1 //===-- sanitizer_linux.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and ThreadSanitizer 10 // run-time libraries and implements linux-specific functions from 11 // sanitizer_libc.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_platform.h" 15 16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \ 17 SANITIZER_SOLARIS 18 19 # include "sanitizer_common.h" 20 # include "sanitizer_flags.h" 21 # include "sanitizer_getauxval.h" 22 # include "sanitizer_internal_defs.h" 23 # include "sanitizer_libc.h" 24 # include "sanitizer_linux.h" 25 # include "sanitizer_mutex.h" 26 # include "sanitizer_placement_new.h" 27 # include "sanitizer_procmaps.h" 28 29 # if SANITIZER_LINUX && !SANITIZER_GO 30 # include <asm/param.h> 31 # endif 32 33 // For mips64, syscall(__NR_stat) fills the buffer in the 'struct kernel_stat' 34 // format. Struct kernel_stat is defined as 'struct stat' in asm/stat.h. To 35 // access stat from asm/stat.h, without conflicting with definition in 36 // sys/stat.h, we use this trick. sparc64 is similar, using 37 // syscall(__NR_stat64) and struct kernel_stat64. 38 # if SANITIZER_LINUX && (SANITIZER_MIPS64 || SANITIZER_SPARC64) 39 # include <asm/unistd.h> 40 # include <sys/types.h> 41 # define stat kernel_stat 42 # if SANITIZER_SPARC64 43 # define stat64 kernel_stat64 44 # endif 45 # if SANITIZER_GO 46 # undef st_atime 47 # undef st_mtime 48 # undef st_ctime 49 # define st_atime st_atim 50 # define st_mtime st_mtim 51 # define st_ctime st_ctim 52 # endif 53 # include <asm/stat.h> 54 # undef stat 55 # undef stat64 56 # endif 57 58 # include <dlfcn.h> 59 # include <errno.h> 60 # include <fcntl.h> 61 # include <link.h> 62 # include <pthread.h> 63 # include <sched.h> 64 # include <signal.h> 65 # include <sys/mman.h> 66 # if !SANITIZER_SOLARIS 67 # include <sys/ptrace.h> 68 # endif 69 # include <sys/resource.h> 70 # include <sys/stat.h> 71 # include <sys/syscall.h> 72 # include <sys/time.h> 73 # include <sys/types.h> 74 # include <ucontext.h> 75 # include <unistd.h> 76 77 # if SANITIZER_LINUX 78 # include <sys/utsname.h> 79 # endif 80 81 # if SANITIZER_LINUX && !SANITIZER_ANDROID 82 # include <sys/personality.h> 83 # endif 84 85 # if SANITIZER_LINUX && defined(__loongarch__) 86 # include <sys/sysmacros.h> 87 # endif 88 89 # if SANITIZER_FREEBSD 90 # include <machine/atomic.h> 91 # include <sys/exec.h> 92 # include <sys/procctl.h> 93 # include <sys/sysctl.h> 94 extern "C" { 95 // <sys/umtx.h> must be included after <errno.h> and <sys/types.h> on 96 // FreeBSD 9.2 and 10.0. 97 # include <sys/umtx.h> 98 } 99 # include <sys/thr.h> 100 # endif // SANITIZER_FREEBSD 101 102 # if SANITIZER_NETBSD 103 # include <limits.h> // For NAME_MAX 104 # include <sys/exec.h> 105 # include <sys/sysctl.h> 106 extern struct ps_strings *__ps_strings; 107 # endif // SANITIZER_NETBSD 108 109 # if SANITIZER_SOLARIS 110 # include <stddef.h> 111 # include <stdlib.h> 112 # include <sys/frame.h> 113 # include <thread.h> 114 # define environ _environ 115 # endif 116 117 extern char **environ; 118 119 # if SANITIZER_LINUX 120 // <linux/time.h> 121 struct kernel_timeval { 122 long tv_sec; 123 long tv_usec; 124 }; 125 126 // <linux/futex.h> is broken on some linux distributions. 127 const int FUTEX_WAIT = 0; 128 const int FUTEX_WAKE = 1; 129 const int FUTEX_PRIVATE_FLAG = 128; 130 const int FUTEX_WAIT_PRIVATE = FUTEX_WAIT | FUTEX_PRIVATE_FLAG; 131 const int FUTEX_WAKE_PRIVATE = FUTEX_WAKE | FUTEX_PRIVATE_FLAG; 132 # endif // SANITIZER_LINUX 133 134 // Are we using 32-bit or 64-bit Linux syscalls? 135 // x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32 136 // but it still needs to use 64-bit syscalls. 137 # if SANITIZER_LINUX && \ 138 (defined(__x86_64__) || defined(__powerpc64__) || \ 139 SANITIZER_WORDSIZE == 64 || \ 140 (defined(__mips__) && defined(_ABIN32) && _MIPS_SIM == _ABIN32)) 141 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1 142 # else 143 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0 144 # endif 145 146 // Note : FreeBSD implemented both Linux and OpenBSD apis. 147 # if SANITIZER_LINUX && defined(__NR_getrandom) 148 # if !defined(GRND_NONBLOCK) 149 # define GRND_NONBLOCK 1 150 # endif 151 # define SANITIZER_USE_GETRANDOM 1 152 # else 153 # define SANITIZER_USE_GETRANDOM 0 154 # endif // SANITIZER_LINUX && defined(__NR_getrandom) 155 156 # if SANITIZER_FREEBSD 157 # define SANITIZER_USE_GETENTROPY 1 158 extern "C" void *__sys_mmap(void *addr, size_t len, int prot, int flags, int fd, 159 off_t offset); 160 # endif 161 162 namespace __sanitizer { 163 164 void SetSigProcMask(__sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) { 165 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, set, oldset)); 166 } 167 168 # if SANITIZER_LINUX 169 // Deletes the specified signal from newset, if it is not present in oldset 170 // Equivalently: newset[signum] = newset[signum] & oldset[signum] 171 static void KeepUnblocked(__sanitizer_sigset_t &newset, 172 __sanitizer_sigset_t &oldset, int signum) { 173 // FIXME: https://github.com/google/sanitizers/issues/1816 174 if (SANITIZER_ANDROID || !internal_sigismember(&oldset, signum)) 175 internal_sigdelset(&newset, signum); 176 } 177 # endif 178 179 // Block asynchronous signals 180 void BlockSignals(__sanitizer_sigset_t *oldset) { 181 __sanitizer_sigset_t newset; 182 internal_sigfillset(&newset); 183 184 # if SANITIZER_LINUX 185 __sanitizer_sigset_t currentset; 186 187 # if !SANITIZER_ANDROID 188 // FIXME: https://github.com/google/sanitizers/issues/1816 189 SetSigProcMask(NULL, ¤tset); 190 191 // Glibc uses SIGSETXID signal during setuid call. If this signal is blocked 192 // on any thread, setuid call hangs. 193 // See test/sanitizer_common/TestCases/Linux/setuid.c. 194 KeepUnblocked(newset, currentset, 33); 195 # endif // !SANITIZER_ANDROID 196 197 // Seccomp-BPF-sandboxed processes rely on SIGSYS to handle trapped syscalls. 198 // If this signal is blocked, such calls cannot be handled and the process may 199 // hang. 200 KeepUnblocked(newset, currentset, 31); 201 202 # if !SANITIZER_ANDROID 203 // Don't block synchronous signals 204 // but also don't unblock signals that the user had deliberately blocked. 205 // FIXME: https://github.com/google/sanitizers/issues/1816 206 KeepUnblocked(newset, currentset, SIGSEGV); 207 KeepUnblocked(newset, currentset, SIGBUS); 208 KeepUnblocked(newset, currentset, SIGILL); 209 KeepUnblocked(newset, currentset, SIGTRAP); 210 KeepUnblocked(newset, currentset, SIGABRT); 211 KeepUnblocked(newset, currentset, SIGFPE); 212 KeepUnblocked(newset, currentset, SIGPIPE); 213 # endif //! SANITIZER_ANDROID 214 215 # endif // SANITIZER_LINUX 216 217 SetSigProcMask(&newset, oldset); 218 } 219 220 ScopedBlockSignals::ScopedBlockSignals(__sanitizer_sigset_t *copy) { 221 BlockSignals(&saved_); 222 if (copy) 223 internal_memcpy(copy, &saved_, sizeof(saved_)); 224 } 225 226 ScopedBlockSignals::~ScopedBlockSignals() { SetSigProcMask(&saved_, nullptr); } 227 228 # if SANITIZER_LINUX && defined(__x86_64__) 229 # include "sanitizer_syscall_linux_x86_64.inc" 230 # elif SANITIZER_LINUX && SANITIZER_RISCV64 231 # include "sanitizer_syscall_linux_riscv64.inc" 232 # elif SANITIZER_LINUX && defined(__aarch64__) 233 # include "sanitizer_syscall_linux_aarch64.inc" 234 # elif SANITIZER_LINUX && defined(__arm__) 235 # include "sanitizer_syscall_linux_arm.inc" 236 # elif SANITIZER_LINUX && defined(__hexagon__) 237 # include "sanitizer_syscall_linux_hexagon.inc" 238 # elif SANITIZER_LINUX && SANITIZER_LOONGARCH64 239 # include "sanitizer_syscall_linux_loongarch64.inc" 240 # else 241 # include "sanitizer_syscall_generic.inc" 242 # endif 243 244 // --------------- sanitizer_libc.h 245 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD 246 # if !SANITIZER_S390 247 uptr internal_mmap(void *addr, uptr length, int prot, int flags, int fd, 248 u64 offset) { 249 # if SANITIZER_FREEBSD 250 return (uptr)__sys_mmap(addr, length, prot, flags, fd, offset); 251 # elif SANITIZER_LINUX_USES_64BIT_SYSCALLS 252 return internal_syscall(SYSCALL(mmap), (uptr)addr, length, prot, flags, fd, 253 offset); 254 # else 255 // mmap2 specifies file offset in 4096-byte units. 256 CHECK(IsAligned(offset, 4096)); 257 return internal_syscall(SYSCALL(mmap2), addr, length, prot, flags, fd, 258 (OFF_T)(offset / 4096)); 259 # endif 260 } 261 # endif // !SANITIZER_S390 262 263 uptr internal_munmap(void *addr, uptr length) { 264 return internal_syscall(SYSCALL(munmap), (uptr)addr, length); 265 } 266 267 # if SANITIZER_LINUX 268 uptr internal_mremap(void *old_address, uptr old_size, uptr new_size, int flags, 269 void *new_address) { 270 return internal_syscall(SYSCALL(mremap), (uptr)old_address, old_size, 271 new_size, flags, (uptr)new_address); 272 } 273 # endif 274 275 int internal_mprotect(void *addr, uptr length, int prot) { 276 return internal_syscall(SYSCALL(mprotect), (uptr)addr, length, prot); 277 } 278 279 int internal_madvise(uptr addr, uptr length, int advice) { 280 return internal_syscall(SYSCALL(madvise), addr, length, advice); 281 } 282 283 # if SANITIZER_FREEBSD 284 uptr internal_close_range(fd_t lowfd, fd_t highfd, int flags) { 285 return internal_syscall(SYSCALL(close_range), lowfd, highfd, flags); 286 } 287 # endif 288 uptr internal_close(fd_t fd) { return internal_syscall(SYSCALL(close), fd); } 289 290 uptr internal_open(const char *filename, int flags) { 291 # if SANITIZER_LINUX 292 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags); 293 # else 294 return internal_syscall(SYSCALL(open), (uptr)filename, flags); 295 # endif 296 } 297 298 uptr internal_open(const char *filename, int flags, u32 mode) { 299 # if SANITIZER_LINUX 300 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags, 301 mode); 302 # else 303 return internal_syscall(SYSCALL(open), (uptr)filename, flags, mode); 304 # endif 305 } 306 307 uptr internal_read(fd_t fd, void *buf, uptr count) { 308 sptr res; 309 HANDLE_EINTR(res, 310 (sptr)internal_syscall(SYSCALL(read), fd, (uptr)buf, count)); 311 return res; 312 } 313 314 uptr internal_write(fd_t fd, const void *buf, uptr count) { 315 sptr res; 316 HANDLE_EINTR(res, 317 (sptr)internal_syscall(SYSCALL(write), fd, (uptr)buf, count)); 318 return res; 319 } 320 321 uptr internal_ftruncate(fd_t fd, uptr size) { 322 sptr res; 323 HANDLE_EINTR(res, 324 (sptr)internal_syscall(SYSCALL(ftruncate), fd, (OFF_T)size)); 325 return res; 326 } 327 328 # if !SANITIZER_LINUX_USES_64BIT_SYSCALLS && SANITIZER_LINUX 329 static void stat64_to_stat(struct stat64 *in, struct stat *out) { 330 internal_memset(out, 0, sizeof(*out)); 331 out->st_dev = in->st_dev; 332 out->st_ino = in->st_ino; 333 out->st_mode = in->st_mode; 334 out->st_nlink = in->st_nlink; 335 out->st_uid = in->st_uid; 336 out->st_gid = in->st_gid; 337 out->st_rdev = in->st_rdev; 338 out->st_size = in->st_size; 339 out->st_blksize = in->st_blksize; 340 out->st_blocks = in->st_blocks; 341 out->st_atime = in->st_atime; 342 out->st_mtime = in->st_mtime; 343 out->st_ctime = in->st_ctime; 344 } 345 # endif 346 347 # if SANITIZER_LINUX && defined(__loongarch__) 348 static void statx_to_stat(struct statx *in, struct stat *out) { 349 internal_memset(out, 0, sizeof(*out)); 350 out->st_dev = makedev(in->stx_dev_major, in->stx_dev_minor); 351 out->st_ino = in->stx_ino; 352 out->st_mode = in->stx_mode; 353 out->st_nlink = in->stx_nlink; 354 out->st_uid = in->stx_uid; 355 out->st_gid = in->stx_gid; 356 out->st_rdev = makedev(in->stx_rdev_major, in->stx_rdev_minor); 357 out->st_size = in->stx_size; 358 out->st_blksize = in->stx_blksize; 359 out->st_blocks = in->stx_blocks; 360 out->st_atime = in->stx_atime.tv_sec; 361 out->st_atim.tv_nsec = in->stx_atime.tv_nsec; 362 out->st_mtime = in->stx_mtime.tv_sec; 363 out->st_mtim.tv_nsec = in->stx_mtime.tv_nsec; 364 out->st_ctime = in->stx_ctime.tv_sec; 365 out->st_ctim.tv_nsec = in->stx_ctime.tv_nsec; 366 } 367 # endif 368 369 # if SANITIZER_MIPS64 || SANITIZER_SPARC64 370 # if SANITIZER_MIPS64 371 typedef struct kernel_stat kstat_t; 372 # else 373 typedef struct kernel_stat64 kstat_t; 374 # endif 375 // Undefine compatibility macros from <sys/stat.h> 376 // so that they would not clash with the kernel_stat 377 // st_[a|m|c]time fields 378 # if !SANITIZER_GO 379 # undef st_atime 380 # undef st_mtime 381 # undef st_ctime 382 # endif 383 # if defined(SANITIZER_ANDROID) 384 // Bionic sys/stat.h defines additional macros 385 // for compatibility with the old NDKs and 386 // they clash with the kernel_stat structure 387 // st_[a|m|c]time_nsec fields. 388 # undef st_atime_nsec 389 # undef st_mtime_nsec 390 # undef st_ctime_nsec 391 # endif 392 static void kernel_stat_to_stat(kstat_t *in, struct stat *out) { 393 internal_memset(out, 0, sizeof(*out)); 394 out->st_dev = in->st_dev; 395 out->st_ino = in->st_ino; 396 out->st_mode = in->st_mode; 397 out->st_nlink = in->st_nlink; 398 out->st_uid = in->st_uid; 399 out->st_gid = in->st_gid; 400 out->st_rdev = in->st_rdev; 401 out->st_size = in->st_size; 402 out->st_blksize = in->st_blksize; 403 out->st_blocks = in->st_blocks; 404 # if defined(__USE_MISC) || defined(__USE_XOPEN2K8) || \ 405 defined(SANITIZER_ANDROID) 406 out->st_atim.tv_sec = in->st_atime; 407 out->st_atim.tv_nsec = in->st_atime_nsec; 408 out->st_mtim.tv_sec = in->st_mtime; 409 out->st_mtim.tv_nsec = in->st_mtime_nsec; 410 out->st_ctim.tv_sec = in->st_ctime; 411 out->st_ctim.tv_nsec = in->st_ctime_nsec; 412 # else 413 out->st_atime = in->st_atime; 414 out->st_atimensec = in->st_atime_nsec; 415 out->st_mtime = in->st_mtime; 416 out->st_mtimensec = in->st_mtime_nsec; 417 out->st_ctime = in->st_ctime; 418 out->st_atimensec = in->st_ctime_nsec; 419 # endif 420 } 421 # endif 422 423 uptr internal_stat(const char *path, void *buf) { 424 # if SANITIZER_FREEBSD 425 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 0); 426 # elif SANITIZER_LINUX 427 # if defined(__loongarch__) 428 struct statx bufx; 429 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path, 430 AT_NO_AUTOMOUNT, STATX_BASIC_STATS, (uptr)&bufx); 431 statx_to_stat(&bufx, (struct stat *)buf); 432 return res; 433 # elif ( \ 434 SANITIZER_WORDSIZE == 64 || SANITIZER_X32 || \ 435 (defined(__mips__) && defined(_ABIN32) && _MIPS_SIM == _ABIN32)) && \ 436 !SANITIZER_SPARC 437 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, 438 0); 439 # elif SANITIZER_SPARC64 440 kstat_t buf64; 441 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 442 (uptr)&buf64, 0); 443 kernel_stat_to_stat(&buf64, (struct stat *)buf); 444 return res; 445 # else 446 struct stat64 buf64; 447 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 448 (uptr)&buf64, 0); 449 stat64_to_stat(&buf64, (struct stat *)buf); 450 return res; 451 # endif 452 # else 453 struct stat64 buf64; 454 int res = internal_syscall(SYSCALL(stat64), path, &buf64); 455 stat64_to_stat(&buf64, (struct stat *)buf); 456 return res; 457 # endif 458 } 459 460 uptr internal_lstat(const char *path, void *buf) { 461 # if SANITIZER_FREEBSD 462 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 463 AT_SYMLINK_NOFOLLOW); 464 # elif SANITIZER_LINUX 465 # if defined(__loongarch__) 466 struct statx bufx; 467 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path, 468 AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT, 469 STATX_BASIC_STATS, (uptr)&bufx); 470 statx_to_stat(&bufx, (struct stat *)buf); 471 return res; 472 # elif ( \ 473 defined(_LP64) || SANITIZER_X32 || \ 474 (defined(__mips__) && defined(_ABIN32) && _MIPS_SIM == _ABIN32)) && \ 475 !SANITIZER_SPARC 476 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, 477 AT_SYMLINK_NOFOLLOW); 478 # elif SANITIZER_SPARC64 479 kstat_t buf64; 480 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 481 (uptr)&buf64, AT_SYMLINK_NOFOLLOW); 482 kernel_stat_to_stat(&buf64, (struct stat *)buf); 483 return res; 484 # else 485 struct stat64 buf64; 486 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 487 (uptr)&buf64, AT_SYMLINK_NOFOLLOW); 488 stat64_to_stat(&buf64, (struct stat *)buf); 489 return res; 490 # endif 491 # else 492 struct stat64 buf64; 493 int res = internal_syscall(SYSCALL(lstat64), path, &buf64); 494 stat64_to_stat(&buf64, (struct stat *)buf); 495 return res; 496 # endif 497 } 498 499 uptr internal_fstat(fd_t fd, void *buf) { 500 # if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS 501 # if SANITIZER_MIPS64 502 // For mips64, fstat syscall fills buffer in the format of kernel_stat 503 kstat_t kbuf; 504 int res = internal_syscall(SYSCALL(fstat), fd, &kbuf); 505 kernel_stat_to_stat(&kbuf, (struct stat *)buf); 506 return res; 507 # elif SANITIZER_LINUX && SANITIZER_SPARC64 508 // For sparc64, fstat64 syscall fills buffer in the format of kernel_stat64 509 kstat_t kbuf; 510 int res = internal_syscall(SYSCALL(fstat64), fd, &kbuf); 511 kernel_stat_to_stat(&kbuf, (struct stat *)buf); 512 return res; 513 # elif SANITIZER_LINUX && defined(__loongarch__) 514 struct statx bufx; 515 int res = internal_syscall(SYSCALL(statx), fd, "", AT_EMPTY_PATH, 516 STATX_BASIC_STATS, (uptr)&bufx); 517 statx_to_stat(&bufx, (struct stat *)buf); 518 return res; 519 # else 520 return internal_syscall(SYSCALL(fstat), fd, (uptr)buf); 521 # endif 522 # else 523 struct stat64 buf64; 524 int res = internal_syscall(SYSCALL(fstat64), fd, &buf64); 525 stat64_to_stat(&buf64, (struct stat *)buf); 526 return res; 527 # endif 528 } 529 530 uptr internal_filesize(fd_t fd) { 531 struct stat st; 532 if (internal_fstat(fd, &st)) 533 return -1; 534 return (uptr)st.st_size; 535 } 536 537 uptr internal_dup(int oldfd) { return internal_syscall(SYSCALL(dup), oldfd); } 538 539 uptr internal_dup2(int oldfd, int newfd) { 540 # if SANITIZER_LINUX 541 return internal_syscall(SYSCALL(dup3), oldfd, newfd, 0); 542 # else 543 return internal_syscall(SYSCALL(dup2), oldfd, newfd); 544 # endif 545 } 546 547 uptr internal_readlink(const char *path, char *buf, uptr bufsize) { 548 # if SANITIZER_LINUX 549 return internal_syscall(SYSCALL(readlinkat), AT_FDCWD, (uptr)path, (uptr)buf, 550 bufsize); 551 # else 552 return internal_syscall(SYSCALL(readlink), (uptr)path, (uptr)buf, bufsize); 553 # endif 554 } 555 556 uptr internal_unlink(const char *path) { 557 # if SANITIZER_LINUX 558 return internal_syscall(SYSCALL(unlinkat), AT_FDCWD, (uptr)path, 0); 559 # else 560 return internal_syscall(SYSCALL(unlink), (uptr)path); 561 # endif 562 } 563 564 uptr internal_rename(const char *oldpath, const char *newpath) { 565 # if (defined(__riscv) || defined(__loongarch__)) && defined(__linux__) 566 return internal_syscall(SYSCALL(renameat2), AT_FDCWD, (uptr)oldpath, AT_FDCWD, 567 (uptr)newpath, 0); 568 # elif SANITIZER_LINUX 569 return internal_syscall(SYSCALL(renameat), AT_FDCWD, (uptr)oldpath, AT_FDCWD, 570 (uptr)newpath); 571 # else 572 return internal_syscall(SYSCALL(rename), (uptr)oldpath, (uptr)newpath); 573 # endif 574 } 575 576 uptr internal_sched_yield() { return internal_syscall(SYSCALL(sched_yield)); } 577 578 void internal_usleep(u64 useconds) { 579 struct timespec ts; 580 ts.tv_sec = useconds / 1000000; 581 ts.tv_nsec = (useconds % 1000000) * 1000; 582 internal_syscall(SYSCALL(nanosleep), &ts, &ts); 583 } 584 585 uptr internal_execve(const char *filename, char *const argv[], 586 char *const envp[]) { 587 return internal_syscall(SYSCALL(execve), (uptr)filename, (uptr)argv, 588 (uptr)envp); 589 } 590 # endif // !SANITIZER_SOLARIS && !SANITIZER_NETBSD 591 592 # if !SANITIZER_NETBSD 593 void internal__exit(int exitcode) { 594 # if SANITIZER_FREEBSD || SANITIZER_SOLARIS 595 internal_syscall(SYSCALL(exit), exitcode); 596 # else 597 internal_syscall(SYSCALL(exit_group), exitcode); 598 # endif 599 Die(); // Unreachable. 600 } 601 # endif // !SANITIZER_NETBSD 602 603 // ----------------- sanitizer_common.h 604 bool FileExists(const char *filename) { 605 if (ShouldMockFailureToOpen(filename)) 606 return false; 607 struct stat st; 608 if (internal_stat(filename, &st)) 609 return false; 610 // Sanity check: filename is a regular file. 611 return S_ISREG(st.st_mode); 612 } 613 614 bool DirExists(const char *path) { 615 struct stat st; 616 if (internal_stat(path, &st)) 617 return false; 618 return S_ISDIR(st.st_mode); 619 } 620 621 # if !SANITIZER_NETBSD 622 tid_t GetTid() { 623 # if SANITIZER_FREEBSD 624 long Tid; 625 thr_self(&Tid); 626 return Tid; 627 # elif SANITIZER_SOLARIS 628 return thr_self(); 629 # else 630 return internal_syscall(SYSCALL(gettid)); 631 # endif 632 } 633 634 int TgKill(pid_t pid, tid_t tid, int sig) { 635 # if SANITIZER_LINUX 636 return internal_syscall(SYSCALL(tgkill), pid, tid, sig); 637 # elif SANITIZER_FREEBSD 638 return internal_syscall(SYSCALL(thr_kill2), pid, tid, sig); 639 # elif SANITIZER_SOLARIS 640 (void)pid; 641 errno = thr_kill(tid, sig); 642 // TgKill is expected to return -1 on error, not an errno. 643 return errno != 0 ? -1 : 0; 644 # endif 645 } 646 # endif 647 648 # if SANITIZER_GLIBC 649 u64 NanoTime() { 650 kernel_timeval tv; 651 internal_memset(&tv, 0, sizeof(tv)); 652 internal_syscall(SYSCALL(gettimeofday), &tv, 0); 653 return (u64)tv.tv_sec * 1000 * 1000 * 1000 + tv.tv_usec * 1000; 654 } 655 // Used by real_clock_gettime. 656 uptr internal_clock_gettime(__sanitizer_clockid_t clk_id, void *tp) { 657 return internal_syscall(SYSCALL(clock_gettime), clk_id, tp); 658 } 659 # elif !SANITIZER_SOLARIS && !SANITIZER_NETBSD 660 u64 NanoTime() { 661 struct timespec ts; 662 clock_gettime(CLOCK_REALTIME, &ts); 663 return (u64)ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec; 664 } 665 # endif 666 667 // Like getenv, but reads env directly from /proc (on Linux) or parses the 668 // 'environ' array (on some others) and does not use libc. This function 669 // should be called first inside __asan_init. 670 const char *GetEnv(const char *name) { 671 # if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_SOLARIS 672 if (::environ != 0) { 673 uptr NameLen = internal_strlen(name); 674 for (char **Env = ::environ; *Env != 0; Env++) { 675 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') 676 return (*Env) + NameLen + 1; 677 } 678 } 679 return 0; // Not found. 680 # elif SANITIZER_LINUX 681 static char *environ; 682 static uptr len; 683 static bool inited; 684 if (!inited) { 685 inited = true; 686 uptr environ_size; 687 if (!ReadFileToBuffer("/proc/self/environ", &environ, &environ_size, &len)) 688 environ = nullptr; 689 } 690 if (!environ || len == 0) 691 return nullptr; 692 uptr namelen = internal_strlen(name); 693 const char *p = environ; 694 while (*p != '\0') { // will happen at the \0\0 that terminates the buffer 695 // proc file has the format NAME=value\0NAME=value\0NAME=value\0... 696 const char *endp = (char *)internal_memchr(p, '\0', len - (p - environ)); 697 if (!endp) // this entry isn't NUL terminated 698 return nullptr; 699 else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=') // Match. 700 return p + namelen + 1; // point after = 701 p = endp + 1; 702 } 703 return nullptr; // Not found. 704 # else 705 # error "Unsupported platform" 706 # endif 707 } 708 709 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD && !SANITIZER_GO 710 extern "C" { 711 SANITIZER_WEAK_ATTRIBUTE extern void *__libc_stack_end; 712 } 713 # endif 714 715 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD 716 static void ReadNullSepFileToArray(const char *path, char ***arr, 717 int arr_size) { 718 char *buff; 719 uptr buff_size; 720 uptr buff_len; 721 *arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray"); 722 if (!ReadFileToBuffer(path, &buff, &buff_size, &buff_len, 1024 * 1024)) { 723 (*arr)[0] = nullptr; 724 return; 725 } 726 (*arr)[0] = buff; 727 int count, i; 728 for (count = 1, i = 1;; i++) { 729 if (buff[i] == 0) { 730 if (buff[i + 1] == 0) 731 break; 732 (*arr)[count] = &buff[i + 1]; 733 CHECK_LE(count, arr_size - 1); // FIXME: make this more flexible. 734 count++; 735 } 736 } 737 (*arr)[count] = nullptr; 738 } 739 # endif 740 741 static void GetArgsAndEnv(char ***argv, char ***envp) { 742 # if SANITIZER_FREEBSD 743 // On FreeBSD, retrieving the argument and environment arrays is done via the 744 // kern.ps_strings sysctl, which returns a pointer to a structure containing 745 // this information. See also <sys/exec.h>. 746 ps_strings *pss; 747 uptr sz = sizeof(pss); 748 if (internal_sysctlbyname("kern.ps_strings", &pss, &sz, NULL, 0) == -1) { 749 Printf("sysctl kern.ps_strings failed\n"); 750 Die(); 751 } 752 *argv = pss->ps_argvstr; 753 *envp = pss->ps_envstr; 754 # elif SANITIZER_NETBSD 755 *argv = __ps_strings->ps_argvstr; 756 *envp = __ps_strings->ps_envstr; 757 # else // SANITIZER_FREEBSD 758 # if !SANITIZER_GO 759 if (&__libc_stack_end) { 760 uptr *stack_end = (uptr *)__libc_stack_end; 761 // Linux/sparc64 needs an adjustment, cf. glibc 762 // sysdeps/sparc/sparc{32,64}/dl-machine.h (DL_STACK_END). 763 # if SANITIZER_LINUX && defined(__sparc__) 764 stack_end = &stack_end[16]; 765 # endif 766 // Normally argc can be obtained from *stack_end, however, on ARM glibc's 767 // _start clobbers it: 768 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/arm/start.S;hb=refs/heads/release/2.31/master#l75 769 // Do not special-case ARM and infer argc from argv everywhere. 770 int argc = 0; 771 while (stack_end[argc + 1]) argc++; 772 *argv = (char **)(stack_end + 1); 773 *envp = (char **)(stack_end + argc + 2); 774 } else { 775 # endif // !SANITIZER_GO 776 static const int kMaxArgv = 2000, kMaxEnvp = 2000; 777 ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv); 778 ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp); 779 # if !SANITIZER_GO 780 } 781 # endif // !SANITIZER_GO 782 # endif // SANITIZER_FREEBSD 783 } 784 785 char **GetArgv() { 786 char **argv, **envp; 787 GetArgsAndEnv(&argv, &envp); 788 return argv; 789 } 790 791 char **GetEnviron() { 792 char **argv, **envp; 793 GetArgsAndEnv(&argv, &envp); 794 return envp; 795 } 796 797 # if !SANITIZER_SOLARIS 798 void FutexWait(atomic_uint32_t *p, u32 cmp) { 799 # if SANITIZER_FREEBSD 800 _umtx_op(p, UMTX_OP_WAIT_UINT, cmp, 0, 0); 801 # elif SANITIZER_NETBSD 802 sched_yield(); /* No userspace futex-like synchronization */ 803 # else 804 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAIT_PRIVATE, cmp, 0, 0, 0); 805 # endif 806 } 807 808 void FutexWake(atomic_uint32_t *p, u32 count) { 809 # if SANITIZER_FREEBSD 810 _umtx_op(p, UMTX_OP_WAKE, count, 0, 0); 811 # elif SANITIZER_NETBSD 812 /* No userspace futex-like synchronization */ 813 # else 814 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAKE_PRIVATE, count, 0, 0, 0); 815 # endif 816 } 817 818 # endif // !SANITIZER_SOLARIS 819 820 // ----------------- sanitizer_linux.h 821 // The actual size of this structure is specified by d_reclen. 822 // Note that getdents64 uses a different structure format. We only provide the 823 // 32-bit syscall here. 824 # if SANITIZER_NETBSD 825 // Not used 826 # else 827 struct linux_dirent { 828 # if SANITIZER_X32 || SANITIZER_LINUX 829 u64 d_ino; 830 u64 d_off; 831 # else 832 unsigned long d_ino; 833 unsigned long d_off; 834 # endif 835 unsigned short d_reclen; 836 # if SANITIZER_LINUX 837 unsigned char d_type; 838 # endif 839 char d_name[256]; 840 }; 841 # endif 842 843 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD 844 // Syscall wrappers. 845 uptr internal_ptrace(int request, int pid, void *addr, void *data) { 846 return internal_syscall(SYSCALL(ptrace), request, pid, (uptr)addr, 847 (uptr)data); 848 } 849 850 uptr internal_waitpid(int pid, int *status, int options) { 851 return internal_syscall(SYSCALL(wait4), pid, (uptr)status, options, 852 0 /* rusage */); 853 } 854 855 uptr internal_getpid() { return internal_syscall(SYSCALL(getpid)); } 856 857 uptr internal_getppid() { return internal_syscall(SYSCALL(getppid)); } 858 859 int internal_dlinfo(void *handle, int request, void *p) { 860 # if SANITIZER_FREEBSD 861 return dlinfo(handle, request, p); 862 # else 863 UNIMPLEMENTED(); 864 # endif 865 } 866 867 uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) { 868 # if SANITIZER_FREEBSD 869 return internal_syscall(SYSCALL(getdirentries), fd, (uptr)dirp, count, NULL); 870 # elif SANITIZER_LINUX 871 return internal_syscall(SYSCALL(getdents64), fd, (uptr)dirp, count); 872 # else 873 return internal_syscall(SYSCALL(getdents), fd, (uptr)dirp, count); 874 # endif 875 } 876 877 uptr internal_lseek(fd_t fd, OFF_T offset, int whence) { 878 return internal_syscall(SYSCALL(lseek), fd, offset, whence); 879 } 880 881 # if SANITIZER_LINUX 882 uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) { 883 return internal_syscall(SYSCALL(prctl), option, arg2, arg3, arg4, arg5); 884 } 885 # if defined(__x86_64__) 886 # include <asm/unistd_64.h> 887 // Currently internal_arch_prctl() is only needed on x86_64. 888 uptr internal_arch_prctl(int option, uptr arg2) { 889 return internal_syscall(__NR_arch_prctl, option, arg2); 890 } 891 # endif 892 # endif 893 894 uptr internal_sigaltstack(const void *ss, void *oss) { 895 return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss); 896 } 897 898 extern "C" pid_t __fork(void); 899 900 int internal_fork() { 901 # if SANITIZER_LINUX 902 # if SANITIZER_S390 903 return internal_syscall(SYSCALL(clone), 0, SIGCHLD); 904 # elif SANITIZER_SPARC 905 // The clone syscall interface on SPARC differs massively from the rest, 906 // so fall back to __fork. 907 return __fork(); 908 # else 909 return internal_syscall(SYSCALL(clone), SIGCHLD, 0); 910 # endif 911 # else 912 return internal_syscall(SYSCALL(fork)); 913 # endif 914 } 915 916 # if SANITIZER_FREEBSD 917 int internal_sysctl(const int *name, unsigned int namelen, void *oldp, 918 uptr *oldlenp, const void *newp, uptr newlen) { 919 return internal_syscall(SYSCALL(__sysctl), name, namelen, oldp, 920 (size_t *)oldlenp, newp, (size_t)newlen); 921 } 922 923 int internal_sysctlbyname(const char *sname, void *oldp, uptr *oldlenp, 924 const void *newp, uptr newlen) { 925 // Note: this function can be called during startup, so we need to avoid 926 // calling any interceptable functions. On FreeBSD >= 1300045 sysctlbyname() 927 // is a real syscall, but for older versions it calls sysctlnametomib() 928 // followed by sysctl(). To avoid calling the intercepted version and 929 // asserting if this happens during startup, call the real sysctlnametomib() 930 // followed by internal_sysctl() if the syscall is not available. 931 # ifdef SYS___sysctlbyname 932 return internal_syscall(SYSCALL(__sysctlbyname), sname, 933 internal_strlen(sname), oldp, (size_t *)oldlenp, newp, 934 (size_t)newlen); 935 # else 936 static decltype(sysctlnametomib) *real_sysctlnametomib = nullptr; 937 if (!real_sysctlnametomib) 938 real_sysctlnametomib = 939 (decltype(sysctlnametomib) *)dlsym(RTLD_NEXT, "sysctlnametomib"); 940 CHECK(real_sysctlnametomib); 941 942 int oid[CTL_MAXNAME]; 943 size_t len = CTL_MAXNAME; 944 if (real_sysctlnametomib(sname, oid, &len) == -1) 945 return (-1); 946 return internal_sysctl(oid, len, oldp, oldlenp, newp, newlen); 947 # endif 948 } 949 # endif 950 951 # if SANITIZER_LINUX 952 # define SA_RESTORER 0x04000000 953 // Doesn't set sa_restorer if the caller did not set it, so use with caution 954 //(see below). 955 int internal_sigaction_norestorer(int signum, const void *act, void *oldact) { 956 __sanitizer_kernel_sigaction_t k_act, k_oldact; 957 internal_memset(&k_act, 0, sizeof(__sanitizer_kernel_sigaction_t)); 958 internal_memset(&k_oldact, 0, sizeof(__sanitizer_kernel_sigaction_t)); 959 const __sanitizer_sigaction *u_act = (const __sanitizer_sigaction *)act; 960 __sanitizer_sigaction *u_oldact = (__sanitizer_sigaction *)oldact; 961 if (u_act) { 962 k_act.handler = u_act->handler; 963 k_act.sigaction = u_act->sigaction; 964 internal_memcpy(&k_act.sa_mask, &u_act->sa_mask, 965 sizeof(__sanitizer_kernel_sigset_t)); 966 // Without SA_RESTORER kernel ignores the calls (probably returns EINVAL). 967 k_act.sa_flags = u_act->sa_flags | SA_RESTORER; 968 // FIXME: most often sa_restorer is unset, however the kernel requires it 969 // to point to a valid signal restorer that calls the rt_sigreturn syscall. 970 // If sa_restorer passed to the kernel is NULL, the program may crash upon 971 // signal delivery or fail to unwind the stack in the signal handler. 972 // libc implementation of sigaction() passes its own restorer to 973 // rt_sigaction, so we need to do the same (we'll need to reimplement the 974 // restorers; for x86_64 the restorer address can be obtained from 975 // oldact->sa_restorer upon a call to sigaction(xxx, NULL, oldact). 976 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32 977 k_act.sa_restorer = u_act->sa_restorer; 978 # endif 979 } 980 981 uptr result = internal_syscall(SYSCALL(rt_sigaction), (uptr)signum, 982 (uptr)(u_act ? &k_act : nullptr), 983 (uptr)(u_oldact ? &k_oldact : nullptr), 984 (uptr)sizeof(__sanitizer_kernel_sigset_t)); 985 986 if ((result == 0) && u_oldact) { 987 u_oldact->handler = k_oldact.handler; 988 u_oldact->sigaction = k_oldact.sigaction; 989 internal_memcpy(&u_oldact->sa_mask, &k_oldact.sa_mask, 990 sizeof(__sanitizer_kernel_sigset_t)); 991 u_oldact->sa_flags = k_oldact.sa_flags; 992 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32 993 u_oldact->sa_restorer = k_oldact.sa_restorer; 994 # endif 995 } 996 return result; 997 } 998 # endif // SANITIZER_LINUX 999 1000 uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set, 1001 __sanitizer_sigset_t *oldset) { 1002 # if SANITIZER_FREEBSD 1003 return internal_syscall(SYSCALL(sigprocmask), how, set, oldset); 1004 # else 1005 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 1006 __sanitizer_kernel_sigset_t *k_oldset = (__sanitizer_kernel_sigset_t *)oldset; 1007 return internal_syscall(SYSCALL(rt_sigprocmask), (uptr)how, (uptr)k_set, 1008 (uptr)k_oldset, sizeof(__sanitizer_kernel_sigset_t)); 1009 # endif 1010 } 1011 1012 void internal_sigfillset(__sanitizer_sigset_t *set) { 1013 internal_memset(set, 0xff, sizeof(*set)); 1014 } 1015 1016 void internal_sigemptyset(__sanitizer_sigset_t *set) { 1017 internal_memset(set, 0, sizeof(*set)); 1018 } 1019 1020 # if SANITIZER_LINUX 1021 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) { 1022 signum -= 1; 1023 CHECK_GE(signum, 0); 1024 CHECK_LT(signum, sizeof(*set) * 8); 1025 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 1026 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); 1027 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); 1028 k_set->sig[idx] &= ~((uptr)1 << bit); 1029 } 1030 1031 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) { 1032 signum -= 1; 1033 CHECK_GE(signum, 0); 1034 CHECK_LT(signum, sizeof(*set) * 8); 1035 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 1036 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); 1037 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); 1038 return k_set->sig[idx] & ((uptr)1 << bit); 1039 } 1040 # elif SANITIZER_FREEBSD 1041 uptr internal_procctl(int type, int id, int cmd, void *data) { 1042 return internal_syscall(SYSCALL(procctl), type, id, cmd, data); 1043 } 1044 1045 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) { 1046 sigset_t *rset = reinterpret_cast<sigset_t *>(set); 1047 sigdelset(rset, signum); 1048 } 1049 1050 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) { 1051 sigset_t *rset = reinterpret_cast<sigset_t *>(set); 1052 return sigismember(rset, signum); 1053 } 1054 # endif 1055 # endif // !SANITIZER_SOLARIS 1056 1057 # if !SANITIZER_NETBSD 1058 // ThreadLister implementation. 1059 ThreadLister::ThreadLister(pid_t pid) : buffer_(4096) { 1060 task_path_.AppendF("/proc/%d/task", pid); 1061 } 1062 1063 ThreadLister::Result ThreadLister::ListThreads( 1064 InternalMmapVector<tid_t> *threads) { 1065 int descriptor = internal_open(task_path_.data(), O_RDONLY | O_DIRECTORY); 1066 if (internal_iserror(descriptor)) { 1067 Report("Can't open %s for reading.\n", task_path_.data()); 1068 return Error; 1069 } 1070 auto cleanup = at_scope_exit([&] { internal_close(descriptor); }); 1071 threads->clear(); 1072 1073 Result result = Ok; 1074 for (bool first_read = true;; first_read = false) { 1075 CHECK_GE(buffer_.size(), 4096); 1076 uptr read = internal_getdents( 1077 descriptor, (struct linux_dirent *)buffer_.data(), buffer_.size()); 1078 if (!read) 1079 return result; 1080 if (internal_iserror(read)) { 1081 Report("Can't read directory entries from %s.\n", task_path_.data()); 1082 return Error; 1083 } 1084 1085 for (uptr begin = (uptr)buffer_.data(), end = begin + read; begin < end;) { 1086 struct linux_dirent *entry = (struct linux_dirent *)begin; 1087 begin += entry->d_reclen; 1088 if (entry->d_ino == 1) { 1089 // Inode 1 is for bad blocks and also can be a reason for early return. 1090 // Should be emitted if kernel tried to output terminating thread. 1091 // See proc_task_readdir implementation in Linux. 1092 result = Incomplete; 1093 } 1094 if (entry->d_ino && *entry->d_name >= '0' && *entry->d_name <= '9') 1095 threads->push_back(internal_atoll(entry->d_name)); 1096 } 1097 1098 // Now we are going to detect short-read or early EOF. In such cases Linux 1099 // can return inconsistent list with missing alive threads. 1100 // Code will just remember that the list can be incomplete but it will 1101 // continue reads to return as much as possible. 1102 if (!first_read) { 1103 // The first one was a short-read by definition. 1104 result = Incomplete; 1105 } else if (read > buffer_.size() - 1024) { 1106 // Read was close to the buffer size. So double the size and assume the 1107 // worst. 1108 buffer_.resize(buffer_.size() * 2); 1109 result = Incomplete; 1110 } else if (!threads->empty() && !IsAlive(threads->back())) { 1111 // Maybe Linux early returned from read on terminated thread (!pid_alive) 1112 // and failed to restore read position. 1113 // See next_tid and proc_task_instantiate in Linux. 1114 result = Incomplete; 1115 } 1116 } 1117 } 1118 1119 const char *ThreadLister::LoadStatus(tid_t tid) { 1120 status_path_.clear(); 1121 status_path_.AppendF("%s/%llu/status", task_path_.data(), tid); 1122 auto cleanup = at_scope_exit([&] { 1123 // Resize back to capacity if it is downsized by `ReadFileToVector`. 1124 buffer_.resize(buffer_.capacity()); 1125 }); 1126 if (!ReadFileToVector(status_path_.data(), &buffer_) || buffer_.empty()) 1127 return nullptr; 1128 buffer_.push_back('\0'); 1129 return buffer_.data(); 1130 } 1131 1132 bool ThreadLister::IsAlive(tid_t tid) { 1133 // /proc/%d/task/%d/status uses same call to detect alive threads as 1134 // proc_task_readdir. See task_state implementation in Linux. 1135 static const char kPrefix[] = "\nPPid:"; 1136 const char *status = LoadStatus(tid); 1137 if (!status) 1138 return false; 1139 const char *field = internal_strstr(status, kPrefix); 1140 if (!field) 1141 return false; 1142 field += internal_strlen(kPrefix); 1143 return (int)internal_atoll(field) != 0; 1144 } 1145 1146 # endif 1147 1148 # if SANITIZER_WORDSIZE == 32 1149 // Take care of unusable kernel area in top gigabyte. 1150 static uptr GetKernelAreaSize() { 1151 # if SANITIZER_LINUX && !SANITIZER_X32 1152 const uptr gbyte = 1UL << 30; 1153 1154 // Firstly check if there are writable segments 1155 // mapped to top gigabyte (e.g. stack). 1156 MemoryMappingLayout proc_maps(/*cache_enabled*/ true); 1157 if (proc_maps.Error()) 1158 return 0; 1159 MemoryMappedSegment segment; 1160 while (proc_maps.Next(&segment)) { 1161 if ((segment.end >= 3 * gbyte) && segment.IsWritable()) 1162 return 0; 1163 } 1164 1165 # if !SANITIZER_ANDROID 1166 // Even if nothing is mapped, top Gb may still be accessible 1167 // if we are running on 64-bit kernel. 1168 // Uname may report misleading results if personality type 1169 // is modified (e.g. under schroot) so check this as well. 1170 struct utsname uname_info; 1171 int pers = personality(0xffffffffUL); 1172 if (!(pers & PER_MASK) && internal_uname(&uname_info) == 0 && 1173 internal_strstr(uname_info.machine, "64")) 1174 return 0; 1175 # endif // SANITIZER_ANDROID 1176 1177 // Top gigabyte is reserved for kernel. 1178 return gbyte; 1179 # else 1180 return 0; 1181 # endif // SANITIZER_LINUX && !SANITIZER_X32 1182 } 1183 # endif // SANITIZER_WORDSIZE == 32 1184 1185 uptr GetMaxVirtualAddress() { 1186 # if SANITIZER_NETBSD && defined(__x86_64__) 1187 return 0x7f7ffffff000ULL; // (0x00007f8000000000 - PAGE_SIZE) 1188 # elif SANITIZER_WORDSIZE == 64 1189 # if defined(__powerpc64__) || defined(__aarch64__) || \ 1190 defined(__loongarch__) || SANITIZER_RISCV64 1191 // On PowerPC64 we have two different address space layouts: 44- and 46-bit. 1192 // We somehow need to figure out which one we are using now and choose 1193 // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL. 1194 // Note that with 'ulimit -s unlimited' the stack is moved away from the top 1195 // of the address space, so simply checking the stack address is not enough. 1196 // This should (does) work for both PowerPC64 Endian modes. 1197 // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit. 1198 // loongarch64 also has multiple address space layouts: default is 47-bit. 1199 // RISC-V 64 also has multiple address space layouts: 39, 48 and 57-bit. 1200 return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1; 1201 # elif SANITIZER_MIPS64 1202 return (1ULL << 40) - 1; // 0x000000ffffffffffUL; 1203 # elif defined(__s390x__) 1204 return (1ULL << 53) - 1; // 0x001fffffffffffffUL; 1205 # elif defined(__sparc__) 1206 return ~(uptr)0; 1207 # else 1208 return (1ULL << 47) - 1; // 0x00007fffffffffffUL; 1209 # endif 1210 # else // SANITIZER_WORDSIZE == 32 1211 # if defined(__s390__) 1212 return (1ULL << 31) - 1; // 0x7fffffff; 1213 # else 1214 return (1ULL << 32) - 1; // 0xffffffff; 1215 # endif 1216 # endif // SANITIZER_WORDSIZE 1217 } 1218 1219 uptr GetMaxUserVirtualAddress() { 1220 uptr addr = GetMaxVirtualAddress(); 1221 # if SANITIZER_WORDSIZE == 32 && !defined(__s390__) 1222 if (!common_flags()->full_address_space) 1223 addr -= GetKernelAreaSize(); 1224 CHECK_LT(reinterpret_cast<uptr>(&addr), addr); 1225 # endif 1226 return addr; 1227 } 1228 1229 # if !SANITIZER_ANDROID || defined(__aarch64__) 1230 uptr GetPageSize() { 1231 # if SANITIZER_LINUX && (defined(__x86_64__) || defined(__i386__)) && \ 1232 defined(EXEC_PAGESIZE) 1233 return EXEC_PAGESIZE; 1234 # elif SANITIZER_FREEBSD || SANITIZER_NETBSD 1235 // Use sysctl as sysconf can trigger interceptors internally. 1236 int pz = 0; 1237 uptr pzl = sizeof(pz); 1238 int mib[2] = {CTL_HW, HW_PAGESIZE}; 1239 int rv = internal_sysctl(mib, 2, &pz, &pzl, nullptr, 0); 1240 CHECK_EQ(rv, 0); 1241 return (uptr)pz; 1242 # elif SANITIZER_USE_GETAUXVAL 1243 return getauxval(AT_PAGESZ); 1244 # else 1245 return sysconf(_SC_PAGESIZE); // EXEC_PAGESIZE may not be trustworthy. 1246 # endif 1247 } 1248 # endif 1249 1250 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { 1251 # if SANITIZER_SOLARIS 1252 const char *default_module_name = getexecname(); 1253 CHECK_NE(default_module_name, NULL); 1254 return internal_snprintf(buf, buf_len, "%s", default_module_name); 1255 # else 1256 # if SANITIZER_FREEBSD || SANITIZER_NETBSD 1257 # if SANITIZER_FREEBSD 1258 const int Mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; 1259 # else 1260 const int Mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; 1261 # endif 1262 const char *default_module_name = "kern.proc.pathname"; 1263 uptr Size = buf_len; 1264 bool IsErr = 1265 (internal_sysctl(Mib, ARRAY_SIZE(Mib), buf, &Size, NULL, 0) != 0); 1266 int readlink_error = IsErr ? errno : 0; 1267 uptr module_name_len = Size; 1268 # else 1269 const char *default_module_name = "/proc/self/exe"; 1270 uptr module_name_len = internal_readlink(default_module_name, buf, buf_len); 1271 int readlink_error; 1272 bool IsErr = internal_iserror(module_name_len, &readlink_error); 1273 # endif 1274 if (IsErr) { 1275 // We can't read binary name for some reason, assume it's unknown. 1276 Report( 1277 "WARNING: reading executable name failed with errno %d, " 1278 "some stack frames may not be symbolized\n", 1279 readlink_error); 1280 module_name_len = 1281 internal_snprintf(buf, buf_len, "%s", default_module_name); 1282 CHECK_LT(module_name_len, buf_len); 1283 } 1284 return module_name_len; 1285 # endif 1286 } 1287 1288 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { 1289 # if SANITIZER_LINUX 1290 char *tmpbuf; 1291 uptr tmpsize; 1292 uptr tmplen; 1293 if (ReadFileToBuffer("/proc/self/cmdline", &tmpbuf, &tmpsize, &tmplen, 1294 1024 * 1024)) { 1295 internal_strncpy(buf, tmpbuf, buf_len); 1296 UnmapOrDie(tmpbuf, tmpsize); 1297 return internal_strlen(buf); 1298 } 1299 # endif 1300 return ReadBinaryName(buf, buf_len); 1301 } 1302 1303 // Match full names of the form /path/to/base_name{-,.}* 1304 bool LibraryNameIs(const char *full_name, const char *base_name) { 1305 const char *name = full_name; 1306 // Strip path. 1307 while (*name != '\0') name++; 1308 while (name > full_name && *name != '/') name--; 1309 if (*name == '/') 1310 name++; 1311 uptr base_name_length = internal_strlen(base_name); 1312 if (internal_strncmp(name, base_name, base_name_length)) 1313 return false; 1314 return (name[base_name_length] == '-' || name[base_name_length] == '.'); 1315 } 1316 1317 # if !SANITIZER_ANDROID 1318 // Call cb for each region mapped by map. 1319 void ForEachMappedRegion(link_map *map, void (*cb)(const void *, uptr)) { 1320 CHECK_NE(map, nullptr); 1321 # if !SANITIZER_FREEBSD 1322 typedef ElfW(Phdr) Elf_Phdr; 1323 typedef ElfW(Ehdr) Elf_Ehdr; 1324 # endif // !SANITIZER_FREEBSD 1325 char *base = (char *)map->l_addr; 1326 Elf_Ehdr *ehdr = (Elf_Ehdr *)base; 1327 char *phdrs = base + ehdr->e_phoff; 1328 char *phdrs_end = phdrs + ehdr->e_phnum * ehdr->e_phentsize; 1329 1330 // Find the segment with the minimum base so we can "relocate" the p_vaddr 1331 // fields. Typically ET_DYN objects (DSOs) have base of zero and ET_EXEC 1332 // objects have a non-zero base. 1333 uptr preferred_base = (uptr)-1; 1334 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { 1335 Elf_Phdr *phdr = (Elf_Phdr *)iter; 1336 if (phdr->p_type == PT_LOAD && preferred_base > (uptr)phdr->p_vaddr) 1337 preferred_base = (uptr)phdr->p_vaddr; 1338 } 1339 1340 // Compute the delta from the real base to get a relocation delta. 1341 sptr delta = (uptr)base - preferred_base; 1342 // Now we can figure out what the loader really mapped. 1343 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { 1344 Elf_Phdr *phdr = (Elf_Phdr *)iter; 1345 if (phdr->p_type == PT_LOAD) { 1346 uptr seg_start = phdr->p_vaddr + delta; 1347 uptr seg_end = seg_start + phdr->p_memsz; 1348 // None of these values are aligned. We consider the ragged edges of the 1349 // load command as defined, since they are mapped from the file. 1350 seg_start = RoundDownTo(seg_start, GetPageSizeCached()); 1351 seg_end = RoundUpTo(seg_end, GetPageSizeCached()); 1352 cb((void *)seg_start, seg_end - seg_start); 1353 } 1354 } 1355 } 1356 # endif 1357 1358 # if SANITIZER_LINUX 1359 # if defined(__x86_64__) 1360 // We cannot use glibc's clone wrapper, because it messes with the child 1361 // task's TLS. It writes the PID and TID of the child task to its thread 1362 // descriptor, but in our case the child task shares the thread descriptor with 1363 // the parent (because we don't know how to allocate a new thread 1364 // descriptor to keep glibc happy). So the stock version of clone(), when 1365 // used with CLONE_VM, would end up corrupting the parent's thread descriptor. 1366 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1367 int *parent_tidptr, void *newtls, int *child_tidptr) { 1368 long long res; 1369 if (!fn || !child_stack) 1370 return -EINVAL; 1371 CHECK_EQ(0, (uptr)child_stack % 16); 1372 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1373 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1374 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1375 register void *r8 __asm__("r8") = newtls; 1376 register int *r10 __asm__("r10") = child_tidptr; 1377 __asm__ __volatile__( 1378 /* %rax = syscall(%rax = SYSCALL(clone), 1379 * %rdi = flags, 1380 * %rsi = child_stack, 1381 * %rdx = parent_tidptr, 1382 * %r8 = new_tls, 1383 * %r10 = child_tidptr) 1384 */ 1385 "syscall\n" 1386 1387 /* if (%rax != 0) 1388 * return; 1389 */ 1390 "testq %%rax,%%rax\n" 1391 "jnz 1f\n" 1392 1393 /* In the child. Terminate unwind chain. */ 1394 // XXX: We should also terminate the CFI unwind chain 1395 // here. Unfortunately clang 3.2 doesn't support the 1396 // necessary CFI directives, so we skip that part. 1397 "xorq %%rbp,%%rbp\n" 1398 1399 /* Call "fn(arg)". */ 1400 "popq %%rax\n" 1401 "popq %%rdi\n" 1402 "call *%%rax\n" 1403 1404 /* Call _exit(%rax). */ 1405 "movq %%rax,%%rdi\n" 1406 "movq %2,%%rax\n" 1407 "syscall\n" 1408 1409 /* Return to parent. */ 1410 "1:\n" 1411 : "=a"(res) 1412 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "S"(child_stack), "D"(flags), 1413 "d"(parent_tidptr), "r"(r8), "r"(r10) 1414 : "memory", "r11", "rcx"); 1415 return res; 1416 } 1417 # elif defined(__mips__) 1418 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1419 int *parent_tidptr, void *newtls, int *child_tidptr) { 1420 long long res; 1421 if (!fn || !child_stack) 1422 return -EINVAL; 1423 CHECK_EQ(0, (uptr)child_stack % 16); 1424 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1425 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1426 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1427 register void *a3 __asm__("$7") = newtls; 1428 register int *a4 __asm__("$8") = child_tidptr; 1429 // We don't have proper CFI directives here because it requires alot of code 1430 // for very marginal benefits. 1431 __asm__ __volatile__( 1432 /* $v0 = syscall($v0 = __NR_clone, 1433 * $a0 = flags, 1434 * $a1 = child_stack, 1435 * $a2 = parent_tidptr, 1436 * $a3 = new_tls, 1437 * $a4 = child_tidptr) 1438 */ 1439 ".cprestore 16;\n" 1440 "move $4,%1;\n" 1441 "move $5,%2;\n" 1442 "move $6,%3;\n" 1443 "move $7,%4;\n" 1444 /* Store the fifth argument on stack 1445 * if we are using 32-bit abi. 1446 */ 1447 # if SANITIZER_WORDSIZE == 32 1448 "lw %5,16($29);\n" 1449 # else 1450 "move $8,%5;\n" 1451 # endif 1452 "li $2,%6;\n" 1453 "syscall;\n" 1454 1455 /* if ($v0 != 0) 1456 * return; 1457 */ 1458 "bnez $2,1f;\n" 1459 1460 /* Call "fn(arg)". */ 1461 # if SANITIZER_WORDSIZE == 32 1462 # ifdef __BIG_ENDIAN__ 1463 "lw $25,4($29);\n" 1464 "lw $4,12($29);\n" 1465 # else 1466 "lw $25,0($29);\n" 1467 "lw $4,8($29);\n" 1468 # endif 1469 # else 1470 "ld $25,0($29);\n" 1471 "ld $4,8($29);\n" 1472 # endif 1473 "jal $25;\n" 1474 1475 /* Call _exit($v0). */ 1476 "move $4,$2;\n" 1477 "li $2,%7;\n" 1478 "syscall;\n" 1479 1480 /* Return to parent. */ 1481 "1:\n" 1482 : "=r"(res) 1483 : "r"(flags), "r"(child_stack), "r"(parent_tidptr), "r"(a3), "r"(a4), 1484 "i"(__NR_clone), "i"(__NR_exit) 1485 : "memory", "$29"); 1486 return res; 1487 } 1488 # elif SANITIZER_RISCV64 1489 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1490 int *parent_tidptr, void *newtls, int *child_tidptr) { 1491 if (!fn || !child_stack) 1492 return -EINVAL; 1493 1494 CHECK_EQ(0, (uptr)child_stack % 16); 1495 1496 register int res __asm__("a0"); 1497 register int __flags __asm__("a0") = flags; 1498 register void *__stack __asm__("a1") = child_stack; 1499 register int *__ptid __asm__("a2") = parent_tidptr; 1500 register void *__tls __asm__("a3") = newtls; 1501 register int *__ctid __asm__("a4") = child_tidptr; 1502 register int (*__fn)(void *) __asm__("a5") = fn; 1503 register void *__arg __asm__("a6") = arg; 1504 register int nr_clone __asm__("a7") = __NR_clone; 1505 1506 __asm__ __volatile__( 1507 "ecall\n" 1508 1509 /* if (a0 != 0) 1510 * return a0; 1511 */ 1512 "bnez a0, 1f\n" 1513 1514 // In the child, now. Call "fn(arg)". 1515 "mv a0, a6\n" 1516 "jalr a5\n" 1517 1518 // Call _exit(a0). 1519 "addi a7, zero, %9\n" 1520 "ecall\n" 1521 "1:\n" 1522 1523 : "=r"(res) 1524 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__tls), "r"(__ctid), 1525 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit) 1526 : "memory"); 1527 return res; 1528 } 1529 # elif defined(__aarch64__) 1530 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1531 int *parent_tidptr, void *newtls, int *child_tidptr) { 1532 register long long res __asm__("x0"); 1533 if (!fn || !child_stack) 1534 return -EINVAL; 1535 CHECK_EQ(0, (uptr)child_stack % 16); 1536 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1537 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1538 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1539 1540 register int (*__fn)(void *) __asm__("x0") = fn; 1541 register void *__stack __asm__("x1") = child_stack; 1542 register int __flags __asm__("x2") = flags; 1543 register void *__arg __asm__("x3") = arg; 1544 register int *__ptid __asm__("x4") = parent_tidptr; 1545 register void *__tls __asm__("x5") = newtls; 1546 register int *__ctid __asm__("x6") = child_tidptr; 1547 1548 __asm__ __volatile__( 1549 "mov x0,x2\n" /* flags */ 1550 "mov x2,x4\n" /* ptid */ 1551 "mov x3,x5\n" /* tls */ 1552 "mov x4,x6\n" /* ctid */ 1553 "mov x8,%9\n" /* clone */ 1554 1555 "svc 0x0\n" 1556 1557 /* if (%r0 != 0) 1558 * return %r0; 1559 */ 1560 "cmp x0, #0\n" 1561 "bne 1f\n" 1562 1563 /* In the child, now. Call "fn(arg)". */ 1564 "ldp x1, x0, [sp], #16\n" 1565 "blr x1\n" 1566 1567 /* Call _exit(%r0). */ 1568 "mov x8, %10\n" 1569 "svc 0x0\n" 1570 "1:\n" 1571 1572 : "=r"(res) 1573 : "i"(-EINVAL), "r"(__fn), "r"(__stack), "r"(__flags), "r"(__arg), 1574 "r"(__ptid), "r"(__tls), "r"(__ctid), "i"(__NR_clone), "i"(__NR_exit) 1575 : "x30", "memory"); 1576 return res; 1577 } 1578 # elif SANITIZER_LOONGARCH64 1579 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1580 int *parent_tidptr, void *newtls, int *child_tidptr) { 1581 if (!fn || !child_stack) 1582 return -EINVAL; 1583 1584 CHECK_EQ(0, (uptr)child_stack % 16); 1585 1586 register int res __asm__("$a0"); 1587 register int __flags __asm__("$a0") = flags; 1588 register void *__stack __asm__("$a1") = child_stack; 1589 register int *__ptid __asm__("$a2") = parent_tidptr; 1590 register int *__ctid __asm__("$a3") = child_tidptr; 1591 register void *__tls __asm__("$a4") = newtls; 1592 register int (*__fn)(void *) __asm__("$a5") = fn; 1593 register void *__arg __asm__("$a6") = arg; 1594 register int nr_clone __asm__("$a7") = __NR_clone; 1595 1596 __asm__ __volatile__( 1597 "syscall 0\n" 1598 1599 // if ($a0 != 0) 1600 // return $a0; 1601 "bnez $a0, 1f\n" 1602 1603 // In the child, now. Call "fn(arg)". 1604 "move $a0, $a6\n" 1605 "jirl $ra, $a5, 0\n" 1606 1607 // Call _exit($a0). 1608 "addi.d $a7, $zero, %9\n" 1609 "syscall 0\n" 1610 1611 "1:\n" 1612 1613 : "=r"(res) 1614 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__ctid), "r"(__tls), 1615 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit) 1616 : "memory", "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7", 1617 "$t8"); 1618 return res; 1619 } 1620 # elif defined(__powerpc64__) 1621 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1622 int *parent_tidptr, void *newtls, int *child_tidptr) { 1623 long long res; 1624 // Stack frame structure. 1625 # if SANITIZER_PPC64V1 1626 // Back chain == 0 (SP + 112) 1627 // Frame (112 bytes): 1628 // Parameter save area (SP + 48), 8 doublewords 1629 // TOC save area (SP + 40) 1630 // Link editor doubleword (SP + 32) 1631 // Compiler doubleword (SP + 24) 1632 // LR save area (SP + 16) 1633 // CR save area (SP + 8) 1634 // Back chain (SP + 0) 1635 # define FRAME_SIZE 112 1636 # define FRAME_TOC_SAVE_OFFSET 40 1637 # elif SANITIZER_PPC64V2 1638 // Back chain == 0 (SP + 32) 1639 // Frame (32 bytes): 1640 // TOC save area (SP + 24) 1641 // LR save area (SP + 16) 1642 // CR save area (SP + 8) 1643 // Back chain (SP + 0) 1644 # define FRAME_SIZE 32 1645 # define FRAME_TOC_SAVE_OFFSET 24 1646 # else 1647 # error "Unsupported PPC64 ABI" 1648 # endif 1649 if (!fn || !child_stack) 1650 return -EINVAL; 1651 CHECK_EQ(0, (uptr)child_stack % 16); 1652 1653 register int (*__fn)(void *) __asm__("r3") = fn; 1654 register void *__cstack __asm__("r4") = child_stack; 1655 register int __flags __asm__("r5") = flags; 1656 register void *__arg __asm__("r6") = arg; 1657 register int *__ptidptr __asm__("r7") = parent_tidptr; 1658 register void *__newtls __asm__("r8") = newtls; 1659 register int *__ctidptr __asm__("r9") = child_tidptr; 1660 1661 __asm__ __volatile__( 1662 /* fn and arg are saved across the syscall */ 1663 "mr 28, %5\n\t" 1664 "mr 27, %8\n\t" 1665 1666 /* syscall 1667 r0 == __NR_clone 1668 r3 == flags 1669 r4 == child_stack 1670 r5 == parent_tidptr 1671 r6 == newtls 1672 r7 == child_tidptr */ 1673 "mr 3, %7\n\t" 1674 "mr 5, %9\n\t" 1675 "mr 6, %10\n\t" 1676 "mr 7, %11\n\t" 1677 "li 0, %3\n\t" 1678 "sc\n\t" 1679 1680 /* Test if syscall was successful */ 1681 "cmpdi cr1, 3, 0\n\t" 1682 "crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t" 1683 "bne- cr1, 1f\n\t" 1684 1685 /* Set up stack frame */ 1686 "li 29, 0\n\t" 1687 "stdu 29, -8(1)\n\t" 1688 "stdu 1, -%12(1)\n\t" 1689 /* Do the function call */ 1690 "std 2, %13(1)\n\t" 1691 # if SANITIZER_PPC64V1 1692 "ld 0, 0(28)\n\t" 1693 "ld 2, 8(28)\n\t" 1694 "mtctr 0\n\t" 1695 # elif SANITIZER_PPC64V2 1696 "mr 12, 28\n\t" 1697 "mtctr 12\n\t" 1698 # else 1699 # error "Unsupported PPC64 ABI" 1700 # endif 1701 "mr 3, 27\n\t" 1702 "bctrl\n\t" 1703 "ld 2, %13(1)\n\t" 1704 1705 /* Call _exit(r3) */ 1706 "li 0, %4\n\t" 1707 "sc\n\t" 1708 1709 /* Return to parent */ 1710 "1:\n\t" 1711 "mr %0, 3\n\t" 1712 : "=r"(res) 1713 : "0"(-1), "i"(EINVAL), "i"(__NR_clone), "i"(__NR_exit), "r"(__fn), 1714 "r"(__cstack), "r"(__flags), "r"(__arg), "r"(__ptidptr), "r"(__newtls), 1715 "r"(__ctidptr), "i"(FRAME_SIZE), "i"(FRAME_TOC_SAVE_OFFSET) 1716 : "cr0", "cr1", "memory", "ctr", "r0", "r27", "r28", "r29"); 1717 return res; 1718 } 1719 # elif defined(__i386__) 1720 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1721 int *parent_tidptr, void *newtls, int *child_tidptr) { 1722 int res; 1723 if (!fn || !child_stack) 1724 return -EINVAL; 1725 CHECK_EQ(0, (uptr)child_stack % 16); 1726 child_stack = (char *)child_stack - 7 * sizeof(unsigned int); 1727 ((unsigned int *)child_stack)[0] = (uptr)flags; 1728 ((unsigned int *)child_stack)[1] = (uptr)0; 1729 ((unsigned int *)child_stack)[2] = (uptr)fn; 1730 ((unsigned int *)child_stack)[3] = (uptr)arg; 1731 __asm__ __volatile__( 1732 /* %eax = syscall(%eax = SYSCALL(clone), 1733 * %ebx = flags, 1734 * %ecx = child_stack, 1735 * %edx = parent_tidptr, 1736 * %esi = new_tls, 1737 * %edi = child_tidptr) 1738 */ 1739 1740 /* Obtain flags */ 1741 "movl (%%ecx), %%ebx\n" 1742 /* Do the system call */ 1743 "pushl %%ebx\n" 1744 "pushl %%esi\n" 1745 "pushl %%edi\n" 1746 /* Remember the flag value. */ 1747 "movl %%ebx, (%%ecx)\n" 1748 "int $0x80\n" 1749 "popl %%edi\n" 1750 "popl %%esi\n" 1751 "popl %%ebx\n" 1752 1753 /* if (%eax != 0) 1754 * return; 1755 */ 1756 1757 "test %%eax,%%eax\n" 1758 "jnz 1f\n" 1759 1760 /* terminate the stack frame */ 1761 "xorl %%ebp,%%ebp\n" 1762 /* Call FN. */ 1763 "call *%%ebx\n" 1764 # ifdef PIC 1765 "call here\n" 1766 "here:\n" 1767 "popl %%ebx\n" 1768 "addl $_GLOBAL_OFFSET_TABLE_+[.-here], %%ebx\n" 1769 # endif 1770 /* Call exit */ 1771 "movl %%eax, %%ebx\n" 1772 "movl %2, %%eax\n" 1773 "int $0x80\n" 1774 "1:\n" 1775 : "=a"(res) 1776 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "c"(child_stack), 1777 "d"(parent_tidptr), "S"(newtls), "D"(child_tidptr) 1778 : "memory"); 1779 return res; 1780 } 1781 # elif defined(__arm__) 1782 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1783 int *parent_tidptr, void *newtls, int *child_tidptr) { 1784 unsigned int res; 1785 if (!fn || !child_stack) 1786 return -EINVAL; 1787 child_stack = (char *)child_stack - 2 * sizeof(unsigned int); 1788 ((unsigned int *)child_stack)[0] = (uptr)fn; 1789 ((unsigned int *)child_stack)[1] = (uptr)arg; 1790 register int r0 __asm__("r0") = flags; 1791 register void *r1 __asm__("r1") = child_stack; 1792 register int *r2 __asm__("r2") = parent_tidptr; 1793 register void *r3 __asm__("r3") = newtls; 1794 register int *r4 __asm__("r4") = child_tidptr; 1795 register int r7 __asm__("r7") = __NR_clone; 1796 1797 # if __ARM_ARCH > 4 || defined(__ARM_ARCH_4T__) 1798 # define ARCH_HAS_BX 1799 # endif 1800 # if __ARM_ARCH > 4 1801 # define ARCH_HAS_BLX 1802 # endif 1803 1804 # ifdef ARCH_HAS_BX 1805 # ifdef ARCH_HAS_BLX 1806 # define BLX(R) "blx " #R "\n" 1807 # else 1808 # define BLX(R) "mov lr, pc; bx " #R "\n" 1809 # endif 1810 # else 1811 # define BLX(R) "mov lr, pc; mov pc," #R "\n" 1812 # endif 1813 1814 __asm__ __volatile__( 1815 /* %r0 = syscall(%r7 = SYSCALL(clone), 1816 * %r0 = flags, 1817 * %r1 = child_stack, 1818 * %r2 = parent_tidptr, 1819 * %r3 = new_tls, 1820 * %r4 = child_tidptr) 1821 */ 1822 1823 /* Do the system call */ 1824 "swi 0x0\n" 1825 1826 /* if (%r0 != 0) 1827 * return %r0; 1828 */ 1829 "cmp r0, #0\n" 1830 "bne 1f\n" 1831 1832 /* In the child, now. Call "fn(arg)". */ 1833 "ldr r0, [sp, #4]\n" 1834 "ldr ip, [sp], #8\n" BLX(ip) 1835 /* Call _exit(%r0). */ 1836 "mov r7, %7\n" 1837 "swi 0x0\n" 1838 "1:\n" 1839 "mov %0, r0\n" 1840 : "=r"(res) 1841 : "r"(r0), "r"(r1), "r"(r2), "r"(r3), "r"(r4), "r"(r7), "i"(__NR_exit) 1842 : "memory"); 1843 return res; 1844 } 1845 # endif 1846 # endif // SANITIZER_LINUX 1847 1848 # if SANITIZER_LINUX 1849 int internal_uname(struct utsname *buf) { 1850 return internal_syscall(SYSCALL(uname), buf); 1851 } 1852 # endif 1853 1854 # if SANITIZER_ANDROID 1855 static int dl_iterate_phdr_test_cb(struct dl_phdr_info *info, size_t size, 1856 void *data) { 1857 // Any name starting with "lib" indicates a bug in L where library base names 1858 // are returned instead of paths. 1859 if (info->dlpi_name && info->dlpi_name[0] == 'l' && 1860 info->dlpi_name[1] == 'i' && info->dlpi_name[2] == 'b') { 1861 *(bool *)data = true; 1862 return 1; 1863 } 1864 return 0; 1865 } 1866 1867 static atomic_uint32_t android_api_level; 1868 1869 static AndroidApiLevel AndroidDetectApiLevelStatic() { 1870 # if __ANDROID_API__ <= 22 1871 return ANDROID_LOLLIPOP_MR1; 1872 # else 1873 return ANDROID_POST_LOLLIPOP; 1874 # endif 1875 } 1876 1877 static AndroidApiLevel AndroidDetectApiLevel() { 1878 bool base_name_seen = false; 1879 dl_iterate_phdr(dl_iterate_phdr_test_cb, &base_name_seen); 1880 if (base_name_seen) 1881 return ANDROID_LOLLIPOP_MR1; // L MR1 1882 return ANDROID_POST_LOLLIPOP; // post-L 1883 // Plain L (API level 21) is completely broken wrt ASan and not very 1884 // interesting to detect. 1885 } 1886 1887 extern "C" __attribute__((weak)) void *_DYNAMIC; 1888 1889 AndroidApiLevel AndroidGetApiLevel() { 1890 AndroidApiLevel level = 1891 (AndroidApiLevel)atomic_load(&android_api_level, memory_order_relaxed); 1892 if (level) 1893 return level; 1894 level = &_DYNAMIC == nullptr ? AndroidDetectApiLevelStatic() 1895 : AndroidDetectApiLevel(); 1896 atomic_store(&android_api_level, level, memory_order_relaxed); 1897 return level; 1898 } 1899 1900 # endif 1901 1902 static HandleSignalMode GetHandleSignalModeImpl(int signum) { 1903 switch (signum) { 1904 case SIGABRT: 1905 return common_flags()->handle_abort; 1906 case SIGILL: 1907 return common_flags()->handle_sigill; 1908 case SIGTRAP: 1909 return common_flags()->handle_sigtrap; 1910 case SIGFPE: 1911 return common_flags()->handle_sigfpe; 1912 case SIGSEGV: 1913 return common_flags()->handle_segv; 1914 case SIGBUS: 1915 return common_flags()->handle_sigbus; 1916 } 1917 return kHandleSignalNo; 1918 } 1919 1920 HandleSignalMode GetHandleSignalMode(int signum) { 1921 HandleSignalMode result = GetHandleSignalModeImpl(signum); 1922 if (result == kHandleSignalYes && !common_flags()->allow_user_segv_handler) 1923 return kHandleSignalExclusive; 1924 return result; 1925 } 1926 1927 # if !SANITIZER_GO 1928 void *internal_start_thread(void *(*func)(void *arg), void *arg) { 1929 if (&internal_pthread_create == 0) 1930 return nullptr; 1931 // Start the thread with signals blocked, otherwise it can steal user signals. 1932 ScopedBlockSignals block(nullptr); 1933 void *th; 1934 internal_pthread_create(&th, nullptr, func, arg); 1935 return th; 1936 } 1937 1938 void internal_join_thread(void *th) { 1939 if (&internal_pthread_join) 1940 internal_pthread_join(th, nullptr); 1941 } 1942 # else 1943 void *internal_start_thread(void *(*func)(void *), void *arg) { return 0; } 1944 1945 void internal_join_thread(void *th) {} 1946 # endif 1947 1948 # if SANITIZER_LINUX && defined(__aarch64__) 1949 // Android headers in the older NDK releases miss this definition. 1950 struct __sanitizer_esr_context { 1951 struct _aarch64_ctx head; 1952 uint64_t esr; 1953 }; 1954 1955 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { 1956 static const u32 kEsrMagic = 0x45535201; 1957 u8 *aux = reinterpret_cast<u8 *>(ucontext->uc_mcontext.__reserved); 1958 while (true) { 1959 _aarch64_ctx *ctx = (_aarch64_ctx *)aux; 1960 if (ctx->size == 0) 1961 break; 1962 if (ctx->magic == kEsrMagic) { 1963 *esr = ((__sanitizer_esr_context *)ctx)->esr; 1964 return true; 1965 } 1966 aux += ctx->size; 1967 } 1968 return false; 1969 } 1970 # elif SANITIZER_FREEBSD && defined(__aarch64__) 1971 // FreeBSD doesn't provide ESR in the ucontext. 1972 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { return false; } 1973 # endif 1974 1975 using Context = ucontext_t; 1976 1977 SignalContext::WriteFlag SignalContext::GetWriteFlag() const { 1978 Context *ucontext = (Context *)context; 1979 # if defined(__x86_64__) || defined(__i386__) 1980 static const uptr PF_WRITE = 1U << 1; 1981 # if SANITIZER_FREEBSD 1982 uptr err = ucontext->uc_mcontext.mc_err; 1983 # elif SANITIZER_NETBSD 1984 uptr err = ucontext->uc_mcontext.__gregs[_REG_ERR]; 1985 # elif SANITIZER_SOLARIS && defined(__i386__) 1986 const int Err = 13; 1987 uptr err = ucontext->uc_mcontext.gregs[Err]; 1988 # else 1989 uptr err = ucontext->uc_mcontext.gregs[REG_ERR]; 1990 # endif // SANITIZER_FREEBSD 1991 return err & PF_WRITE ? Write : Read; 1992 # elif defined(__mips__) 1993 uint32_t *exception_source; 1994 uint32_t faulty_instruction; 1995 uint32_t op_code; 1996 1997 exception_source = (uint32_t *)ucontext->uc_mcontext.pc; 1998 faulty_instruction = (uint32_t)(*exception_source); 1999 2000 op_code = (faulty_instruction >> 26) & 0x3f; 2001 2002 // FIXME: Add support for FPU, microMIPS, DSP, MSA memory instructions. 2003 switch (op_code) { 2004 case 0x28: // sb 2005 case 0x29: // sh 2006 case 0x2b: // sw 2007 case 0x3f: // sd 2008 # if __mips_isa_rev < 6 2009 case 0x2c: // sdl 2010 case 0x2d: // sdr 2011 case 0x2a: // swl 2012 case 0x2e: // swr 2013 # endif 2014 return SignalContext::Write; 2015 2016 case 0x20: // lb 2017 case 0x24: // lbu 2018 case 0x21: // lh 2019 case 0x25: // lhu 2020 case 0x23: // lw 2021 case 0x27: // lwu 2022 case 0x37: // ld 2023 # if __mips_isa_rev < 6 2024 case 0x1a: // ldl 2025 case 0x1b: // ldr 2026 case 0x22: // lwl 2027 case 0x26: // lwr 2028 # endif 2029 return SignalContext::Read; 2030 # if __mips_isa_rev == 6 2031 case 0x3b: // pcrel 2032 op_code = (faulty_instruction >> 19) & 0x3; 2033 switch (op_code) { 2034 case 0x1: // lwpc 2035 case 0x2: // lwupc 2036 return SignalContext::Read; 2037 } 2038 # endif 2039 } 2040 return SignalContext::Unknown; 2041 # elif defined(__arm__) 2042 static const uptr FSR_WRITE = 1U << 11; 2043 uptr fsr = ucontext->uc_mcontext.error_code; 2044 return fsr & FSR_WRITE ? Write : Read; 2045 # elif defined(__aarch64__) 2046 static const u64 ESR_ELx_WNR = 1U << 6; 2047 u64 esr; 2048 if (!Aarch64GetESR(ucontext, &esr)) 2049 return Unknown; 2050 return esr & ESR_ELx_WNR ? Write : Read; 2051 # elif defined(__loongarch__) 2052 // In the musl environment, the Linux kernel uapi sigcontext.h is not 2053 // included in signal.h. To avoid missing the SC_ADDRERR_{RD,WR} macros, 2054 // copy them here. The LoongArch Linux kernel uapi is already stable, 2055 // so there's no need to worry about the value changing. 2056 # ifndef SC_ADDRERR_RD 2057 // Address error was due to memory load 2058 # define SC_ADDRERR_RD (1 << 30) 2059 # endif 2060 # ifndef SC_ADDRERR_WR 2061 // Address error was due to memory store 2062 # define SC_ADDRERR_WR (1 << 31) 2063 # endif 2064 u32 flags = ucontext->uc_mcontext.__flags; 2065 if (flags & SC_ADDRERR_RD) 2066 return SignalContext::Read; 2067 if (flags & SC_ADDRERR_WR) 2068 return SignalContext::Write; 2069 return SignalContext::Unknown; 2070 # elif defined(__sparc__) 2071 // Decode the instruction to determine the access type. 2072 // From OpenSolaris $SRC/uts/sun4/os/trap.c (get_accesstype). 2073 # if SANITIZER_SOLARIS 2074 uptr pc = ucontext->uc_mcontext.gregs[REG_PC]; 2075 # else 2076 // Historical BSDism here. 2077 struct sigcontext *scontext = (struct sigcontext *)context; 2078 # if defined(__arch64__) 2079 uptr pc = scontext->sigc_regs.tpc; 2080 # else 2081 uptr pc = scontext->si_regs.pc; 2082 # endif 2083 # endif 2084 u32 instr = *(u32 *)pc; 2085 return (instr >> 21) & 1 ? Write : Read; 2086 # elif defined(__riscv) 2087 # if SANITIZER_FREEBSD 2088 unsigned long pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc; 2089 # else 2090 unsigned long pc = ucontext->uc_mcontext.__gregs[REG_PC]; 2091 # endif 2092 unsigned faulty_instruction = *(uint16_t *)pc; 2093 2094 # if defined(__riscv_compressed) 2095 if ((faulty_instruction & 0x3) != 0x3) { // it's a compressed instruction 2096 // set op_bits to the instruction bits [1, 0, 15, 14, 13] 2097 unsigned op_bits = 2098 ((faulty_instruction & 0x3) << 3) | (faulty_instruction >> 13); 2099 unsigned rd = faulty_instruction & 0xF80; // bits 7-11, inclusive 2100 switch (op_bits) { 2101 case 0b10'010: // c.lwsp (rd != x0) 2102 # if __riscv_xlen == 64 2103 case 0b10'011: // c.ldsp (rd != x0) 2104 # endif 2105 return rd ? SignalContext::Read : SignalContext::Unknown; 2106 case 0b00'010: // c.lw 2107 # if __riscv_flen >= 32 && __riscv_xlen == 32 2108 case 0b10'011: // c.flwsp 2109 # endif 2110 # if __riscv_flen >= 32 || __riscv_xlen == 64 2111 case 0b00'011: // c.flw / c.ld 2112 # endif 2113 # if __riscv_flen == 64 2114 case 0b00'001: // c.fld 2115 case 0b10'001: // c.fldsp 2116 # endif 2117 return SignalContext::Read; 2118 case 0b00'110: // c.sw 2119 case 0b10'110: // c.swsp 2120 # if __riscv_flen >= 32 || __riscv_xlen == 64 2121 case 0b00'111: // c.fsw / c.sd 2122 case 0b10'111: // c.fswsp / c.sdsp 2123 # endif 2124 # if __riscv_flen == 64 2125 case 0b00'101: // c.fsd 2126 case 0b10'101: // c.fsdsp 2127 # endif 2128 return SignalContext::Write; 2129 default: 2130 return SignalContext::Unknown; 2131 } 2132 } 2133 # endif 2134 2135 unsigned opcode = faulty_instruction & 0x7f; // lower 7 bits 2136 unsigned funct3 = (faulty_instruction >> 12) & 0x7; // bits 12-14, inclusive 2137 switch (opcode) { 2138 case 0b0000011: // loads 2139 switch (funct3) { 2140 case 0b000: // lb 2141 case 0b001: // lh 2142 case 0b010: // lw 2143 # if __riscv_xlen == 64 2144 case 0b011: // ld 2145 # endif 2146 case 0b100: // lbu 2147 case 0b101: // lhu 2148 return SignalContext::Read; 2149 default: 2150 return SignalContext::Unknown; 2151 } 2152 case 0b0100011: // stores 2153 switch (funct3) { 2154 case 0b000: // sb 2155 case 0b001: // sh 2156 case 0b010: // sw 2157 # if __riscv_xlen == 64 2158 case 0b011: // sd 2159 # endif 2160 return SignalContext::Write; 2161 default: 2162 return SignalContext::Unknown; 2163 } 2164 # if __riscv_flen >= 32 2165 case 0b0000111: // floating-point loads 2166 switch (funct3) { 2167 case 0b010: // flw 2168 # if __riscv_flen == 64 2169 case 0b011: // fld 2170 # endif 2171 return SignalContext::Read; 2172 default: 2173 return SignalContext::Unknown; 2174 } 2175 case 0b0100111: // floating-point stores 2176 switch (funct3) { 2177 case 0b010: // fsw 2178 # if __riscv_flen == 64 2179 case 0b011: // fsd 2180 # endif 2181 return SignalContext::Write; 2182 default: 2183 return SignalContext::Unknown; 2184 } 2185 # endif 2186 default: 2187 return SignalContext::Unknown; 2188 } 2189 # else 2190 (void)ucontext; 2191 return Unknown; // FIXME: Implement. 2192 # endif 2193 } 2194 2195 bool SignalContext::IsTrueFaultingAddress() const { 2196 auto si = static_cast<const siginfo_t *>(siginfo); 2197 // SIGSEGV signals without a true fault address have si_code set to 128. 2198 return si->si_signo == SIGSEGV && si->si_code != 128; 2199 } 2200 2201 UNUSED 2202 static const char *RegNumToRegName(int reg) { 2203 switch (reg) { 2204 # if SANITIZER_LINUX && SANITIZER_GLIBC || SANITIZER_NETBSD 2205 # if defined(__x86_64__) 2206 # if SANITIZER_NETBSD 2207 # define REG_RAX _REG_RAX 2208 # define REG_RBX _REG_RBX 2209 # define REG_RCX _REG_RCX 2210 # define REG_RDX _REG_RDX 2211 # define REG_RDI _REG_RDI 2212 # define REG_RSI _REG_RSI 2213 # define REG_RBP _REG_RBP 2214 # define REG_RSP _REG_RSP 2215 # define REG_R8 _REG_R8 2216 # define REG_R9 _REG_R9 2217 # define REG_R10 _REG_R10 2218 # define REG_R11 _REG_R11 2219 # define REG_R12 _REG_R12 2220 # define REG_R13 _REG_R13 2221 # define REG_R14 _REG_R14 2222 # define REG_R15 _REG_R15 2223 # endif 2224 case REG_RAX: 2225 return "rax"; 2226 case REG_RBX: 2227 return "rbx"; 2228 case REG_RCX: 2229 return "rcx"; 2230 case REG_RDX: 2231 return "rdx"; 2232 case REG_RDI: 2233 return "rdi"; 2234 case REG_RSI: 2235 return "rsi"; 2236 case REG_RBP: 2237 return "rbp"; 2238 case REG_RSP: 2239 return "rsp"; 2240 case REG_R8: 2241 return "r8"; 2242 case REG_R9: 2243 return "r9"; 2244 case REG_R10: 2245 return "r10"; 2246 case REG_R11: 2247 return "r11"; 2248 case REG_R12: 2249 return "r12"; 2250 case REG_R13: 2251 return "r13"; 2252 case REG_R14: 2253 return "r14"; 2254 case REG_R15: 2255 return "r15"; 2256 # elif defined(__i386__) 2257 # if SANITIZER_NETBSD 2258 # define REG_EAX _REG_EAX 2259 # define REG_EBX _REG_EBX 2260 # define REG_ECX _REG_ECX 2261 # define REG_EDX _REG_EDX 2262 # define REG_EDI _REG_EDI 2263 # define REG_ESI _REG_ESI 2264 # define REG_EBP _REG_EBP 2265 # define REG_ESP _REG_ESP 2266 # endif 2267 case REG_EAX: 2268 return "eax"; 2269 case REG_EBX: 2270 return "ebx"; 2271 case REG_ECX: 2272 return "ecx"; 2273 case REG_EDX: 2274 return "edx"; 2275 case REG_EDI: 2276 return "edi"; 2277 case REG_ESI: 2278 return "esi"; 2279 case REG_EBP: 2280 return "ebp"; 2281 case REG_ESP: 2282 return "esp"; 2283 # elif defined(__arm__) 2284 # ifdef MAKE_CASE 2285 # undef MAKE_CASE 2286 # endif 2287 # define REG_STR(reg) #reg 2288 # define MAKE_CASE(N) \ 2289 case REG_R##N: \ 2290 return REG_STR(r##N) 2291 MAKE_CASE(0); 2292 MAKE_CASE(1); 2293 MAKE_CASE(2); 2294 MAKE_CASE(3); 2295 MAKE_CASE(4); 2296 MAKE_CASE(5); 2297 MAKE_CASE(6); 2298 MAKE_CASE(7); 2299 MAKE_CASE(8); 2300 MAKE_CASE(9); 2301 MAKE_CASE(10); 2302 MAKE_CASE(11); 2303 MAKE_CASE(12); 2304 case REG_R13: 2305 return "sp"; 2306 case REG_R14: 2307 return "lr"; 2308 case REG_R15: 2309 return "pc"; 2310 # elif defined(__aarch64__) 2311 # define REG_STR(reg) #reg 2312 # define MAKE_CASE(N) \ 2313 case N: \ 2314 return REG_STR(x##N) 2315 MAKE_CASE(0); 2316 MAKE_CASE(1); 2317 MAKE_CASE(2); 2318 MAKE_CASE(3); 2319 MAKE_CASE(4); 2320 MAKE_CASE(5); 2321 MAKE_CASE(6); 2322 MAKE_CASE(7); 2323 MAKE_CASE(8); 2324 MAKE_CASE(9); 2325 MAKE_CASE(10); 2326 MAKE_CASE(11); 2327 MAKE_CASE(12); 2328 MAKE_CASE(13); 2329 MAKE_CASE(14); 2330 MAKE_CASE(15); 2331 MAKE_CASE(16); 2332 MAKE_CASE(17); 2333 MAKE_CASE(18); 2334 MAKE_CASE(19); 2335 MAKE_CASE(20); 2336 MAKE_CASE(21); 2337 MAKE_CASE(22); 2338 MAKE_CASE(23); 2339 MAKE_CASE(24); 2340 MAKE_CASE(25); 2341 MAKE_CASE(26); 2342 MAKE_CASE(27); 2343 MAKE_CASE(28); 2344 case 29: 2345 return "fp"; 2346 case 30: 2347 return "lr"; 2348 case 31: 2349 return "sp"; 2350 # endif 2351 # endif // SANITIZER_LINUX && SANITIZER_GLIBC 2352 default: 2353 return NULL; 2354 } 2355 return NULL; 2356 } 2357 2358 # if ((SANITIZER_LINUX && SANITIZER_GLIBC) || SANITIZER_NETBSD) && \ 2359 (defined(__arm__) || defined(__aarch64__)) 2360 static uptr GetArmRegister(ucontext_t *ctx, int RegNum) { 2361 switch (RegNum) { 2362 # if defined(__arm__) && !SANITIZER_NETBSD 2363 # ifdef MAKE_CASE 2364 # undef MAKE_CASE 2365 # endif 2366 # define MAKE_CASE(N) \ 2367 case REG_R##N: \ 2368 return ctx->uc_mcontext.arm_r##N 2369 MAKE_CASE(0); 2370 MAKE_CASE(1); 2371 MAKE_CASE(2); 2372 MAKE_CASE(3); 2373 MAKE_CASE(4); 2374 MAKE_CASE(5); 2375 MAKE_CASE(6); 2376 MAKE_CASE(7); 2377 MAKE_CASE(8); 2378 MAKE_CASE(9); 2379 MAKE_CASE(10); 2380 case REG_R11: 2381 return ctx->uc_mcontext.arm_fp; 2382 case REG_R12: 2383 return ctx->uc_mcontext.arm_ip; 2384 case REG_R13: 2385 return ctx->uc_mcontext.arm_sp; 2386 case REG_R14: 2387 return ctx->uc_mcontext.arm_lr; 2388 case REG_R15: 2389 return ctx->uc_mcontext.arm_pc; 2390 # elif defined(__aarch64__) 2391 # if SANITIZER_LINUX 2392 case 0 ... 30: 2393 return ctx->uc_mcontext.regs[RegNum]; 2394 case 31: 2395 return ctx->uc_mcontext.sp; 2396 # elif SANITIZER_NETBSD 2397 case 0 ... 31: 2398 return ctx->uc_mcontext.__gregs[RegNum]; 2399 # endif 2400 # endif 2401 default: 2402 return 0; 2403 } 2404 return 0; 2405 } 2406 # endif // SANITIZER_LINUX && SANITIZER_GLIBC && (defined(__arm__) || 2407 // defined(__aarch64__)) 2408 2409 UNUSED 2410 static void DumpSingleReg(ucontext_t *ctx, int RegNum) { 2411 const char *RegName = RegNumToRegName(RegNum); 2412 # if SANITIZER_LINUX && SANITIZER_GLIBC || SANITIZER_NETBSD 2413 # if defined(__x86_64__) 2414 Printf("%s%s = 0x%016llx ", internal_strlen(RegName) == 2 ? " " : "", 2415 RegName, 2416 # if SANITIZER_LINUX 2417 ctx->uc_mcontext.gregs[RegNum] 2418 # elif SANITIZER_NETBSD 2419 ctx->uc_mcontext.__gregs[RegNum] 2420 # endif 2421 ); 2422 # elif defined(__i386__) 2423 Printf("%s = 0x%08x ", RegName, 2424 # if SANITIZER_LINUX 2425 ctx->uc_mcontext.gregs[RegNum] 2426 # elif SANITIZER_NETBSD 2427 ctx->uc_mcontext.__gregs[RegNum] 2428 # endif 2429 ); 2430 # elif defined(__arm__) 2431 Printf("%s%s = 0x%08zx ", internal_strlen(RegName) == 2 ? " " : "", RegName, 2432 GetArmRegister(ctx, RegNum)); 2433 # elif defined(__aarch64__) 2434 Printf("%s%s = 0x%016zx ", internal_strlen(RegName) == 2 ? " " : "", RegName, 2435 GetArmRegister(ctx, RegNum)); 2436 # else 2437 (void)RegName; 2438 # endif 2439 # else 2440 (void)RegName; 2441 # endif 2442 } 2443 2444 void SignalContext::DumpAllRegisters(void *context) { 2445 ucontext_t *ucontext = (ucontext_t *)context; 2446 # if SANITIZER_LINUX && SANITIZER_GLIBC || SANITIZER_NETBSD 2447 # if defined(__x86_64__) 2448 Report("Register values:\n"); 2449 DumpSingleReg(ucontext, REG_RAX); 2450 DumpSingleReg(ucontext, REG_RBX); 2451 DumpSingleReg(ucontext, REG_RCX); 2452 DumpSingleReg(ucontext, REG_RDX); 2453 Printf("\n"); 2454 DumpSingleReg(ucontext, REG_RDI); 2455 DumpSingleReg(ucontext, REG_RSI); 2456 DumpSingleReg(ucontext, REG_RBP); 2457 DumpSingleReg(ucontext, REG_RSP); 2458 Printf("\n"); 2459 DumpSingleReg(ucontext, REG_R8); 2460 DumpSingleReg(ucontext, REG_R9); 2461 DumpSingleReg(ucontext, REG_R10); 2462 DumpSingleReg(ucontext, REG_R11); 2463 Printf("\n"); 2464 DumpSingleReg(ucontext, REG_R12); 2465 DumpSingleReg(ucontext, REG_R13); 2466 DumpSingleReg(ucontext, REG_R14); 2467 DumpSingleReg(ucontext, REG_R15); 2468 Printf("\n"); 2469 # elif defined(__i386__) 2470 // Duplication of this report print is caused by partial support 2471 // of register values dumping. In case of unsupported yet architecture let's 2472 // avoid printing 'Register values:' without actual values in the following 2473 // output. 2474 Report("Register values:\n"); 2475 DumpSingleReg(ucontext, REG_EAX); 2476 DumpSingleReg(ucontext, REG_EBX); 2477 DumpSingleReg(ucontext, REG_ECX); 2478 DumpSingleReg(ucontext, REG_EDX); 2479 Printf("\n"); 2480 DumpSingleReg(ucontext, REG_EDI); 2481 DumpSingleReg(ucontext, REG_ESI); 2482 DumpSingleReg(ucontext, REG_EBP); 2483 DumpSingleReg(ucontext, REG_ESP); 2484 Printf("\n"); 2485 # elif defined(__arm__) && !SANITIZER_NETBSD 2486 Report("Register values:\n"); 2487 DumpSingleReg(ucontext, REG_R0); 2488 DumpSingleReg(ucontext, REG_R1); 2489 DumpSingleReg(ucontext, REG_R2); 2490 DumpSingleReg(ucontext, REG_R3); 2491 Printf("\n"); 2492 DumpSingleReg(ucontext, REG_R4); 2493 DumpSingleReg(ucontext, REG_R5); 2494 DumpSingleReg(ucontext, REG_R6); 2495 DumpSingleReg(ucontext, REG_R7); 2496 Printf("\n"); 2497 DumpSingleReg(ucontext, REG_R8); 2498 DumpSingleReg(ucontext, REG_R9); 2499 DumpSingleReg(ucontext, REG_R10); 2500 DumpSingleReg(ucontext, REG_R11); 2501 Printf("\n"); 2502 DumpSingleReg(ucontext, REG_R12); 2503 DumpSingleReg(ucontext, REG_R13); 2504 DumpSingleReg(ucontext, REG_R14); 2505 DumpSingleReg(ucontext, REG_R15); 2506 Printf("\n"); 2507 # elif defined(__aarch64__) 2508 Report("Register values:\n"); 2509 for (int i = 0; i <= 31; ++i) { 2510 DumpSingleReg(ucontext, i); 2511 if (i % 4 == 3) 2512 Printf("\n"); 2513 } 2514 # else 2515 (void)ucontext; 2516 # endif 2517 # elif SANITIZER_FREEBSD 2518 # if defined(__x86_64__) 2519 Report("Register values:\n"); 2520 Printf("rax = 0x%016lx ", ucontext->uc_mcontext.mc_rax); 2521 Printf("rbx = 0x%016lx ", ucontext->uc_mcontext.mc_rbx); 2522 Printf("rcx = 0x%016lx ", ucontext->uc_mcontext.mc_rcx); 2523 Printf("rdx = 0x%016lx ", ucontext->uc_mcontext.mc_rdx); 2524 Printf("\n"); 2525 Printf("rdi = 0x%016lx ", ucontext->uc_mcontext.mc_rdi); 2526 Printf("rsi = 0x%016lx ", ucontext->uc_mcontext.mc_rsi); 2527 Printf("rbp = 0x%016lx ", ucontext->uc_mcontext.mc_rbp); 2528 Printf("rsp = 0x%016lx ", ucontext->uc_mcontext.mc_rsp); 2529 Printf("\n"); 2530 Printf(" r8 = 0x%016lx ", ucontext->uc_mcontext.mc_r8); 2531 Printf(" r9 = 0x%016lx ", ucontext->uc_mcontext.mc_r9); 2532 Printf("r10 = 0x%016lx ", ucontext->uc_mcontext.mc_r10); 2533 Printf("r11 = 0x%016lx ", ucontext->uc_mcontext.mc_r11); 2534 Printf("\n"); 2535 Printf("r12 = 0x%016lx ", ucontext->uc_mcontext.mc_r12); 2536 Printf("r13 = 0x%016lx ", ucontext->uc_mcontext.mc_r13); 2537 Printf("r14 = 0x%016lx ", ucontext->uc_mcontext.mc_r14); 2538 Printf("r15 = 0x%016lx ", ucontext->uc_mcontext.mc_r15); 2539 Printf("\n"); 2540 # elif defined(__i386__) 2541 Report("Register values:\n"); 2542 Printf("eax = 0x%08x ", ucontext->uc_mcontext.mc_eax); 2543 Printf("ebx = 0x%08x ", ucontext->uc_mcontext.mc_ebx); 2544 Printf("ecx = 0x%08x ", ucontext->uc_mcontext.mc_ecx); 2545 Printf("edx = 0x%08x ", ucontext->uc_mcontext.mc_edx); 2546 Printf("\n"); 2547 Printf("edi = 0x%08x ", ucontext->uc_mcontext.mc_edi); 2548 Printf("esi = 0x%08x ", ucontext->uc_mcontext.mc_esi); 2549 Printf("ebp = 0x%08x ", ucontext->uc_mcontext.mc_ebp); 2550 Printf("esp = 0x%08x ", ucontext->uc_mcontext.mc_esp); 2551 Printf("\n"); 2552 # else 2553 (void)ucontext; 2554 # endif 2555 # else 2556 (void)ucontext; 2557 # endif 2558 // FIXME: Implement this for other OSes and architectures. 2559 } 2560 2561 static void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) { 2562 # if SANITIZER_NETBSD 2563 // This covers all NetBSD architectures 2564 ucontext_t *ucontext = (ucontext_t *)context; 2565 *pc = _UC_MACHINE_PC(ucontext); 2566 *bp = _UC_MACHINE_FP(ucontext); 2567 *sp = _UC_MACHINE_SP(ucontext); 2568 # elif defined(__arm__) 2569 ucontext_t *ucontext = (ucontext_t *)context; 2570 *pc = ucontext->uc_mcontext.arm_pc; 2571 *bp = ucontext->uc_mcontext.arm_fp; 2572 *sp = ucontext->uc_mcontext.arm_sp; 2573 # elif defined(__aarch64__) 2574 # if SANITIZER_FREEBSD 2575 ucontext_t *ucontext = (ucontext_t *)context; 2576 *pc = ucontext->uc_mcontext.mc_gpregs.gp_elr; 2577 *bp = ucontext->uc_mcontext.mc_gpregs.gp_x[29]; 2578 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp; 2579 # else 2580 ucontext_t *ucontext = (ucontext_t *)context; 2581 *pc = ucontext->uc_mcontext.pc; 2582 *bp = ucontext->uc_mcontext.regs[29]; 2583 *sp = ucontext->uc_mcontext.sp; 2584 # endif 2585 # elif defined(__hppa__) 2586 ucontext_t *ucontext = (ucontext_t *)context; 2587 *pc = ucontext->uc_mcontext.sc_iaoq[0]; 2588 /* GCC uses %r3 whenever a frame pointer is needed. */ 2589 *bp = ucontext->uc_mcontext.sc_gr[3]; 2590 *sp = ucontext->uc_mcontext.sc_gr[30]; 2591 # elif defined(__x86_64__) 2592 # if SANITIZER_FREEBSD 2593 ucontext_t *ucontext = (ucontext_t *)context; 2594 *pc = ucontext->uc_mcontext.mc_rip; 2595 *bp = ucontext->uc_mcontext.mc_rbp; 2596 *sp = ucontext->uc_mcontext.mc_rsp; 2597 # else 2598 ucontext_t *ucontext = (ucontext_t *)context; 2599 *pc = ucontext->uc_mcontext.gregs[REG_RIP]; 2600 *bp = ucontext->uc_mcontext.gregs[REG_RBP]; 2601 *sp = ucontext->uc_mcontext.gregs[REG_RSP]; 2602 # endif 2603 # elif defined(__i386__) 2604 # if SANITIZER_FREEBSD 2605 ucontext_t *ucontext = (ucontext_t *)context; 2606 *pc = ucontext->uc_mcontext.mc_eip; 2607 *bp = ucontext->uc_mcontext.mc_ebp; 2608 *sp = ucontext->uc_mcontext.mc_esp; 2609 # else 2610 ucontext_t *ucontext = (ucontext_t *)context; 2611 # if SANITIZER_SOLARIS 2612 /* Use the numeric values: the symbolic ones are undefined by llvm 2613 include/llvm/Support/Solaris.h. */ 2614 # ifndef REG_EIP 2615 # define REG_EIP 14 // REG_PC 2616 # endif 2617 # ifndef REG_EBP 2618 # define REG_EBP 6 // REG_FP 2619 # endif 2620 # ifndef REG_UESP 2621 # define REG_UESP 17 // REG_SP 2622 # endif 2623 # endif 2624 *pc = ucontext->uc_mcontext.gregs[REG_EIP]; 2625 *bp = ucontext->uc_mcontext.gregs[REG_EBP]; 2626 *sp = ucontext->uc_mcontext.gregs[REG_UESP]; 2627 # endif 2628 # elif defined(__powerpc__) || defined(__powerpc64__) 2629 # if SANITIZER_FREEBSD 2630 ucontext_t *ucontext = (ucontext_t *)context; 2631 *pc = ucontext->uc_mcontext.mc_srr0; 2632 *sp = ucontext->uc_mcontext.mc_frame[1]; 2633 *bp = ucontext->uc_mcontext.mc_frame[31]; 2634 # else 2635 ucontext_t *ucontext = (ucontext_t *)context; 2636 *pc = ucontext->uc_mcontext.regs->nip; 2637 *sp = ucontext->uc_mcontext.regs->gpr[PT_R1]; 2638 // The powerpc{,64}-linux ABIs do not specify r31 as the frame 2639 // pointer, but GCC always uses r31 when we need a frame pointer. 2640 *bp = ucontext->uc_mcontext.regs->gpr[PT_R31]; 2641 # endif 2642 # elif defined(__sparc__) 2643 # if defined(__arch64__) || defined(__sparcv9) 2644 # define STACK_BIAS 2047 2645 # else 2646 # define STACK_BIAS 0 2647 # endif 2648 # if SANITIZER_SOLARIS 2649 ucontext_t *ucontext = (ucontext_t *)context; 2650 *pc = ucontext->uc_mcontext.gregs[REG_PC]; 2651 *sp = ucontext->uc_mcontext.gregs[REG_SP] + STACK_BIAS; 2652 // Avoid SEGV when dereferencing sp on stack overflow with non-faulting load. 2653 // This requires a SPARC V9 CPU. Cannot use #ASI_PNF here: only supported 2654 // since clang-19. 2655 # if defined(__sparcv9) 2656 asm("ldxa [%[fp]] 0x82, %[bp]" 2657 # else 2658 asm("lduwa [%[fp]] 0x82, %[bp]" 2659 # endif 2660 : [bp] "=r"(*bp) 2661 : [fp] "r"(&((struct frame *)*sp)->fr_savfp)); 2662 if (*bp) 2663 *bp += STACK_BIAS; 2664 # else 2665 // Historical BSDism here. 2666 struct sigcontext *scontext = (struct sigcontext *)context; 2667 # if defined(__arch64__) 2668 *pc = scontext->sigc_regs.tpc; 2669 *sp = scontext->sigc_regs.u_regs[14] + STACK_BIAS; 2670 # else 2671 *pc = scontext->si_regs.pc; 2672 *sp = scontext->si_regs.u_regs[14]; 2673 # endif 2674 *bp = (uptr)((uhwptr *)*sp)[14] + STACK_BIAS; 2675 # endif 2676 # elif defined(__mips__) 2677 ucontext_t *ucontext = (ucontext_t *)context; 2678 *pc = ucontext->uc_mcontext.pc; 2679 *bp = ucontext->uc_mcontext.gregs[30]; 2680 *sp = ucontext->uc_mcontext.gregs[29]; 2681 # elif defined(__s390__) 2682 ucontext_t *ucontext = (ucontext_t *)context; 2683 # if defined(__s390x__) 2684 *pc = ucontext->uc_mcontext.psw.addr; 2685 # else 2686 *pc = ucontext->uc_mcontext.psw.addr & 0x7fffffff; 2687 # endif 2688 *bp = ucontext->uc_mcontext.gregs[11]; 2689 *sp = ucontext->uc_mcontext.gregs[15]; 2690 # elif defined(__riscv) 2691 ucontext_t *ucontext = (ucontext_t *)context; 2692 # if SANITIZER_FREEBSD 2693 *pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc; 2694 *bp = ucontext->uc_mcontext.mc_gpregs.gp_s[0]; 2695 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp; 2696 # else 2697 *pc = ucontext->uc_mcontext.__gregs[REG_PC]; 2698 *bp = ucontext->uc_mcontext.__gregs[REG_S0]; 2699 *sp = ucontext->uc_mcontext.__gregs[REG_SP]; 2700 # endif 2701 # elif defined(__hexagon__) 2702 ucontext_t *ucontext = (ucontext_t *)context; 2703 *pc = ucontext->uc_mcontext.pc; 2704 *bp = ucontext->uc_mcontext.r30; 2705 *sp = ucontext->uc_mcontext.r29; 2706 # elif defined(__loongarch__) 2707 ucontext_t *ucontext = (ucontext_t *)context; 2708 *pc = ucontext->uc_mcontext.__pc; 2709 *bp = ucontext->uc_mcontext.__gregs[22]; 2710 *sp = ucontext->uc_mcontext.__gregs[3]; 2711 # else 2712 # error "Unsupported arch" 2713 # endif 2714 } 2715 2716 void SignalContext::InitPcSpBp() { GetPcSpBp(context, &pc, &sp, &bp); } 2717 2718 void InitializePlatformEarly() { InitTlsSize(); } 2719 2720 void CheckASLR() { 2721 # if SANITIZER_NETBSD 2722 int mib[3]; 2723 int paxflags; 2724 uptr len = sizeof(paxflags); 2725 2726 mib[0] = CTL_PROC; 2727 mib[1] = internal_getpid(); 2728 mib[2] = PROC_PID_PAXFLAGS; 2729 2730 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) { 2731 Printf("sysctl failed\n"); 2732 Die(); 2733 } 2734 2735 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_ASLR)) { 2736 Printf( 2737 "This sanitizer is not compatible with enabled ASLR.\n" 2738 "To disable ASLR, please run \"paxctl +a %s\" and try again.\n", 2739 GetArgv()[0]); 2740 Die(); 2741 } 2742 # elif SANITIZER_FREEBSD 2743 int aslr_status; 2744 int r = internal_procctl(P_PID, 0, PROC_ASLR_STATUS, &aslr_status); 2745 if (UNLIKELY(r == -1)) { 2746 // We're making things less 'dramatic' here since 2747 // the cmd is not necessarily guaranteed to be here 2748 // just yet regarding FreeBSD release 2749 return; 2750 } 2751 if ((aslr_status & PROC_ASLR_ACTIVE) != 0) { 2752 VReport(1, 2753 "This sanitizer is not compatible with enabled ASLR " 2754 "and binaries compiled with PIE\n" 2755 "ASLR will be disabled and the program re-executed.\n"); 2756 int aslr_ctl = PROC_ASLR_FORCE_DISABLE; 2757 CHECK_NE(internal_procctl(P_PID, 0, PROC_ASLR_CTL, &aslr_ctl), -1); 2758 ReExec(); 2759 } 2760 # elif SANITIZER_PPC64V2 2761 // Disable ASLR for Linux PPC64LE. 2762 int old_personality = personality(0xffffffff); 2763 if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) { 2764 VReport(1, 2765 "WARNING: Program is being run with address space layout " 2766 "randomization (ASLR) enabled which prevents the thread and " 2767 "memory sanitizers from working on powerpc64le.\n" 2768 "ASLR will be disabled and the program re-executed.\n"); 2769 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); 2770 ReExec(); 2771 } 2772 # else 2773 // Do nothing 2774 # endif 2775 } 2776 2777 void CheckMPROTECT() { 2778 # if SANITIZER_NETBSD 2779 int mib[3]; 2780 int paxflags; 2781 uptr len = sizeof(paxflags); 2782 2783 mib[0] = CTL_PROC; 2784 mib[1] = internal_getpid(); 2785 mib[2] = PROC_PID_PAXFLAGS; 2786 2787 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) { 2788 Printf("sysctl failed\n"); 2789 Die(); 2790 } 2791 2792 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_MPROTECT)) { 2793 Printf("This sanitizer is not compatible with enabled MPROTECT\n"); 2794 Die(); 2795 } 2796 # else 2797 // Do nothing 2798 # endif 2799 } 2800 2801 void CheckNoDeepBind(const char *filename, int flag) { 2802 # ifdef RTLD_DEEPBIND 2803 if (flag & RTLD_DEEPBIND) { 2804 Report( 2805 "You are trying to dlopen a %s shared library with RTLD_DEEPBIND flag" 2806 " which is incompatible with sanitizer runtime " 2807 "(see https://github.com/google/sanitizers/issues/611 for details" 2808 "). If you want to run %s library under sanitizers please remove " 2809 "RTLD_DEEPBIND from dlopen flags.\n", 2810 filename, filename); 2811 Die(); 2812 } 2813 # endif 2814 } 2815 2816 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 2817 uptr *largest_gap_found, 2818 uptr *max_occupied_addr) { 2819 UNREACHABLE("FindAvailableMemoryRange is not available"); 2820 return 0; 2821 } 2822 2823 bool GetRandom(void *buffer, uptr length, bool blocking) { 2824 if (!buffer || !length || length > 256) 2825 return false; 2826 # if SANITIZER_USE_GETENTROPY 2827 uptr rnd = getentropy(buffer, length); 2828 int rverrno = 0; 2829 if (internal_iserror(rnd, &rverrno) && rverrno == EFAULT) 2830 return false; 2831 else if (rnd == 0) 2832 return true; 2833 # endif // SANITIZER_USE_GETENTROPY 2834 2835 # if SANITIZER_USE_GETRANDOM 2836 static atomic_uint8_t skip_getrandom_syscall; 2837 if (!atomic_load_relaxed(&skip_getrandom_syscall)) { 2838 // Up to 256 bytes, getrandom will not be interrupted. 2839 uptr res = internal_syscall(SYSCALL(getrandom), buffer, length, 2840 blocking ? 0 : GRND_NONBLOCK); 2841 int rverrno = 0; 2842 if (internal_iserror(res, &rverrno) && rverrno == ENOSYS) 2843 atomic_store_relaxed(&skip_getrandom_syscall, 1); 2844 else if (res == length) 2845 return true; 2846 } 2847 # endif // SANITIZER_USE_GETRANDOM 2848 // Up to 256 bytes, a read off /dev/urandom will not be interrupted. 2849 // blocking is moot here, O_NONBLOCK has no effect when opening /dev/urandom. 2850 uptr fd = internal_open("/dev/urandom", O_RDONLY); 2851 if (internal_iserror(fd)) 2852 return false; 2853 uptr res = internal_read(fd, buffer, length); 2854 if (internal_iserror(res)) 2855 return false; 2856 internal_close(fd); 2857 return true; 2858 } 2859 2860 } // namespace __sanitizer 2861 2862 #endif 2863