xref: /llvm-project/compiler-rt/lib/lsan/lsan_common.cpp (revision ac38ab594f1b7c9a9f67007f7684e4d46b2588be)
1 //=-- lsan_common.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "lsan_common.h"
15 
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27 
28 #if CAN_SANITIZE_LEAKS
29 
30 #  if SANITIZER_APPLE
31 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32 #    if SANITIZER_IOS && !SANITIZER_IOSSIM
33 #      define OBJC_DATA_MASK 0x0000007ffffffff8UL
34 #    else
35 #      define OBJC_DATA_MASK 0x00007ffffffffff8UL
36 #    endif
37 #  endif
38 
39 namespace __lsan {
40 
41 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
42 // also to protect the global list of root regions.
43 static Mutex global_mutex;
44 
45 void LockGlobal() SANITIZER_ACQUIRE(global_mutex) { global_mutex.Lock(); }
46 void UnlockGlobal() SANITIZER_RELEASE(global_mutex) { global_mutex.Unlock(); }
47 
48 Flags lsan_flags;
49 
50 void DisableCounterUnderflow() {
51   if (common_flags()->detect_leaks) {
52     Report("Unmatched call to __lsan_enable().\n");
53     Die();
54   }
55 }
56 
57 void Flags::SetDefaults() {
58 #  define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
59 #  include "lsan_flags.inc"
60 #  undef LSAN_FLAG
61 }
62 
63 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
64 #  define LSAN_FLAG(Type, Name, DefaultValue, Description) \
65     RegisterFlag(parser, #Name, Description, &f->Name);
66 #  include "lsan_flags.inc"
67 #  undef LSAN_FLAG
68 }
69 
70 #  define LOG_POINTERS(...)      \
71     do {                         \
72       if (flags()->log_pointers) \
73         Report(__VA_ARGS__);     \
74     } while (0)
75 
76 #  define LOG_THREADS(...)      \
77     do {                        \
78       if (flags()->log_threads) \
79         Report(__VA_ARGS__);    \
80     } while (0)
81 
82 class LeakSuppressionContext {
83   bool parsed = false;
84   SuppressionContext context;
85   bool suppressed_stacks_sorted = true;
86   InternalMmapVector<u32> suppressed_stacks;
87   const LoadedModule *suppress_module = nullptr;
88 
89   void LazyInit();
90   Suppression *GetSuppressionForAddr(uptr addr);
91   bool SuppressInvalid(const StackTrace &stack);
92   bool SuppressByRule(const StackTrace &stack, uptr hit_count, uptr total_size);
93 
94  public:
95   LeakSuppressionContext(const char *supprression_types[],
96                          int suppression_types_num)
97       : context(supprression_types, suppression_types_num) {}
98 
99   bool Suppress(u32 stack_trace_id, uptr hit_count, uptr total_size);
100 
101   const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
102     if (!suppressed_stacks_sorted) {
103       suppressed_stacks_sorted = true;
104       SortAndDedup(suppressed_stacks);
105     }
106     return suppressed_stacks;
107   }
108   void PrintMatchedSuppressions();
109 };
110 
111 alignas(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
112 static LeakSuppressionContext *suppression_ctx = nullptr;
113 static const char kSuppressionLeak[] = "leak";
114 static const char *kSuppressionTypes[] = {kSuppressionLeak};
115 static const char kStdSuppressions[] =
116 #  if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
117     // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
118     // definition.
119     "leak:*pthread_exit*\n"
120 #  endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
121 #  if SANITIZER_APPLE
122     // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
123     "leak:*_os_trace*\n"
124 #  endif
125     // TLS leak in some glibc versions, described in
126     // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
127     "leak:*tls_get_addr*\n";
128 
129 void InitializeSuppressions() {
130   CHECK_EQ(nullptr, suppression_ctx);
131   suppression_ctx = new (suppression_placeholder)
132       LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
133 }
134 
135 void LeakSuppressionContext::LazyInit() {
136   if (!parsed) {
137     parsed = true;
138     context.ParseFromFile(flags()->suppressions);
139     if (&__lsan_default_suppressions)
140       context.Parse(__lsan_default_suppressions());
141     context.Parse(kStdSuppressions);
142     if (flags()->use_tls && flags()->use_ld_allocations)
143       suppress_module = GetLinker();
144   }
145 }
146 
147 Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
148   Suppression *s = nullptr;
149 
150   // Suppress by module name.
151   const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr);
152   if (!module_name)
153     module_name = "<unknown module>";
154   if (context.Match(module_name, kSuppressionLeak, &s))
155     return s;
156 
157   // Suppress by file or function name.
158   SymbolizedStackHolder symbolized_stack(
159       Symbolizer::GetOrInit()->SymbolizePC(addr));
160   const SymbolizedStack *frames = symbolized_stack.get();
161   for (const SymbolizedStack *cur = frames; cur; cur = cur->next) {
162     if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
163         context.Match(cur->info.file, kSuppressionLeak, &s)) {
164       break;
165     }
166   }
167   return s;
168 }
169 
170 static uptr GetCallerPC(const StackTrace &stack) {
171   // The top frame is our malloc/calloc/etc. The next frame is the caller.
172   if (stack.size >= 2)
173     return stack.trace[1];
174   return 0;
175 }
176 
177 #  if SANITIZER_APPLE
178 // Several pointers in the Objective-C runtime (method cache and class_rw_t,
179 // for example) are tagged with additional bits we need to strip.
180 static inline void *TransformPointer(void *p) {
181   uptr ptr = reinterpret_cast<uptr>(p);
182   return reinterpret_cast<void *>(ptr & OBJC_DATA_MASK);
183 }
184 #  endif
185 
186 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
187 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
188 // modules accounting etc.
189 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
190 // They are allocated with a __libc_memalign() call in allocate_and_init()
191 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
192 // blocks, but we can make sure they come from our own allocator by intercepting
193 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
194 // addresses are stored in a dynamically allocated array (the DTV) which is
195 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
196 // being reachable from the static TLS, and the dynamic TLS being reachable from
197 // the DTV. This is because the initial DTV is allocated before our interception
198 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
199 // can't special-case it either, since we don't know its size.
200 // Our solution is to include in the root set all allocations made from
201 // ld-linux.so (which is where allocate_and_init() is implemented). This is
202 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
203 // which we don't care about).
204 // On all other platforms, this simply checks to ensure that the caller pc is
205 // valid before reporting chunks as leaked.
206 bool LeakSuppressionContext::SuppressInvalid(const StackTrace &stack) {
207   uptr caller_pc = GetCallerPC(stack);
208   // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
209   // it as reachable, as we can't properly report its allocation stack anyway.
210   return !caller_pc ||
211          (suppress_module && suppress_module->containsAddress(caller_pc));
212 }
213 
214 bool LeakSuppressionContext::SuppressByRule(const StackTrace &stack,
215                                             uptr hit_count, uptr total_size) {
216   for (uptr i = 0; i < stack.size; i++) {
217     Suppression *s = GetSuppressionForAddr(
218         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
219     if (s) {
220       s->weight += total_size;
221       atomic_fetch_add(&s->hit_count, hit_count, memory_order_relaxed);
222       return true;
223     }
224   }
225   return false;
226 }
227 
228 bool LeakSuppressionContext::Suppress(u32 stack_trace_id, uptr hit_count,
229                                       uptr total_size) {
230   LazyInit();
231   StackTrace stack = StackDepotGet(stack_trace_id);
232   if (!SuppressInvalid(stack) && !SuppressByRule(stack, hit_count, total_size))
233     return false;
234   suppressed_stacks_sorted = false;
235   suppressed_stacks.push_back(stack_trace_id);
236   return true;
237 }
238 
239 static LeakSuppressionContext *GetSuppressionContext() {
240   CHECK(suppression_ctx);
241   return suppression_ctx;
242 }
243 
244 void InitCommonLsan() {
245   if (common_flags()->detect_leaks) {
246     // Initialization which can fail or print warnings should only be done if
247     // LSan is actually enabled.
248     InitializeSuppressions();
249     InitializePlatformSpecificModules();
250   }
251 }
252 
253 class Decorator : public __sanitizer::SanitizerCommonDecorator {
254  public:
255   Decorator() : SanitizerCommonDecorator() {}
256   const char *Error() { return Red(); }
257   const char *Leak() { return Blue(); }
258 };
259 
260 static inline bool MaybeUserPointer(uptr p) {
261   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
262   // bound on heap addresses.
263   const uptr kMinAddress = 4 * 4096;
264   if (p < kMinAddress)
265     return false;
266 #  if defined(__x86_64__)
267   // TODO: support LAM48 and 5 level page tables.
268   // LAM_U57 mask format
269   //  * top byte: 0x81 because the format is: [0] [6-bit tag] [0]
270   //  * top-1 byte: 0xff because it should be 0
271   //  * top-2 byte: 0x80 because Linux uses 128 TB VMA ending at 0x7fffffffffff
272   constexpr uptr kLAM_U57Mask = 0x81ff80;
273   constexpr uptr kPointerMask = kLAM_U57Mask << 40;
274   return ((p & kPointerMask) == 0);
275 #  elif defined(__mips64)
276   return ((p >> 40) == 0);
277 #  elif defined(__aarch64__)
278   // TBI (Top Byte Ignore) feature of AArch64: bits [63:56] are ignored in
279   // address translation and can be used to store a tag.
280   constexpr uptr kPointerMask = 255ULL << 48;
281   // Accept up to 48 bit VMA.
282   return ((p & kPointerMask) == 0);
283 #  elif defined(__loongarch_lp64)
284   // Allow 47-bit user-space VMA at current.
285   return ((p >> 47) == 0);
286 #  else
287   return true;
288 #  endif
289 }
290 
291 namespace {
292 struct DirectMemoryAccessor {
293   void Init(uptr begin, uptr end) {};
294   void *LoadPtr(uptr p) const { return *reinterpret_cast<void **>(p); }
295 };
296 
297 struct CopyMemoryAccessor {
298   void Init(uptr begin, uptr end) {
299     this->begin = begin;
300     buffer.clear();
301     buffer.resize(end - begin);
302     MemCpyAccessible(buffer.data(), reinterpret_cast<void *>(begin),
303                      buffer.size());
304   };
305 
306   void *LoadPtr(uptr p) const {
307     uptr offset = p - begin;
308     CHECK_LE(offset + sizeof(void *), reinterpret_cast<uptr>(buffer.size()));
309     return *reinterpret_cast<void **>(offset +
310                                       reinterpret_cast<uptr>(buffer.data()));
311   }
312 
313  private:
314   uptr begin;
315   InternalMmapVector<char> buffer;
316 };
317 }  // namespace
318 
319 // Scans the memory range, looking for byte patterns that point into allocator
320 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
321 // There are two usage modes for this function: finding reachable chunks
322 // (|tag| = kReachable) and finding indirectly leaked chunks
323 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
324 // so |frontier| = 0.
325 template <class Accessor>
326 void ScanForPointers(uptr begin, uptr end, Frontier *frontier,
327                      const char *region_type, ChunkTag tag,
328                      Accessor &accessor) {
329   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
330   const uptr alignment = flags()->pointer_alignment();
331   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, (void *)begin,
332                (void *)end);
333   accessor.Init(begin, end);
334   uptr pp = begin;
335   if (pp % alignment)
336     pp = pp + alignment - pp % alignment;
337   for (; pp + sizeof(void *) <= end; pp += alignment) {
338     void *p = accessor.LoadPtr(pp);
339 #  if SANITIZER_APPLE
340     p = TransformPointer(p);
341 #  endif
342     if (!MaybeUserPointer(reinterpret_cast<uptr>(p)))
343       continue;
344     uptr chunk = PointsIntoChunk(p);
345     if (!chunk)
346       continue;
347     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
348     if (chunk == begin)
349       continue;
350     LsanMetadata m(chunk);
351     if (m.tag() == kReachable || m.tag() == kIgnored)
352       continue;
353 
354     // Do this check relatively late so we can log only the interesting cases.
355     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
356       LOG_POINTERS(
357           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
358           "%zu.\n",
359           (void *)pp, p, (void *)chunk, (void *)(chunk + m.requested_size()),
360           m.requested_size());
361       continue;
362     }
363 
364     m.set_tag(tag);
365     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
366                  (void *)pp, p, (void *)chunk,
367                  (void *)(chunk + m.requested_size()), m.requested_size());
368     if (frontier)
369       frontier->push_back(chunk);
370   }
371 }
372 
373 void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier,
374                           const char *region_type, ChunkTag tag) {
375   DirectMemoryAccessor accessor;
376   ScanForPointers(begin, end, frontier, region_type, tag, accessor);
377 }
378 
379 // Scans a global range for pointers
380 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
381   uptr allocator_begin = 0, allocator_end = 0;
382   GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
383   if (begin <= allocator_begin && allocator_begin < end) {
384     CHECK_LE(allocator_begin, allocator_end);
385     CHECK_LE(allocator_end, end);
386     if (begin < allocator_begin)
387       ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
388                            kReachable);
389     if (allocator_end < end)
390       ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
391   } else {
392     ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
393   }
394 }
395 
396 template <class Accessor>
397 void ScanRanges(const InternalMmapVector<Range> &ranges, Frontier *frontier,
398                 const char *region_type, Accessor &accessor) {
399   for (uptr i = 0; i < ranges.size(); i++) {
400     ScanForPointers(ranges[i].begin, ranges[i].end, frontier, region_type,
401                     kReachable, accessor);
402   }
403 }
404 
405 void ScanExtraStackRanges(const InternalMmapVector<Range> &ranges,
406                           Frontier *frontier) {
407   DirectMemoryAccessor accessor;
408   ScanRanges(ranges, frontier, "FAKE STACK", accessor);
409 }
410 
411 #  if SANITIZER_FUCHSIA
412 
413 // Fuchsia handles all threads together with its own callback.
414 static void ProcessThreads(SuspendedThreadsList const &, Frontier *, tid_t,
415                            uptr) {}
416 
417 #  else
418 
419 #    if SANITIZER_ANDROID
420 // FIXME: Move this out into *libcdep.cpp
421 extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
422     pid_t, void (*cb)(void *, void *, uptr, void *), void *);
423 #    endif
424 
425 static void ProcessThreadRegistry(Frontier *frontier) {
426   InternalMmapVector<uptr> ptrs;
427   GetAdditionalThreadContextPtrsLocked(&ptrs);
428 
429   for (uptr i = 0; i < ptrs.size(); ++i) {
430     void *ptr = reinterpret_cast<void *>(ptrs[i]);
431     uptr chunk = PointsIntoChunk(ptr);
432     if (!chunk)
433       continue;
434     LsanMetadata m(chunk);
435     if (!m.allocated())
436       continue;
437 
438     // Mark as reachable and add to frontier.
439     LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
440     m.set_tag(kReachable);
441     frontier->push_back(chunk);
442   }
443 }
444 
445 // Scans thread data (stacks and TLS) for heap pointers.
446 template <class Accessor>
447 static void ProcessThread(tid_t os_id, uptr sp,
448                           const InternalMmapVector<uptr> &registers,
449                           InternalMmapVector<Range> &extra_ranges,
450                           Frontier *frontier, Accessor &accessor) {
451   // `extra_ranges` is outside of the function and the loop to reused mapped
452   // memory.
453   CHECK(extra_ranges.empty());
454   LOG_THREADS("Processing thread %llu.\n", os_id);
455   uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
456   DTLS *dtls;
457   bool thread_found =
458       GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin,
459                             &tls_end, &cache_begin, &cache_end, &dtls);
460   if (!thread_found) {
461     // If a thread can't be found in the thread registry, it's probably in the
462     // process of destruction. Log this event and move on.
463     LOG_THREADS("Thread %llu not found in registry.\n", os_id);
464     return;
465   }
466 
467   if (!sp)
468     sp = stack_begin;
469 
470   if (flags()->use_registers) {
471     uptr registers_begin = reinterpret_cast<uptr>(registers.data());
472     uptr registers_end =
473         reinterpret_cast<uptr>(registers.data() + registers.size());
474     ScanForPointers(registers_begin, registers_end, frontier, "REGISTERS",
475                     kReachable, accessor);
476   }
477 
478   if (flags()->use_stacks) {
479     LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin,
480                 (void *)stack_end, (void *)sp);
481     if (sp < stack_begin || sp >= stack_end) {
482       // SP is outside the recorded stack range (e.g. the thread is running a
483       // signal handler on alternate stack, or swapcontext was used).
484       // Again, consider the entire stack range to be reachable.
485       LOG_THREADS("WARNING: stack pointer not in stack range.\n");
486       uptr page_size = GetPageSizeCached();
487       int skipped = 0;
488       while (stack_begin < stack_end &&
489              !IsAccessibleMemoryRange(stack_begin, 1)) {
490         skipped++;
491         stack_begin += page_size;
492       }
493       LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n", skipped,
494                   (void *)stack_begin, (void *)stack_end);
495     } else {
496       // Shrink the stack range to ignore out-of-scope values.
497       stack_begin = sp;
498     }
499     ScanForPointers(stack_begin, stack_end, frontier, "STACK", kReachable,
500                     accessor);
501     GetThreadExtraStackRangesLocked(os_id, &extra_ranges);
502     ScanRanges(extra_ranges, frontier, "FAKE STACK", accessor);
503   }
504 
505   if (flags()->use_tls) {
506     if (tls_begin) {
507       LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin, (void *)tls_end);
508       // If the tls and cache ranges don't overlap, scan full tls range,
509       // otherwise, only scan the non-overlapping portions
510       if (cache_begin == cache_end || tls_end < cache_begin ||
511           tls_begin > cache_end) {
512         ScanForPointers(tls_begin, tls_end, frontier, "TLS", kReachable,
513                         accessor);
514       } else {
515         if (tls_begin < cache_begin)
516           ScanForPointers(tls_begin, cache_begin, frontier, "TLS", kReachable,
517                           accessor);
518         if (tls_end > cache_end)
519           ScanForPointers(cache_end, tls_end, frontier, "TLS", kReachable,
520                           accessor);
521       }
522     }
523 #    if SANITIZER_ANDROID
524     extra_ranges.clear();
525     auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
526                    void *arg) -> void {
527       reinterpret_cast<InternalMmapVector<Range> *>(arg)->push_back(
528           {reinterpret_cast<uptr>(dtls_begin),
529            reinterpret_cast<uptr>(dtls_end)});
530     };
531     ScanRanges(extra_ranges, frontier, "DTLS", accessor);
532     // FIXME: There might be a race-condition here (and in Bionic) if the
533     // thread is suspended in the middle of updating its DTLS. IOWs, we
534     // could scan already freed memory. (probably fine for now)
535     __libc_iterate_dynamic_tls(os_id, cb, frontier);
536 #    else
537     if (dtls && !DTLSInDestruction(dtls)) {
538       ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
539         uptr dtls_beg = dtv.beg;
540         uptr dtls_end = dtls_beg + dtv.size;
541         if (dtls_beg < dtls_end) {
542           LOG_THREADS("DTLS %d at %p-%p.\n", id, (void *)dtls_beg,
543                       (void *)dtls_end);
544           ScanForPointers(dtls_beg, dtls_end, frontier, "DTLS", kReachable,
545                           accessor);
546         }
547       });
548     } else {
549       // We are handling a thread with DTLS under destruction. Log about
550       // this and continue.
551       LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id);
552     }
553 #    endif
554   }
555 }
556 
557 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
558                            Frontier *frontier, tid_t caller_tid,
559                            uptr caller_sp) {
560   InternalMmapVector<tid_t> done_threads;
561   InternalMmapVector<uptr> registers;
562   InternalMmapVector<Range> extra_ranges;
563   for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
564     registers.clear();
565     extra_ranges.clear();
566 
567     const tid_t os_id = suspended_threads.GetThreadID(i);
568     uptr sp = 0;
569     PtraceRegistersStatus have_registers =
570         suspended_threads.GetRegistersAndSP(i, &registers, &sp);
571     if (have_registers != REGISTERS_AVAILABLE) {
572       VReport(1, "Unable to get registers from thread %llu.\n", os_id);
573       // If unable to get SP, consider the entire stack to be reachable unless
574       // GetRegistersAndSP failed with ESRCH.
575       if (have_registers == REGISTERS_UNAVAILABLE_FATAL)
576         continue;
577       sp = 0;
578     }
579 
580     if (os_id == caller_tid)
581       sp = caller_sp;
582 
583     DirectMemoryAccessor accessor;
584     ProcessThread(os_id, sp, registers, extra_ranges, frontier, accessor);
585     if (flags()->use_detached)
586       done_threads.push_back(os_id);
587   }
588 
589   if (flags()->use_detached) {
590     CopyMemoryAccessor accessor;
591     InternalMmapVector<tid_t> known_threads;
592     GetRunningThreadsLocked(&known_threads);
593     Sort(done_threads.data(), done_threads.size());
594     for (tid_t os_id : known_threads) {
595       registers.clear();
596       extra_ranges.clear();
597 
598       uptr i = InternalLowerBound(done_threads, os_id);
599       if (i >= done_threads.size() || done_threads[i] != os_id) {
600         uptr sp = (os_id == caller_tid) ? caller_sp : 0;
601         ProcessThread(os_id, sp, registers, extra_ranges, frontier, accessor);
602       }
603     }
604   }
605 
606   // Add pointers reachable from ThreadContexts
607   ProcessThreadRegistry(frontier);
608 }
609 
610 #  endif  // SANITIZER_FUCHSIA
611 
612 // A map that contains [region_begin, region_end) pairs.
613 using RootRegions = DenseMap<detail::DenseMapPair<uptr, uptr>, uptr>;
614 
615 static RootRegions &GetRootRegionsLocked() {
616   global_mutex.CheckLocked();
617   static RootRegions *regions = nullptr;
618   alignas(RootRegions) static char placeholder[sizeof(RootRegions)];
619   if (!regions)
620     regions = new (placeholder) RootRegions();
621   return *regions;
622 }
623 
624 bool HasRootRegions() { return !GetRootRegionsLocked().empty(); }
625 
626 void ScanRootRegions(Frontier *frontier,
627                      const InternalMmapVectorNoCtor<Region> &mapped_regions) {
628   if (!flags()->use_root_regions)
629     return;
630 
631   InternalMmapVector<Region> regions;
632   GetRootRegionsLocked().forEach([&](const auto &kv) {
633     regions.push_back({kv.first.first, kv.first.second});
634     return true;
635   });
636 
637   InternalMmapVector<Region> intersection;
638   Intersect(mapped_regions, regions, intersection);
639 
640   for (const Region &r : intersection) {
641     LOG_POINTERS("Root region intersects with mapped region at %p-%p\n",
642                  (void *)r.begin, (void *)r.end);
643     ScanRangeForPointers(r.begin, r.end, frontier, "ROOT", kReachable);
644   }
645 }
646 
647 // Scans root regions for heap pointers.
648 static void ProcessRootRegions(Frontier *frontier) {
649   if (!flags()->use_root_regions || !HasRootRegions())
650     return;
651   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
652   MemoryMappedSegment segment;
653   InternalMmapVector<Region> mapped_regions;
654   while (proc_maps.Next(&segment))
655     if (segment.IsReadable())
656       mapped_regions.push_back({segment.start, segment.end});
657   ScanRootRegions(frontier, mapped_regions);
658 }
659 
660 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
661   while (frontier->size()) {
662     uptr next_chunk = frontier->back();
663     frontier->pop_back();
664     LsanMetadata m(next_chunk);
665     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
666                          "HEAP", tag);
667   }
668 }
669 
670 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
671 // which are reachable from it as indirectly leaked.
672 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
673   chunk = GetUserBegin(chunk);
674   LsanMetadata m(chunk);
675   if (m.allocated() && m.tag() != kReachable) {
676     ScanRangeForPointers(chunk, chunk + m.requested_size(),
677                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
678   }
679 }
680 
681 static void IgnoredSuppressedCb(uptr chunk, void *arg) {
682   CHECK(arg);
683   chunk = GetUserBegin(chunk);
684   LsanMetadata m(chunk);
685   if (!m.allocated() || m.tag() == kIgnored)
686     return;
687 
688   const InternalMmapVector<u32> &suppressed =
689       *static_cast<const InternalMmapVector<u32> *>(arg);
690   uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
691   if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
692     return;
693 
694   LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk,
695                (void *)(chunk + m.requested_size()), m.requested_size());
696   m.set_tag(kIgnored);
697 }
698 
699 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
700 // frontier.
701 static void CollectIgnoredCb(uptr chunk, void *arg) {
702   CHECK(arg);
703   chunk = GetUserBegin(chunk);
704   LsanMetadata m(chunk);
705   if (m.allocated() && m.tag() == kIgnored) {
706     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk,
707                  (void *)(chunk + m.requested_size()), m.requested_size());
708     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
709   }
710 }
711 
712 // Sets the appropriate tag on each chunk.
713 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
714                               Frontier *frontier, tid_t caller_tid,
715                               uptr caller_sp) {
716   const InternalMmapVector<u32> &suppressed_stacks =
717       GetSuppressionContext()->GetSortedSuppressedStacks();
718   if (!suppressed_stacks.empty()) {
719     ForEachChunk(IgnoredSuppressedCb,
720                  const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
721   }
722   ForEachChunk(CollectIgnoredCb, frontier);
723   ProcessGlobalRegions(frontier);
724   ProcessThreads(suspended_threads, frontier, caller_tid, caller_sp);
725   ProcessRootRegions(frontier);
726   FloodFillTag(frontier, kReachable);
727 
728   // The check here is relatively expensive, so we do this in a separate flood
729   // fill. That way we can skip the check for chunks that are reachable
730   // otherwise.
731   LOG_POINTERS("Processing platform-specific allocations.\n");
732   ProcessPlatformSpecificAllocations(frontier);
733   FloodFillTag(frontier, kReachable);
734 
735   // Iterate over leaked chunks and mark those that are reachable from other
736   // leaked chunks.
737   LOG_POINTERS("Scanning leaked chunks.\n");
738   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
739 }
740 
741 // ForEachChunk callback. Resets the tags to pre-leak-check state.
742 static void ResetTagsCb(uptr chunk, void *arg) {
743   (void)arg;
744   chunk = GetUserBegin(chunk);
745   LsanMetadata m(chunk);
746   if (m.allocated() && m.tag() != kIgnored)
747     m.set_tag(kDirectlyLeaked);
748 }
749 
750 // ForEachChunk callback. Aggregates information about unreachable chunks into
751 // a LeakReport.
752 static void CollectLeaksCb(uptr chunk, void *arg) {
753   CHECK(arg);
754   LeakedChunks *leaks = reinterpret_cast<LeakedChunks *>(arg);
755   chunk = GetUserBegin(chunk);
756   LsanMetadata m(chunk);
757   if (!m.allocated())
758     return;
759   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked)
760     leaks->push_back({chunk, m.stack_trace_id(), m.requested_size(), m.tag()});
761 }
762 
763 void LeakSuppressionContext::PrintMatchedSuppressions() {
764   InternalMmapVector<Suppression *> matched;
765   context.GetMatched(&matched);
766   if (!matched.size())
767     return;
768   const char *line = "-----------------------------------------------------";
769   Printf("%s\n", line);
770   Printf("Suppressions used:\n");
771   Printf("  count      bytes template\n");
772   for (uptr i = 0; i < matched.size(); i++) {
773     Printf("%7zu %10zu %s\n",
774            static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
775            matched[i]->weight, matched[i]->templ);
776   }
777   Printf("%s\n\n", line);
778 }
779 
780 #  if SANITIZER_FUCHSIA
781 
782 // Fuchsia provides a libc interface that guarantees all threads are
783 // covered, and SuspendedThreadList is never really used.
784 static bool ReportUnsuspendedThreads(const SuspendedThreadsList &) {
785   return true;
786 }
787 
788 #  else  // !SANITIZER_FUCHSIA
789 
790 static bool ReportUnsuspendedThreads(
791     const SuspendedThreadsList &suspended_threads) {
792   InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
793   for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
794     threads[i] = suspended_threads.GetThreadID(i);
795 
796   Sort(threads.data(), threads.size());
797 
798   InternalMmapVector<tid_t> known_threads;
799   GetRunningThreadsLocked(&known_threads);
800 
801   bool succeded = true;
802   for (auto os_id : known_threads) {
803     uptr i = InternalLowerBound(threads, os_id);
804     if (i >= threads.size() || threads[i] != os_id) {
805       succeded = false;
806       Report(
807           "Running thread %zu was not suspended. False leaks are possible.\n",
808           os_id);
809     }
810   }
811   return succeded;
812 }
813 
814 #  endif  // !SANITIZER_FUCHSIA
815 
816 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
817                                   void *arg) {
818   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
819   CHECK(param);
820   CHECK(!param->success);
821   if (!ReportUnsuspendedThreads(suspended_threads)) {
822     switch (flags()->thread_suspend_fail) {
823       case 0:
824         param->success = true;
825         return;
826       case 1:
827         break;
828       case 2:
829         // Will crash on return.
830         return;
831     }
832   }
833   ClassifyAllChunks(suspended_threads, &param->frontier, param->caller_tid,
834                     param->caller_sp);
835   ForEachChunk(CollectLeaksCb, &param->leaks);
836   // Clean up for subsequent leak checks. This assumes we did not overwrite any
837   // kIgnored tags.
838   ForEachChunk(ResetTagsCb, nullptr);
839   param->success = true;
840 }
841 
842 static bool PrintResults(LeakReport &report) {
843   uptr unsuppressed_count = report.UnsuppressedLeakCount();
844   if (unsuppressed_count) {
845     Decorator d;
846     Printf(
847         "\n"
848         "================================================================="
849         "\n");
850     Printf("%s", d.Error());
851     Report("ERROR: LeakSanitizer: detected memory leaks\n");
852     Printf("%s", d.Default());
853     report.ReportTopLeaks(flags()->max_leaks);
854   }
855   if (common_flags()->print_suppressions)
856     GetSuppressionContext()->PrintMatchedSuppressions();
857   if (unsuppressed_count)
858     report.PrintSummary();
859   if ((unsuppressed_count && common_flags()->verbosity >= 2) ||
860       flags()->log_threads)
861     PrintThreads();
862   return unsuppressed_count;
863 }
864 
865 static bool CheckForLeaksOnce() {
866   if (&__lsan_is_turned_off && __lsan_is_turned_off()) {
867     VReport(1, "LeakSanitizer is disabled\n");
868     return false;
869   }
870   VReport(1, "LeakSanitizer: checking for leaks\n");
871   // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
872   // suppressions. However if a stack id was previously suppressed, it should be
873   // suppressed in future checks as well.
874   for (int i = 0;; ++i) {
875     EnsureMainThreadIDIsCorrect();
876     CheckForLeaksParam param;
877     // Capture calling thread's stack pointer early, to avoid false negatives.
878     // Old frame with dead pointers might be overlapped by new frame inside
879     // CheckForLeaks which does not use bytes with pointers before the
880     // threads are suspended and stack pointers captured.
881     param.caller_tid = GetTid();
882     param.caller_sp = reinterpret_cast<uptr>(__builtin_frame_address(0));
883     LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
884     if (!param.success) {
885       Report("LeakSanitizer has encountered a fatal error.\n");
886       Report(
887           "HINT: For debugging, try setting environment variable "
888           "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
889       Report(
890           "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
891           "etc)\n");
892       Die();
893     }
894     LeakReport leak_report;
895     leak_report.AddLeakedChunks(param.leaks);
896 
897     // No new suppressions stacks, so rerun will not help and we can report.
898     if (!leak_report.ApplySuppressions())
899       return PrintResults(leak_report);
900 
901     // No indirect leaks to report, so we are done here.
902     if (!leak_report.IndirectUnsuppressedLeakCount())
903       return PrintResults(leak_report);
904 
905     if (i >= 8) {
906       Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
907       return PrintResults(leak_report);
908     }
909 
910     // We found a new previously unseen suppressed call stack. Rerun to make
911     // sure it does not hold indirect leaks.
912     VReport(1, "Rerun with %zu suppressed stacks.",
913             GetSuppressionContext()->GetSortedSuppressedStacks().size());
914   }
915 }
916 
917 static bool CheckForLeaks() {
918   int leaking_tries = 0;
919   for (int i = 0; i < flags()->tries; ++i) leaking_tries += CheckForLeaksOnce();
920   return leaking_tries == flags()->tries;
921 }
922 
923 static bool has_reported_leaks = false;
924 bool HasReportedLeaks() { return has_reported_leaks; }
925 
926 void DoLeakCheck() {
927   Lock l(&global_mutex);
928   static bool already_done;
929   if (already_done)
930     return;
931   already_done = true;
932   has_reported_leaks = CheckForLeaks();
933   if (has_reported_leaks)
934     HandleLeaks();
935 }
936 
937 static int DoRecoverableLeakCheck() {
938   Lock l(&global_mutex);
939   bool have_leaks = CheckForLeaks();
940   return have_leaks ? 1 : 0;
941 }
942 
943 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
944 
945 ///// LeakReport implementation. /////
946 
947 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
948 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
949 // in real-world applications.
950 // FIXME: Get rid of this limit by moving logic into DedupLeaks.
951 const uptr kMaxLeaksConsidered = 5000;
952 
953 void LeakReport::AddLeakedChunks(const LeakedChunks &chunks) {
954   for (const LeakedChunk &leak : chunks) {
955     uptr chunk = leak.chunk;
956     u32 stack_trace_id = leak.stack_trace_id;
957     uptr leaked_size = leak.leaked_size;
958     ChunkTag tag = leak.tag;
959     CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
960 
961     if (u32 resolution = flags()->resolution) {
962       StackTrace stack = StackDepotGet(stack_trace_id);
963       stack.size = Min(stack.size, resolution);
964       stack_trace_id = StackDepotPut(stack);
965     }
966 
967     bool is_directly_leaked = (tag == kDirectlyLeaked);
968     uptr i;
969     for (i = 0; i < leaks_.size(); i++) {
970       if (leaks_[i].stack_trace_id == stack_trace_id &&
971           leaks_[i].is_directly_leaked == is_directly_leaked) {
972         leaks_[i].hit_count++;
973         leaks_[i].total_size += leaked_size;
974         break;
975       }
976     }
977     if (i == leaks_.size()) {
978       if (leaks_.size() == kMaxLeaksConsidered)
979         return;
980       Leak leak = {next_id_++,         /* hit_count */ 1,
981                    leaked_size,        stack_trace_id,
982                    is_directly_leaked, /* is_suppressed */ false};
983       leaks_.push_back(leak);
984     }
985     if (flags()->report_objects) {
986       LeakedObject obj = {leaks_[i].id, GetUserAddr(chunk), leaked_size};
987       leaked_objects_.push_back(obj);
988     }
989   }
990 }
991 
992 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
993   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
994     return leak1.total_size > leak2.total_size;
995   else
996     return leak1.is_directly_leaked;
997 }
998 
999 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
1000   CHECK(leaks_.size() <= kMaxLeaksConsidered);
1001   Printf("\n");
1002   if (leaks_.size() == kMaxLeaksConsidered)
1003     Printf(
1004         "Too many leaks! Only the first %zu leaks encountered will be "
1005         "reported.\n",
1006         kMaxLeaksConsidered);
1007 
1008   uptr unsuppressed_count = UnsuppressedLeakCount();
1009   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
1010     Printf("The %zu top leak(s):\n", num_leaks_to_report);
1011   Sort(leaks_.data(), leaks_.size(), &LeakComparator);
1012   uptr leaks_reported = 0;
1013   for (uptr i = 0; i < leaks_.size(); i++) {
1014     if (leaks_[i].is_suppressed)
1015       continue;
1016     PrintReportForLeak(i);
1017     leaks_reported++;
1018     if (leaks_reported == num_leaks_to_report)
1019       break;
1020   }
1021   if (leaks_reported < unsuppressed_count) {
1022     uptr remaining = unsuppressed_count - leaks_reported;
1023     Printf("Omitting %zu more leak(s).\n", remaining);
1024   }
1025 }
1026 
1027 void LeakReport::PrintReportForLeak(uptr index) {
1028   Decorator d;
1029   Printf("%s", d.Leak());
1030   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
1031          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
1032          leaks_[index].total_size, leaks_[index].hit_count);
1033   Printf("%s", d.Default());
1034 
1035   CHECK(leaks_[index].stack_trace_id);
1036   StackDepotGet(leaks_[index].stack_trace_id).Print();
1037 
1038   if (flags()->report_objects) {
1039     Printf("Objects leaked above:\n");
1040     PrintLeakedObjectsForLeak(index);
1041     Printf("\n");
1042   }
1043 }
1044 
1045 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
1046   u32 leak_id = leaks_[index].id;
1047   for (uptr j = 0; j < leaked_objects_.size(); j++) {
1048     if (leaked_objects_[j].leak_id == leak_id)
1049       Printf("%p (%zu bytes)\n", (void *)leaked_objects_[j].addr,
1050              leaked_objects_[j].size);
1051   }
1052 }
1053 
1054 void LeakReport::PrintSummary() {
1055   CHECK(leaks_.size() <= kMaxLeaksConsidered);
1056   uptr bytes = 0, allocations = 0;
1057   for (uptr i = 0; i < leaks_.size(); i++) {
1058     if (leaks_[i].is_suppressed)
1059       continue;
1060     bytes += leaks_[i].total_size;
1061     allocations += leaks_[i].hit_count;
1062   }
1063   InternalScopedString summary;
1064   summary.AppendF("%zu byte(s) leaked in %zu allocation(s).", bytes,
1065                   allocations);
1066   ReportErrorSummary(summary.data());
1067 }
1068 
1069 uptr LeakReport::ApplySuppressions() {
1070   LeakSuppressionContext *suppressions = GetSuppressionContext();
1071   uptr new_suppressions = 0;
1072   for (uptr i = 0; i < leaks_.size(); i++) {
1073     if (suppressions->Suppress(leaks_[i].stack_trace_id, leaks_[i].hit_count,
1074                                leaks_[i].total_size)) {
1075       leaks_[i].is_suppressed = true;
1076       ++new_suppressions;
1077     }
1078   }
1079   return new_suppressions;
1080 }
1081 
1082 uptr LeakReport::UnsuppressedLeakCount() {
1083   uptr result = 0;
1084   for (uptr i = 0; i < leaks_.size(); i++)
1085     if (!leaks_[i].is_suppressed)
1086       result++;
1087   return result;
1088 }
1089 
1090 uptr LeakReport::IndirectUnsuppressedLeakCount() {
1091   uptr result = 0;
1092   for (uptr i = 0; i < leaks_.size(); i++)
1093     if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
1094       result++;
1095   return result;
1096 }
1097 
1098 }  // namespace __lsan
1099 #else   // CAN_SANITIZE_LEAKS
1100 namespace __lsan {
1101 void InitCommonLsan() {}
1102 void DoLeakCheck() {}
1103 void DoRecoverableLeakCheckVoid() {}
1104 void DisableInThisThread() {}
1105 void EnableInThisThread() {}
1106 }  // namespace __lsan
1107 #endif  // CAN_SANITIZE_LEAKS
1108 
1109 using namespace __lsan;
1110 
1111 extern "C" {
1112 SANITIZER_INTERFACE_ATTRIBUTE
1113 void __lsan_ignore_object(const void *p) {
1114 #if CAN_SANITIZE_LEAKS
1115   if (!common_flags()->detect_leaks)
1116     return;
1117   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
1118   // locked.
1119   Lock l(&global_mutex);
1120   IgnoreObjectResult res = IgnoreObject(p);
1121   if (res == kIgnoreObjectInvalid)
1122     VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p);
1123   if (res == kIgnoreObjectAlreadyIgnored)
1124     VReport(1,
1125             "__lsan_ignore_object(): "
1126             "heap object at %p is already being ignored\n",
1127             p);
1128   if (res == kIgnoreObjectSuccess)
1129     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
1130 #endif  // CAN_SANITIZE_LEAKS
1131 }
1132 
1133 SANITIZER_INTERFACE_ATTRIBUTE
1134 void __lsan_register_root_region(const void *begin, uptr size) {
1135 #if CAN_SANITIZE_LEAKS
1136   VReport(1, "Registered root region at %p of size %zu\n", begin, size);
1137   uptr b = reinterpret_cast<uptr>(begin);
1138   uptr e = b + size;
1139   CHECK_LT(b, e);
1140 
1141   Lock l(&global_mutex);
1142   ++GetRootRegionsLocked()[{b, e}];
1143 #endif  // CAN_SANITIZE_LEAKS
1144 }
1145 
1146 SANITIZER_INTERFACE_ATTRIBUTE
1147 void __lsan_unregister_root_region(const void *begin, uptr size) {
1148 #if CAN_SANITIZE_LEAKS
1149   uptr b = reinterpret_cast<uptr>(begin);
1150   uptr e = b + size;
1151   CHECK_LT(b, e);
1152   VReport(1, "Unregistered root region at %p of size %zu\n", begin, size);
1153 
1154   {
1155     Lock l(&global_mutex);
1156     if (auto *f = GetRootRegionsLocked().find({b, e})) {
1157       if (--(f->second) == 0)
1158         GetRootRegionsLocked().erase(f);
1159       return;
1160     }
1161   }
1162   Report(
1163       "__lsan_unregister_root_region(): region at %p of size %zu has not "
1164       "been registered.\n",
1165       begin, size);
1166   Die();
1167 #endif  // CAN_SANITIZE_LEAKS
1168 }
1169 
1170 SANITIZER_INTERFACE_ATTRIBUTE
1171 void __lsan_disable() {
1172 #if CAN_SANITIZE_LEAKS
1173   __lsan::DisableInThisThread();
1174 #endif
1175 }
1176 
1177 SANITIZER_INTERFACE_ATTRIBUTE
1178 void __lsan_enable() {
1179 #if CAN_SANITIZE_LEAKS
1180   __lsan::EnableInThisThread();
1181 #endif
1182 }
1183 
1184 SANITIZER_INTERFACE_ATTRIBUTE
1185 void __lsan_do_leak_check() {
1186 #if CAN_SANITIZE_LEAKS
1187   if (common_flags()->detect_leaks)
1188     __lsan::DoLeakCheck();
1189 #endif  // CAN_SANITIZE_LEAKS
1190 }
1191 
1192 SANITIZER_INTERFACE_ATTRIBUTE
1193 int __lsan_do_recoverable_leak_check() {
1194 #if CAN_SANITIZE_LEAKS
1195   if (common_flags()->detect_leaks)
1196     return __lsan::DoRecoverableLeakCheck();
1197 #endif  // CAN_SANITIZE_LEAKS
1198   return 0;
1199 }
1200 
1201 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
1202   return "";
1203 }
1204 
1205 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1206 SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off, void) {
1207   return 0;
1208 }
1209 
1210 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions, void) {
1211   return "";
1212 }
1213 #endif
1214 }  // extern "C"
1215