xref: /llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp (revision abc8812df02599fc413d9ed77b992f8236ed2af9)
1 //===- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a meta-engine for path-sensitive dataflow analysis that
10 //  is built on CoreEngine, but provides the boilerplate to execute transfer
11 //  functions and build the ExplodedGraph at the expression level.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16 #include "PrettyStackTraceLocationContext.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/PrettyPrinter.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Analysis/AnalysisDeclContext.h"
32 #include "clang/Analysis/CFG.h"
33 #include "clang/Analysis/ConstructionContext.h"
34 #include "clang/Analysis/ProgramPoint.h"
35 #include "clang/Basic/IdentifierTable.h"
36 #include "clang/Basic/JsonSupport.h"
37 #include "clang/Basic/LLVM.h"
38 #include "clang/Basic/LangOptions.h"
39 #include "clang/Basic/PrettyStackTrace.h"
40 #include "clang/Basic/SourceLocation.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/Specifiers.h"
43 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
44 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
45 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
46 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
49 #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
50 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
51 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
52 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
53 #include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h"
54 #include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h"
55 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
56 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
57 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
58 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
59 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
60 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
61 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
62 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
63 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
64 #include "llvm/ADT/APSInt.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/ImmutableMap.h"
67 #include "llvm/ADT/ImmutableSet.h"
68 #include "llvm/ADT/STLExtras.h"
69 #include "llvm/ADT/SmallVector.h"
70 #include "llvm/ADT/Statistic.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/DOTGraphTraits.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/GraphWriter.h"
76 #include "llvm/Support/SaveAndRestore.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <cassert>
79 #include <cstdint>
80 #include <memory>
81 #include <optional>
82 #include <string>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace clang;
88 using namespace ento;
89 
90 #define DEBUG_TYPE "ExprEngine"
91 
92 STATISTIC(NumRemoveDeadBindings,
93             "The # of times RemoveDeadBindings is called");
94 STATISTIC(NumMaxBlockCountReached,
95             "The # of aborted paths due to reaching the maximum block count in "
96             "a top level function");
97 STATISTIC(NumMaxBlockCountReachedInInlined,
98             "The # of aborted paths due to reaching the maximum block count in "
99             "an inlined function");
100 STATISTIC(NumTimesRetriedWithoutInlining,
101             "The # of times we re-evaluated a call without inlining");
102 
103 //===----------------------------------------------------------------------===//
104 // Internal program state traits.
105 //===----------------------------------------------------------------------===//
106 
107 namespace {
108 
109 // When modeling a C++ constructor, for a variety of reasons we need to track
110 // the location of the object for the duration of its ConstructionContext.
111 // ObjectsUnderConstruction maps statements within the construction context
112 // to the object's location, so that on every such statement the location
113 // could have been retrieved.
114 
115 /// ConstructedObjectKey is used for being able to find the path-sensitive
116 /// memory region of a freshly constructed object while modeling the AST node
117 /// that syntactically represents the object that is being constructed.
118 /// Semantics of such nodes may sometimes require access to the region that's
119 /// not otherwise present in the program state, or to the very fact that
120 /// the construction context was present and contained references to these
121 /// AST nodes.
122 class ConstructedObjectKey {
123   using ConstructedObjectKeyImpl =
124       std::pair<ConstructionContextItem, const LocationContext *>;
125   const ConstructedObjectKeyImpl Impl;
126 
127 public:
128   explicit ConstructedObjectKey(const ConstructionContextItem &Item,
129                        const LocationContext *LC)
130       : Impl(Item, LC) {}
131 
132   const ConstructionContextItem &getItem() const { return Impl.first; }
133   const LocationContext *getLocationContext() const { return Impl.second; }
134 
135   ASTContext &getASTContext() const {
136     return getLocationContext()->getDecl()->getASTContext();
137   }
138 
139   void printJson(llvm::raw_ostream &Out, PrinterHelper *Helper,
140                  PrintingPolicy &PP) const {
141     const Stmt *S = getItem().getStmtOrNull();
142     const CXXCtorInitializer *I = nullptr;
143     if (!S)
144       I = getItem().getCXXCtorInitializer();
145 
146     if (S)
147       Out << "\"stmt_id\": " << S->getID(getASTContext());
148     else
149       Out << "\"init_id\": " << I->getID(getASTContext());
150 
151     // Kind
152     Out << ", \"kind\": \"" << getItem().getKindAsString()
153         << "\", \"argument_index\": ";
154 
155     if (getItem().getKind() == ConstructionContextItem::ArgumentKind)
156       Out << getItem().getIndex();
157     else
158       Out << "null";
159 
160     // Pretty-print
161     Out << ", \"pretty\": ";
162 
163     if (S) {
164       S->printJson(Out, Helper, PP, /*AddQuotes=*/true);
165     } else {
166       Out << '\"' << I->getAnyMember()->getDeclName() << '\"';
167     }
168   }
169 
170   void Profile(llvm::FoldingSetNodeID &ID) const {
171     ID.Add(Impl.first);
172     ID.AddPointer(Impl.second);
173   }
174 
175   bool operator==(const ConstructedObjectKey &RHS) const {
176     return Impl == RHS.Impl;
177   }
178 
179   bool operator<(const ConstructedObjectKey &RHS) const {
180     return Impl < RHS.Impl;
181   }
182 };
183 } // namespace
184 
185 typedef llvm::ImmutableMap<ConstructedObjectKey, SVal>
186     ObjectsUnderConstructionMap;
187 REGISTER_TRAIT_WITH_PROGRAMSTATE(ObjectsUnderConstruction,
188                                  ObjectsUnderConstructionMap)
189 
190 // This trait is responsible for storing the index of the element that is to be
191 // constructed in the next iteration. As a result a CXXConstructExpr is only
192 // stored if it is array type. Also the index is the index of the continuous
193 // memory region, which is important for multi-dimensional arrays. E.g:: int
194 // arr[2][2]; assume arr[1][1] will be the next element under construction, so
195 // the index is 3.
196 typedef llvm::ImmutableMap<
197     std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned>
198     IndexOfElementToConstructMap;
199 REGISTER_TRAIT_WITH_PROGRAMSTATE(IndexOfElementToConstruct,
200                                  IndexOfElementToConstructMap)
201 
202 // This trait is responsible for holding our pending ArrayInitLoopExprs.
203 // It pairs the LocationContext and the initializer CXXConstructExpr with
204 // the size of the array that's being copy initialized.
205 typedef llvm::ImmutableMap<
206     std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned>
207     PendingInitLoopMap;
208 REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingInitLoop, PendingInitLoopMap)
209 
210 typedef llvm::ImmutableMap<const LocationContext *, unsigned>
211     PendingArrayDestructionMap;
212 REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingArrayDestruction,
213                                  PendingArrayDestructionMap)
214 
215 //===----------------------------------------------------------------------===//
216 // Engine construction and deletion.
217 //===----------------------------------------------------------------------===//
218 
219 static const char* TagProviderName = "ExprEngine";
220 
221 ExprEngine::ExprEngine(cross_tu::CrossTranslationUnitContext &CTU,
222                        AnalysisManager &mgr, SetOfConstDecls *VisitedCalleesIn,
223                        FunctionSummariesTy *FS, InliningModes HowToInlineIn)
224     : CTU(CTU), IsCTUEnabled(mgr.getAnalyzerOptions().IsNaiveCTUEnabled),
225       AMgr(mgr), AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
226       Engine(*this, FS, mgr.getAnalyzerOptions()), G(Engine.getGraph()),
227       StateMgr(getContext(), mgr.getStoreManagerCreator(),
228                mgr.getConstraintManagerCreator(), G.getAllocator(), this),
229       SymMgr(StateMgr.getSymbolManager()), MRMgr(StateMgr.getRegionManager()),
230       svalBuilder(StateMgr.getSValBuilder()), ObjCNoRet(mgr.getASTContext()),
231       BR(mgr, *this), VisitedCallees(VisitedCalleesIn),
232       HowToInline(HowToInlineIn) {
233   unsigned TrimInterval = mgr.options.GraphTrimInterval;
234   if (TrimInterval != 0) {
235     // Enable eager node reclamation when constructing the ExplodedGraph.
236     G.enableNodeReclamation(TrimInterval);
237   }
238 }
239 
240 //===----------------------------------------------------------------------===//
241 // Utility methods.
242 //===----------------------------------------------------------------------===//
243 
244 ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
245   ProgramStateRef state = StateMgr.getInitialState(InitLoc);
246   const Decl *D = InitLoc->getDecl();
247 
248   // Preconditions.
249   // FIXME: It would be nice if we had a more general mechanism to add
250   // such preconditions.  Some day.
251   do {
252     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
253       // Precondition: the first argument of 'main' is an integer guaranteed
254       //  to be > 0.
255       const IdentifierInfo *II = FD->getIdentifier();
256       if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
257         break;
258 
259       const ParmVarDecl *PD = FD->getParamDecl(0);
260       QualType T = PD->getType();
261       const auto *BT = dyn_cast<BuiltinType>(T);
262       if (!BT || !BT->isInteger())
263         break;
264 
265       const MemRegion *R = state->getRegion(PD, InitLoc);
266       if (!R)
267         break;
268 
269       SVal V = state->getSVal(loc::MemRegionVal(R));
270       SVal Constraint_untested = evalBinOp(state, BO_GT, V,
271                                            svalBuilder.makeZeroVal(T),
272                                            svalBuilder.getConditionType());
273 
274       std::optional<DefinedOrUnknownSVal> Constraint =
275           Constraint_untested.getAs<DefinedOrUnknownSVal>();
276 
277       if (!Constraint)
278         break;
279 
280       if (ProgramStateRef newState = state->assume(*Constraint, true))
281         state = newState;
282     }
283     break;
284   }
285   while (false);
286 
287   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
288     // Precondition: 'self' is always non-null upon entry to an Objective-C
289     // method.
290     const ImplicitParamDecl *SelfD = MD->getSelfDecl();
291     const MemRegion *R = state->getRegion(SelfD, InitLoc);
292     SVal V = state->getSVal(loc::MemRegionVal(R));
293 
294     if (std::optional<Loc> LV = V.getAs<Loc>()) {
295       // Assume that the pointer value in 'self' is non-null.
296       state = state->assume(*LV, true);
297       assert(state && "'self' cannot be null");
298     }
299   }
300 
301   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
302     if (MD->isImplicitObjectMemberFunction()) {
303       // Precondition: 'this' is always non-null upon entry to the
304       // top-level function.  This is our starting assumption for
305       // analyzing an "open" program.
306       const StackFrameContext *SFC = InitLoc->getStackFrame();
307       if (SFC->getParent() == nullptr) {
308         loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC);
309         SVal V = state->getSVal(L);
310         if (std::optional<Loc> LV = V.getAs<Loc>()) {
311           state = state->assume(*LV, true);
312           assert(state && "'this' cannot be null");
313         }
314       }
315     }
316   }
317 
318   return state;
319 }
320 
321 ProgramStateRef ExprEngine::createTemporaryRegionIfNeeded(
322     ProgramStateRef State, const LocationContext *LC,
323     const Expr *InitWithAdjustments, const Expr *Result,
324     const SubRegion **OutRegionWithAdjustments) {
325   // FIXME: This function is a hack that works around the quirky AST
326   // we're often having with respect to C++ temporaries. If only we modelled
327   // the actual execution order of statements properly in the CFG,
328   // all the hassle with adjustments would not be necessary,
329   // and perhaps the whole function would be removed.
330   SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC);
331   if (!Result) {
332     // If we don't have an explicit result expression, we're in "if needed"
333     // mode. Only create a region if the current value is a NonLoc.
334     if (!isa<NonLoc>(InitValWithAdjustments)) {
335       if (OutRegionWithAdjustments)
336         *OutRegionWithAdjustments = nullptr;
337       return State;
338     }
339     Result = InitWithAdjustments;
340   } else {
341     // We need to create a region no matter what. Make sure we don't try to
342     // stuff a Loc into a non-pointer temporary region.
343     assert(!isa<Loc>(InitValWithAdjustments) ||
344            Loc::isLocType(Result->getType()) ||
345            Result->getType()->isMemberPointerType());
346   }
347 
348   ProgramStateManager &StateMgr = State->getStateManager();
349   MemRegionManager &MRMgr = StateMgr.getRegionManager();
350   StoreManager &StoreMgr = StateMgr.getStoreManager();
351 
352   // MaterializeTemporaryExpr may appear out of place, after a few field and
353   // base-class accesses have been made to the object, even though semantically
354   // it is the whole object that gets materialized and lifetime-extended.
355   //
356   // For example:
357   //
358   //   `-MaterializeTemporaryExpr
359   //     `-MemberExpr
360   //       `-CXXTemporaryObjectExpr
361   //
362   // instead of the more natural
363   //
364   //   `-MemberExpr
365   //     `-MaterializeTemporaryExpr
366   //       `-CXXTemporaryObjectExpr
367   //
368   // Use the usual methods for obtaining the expression of the base object,
369   // and record the adjustments that we need to make to obtain the sub-object
370   // that the whole expression 'Ex' refers to. This trick is usual,
371   // in the sense that CodeGen takes a similar route.
372 
373   SmallVector<const Expr *, 2> CommaLHSs;
374   SmallVector<SubobjectAdjustment, 2> Adjustments;
375 
376   const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments(
377       CommaLHSs, Adjustments);
378 
379   // Take the region for Init, i.e. for the whole object. If we do not remember
380   // the region in which the object originally was constructed, come up with
381   // a new temporary region out of thin air and copy the contents of the object
382   // (which are currently present in the Environment, because Init is an rvalue)
383   // into that region. This is not correct, but it is better than nothing.
384   const TypedValueRegion *TR = nullptr;
385   if (const auto *MT = dyn_cast<MaterializeTemporaryExpr>(Result)) {
386     if (std::optional<SVal> V = getObjectUnderConstruction(State, MT, LC)) {
387       State = finishObjectConstruction(State, MT, LC);
388       State = State->BindExpr(Result, LC, *V);
389       return State;
390     } else if (const ValueDecl *VD = MT->getExtendingDecl()) {
391       StorageDuration SD = MT->getStorageDuration();
392       assert(SD != SD_FullExpression);
393       // If this object is bound to a reference with static storage duration, we
394       // put it in a different region to prevent "address leakage" warnings.
395       if (SD == SD_Static || SD == SD_Thread) {
396         TR = MRMgr.getCXXStaticLifetimeExtendedObjectRegion(Init, VD);
397       } else {
398         TR = MRMgr.getCXXLifetimeExtendedObjectRegion(Init, VD, LC);
399       }
400     } else {
401       assert(MT->getStorageDuration() == SD_FullExpression);
402       TR = MRMgr.getCXXTempObjectRegion(Init, LC);
403     }
404   } else {
405     TR = MRMgr.getCXXTempObjectRegion(Init, LC);
406   }
407 
408   SVal Reg = loc::MemRegionVal(TR);
409   SVal BaseReg = Reg;
410 
411   // Make the necessary adjustments to obtain the sub-object.
412   for (const SubobjectAdjustment &Adj : llvm::reverse(Adjustments)) {
413     switch (Adj.Kind) {
414     case SubobjectAdjustment::DerivedToBaseAdjustment:
415       Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath);
416       break;
417     case SubobjectAdjustment::FieldAdjustment:
418       Reg = StoreMgr.getLValueField(Adj.Field, Reg);
419       break;
420     case SubobjectAdjustment::MemberPointerAdjustment:
421       // FIXME: Unimplemented.
422       State = State->invalidateRegions(Reg, InitWithAdjustments,
423                                        currBldrCtx->blockCount(), LC, true,
424                                        nullptr, nullptr, nullptr);
425       return State;
426     }
427   }
428 
429   // What remains is to copy the value of the object to the new region.
430   // FIXME: In other words, what we should always do is copy value of the
431   // Init expression (which corresponds to the bigger object) to the whole
432   // temporary region TR. However, this value is often no longer present
433   // in the Environment. If it has disappeared, we instead invalidate TR.
434   // Still, what we can do is assign the value of expression Ex (which
435   // corresponds to the sub-object) to the TR's sub-region Reg. At least,
436   // values inside Reg would be correct.
437   SVal InitVal = State->getSVal(Init, LC);
438   if (InitVal.isUnknown()) {
439     InitVal = getSValBuilder().conjureSymbolVal(Result, LC, Init->getType(),
440                                                 currBldrCtx->blockCount());
441     State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
442 
443     // Then we'd need to take the value that certainly exists and bind it
444     // over.
445     if (InitValWithAdjustments.isUnknown()) {
446       // Try to recover some path sensitivity in case we couldn't
447       // compute the value.
448       InitValWithAdjustments = getSValBuilder().conjureSymbolVal(
449           Result, LC, InitWithAdjustments->getType(),
450           currBldrCtx->blockCount());
451     }
452     State =
453         State->bindLoc(Reg.castAs<Loc>(), InitValWithAdjustments, LC, false);
454   } else {
455     State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
456   }
457 
458   // The result expression would now point to the correct sub-region of the
459   // newly created temporary region. Do this last in order to getSVal of Init
460   // correctly in case (Result == Init).
461   if (Result->isGLValue()) {
462     State = State->BindExpr(Result, LC, Reg);
463   } else {
464     State = State->BindExpr(Result, LC, InitValWithAdjustments);
465   }
466 
467   // Notify checkers once for two bindLoc()s.
468   State = processRegionChange(State, TR, LC);
469 
470   if (OutRegionWithAdjustments)
471     *OutRegionWithAdjustments = cast<SubRegion>(Reg.getAsRegion());
472   return State;
473 }
474 
475 ProgramStateRef ExprEngine::setIndexOfElementToConstruct(
476     ProgramStateRef State, const CXXConstructExpr *E,
477     const LocationContext *LCtx, unsigned Idx) {
478   auto Key = std::make_pair(E, LCtx->getStackFrame());
479 
480   assert(!State->contains<IndexOfElementToConstruct>(Key) || Idx > 0);
481 
482   return State->set<IndexOfElementToConstruct>(Key, Idx);
483 }
484 
485 std::optional<unsigned>
486 ExprEngine::getPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E,
487                                const LocationContext *LCtx) {
488   const unsigned *V = State->get<PendingInitLoop>({E, LCtx->getStackFrame()});
489   return V ? std::make_optional(*V) : std::nullopt;
490 }
491 
492 ProgramStateRef ExprEngine::removePendingInitLoop(ProgramStateRef State,
493                                                   const CXXConstructExpr *E,
494                                                   const LocationContext *LCtx) {
495   auto Key = std::make_pair(E, LCtx->getStackFrame());
496 
497   assert(E && State->contains<PendingInitLoop>(Key));
498   return State->remove<PendingInitLoop>(Key);
499 }
500 
501 ProgramStateRef ExprEngine::setPendingInitLoop(ProgramStateRef State,
502                                                const CXXConstructExpr *E,
503                                                const LocationContext *LCtx,
504                                                unsigned Size) {
505   auto Key = std::make_pair(E, LCtx->getStackFrame());
506 
507   assert(!State->contains<PendingInitLoop>(Key) && Size > 0);
508 
509   return State->set<PendingInitLoop>(Key, Size);
510 }
511 
512 std::optional<unsigned>
513 ExprEngine::getIndexOfElementToConstruct(ProgramStateRef State,
514                                          const CXXConstructExpr *E,
515                                          const LocationContext *LCtx) {
516   const unsigned *V =
517       State->get<IndexOfElementToConstruct>({E, LCtx->getStackFrame()});
518   return V ? std::make_optional(*V) : std::nullopt;
519 }
520 
521 ProgramStateRef
522 ExprEngine::removeIndexOfElementToConstruct(ProgramStateRef State,
523                                             const CXXConstructExpr *E,
524                                             const LocationContext *LCtx) {
525   auto Key = std::make_pair(E, LCtx->getStackFrame());
526 
527   assert(E && State->contains<IndexOfElementToConstruct>(Key));
528   return State->remove<IndexOfElementToConstruct>(Key);
529 }
530 
531 std::optional<unsigned>
532 ExprEngine::getPendingArrayDestruction(ProgramStateRef State,
533                                        const LocationContext *LCtx) {
534   assert(LCtx && "LocationContext shouldn't be null!");
535 
536   const unsigned *V =
537       State->get<PendingArrayDestruction>(LCtx->getStackFrame());
538   return V ? std::make_optional(*V) : std::nullopt;
539 }
540 
541 ProgramStateRef ExprEngine::setPendingArrayDestruction(
542     ProgramStateRef State, const LocationContext *LCtx, unsigned Idx) {
543   assert(LCtx && "LocationContext shouldn't be null!");
544 
545   auto Key = LCtx->getStackFrame();
546 
547   return State->set<PendingArrayDestruction>(Key, Idx);
548 }
549 
550 ProgramStateRef
551 ExprEngine::removePendingArrayDestruction(ProgramStateRef State,
552                                           const LocationContext *LCtx) {
553   assert(LCtx && "LocationContext shouldn't be null!");
554 
555   auto Key = LCtx->getStackFrame();
556 
557   assert(LCtx && State->contains<PendingArrayDestruction>(Key));
558   return State->remove<PendingArrayDestruction>(Key);
559 }
560 
561 ProgramStateRef
562 ExprEngine::addObjectUnderConstruction(ProgramStateRef State,
563                                        const ConstructionContextItem &Item,
564                                        const LocationContext *LC, SVal V) {
565   ConstructedObjectKey Key(Item, LC->getStackFrame());
566 
567   const Expr *Init = nullptr;
568 
569   if (auto DS = dyn_cast_or_null<DeclStmt>(Item.getStmtOrNull())) {
570     if (auto VD = dyn_cast_or_null<VarDecl>(DS->getSingleDecl()))
571       Init = VD->getInit();
572   }
573 
574   if (auto LE = dyn_cast_or_null<LambdaExpr>(Item.getStmtOrNull()))
575     Init = *(LE->capture_init_begin() + Item.getIndex());
576 
577   if (!Init && !Item.getStmtOrNull())
578     Init = Item.getCXXCtorInitializer()->getInit();
579 
580   // In an ArrayInitLoopExpr the real initializer is returned by
581   // getSubExpr(). Note that AILEs can be nested in case of
582   // multidimesnional arrays.
583   if (const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init))
584     Init = extractElementInitializerFromNestedAILE(AILE);
585 
586   // FIXME: Currently the state might already contain the marker due to
587   // incorrect handling of temporaries bound to default parameters.
588   // The state will already contain the marker if we construct elements
589   // in an array, as we visit the same statement multiple times before
590   // the array declaration. The marker is removed when we exit the
591   // constructor call.
592   assert((!State->get<ObjectsUnderConstruction>(Key) ||
593           Key.getItem().getKind() ==
594               ConstructionContextItem::TemporaryDestructorKind ||
595           State->contains<IndexOfElementToConstruct>(
596               {dyn_cast_or_null<CXXConstructExpr>(Init), LC})) &&
597          "The object is already marked as `UnderConstruction`, when it's not "
598          "supposed to!");
599   return State->set<ObjectsUnderConstruction>(Key, V);
600 }
601 
602 std::optional<SVal>
603 ExprEngine::getObjectUnderConstruction(ProgramStateRef State,
604                                        const ConstructionContextItem &Item,
605                                        const LocationContext *LC) {
606   ConstructedObjectKey Key(Item, LC->getStackFrame());
607   const SVal *V = State->get<ObjectsUnderConstruction>(Key);
608   return V ? std::make_optional(*V) : std::nullopt;
609 }
610 
611 ProgramStateRef
612 ExprEngine::finishObjectConstruction(ProgramStateRef State,
613                                      const ConstructionContextItem &Item,
614                                      const LocationContext *LC) {
615   ConstructedObjectKey Key(Item, LC->getStackFrame());
616   assert(State->contains<ObjectsUnderConstruction>(Key));
617   return State->remove<ObjectsUnderConstruction>(Key);
618 }
619 
620 ProgramStateRef ExprEngine::elideDestructor(ProgramStateRef State,
621                                             const CXXBindTemporaryExpr *BTE,
622                                             const LocationContext *LC) {
623   ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
624   // FIXME: Currently the state might already contain the marker due to
625   // incorrect handling of temporaries bound to default parameters.
626   return State->set<ObjectsUnderConstruction>(Key, UnknownVal());
627 }
628 
629 ProgramStateRef
630 ExprEngine::cleanupElidedDestructor(ProgramStateRef State,
631                                     const CXXBindTemporaryExpr *BTE,
632                                     const LocationContext *LC) {
633   ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
634   assert(State->contains<ObjectsUnderConstruction>(Key));
635   return State->remove<ObjectsUnderConstruction>(Key);
636 }
637 
638 bool ExprEngine::isDestructorElided(ProgramStateRef State,
639                                     const CXXBindTemporaryExpr *BTE,
640                                     const LocationContext *LC) {
641   ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
642   return State->contains<ObjectsUnderConstruction>(Key);
643 }
644 
645 bool ExprEngine::areAllObjectsFullyConstructed(ProgramStateRef State,
646                                                const LocationContext *FromLC,
647                                                const LocationContext *ToLC) {
648   const LocationContext *LC = FromLC;
649   while (LC != ToLC) {
650     assert(LC && "ToLC must be a parent of FromLC!");
651     for (auto I : State->get<ObjectsUnderConstruction>())
652       if (I.first.getLocationContext() == LC)
653         return false;
654 
655     LC = LC->getParent();
656   }
657   return true;
658 }
659 
660 
661 //===----------------------------------------------------------------------===//
662 // Top-level transfer function logic (Dispatcher).
663 //===----------------------------------------------------------------------===//
664 
665 /// evalAssume - Called by ConstraintManager. Used to call checker-specific
666 ///  logic for handling assumptions on symbolic values.
667 ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
668                                               SVal cond, bool assumption) {
669   return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
670 }
671 
672 ProgramStateRef
673 ExprEngine::processRegionChanges(ProgramStateRef state,
674                                  const InvalidatedSymbols *invalidated,
675                                  ArrayRef<const MemRegion *> Explicits,
676                                  ArrayRef<const MemRegion *> Regions,
677                                  const LocationContext *LCtx,
678                                  const CallEvent *Call) {
679   return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
680                                                          Explicits, Regions,
681                                                          LCtx, Call);
682 }
683 
684 static void
685 printObjectsUnderConstructionJson(raw_ostream &Out, ProgramStateRef State,
686                                   const char *NL, const LocationContext *LCtx,
687                                   unsigned int Space = 0, bool IsDot = false) {
688   PrintingPolicy PP =
689       LCtx->getAnalysisDeclContext()->getASTContext().getPrintingPolicy();
690 
691   ++Space;
692   bool HasItem = false;
693 
694   // Store the last key.
695   const ConstructedObjectKey *LastKey = nullptr;
696   for (const auto &I : State->get<ObjectsUnderConstruction>()) {
697     const ConstructedObjectKey &Key = I.first;
698     if (Key.getLocationContext() != LCtx)
699       continue;
700 
701     if (!HasItem) {
702       Out << '[' << NL;
703       HasItem = true;
704     }
705 
706     LastKey = &Key;
707   }
708 
709   for (const auto &I : State->get<ObjectsUnderConstruction>()) {
710     const ConstructedObjectKey &Key = I.first;
711     SVal Value = I.second;
712     if (Key.getLocationContext() != LCtx)
713       continue;
714 
715     Indent(Out, Space, IsDot) << "{ ";
716     Key.printJson(Out, nullptr, PP);
717     Out << ", \"value\": \"" << Value << "\" }";
718 
719     if (&Key != LastKey)
720       Out << ',';
721     Out << NL;
722   }
723 
724   if (HasItem)
725     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
726   else {
727     Out << "null ";
728   }
729 }
730 
731 static void printIndicesOfElementsToConstructJson(
732     raw_ostream &Out, ProgramStateRef State, const char *NL,
733     const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) {
734   using KeyT = std::pair<const Expr *, const LocationContext *>;
735 
736   const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext();
737   PrintingPolicy PP = Context.getPrintingPolicy();
738 
739   ++Space;
740   bool HasItem = false;
741 
742   // Store the last key.
743   KeyT LastKey;
744   for (const auto &I : State->get<IndexOfElementToConstruct>()) {
745     const KeyT &Key = I.first;
746     if (Key.second != LCtx)
747       continue;
748 
749     if (!HasItem) {
750       Out << '[' << NL;
751       HasItem = true;
752     }
753 
754     LastKey = Key;
755   }
756 
757   for (const auto &I : State->get<IndexOfElementToConstruct>()) {
758     const KeyT &Key = I.first;
759     unsigned Value = I.second;
760     if (Key.second != LCtx)
761       continue;
762 
763     Indent(Out, Space, IsDot) << "{ ";
764 
765     // Expr
766     const Expr *E = Key.first;
767     Out << "\"stmt_id\": " << E->getID(Context);
768 
769     // Kind
770     Out << ", \"kind\": null";
771 
772     // Pretty-print
773     Out << ", \"pretty\": ";
774     Out << "\"" << E->getStmtClassName() << ' '
775         << E->getSourceRange().printToString(Context.getSourceManager()) << " '"
776         << QualType::getAsString(E->getType().split(), PP);
777     Out << "'\"";
778 
779     Out << ", \"value\": \"Current index: " << Value - 1 << "\" }";
780 
781     if (Key != LastKey)
782       Out << ',';
783     Out << NL;
784   }
785 
786   if (HasItem)
787     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
788   else {
789     Out << "null ";
790   }
791 }
792 
793 static void printPendingInitLoopJson(raw_ostream &Out, ProgramStateRef State,
794                                      const char *NL,
795                                      const LocationContext *LCtx,
796                                      unsigned int Space = 0,
797                                      bool IsDot = false) {
798   using KeyT = std::pair<const CXXConstructExpr *, const LocationContext *>;
799 
800   const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext();
801   PrintingPolicy PP = Context.getPrintingPolicy();
802 
803   ++Space;
804   bool HasItem = false;
805 
806   // Store the last key.
807   KeyT LastKey;
808   for (const auto &I : State->get<PendingInitLoop>()) {
809     const KeyT &Key = I.first;
810     if (Key.second != LCtx)
811       continue;
812 
813     if (!HasItem) {
814       Out << '[' << NL;
815       HasItem = true;
816     }
817 
818     LastKey = Key;
819   }
820 
821   for (const auto &I : State->get<PendingInitLoop>()) {
822     const KeyT &Key = I.first;
823     unsigned Value = I.second;
824     if (Key.second != LCtx)
825       continue;
826 
827     Indent(Out, Space, IsDot) << "{ ";
828 
829     const CXXConstructExpr *E = Key.first;
830     Out << "\"stmt_id\": " << E->getID(Context);
831 
832     Out << ", \"kind\": null";
833     Out << ", \"pretty\": ";
834     Out << '\"' << E->getStmtClassName() << ' '
835         << E->getSourceRange().printToString(Context.getSourceManager()) << " '"
836         << QualType::getAsString(E->getType().split(), PP);
837     Out << "'\"";
838 
839     Out << ", \"value\": \"Flattened size: " << Value << "\"}";
840 
841     if (Key != LastKey)
842       Out << ',';
843     Out << NL;
844   }
845 
846   if (HasItem)
847     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
848   else {
849     Out << "null ";
850   }
851 }
852 
853 static void
854 printPendingArrayDestructionsJson(raw_ostream &Out, ProgramStateRef State,
855                                   const char *NL, const LocationContext *LCtx,
856                                   unsigned int Space = 0, bool IsDot = false) {
857   using KeyT = const LocationContext *;
858 
859   ++Space;
860   bool HasItem = false;
861 
862   // Store the last key.
863   KeyT LastKey = nullptr;
864   for (const auto &I : State->get<PendingArrayDestruction>()) {
865     const KeyT &Key = I.first;
866     if (Key != LCtx)
867       continue;
868 
869     if (!HasItem) {
870       Out << '[' << NL;
871       HasItem = true;
872     }
873 
874     LastKey = Key;
875   }
876 
877   for (const auto &I : State->get<PendingArrayDestruction>()) {
878     const KeyT &Key = I.first;
879     if (Key != LCtx)
880       continue;
881 
882     Indent(Out, Space, IsDot) << "{ ";
883 
884     Out << "\"stmt_id\": null";
885     Out << ", \"kind\": null";
886     Out << ", \"pretty\": \"Current index: \"";
887     Out << ", \"value\": \"" << I.second << "\" }";
888 
889     if (Key != LastKey)
890       Out << ',';
891     Out << NL;
892   }
893 
894   if (HasItem)
895     Indent(Out, --Space, IsDot) << ']'; // End of "location_context".
896   else {
897     Out << "null ";
898   }
899 }
900 
901 /// A helper function to generalize program state trait printing.
902 /// The function invokes Printer as 'Printer(Out, State, NL, LC, Space, IsDot,
903 /// std::forward<Args>(args)...)'. \n One possible type for Printer is
904 /// 'void()(raw_ostream &, ProgramStateRef, const char *, const LocationContext
905 /// *, unsigned int, bool, ...)' \n \param Trait The state trait to be printed.
906 /// \param Printer A void function that prints Trait.
907 /// \param Args An additional parameter pack that is passed to Print upon
908 /// invocation.
909 template <typename Trait, typename Printer, typename... Args>
910 static void printStateTraitWithLocationContextJson(
911     raw_ostream &Out, ProgramStateRef State, const LocationContext *LCtx,
912     const char *NL, unsigned int Space, bool IsDot,
913     const char *jsonPropertyName, Printer printer, Args &&...args) {
914 
915   using RequiredType =
916       void (*)(raw_ostream &, ProgramStateRef, const char *,
917                const LocationContext *, unsigned int, bool, Args &&...);
918 
919   // Try to do as much compile time checking as possible.
920   // FIXME: check for invocable instead of function?
921   static_assert(std::is_function_v<std::remove_pointer_t<Printer>>,
922                 "Printer is not a function!");
923   static_assert(std::is_convertible_v<Printer, RequiredType>,
924                 "Printer doesn't have the required type!");
925 
926   if (LCtx && !State->get<Trait>().isEmpty()) {
927     Indent(Out, Space, IsDot) << '\"' << jsonPropertyName << "\": ";
928     ++Space;
929     Out << '[' << NL;
930     LCtx->printJson(Out, NL, Space, IsDot, [&](const LocationContext *LC) {
931       printer(Out, State, NL, LC, Space, IsDot, std::forward<Args>(args)...);
932     });
933 
934     --Space;
935     Indent(Out, Space, IsDot) << "]," << NL; // End of "jsonPropertyName".
936   }
937 }
938 
939 void ExprEngine::printJson(raw_ostream &Out, ProgramStateRef State,
940                            const LocationContext *LCtx, const char *NL,
941                            unsigned int Space, bool IsDot) const {
942 
943   printStateTraitWithLocationContextJson<ObjectsUnderConstruction>(
944       Out, State, LCtx, NL, Space, IsDot, "constructing_objects",
945       printObjectsUnderConstructionJson);
946   printStateTraitWithLocationContextJson<IndexOfElementToConstruct>(
947       Out, State, LCtx, NL, Space, IsDot, "index_of_element",
948       printIndicesOfElementsToConstructJson);
949   printStateTraitWithLocationContextJson<PendingInitLoop>(
950       Out, State, LCtx, NL, Space, IsDot, "pending_init_loops",
951       printPendingInitLoopJson);
952   printStateTraitWithLocationContextJson<PendingArrayDestruction>(
953       Out, State, LCtx, NL, Space, IsDot, "pending_destructors",
954       printPendingArrayDestructionsJson);
955 
956   getCheckerManager().runCheckersForPrintStateJson(Out, State, NL, Space,
957                                                    IsDot);
958 }
959 
960 void ExprEngine::processEndWorklist() {
961   // This prints the name of the top-level function if we crash.
962   PrettyStackTraceLocationContext CrashInfo(getRootLocationContext());
963   getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
964 }
965 
966 void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
967                                    unsigned StmtIdx, NodeBuilderContext *Ctx) {
968   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
969   currStmtIdx = StmtIdx;
970   currBldrCtx = Ctx;
971 
972   switch (E.getKind()) {
973     case CFGElement::Statement:
974     case CFGElement::Constructor:
975     case CFGElement::CXXRecordTypedCall:
976       ProcessStmt(E.castAs<CFGStmt>().getStmt(), Pred);
977       return;
978     case CFGElement::Initializer:
979       ProcessInitializer(E.castAs<CFGInitializer>(), Pred);
980       return;
981     case CFGElement::NewAllocator:
982       ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(),
983                           Pred);
984       return;
985     case CFGElement::AutomaticObjectDtor:
986     case CFGElement::DeleteDtor:
987     case CFGElement::BaseDtor:
988     case CFGElement::MemberDtor:
989     case CFGElement::TemporaryDtor:
990       ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred);
991       return;
992     case CFGElement::LoopExit:
993       ProcessLoopExit(E.castAs<CFGLoopExit>().getLoopStmt(), Pred);
994       return;
995     case CFGElement::LifetimeEnds:
996     case CFGElement::CleanupFunction:
997     case CFGElement::ScopeBegin:
998     case CFGElement::ScopeEnd:
999       return;
1000   }
1001 }
1002 
1003 static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
1004                                      const Stmt *S,
1005                                      const ExplodedNode *Pred,
1006                                      const LocationContext *LC) {
1007   // Are we never purging state values?
1008   if (AMgr.options.AnalysisPurgeOpt == PurgeNone)
1009     return false;
1010 
1011   // Is this the beginning of a basic block?
1012   if (Pred->getLocation().getAs<BlockEntrance>())
1013     return true;
1014 
1015   // Is this on a non-expression?
1016   if (!isa<Expr>(S))
1017     return true;
1018 
1019   // Run before processing a call.
1020   if (CallEvent::isCallStmt(S))
1021     return true;
1022 
1023   // Is this an expression that is consumed by another expression?  If so,
1024   // postpone cleaning out the state.
1025   ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
1026   return !PM.isConsumedExpr(cast<Expr>(S));
1027 }
1028 
1029 void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out,
1030                             const Stmt *ReferenceStmt,
1031                             const LocationContext *LC,
1032                             const Stmt *DiagnosticStmt,
1033                             ProgramPoint::Kind K) {
1034   assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind ||
1035           ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt))
1036           && "PostStmt is not generally supported by the SymbolReaper yet");
1037   assert(LC && "Must pass the current (or expiring) LocationContext");
1038 
1039   if (!DiagnosticStmt) {
1040     DiagnosticStmt = ReferenceStmt;
1041     assert(DiagnosticStmt && "Required for clearing a LocationContext");
1042   }
1043 
1044   NumRemoveDeadBindings++;
1045   ProgramStateRef CleanedState = Pred->getState();
1046 
1047   // LC is the location context being destroyed, but SymbolReaper wants a
1048   // location context that is still live. (If this is the top-level stack
1049   // frame, this will be null.)
1050   if (!ReferenceStmt) {
1051     assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind &&
1052            "Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext");
1053     LC = LC->getParent();
1054   }
1055 
1056   const StackFrameContext *SFC = LC ? LC->getStackFrame() : nullptr;
1057   SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager());
1058 
1059   for (auto I : CleanedState->get<ObjectsUnderConstruction>()) {
1060     if (SymbolRef Sym = I.second.getAsSymbol())
1061       SymReaper.markLive(Sym);
1062     if (const MemRegion *MR = I.second.getAsRegion())
1063       SymReaper.markLive(MR);
1064   }
1065 
1066   getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
1067 
1068   // Create a state in which dead bindings are removed from the environment
1069   // and the store. TODO: The function should just return new env and store,
1070   // not a new state.
1071   CleanedState = StateMgr.removeDeadBindingsFromEnvironmentAndStore(
1072       CleanedState, SFC, SymReaper);
1073 
1074   // Process any special transfer function for dead symbols.
1075   // Call checkers with the non-cleaned state so that they could query the
1076   // values of the soon to be dead symbols.
1077   ExplodedNodeSet CheckedSet;
1078   getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper,
1079                                                 DiagnosticStmt, *this, K);
1080 
1081   // For each node in CheckedSet, generate CleanedNodes that have the
1082   // environment, the store, and the constraints cleaned up but have the
1083   // user-supplied states as the predecessors.
1084   StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx);
1085   for (const auto I : CheckedSet) {
1086     ProgramStateRef CheckerState = I->getState();
1087 
1088     // The constraint manager has not been cleaned up yet, so clean up now.
1089     CheckerState =
1090         getConstraintManager().removeDeadBindings(CheckerState, SymReaper);
1091 
1092     assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) &&
1093            "Checkers are not allowed to modify the Environment as a part of "
1094            "checkDeadSymbols processing.");
1095     assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) &&
1096            "Checkers are not allowed to modify the Store as a part of "
1097            "checkDeadSymbols processing.");
1098 
1099     // Create a state based on CleanedState with CheckerState GDM and
1100     // generate a transition to that state.
1101     ProgramStateRef CleanedCheckerSt =
1102         StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
1103     Bldr.generateNode(DiagnosticStmt, I, CleanedCheckerSt, cleanupNodeTag(), K);
1104   }
1105 }
1106 
1107 const ProgramPointTag *ExprEngine::cleanupNodeTag() {
1108   static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node");
1109   return &cleanupTag;
1110 }
1111 
1112 void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) {
1113   // Reclaim any unnecessary nodes in the ExplodedGraph.
1114   G.reclaimRecentlyAllocatedNodes();
1115 
1116   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1117                                 currStmt->getBeginLoc(),
1118                                 "Error evaluating statement");
1119 
1120   // Remove dead bindings and symbols.
1121   ExplodedNodeSet CleanedStates;
1122   if (shouldRemoveDeadBindings(AMgr, currStmt, Pred,
1123                                Pred->getLocationContext())) {
1124     removeDead(Pred, CleanedStates, currStmt,
1125                                     Pred->getLocationContext());
1126   } else
1127     CleanedStates.Add(Pred);
1128 
1129   // Visit the statement.
1130   ExplodedNodeSet Dst;
1131   for (const auto I : CleanedStates) {
1132     ExplodedNodeSet DstI;
1133     // Visit the statement.
1134     Visit(currStmt, I, DstI);
1135     Dst.insert(DstI);
1136   }
1137 
1138   // Enqueue the new nodes onto the work list.
1139   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1140 }
1141 
1142 void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) {
1143   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1144                                 S->getBeginLoc(),
1145                                 "Error evaluating end of the loop");
1146   ExplodedNodeSet Dst;
1147   Dst.Add(Pred);
1148   NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1149   ProgramStateRef NewState = Pred->getState();
1150 
1151   if(AMgr.options.ShouldUnrollLoops)
1152     NewState = processLoopEnd(S, NewState);
1153 
1154   LoopExit PP(S, Pred->getLocationContext());
1155   Bldr.generateNode(PP, NewState, Pred);
1156   // Enqueue the new nodes onto the work list.
1157   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1158 }
1159 
1160 void ExprEngine::ProcessInitializer(const CFGInitializer CFGInit,
1161                                     ExplodedNode *Pred) {
1162   const CXXCtorInitializer *BMI = CFGInit.getInitializer();
1163   const Expr *Init = BMI->getInit()->IgnoreImplicit();
1164   const LocationContext *LC = Pred->getLocationContext();
1165 
1166   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1167                                 BMI->getSourceLocation(),
1168                                 "Error evaluating initializer");
1169 
1170   // We don't clean up dead bindings here.
1171   const auto *stackFrame = cast<StackFrameContext>(Pred->getLocationContext());
1172   const auto *decl = cast<CXXConstructorDecl>(stackFrame->getDecl());
1173 
1174   ProgramStateRef State = Pred->getState();
1175   SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame));
1176 
1177   ExplodedNodeSet Tmp;
1178   SVal FieldLoc;
1179 
1180   // Evaluate the initializer, if necessary
1181   if (BMI->isAnyMemberInitializer()) {
1182     // Constructors build the object directly in the field,
1183     // but non-objects must be copied in from the initializer.
1184     if (getObjectUnderConstruction(State, BMI, LC)) {
1185       // The field was directly constructed, so there is no need to bind.
1186       // But we still need to stop tracking the object under construction.
1187       State = finishObjectConstruction(State, BMI, LC);
1188       NodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
1189       PostStore PS(Init, LC, /*Loc*/ nullptr, /*tag*/ nullptr);
1190       Bldr.generateNode(PS, State, Pred);
1191     } else {
1192       const ValueDecl *Field;
1193       if (BMI->isIndirectMemberInitializer()) {
1194         Field = BMI->getIndirectMember();
1195         FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal);
1196       } else {
1197         Field = BMI->getMember();
1198         FieldLoc = State->getLValue(BMI->getMember(), thisVal);
1199       }
1200 
1201       SVal InitVal;
1202       if (Init->getType()->isArrayType()) {
1203         // Handle arrays of trivial type. We can represent this with a
1204         // primitive load/copy from the base array region.
1205         const ArraySubscriptExpr *ASE;
1206         while ((ASE = dyn_cast<ArraySubscriptExpr>(Init)))
1207           Init = ASE->getBase()->IgnoreImplicit();
1208 
1209         InitVal = State->getSVal(Init, stackFrame);
1210 
1211         // If we fail to get the value for some reason, use a symbolic value.
1212         if (InitVal.isUnknownOrUndef()) {
1213           SValBuilder &SVB = getSValBuilder();
1214           InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame,
1215                                          Field->getType(),
1216                                          currBldrCtx->blockCount());
1217         }
1218       } else {
1219         InitVal = State->getSVal(BMI->getInit(), stackFrame);
1220       }
1221 
1222       PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
1223       evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP);
1224     }
1225   } else if (BMI->isBaseInitializer() && isa<InitListExpr>(Init)) {
1226     // When the base class is initialized with an initialization list and the
1227     // base class does not have a ctor, there will not be a CXXConstructExpr to
1228     // initialize the base region. Hence, we need to make the bind for it.
1229     SVal BaseLoc = getStoreManager().evalDerivedToBase(
1230         thisVal, QualType(BMI->getBaseClass(), 0), BMI->isBaseVirtual());
1231     SVal InitVal = State->getSVal(Init, stackFrame);
1232     evalBind(Tmp, Init, Pred, BaseLoc, InitVal, /*isInit=*/true);
1233   } else {
1234     assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer());
1235     Tmp.insert(Pred);
1236     // We already did all the work when visiting the CXXConstructExpr.
1237   }
1238 
1239   // Construct PostInitializer nodes whether the state changed or not,
1240   // so that the diagnostics don't get confused.
1241   PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
1242   ExplodedNodeSet Dst;
1243   NodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
1244   for (const auto I : Tmp) {
1245     ProgramStateRef State = I->getState();
1246     Bldr.generateNode(PP, State, I);
1247   }
1248 
1249   // Enqueue the new nodes onto the work list.
1250   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1251 }
1252 
1253 std::pair<ProgramStateRef, uint64_t>
1254 ExprEngine::prepareStateForArrayDestruction(const ProgramStateRef State,
1255                                             const MemRegion *Region,
1256                                             const QualType &ElementTy,
1257                                             const LocationContext *LCtx,
1258                                             SVal *ElementCountVal) {
1259   assert(Region != nullptr && "Not-null region expected");
1260 
1261   QualType Ty = ElementTy.getDesugaredType(getContext());
1262   while (const auto *NTy = dyn_cast<ArrayType>(Ty))
1263     Ty = NTy->getElementType().getDesugaredType(getContext());
1264 
1265   auto ElementCount = getDynamicElementCount(State, Region, svalBuilder, Ty);
1266 
1267   if (ElementCountVal)
1268     *ElementCountVal = ElementCount;
1269 
1270   // Note: the destructors are called in reverse order.
1271   unsigned Idx = 0;
1272   if (auto OptionalIdx = getPendingArrayDestruction(State, LCtx)) {
1273     Idx = *OptionalIdx;
1274   } else {
1275     // The element count is either unknown, or an SVal that's not an integer.
1276     if (!ElementCount.isConstant())
1277       return {State, 0};
1278 
1279     Idx = ElementCount.getAsInteger()->getLimitedValue();
1280   }
1281 
1282   if (Idx == 0)
1283     return {State, 0};
1284 
1285   --Idx;
1286 
1287   return {setPendingArrayDestruction(State, LCtx, Idx), Idx};
1288 }
1289 
1290 void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
1291                                      ExplodedNode *Pred) {
1292   ExplodedNodeSet Dst;
1293   switch (D.getKind()) {
1294   case CFGElement::AutomaticObjectDtor:
1295     ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst);
1296     break;
1297   case CFGElement::BaseDtor:
1298     ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst);
1299     break;
1300   case CFGElement::MemberDtor:
1301     ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst);
1302     break;
1303   case CFGElement::TemporaryDtor:
1304     ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst);
1305     break;
1306   case CFGElement::DeleteDtor:
1307     ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst);
1308     break;
1309   default:
1310     llvm_unreachable("Unexpected dtor kind.");
1311   }
1312 
1313   // Enqueue the new nodes onto the work list.
1314   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1315 }
1316 
1317 void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE,
1318                                      ExplodedNode *Pred) {
1319   ExplodedNodeSet Dst;
1320   AnalysisManager &AMgr = getAnalysisManager();
1321   AnalyzerOptions &Opts = AMgr.options;
1322   // TODO: We're not evaluating allocators for all cases just yet as
1323   // we're not handling the return value correctly, which causes false
1324   // positives when the alpha.cplusplus.NewDeleteLeaks check is on.
1325   if (Opts.MayInlineCXXAllocator)
1326     VisitCXXNewAllocatorCall(NE, Pred, Dst);
1327   else {
1328     NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1329     const LocationContext *LCtx = Pred->getLocationContext();
1330     PostImplicitCall PP(NE->getOperatorNew(), NE->getBeginLoc(), LCtx,
1331                         getCFGElementRef());
1332     Bldr.generateNode(PP, Pred->getState(), Pred);
1333   }
1334   Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
1335 }
1336 
1337 void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
1338                                          ExplodedNode *Pred,
1339                                          ExplodedNodeSet &Dst) {
1340   const auto *DtorDecl = Dtor.getDestructorDecl(getContext());
1341   const VarDecl *varDecl = Dtor.getVarDecl();
1342   QualType varType = varDecl->getType();
1343 
1344   ProgramStateRef state = Pred->getState();
1345   const LocationContext *LCtx = Pred->getLocationContext();
1346 
1347   SVal dest = state->getLValue(varDecl, LCtx);
1348   const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion();
1349 
1350   if (varType->isReferenceType()) {
1351     const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion();
1352     if (!ValueRegion) {
1353       // FIXME: This should not happen. The language guarantees a presence
1354       // of a valid initializer here, so the reference shall not be undefined.
1355       // It seems that we're calling destructors over variables that
1356       // were not initialized yet.
1357       return;
1358     }
1359     Region = ValueRegion->getBaseRegion();
1360     varType = cast<TypedValueRegion>(Region)->getValueType();
1361   }
1362 
1363   unsigned Idx = 0;
1364   if (isa<ArrayType>(varType)) {
1365     SVal ElementCount;
1366     std::tie(state, Idx) = prepareStateForArrayDestruction(
1367         state, Region, varType, LCtx, &ElementCount);
1368 
1369     if (ElementCount.isConstant()) {
1370       uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue();
1371       assert(ArrayLength &&
1372              "An automatic dtor for a 0 length array shouldn't be triggered!");
1373 
1374       // Still handle this case if we don't have assertions enabled.
1375       if (!ArrayLength) {
1376         static SimpleProgramPointTag PT(
1377             "ExprEngine", "Skipping automatic 0 length array destruction, "
1378                           "which shouldn't be in the CFG.");
1379         PostImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx,
1380                             getCFGElementRef(), &PT);
1381         NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1382         Bldr.generateSink(PP, Pred->getState(), Pred);
1383         return;
1384       }
1385     }
1386   }
1387 
1388   EvalCallOptions CallOpts;
1389   Region = makeElementRegion(state, loc::MemRegionVal(Region), varType,
1390                              CallOpts.IsArrayCtorOrDtor, Idx)
1391                .getAsRegion();
1392 
1393   NodeBuilder Bldr(Pred, Dst, getBuilderContext());
1394 
1395   static SimpleProgramPointTag PT("ExprEngine",
1396                                   "Prepare for object destruction");
1397   PreImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx, getCFGElementRef(),
1398                      &PT);
1399   Pred = Bldr.generateNode(PP, state, Pred);
1400 
1401   if (!Pred)
1402     return;
1403   Bldr.takeNodes(Pred);
1404 
1405   VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(),
1406                      /*IsBase=*/false, Pred, Dst, CallOpts);
1407 }
1408 
1409 void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor,
1410                                    ExplodedNode *Pred,
1411                                    ExplodedNodeSet &Dst) {
1412   ProgramStateRef State = Pred->getState();
1413   const LocationContext *LCtx = Pred->getLocationContext();
1414   const CXXDeleteExpr *DE = Dtor.getDeleteExpr();
1415   const Stmt *Arg = DE->getArgument();
1416   QualType DTy = DE->getDestroyedType();
1417   SVal ArgVal = State->getSVal(Arg, LCtx);
1418 
1419   // If the argument to delete is known to be a null value,
1420   // don't run destructor.
1421   if (State->isNull(ArgVal).isConstrainedTrue()) {
1422     QualType BTy = getContext().getBaseElementType(DTy);
1423     const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl();
1424     const CXXDestructorDecl *Dtor = RD->getDestructor();
1425 
1426     PostImplicitCall PP(Dtor, DE->getBeginLoc(), LCtx, getCFGElementRef());
1427     NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1428     Bldr.generateNode(PP, Pred->getState(), Pred);
1429     return;
1430   }
1431 
1432   auto getDtorDecl = [](const QualType &DTy) {
1433     const CXXRecordDecl *RD = DTy->getAsCXXRecordDecl();
1434     return RD->getDestructor();
1435   };
1436 
1437   unsigned Idx = 0;
1438   EvalCallOptions CallOpts;
1439   const MemRegion *ArgR = ArgVal.getAsRegion();
1440 
1441   if (DE->isArrayForm()) {
1442     CallOpts.IsArrayCtorOrDtor = true;
1443     // Yes, it may even be a multi-dimensional array.
1444     while (const auto *AT = getContext().getAsArrayType(DTy))
1445       DTy = AT->getElementType();
1446 
1447     if (ArgR) {
1448       SVal ElementCount;
1449       std::tie(State, Idx) = prepareStateForArrayDestruction(
1450           State, ArgR, DTy, LCtx, &ElementCount);
1451 
1452       // If we're about to destruct a 0 length array, don't run any of the
1453       // destructors.
1454       if (ElementCount.isConstant() &&
1455           ElementCount.getAsInteger()->getLimitedValue() == 0) {
1456 
1457         static SimpleProgramPointTag PT(
1458             "ExprEngine", "Skipping 0 length array delete destruction");
1459         PostImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx,
1460                             getCFGElementRef(), &PT);
1461         NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1462         Bldr.generateNode(PP, Pred->getState(), Pred);
1463         return;
1464       }
1465 
1466       ArgR = State->getLValue(DTy, svalBuilder.makeArrayIndex(Idx), ArgVal)
1467                  .getAsRegion();
1468     }
1469   }
1470 
1471   NodeBuilder Bldr(Pred, Dst, getBuilderContext());
1472   static SimpleProgramPointTag PT("ExprEngine",
1473                                   "Prepare for object destruction");
1474   PreImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx,
1475                      getCFGElementRef(), &PT);
1476   Pred = Bldr.generateNode(PP, State, Pred);
1477 
1478   if (!Pred)
1479     return;
1480   Bldr.takeNodes(Pred);
1481 
1482   VisitCXXDestructor(DTy, ArgR, DE, /*IsBase=*/false, Pred, Dst, CallOpts);
1483 }
1484 
1485 void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
1486                                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
1487   const LocationContext *LCtx = Pred->getLocationContext();
1488 
1489   const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
1490   Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor,
1491                                             LCtx->getStackFrame());
1492   SVal ThisVal = Pred->getState()->getSVal(ThisPtr);
1493 
1494   // Create the base object region.
1495   const CXXBaseSpecifier *Base = D.getBaseSpecifier();
1496   QualType BaseTy = Base->getType();
1497   SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy,
1498                                                      Base->isVirtual());
1499 
1500   EvalCallOptions CallOpts;
1501   VisitCXXDestructor(BaseTy, BaseVal.getAsRegion(), CurDtor->getBody(),
1502                      /*IsBase=*/true, Pred, Dst, CallOpts);
1503 }
1504 
1505 void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
1506                                    ExplodedNode *Pred, ExplodedNodeSet &Dst) {
1507   const auto *DtorDecl = D.getDestructorDecl(getContext());
1508   const FieldDecl *Member = D.getFieldDecl();
1509   QualType T = Member->getType();
1510   ProgramStateRef State = Pred->getState();
1511   const LocationContext *LCtx = Pred->getLocationContext();
1512 
1513   const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
1514   Loc ThisStorageLoc =
1515       getSValBuilder().getCXXThis(CurDtor, LCtx->getStackFrame());
1516   Loc ThisLoc = State->getSVal(ThisStorageLoc).castAs<Loc>();
1517   SVal FieldVal = State->getLValue(Member, ThisLoc);
1518 
1519   unsigned Idx = 0;
1520   if (isa<ArrayType>(T)) {
1521     SVal ElementCount;
1522     std::tie(State, Idx) = prepareStateForArrayDestruction(
1523         State, FieldVal.getAsRegion(), T, LCtx, &ElementCount);
1524 
1525     if (ElementCount.isConstant()) {
1526       uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue();
1527       assert(ArrayLength &&
1528              "A member dtor for a 0 length array shouldn't be triggered!");
1529 
1530       // Still handle this case if we don't have assertions enabled.
1531       if (!ArrayLength) {
1532         static SimpleProgramPointTag PT(
1533             "ExprEngine", "Skipping member 0 length array destruction, which "
1534                           "shouldn't be in the CFG.");
1535         PostImplicitCall PP(DtorDecl, Member->getLocation(), LCtx,
1536                             getCFGElementRef(), &PT);
1537         NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1538         Bldr.generateSink(PP, Pred->getState(), Pred);
1539         return;
1540       }
1541     }
1542   }
1543 
1544   EvalCallOptions CallOpts;
1545   FieldVal =
1546       makeElementRegion(State, FieldVal, T, CallOpts.IsArrayCtorOrDtor, Idx);
1547 
1548   NodeBuilder Bldr(Pred, Dst, getBuilderContext());
1549 
1550   static SimpleProgramPointTag PT("ExprEngine",
1551                                   "Prepare for object destruction");
1552   PreImplicitCall PP(DtorDecl, Member->getLocation(), LCtx, getCFGElementRef(),
1553                      &PT);
1554   Pred = Bldr.generateNode(PP, State, Pred);
1555 
1556   if (!Pred)
1557     return;
1558   Bldr.takeNodes(Pred);
1559 
1560   VisitCXXDestructor(T, FieldVal.getAsRegion(), CurDtor->getBody(),
1561                      /*IsBase=*/false, Pred, Dst, CallOpts);
1562 }
1563 
1564 void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
1565                                       ExplodedNode *Pred,
1566                                       ExplodedNodeSet &Dst) {
1567   const CXXBindTemporaryExpr *BTE = D.getBindTemporaryExpr();
1568   ProgramStateRef State = Pred->getState();
1569   const LocationContext *LC = Pred->getLocationContext();
1570   const MemRegion *MR = nullptr;
1571 
1572   if (std::optional<SVal> V = getObjectUnderConstruction(
1573           State, D.getBindTemporaryExpr(), Pred->getLocationContext())) {
1574     // FIXME: Currently we insert temporary destructors for default parameters,
1575     // but we don't insert the constructors, so the entry in
1576     // ObjectsUnderConstruction may be missing.
1577     State = finishObjectConstruction(State, D.getBindTemporaryExpr(),
1578                                      Pred->getLocationContext());
1579     MR = V->getAsRegion();
1580   }
1581 
1582   // If copy elision has occurred, and the constructor corresponding to the
1583   // destructor was elided, we need to skip the destructor as well.
1584   if (isDestructorElided(State, BTE, LC)) {
1585     State = cleanupElidedDestructor(State, BTE, LC);
1586     NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1587     PostImplicitCall PP(D.getDestructorDecl(getContext()),
1588                         D.getBindTemporaryExpr()->getBeginLoc(),
1589                         Pred->getLocationContext(), getCFGElementRef());
1590     Bldr.generateNode(PP, State, Pred);
1591     return;
1592   }
1593 
1594   ExplodedNodeSet CleanDtorState;
1595   StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx);
1596   StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State);
1597 
1598   QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType();
1599   // FIXME: Currently CleanDtorState can be empty here due to temporaries being
1600   // bound to default parameters.
1601   assert(CleanDtorState.size() <= 1);
1602   ExplodedNode *CleanPred =
1603       CleanDtorState.empty() ? Pred : *CleanDtorState.begin();
1604 
1605   EvalCallOptions CallOpts;
1606   CallOpts.IsTemporaryCtorOrDtor = true;
1607   if (!MR) {
1608     // FIXME: If we have no MR, we still need to unwrap the array to avoid
1609     // destroying the whole array at once.
1610     //
1611     // For this case there is no universal solution as there is no way to
1612     // directly create an array of temporary objects. There are some expressions
1613     // however which can create temporary objects and have an array type.
1614     //
1615     // E.g.: std::initializer_list<S>{S(), S()};
1616     //
1617     // The expression above has a type of 'const struct S[2]' but it's a single
1618     // 'std::initializer_list<>'. The destructors of the 2 temporary 'S()'
1619     // objects will be called anyway, because they are 2 separate objects in 2
1620     // separate clusters, i.e.: not an array.
1621     //
1622     // Now the 'std::initializer_list<>' is not an array either even though it
1623     // has the type of an array. The point is, we only want to invoke the
1624     // destructor for the initializer list once not twice or so.
1625     while (const ArrayType *AT = getContext().getAsArrayType(T)) {
1626       T = AT->getElementType();
1627 
1628       // FIXME: Enable this flag once we handle this case properly.
1629       // CallOpts.IsArrayCtorOrDtor = true;
1630     }
1631   } else {
1632     // FIXME: We'd eventually need to makeElementRegion() trick here,
1633     // but for now we don't have the respective construction contexts,
1634     // so MR would always be null in this case. Do nothing for now.
1635   }
1636   VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(),
1637                      /*IsBase=*/false, CleanPred, Dst, CallOpts);
1638 }
1639 
1640 void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
1641                                                NodeBuilderContext &BldCtx,
1642                                                ExplodedNode *Pred,
1643                                                ExplodedNodeSet &Dst,
1644                                                const CFGBlock *DstT,
1645                                                const CFGBlock *DstF) {
1646   BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF);
1647   ProgramStateRef State = Pred->getState();
1648   const LocationContext *LC = Pred->getLocationContext();
1649   if (getObjectUnderConstruction(State, BTE, LC)) {
1650     TempDtorBuilder.generateNode(State, true, Pred);
1651   } else {
1652     TempDtorBuilder.generateNode(State, false, Pred);
1653   }
1654 }
1655 
1656 void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE,
1657                                            ExplodedNodeSet &PreVisit,
1658                                            ExplodedNodeSet &Dst) {
1659   // This is a fallback solution in case we didn't have a construction
1660   // context when we were constructing the temporary. Otherwise the map should
1661   // have been populated there.
1662   if (!getAnalysisManager().options.ShouldIncludeTemporaryDtorsInCFG) {
1663     // In case we don't have temporary destructors in the CFG, do not mark
1664     // the initialization - we would otherwise never clean it up.
1665     Dst = PreVisit;
1666     return;
1667   }
1668   StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx);
1669   for (ExplodedNode *Node : PreVisit) {
1670     ProgramStateRef State = Node->getState();
1671     const LocationContext *LC = Node->getLocationContext();
1672     if (!getObjectUnderConstruction(State, BTE, LC)) {
1673       // FIXME: Currently the state might also already contain the marker due to
1674       // incorrect handling of temporaries bound to default parameters; for
1675       // those, we currently skip the CXXBindTemporaryExpr but rely on adding
1676       // temporary destructor nodes.
1677       State = addObjectUnderConstruction(State, BTE, LC, UnknownVal());
1678     }
1679     StmtBldr.generateNode(BTE, Node, State);
1680   }
1681 }
1682 
1683 ProgramStateRef ExprEngine::escapeValues(ProgramStateRef State,
1684                                          ArrayRef<SVal> Vs,
1685                                          PointerEscapeKind K,
1686                                          const CallEvent *Call) const {
1687   class CollectReachableSymbolsCallback final : public SymbolVisitor {
1688     InvalidatedSymbols &Symbols;
1689 
1690   public:
1691     explicit CollectReachableSymbolsCallback(InvalidatedSymbols &Symbols)
1692         : Symbols(Symbols) {}
1693 
1694     const InvalidatedSymbols &getSymbols() const { return Symbols; }
1695 
1696     bool VisitSymbol(SymbolRef Sym) override {
1697       Symbols.insert(Sym);
1698       return true;
1699     }
1700   };
1701   InvalidatedSymbols Symbols;
1702   CollectReachableSymbolsCallback CallBack(Symbols);
1703   for (SVal V : Vs)
1704     State->scanReachableSymbols(V, CallBack);
1705 
1706   return getCheckerManager().runCheckersForPointerEscape(
1707       State, CallBack.getSymbols(), Call, K, nullptr);
1708 }
1709 
1710 void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
1711                        ExplodedNodeSet &DstTop) {
1712   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
1713                                 S->getBeginLoc(), "Error evaluating statement");
1714   ExplodedNodeSet Dst;
1715   StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx);
1716 
1717   assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens());
1718 
1719   switch (S->getStmtClass()) {
1720     // C++, OpenMP and ARC stuff we don't support yet.
1721     case Stmt::CXXDependentScopeMemberExprClass:
1722     case Stmt::CXXTryStmtClass:
1723     case Stmt::CXXTypeidExprClass:
1724     case Stmt::CXXUuidofExprClass:
1725     case Stmt::CXXFoldExprClass:
1726     case Stmt::MSPropertyRefExprClass:
1727     case Stmt::MSPropertySubscriptExprClass:
1728     case Stmt::CXXUnresolvedConstructExprClass:
1729     case Stmt::DependentScopeDeclRefExprClass:
1730     case Stmt::ArrayTypeTraitExprClass:
1731     case Stmt::ExpressionTraitExprClass:
1732     case Stmt::UnresolvedLookupExprClass:
1733     case Stmt::UnresolvedMemberExprClass:
1734     case Stmt::TypoExprClass:
1735     case Stmt::RecoveryExprClass:
1736     case Stmt::CXXNoexceptExprClass:
1737     case Stmt::PackExpansionExprClass:
1738     case Stmt::PackIndexingExprClass:
1739     case Stmt::SubstNonTypeTemplateParmPackExprClass:
1740     case Stmt::FunctionParmPackExprClass:
1741     case Stmt::CoroutineBodyStmtClass:
1742     case Stmt::CoawaitExprClass:
1743     case Stmt::DependentCoawaitExprClass:
1744     case Stmt::CoreturnStmtClass:
1745     case Stmt::CoyieldExprClass:
1746     case Stmt::ResolvedUnexpandedPackExprClass:
1747     case Stmt::SEHTryStmtClass:
1748     case Stmt::SEHExceptStmtClass:
1749     case Stmt::SEHLeaveStmtClass:
1750     case Stmt::SEHFinallyStmtClass:
1751     case Stmt::OMPCanonicalLoopClass:
1752     case Stmt::OMPParallelDirectiveClass:
1753     case Stmt::OMPSimdDirectiveClass:
1754     case Stmt::OMPForDirectiveClass:
1755     case Stmt::OMPForSimdDirectiveClass:
1756     case Stmt::OMPSectionsDirectiveClass:
1757     case Stmt::OMPSectionDirectiveClass:
1758     case Stmt::OMPScopeDirectiveClass:
1759     case Stmt::OMPSingleDirectiveClass:
1760     case Stmt::OMPMasterDirectiveClass:
1761     case Stmt::OMPCriticalDirectiveClass:
1762     case Stmt::OMPParallelForDirectiveClass:
1763     case Stmt::OMPParallelForSimdDirectiveClass:
1764     case Stmt::OMPParallelSectionsDirectiveClass:
1765     case Stmt::OMPParallelMasterDirectiveClass:
1766     case Stmt::OMPParallelMaskedDirectiveClass:
1767     case Stmt::OMPTaskDirectiveClass:
1768     case Stmt::OMPTaskyieldDirectiveClass:
1769     case Stmt::OMPBarrierDirectiveClass:
1770     case Stmt::OMPTaskwaitDirectiveClass:
1771     case Stmt::OMPErrorDirectiveClass:
1772     case Stmt::OMPTaskgroupDirectiveClass:
1773     case Stmt::OMPFlushDirectiveClass:
1774     case Stmt::OMPDepobjDirectiveClass:
1775     case Stmt::OMPScanDirectiveClass:
1776     case Stmt::OMPOrderedDirectiveClass:
1777     case Stmt::OMPAtomicDirectiveClass:
1778     case Stmt::OMPAssumeDirectiveClass:
1779     case Stmt::OMPTargetDirectiveClass:
1780     case Stmt::OMPTargetDataDirectiveClass:
1781     case Stmt::OMPTargetEnterDataDirectiveClass:
1782     case Stmt::OMPTargetExitDataDirectiveClass:
1783     case Stmt::OMPTargetParallelDirectiveClass:
1784     case Stmt::OMPTargetParallelForDirectiveClass:
1785     case Stmt::OMPTargetUpdateDirectiveClass:
1786     case Stmt::OMPTeamsDirectiveClass:
1787     case Stmt::OMPCancellationPointDirectiveClass:
1788     case Stmt::OMPCancelDirectiveClass:
1789     case Stmt::OMPTaskLoopDirectiveClass:
1790     case Stmt::OMPTaskLoopSimdDirectiveClass:
1791     case Stmt::OMPMasterTaskLoopDirectiveClass:
1792     case Stmt::OMPMaskedTaskLoopDirectiveClass:
1793     case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1794     case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1795     case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1796     case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1797     case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1798     case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1799     case Stmt::OMPDistributeDirectiveClass:
1800     case Stmt::OMPDistributeParallelForDirectiveClass:
1801     case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1802     case Stmt::OMPDistributeSimdDirectiveClass:
1803     case Stmt::OMPTargetParallelForSimdDirectiveClass:
1804     case Stmt::OMPTargetSimdDirectiveClass:
1805     case Stmt::OMPTeamsDistributeDirectiveClass:
1806     case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1807     case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1808     case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1809     case Stmt::OMPTargetTeamsDirectiveClass:
1810     case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1811     case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1812     case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1813     case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1814     case Stmt::OMPReverseDirectiveClass:
1815     case Stmt::OMPTileDirectiveClass:
1816     case Stmt::OMPInterchangeDirectiveClass:
1817     case Stmt::OMPInteropDirectiveClass:
1818     case Stmt::OMPDispatchDirectiveClass:
1819     case Stmt::OMPMaskedDirectiveClass:
1820     case Stmt::OMPGenericLoopDirectiveClass:
1821     case Stmt::OMPTeamsGenericLoopDirectiveClass:
1822     case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1823     case Stmt::OMPParallelGenericLoopDirectiveClass:
1824     case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1825     case Stmt::CapturedStmtClass:
1826     case Stmt::SYCLKernelCallStmtClass:
1827     case Stmt::OpenACCComputeConstructClass:
1828     case Stmt::OpenACCLoopConstructClass:
1829     case Stmt::OpenACCCombinedConstructClass:
1830     case Stmt::OpenACCDataConstructClass:
1831     case Stmt::OpenACCEnterDataConstructClass:
1832     case Stmt::OpenACCExitDataConstructClass:
1833     case Stmt::OpenACCHostDataConstructClass:
1834     case Stmt::OpenACCWaitConstructClass:
1835     case Stmt::OpenACCInitConstructClass:
1836     case Stmt::OpenACCShutdownConstructClass:
1837     case Stmt::OpenACCSetConstructClass:
1838     case Stmt::OpenACCUpdateConstructClass:
1839     case Stmt::OMPUnrollDirectiveClass:
1840     case Stmt::OMPMetaDirectiveClass:
1841     case Stmt::HLSLOutArgExprClass: {
1842       const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
1843       Engine.addAbortedBlock(node, currBldrCtx->getBlock());
1844       break;
1845     }
1846 
1847     case Stmt::ParenExprClass:
1848       llvm_unreachable("ParenExprs already handled.");
1849     case Stmt::GenericSelectionExprClass:
1850       llvm_unreachable("GenericSelectionExprs already handled.");
1851     // Cases that should never be evaluated simply because they shouldn't
1852     // appear in the CFG.
1853     case Stmt::BreakStmtClass:
1854     case Stmt::CaseStmtClass:
1855     case Stmt::CompoundStmtClass:
1856     case Stmt::ContinueStmtClass:
1857     case Stmt::CXXForRangeStmtClass:
1858     case Stmt::DefaultStmtClass:
1859     case Stmt::DoStmtClass:
1860     case Stmt::ForStmtClass:
1861     case Stmt::GotoStmtClass:
1862     case Stmt::IfStmtClass:
1863     case Stmt::IndirectGotoStmtClass:
1864     case Stmt::LabelStmtClass:
1865     case Stmt::NoStmtClass:
1866     case Stmt::NullStmtClass:
1867     case Stmt::SwitchStmtClass:
1868     case Stmt::WhileStmtClass:
1869     case Expr::MSDependentExistsStmtClass:
1870       llvm_unreachable("Stmt should not be in analyzer evaluation loop");
1871     case Stmt::ImplicitValueInitExprClass:
1872       // These nodes are shared in the CFG and would case caching out.
1873       // Moreover, no additional evaluation required for them, the
1874       // analyzer can reconstruct these values from the AST.
1875       llvm_unreachable("Should be pruned from CFG");
1876 
1877     case Stmt::ObjCSubscriptRefExprClass:
1878     case Stmt::ObjCPropertyRefExprClass:
1879       llvm_unreachable("These are handled by PseudoObjectExpr");
1880 
1881     case Stmt::GNUNullExprClass: {
1882       // GNU __null is a pointer-width integer, not an actual pointer.
1883       ProgramStateRef state = Pred->getState();
1884       state = state->BindExpr(
1885           S, Pred->getLocationContext(),
1886           svalBuilder.makeIntValWithWidth(getContext().VoidPtrTy, 0));
1887       Bldr.generateNode(S, Pred, state);
1888       break;
1889     }
1890 
1891     case Stmt::ObjCAtSynchronizedStmtClass:
1892       Bldr.takeNodes(Pred);
1893       VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
1894       Bldr.addNodes(Dst);
1895       break;
1896 
1897     case Expr::ConstantExprClass:
1898     case Stmt::ExprWithCleanupsClass:
1899       // Handled due to fully linearised CFG.
1900       break;
1901 
1902     case Stmt::CXXBindTemporaryExprClass: {
1903       Bldr.takeNodes(Pred);
1904       ExplodedNodeSet PreVisit;
1905       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
1906       ExplodedNodeSet Next;
1907       VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), PreVisit, Next);
1908       getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this);
1909       Bldr.addNodes(Dst);
1910       break;
1911     }
1912 
1913     case Stmt::ArrayInitLoopExprClass:
1914       Bldr.takeNodes(Pred);
1915       VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), Pred, Dst);
1916       Bldr.addNodes(Dst);
1917       break;
1918     // Cases not handled yet; but will handle some day.
1919     case Stmt::DesignatedInitExprClass:
1920     case Stmt::DesignatedInitUpdateExprClass:
1921     case Stmt::ArrayInitIndexExprClass:
1922     case Stmt::ExtVectorElementExprClass:
1923     case Stmt::ImaginaryLiteralClass:
1924     case Stmt::ObjCAtCatchStmtClass:
1925     case Stmt::ObjCAtFinallyStmtClass:
1926     case Stmt::ObjCAtTryStmtClass:
1927     case Stmt::ObjCAutoreleasePoolStmtClass:
1928     case Stmt::ObjCEncodeExprClass:
1929     case Stmt::ObjCIsaExprClass:
1930     case Stmt::ObjCProtocolExprClass:
1931     case Stmt::ObjCSelectorExprClass:
1932     case Stmt::ParenListExprClass:
1933     case Stmt::ShuffleVectorExprClass:
1934     case Stmt::ConvertVectorExprClass:
1935     case Stmt::VAArgExprClass:
1936     case Stmt::CUDAKernelCallExprClass:
1937     case Stmt::OpaqueValueExprClass:
1938     case Stmt::AsTypeExprClass:
1939     case Stmt::ConceptSpecializationExprClass:
1940     case Stmt::CXXRewrittenBinaryOperatorClass:
1941     case Stmt::RequiresExprClass:
1942     case Expr::CXXParenListInitExprClass:
1943     case Stmt::EmbedExprClass:
1944       // Fall through.
1945 
1946     // Cases we intentionally don't evaluate, since they don't need
1947     // to be explicitly evaluated.
1948     case Stmt::PredefinedExprClass:
1949     case Stmt::AddrLabelExprClass:
1950     case Stmt::AttributedStmtClass:
1951     case Stmt::IntegerLiteralClass:
1952     case Stmt::FixedPointLiteralClass:
1953     case Stmt::CharacterLiteralClass:
1954     case Stmt::CXXScalarValueInitExprClass:
1955     case Stmt::CXXBoolLiteralExprClass:
1956     case Stmt::ObjCBoolLiteralExprClass:
1957     case Stmt::ObjCAvailabilityCheckExprClass:
1958     case Stmt::FloatingLiteralClass:
1959     case Stmt::NoInitExprClass:
1960     case Stmt::SizeOfPackExprClass:
1961     case Stmt::StringLiteralClass:
1962     case Stmt::SourceLocExprClass:
1963     case Stmt::ObjCStringLiteralClass:
1964     case Stmt::CXXPseudoDestructorExprClass:
1965     case Stmt::SubstNonTypeTemplateParmExprClass:
1966     case Stmt::CXXNullPtrLiteralExprClass:
1967     case Stmt::ArraySectionExprClass:
1968     case Stmt::OMPArrayShapingExprClass:
1969     case Stmt::OMPIteratorExprClass:
1970     case Stmt::SYCLUniqueStableNameExprClass:
1971     case Stmt::OpenACCAsteriskSizeExprClass:
1972     case Stmt::TypeTraitExprClass: {
1973       Bldr.takeNodes(Pred);
1974       ExplodedNodeSet preVisit;
1975       getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
1976       getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
1977       Bldr.addNodes(Dst);
1978       break;
1979     }
1980 
1981     case Stmt::CXXDefaultArgExprClass:
1982     case Stmt::CXXDefaultInitExprClass: {
1983       Bldr.takeNodes(Pred);
1984       ExplodedNodeSet PreVisit;
1985       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
1986 
1987       ExplodedNodeSet Tmp;
1988       StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx);
1989 
1990       const Expr *ArgE;
1991       if (const auto *DefE = dyn_cast<CXXDefaultArgExpr>(S))
1992         ArgE = DefE->getExpr();
1993       else if (const auto *DefE = dyn_cast<CXXDefaultInitExpr>(S))
1994         ArgE = DefE->getExpr();
1995       else
1996         llvm_unreachable("unknown constant wrapper kind");
1997 
1998       bool IsTemporary = false;
1999       if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(ArgE)) {
2000         ArgE = MTE->getSubExpr();
2001         IsTemporary = true;
2002       }
2003 
2004       std::optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE);
2005       if (!ConstantVal)
2006         ConstantVal = UnknownVal();
2007 
2008       const LocationContext *LCtx = Pred->getLocationContext();
2009       for (const auto I : PreVisit) {
2010         ProgramStateRef State = I->getState();
2011         State = State->BindExpr(S, LCtx, *ConstantVal);
2012         if (IsTemporary)
2013           State = createTemporaryRegionIfNeeded(State, LCtx,
2014                                                 cast<Expr>(S),
2015                                                 cast<Expr>(S));
2016         Bldr2.generateNode(S, I, State);
2017       }
2018 
2019       getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
2020       Bldr.addNodes(Dst);
2021       break;
2022     }
2023 
2024     // Cases we evaluate as opaque expressions, conjuring a symbol.
2025     case Stmt::CXXStdInitializerListExprClass:
2026     case Expr::ObjCArrayLiteralClass:
2027     case Expr::ObjCDictionaryLiteralClass:
2028     case Expr::ObjCBoxedExprClass: {
2029       Bldr.takeNodes(Pred);
2030 
2031       ExplodedNodeSet preVisit;
2032       getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
2033 
2034       ExplodedNodeSet Tmp;
2035       StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx);
2036 
2037       const auto *Ex = cast<Expr>(S);
2038       QualType resultType = Ex->getType();
2039 
2040       for (const auto N : preVisit) {
2041         const LocationContext *LCtx = N->getLocationContext();
2042         SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
2043                                                    resultType,
2044                                                    currBldrCtx->blockCount());
2045         ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result);
2046 
2047         // Escape pointers passed into the list, unless it's an ObjC boxed
2048         // expression which is not a boxable C structure.
2049         if (!(isa<ObjCBoxedExpr>(Ex) &&
2050               !cast<ObjCBoxedExpr>(Ex)->getSubExpr()
2051                                       ->getType()->isRecordType()))
2052           for (auto Child : Ex->children()) {
2053             assert(Child);
2054             SVal Val = State->getSVal(Child, LCtx);
2055             State = escapeValues(State, Val, PSK_EscapeOther);
2056           }
2057 
2058         Bldr2.generateNode(S, N, State);
2059       }
2060 
2061       getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
2062       Bldr.addNodes(Dst);
2063       break;
2064     }
2065 
2066     case Stmt::ArraySubscriptExprClass:
2067       Bldr.takeNodes(Pred);
2068       VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
2069       Bldr.addNodes(Dst);
2070       break;
2071 
2072     case Stmt::MatrixSubscriptExprClass:
2073       llvm_unreachable("Support for MatrixSubscriptExpr is not implemented.");
2074       break;
2075 
2076     case Stmt::GCCAsmStmtClass: {
2077       Bldr.takeNodes(Pred);
2078       ExplodedNodeSet PreVisit;
2079       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2080       ExplodedNodeSet PostVisit;
2081       for (ExplodedNode *const N : PreVisit)
2082         VisitGCCAsmStmt(cast<GCCAsmStmt>(S), N, PostVisit);
2083       getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
2084       Bldr.addNodes(Dst);
2085       break;
2086     }
2087 
2088     case Stmt::MSAsmStmtClass:
2089       Bldr.takeNodes(Pred);
2090       VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst);
2091       Bldr.addNodes(Dst);
2092       break;
2093 
2094     case Stmt::BlockExprClass:
2095       Bldr.takeNodes(Pred);
2096       VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
2097       Bldr.addNodes(Dst);
2098       break;
2099 
2100     case Stmt::LambdaExprClass:
2101       if (AMgr.options.ShouldInlineLambdas) {
2102         Bldr.takeNodes(Pred);
2103         VisitLambdaExpr(cast<LambdaExpr>(S), Pred, Dst);
2104         Bldr.addNodes(Dst);
2105       } else {
2106         const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
2107         Engine.addAbortedBlock(node, currBldrCtx->getBlock());
2108       }
2109       break;
2110 
2111     case Stmt::BinaryOperatorClass: {
2112       const auto *B = cast<BinaryOperator>(S);
2113       if (B->isLogicalOp()) {
2114         Bldr.takeNodes(Pred);
2115         VisitLogicalExpr(B, Pred, Dst);
2116         Bldr.addNodes(Dst);
2117         break;
2118       }
2119       else if (B->getOpcode() == BO_Comma) {
2120         ProgramStateRef state = Pred->getState();
2121         Bldr.generateNode(B, Pred,
2122                           state->BindExpr(B, Pred->getLocationContext(),
2123                                           state->getSVal(B->getRHS(),
2124                                                   Pred->getLocationContext())));
2125         break;
2126       }
2127 
2128       Bldr.takeNodes(Pred);
2129 
2130       if (AMgr.options.ShouldEagerlyAssume &&
2131           (B->isRelationalOp() || B->isEqualityOp())) {
2132         ExplodedNodeSet Tmp;
2133         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
2134         evalEagerlyAssumeBifurcation(Dst, Tmp, cast<Expr>(S));
2135       }
2136       else
2137         VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
2138 
2139       Bldr.addNodes(Dst);
2140       break;
2141     }
2142 
2143     case Stmt::CXXOperatorCallExprClass: {
2144       const auto *OCE = cast<CXXOperatorCallExpr>(S);
2145 
2146       // For instance method operators, make sure the 'this' argument has a
2147       // valid region.
2148       const Decl *Callee = OCE->getCalleeDecl();
2149       if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) {
2150         if (MD->isImplicitObjectMemberFunction()) {
2151           ProgramStateRef State = Pred->getState();
2152           const LocationContext *LCtx = Pred->getLocationContext();
2153           ProgramStateRef NewState =
2154             createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0));
2155           if (NewState != State) {
2156             Pred = Bldr.generateNode(OCE, Pred, NewState, /*tag=*/nullptr,
2157                                      ProgramPoint::PreStmtKind);
2158             // Did we cache out?
2159             if (!Pred)
2160               break;
2161           }
2162         }
2163       }
2164       [[fallthrough]];
2165     }
2166 
2167     case Stmt::CallExprClass:
2168     case Stmt::CXXMemberCallExprClass:
2169     case Stmt::UserDefinedLiteralClass:
2170       Bldr.takeNodes(Pred);
2171       VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
2172       Bldr.addNodes(Dst);
2173       break;
2174 
2175     case Stmt::CXXCatchStmtClass:
2176       Bldr.takeNodes(Pred);
2177       VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
2178       Bldr.addNodes(Dst);
2179       break;
2180 
2181     case Stmt::CXXTemporaryObjectExprClass:
2182     case Stmt::CXXConstructExprClass:
2183       Bldr.takeNodes(Pred);
2184       VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst);
2185       Bldr.addNodes(Dst);
2186       break;
2187 
2188     case Stmt::CXXInheritedCtorInitExprClass:
2189       Bldr.takeNodes(Pred);
2190       VisitCXXInheritedCtorInitExpr(cast<CXXInheritedCtorInitExpr>(S), Pred,
2191                                     Dst);
2192       Bldr.addNodes(Dst);
2193       break;
2194 
2195     case Stmt::CXXNewExprClass: {
2196       Bldr.takeNodes(Pred);
2197 
2198       ExplodedNodeSet PreVisit;
2199       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2200 
2201       ExplodedNodeSet PostVisit;
2202       for (const auto i : PreVisit)
2203         VisitCXXNewExpr(cast<CXXNewExpr>(S), i, PostVisit);
2204 
2205       getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
2206       Bldr.addNodes(Dst);
2207       break;
2208     }
2209 
2210     case Stmt::CXXDeleteExprClass: {
2211       Bldr.takeNodes(Pred);
2212       ExplodedNodeSet PreVisit;
2213       const auto *CDE = cast<CXXDeleteExpr>(S);
2214       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2215       ExplodedNodeSet PostVisit;
2216       getCheckerManager().runCheckersForPostStmt(PostVisit, PreVisit, S, *this);
2217 
2218       for (const auto i : PostVisit)
2219         VisitCXXDeleteExpr(CDE, i, Dst);
2220 
2221       Bldr.addNodes(Dst);
2222       break;
2223     }
2224       // FIXME: ChooseExpr is really a constant.  We need to fix
2225       //        the CFG do not model them as explicit control-flow.
2226 
2227     case Stmt::ChooseExprClass: { // __builtin_choose_expr
2228       Bldr.takeNodes(Pred);
2229       const auto *C = cast<ChooseExpr>(S);
2230       VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
2231       Bldr.addNodes(Dst);
2232       break;
2233     }
2234 
2235     case Stmt::CompoundAssignOperatorClass:
2236       Bldr.takeNodes(Pred);
2237       VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
2238       Bldr.addNodes(Dst);
2239       break;
2240 
2241     case Stmt::CompoundLiteralExprClass:
2242       Bldr.takeNodes(Pred);
2243       VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
2244       Bldr.addNodes(Dst);
2245       break;
2246 
2247     case Stmt::BinaryConditionalOperatorClass:
2248     case Stmt::ConditionalOperatorClass: { // '?' operator
2249       Bldr.takeNodes(Pred);
2250       const auto *C = cast<AbstractConditionalOperator>(S);
2251       VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
2252       Bldr.addNodes(Dst);
2253       break;
2254     }
2255 
2256     case Stmt::CXXThisExprClass:
2257       Bldr.takeNodes(Pred);
2258       VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
2259       Bldr.addNodes(Dst);
2260       break;
2261 
2262     case Stmt::DeclRefExprClass: {
2263       Bldr.takeNodes(Pred);
2264       const auto *DE = cast<DeclRefExpr>(S);
2265       VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
2266       Bldr.addNodes(Dst);
2267       break;
2268     }
2269 
2270     case Stmt::DeclStmtClass:
2271       Bldr.takeNodes(Pred);
2272       VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
2273       Bldr.addNodes(Dst);
2274       break;
2275 
2276     case Stmt::ImplicitCastExprClass:
2277     case Stmt::CStyleCastExprClass:
2278     case Stmt::CXXStaticCastExprClass:
2279     case Stmt::CXXDynamicCastExprClass:
2280     case Stmt::CXXReinterpretCastExprClass:
2281     case Stmt::CXXConstCastExprClass:
2282     case Stmt::CXXFunctionalCastExprClass:
2283     case Stmt::BuiltinBitCastExprClass:
2284     case Stmt::ObjCBridgedCastExprClass:
2285     case Stmt::CXXAddrspaceCastExprClass: {
2286       Bldr.takeNodes(Pred);
2287       const auto *C = cast<CastExpr>(S);
2288       ExplodedNodeSet dstExpr;
2289       VisitCast(C, C->getSubExpr(), Pred, dstExpr);
2290 
2291       // Handle the postvisit checks.
2292       getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
2293       Bldr.addNodes(Dst);
2294       break;
2295     }
2296 
2297     case Expr::MaterializeTemporaryExprClass: {
2298       Bldr.takeNodes(Pred);
2299       const auto *MTE = cast<MaterializeTemporaryExpr>(S);
2300       ExplodedNodeSet dstPrevisit;
2301       getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this);
2302       ExplodedNodeSet dstExpr;
2303       for (const auto i : dstPrevisit)
2304         CreateCXXTemporaryObject(MTE, i, dstExpr);
2305       getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this);
2306       Bldr.addNodes(Dst);
2307       break;
2308     }
2309 
2310     case Stmt::InitListExprClass:
2311       Bldr.takeNodes(Pred);
2312       VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
2313       Bldr.addNodes(Dst);
2314       break;
2315 
2316     case Stmt::MemberExprClass:
2317       Bldr.takeNodes(Pred);
2318       VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
2319       Bldr.addNodes(Dst);
2320       break;
2321 
2322     case Stmt::AtomicExprClass:
2323       Bldr.takeNodes(Pred);
2324       VisitAtomicExpr(cast<AtomicExpr>(S), Pred, Dst);
2325       Bldr.addNodes(Dst);
2326       break;
2327 
2328     case Stmt::ObjCIvarRefExprClass:
2329       Bldr.takeNodes(Pred);
2330       VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
2331       Bldr.addNodes(Dst);
2332       break;
2333 
2334     case Stmt::ObjCForCollectionStmtClass:
2335       Bldr.takeNodes(Pred);
2336       VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
2337       Bldr.addNodes(Dst);
2338       break;
2339 
2340     case Stmt::ObjCMessageExprClass:
2341       Bldr.takeNodes(Pred);
2342       VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst);
2343       Bldr.addNodes(Dst);
2344       break;
2345 
2346     case Stmt::ObjCAtThrowStmtClass:
2347     case Stmt::CXXThrowExprClass:
2348       // FIXME: This is not complete.  We basically treat @throw as
2349       // an abort.
2350       Bldr.generateSink(S, Pred, Pred->getState());
2351       break;
2352 
2353     case Stmt::ReturnStmtClass:
2354       Bldr.takeNodes(Pred);
2355       VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
2356       Bldr.addNodes(Dst);
2357       break;
2358 
2359     case Stmt::OffsetOfExprClass: {
2360       Bldr.takeNodes(Pred);
2361       ExplodedNodeSet PreVisit;
2362       getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
2363 
2364       ExplodedNodeSet PostVisit;
2365       for (const auto Node : PreVisit)
2366         VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Node, PostVisit);
2367 
2368       getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
2369       Bldr.addNodes(Dst);
2370       break;
2371     }
2372 
2373     case Stmt::UnaryExprOrTypeTraitExprClass:
2374       Bldr.takeNodes(Pred);
2375       VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2376                                     Pred, Dst);
2377       Bldr.addNodes(Dst);
2378       break;
2379 
2380     case Stmt::StmtExprClass: {
2381       const auto *SE = cast<StmtExpr>(S);
2382 
2383       if (SE->getSubStmt()->body_empty()) {
2384         // Empty statement expression.
2385         assert(SE->getType() == getContext().VoidTy
2386                && "Empty statement expression must have void type.");
2387         break;
2388       }
2389 
2390       if (const auto *LastExpr =
2391               dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
2392         ProgramStateRef state = Pred->getState();
2393         Bldr.generateNode(SE, Pred,
2394                           state->BindExpr(SE, Pred->getLocationContext(),
2395                                           state->getSVal(LastExpr,
2396                                                   Pred->getLocationContext())));
2397       }
2398       break;
2399     }
2400 
2401     case Stmt::UnaryOperatorClass: {
2402       Bldr.takeNodes(Pred);
2403       const auto *U = cast<UnaryOperator>(S);
2404       if (AMgr.options.ShouldEagerlyAssume && (U->getOpcode() == UO_LNot)) {
2405         ExplodedNodeSet Tmp;
2406         VisitUnaryOperator(U, Pred, Tmp);
2407         evalEagerlyAssumeBifurcation(Dst, Tmp, U);
2408       }
2409       else
2410         VisitUnaryOperator(U, Pred, Dst);
2411       Bldr.addNodes(Dst);
2412       break;
2413     }
2414 
2415     case Stmt::PseudoObjectExprClass: {
2416       Bldr.takeNodes(Pred);
2417       ProgramStateRef state = Pred->getState();
2418       const auto *PE = cast<PseudoObjectExpr>(S);
2419       if (const Expr *Result = PE->getResultExpr()) {
2420         SVal V = state->getSVal(Result, Pred->getLocationContext());
2421         Bldr.generateNode(S, Pred,
2422                           state->BindExpr(S, Pred->getLocationContext(), V));
2423       }
2424       else
2425         Bldr.generateNode(S, Pred,
2426                           state->BindExpr(S, Pred->getLocationContext(),
2427                                                    UnknownVal()));
2428 
2429       Bldr.addNodes(Dst);
2430       break;
2431     }
2432 
2433     case Expr::ObjCIndirectCopyRestoreExprClass: {
2434       // ObjCIndirectCopyRestoreExpr implies passing a temporary for
2435       // correctness of lifetime management.  Due to limited analysis
2436       // of ARC, this is implemented as direct arg passing.
2437       Bldr.takeNodes(Pred);
2438       ProgramStateRef state = Pred->getState();
2439       const auto *OIE = cast<ObjCIndirectCopyRestoreExpr>(S);
2440       const Expr *E = OIE->getSubExpr();
2441       SVal V = state->getSVal(E, Pred->getLocationContext());
2442       Bldr.generateNode(S, Pred,
2443               state->BindExpr(S, Pred->getLocationContext(), V));
2444       Bldr.addNodes(Dst);
2445       break;
2446     }
2447   }
2448 }
2449 
2450 bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
2451                                        const LocationContext *CalleeLC) {
2452   const StackFrameContext *CalleeSF = CalleeLC->getStackFrame();
2453   const StackFrameContext *CallerSF = CalleeSF->getParent()->getStackFrame();
2454   assert(CalleeSF && CallerSF);
2455   ExplodedNode *BeforeProcessingCall = nullptr;
2456   const Stmt *CE = CalleeSF->getCallSite();
2457 
2458   // Find the first node before we started processing the call expression.
2459   while (N) {
2460     ProgramPoint L = N->getLocation();
2461     BeforeProcessingCall = N;
2462     N = N->pred_empty() ? nullptr : *(N->pred_begin());
2463 
2464     // Skip the nodes corresponding to the inlined code.
2465     if (L.getStackFrame() != CallerSF)
2466       continue;
2467     // We reached the caller. Find the node right before we started
2468     // processing the call.
2469     if (L.isPurgeKind())
2470       continue;
2471     if (L.getAs<PreImplicitCall>())
2472       continue;
2473     if (L.getAs<CallEnter>())
2474       continue;
2475     if (std::optional<StmtPoint> SP = L.getAs<StmtPoint>())
2476       if (SP->getStmt() == CE)
2477         continue;
2478     break;
2479   }
2480 
2481   if (!BeforeProcessingCall)
2482     return false;
2483 
2484   // TODO: Clean up the unneeded nodes.
2485 
2486   // Build an Epsilon node from which we will restart the analyzes.
2487   // Note that CE is permitted to be NULL!
2488   static SimpleProgramPointTag PT("ExprEngine", "Replay without inlining");
2489   ProgramPoint NewNodeLoc = EpsilonPoint(
2490       BeforeProcessingCall->getLocationContext(), CE, nullptr, &PT);
2491   // Add the special flag to GDM to signal retrying with no inlining.
2492   // Note, changing the state ensures that we are not going to cache out.
2493   ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
2494   NewNodeState =
2495     NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE));
2496 
2497   // Make the new node a successor of BeforeProcessingCall.
2498   bool IsNew = false;
2499   ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
2500   // We cached out at this point. Caching out is common due to us backtracking
2501   // from the inlined function, which might spawn several paths.
2502   if (!IsNew)
2503     return true;
2504 
2505   NewNode->addPredecessor(BeforeProcessingCall, G);
2506 
2507   // Add the new node to the work list.
2508   Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
2509                                   CalleeSF->getIndex());
2510   NumTimesRetriedWithoutInlining++;
2511   return true;
2512 }
2513 
2514 /// Block entrance.  (Update counters).
2515 void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
2516                                          NodeBuilderWithSinks &nodeBuilder,
2517                                          ExplodedNode *Pred) {
2518   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
2519   // If we reach a loop which has a known bound (and meets
2520   // other constraints) then consider completely unrolling it.
2521   if(AMgr.options.ShouldUnrollLoops) {
2522     unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath;
2523     const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt();
2524     if (Term) {
2525       ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(),
2526                                                  Pred, maxBlockVisitOnPath);
2527       if (NewState != Pred->getState()) {
2528         ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred);
2529         if (!UpdatedNode)
2530           return;
2531         Pred = UpdatedNode;
2532       }
2533     }
2534     // Is we are inside an unrolled loop then no need the check the counters.
2535     if(isUnrolledState(Pred->getState()))
2536       return;
2537   }
2538 
2539   // If this block is terminated by a loop and it has already been visited the
2540   // maximum number of times, widen the loop.
2541   unsigned int BlockCount = nodeBuilder.getContext().blockCount();
2542   if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 &&
2543       AMgr.options.ShouldWidenLoops) {
2544     const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt();
2545     if (!isa_and_nonnull<ForStmt, WhileStmt, DoStmt, CXXForRangeStmt>(Term))
2546       return;
2547     // Widen.
2548     const LocationContext *LCtx = Pred->getLocationContext();
2549     ProgramStateRef WidenedState =
2550         getWidenedLoopState(Pred->getState(), LCtx, BlockCount, Term);
2551     nodeBuilder.generateNode(WidenedState, Pred);
2552     return;
2553   }
2554 
2555   // FIXME: Refactor this into a checker.
2556   if (BlockCount >= AMgr.options.maxBlockVisitOnPath) {
2557     static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded");
2558     const ExplodedNode *Sink =
2559                    nodeBuilder.generateSink(Pred->getState(), Pred, &tag);
2560 
2561     // Check if we stopped at the top level function or not.
2562     // Root node should have the location context of the top most function.
2563     const LocationContext *CalleeLC = Pred->getLocation().getLocationContext();
2564     const LocationContext *CalleeSF = CalleeLC->getStackFrame();
2565     const LocationContext *RootLC =
2566                         (*G.roots_begin())->getLocation().getLocationContext();
2567     if (RootLC->getStackFrame() != CalleeSF) {
2568       Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl());
2569 
2570       // Re-run the call evaluation without inlining it, by storing the
2571       // no-inlining policy in the state and enqueuing the new work item on
2572       // the list. Replay should almost never fail. Use the stats to catch it
2573       // if it does.
2574       if ((!AMgr.options.NoRetryExhausted &&
2575            replayWithoutInlining(Pred, CalleeLC)))
2576         return;
2577       NumMaxBlockCountReachedInInlined++;
2578     } else
2579       NumMaxBlockCountReached++;
2580 
2581     // Make sink nodes as exhausted(for stats) only if retry failed.
2582     Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
2583   }
2584 }
2585 
2586 //===----------------------------------------------------------------------===//
2587 // Branch processing.
2588 //===----------------------------------------------------------------------===//
2589 
2590 /// RecoverCastedSymbol - A helper function for ProcessBranch that is used
2591 /// to try to recover some path-sensitivity for casts of symbolic
2592 /// integers that promote their values (which are currently not tracked well).
2593 /// This function returns the SVal bound to Condition->IgnoreCasts if all the
2594 //  cast(s) did was sign-extend the original value.
2595 static SVal RecoverCastedSymbol(ProgramStateRef state,
2596                                 const Stmt *Condition,
2597                                 const LocationContext *LCtx,
2598                                 ASTContext &Ctx) {
2599 
2600   const auto *Ex = dyn_cast<Expr>(Condition);
2601   if (!Ex)
2602     return UnknownVal();
2603 
2604   uint64_t bits = 0;
2605   bool bitsInit = false;
2606 
2607   while (const auto *CE = dyn_cast<CastExpr>(Ex)) {
2608     QualType T = CE->getType();
2609 
2610     if (!T->isIntegralOrEnumerationType())
2611       return UnknownVal();
2612 
2613     uint64_t newBits = Ctx.getTypeSize(T);
2614     if (!bitsInit || newBits < bits) {
2615       bitsInit = true;
2616       bits = newBits;
2617     }
2618 
2619     Ex = CE->getSubExpr();
2620   }
2621 
2622   // We reached a non-cast.  Is it a symbolic value?
2623   QualType T = Ex->getType();
2624 
2625   if (!bitsInit || !T->isIntegralOrEnumerationType() ||
2626       Ctx.getTypeSize(T) > bits)
2627     return UnknownVal();
2628 
2629   return state->getSVal(Ex, LCtx);
2630 }
2631 
2632 #ifndef NDEBUG
2633 static const Stmt *getRightmostLeaf(const Stmt *Condition) {
2634   while (Condition) {
2635     const auto *BO = dyn_cast<BinaryOperator>(Condition);
2636     if (!BO || !BO->isLogicalOp()) {
2637       return Condition;
2638     }
2639     Condition = BO->getRHS()->IgnoreParens();
2640   }
2641   return nullptr;
2642 }
2643 #endif
2644 
2645 // Returns the condition the branch at the end of 'B' depends on and whose value
2646 // has been evaluated within 'B'.
2647 // In most cases, the terminator condition of 'B' will be evaluated fully in
2648 // the last statement of 'B'; in those cases, the resolved condition is the
2649 // given 'Condition'.
2650 // If the condition of the branch is a logical binary operator tree, the CFG is
2651 // optimized: in that case, we know that the expression formed by all but the
2652 // rightmost leaf of the logical binary operator tree must be true, and thus
2653 // the branch condition is at this point equivalent to the truth value of that
2654 // rightmost leaf; the CFG block thus only evaluates this rightmost leaf
2655 // expression in its final statement. As the full condition in that case was
2656 // not evaluated, and is thus not in the SVal cache, we need to use that leaf
2657 // expression to evaluate the truth value of the condition in the current state
2658 // space.
2659 static const Stmt *ResolveCondition(const Stmt *Condition,
2660                                     const CFGBlock *B) {
2661   if (const auto *Ex = dyn_cast<Expr>(Condition))
2662     Condition = Ex->IgnoreParens();
2663 
2664   const auto *BO = dyn_cast<BinaryOperator>(Condition);
2665   if (!BO || !BO->isLogicalOp())
2666     return Condition;
2667 
2668   assert(B->getTerminator().isStmtBranch() &&
2669          "Other kinds of branches are handled separately!");
2670 
2671   // For logical operations, we still have the case where some branches
2672   // use the traditional "merge" approach and others sink the branch
2673   // directly into the basic blocks representing the logical operation.
2674   // We need to distinguish between those two cases here.
2675 
2676   // The invariants are still shifting, but it is possible that the
2677   // last element in a CFGBlock is not a CFGStmt.  Look for the last
2678   // CFGStmt as the value of the condition.
2679   for (CFGElement Elem : llvm::reverse(*B)) {
2680     std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>();
2681     if (!CS)
2682       continue;
2683     const Stmt *LastStmt = CS->getStmt();
2684     assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition));
2685     return LastStmt;
2686   }
2687   llvm_unreachable("could not resolve condition");
2688 }
2689 
2690 using ObjCForLctxPair =
2691     std::pair<const ObjCForCollectionStmt *, const LocationContext *>;
2692 
2693 REGISTER_MAP_WITH_PROGRAMSTATE(ObjCForHasMoreIterations, ObjCForLctxPair, bool)
2694 
2695 ProgramStateRef ExprEngine::setWhetherHasMoreIteration(
2696     ProgramStateRef State, const ObjCForCollectionStmt *O,
2697     const LocationContext *LC, bool HasMoreIteraton) {
2698   assert(!State->contains<ObjCForHasMoreIterations>({O, LC}));
2699   return State->set<ObjCForHasMoreIterations>({O, LC}, HasMoreIteraton);
2700 }
2701 
2702 ProgramStateRef
2703 ExprEngine::removeIterationState(ProgramStateRef State,
2704                                  const ObjCForCollectionStmt *O,
2705                                  const LocationContext *LC) {
2706   assert(State->contains<ObjCForHasMoreIterations>({O, LC}));
2707   return State->remove<ObjCForHasMoreIterations>({O, LC});
2708 }
2709 
2710 bool ExprEngine::hasMoreIteration(ProgramStateRef State,
2711                                   const ObjCForCollectionStmt *O,
2712                                   const LocationContext *LC) {
2713   assert(State->contains<ObjCForHasMoreIterations>({O, LC}));
2714   return *State->get<ObjCForHasMoreIterations>({O, LC});
2715 }
2716 
2717 /// Split the state on whether there are any more iterations left for this loop.
2718 /// Returns a (HasMoreIteration, HasNoMoreIteration) pair, or std::nullopt when
2719 /// the acquisition of the loop condition value failed.
2720 static std::optional<std::pair<ProgramStateRef, ProgramStateRef>>
2721 assumeCondition(const Stmt *Condition, ExplodedNode *N) {
2722   ProgramStateRef State = N->getState();
2723   if (const auto *ObjCFor = dyn_cast<ObjCForCollectionStmt>(Condition)) {
2724     bool HasMoreIteraton =
2725         ExprEngine::hasMoreIteration(State, ObjCFor, N->getLocationContext());
2726     // Checkers have already ran on branch conditions, so the current
2727     // information as to whether the loop has more iteration becomes outdated
2728     // after this point.
2729     State = ExprEngine::removeIterationState(State, ObjCFor,
2730                                              N->getLocationContext());
2731     if (HasMoreIteraton)
2732       return std::pair<ProgramStateRef, ProgramStateRef>{State, nullptr};
2733     else
2734       return std::pair<ProgramStateRef, ProgramStateRef>{nullptr, State};
2735   }
2736   SVal X = State->getSVal(Condition, N->getLocationContext());
2737 
2738   if (X.isUnknownOrUndef()) {
2739     // Give it a chance to recover from unknown.
2740     if (const auto *Ex = dyn_cast<Expr>(Condition)) {
2741       if (Ex->getType()->isIntegralOrEnumerationType()) {
2742         // Try to recover some path-sensitivity.  Right now casts of symbolic
2743         // integers that promote their values are currently not tracked well.
2744         // If 'Condition' is such an expression, try and recover the
2745         // underlying value and use that instead.
2746         SVal recovered =
2747             RecoverCastedSymbol(State, Condition, N->getLocationContext(),
2748                                 N->getState()->getStateManager().getContext());
2749 
2750         if (!recovered.isUnknown()) {
2751           X = recovered;
2752         }
2753       }
2754     }
2755   }
2756 
2757   // If the condition is still unknown, give up.
2758   if (X.isUnknownOrUndef())
2759     return std::nullopt;
2760 
2761   DefinedSVal V = X.castAs<DefinedSVal>();
2762 
2763   ProgramStateRef StTrue, StFalse;
2764   return State->assume(V);
2765 }
2766 
2767 void ExprEngine::processBranch(
2768     const Stmt *Condition, NodeBuilderContext &BldCtx, ExplodedNode *Pred,
2769     ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF,
2770     std::optional<unsigned> IterationsCompletedInLoop) {
2771   assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) &&
2772          "CXXBindTemporaryExprs are handled by processBindTemporary.");
2773   const LocationContext *LCtx = Pred->getLocationContext();
2774   PrettyStackTraceLocationContext StackCrashInfo(LCtx);
2775   currBldrCtx = &BldCtx;
2776 
2777   // Check for NULL conditions; e.g. "for(;;)"
2778   if (!Condition) {
2779     BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
2780     NullCondBldr.generateNode(Pred->getState(), true, Pred);
2781     return;
2782   }
2783 
2784   if (const auto *Ex = dyn_cast<Expr>(Condition))
2785     Condition = Ex->IgnoreParens();
2786 
2787   Condition = ResolveCondition(Condition, BldCtx.getBlock());
2788   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
2789                                 Condition->getBeginLoc(),
2790                                 "Error evaluating branch");
2791 
2792   ExplodedNodeSet CheckersOutSet;
2793   getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
2794                                                     Pred, *this);
2795   // We generated only sinks.
2796   if (CheckersOutSet.empty())
2797     return;
2798 
2799   BranchNodeBuilder Builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
2800   for (ExplodedNode *PredN : CheckersOutSet) {
2801     if (PredN->isSink())
2802       continue;
2803 
2804     ProgramStateRef PrevState = PredN->getState();
2805 
2806     ProgramStateRef StTrue = PrevState, StFalse = PrevState;
2807     if (const auto KnownCondValueAssumption = assumeCondition(Condition, PredN))
2808       std::tie(StTrue, StFalse) = *KnownCondValueAssumption;
2809 
2810     if (StTrue && StFalse)
2811       assert(!isa<ObjCForCollectionStmt>(Condition));
2812 
2813     if (StTrue) {
2814       // If we are processing a loop condition where two iterations have
2815       // already been completed and the false branch is also feasible, then
2816       // don't assume a third iteration because it is a redundant execution
2817       // path (unlikely to be different from earlier loop exits) and can cause
2818       // false positives if e.g. the loop iterates over a two-element structure
2819       // with an opaque condition.
2820       //
2821       // The iteration count "2" is hardcoded because it's the natural limit:
2822       // * the fact that the programmer wrote a loop (and not just an `if`)
2823       //   implies that they thought that the loop body might be executed twice;
2824       // * however, there are situations where the programmer knows that there
2825       //   are at most two iterations but writes a loop that appears to be
2826       //   generic, because there is no special syntax for "loop with at most
2827       //   two iterations". (This pattern is common in FFMPEG and appears in
2828       //   many other projects as well.)
2829       bool CompletedTwoIterations = IterationsCompletedInLoop.value_or(0) >= 2;
2830       bool FalseAlsoFeasible =
2831           StFalse ||
2832           didEagerlyAssumeBifurcateAt(PrevState, dyn_cast<Expr>(Condition));
2833       bool SkipTrueBranch = CompletedTwoIterations && FalseAlsoFeasible;
2834 
2835       // FIXME: This "don't assume third iteration" heuristic partially
2836       // conflicts with the widen-loop analysis option (which is off by
2837       // default). If we intend to support and stabilize the loop widening,
2838       // we must ensure that it 'plays nicely' with this logic.
2839       if (!SkipTrueBranch || AMgr.options.ShouldWidenLoops)
2840         Builder.generateNode(StTrue, true, PredN);
2841     }
2842 
2843     if (StFalse)
2844       Builder.generateNode(StFalse, false, PredN);
2845   }
2846   currBldrCtx = nullptr;
2847 }
2848 
2849 /// The GDM component containing the set of global variables which have been
2850 /// previously initialized with explicit initializers.
2851 REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
2852                                  llvm::ImmutableSet<const VarDecl *>)
2853 
2854 void ExprEngine::processStaticInitializer(const DeclStmt *DS,
2855                                           NodeBuilderContext &BuilderCtx,
2856                                           ExplodedNode *Pred,
2857                                           ExplodedNodeSet &Dst,
2858                                           const CFGBlock *DstT,
2859                                           const CFGBlock *DstF) {
2860   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
2861   currBldrCtx = &BuilderCtx;
2862 
2863   const auto *VD = cast<VarDecl>(DS->getSingleDecl());
2864   ProgramStateRef state = Pred->getState();
2865   bool initHasRun = state->contains<InitializedGlobalsSet>(VD);
2866   BranchNodeBuilder Builder(Pred, Dst, BuilderCtx, DstT, DstF);
2867 
2868   if (!initHasRun) {
2869     state = state->add<InitializedGlobalsSet>(VD);
2870   }
2871 
2872   Builder.generateNode(state, initHasRun, Pred);
2873 
2874   currBldrCtx = nullptr;
2875 }
2876 
2877 /// processIndirectGoto - Called by CoreEngine.  Used to generate successor
2878 ///  nodes by processing the 'effects' of a computed goto jump.
2879 void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
2880   ProgramStateRef state = builder.getState();
2881   SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
2882 
2883   // Three possibilities:
2884   //
2885   //   (1) We know the computed label.
2886   //   (2) The label is NULL (or some other constant), or Undefined.
2887   //   (3) We have no clue about the label.  Dispatch to all targets.
2888   //
2889 
2890   using iterator = IndirectGotoNodeBuilder::iterator;
2891 
2892   if (std::optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) {
2893     const LabelDecl *L = LV->getLabel();
2894 
2895     for (iterator Succ : builder) {
2896       if (Succ.getLabel() == L) {
2897         builder.generateNode(Succ, state);
2898         return;
2899       }
2900     }
2901 
2902     llvm_unreachable("No block with label.");
2903   }
2904 
2905   if (isa<UndefinedVal, loc::ConcreteInt>(V)) {
2906     // Dispatch to the first target and mark it as a sink.
2907     //ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
2908     // FIXME: add checker visit.
2909     //    UndefBranches.insert(N);
2910     return;
2911   }
2912 
2913   // This is really a catch-all.  We don't support symbolics yet.
2914   // FIXME: Implement dispatch for symbolic pointers.
2915 
2916   for (iterator Succ : builder)
2917     builder.generateNode(Succ, state);
2918 }
2919 
2920 void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC,
2921                                         ExplodedNode *Pred,
2922                                         ExplodedNodeSet &Dst,
2923                                         const BlockEdge &L) {
2924   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
2925   getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this);
2926 }
2927 
2928 /// ProcessEndPath - Called by CoreEngine.  Used to generate end-of-path
2929 ///  nodes when the control reaches the end of a function.
2930 void ExprEngine::processEndOfFunction(NodeBuilderContext& BC,
2931                                       ExplodedNode *Pred,
2932                                       const ReturnStmt *RS) {
2933   ProgramStateRef State = Pred->getState();
2934 
2935   if (!Pred->getStackFrame()->inTopFrame())
2936     State = finishArgumentConstruction(
2937         State, *getStateManager().getCallEventManager().getCaller(
2938                    Pred->getStackFrame(), Pred->getState()));
2939 
2940   // FIXME: We currently cannot assert that temporaries are clear, because
2941   // lifetime extended temporaries are not always modelled correctly. In some
2942   // cases when we materialize the temporary, we do
2943   // createTemporaryRegionIfNeeded(), and the region changes, and also the
2944   // respective destructor becomes automatic from temporary. So for now clean up
2945   // the state manually before asserting. Ideally, this braced block of code
2946   // should go away.
2947   {
2948     const LocationContext *FromLC = Pred->getLocationContext();
2949     const LocationContext *ToLC = FromLC->getStackFrame()->getParent();
2950     const LocationContext *LC = FromLC;
2951     while (LC != ToLC) {
2952       assert(LC && "ToLC must be a parent of FromLC!");
2953       for (auto I : State->get<ObjectsUnderConstruction>())
2954         if (I.first.getLocationContext() == LC) {
2955           // The comment above only pardons us for not cleaning up a
2956           // temporary destructor. If any other statements are found here,
2957           // it must be a separate problem.
2958           assert(I.first.getItem().getKind() ==
2959                      ConstructionContextItem::TemporaryDestructorKind ||
2960                  I.first.getItem().getKind() ==
2961                      ConstructionContextItem::ElidedDestructorKind);
2962           State = State->remove<ObjectsUnderConstruction>(I.first);
2963         }
2964       LC = LC->getParent();
2965     }
2966   }
2967 
2968   // Perform the transition with cleanups.
2969   if (State != Pred->getState()) {
2970     ExplodedNodeSet PostCleanup;
2971     NodeBuilder Bldr(Pred, PostCleanup, BC);
2972     Pred = Bldr.generateNode(Pred->getLocation(), State, Pred);
2973     if (!Pred) {
2974       // The node with clean temporaries already exists. We might have reached
2975       // it on a path on which we initialize different temporaries.
2976       return;
2977     }
2978   }
2979 
2980   assert(areAllObjectsFullyConstructed(Pred->getState(),
2981                                        Pred->getLocationContext(),
2982                                        Pred->getStackFrame()->getParent()));
2983 
2984   PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
2985 
2986   ExplodedNodeSet Dst;
2987   if (Pred->getLocationContext()->inTopFrame()) {
2988     // Remove dead symbols.
2989     ExplodedNodeSet AfterRemovedDead;
2990     removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead);
2991 
2992     // Notify checkers.
2993     for (const auto I : AfterRemovedDead)
2994       getCheckerManager().runCheckersForEndFunction(BC, Dst, I, *this, RS);
2995   } else {
2996     getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this, RS);
2997   }
2998 
2999   Engine.enqueueEndOfFunction(Dst, RS);
3000 }
3001 
3002 /// ProcessSwitch - Called by CoreEngine.  Used to generate successor
3003 ///  nodes by processing the 'effects' of a switch statement.
3004 void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
3005   using iterator = SwitchNodeBuilder::iterator;
3006 
3007   ProgramStateRef state = builder.getState();
3008   const Expr *CondE = builder.getCondition();
3009   SVal  CondV_untested = state->getSVal(CondE, builder.getLocationContext());
3010 
3011   if (CondV_untested.isUndef()) {
3012     //ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
3013     // FIXME: add checker
3014     //UndefBranches.insert(N);
3015 
3016     return;
3017   }
3018   DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>();
3019 
3020   ProgramStateRef DefaultSt = state;
3021 
3022   iterator I = builder.begin(), EI = builder.end();
3023   bool defaultIsFeasible = I == EI;
3024 
3025   for ( ; I != EI; ++I) {
3026     // Successor may be pruned out during CFG construction.
3027     if (!I.getBlock())
3028       continue;
3029 
3030     const CaseStmt *Case = I.getCase();
3031 
3032     // Evaluate the LHS of the case value.
3033     llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
3034     assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType()));
3035 
3036     // Get the RHS of the case, if it exists.
3037     llvm::APSInt V2;
3038     if (const Expr *E = Case->getRHS())
3039       V2 = E->EvaluateKnownConstInt(getContext());
3040     else
3041       V2 = V1;
3042 
3043     ProgramStateRef StateCase;
3044     if (std::optional<NonLoc> NL = CondV.getAs<NonLoc>())
3045       std::tie(StateCase, DefaultSt) =
3046           DefaultSt->assumeInclusiveRange(*NL, V1, V2);
3047     else // UnknownVal
3048       StateCase = DefaultSt;
3049 
3050     if (StateCase)
3051       builder.generateCaseStmtNode(I, StateCase);
3052 
3053     // Now "assume" that the case doesn't match.  Add this state
3054     // to the default state (if it is feasible).
3055     if (DefaultSt)
3056       defaultIsFeasible = true;
3057     else {
3058       defaultIsFeasible = false;
3059       break;
3060     }
3061   }
3062 
3063   if (!defaultIsFeasible)
3064     return;
3065 
3066   // If we have switch(enum value), the default branch is not
3067   // feasible if all of the enum constants not covered by 'case:' statements
3068   // are not feasible values for the switch condition.
3069   //
3070   // Note that this isn't as accurate as it could be.  Even if there isn't
3071   // a case for a particular enum value as long as that enum value isn't
3072   // feasible then it shouldn't be considered for making 'default:' reachable.
3073   const SwitchStmt *SS = builder.getSwitch();
3074   const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
3075   if (CondExpr->getType()->getAs<EnumType>()) {
3076     if (SS->isAllEnumCasesCovered())
3077       return;
3078   }
3079 
3080   builder.generateDefaultCaseNode(DefaultSt);
3081 }
3082 
3083 //===----------------------------------------------------------------------===//
3084 // Transfer functions: Loads and stores.
3085 //===----------------------------------------------------------------------===//
3086 
3087 void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
3088                                         ExplodedNode *Pred,
3089                                         ExplodedNodeSet &Dst) {
3090   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
3091 
3092   ProgramStateRef state = Pred->getState();
3093   const LocationContext *LCtx = Pred->getLocationContext();
3094 
3095   if (const auto *VD = dyn_cast<VarDecl>(D)) {
3096     // C permits "extern void v", and if you cast the address to a valid type,
3097     // you can even do things with it. We simply pretend
3098     assert(Ex->isGLValue() || VD->getType()->isVoidType());
3099     const LocationContext *LocCtxt = Pred->getLocationContext();
3100     const Decl *D = LocCtxt->getDecl();
3101     const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
3102     const auto *DeclRefEx = dyn_cast<DeclRefExpr>(Ex);
3103     std::optional<std::pair<SVal, QualType>> VInfo;
3104 
3105     if (AMgr.options.ShouldInlineLambdas && DeclRefEx &&
3106         DeclRefEx->refersToEnclosingVariableOrCapture() && MD &&
3107         MD->getParent()->isLambda()) {
3108       // Lookup the field of the lambda.
3109       const CXXRecordDecl *CXXRec = MD->getParent();
3110       llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
3111       FieldDecl *LambdaThisCaptureField;
3112       CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField);
3113 
3114       // Sema follows a sequence of complex rules to determine whether the
3115       // variable should be captured.
3116       if (const FieldDecl *FD = LambdaCaptureFields[VD]) {
3117         Loc CXXThis =
3118             svalBuilder.getCXXThis(MD, LocCtxt->getStackFrame());
3119         SVal CXXThisVal = state->getSVal(CXXThis);
3120         VInfo = std::make_pair(state->getLValue(FD, CXXThisVal), FD->getType());
3121       }
3122     }
3123 
3124     if (!VInfo)
3125       VInfo = std::make_pair(state->getLValue(VD, LocCtxt), VD->getType());
3126 
3127     SVal V = VInfo->first;
3128     bool IsReference = VInfo->second->isReferenceType();
3129 
3130     // For references, the 'lvalue' is the pointer address stored in the
3131     // reference region.
3132     if (IsReference) {
3133       if (const MemRegion *R = V.getAsRegion())
3134         V = state->getSVal(R);
3135       else
3136         V = UnknownVal();
3137     }
3138 
3139     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
3140                       ProgramPoint::PostLValueKind);
3141     return;
3142   }
3143   if (const auto *ED = dyn_cast<EnumConstantDecl>(D)) {
3144     assert(!Ex->isGLValue());
3145     SVal V = svalBuilder.makeIntVal(ED->getInitVal());
3146     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
3147     return;
3148   }
3149   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3150     SVal V = svalBuilder.getFunctionPointer(FD);
3151     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
3152                       ProgramPoint::PostLValueKind);
3153     return;
3154   }
3155   if (isa<FieldDecl, IndirectFieldDecl>(D)) {
3156     // Delegate all work related to pointer to members to the surrounding
3157     // operator&.
3158     return;
3159   }
3160   if (const auto *BD = dyn_cast<BindingDecl>(D)) {
3161     const auto *DD = cast<DecompositionDecl>(BD->getDecomposedDecl());
3162 
3163     SVal Base = state->getLValue(DD, LCtx);
3164     if (DD->getType()->isReferenceType()) {
3165       if (const MemRegion *R = Base.getAsRegion())
3166         Base = state->getSVal(R);
3167       else
3168         Base = UnknownVal();
3169     }
3170 
3171     SVal V = UnknownVal();
3172 
3173     // Handle binding to data members
3174     if (const auto *ME = dyn_cast<MemberExpr>(BD->getBinding())) {
3175       const auto *Field = cast<FieldDecl>(ME->getMemberDecl());
3176       V = state->getLValue(Field, Base);
3177     }
3178     // Handle binding to arrays
3179     else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BD->getBinding())) {
3180       SVal Idx = state->getSVal(ASE->getIdx(), LCtx);
3181 
3182       // Note: the index of an element in a structured binding is automatically
3183       // created and it is a unique identifier of the specific element. Thus it
3184       // cannot be a value that varies at runtime.
3185       assert(Idx.isConstant() && "BindingDecl array index is not a constant!");
3186 
3187       V = state->getLValue(BD->getType(), Idx, Base);
3188     }
3189     // Handle binding to tuple-like structures
3190     else if (const auto *HV = BD->getHoldingVar()) {
3191       V = state->getLValue(HV, LCtx);
3192 
3193       if (HV->getType()->isReferenceType()) {
3194         if (const MemRegion *R = V.getAsRegion())
3195           V = state->getSVal(R);
3196         else
3197           V = UnknownVal();
3198       }
3199     } else
3200       llvm_unreachable("An unknown case of structured binding encountered!");
3201 
3202     // In case of tuple-like types the references are already handled, so we
3203     // don't want to handle them again.
3204     if (BD->getType()->isReferenceType() && !BD->getHoldingVar()) {
3205       if (const MemRegion *R = V.getAsRegion())
3206         V = state->getSVal(R);
3207       else
3208         V = UnknownVal();
3209     }
3210 
3211     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
3212                       ProgramPoint::PostLValueKind);
3213 
3214     return;
3215   }
3216 
3217   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
3218     // FIXME: We should meaningfully implement this.
3219     (void)TPO;
3220     return;
3221   }
3222 
3223   llvm_unreachable("Support for this Decl not implemented.");
3224 }
3225 
3226 /// VisitArrayInitLoopExpr - Transfer function for array init loop.
3227 void ExprEngine::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *Ex,
3228                                         ExplodedNode *Pred,
3229                                         ExplodedNodeSet &Dst) {
3230   ExplodedNodeSet CheckerPreStmt;
3231   getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, Ex, *this);
3232 
3233   ExplodedNodeSet EvalSet;
3234   StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
3235 
3236   const Expr *Arr = Ex->getCommonExpr()->getSourceExpr();
3237 
3238   for (auto *Node : CheckerPreStmt) {
3239 
3240     // The constructor visitior has already taken care of everything.
3241     if (isa<CXXConstructExpr>(Ex->getSubExpr()))
3242       break;
3243 
3244     const LocationContext *LCtx = Node->getLocationContext();
3245     ProgramStateRef state = Node->getState();
3246 
3247     SVal Base = UnknownVal();
3248 
3249     // As in case of this expression the sub-expressions are not visited by any
3250     // other transfer functions, they are handled by matching their AST.
3251 
3252     // Case of implicit copy or move ctor of object with array member
3253     //
3254     // Note: ExprEngine::VisitMemberExpr is not able to bind the array to the
3255     // environment.
3256     //
3257     //    struct S {
3258     //      int arr[2];
3259     //    };
3260     //
3261     //
3262     //    S a;
3263     //    S b = a;
3264     //
3265     // The AST in case of a *copy constructor* looks like this:
3266     //    ArrayInitLoopExpr
3267     //    |-OpaqueValueExpr
3268     //    | `-MemberExpr              <-- match this
3269     //    |   `-DeclRefExpr
3270     //    ` ...
3271     //
3272     //
3273     //    S c;
3274     //    S d = std::move(d);
3275     //
3276     // In case of a *move constructor* the resulting AST looks like:
3277     //    ArrayInitLoopExpr
3278     //    |-OpaqueValueExpr
3279     //    | `-MemberExpr              <-- match this first
3280     //    |   `-CXXStaticCastExpr     <-- match this after
3281     //    |     `-DeclRefExpr
3282     //    ` ...
3283     if (const auto *ME = dyn_cast<MemberExpr>(Arr)) {
3284       Expr *MEBase = ME->getBase();
3285 
3286       // Move ctor
3287       if (auto CXXSCE = dyn_cast<CXXStaticCastExpr>(MEBase)) {
3288         MEBase = CXXSCE->getSubExpr();
3289       }
3290 
3291       auto ObjDeclExpr = cast<DeclRefExpr>(MEBase);
3292       SVal Obj = state->getLValue(cast<VarDecl>(ObjDeclExpr->getDecl()), LCtx);
3293 
3294       Base = state->getLValue(cast<FieldDecl>(ME->getMemberDecl()), Obj);
3295     }
3296 
3297     // Case of lambda capture and decomposition declaration
3298     //
3299     //    int arr[2];
3300     //
3301     //    [arr]{ int a = arr[0]; }();
3302     //    auto[a, b] = arr;
3303     //
3304     // In both of these cases the AST looks like the following:
3305     //    ArrayInitLoopExpr
3306     //    |-OpaqueValueExpr
3307     //    | `-DeclRefExpr             <-- match this
3308     //    ` ...
3309     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arr))
3310       Base = state->getLValue(cast<VarDecl>(DRE->getDecl()), LCtx);
3311 
3312     // Create a lazy compound value to the original array
3313     if (const MemRegion *R = Base.getAsRegion())
3314       Base = state->getSVal(R);
3315     else
3316       Base = UnknownVal();
3317 
3318     Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, Base));
3319   }
3320 
3321   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
3322 }
3323 
3324 /// VisitArraySubscriptExpr - Transfer function for array accesses
3325 void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A,
3326                                              ExplodedNode *Pred,
3327                                              ExplodedNodeSet &Dst){
3328   const Expr *Base = A->getBase()->IgnoreParens();
3329   const Expr *Idx  = A->getIdx()->IgnoreParens();
3330 
3331   ExplodedNodeSet CheckerPreStmt;
3332   getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this);
3333 
3334   ExplodedNodeSet EvalSet;
3335   StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
3336 
3337   bool IsVectorType = A->getBase()->getType()->isVectorType();
3338 
3339   // The "like" case is for situations where C standard prohibits the type to
3340   // be an lvalue, e.g. taking the address of a subscript of an expression of
3341   // type "void *".
3342   bool IsGLValueLike = A->isGLValue() ||
3343     (A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus);
3344 
3345   for (auto *Node : CheckerPreStmt) {
3346     const LocationContext *LCtx = Node->getLocationContext();
3347     ProgramStateRef state = Node->getState();
3348 
3349     if (IsGLValueLike) {
3350       QualType T = A->getType();
3351 
3352       // One of the forbidden LValue types! We still need to have sensible
3353       // symbolic locations to represent this stuff. Note that arithmetic on
3354       // void pointers is a GCC extension.
3355       if (T->isVoidType())
3356         T = getContext().CharTy;
3357 
3358       SVal V = state->getLValue(T,
3359                                 state->getSVal(Idx, LCtx),
3360                                 state->getSVal(Base, LCtx));
3361       Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr,
3362           ProgramPoint::PostLValueKind);
3363     } else if (IsVectorType) {
3364       // FIXME: non-glvalue vector reads are not modelled.
3365       Bldr.generateNode(A, Node, state, nullptr);
3366     } else {
3367       llvm_unreachable("Array subscript should be an lValue when not \
3368 a vector and not a forbidden lvalue type");
3369     }
3370   }
3371 
3372   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this);
3373 }
3374 
3375 /// VisitMemberExpr - Transfer function for member expressions.
3376 void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
3377                                  ExplodedNodeSet &Dst) {
3378   // FIXME: Prechecks eventually go in ::Visit().
3379   ExplodedNodeSet CheckedSet;
3380   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this);
3381 
3382   ExplodedNodeSet EvalSet;
3383   ValueDecl *Member = M->getMemberDecl();
3384 
3385   // Handle static member variables and enum constants accessed via
3386   // member syntax.
3387   if (isa<VarDecl, EnumConstantDecl>(Member)) {
3388     for (const auto I : CheckedSet)
3389       VisitCommonDeclRefExpr(M, Member, I, EvalSet);
3390   } else {
3391     StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
3392     ExplodedNodeSet Tmp;
3393 
3394     for (const auto I : CheckedSet) {
3395       ProgramStateRef state = I->getState();
3396       const LocationContext *LCtx = I->getLocationContext();
3397       Expr *BaseExpr = M->getBase();
3398 
3399       // Handle C++ method calls.
3400       if (const auto *MD = dyn_cast<CXXMethodDecl>(Member)) {
3401         if (MD->isImplicitObjectMemberFunction())
3402           state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
3403 
3404         SVal MDVal = svalBuilder.getFunctionPointer(MD);
3405         state = state->BindExpr(M, LCtx, MDVal);
3406 
3407         Bldr.generateNode(M, I, state);
3408         continue;
3409       }
3410 
3411       // Handle regular struct fields / member variables.
3412       const SubRegion *MR = nullptr;
3413       state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr,
3414                                             /*Result=*/nullptr,
3415                                             /*OutRegionWithAdjustments=*/&MR);
3416       SVal baseExprVal =
3417           MR ? loc::MemRegionVal(MR) : state->getSVal(BaseExpr, LCtx);
3418 
3419       // FIXME: Copied from RegionStoreManager::bind()
3420       if (const auto *SR =
3421               dyn_cast_or_null<SymbolicRegion>(baseExprVal.getAsRegion())) {
3422         QualType T = SR->getPointeeStaticType();
3423         baseExprVal =
3424             loc::MemRegionVal(getStoreManager().GetElementZeroRegion(SR, T));
3425       }
3426 
3427       const auto *field = cast<FieldDecl>(Member);
3428       SVal L = state->getLValue(field, baseExprVal);
3429 
3430       if (M->isGLValue() || M->getType()->isArrayType()) {
3431         // We special-case rvalues of array type because the analyzer cannot
3432         // reason about them, since we expect all regions to be wrapped in Locs.
3433         // We instead treat these as lvalues and assume that they will decay to
3434         // pointers as soon as they are used.
3435         if (!M->isGLValue()) {
3436           assert(M->getType()->isArrayType());
3437           const auto *PE =
3438             dyn_cast<ImplicitCastExpr>(I->getParentMap().getParentIgnoreParens(M));
3439           if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) {
3440             llvm_unreachable("should always be wrapped in ArrayToPointerDecay");
3441           }
3442         }
3443 
3444         if (field->getType()->isReferenceType()) {
3445           if (const MemRegion *R = L.getAsRegion())
3446             L = state->getSVal(R);
3447           else
3448             L = UnknownVal();
3449         }
3450 
3451         Bldr.generateNode(M, I, state->BindExpr(M, LCtx, L), nullptr,
3452                           ProgramPoint::PostLValueKind);
3453       } else {
3454         Bldr.takeNodes(I);
3455         evalLoad(Tmp, M, M, I, state, L);
3456         Bldr.addNodes(Tmp);
3457       }
3458     }
3459   }
3460 
3461   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this);
3462 }
3463 
3464 void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred,
3465                                  ExplodedNodeSet &Dst) {
3466   ExplodedNodeSet AfterPreSet;
3467   getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this);
3468 
3469   // For now, treat all the arguments to C11 atomics as escaping.
3470   // FIXME: Ideally we should model the behavior of the atomics precisely here.
3471 
3472   ExplodedNodeSet AfterInvalidateSet;
3473   StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx);
3474 
3475   for (const auto I : AfterPreSet) {
3476     ProgramStateRef State = I->getState();
3477     const LocationContext *LCtx = I->getLocationContext();
3478 
3479     SmallVector<SVal, 8> ValuesToInvalidate;
3480     for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) {
3481       const Expr *SubExpr = AE->getSubExprs()[SI];
3482       SVal SubExprVal = State->getSVal(SubExpr, LCtx);
3483       ValuesToInvalidate.push_back(SubExprVal);
3484     }
3485 
3486     State = State->invalidateRegions(ValuesToInvalidate, AE,
3487                                     currBldrCtx->blockCount(),
3488                                     LCtx,
3489                                     /*CausedByPointerEscape*/true,
3490                                     /*Symbols=*/nullptr);
3491 
3492     SVal ResultVal = UnknownVal();
3493     State = State->BindExpr(AE, LCtx, ResultVal);
3494     Bldr.generateNode(AE, I, State, nullptr,
3495                       ProgramPoint::PostStmtKind);
3496   }
3497 
3498   getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this);
3499 }
3500 
3501 // A value escapes in four possible cases:
3502 // (1) We are binding to something that is not a memory region.
3503 // (2) We are binding to a MemRegion that does not have stack storage.
3504 // (3) We are binding to a top-level parameter region with a non-trivial
3505 //     destructor. We won't see the destructor during analysis, but it's there.
3506 // (4) We are binding to a MemRegion with stack storage that the store
3507 //     does not understand.
3508 ProgramStateRef ExprEngine::processPointerEscapedOnBind(
3509     ProgramStateRef State, ArrayRef<std::pair<SVal, SVal>> LocAndVals,
3510     const LocationContext *LCtx, PointerEscapeKind Kind,
3511     const CallEvent *Call) {
3512   SmallVector<SVal, 8> Escaped;
3513   for (const std::pair<SVal, SVal> &LocAndVal : LocAndVals) {
3514     // Cases (1) and (2).
3515     const MemRegion *MR = LocAndVal.first.getAsRegion();
3516     if (!MR ||
3517         !isa<StackSpaceRegion, StaticGlobalSpaceRegion>(MR->getMemorySpace())) {
3518       Escaped.push_back(LocAndVal.second);
3519       continue;
3520     }
3521 
3522     // Case (3).
3523     if (const auto *VR = dyn_cast<VarRegion>(MR->getBaseRegion()))
3524       if (VR->hasStackParametersStorage() && VR->getStackFrame()->inTopFrame())
3525         if (const auto *RD = VR->getValueType()->getAsCXXRecordDecl())
3526           if (!RD->hasTrivialDestructor()) {
3527             Escaped.push_back(LocAndVal.second);
3528             continue;
3529           }
3530 
3531     // Case (4): in order to test that, generate a new state with the binding
3532     // added. If it is the same state, then it escapes (since the store cannot
3533     // represent the binding).
3534     // Do this only if we know that the store is not supposed to generate the
3535     // same state.
3536     SVal StoredVal = State->getSVal(MR);
3537     if (StoredVal != LocAndVal.second)
3538       if (State ==
3539           (State->bindLoc(loc::MemRegionVal(MR), LocAndVal.second, LCtx)))
3540         Escaped.push_back(LocAndVal.second);
3541   }
3542 
3543   if (Escaped.empty())
3544     return State;
3545 
3546   return escapeValues(State, Escaped, Kind, Call);
3547 }
3548 
3549 ProgramStateRef
3550 ExprEngine::processPointerEscapedOnBind(ProgramStateRef State, SVal Loc,
3551                                         SVal Val, const LocationContext *LCtx) {
3552   std::pair<SVal, SVal> LocAndVal(Loc, Val);
3553   return processPointerEscapedOnBind(State, LocAndVal, LCtx, PSK_EscapeOnBind,
3554                                      nullptr);
3555 }
3556 
3557 ProgramStateRef
3558 ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State,
3559     const InvalidatedSymbols *Invalidated,
3560     ArrayRef<const MemRegion *> ExplicitRegions,
3561     const CallEvent *Call,
3562     RegionAndSymbolInvalidationTraits &ITraits) {
3563   if (!Invalidated || Invalidated->empty())
3564     return State;
3565 
3566   if (!Call)
3567     return getCheckerManager().runCheckersForPointerEscape(State,
3568                                                            *Invalidated,
3569                                                            nullptr,
3570                                                            PSK_EscapeOther,
3571                                                            &ITraits);
3572 
3573   // If the symbols were invalidated by a call, we want to find out which ones
3574   // were invalidated directly due to being arguments to the call.
3575   InvalidatedSymbols SymbolsDirectlyInvalidated;
3576   for (const auto I : ExplicitRegions) {
3577     if (const SymbolicRegion *R = I->StripCasts()->getAs<SymbolicRegion>())
3578       SymbolsDirectlyInvalidated.insert(R->getSymbol());
3579   }
3580 
3581   InvalidatedSymbols SymbolsIndirectlyInvalidated;
3582   for (const auto &sym : *Invalidated) {
3583     if (SymbolsDirectlyInvalidated.count(sym))
3584       continue;
3585     SymbolsIndirectlyInvalidated.insert(sym);
3586   }
3587 
3588   if (!SymbolsDirectlyInvalidated.empty())
3589     State = getCheckerManager().runCheckersForPointerEscape(State,
3590         SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits);
3591 
3592   // Notify about the symbols that get indirectly invalidated by the call.
3593   if (!SymbolsIndirectlyInvalidated.empty())
3594     State = getCheckerManager().runCheckersForPointerEscape(State,
3595         SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits);
3596 
3597   return State;
3598 }
3599 
3600 /// evalBind - Handle the semantics of binding a value to a specific location.
3601 ///  This method is used by evalStore and (soon) VisitDeclStmt, and others.
3602 void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
3603                           ExplodedNode *Pred,
3604                           SVal location, SVal Val,
3605                           bool atDeclInit, const ProgramPoint *PP) {
3606   const LocationContext *LC = Pred->getLocationContext();
3607   PostStmt PS(StoreE, LC);
3608   if (!PP)
3609     PP = &PS;
3610 
3611   // Do a previsit of the bind.
3612   ExplodedNodeSet CheckedSet;
3613   getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
3614                                          StoreE, *this, *PP);
3615 
3616   StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx);
3617 
3618   // If the location is not a 'Loc', it will already be handled by
3619   // the checkers.  There is nothing left to do.
3620   if (!isa<Loc>(location)) {
3621     const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr,
3622                                      /*tag*/nullptr);
3623     ProgramStateRef state = Pred->getState();
3624     state = processPointerEscapedOnBind(state, location, Val, LC);
3625     Bldr.generateNode(L, state, Pred);
3626     return;
3627   }
3628 
3629   for (const auto PredI : CheckedSet) {
3630     ProgramStateRef state = PredI->getState();
3631 
3632     state = processPointerEscapedOnBind(state, location, Val, LC);
3633 
3634     // When binding the value, pass on the hint that this is a initialization.
3635     // For initializations, we do not need to inform clients of region
3636     // changes.
3637     state = state->bindLoc(location.castAs<Loc>(),
3638                            Val, LC, /* notifyChanges = */ !atDeclInit);
3639 
3640     const MemRegion *LocReg = nullptr;
3641     if (std::optional<loc::MemRegionVal> LocRegVal =
3642             location.getAs<loc::MemRegionVal>()) {
3643       LocReg = LocRegVal->getRegion();
3644     }
3645 
3646     const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr);
3647     Bldr.generateNode(L, state, PredI);
3648   }
3649 }
3650 
3651 /// evalStore - Handle the semantics of a store via an assignment.
3652 ///  @param Dst The node set to store generated state nodes
3653 ///  @param AssignE The assignment expression if the store happens in an
3654 ///         assignment.
3655 ///  @param LocationE The location expression that is stored to.
3656 ///  @param state The current simulation state
3657 ///  @param location The location to store the value
3658 ///  @param Val The value to be stored
3659 void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
3660                              const Expr *LocationE,
3661                              ExplodedNode *Pred,
3662                              ProgramStateRef state, SVal location, SVal Val,
3663                              const ProgramPointTag *tag) {
3664   // Proceed with the store.  We use AssignE as the anchor for the PostStore
3665   // ProgramPoint if it is non-NULL, and LocationE otherwise.
3666   const Expr *StoreE = AssignE ? AssignE : LocationE;
3667 
3668   // Evaluate the location (checks for bad dereferences).
3669   ExplodedNodeSet Tmp;
3670   evalLocation(Tmp, AssignE, LocationE, Pred, state, location, false);
3671 
3672   if (Tmp.empty())
3673     return;
3674 
3675   if (location.isUndef())
3676     return;
3677 
3678   for (const auto I : Tmp)
3679     evalBind(Dst, StoreE, I, location, Val, false);
3680 }
3681 
3682 void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
3683                           const Expr *NodeEx,
3684                           const Expr *BoundEx,
3685                           ExplodedNode *Pred,
3686                           ProgramStateRef state,
3687                           SVal location,
3688                           const ProgramPointTag *tag,
3689                           QualType LoadTy) {
3690   assert(!isa<NonLoc>(location) && "location cannot be a NonLoc.");
3691   assert(NodeEx);
3692   assert(BoundEx);
3693   // Evaluate the location (checks for bad dereferences).
3694   ExplodedNodeSet Tmp;
3695   evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, true);
3696   if (Tmp.empty())
3697     return;
3698 
3699   StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
3700   if (location.isUndef())
3701     return;
3702 
3703   // Proceed with the load.
3704   for (const auto I : Tmp) {
3705     state = I->getState();
3706     const LocationContext *LCtx = I->getLocationContext();
3707 
3708     SVal V = UnknownVal();
3709     if (location.isValid()) {
3710       if (LoadTy.isNull())
3711         LoadTy = BoundEx->getType();
3712       V = state->getSVal(location.castAs<Loc>(), LoadTy);
3713     }
3714 
3715     Bldr.generateNode(NodeEx, I, state->BindExpr(BoundEx, LCtx, V), tag,
3716                       ProgramPoint::PostLoadKind);
3717   }
3718 }
3719 
3720 void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
3721                               const Stmt *NodeEx,
3722                               const Stmt *BoundEx,
3723                               ExplodedNode *Pred,
3724                               ProgramStateRef state,
3725                               SVal location,
3726                               bool isLoad) {
3727   StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx);
3728   // Early checks for performance reason.
3729   if (location.isUnknown()) {
3730     return;
3731   }
3732 
3733   ExplodedNodeSet Src;
3734   BldrTop.takeNodes(Pred);
3735   StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx);
3736   if (Pred->getState() != state) {
3737     // Associate this new state with an ExplodedNode.
3738     // FIXME: If I pass null tag, the graph is incorrect, e.g for
3739     //   int *p;
3740     //   p = 0;
3741     //   *p = 0xDEADBEEF;
3742     // "p = 0" is not noted as "Null pointer value stored to 'p'" but
3743     // instead "int *p" is noted as
3744     // "Variable 'p' initialized to a null pointer value"
3745 
3746     static SimpleProgramPointTag tag(TagProviderName, "Location");
3747     Bldr.generateNode(NodeEx, Pred, state, &tag);
3748   }
3749   ExplodedNodeSet Tmp;
3750   getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
3751                                              NodeEx, BoundEx, *this);
3752   BldrTop.addNodes(Tmp);
3753 }
3754 
3755 std::pair<const ProgramPointTag *, const ProgramPointTag *>
3756 ExprEngine::getEagerlyAssumeBifurcationTags() {
3757   static SimpleProgramPointTag TrueTag(TagProviderName, "Eagerly Assume True"),
3758       FalseTag(TagProviderName, "Eagerly Assume False");
3759 
3760   return std::make_pair(&TrueTag, &FalseTag);
3761 }
3762 
3763 /// If the last EagerlyAssume attempt was successful (i.e. the true and false
3764 /// cases were both feasible), this state trait stores the expression where it
3765 /// happened; otherwise this holds nullptr.
3766 REGISTER_TRAIT_WITH_PROGRAMSTATE(LastEagerlyAssumeExprIfSuccessful,
3767                                  const Expr *)
3768 
3769 void ExprEngine::evalEagerlyAssumeBifurcation(ExplodedNodeSet &Dst,
3770                                               ExplodedNodeSet &Src,
3771                                               const Expr *Ex) {
3772   StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx);
3773 
3774   for (ExplodedNode *Pred : Src) {
3775     // Test if the previous node was as the same expression.  This can happen
3776     // when the expression fails to evaluate to anything meaningful and
3777     // (as an optimization) we don't generate a node.
3778     ProgramPoint P = Pred->getLocation();
3779     if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) {
3780       continue;
3781     }
3782 
3783     ProgramStateRef State = Pred->getState();
3784     State = State->set<LastEagerlyAssumeExprIfSuccessful>(nullptr);
3785     SVal V = State->getSVal(Ex, Pred->getLocationContext());
3786     std::optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>();
3787     if (SEV && SEV->isExpression()) {
3788       const auto &[TrueTag, FalseTag] = getEagerlyAssumeBifurcationTags();
3789 
3790       auto [StateTrue, StateFalse] = State->assume(*SEV);
3791 
3792       if (StateTrue && StateFalse) {
3793         StateTrue = StateTrue->set<LastEagerlyAssumeExprIfSuccessful>(Ex);
3794         StateFalse = StateFalse->set<LastEagerlyAssumeExprIfSuccessful>(Ex);
3795       }
3796 
3797       // First assume that the condition is true.
3798       if (StateTrue) {
3799         SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
3800         StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
3801         Bldr.generateNode(Ex, Pred, StateTrue, TrueTag);
3802       }
3803 
3804       // Next, assume that the condition is false.
3805       if (StateFalse) {
3806         SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
3807         StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
3808         Bldr.generateNode(Ex, Pred, StateFalse, FalseTag);
3809       }
3810     }
3811   }
3812 }
3813 
3814 bool ExprEngine::didEagerlyAssumeBifurcateAt(ProgramStateRef State,
3815                                              const Expr *Ex) const {
3816   return Ex && State->get<LastEagerlyAssumeExprIfSuccessful>() == Ex;
3817 }
3818 
3819 void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred,
3820                                  ExplodedNodeSet &Dst) {
3821   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
3822   // We have processed both the inputs and the outputs.  All of the outputs
3823   // should evaluate to Locs.  Nuke all of their values.
3824 
3825   // FIXME: Some day in the future it would be nice to allow a "plug-in"
3826   // which interprets the inline asm and stores proper results in the
3827   // outputs.
3828 
3829   ProgramStateRef state = Pred->getState();
3830 
3831   for (const Expr *O : A->outputs()) {
3832     SVal X = state->getSVal(O, Pred->getLocationContext());
3833     assert(!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
3834 
3835     if (std::optional<Loc> LV = X.getAs<Loc>())
3836       state = state->invalidateRegions(*LV, A, currBldrCtx->blockCount(),
3837                                        Pred->getLocationContext(),
3838                                        /*CausedByPointerEscape=*/true);
3839   }
3840 
3841   // Do not reason about locations passed inside inline assembly.
3842   for (const Expr *I : A->inputs()) {
3843     SVal X = state->getSVal(I, Pred->getLocationContext());
3844 
3845     if (std::optional<Loc> LV = X.getAs<Loc>())
3846       state = state->invalidateRegions(*LV, A, currBldrCtx->blockCount(),
3847                                        Pred->getLocationContext(),
3848                                        /*CausedByPointerEscape=*/true);
3849   }
3850 
3851   Bldr.generateNode(A, Pred, state);
3852 }
3853 
3854 void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred,
3855                                 ExplodedNodeSet &Dst) {
3856   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
3857   Bldr.generateNode(A, Pred, Pred->getState());
3858 }
3859 
3860 //===----------------------------------------------------------------------===//
3861 // Visualization.
3862 //===----------------------------------------------------------------------===//
3863 
3864 namespace llvm {
3865 
3866 template<>
3867 struct DOTGraphTraits<ExplodedGraph*> : public DefaultDOTGraphTraits {
3868   DOTGraphTraits (bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3869 
3870   static bool nodeHasBugReport(const ExplodedNode *N) {
3871     BugReporter &BR = static_cast<ExprEngine &>(
3872       N->getState()->getStateManager().getOwningEngine()).getBugReporter();
3873 
3874     for (const auto &Class : BR.equivalenceClasses()) {
3875       for (const auto &Report : Class.getReports()) {
3876         const auto *PR = dyn_cast<PathSensitiveBugReport>(Report.get());
3877         if (!PR)
3878           continue;
3879         const ExplodedNode *EN = PR->getErrorNode();
3880         if (EN->getState() == N->getState() &&
3881             EN->getLocation() == N->getLocation())
3882           return true;
3883       }
3884     }
3885     return false;
3886   }
3887 
3888   /// \p PreCallback: callback before break.
3889   /// \p PostCallback: callback after break.
3890   /// \p Stop: stop iteration if returns @c true
3891   /// \return Whether @c Stop ever returned @c true.
3892   static bool traverseHiddenNodes(
3893       const ExplodedNode *N,
3894       llvm::function_ref<void(const ExplodedNode *)> PreCallback,
3895       llvm::function_ref<void(const ExplodedNode *)> PostCallback,
3896       llvm::function_ref<bool(const ExplodedNode *)> Stop) {
3897     while (true) {
3898       PreCallback(N);
3899       if (Stop(N))
3900         return true;
3901 
3902       if (N->succ_size() != 1 || !isNodeHidden(N->getFirstSucc(), nullptr))
3903         break;
3904       PostCallback(N);
3905 
3906       N = N->getFirstSucc();
3907     }
3908     return false;
3909   }
3910 
3911   static bool isNodeHidden(const ExplodedNode *N, const ExplodedGraph *G) {
3912     return N->isTrivial();
3913   }
3914 
3915   static std::string getNodeLabel(const ExplodedNode *N, ExplodedGraph *G){
3916     std::string Buf;
3917     llvm::raw_string_ostream Out(Buf);
3918 
3919     const bool IsDot = true;
3920     const unsigned int Space = 1;
3921     ProgramStateRef State = N->getState();
3922 
3923     Out << "{ \"state_id\": " << State->getID()
3924         << ",\\l";
3925 
3926     Indent(Out, Space, IsDot) << "\"program_points\": [\\l";
3927 
3928     // Dump program point for all the previously skipped nodes.
3929     traverseHiddenNodes(
3930         N,
3931         [&](const ExplodedNode *OtherNode) {
3932           Indent(Out, Space + 1, IsDot) << "{ ";
3933           OtherNode->getLocation().printJson(Out, /*NL=*/"\\l");
3934           Out << ", \"tag\": ";
3935           if (const ProgramPointTag *Tag = OtherNode->getLocation().getTag())
3936             Out << '\"' << Tag->getTagDescription() << '\"';
3937           else
3938             Out << "null";
3939           Out << ", \"node_id\": " << OtherNode->getID() <<
3940                  ", \"is_sink\": " << OtherNode->isSink() <<
3941                  ", \"has_report\": " << nodeHasBugReport(OtherNode) << " }";
3942         },
3943         // Adds a comma and a new-line between each program point.
3944         [&](const ExplodedNode *) { Out << ",\\l"; },
3945         [&](const ExplodedNode *) { return false; });
3946 
3947     Out << "\\l"; // Adds a new-line to the last program point.
3948     Indent(Out, Space, IsDot) << "],\\l";
3949 
3950     State->printDOT(Out, N->getLocationContext(), Space);
3951 
3952     Out << "\\l}\\l";
3953     return Buf;
3954   }
3955 };
3956 
3957 } // namespace llvm
3958 
3959 void ExprEngine::ViewGraph(bool trim) {
3960   std::string Filename = DumpGraph(trim);
3961   llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
3962 }
3963 
3964 void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode *> Nodes) {
3965   std::string Filename = DumpGraph(Nodes);
3966   llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
3967 }
3968 
3969 std::string ExprEngine::DumpGraph(bool trim, StringRef Filename) {
3970   if (trim) {
3971     std::vector<const ExplodedNode *> Src;
3972 
3973     // Iterate through the reports and get their nodes.
3974     for (const auto &Class : BR.equivalenceClasses()) {
3975       const auto *R =
3976           dyn_cast<PathSensitiveBugReport>(Class.getReports()[0].get());
3977       if (!R)
3978         continue;
3979       const auto *N = const_cast<ExplodedNode *>(R->getErrorNode());
3980       Src.push_back(N);
3981     }
3982     return DumpGraph(Src, Filename);
3983   }
3984 
3985   return llvm::WriteGraph(&G, "ExprEngine", /*ShortNames=*/false,
3986                           /*Title=*/"Exploded Graph",
3987                           /*Filename=*/std::string(Filename));
3988 }
3989 
3990 std::string ExprEngine::DumpGraph(ArrayRef<const ExplodedNode *> Nodes,
3991                                   StringRef Filename) {
3992   std::unique_ptr<ExplodedGraph> TrimmedG(G.trim(Nodes));
3993 
3994   if (!TrimmedG.get()) {
3995     llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
3996     return "";
3997   }
3998 
3999   return llvm::WriteGraph(TrimmedG.get(), "TrimmedExprEngine",
4000                           /*ShortNames=*/false,
4001                           /*Title=*/"Trimmed Exploded Graph",
4002                           /*Filename=*/std::string(Filename));
4003 }
4004 
4005 void *ProgramStateTrait<ReplayWithoutInlining>::GDMIndex() {
4006   static int index = 0;
4007   return &index;
4008 }
4009 
4010 void ExprEngine::anchor() { }
4011