uptr *max_occupied_addr) { 421 uptr address = 0; 422 while (true) { 423 MEMORY_BASIC_INFORMATION info; 424 if (!::VirtualQuery((void*)address, &info, sizeof(info))) 425 return 0; 426 427 if (info.State == MEM_FREE) { 428 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding, 429 alignment); 430 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize) 431 return shadow_address; 432 } 433 434 // Move to the next region. 435 address = (uptr)info.BaseAddress + info.RegionSize; 436 } 437 return 0; 438 } 439 440 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, 441 uptr num_aliases, uptr ring_buffer_size) { 442 CHECK(false && "HWASan aliasing is unimplemented on Windows"); 443 return 0; 444 } 445 446 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { 447 MEMORY_BASIC_INFORMATION mbi; 448 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi))); 449 return mbi.Protect == PAGE_NOACCESS && 450 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end; 451 } 452 453 void *MapFileToMemory(const char *file_name, uptr *buff_size) { 454 UNIMPLEMENTED(); 455 } 456 457 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { 458 UNIMPLEMENTED(); 459 } 460 461 static const int kMaxEnvNameLength = 128; 462 static const DWORD kMaxEnvValueLength = 32767; 463 464 namespace { 465 466 struct EnvVariable { 467 char name[kMaxEnvNameLength]; 468 char value[kMaxEnvValueLength]; 469 }; 470 471 } // namespace 472 473 static const int kEnvVariables = 5; 474 static EnvVariable env_vars[kEnvVariables]; 475 static int num_env_vars; 476 477 const char *GetEnv(const char *name) { 478 // Note: this implementation caches the values of the environment variables 479 // and limits their quantity. 480 for (int i = 0; i < num_env_vars; i++) { 481 if (0 == internal_strcmp(name, env_vars[i].name)) 482 return env_vars[i].value; 483 } 484 CHECK_LT(num_env_vars, kEnvVariables); 485 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value, 486 kMaxEnvValueLength); 487 if (rv > 0 && rv < kMaxEnvValueLength) { 488 CHECK_LT(internal_strlen(name), kMaxEnvNameLength); 489 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength); 490 num_env_vars++; 491 return env_vars[num_env_vars - 1].value; 492 } 493 return 0; 494 } 495 496 const char *GetPwd() { 497 UNIMPLEMENTED(); 498 } 499 500 u32 GetUid() { 501 UNIMPLEMENTED(); 502 } 503 504 namespace { 505 struct ModuleInfo { 506 const char *filepath; 507 uptr base_address; 508 uptr end_address; 509 }; 510 511 #if !SANITIZER_GO 512 int CompareModulesBase(const void *pl, const void *pr) { 513 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr; 514 if (l->base_address < r->base_address) 515 return -1; 516 return l->base_address > r->base_address; 517 } 518 #endif 519 } // namespace 520 521 #if !SANITIZER_GO 522 void DumpProcessMap() { 523 Report("Dumping process modules:\n"); 524 ListOfModules modules; 525 modules.init(); 526 uptr num_modules = modules.size(); 527 528 InternalMmapVector<ModuleInfo> module_infos(num_modules); 529 for (size_t i = 0; i < num_modules; ++i) { 530 module_infos[i].filepath = modules[i].full_name(); 531 module_infos[i].base_address = modules[i].ranges().front()->beg; 532 module_infos[i].end_address = modules[i].ranges().back()->end; 533 } 534 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo), 535 CompareModulesBase); 536 537 for (size_t i = 0; i < num_modules; ++i) { 538 const ModuleInfo &mi = module_infos[i]; 539 if (mi.end_address != 0) { 540 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address, 541 mi.filepath[0] ? mi.filepath : "[no name]"); 542 } else if (mi.filepath[0]) { 543 Printf("\t??\?-??? %s\n", mi.filepath); 544 } else { 545 Printf("\t???\n"); 546 } 547 } 548 } 549 #endif 550 551 void DisableCoreDumperIfNecessary() { 552 // Do nothing. 553 } 554 555 void ReExec() { 556 UNIMPLEMENTED(); 557 } 558 559 void PlatformPrepareForSandboxing(void *args) {} 560 561 bool StackSizeIsUnlimited() { 562 UNIMPLEMENTED(); 563 } 564 565 void SetStackSizeLimitInBytes(uptr limit) { 566 UNIMPLEMENTED(); 567 } 568 569 bool AddressSpaceIsUnlimited() { 570 UNIMPLEMENTED(); 571 } 572 573 void SetAddressSpaceUnlimited() { 574 UNIMPLEMENTED(); 575 } 576 577 bool IsPathSeparator(const char c) { 578 return c == '\\' || c == '/'; 579 } 580 581 static bool IsAlpha(char c) { 582 c = ToLower(c); 583 return c >= 'a' && c <= 'z'; 584 } 585 586 bool IsAbsolutePath(const char *path) { 587 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' && 588 IsPathSeparator(path[2]); 589 } 590 591 void internal_usleep(u64 useconds) { Sleep(useconds / 1000); } 592 593 u64 NanoTime() { 594 static LARGE_INTEGER frequency = {}; 595 LARGE_INTEGER counter; 596 if (UNLIKELY(frequency.QuadPart == 0)) { 597 QueryPerformanceFrequency(&frequency); 598 CHECK_NE(frequency.QuadPart, 0); 599 } 600 QueryPerformanceCounter(&counter); 601 counter.QuadPart *= 1000ULL * 1000000ULL; 602 counter.QuadPart /= frequency.QuadPart; 603 return counter.QuadPart; 604 } 605 606 u64 MonotonicNanoTime() { return NanoTime(); } 607 608 void Abort() { 609 internal__exit(3); 610 } 611 612 bool CreateDir(const char *pathname) { 613 return CreateDirectoryA(pathname, nullptr) != 0; 614 } 615 616 #if !SANITIZER_GO 617 // Read the file to extract the ImageBase field from the PE header. If ASLR is 618 // disabled and this virtual address is available, the loader will typically 619 // load the image at this address. Therefore, we call it the preferred base. Any 620 // addresses in the DWARF typically assume that the object has been loaded at 621 // this address. 622 static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) { 623 fd_t fd = OpenFile(modname, RdOnly, nullptr); 624 if (fd == kInvalidFd) 625 return 0; 626 FileCloser closer(fd); 627 628 // Read just the DOS header. 629 IMAGE_DOS_HEADER dos_header; 630 uptr bytes_read; 631 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) || 632 bytes_read != sizeof(dos_header)) 633 return 0; 634 635 // The file should start with the right signature. 636 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE) 637 return 0; 638 639 // The layout at e_lfanew is: 640 // "PE\0\0" 641 // IMAGE_FILE_HEADER 642 // IMAGE_OPTIONAL_HEADER 643 // Seek to e_lfanew and read all that data. 644 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) == 645 INVALID_SET_FILE_POINTER) 646 return 0; 647 if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size) 648 return 0; 649 650 // Check for "PE\0\0" before the PE header. 651 char *pe_sig = &buf[0]; 652 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0) 653 return 0; 654 655 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted. 656 IMAGE_OPTIONAL_HEADER *pe_header = 657 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER)); 658 659 // Check for more magic in the PE header. 660 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC) 661 return 0; 662 663 // Finally, return the ImageBase. 664 return (uptr)pe_header->ImageBase; 665 } 666 667 void ListOfModules::init() { 668 clearOrInit(); 669 HANDLE cur_process = GetCurrentProcess(); 670 671 // Query the list of modules. Start by assuming there are no more than 256 672 // modules and retry if that's not sufficient. 673 HMODULE *hmodules = 0; 674 uptr modules_buffer_size = sizeof(HMODULE) * 256; 675 DWORD bytes_required; 676 while (!hmodules) { 677 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__); 678 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size, 679 &bytes_required)); 680 if (bytes_required > modules_buffer_size) { 681 // Either there turned out to be more than 256 hmodules, or new hmodules 682 // could have loaded since the last try. Retry. 683 UnmapOrDie(hmodules, modules_buffer_size); 684 hmodules = 0; 685 modules_buffer_size = bytes_required; 686 } 687 } 688 689 InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) + 690 sizeof(IMAGE_OPTIONAL_HEADER)); 691 InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength); 692 InternalMmapVector<char> module_name(kMaxPathLength); 693 // |num_modules| is the number of modules actually present, 694 size_t num_modules = bytes_required / sizeof(HMODULE); 695 for (size_t i = 0; i < num_modules; ++i) { 696 HMODULE handle = hmodules[i]; 697 MODULEINFO mi; 698 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi))) 699 continue; 700 701 // Get the UTF-16 path and convert to UTF-8. 702 int modname_utf16_len = 703 GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength); 704 if (modname_utf16_len == 0) 705 modname_utf16[0] = '\0'; 706 int module_name_len = ::WideCharToMultiByte( 707 CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0], 708 kMaxPathLength, NULL, NULL); 709 module_name[module_name_len] = '\0'; 710 711 uptr base_address = (uptr)mi.lpBaseOfDll; 712 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage; 713 714 // Adjust the base address of the module so that we get a VA instead of an 715 // RVA when computing the module offset. This helps llvm-symbolizer find the 716 // right DWARF CU. In the common case that the image is loaded at it's 717 // preferred address, we will now print normal virtual addresses. 718 uptr preferred_base = 719 GetPreferredBase(&module_name[0], &buf[0], buf.size()); 720 uptr adjusted_base = base_address - preferred_base; 721 722 modules_.push_back(LoadedModule()); 723 LoadedModule &cur_module = modules_.back(); 724 cur_module.set(&module_name[0], adjusted_base); 725 // We add the whole module as one single address range. 726 cur_module.addAddressRange(base_address, end_address, /*executable*/ true, 727 /*writable*/ true); 728 } 729 UnmapOrDie(hmodules, modules_buffer_size); 730 } 731 732 void ListOfModules::fallbackInit() { clear(); } 733 734 // We can't use atexit() directly at __asan_init time as the CRT is not fully 735 // initialized at this point. Place the functions into a vector and use 736 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers). 737 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions; 738 739 static int queueAtexit(void (*function)(void)) { 740 atexit_functions.push_back(function); 741 return 0; 742 } 743 744 // If Atexit() is being called after RunAtexit() has already been run, it needs 745 // to be able to call atexit() directly. Here we use a function ponter to 746 // switch out its behaviour. 747 // An example of where this is needed is the asan_dynamic runtime on MinGW-w64. 748 // On this environment, __asan_init is called during global constructor phase, 749 // way after calling the .CRT$XID initializer. 750 static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit; 751 752 int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); } 753 754 static int RunAtexit() { 755 TraceLoggingUnregister(g_asan_provider); 756 queueOrCallAtExit = &atexit; 757 int ret = 0; 758 for (uptr i = 0; i < atexit_functions.size(); ++i) { 759 ret |= atexit(atexit_functions[i]); 760 } 761 return ret; 762 } 763 764 #pragma section(".CRT$XID", long, read) 765 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit; 766 #endif 767 768 // ------------------ sanitizer_libc.h 769 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) { 770 // FIXME: Use the wide variants to handle Unicode filenames. 771 fd_t res; 772 if (mode == RdOnly) { 773 res = CreateFileA(filename, GENERIC_READ, 774 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, 775 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); 776 } else if (mode == WrOnly) { 777 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, 778 FILE_ATTRIBUTE_NORMAL, nullptr); 779 } else { 780 UNIMPLEMENTED(); 781 } 782 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd); 783 CHECK(res != kStderrFd || kStderrFd == kInvalidFd); 784 if (res == kInvalidFd && last_error) 785 *last_error = GetLastError(); 786 return res; 787 } 788 789 void CloseFile(fd_t fd) { 790 CloseHandle(fd); 791 } 792 793 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, 794 error_t *error_p) { 795 CHECK(fd != kInvalidFd); 796 797 // bytes_read can't be passed directly to ReadFile: 798 // uptr is unsigned long long on 64-bit Windows. 799 unsigned long num_read_long; 800 801 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr); 802 if (!success && error_p) 803 *error_p = GetLastError(); 804 if (bytes_read) 805 *bytes_read = num_read_long; 806 return success; 807 } 808 809 bool SupportsColoredOutput(fd_t fd) { 810 // FIXME: support colored output. 811 return false; 812 } 813 814 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, 815 error_t *error_p) { 816 CHECK(fd != kInvalidFd); 817 818 // Handle null optional parameters. 819 error_t dummy_error; 820 error_p = error_p ? error_p : &dummy_error; 821 uptr dummy_bytes_written; 822 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written; 823 824 // Initialize output parameters in case we fail. 825 *error_p = 0; 826 *bytes_written = 0; 827 828 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be 829 // closed, in which case this will fail. 830 if (fd == kStdoutFd || fd == kStderrFd) { 831 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE); 832 if (fd == 0) { 833 *error_p = ERROR_INVALID_HANDLE; 834 return false; 835 } 836 } 837 838 DWORD bytes_written_32; 839 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) { 840 *error_p = GetLastError(); 841 return false; 842 } else { 843 *bytes_written = bytes_written_32; 844 return true; 845 } 846 } 847 848 uptr internal_sched_yield() { 849 Sleep(0); 850 return 0; 851 } 852 853 void internal__exit(int exitcode) { 854 TraceLoggingUnregister(g_asan_provider); 855 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that. 856 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess, 857 // so add our own breakpoint here. 858 if (::IsDebuggerPresent()) 859 __debugbreak(); 860 TerminateProcess(GetCurrentProcess(), exitcode); 861 BUILTIN_UNREACHABLE(); 862 } 863 864 uptr internal_ftruncate(fd_t fd, uptr size) { 865 UNIMPLEMENTED(); 866 } 867 868 uptr GetRSS() { 869 PROCESS_MEMORY_COUNTERS counters; 870 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters))) 871 return 0; 872 return counters.WorkingSetSize; 873 } 874 875 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; } 876 void internal_join_thread(void *th) { } 877 878 void FutexWait(atomic_uint32_t *p, u32 cmp) { 879 WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE); 880 } 881 882 void FutexWake(atomic_uint32_t *p, u32 count) { 883 if (count == 1) 884 WakeByAddressSingle(p); 885 else 886 WakeByAddressAll(p); 887 } 888 889 uptr GetTlsSize() { 890 return 0; 891 } 892 893 void GetThreadStackAndTls(bool main, uptr *stk_begin, uptr *stk_end, 894 uptr *tls_begin, uptr *tls_end) { 895 # if SANITIZER_GO 896 *stk_begin = 0; 897 *stk_end = 0; 898 *tls_begin = 0; 899 *tls_end = 0; 900 # else 901 GetThreadStackTopAndBottom(main, stk_end, stk_begin); 902 *tls_begin = 0; 903 *tls_end = 0; 904 # endif 905 } 906 907 void ReportFile::Write(const char *buffer, uptr length) { 908 SpinMutexLock l(mu); 909 ReopenIfNecessary(); 910 if (!WriteToFile(fd, buffer, length)) { 911 // stderr may be closed, but we may be able to print to the debugger 912 // instead. This is the case when launching a program from Visual Studio, 913 // and the following routine should write to its console. 914 OutputDebugStringA(buffer); 915 } 916 } 917 918 void SetAlternateSignalStack() { 919 // FIXME: Decide what to do on Windows. 920 } 921 922 void UnsetAlternateSignalStack() { 923 // FIXME: Decide what to do on Windows. 924 } 925 926 void InstallDeadlySignalHandlers(SignalHandlerType handler) { 927 (void)handler; 928 // FIXME: Decide what to do on Windows. 929 } 930 931 HandleSignalMode GetHandleSignalMode(int signum) { 932 // FIXME: Decide what to do on Windows. 933 return kHandleSignalNo; 934 } 935 936 // Check based on flags if we should handle this exception. 937 bool IsHandledDeadlyException(DWORD exceptionCode) { 938 switch (exceptionCode) { 939 case EXCEPTION_ACCESS_VIOLATION: 940 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 941 case EXCEPTION_STACK_OVERFLOW: 942 case EXCEPTION_DATATYPE_MISALIGNMENT: 943 case EXCEPTION_IN_PAGE_ERROR: 944 return common_flags()->handle_segv; 945 case EXCEPTION_ILLEGAL_INSTRUCTION: 946 case EXCEPTION_PRIV_INSTRUCTION: 947 case EXCEPTION_BREAKPOINT: 948 return common_flags()->handle_sigill; 949 case EXCEPTION_FLT_DENORMAL_OPERAND: 950 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 951 case EXCEPTION_FLT_INEXACT_RESULT: 952 case EXCEPTION_FLT_INVALID_OPERATION: 953 case EXCEPTION_FLT_OVERFLOW: 954 case EXCEPTION_FLT_STACK_CHECK: 955 case EXCEPTION_FLT_UNDERFLOW: 956 case EXCEPTION_INT_DIVIDE_BY_ZERO: 957 case EXCEPTION_INT_OVERFLOW: 958 return common_flags()->handle_sigfpe; 959 } 960 return false; 961 } 962 963 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 964 SYSTEM_INFO si; 965 GetNativeSystemInfo(&si); 966 uptr page_size = si.dwPageSize; 967 uptr page_mask = ~(page_size - 1); 968 969 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask; 970 page <= end;) { 971 MEMORY_BASIC_INFORMATION info; 972 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info)) 973 return false; 974 975 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS || 976 info.Protect == PAGE_EXECUTE) 977 return false; 978 979 if (info.RegionSize == 0) 980 return false; 981 982 page += info.RegionSize; 983 } 984 985 return true; 986 } 987 988 bool TryMemCpy(void *dest, const void *src, uptr n) { 989 // TODO: implement. 990 return false; 991 } 992 993 bool SignalContext::IsStackOverflow() const { 994 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW; 995 } 996 997 void SignalContext::InitPcSpBp() { 998 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 999 CONTEXT *context_record = (CONTEXT *)context; 1000 1001 pc = (uptr)exception_record->ExceptionAddress; 1002 # if SANITIZER_WINDOWS64 1003 # if SANITIZER_ARM64 1004 bp = (uptr)context_record->Fp; 1005 sp = (uptr)context_record->Sp; 1006 # else 1007 bp = (uptr)context_record->Rbp; 1008 sp = (uptr)context_record->Rsp; 1009 # endif 1010 # else 1011 # if SANITIZER_ARM 1012 bp = (uptr)context_record->R11; 1013 sp = (uptr)context_record->Sp; 1014 # else 1015 bp = (uptr)context_record->Ebp; 1016 sp = (uptr)context_record->Esp; 1017 # endif 1018 # endif 1019 } 1020 1021 uptr SignalContext::GetAddress() const { 1022 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 1023 if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) 1024 return exception_record->ExceptionInformation[1]; 1025 return (uptr)exception_record->ExceptionAddress; 1026 } 1027 1028 bool SignalContext::IsMemoryAccess() const { 1029 return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode == 1030 EXCEPTION_ACCESS_VIOLATION; 1031 } 1032 1033 bool SignalContext::IsTrueFaultingAddress() const { return true; } 1034 1035 SignalContext::WriteFlag SignalContext::GetWriteFlag() const { 1036 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; 1037 1038 // The write flag is only available for access violation exceptions. 1039 if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION) 1040 return SignalContext::Unknown; 1041 1042 // The contents of this array are documented at 1043 // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record 1044 // The first element indicates read as 0, write as 1, or execute as 8. The 1045 // second element is the faulting address. 1046 switch (exception_record->ExceptionInformation[0]) { 1047 case 0: 1048 return SignalContext::Read; 1049 case 1: 1050 return SignalContext::Write; 1051 case 8: 1052 return SignalContext::Unknown; 1053 } 1054 return SignalContext::Unknown; 1055 } 1056 1057 void SignalContext::DumpAllRegisters(void *context) { 1058 CONTEXT *ctx = (CONTEXT *)context; 1059 # if defined(_M_X64) 1060 Report("Register values:\n"); 1061 Printf("rax = %llx ", ctx->Rax); 1062 Printf("rbx = %llx ", ctx->Rbx); 1063 Printf("rcx = %llx ", ctx->Rcx); 1064 Printf("rdx = %llx ", ctx->Rdx); 1065 Printf("\n"); 1066 Printf("rdi = %llx ", ctx->Rdi); 1067 Printf("rsi = %llx ", ctx->Rsi); 1068 Printf("rbp = %llx ", ctx->Rbp); 1069 Printf("rsp = %llx ", ctx->Rsp); 1070 Printf("\n"); 1071 Printf("r8 = %llx ", ctx->R8); 1072 Printf("r9 = %llx ", ctx->R9); 1073 Printf("r10 = %llx ", ctx->R10); 1074 Printf("r11 = %llx ", ctx->R11); 1075 Printf("\n"); 1076 Printf("r12 = %llx ", ctx->R12); 1077 Printf("r13 = %llx ", ctx->R13); 1078 Printf("r14 = %llx ", ctx->R14); 1079 Printf("r15 = %llx ", ctx->R15); 1080 Printf("\n"); 1081 # elif defined(_M_IX86) 1082 Report("Register values:\n"); 1083 Printf("eax = %lx ", ctx->Eax); 1084 Printf("ebx = %lx ", ctx->Ebx); 1085 Printf("ecx = %lx ", ctx->Ecx); 1086 Printf("edx = %lx ", ctx->Edx); 1087 Printf("\n"); 1088 Printf("edi = %lx ", ctx->Edi); 1089 Printf("esi = %lx ", ctx->Esi); 1090 Printf("ebp = %lx ", ctx->Ebp); 1091 Printf("esp = %lx ", ctx->Esp); 1092 Printf("\n"); 1093 # elif defined(_M_ARM64) 1094 Report("Register values:\n"); 1095 for (int i = 0; i <= 30; i++) { 1096 Printf("x%d%s = %llx", i < 10 ? " " : "", ctx->X[i]); 1097 if (i % 4 == 3) 1098 Printf("\n"); 1099 } 1100 # else 1101 // TODO 1102 (void)ctx; 1103 # endif 1104 } 1105 1106 int SignalContext::GetType() const { 1107 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode; 1108 } 1109 1110 const char *SignalContext::Describe() const { 1111 unsigned code = GetType(); 1112 // Get the string description of the exception if this is a known deadly 1113 // exception. 1114 switch (code) { 1115 case EXCEPTION_ACCESS_VIOLATION: 1116 return "access-violation"; 1117 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: 1118 return "array-bounds-exceeded"; 1119 case EXCEPTION_STACK_OVERFLOW: 1120 return "stack-overflow"; 1121 case EXCEPTION_DATATYPE_MISALIGNMENT: 1122 return "datatype-misalignment"; 1123 case EXCEPTION_IN_PAGE_ERROR: 1124 return "in-page-error"; 1125 case EXCEPTION_ILLEGAL_INSTRUCTION: 1126 return "illegal-instruction"; 1127 case EXCEPTION_PRIV_INSTRUCTION: 1128 return "priv-instruction"; 1129 case EXCEPTION_BREAKPOINT: 1130 return "breakpoint"; 1131 case EXCEPTION_FLT_DENORMAL_OPERAND: 1132 return "flt-denormal-operand"; 1133 case EXCEPTION_FLT_DIVIDE_BY_ZERO: 1134 return "flt-divide-by-zero"; 1135 case EXCEPTION_FLT_INEXACT_RESULT: 1136 return "flt-inexact-result"; 1137 case EXCEPTION_FLT_INVALID_OPERATION: 1138 return "flt-invalid-operation"; 1139 case EXCEPTION_FLT_OVERFLOW: 1140 return "flt-overflow"; 1141 case EXCEPTION_FLT_STACK_CHECK: 1142 return "flt-stack-check"; 1143 case EXCEPTION_FLT_UNDERFLOW: 1144 return "flt-underflow"; 1145 case EXCEPTION_INT_DIVIDE_BY_ZERO: 1146 return "int-divide-by-zero"; 1147 case EXCEPTION_INT_OVERFLOW: 1148 return "int-overflow"; 1149 } 1150 return "unknown exception"; 1151 } 1152 1153 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { 1154 if (buf_len == 0) 1155 return 0; 1156 1157 // Get the UTF-16 path and convert to UTF-8. 1158 InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength); 1159 int binname_utf16_len = 1160 GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength); 1161 if (binname_utf16_len == 0) { 1162 buf[0] = '\0'; 1163 return 0; 1164 } 1165 int binary_name_len = 1166 ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len, 1167 buf, buf_len, NULL, NULL); 1168 if ((unsigned)binary_name_len == buf_len) 1169 --binary_name_len; 1170 buf[binary_name_len] = '\0'; 1171 return binary_name_len; 1172 } 1173 1174 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { 1175 return ReadBinaryName(buf, buf_len); 1176 } 1177 1178 void CheckVMASize() { 1179 // Do nothing. 1180 } 1181 1182 void InitializePlatformEarly() { 1183 // Do nothing. 1184 } 1185 1186 void CheckASLR() { 1187 // Do nothing 1188 } 1189 1190 void CheckMPROTECT() { 1191 // Do nothing 1192 } 1193 1194 char **GetArgv() { 1195 // FIXME: Actually implement this function. 1196 return 0; 1197 } 1198 1199 char **GetEnviron() { 1200 // FIXME: Actually implement this function. 1201 return 0; 1202 } 1203 1204 pid_t StartSubprocess(const char *program, const char *const argv[], 1205 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd, 1206 fd_t stderr_fd) { 1207 // FIXME: implement on this platform 1208 // Should be implemented based on 1209 // SymbolizerProcess::StarAtSymbolizerSubprocess 1210 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp. 1211 return -1; 1212 } 1213 1214 bool IsProcessRunning(pid_t pid) { 1215 // FIXME: implement on this platform. 1216 return false; 1217 } 1218 1219 int WaitForProcess(pid_t pid) { return -1; } 1220 1221 // FIXME implement on this platform. 1222 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {} 1223 1224 void CheckNoDeepBind(const char *filename, int flag) { 1225 // Do nothing. 1226 } 1227 1228 // FIXME: implement on this platform. 1229 bool GetRandom(void *buffer, uptr length, bool blocking) { 1230 UNIMPLEMENTED(); 1231 } 1232 1233 u32 GetNumberOfCPUs() { 1234 SYSTEM_INFO sysinfo = {}; 1235 GetNativeSystemInfo(&sysinfo); 1236 return sysinfo.dwNumberOfProcessors; 1237 } 1238 1239 #if SANITIZER_WIN_TRACE 1240 // TODO(mcgov): Rename this project-wide to PlatformLogInit 1241 void AndroidLogInit(void) { 1242 HRESULT hr = TraceLoggingRegister(g_asan_provider); 1243 if (!SUCCEEDED(hr)) 1244 return; 1245 } 1246 1247 void SetAbortMessage(const char *) {} 1248 1249 void LogFullErrorReport(const char *buffer) { 1250 if (common_flags()->log_to_syslog) { 1251 InternalMmapVector<wchar_t> filename; 1252 DWORD filename_length = 0; 1253 do { 1254 filename.resize(filename.size() + 0x100); 1255 filename_length = 1256 GetModuleFileNameW(NULL, filename.begin(), filename.size()); 1257 } while (filename_length >= filename.size()); 1258 TraceLoggingWrite(g_asan_provider, "AsanReportEvent", 1259 TraceLoggingValue(filename.begin(), "ExecutableName"), 1260 TraceLoggingValue(buffer, "AsanReportContents")); 1261 } 1262 } 1263 #endif // SANITIZER_WIN_TRACE 1264 1265 void InitializePlatformCommonFlags(CommonFlags *cf) {} 1266 1267 } // namespace __sanitizer 1268 1269 #endif // _WIN32 1270