xref: /llvm-project/clang/lib/Sema/SemaDeclObjC.cpp (revision cfe26358e3051755961fb1f3b46328dc2c326895)
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DynamicRecursiveASTVisitor.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/DelayedDiagnostic.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/Scope.h"
28 #include "clang/Sema/ScopeInfo.h"
29 #include "clang/Sema/SemaObjC.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DenseSet.h"
32 
33 using namespace clang;
34 
35 /// Check whether the given method, which must be in the 'init'
36 /// family, is a valid member of that family.
37 ///
38 /// \param receiverTypeIfCall - if null, check this as if declaring it;
39 ///   if non-null, check this as if making a call to it with the given
40 ///   receiver type
41 ///
42 /// \return true to indicate that there was an error and appropriate
43 ///   actions were taken
44 bool SemaObjC::checkInitMethod(ObjCMethodDecl *method,
45                                QualType receiverTypeIfCall) {
46   ASTContext &Context = getASTContext();
47   if (method->isInvalidDecl()) return true;
48 
49   // This castAs is safe: methods that don't return an object
50   // pointer won't be inferred as inits and will reject an explicit
51   // objc_method_family(init).
52 
53   // We ignore protocols here.  Should we?  What about Class?
54 
55   const ObjCObjectType *result =
56       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
57 
58   if (result->isObjCId()) {
59     return false;
60   } else if (result->isObjCClass()) {
61     // fall through: always an error
62   } else {
63     ObjCInterfaceDecl *resultClass = result->getInterface();
64     assert(resultClass && "unexpected object type!");
65 
66     // It's okay for the result type to still be a forward declaration
67     // if we're checking an interface declaration.
68     if (!resultClass->hasDefinition()) {
69       if (receiverTypeIfCall.isNull() &&
70           !isa<ObjCImplementationDecl>(method->getDeclContext()))
71         return false;
72 
73     // Otherwise, we try to compare class types.
74     } else {
75       // If this method was declared in a protocol, we can't check
76       // anything unless we have a receiver type that's an interface.
77       const ObjCInterfaceDecl *receiverClass = nullptr;
78       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
79         if (receiverTypeIfCall.isNull())
80           return false;
81 
82         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
83           ->getInterfaceDecl();
84 
85         // This can be null for calls to e.g. id<Foo>.
86         if (!receiverClass) return false;
87       } else {
88         receiverClass = method->getClassInterface();
89         assert(receiverClass && "method not associated with a class!");
90       }
91 
92       // If either class is a subclass of the other, it's fine.
93       if (receiverClass->isSuperClassOf(resultClass) ||
94           resultClass->isSuperClassOf(receiverClass))
95         return false;
96     }
97   }
98 
99   SourceLocation loc = method->getLocation();
100 
101   // If we're in a system header, and this is not a call, just make
102   // the method unusable.
103   if (receiverTypeIfCall.isNull() &&
104       SemaRef.getSourceManager().isInSystemHeader(loc)) {
105     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
106                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
107     return true;
108   }
109 
110   // Otherwise, it's an error.
111   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
112   method->setInvalidDecl();
113   return true;
114 }
115 
116 /// Issue a warning if the parameter of the overridden method is non-escaping
117 /// but the parameter of the overriding method is not.
118 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
119                              Sema &S) {
120   if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
121     S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
122     S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
123     return false;
124   }
125 
126   return true;
127 }
128 
129 /// Produce additional diagnostics if a category conforms to a protocol that
130 /// defines a method taking a non-escaping parameter.
131 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
132                              const ObjCCategoryDecl *CD,
133                              const ObjCProtocolDecl *PD, Sema &S) {
134   if (!diagnoseNoescape(NewD, OldD, S))
135     S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
136         << CD->IsClassExtension() << PD
137         << cast<ObjCMethodDecl>(NewD->getDeclContext());
138 }
139 
140 void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
141                                        const ObjCMethodDecl *Overridden) {
142   ASTContext &Context = getASTContext();
143   if (Overridden->hasRelatedResultType() &&
144       !NewMethod->hasRelatedResultType()) {
145     // This can only happen when the method follows a naming convention that
146     // implies a related result type, and the original (overridden) method has
147     // a suitable return type, but the new (overriding) method does not have
148     // a suitable return type.
149     QualType ResultType = NewMethod->getReturnType();
150     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
151 
152     // Figure out which class this method is part of, if any.
153     ObjCInterfaceDecl *CurrentClass
154       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
155     if (!CurrentClass) {
156       DeclContext *DC = NewMethod->getDeclContext();
157       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
158         CurrentClass = Cat->getClassInterface();
159       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
160         CurrentClass = Impl->getClassInterface();
161       else if (ObjCCategoryImplDecl *CatImpl
162                = dyn_cast<ObjCCategoryImplDecl>(DC))
163         CurrentClass = CatImpl->getClassInterface();
164     }
165 
166     if (CurrentClass) {
167       Diag(NewMethod->getLocation(),
168            diag::warn_related_result_type_compatibility_class)
169         << Context.getObjCInterfaceType(CurrentClass)
170         << ResultType
171         << ResultTypeRange;
172     } else {
173       Diag(NewMethod->getLocation(),
174            diag::warn_related_result_type_compatibility_protocol)
175         << ResultType
176         << ResultTypeRange;
177     }
178 
179     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
180       Diag(Overridden->getLocation(),
181            diag::note_related_result_type_family)
182         << /*overridden method*/ 0
183         << Family;
184     else
185       Diag(Overridden->getLocation(),
186            diag::note_related_result_type_overridden);
187   }
188 
189   if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
190        Overridden->hasAttr<NSReturnsRetainedAttr>())) {
191     Diag(NewMethod->getLocation(),
192          getLangOpts().ObjCAutoRefCount
193              ? diag::err_nsreturns_retained_attribute_mismatch
194              : diag::warn_nsreturns_retained_attribute_mismatch)
195         << 1;
196     Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
197   }
198   if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
199        Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
200     Diag(NewMethod->getLocation(),
201          getLangOpts().ObjCAutoRefCount
202              ? diag::err_nsreturns_retained_attribute_mismatch
203              : diag::warn_nsreturns_retained_attribute_mismatch)
204         << 0;
205     Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
206   }
207 
208   ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
209                                        oe = Overridden->param_end();
210   for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
211                                       ne = NewMethod->param_end();
212        ni != ne && oi != oe; ++ni, ++oi) {
213     const ParmVarDecl *oldDecl = (*oi);
214     ParmVarDecl *newDecl = (*ni);
215     if (newDecl->hasAttr<NSConsumedAttr>() !=
216         oldDecl->hasAttr<NSConsumedAttr>()) {
217       Diag(newDecl->getLocation(),
218            getLangOpts().ObjCAutoRefCount
219                ? diag::err_nsconsumed_attribute_mismatch
220                : diag::warn_nsconsumed_attribute_mismatch);
221       Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
222     }
223 
224     diagnoseNoescape(newDecl, oldDecl, SemaRef);
225   }
226 }
227 
228 /// Check a method declaration for compatibility with the Objective-C
229 /// ARC conventions.
230 bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) {
231   ASTContext &Context = getASTContext();
232   ObjCMethodFamily family = method->getMethodFamily();
233   switch (family) {
234   case OMF_None:
235   case OMF_finalize:
236   case OMF_retain:
237   case OMF_release:
238   case OMF_autorelease:
239   case OMF_retainCount:
240   case OMF_self:
241   case OMF_initialize:
242   case OMF_performSelector:
243     return false;
244 
245   case OMF_dealloc:
246     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
247       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
248       if (ResultTypeRange.isInvalid())
249         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
250             << method->getReturnType()
251             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
252       else
253         Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
254             << method->getReturnType()
255             << FixItHint::CreateReplacement(ResultTypeRange, "void");
256       return true;
257     }
258     return false;
259 
260   case OMF_init:
261     // If the method doesn't obey the init rules, don't bother annotating it.
262     if (checkInitMethod(method, QualType()))
263       return true;
264 
265     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
266 
267     // Don't add a second copy of this attribute, but otherwise don't
268     // let it be suppressed.
269     if (method->hasAttr<NSReturnsRetainedAttr>())
270       return false;
271     break;
272 
273   case OMF_alloc:
274   case OMF_copy:
275   case OMF_mutableCopy:
276   case OMF_new:
277     if (method->hasAttr<NSReturnsRetainedAttr>() ||
278         method->hasAttr<NSReturnsNotRetainedAttr>() ||
279         method->hasAttr<NSReturnsAutoreleasedAttr>())
280       return false;
281     break;
282   }
283 
284   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
285   return false;
286 }
287 
288 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
289                                                 SourceLocation ImplLoc) {
290   if (!ND)
291     return;
292   bool IsCategory = false;
293   StringRef RealizedPlatform;
294   AvailabilityResult Availability = ND->getAvailability(
295       /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
296       &RealizedPlatform);
297   if (Availability != AR_Deprecated) {
298     if (isa<ObjCMethodDecl>(ND)) {
299       if (Availability != AR_Unavailable)
300         return;
301       if (RealizedPlatform.empty())
302         RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
303       // Warn about implementing unavailable methods, unless the unavailable
304       // is for an app extension.
305       if (RealizedPlatform.ends_with("_app_extension"))
306         return;
307       S.Diag(ImplLoc, diag::warn_unavailable_def);
308       S.Diag(ND->getLocation(), diag::note_method_declared_at)
309           << ND->getDeclName();
310       return;
311     }
312     if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
313       if (!CD->getClassInterface()->isDeprecated())
314         return;
315       ND = CD->getClassInterface();
316       IsCategory = true;
317     } else
318       return;
319   }
320   S.Diag(ImplLoc, diag::warn_deprecated_def)
321       << (isa<ObjCMethodDecl>(ND)
322               ? /*Method*/ 0
323               : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
324                                                         : /*Class*/ 1);
325   if (isa<ObjCMethodDecl>(ND))
326     S.Diag(ND->getLocation(), diag::note_method_declared_at)
327         << ND->getDeclName();
328   else
329     S.Diag(ND->getLocation(), diag::note_previous_decl)
330         << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
331 }
332 
333 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
334 /// pool.
335 void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) {
336   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
337 
338   // If we don't have a valid method decl, simply return.
339   if (!MDecl)
340     return;
341   if (MDecl->isInstanceMethod())
342     AddInstanceMethodToGlobalPool(MDecl, true);
343   else
344     AddFactoryMethodToGlobalPool(MDecl, true);
345 }
346 
347 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
348 /// has explicit ownership attribute; false otherwise.
349 static bool
350 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
351   QualType T = Param->getType();
352 
353   if (const PointerType *PT = T->getAs<PointerType>()) {
354     T = PT->getPointeeType();
355   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
356     T = RT->getPointeeType();
357   } else {
358     return true;
359   }
360 
361   // If we have a lifetime qualifier, but it's local, we must have
362   // inferred it. So, it is implicit.
363   return !T.getLocalQualifiers().hasObjCLifetime();
364 }
365 
366 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
367 /// and user declared, in the method definition's AST.
368 void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
369   ASTContext &Context = getASTContext();
370   SemaRef.ImplicitlyRetainedSelfLocs.clear();
371   assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused");
372   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
373 
374   SemaRef.PushExpressionEvaluationContext(
375       SemaRef.ExprEvalContexts.back().Context);
376 
377   // If we don't have a valid method decl, simply return.
378   if (!MDecl)
379     return;
380 
381   QualType ResultType = MDecl->getReturnType();
382   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
383       !MDecl->isInvalidDecl() &&
384       SemaRef.RequireCompleteType(MDecl->getLocation(), ResultType,
385                                   diag::err_func_def_incomplete_result))
386     MDecl->setInvalidDecl();
387 
388   // Allow all of Sema to see that we are entering a method definition.
389   SemaRef.PushDeclContext(FnBodyScope, MDecl);
390   SemaRef.PushFunctionScope();
391 
392   // Create Decl objects for each parameter, entrring them in the scope for
393   // binding to their use.
394 
395   // Insert the invisible arguments, self and _cmd!
396   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
397 
398   SemaRef.PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
399   SemaRef.PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
400 
401   // The ObjC parser requires parameter names so there's no need to check.
402   SemaRef.CheckParmsForFunctionDef(MDecl->parameters(),
403                                    /*CheckParameterNames=*/false);
404 
405   // Introduce all of the other parameters into this scope.
406   for (auto *Param : MDecl->parameters()) {
407     if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount &&
408         !HasExplicitOwnershipAttr(SemaRef, Param))
409       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
410             Param->getType();
411 
412     if (Param->getIdentifier())
413       SemaRef.PushOnScopeChains(Param, FnBodyScope);
414   }
415 
416   // In ARC, disallow definition of retain/release/autorelease/retainCount
417   if (getLangOpts().ObjCAutoRefCount) {
418     switch (MDecl->getMethodFamily()) {
419     case OMF_retain:
420     case OMF_retainCount:
421     case OMF_release:
422     case OMF_autorelease:
423       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
424         << 0 << MDecl->getSelector();
425       break;
426 
427     case OMF_None:
428     case OMF_dealloc:
429     case OMF_finalize:
430     case OMF_alloc:
431     case OMF_init:
432     case OMF_mutableCopy:
433     case OMF_copy:
434     case OMF_new:
435     case OMF_self:
436     case OMF_initialize:
437     case OMF_performSelector:
438       break;
439     }
440   }
441 
442   // Warn on deprecated methods under -Wdeprecated-implementations,
443   // and prepare for warning on missing super calls.
444   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
445     ObjCMethodDecl *IMD =
446       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
447 
448     if (IMD) {
449       ObjCImplDecl *ImplDeclOfMethodDef =
450         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
451       ObjCContainerDecl *ContDeclOfMethodDecl =
452         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
453       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
454       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
455         ImplDeclOfMethodDecl = OID->getImplementation();
456       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
457         if (CD->IsClassExtension()) {
458           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
459             ImplDeclOfMethodDecl = OID->getImplementation();
460         } else
461             ImplDeclOfMethodDecl = CD->getImplementation();
462       }
463       // No need to issue deprecated warning if deprecated mehod in class/category
464       // is being implemented in its own implementation (no overriding is involved).
465       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
466         DiagnoseObjCImplementedDeprecations(SemaRef, IMD, MDecl->getLocation());
467     }
468 
469     if (MDecl->getMethodFamily() == OMF_init) {
470       if (MDecl->isDesignatedInitializerForTheInterface()) {
471         SemaRef.getCurFunction()->ObjCIsDesignatedInit = true;
472         SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain =
473             IC->getSuperClass() != nullptr;
474       } else if (IC->hasDesignatedInitializers()) {
475         SemaRef.getCurFunction()->ObjCIsSecondaryInit = true;
476         SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true;
477       }
478     }
479 
480     // If this is "dealloc" or "finalize", set some bit here.
481     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
482     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
483     // Only do this if the current class actually has a superclass.
484     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
485       ObjCMethodFamily Family = MDecl->getMethodFamily();
486       if (Family == OMF_dealloc) {
487         if (!(getLangOpts().ObjCAutoRefCount ||
488               getLangOpts().getGC() == LangOptions::GCOnly))
489           SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
490 
491       } else if (Family == OMF_finalize) {
492         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
493           SemaRef.getCurFunction()->ObjCShouldCallSuper = true;
494 
495       } else {
496         const ObjCMethodDecl *SuperMethod =
497           SuperClass->lookupMethod(MDecl->getSelector(),
498                                    MDecl->isInstanceMethod());
499         SemaRef.getCurFunction()->ObjCShouldCallSuper =
500             (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
501       }
502     }
503   }
504 
505   // Some function attributes (like OptimizeNoneAttr) need actions before
506   // parsing body started.
507   SemaRef.applyFunctionAttributesBeforeParsingBody(D);
508 }
509 
510 namespace {
511 
512 // Callback to only accept typo corrections that are Objective-C classes.
513 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
514 // function will reject corrections to that class.
515 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
516  public:
517   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
518   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
519       : CurrentIDecl(IDecl) {}
520 
521   bool ValidateCandidate(const TypoCorrection &candidate) override {
522     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
523     return ID && !declaresSameEntity(ID, CurrentIDecl);
524   }
525 
526   std::unique_ptr<CorrectionCandidateCallback> clone() override {
527     return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
528   }
529 
530  private:
531   ObjCInterfaceDecl *CurrentIDecl;
532 };
533 
534 } // end anonymous namespace
535 
536 static void diagnoseUseOfProtocols(Sema &TheSema,
537                                    ObjCContainerDecl *CD,
538                                    ObjCProtocolDecl *const *ProtoRefs,
539                                    unsigned NumProtoRefs,
540                                    const SourceLocation *ProtoLocs) {
541   assert(ProtoRefs);
542   // Diagnose availability in the context of the ObjC container.
543   Sema::ContextRAII SavedContext(TheSema, CD);
544   for (unsigned i = 0; i < NumProtoRefs; ++i) {
545     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
546                                     /*UnknownObjCClass=*/nullptr,
547                                     /*ObjCPropertyAccess=*/false,
548                                     /*AvoidPartialAvailabilityChecks=*/true);
549   }
550 }
551 
552 void SemaObjC::ActOnSuperClassOfClassInterface(
553     Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl,
554     IdentifierInfo *ClassName, SourceLocation ClassLoc,
555     IdentifierInfo *SuperName, SourceLocation SuperLoc,
556     ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) {
557   ASTContext &Context = getASTContext();
558   // Check if a different kind of symbol declared in this scope.
559   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
560       SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
561 
562   if (!PrevDecl) {
563     // Try to correct for a typo in the superclass name without correcting
564     // to the class we're defining.
565     ObjCInterfaceValidatorCCC CCC(IDecl);
566     if (TypoCorrection Corrected = SemaRef.CorrectTypo(
567             DeclarationNameInfo(SuperName, SuperLoc), Sema::LookupOrdinaryName,
568             SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
569       SemaRef.diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
570                                           << SuperName << ClassName);
571       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
572     }
573   }
574 
575   if (declaresSameEntity(PrevDecl, IDecl)) {
576     Diag(SuperLoc, diag::err_recursive_superclass)
577       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
578     IDecl->setEndOfDefinitionLoc(ClassLoc);
579   } else {
580     ObjCInterfaceDecl *SuperClassDecl =
581     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
582     QualType SuperClassType;
583 
584     // Diagnose classes that inherit from deprecated classes.
585     if (SuperClassDecl) {
586       (void)SemaRef.DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
587       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
588     }
589 
590     if (PrevDecl && !SuperClassDecl) {
591       // The previous declaration was not a class decl. Check if we have a
592       // typedef. If we do, get the underlying class type.
593       if (const TypedefNameDecl *TDecl =
594           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
595         QualType T = TDecl->getUnderlyingType();
596         if (T->isObjCObjectType()) {
597           if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
598             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
599             SuperClassType = Context.getTypeDeclType(TDecl);
600 
601             // This handles the following case:
602             // @interface NewI @end
603             // typedef NewI DeprI __attribute__((deprecated("blah")))
604             // @interface SI : DeprI /* warn here */ @end
605             (void)SemaRef.DiagnoseUseOfDecl(
606                 const_cast<TypedefNameDecl *>(TDecl), SuperLoc);
607           }
608         }
609       }
610 
611       // This handles the following case:
612       //
613       // typedef int SuperClass;
614       // @interface MyClass : SuperClass {} @end
615       //
616       if (!SuperClassDecl) {
617         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
618         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
619       }
620     }
621 
622     if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
623       if (!SuperClassDecl)
624         Diag(SuperLoc, diag::err_undef_superclass)
625           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
626       else if (SemaRef.RequireCompleteType(
627                    SuperLoc, SuperClassType, diag::err_forward_superclass,
628                    SuperClassDecl->getDeclName(), ClassName,
629                    SourceRange(AtInterfaceLoc, ClassLoc))) {
630         SuperClassDecl = nullptr;
631         SuperClassType = QualType();
632       }
633     }
634 
635     if (SuperClassType.isNull()) {
636       assert(!SuperClassDecl && "Failed to set SuperClassType?");
637       return;
638     }
639 
640     // Handle type arguments on the superclass.
641     TypeSourceInfo *SuperClassTInfo = nullptr;
642     if (!SuperTypeArgs.empty()) {
643       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
644           S, SuperLoc, SemaRef.CreateParsedType(SuperClassType, nullptr),
645           SuperTypeArgsRange.getBegin(), SuperTypeArgs,
646           SuperTypeArgsRange.getEnd(), SourceLocation(), {}, {},
647           SourceLocation());
648       if (!fullSuperClassType.isUsable())
649         return;
650 
651       SuperClassType =
652           SemaRef.GetTypeFromParser(fullSuperClassType.get(), &SuperClassTInfo);
653     }
654 
655     if (!SuperClassTInfo) {
656       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657                                                          SuperLoc);
658     }
659 
660     IDecl->setSuperClass(SuperClassTInfo);
661     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662   }
663 }
664 
665 DeclResult SemaObjC::actOnObjCTypeParam(
666     Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc,
667     unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc,
668     SourceLocation colonLoc, ParsedType parsedTypeBound) {
669   ASTContext &Context = getASTContext();
670   // If there was an explicitly-provided type bound, check it.
671   TypeSourceInfo *typeBoundInfo = nullptr;
672   if (parsedTypeBound) {
673     // The type bound can be any Objective-C pointer type.
674     QualType typeBound =
675         SemaRef.GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
676     if (typeBound->isObjCObjectPointerType()) {
677       // okay
678     } else if (typeBound->isObjCObjectType()) {
679       // The user forgot the * on an Objective-C pointer type, e.g.,
680       // "T : NSView".
681       SourceLocation starLoc =
682           SemaRef.getLocForEndOfToken(typeBoundInfo->getTypeLoc().getEndLoc());
683       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
684            diag::err_objc_type_param_bound_missing_pointer)
685         << typeBound << paramName
686         << FixItHint::CreateInsertion(starLoc, " *");
687 
688       // Create a new type location builder so we can update the type
689       // location information we have.
690       TypeLocBuilder builder;
691       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
692 
693       // Create the Objective-C pointer type.
694       typeBound = Context.getObjCObjectPointerType(typeBound);
695       ObjCObjectPointerTypeLoc newT
696         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
697       newT.setStarLoc(starLoc);
698 
699       // Form the new type source information.
700       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
701     } else {
702       // Not a valid type bound.
703       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
704            diag::err_objc_type_param_bound_nonobject)
705         << typeBound << paramName;
706 
707       // Forget the bound; we'll default to id later.
708       typeBoundInfo = nullptr;
709     }
710 
711     // Type bounds cannot have qualifiers (even indirectly) or explicit
712     // nullability.
713     if (typeBoundInfo) {
714       QualType typeBound = typeBoundInfo->getType();
715       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
716       if (qual || typeBound.hasQualifiers()) {
717         bool diagnosed = false;
718         SourceRange rangeToRemove;
719         if (qual) {
720           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
721             rangeToRemove = attr.getLocalSourceRange();
722             if (attr.getTypePtr()->getImmediateNullability()) {
723               Diag(attr.getBeginLoc(),
724                    diag::err_objc_type_param_bound_explicit_nullability)
725                   << paramName << typeBound
726                   << FixItHint::CreateRemoval(rangeToRemove);
727               diagnosed = true;
728             }
729           }
730         }
731 
732         if (!diagnosed) {
733           Diag(qual ? qual.getBeginLoc()
734                     : typeBoundInfo->getTypeLoc().getBeginLoc(),
735                diag::err_objc_type_param_bound_qualified)
736               << paramName << typeBound
737               << typeBound.getQualifiers().getAsString()
738               << FixItHint::CreateRemoval(rangeToRemove);
739         }
740 
741         // If the type bound has qualifiers other than CVR, we need to strip
742         // them or we'll probably assert later when trying to apply new
743         // qualifiers.
744         Qualifiers quals = typeBound.getQualifiers();
745         quals.removeCVRQualifiers();
746         if (!quals.empty()) {
747           typeBoundInfo =
748              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
749         }
750       }
751     }
752   }
753 
754   // If there was no explicit type bound (or we removed it due to an error),
755   // use 'id' instead.
756   if (!typeBoundInfo) {
757     colonLoc = SourceLocation();
758     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
759   }
760 
761   // Create the type parameter.
762   return ObjCTypeParamDecl::Create(Context, SemaRef.CurContext, variance,
763                                    varianceLoc, index, paramLoc, paramName,
764                                    colonLoc, typeBoundInfo);
765 }
766 
767 ObjCTypeParamList *
768 SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
769                                  ArrayRef<Decl *> typeParamsIn,
770                                  SourceLocation rAngleLoc) {
771   ASTContext &Context = getASTContext();
772   // We know that the array only contains Objective-C type parameters.
773   ArrayRef<ObjCTypeParamDecl *>
774     typeParams(
775       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
776       typeParamsIn.size());
777 
778   // Diagnose redeclarations of type parameters.
779   // We do this now because Objective-C type parameters aren't pushed into
780   // scope until later (after the instance variable block), but we want the
781   // diagnostics to occur right after we parse the type parameter list.
782   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
783   for (auto *typeParam : typeParams) {
784     auto known = knownParams.find(typeParam->getIdentifier());
785     if (known != knownParams.end()) {
786       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
787         << typeParam->getIdentifier()
788         << SourceRange(known->second->getLocation());
789 
790       typeParam->setInvalidDecl();
791     } else {
792       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
793 
794       // Push the type parameter into scope.
795       SemaRef.PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
796     }
797   }
798 
799   // Create the parameter list.
800   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
801 }
802 
803 void SemaObjC::popObjCTypeParamList(Scope *S,
804                                     ObjCTypeParamList *typeParamList) {
805   for (auto *typeParam : *typeParamList) {
806     if (!typeParam->isInvalidDecl()) {
807       S->RemoveDecl(typeParam);
808       SemaRef.IdResolver.RemoveDecl(typeParam);
809     }
810   }
811 }
812 
813 namespace {
814   /// The context in which an Objective-C type parameter list occurs, for use
815   /// in diagnostics.
816   enum class TypeParamListContext {
817     ForwardDeclaration,
818     Definition,
819     Category,
820     Extension
821   };
822 } // end anonymous namespace
823 
824 /// Check consistency between two Objective-C type parameter lists, e.g.,
825 /// between a category/extension and an \@interface or between an \@class and an
826 /// \@interface.
827 static bool checkTypeParamListConsistency(Sema &S,
828                                           ObjCTypeParamList *prevTypeParams,
829                                           ObjCTypeParamList *newTypeParams,
830                                           TypeParamListContext newContext) {
831   // If the sizes don't match, complain about that.
832   if (prevTypeParams->size() != newTypeParams->size()) {
833     SourceLocation diagLoc;
834     if (newTypeParams->size() > prevTypeParams->size()) {
835       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836     } else {
837       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838     }
839 
840     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841       << static_cast<unsigned>(newContext)
842       << (newTypeParams->size() > prevTypeParams->size())
843       << prevTypeParams->size()
844       << newTypeParams->size();
845 
846     return true;
847   }
848 
849   // Match up the type parameters.
850   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853 
854     // Check for consistency of the variance.
855     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857           newContext != TypeParamListContext::Definition) {
858         // When the new type parameter is invariant and is not part
859         // of the definition, just propagate the variance.
860         newTypeParam->setVariance(prevTypeParam->getVariance());
861       } else if (prevTypeParam->getVariance()
862                    == ObjCTypeParamVariance::Invariant &&
863                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865                      ->getDefinition() == prevTypeParam->getDeclContext())) {
866         // When the old parameter is invariant and was not part of the
867         // definition, just ignore the difference because it doesn't
868         // matter.
869       } else {
870         {
871           // Diagnose the conflict and update the second declaration.
872           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873           if (diagLoc.isInvalid())
874             diagLoc = newTypeParam->getBeginLoc();
875 
876           auto diag = S.Diag(diagLoc,
877                              diag::err_objc_type_param_variance_conflict)
878                         << static_cast<unsigned>(newTypeParam->getVariance())
879                         << newTypeParam->getDeclName()
880                         << static_cast<unsigned>(prevTypeParam->getVariance())
881                         << prevTypeParam->getDeclName();
882           switch (prevTypeParam->getVariance()) {
883           case ObjCTypeParamVariance::Invariant:
884             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885             break;
886 
887           case ObjCTypeParamVariance::Covariant:
888           case ObjCTypeParamVariance::Contravariant: {
889             StringRef newVarianceStr
890                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
891                    ? "__covariant"
892                    : "__contravariant";
893             if (newTypeParam->getVariance()
894                   == ObjCTypeParamVariance::Invariant) {
895               diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896                                                  (newVarianceStr + " ").str());
897             } else {
898               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899                                                newVarianceStr);
900             }
901           }
902           }
903         }
904 
905         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906           << prevTypeParam->getDeclName();
907 
908         // Override the variance.
909         newTypeParam->setVariance(prevTypeParam->getVariance());
910       }
911     }
912 
913     // If the bound types match, there's nothing to do.
914     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915                               newTypeParam->getUnderlyingType()))
916       continue;
917 
918     // If the new type parameter's bound was explicit, complain about it being
919     // different from the original.
920     if (newTypeParam->hasExplicitBound()) {
921       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
922                                     ->getTypeLoc().getSourceRange();
923       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924         << newTypeParam->getUnderlyingType()
925         << newTypeParam->getDeclName()
926         << prevTypeParam->hasExplicitBound()
927         << prevTypeParam->getUnderlyingType()
928         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929         << prevTypeParam->getDeclName()
930         << FixItHint::CreateReplacement(
931              newBoundRange,
932              prevTypeParam->getUnderlyingType().getAsString(
933                S.Context.getPrintingPolicy()));
934 
935       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936         << prevTypeParam->getDeclName();
937 
938       // Override the new type parameter's bound type with the previous type,
939       // so that it's consistent.
940       S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
941       continue;
942     }
943 
944     // The new type parameter got the implicit bound of 'id'. That's okay for
945     // categories and extensions (overwrite it later), but not for forward
946     // declarations and @interfaces, because those must be standalone.
947     if (newContext == TypeParamListContext::ForwardDeclaration ||
948         newContext == TypeParamListContext::Definition) {
949       // Diagnose this problem for forward declarations and definitions.
950       SourceLocation insertionLoc
951         = S.getLocForEndOfToken(newTypeParam->getLocation());
952       std::string newCode
953         = " : " + prevTypeParam->getUnderlyingType().getAsString(
954                     S.Context.getPrintingPolicy());
955       S.Diag(newTypeParam->getLocation(),
956              diag::err_objc_type_param_bound_missing)
957         << prevTypeParam->getUnderlyingType()
958         << newTypeParam->getDeclName()
959         << (newContext == TypeParamListContext::ForwardDeclaration)
960         << FixItHint::CreateInsertion(insertionLoc, newCode);
961 
962       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
963         << prevTypeParam->getDeclName();
964     }
965 
966     // Update the new type parameter's bound to match the previous one.
967     S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
968   }
969 
970   return false;
971 }
972 
973 ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface(
974     Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
975     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
976     IdentifierInfo *SuperName, SourceLocation SuperLoc,
977     ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
978     Decl *const *ProtoRefs, unsigned NumProtoRefs,
979     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
980     const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
981   assert(ClassName && "Missing class identifier");
982 
983   ASTContext &Context = getASTContext();
984   // Check for another declaration kind with the same name.
985   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
986       SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
987       SemaRef.forRedeclarationInCurContext());
988 
989   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
990     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992   }
993 
994   // Create a declaration to describe this @interface.
995   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
996 
997   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998     // A previous decl with a different name is because of
999     // @compatibility_alias, for example:
1000     // \code
1001     //   @class NewImage;
1002     //   @compatibility_alias OldImage NewImage;
1003     // \endcode
1004     // A lookup for 'OldImage' will return the 'NewImage' decl.
1005     //
1006     // In such a case use the real declaration name, instead of the alias one,
1007     // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009     // has been aliased.
1010     ClassName = PrevIDecl->getIdentifier();
1011   }
1012 
1013   // If there was a forward declaration with type parameters, check
1014   // for consistency.
1015   if (PrevIDecl) {
1016     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017       if (typeParamList) {
1018         // Both have type parameter lists; check for consistency.
1019         if (checkTypeParamListConsistency(SemaRef, prevTypeParamList,
1020                                           typeParamList,
1021                                           TypeParamListContext::Definition)) {
1022           typeParamList = nullptr;
1023         }
1024       } else {
1025         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026           << ClassName;
1027         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028           << ClassName;
1029 
1030         // Clone the type parameter list.
1031         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032         for (auto *typeParam : *prevTypeParamList) {
1033           clonedTypeParams.push_back(ObjCTypeParamDecl::Create(
1034               Context, SemaRef.CurContext, typeParam->getVariance(),
1035               SourceLocation(), typeParam->getIndex(), SourceLocation(),
1036               typeParam->getIdentifier(), SourceLocation(),
1037               Context.getTrivialTypeSourceInfo(
1038                   typeParam->getUnderlyingType())));
1039         }
1040 
1041         typeParamList = ObjCTypeParamList::create(Context,
1042                                                   SourceLocation(),
1043                                                   clonedTypeParams,
1044                                                   SourceLocation());
1045       }
1046     }
1047   }
1048 
1049   ObjCInterfaceDecl *IDecl =
1050       ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1051                                 ClassName, typeParamList, PrevIDecl, ClassLoc);
1052   if (PrevIDecl) {
1053     // Class already seen. Was it a definition?
1054     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1055       if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1056         SkipBody->CheckSameAsPrevious = true;
1057         SkipBody->New = IDecl;
1058         SkipBody->Previous = Def;
1059       } else {
1060         Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1061             << PrevIDecl->getDeclName();
1062         Diag(Def->getLocation(), diag::note_previous_definition);
1063         IDecl->setInvalidDecl();
1064       }
1065     }
1066   }
1067 
1068   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IDecl, AttrList);
1069   SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
1070   SemaRef.ProcessAPINotes(IDecl);
1071 
1072   // Merge attributes from previous declarations.
1073   if (PrevIDecl)
1074     SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
1075 
1076   SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
1077 
1078   // Start the definition of this class. If we're in a redefinition case, there
1079   // may already be a definition, so we'll end up adding to it.
1080   if (SkipBody && SkipBody->CheckSameAsPrevious)
1081     IDecl->startDuplicateDefinitionForComparison();
1082   else if (!IDecl->hasDefinition())
1083     IDecl->startDefinition();
1084 
1085   if (SuperName) {
1086     // Diagnose availability in the context of the @interface.
1087     Sema::ContextRAII SavedContext(SemaRef, IDecl);
1088 
1089     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1090                                     ClassName, ClassLoc,
1091                                     SuperName, SuperLoc, SuperTypeArgs,
1092                                     SuperTypeArgsRange);
1093   } else { // we have a root class.
1094     IDecl->setEndOfDefinitionLoc(ClassLoc);
1095   }
1096 
1097   // Check then save referenced protocols.
1098   if (NumProtoRefs) {
1099     diagnoseUseOfProtocols(SemaRef, IDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1100                            NumProtoRefs, ProtoLocs);
1101     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1102                            ProtoLocs, Context);
1103     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1104   }
1105 
1106   CheckObjCDeclScope(IDecl);
1107   ActOnObjCContainerStartDefinition(IDecl);
1108   return IDecl;
1109 }
1110 
1111 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1112 /// typedef'ed use for a qualified super class and adds them to the list
1113 /// of the protocols.
1114 void SemaObjC::ActOnTypedefedProtocols(
1115     SmallVectorImpl<Decl *> &ProtocolRefs,
1116     SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName,
1117     SourceLocation SuperLoc) {
1118   if (!SuperName)
1119     return;
1120   NamedDecl *IDecl = SemaRef.LookupSingleName(
1121       SemaRef.TUScope, SuperName, SuperLoc, Sema::LookupOrdinaryName);
1122   if (!IDecl)
1123     return;
1124 
1125   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1126     QualType T = TDecl->getUnderlyingType();
1127     if (T->isObjCObjectType())
1128       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1129         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1130         // FIXME: Consider whether this should be an invalid loc since the loc
1131         // is not actually pointing to a protocol name reference but to the
1132         // typedef reference. Note that the base class name loc is also pointing
1133         // at the typedef.
1134         ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1135       }
1136   }
1137 }
1138 
1139 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1140 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1141 Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc,
1142                                         IdentifierInfo *AliasName,
1143                                         SourceLocation AliasLocation,
1144                                         IdentifierInfo *ClassName,
1145                                         SourceLocation ClassLocation) {
1146   ASTContext &Context = getASTContext();
1147   // Look for previous declaration of alias name
1148   NamedDecl *ADecl = SemaRef.LookupSingleName(
1149       SemaRef.TUScope, AliasName, AliasLocation, Sema::LookupOrdinaryName,
1150       SemaRef.forRedeclarationInCurContext());
1151   if (ADecl) {
1152     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1153     Diag(ADecl->getLocation(), diag::note_previous_declaration);
1154     return nullptr;
1155   }
1156   // Check for class declaration
1157   NamedDecl *CDeclU = SemaRef.LookupSingleName(
1158       SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1159       SemaRef.forRedeclarationInCurContext());
1160   if (const TypedefNameDecl *TDecl =
1161         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1162     QualType T = TDecl->getUnderlyingType();
1163     if (T->isObjCObjectType()) {
1164       if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1165         ClassName = IDecl->getIdentifier();
1166         CDeclU = SemaRef.LookupSingleName(
1167             SemaRef.TUScope, ClassName, ClassLocation, Sema::LookupOrdinaryName,
1168             SemaRef.forRedeclarationInCurContext());
1169       }
1170     }
1171   }
1172   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1173   if (!CDecl) {
1174     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1175     if (CDeclU)
1176       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1177     return nullptr;
1178   }
1179 
1180   // Everything checked out, instantiate a new alias declaration AST.
1181   ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create(
1182       Context, SemaRef.CurContext, AtLoc, AliasName, CDecl);
1183 
1184   if (!CheckObjCDeclScope(AliasDecl))
1185     SemaRef.PushOnScopeChains(AliasDecl, SemaRef.TUScope);
1186 
1187   return AliasDecl;
1188 }
1189 
1190 bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency(
1191     IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc,
1192     const ObjCList<ObjCProtocolDecl> &PList) {
1193 
1194   bool res = false;
1195   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1196        E = PList.end(); I != E; ++I) {
1197     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), Ploc)) {
1198       if (PDecl->getIdentifier() == PName) {
1199         Diag(Ploc, diag::err_protocol_has_circular_dependency);
1200         Diag(PrevLoc, diag::note_previous_definition);
1201         res = true;
1202       }
1203 
1204       if (!PDecl->hasDefinition())
1205         continue;
1206 
1207       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1208             PDecl->getLocation(), PDecl->getReferencedProtocols()))
1209         res = true;
1210     }
1211   }
1212   return res;
1213 }
1214 
1215 ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface(
1216     SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1217     SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1218     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1219     const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1220   ASTContext &Context = getASTContext();
1221   bool err = false;
1222   // FIXME: Deal with AttrList.
1223   assert(ProtocolName && "Missing protocol identifier");
1224   ObjCProtocolDecl *PrevDecl = LookupProtocol(
1225       ProtocolName, ProtocolLoc, SemaRef.forRedeclarationInCurContext());
1226   ObjCProtocolDecl *PDecl = nullptr;
1227   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1228     // Create a new protocol that is completely distinct from previous
1229     // declarations, and do not make this protocol available for name lookup.
1230     // That way, we'll end up completely ignoring the duplicate.
1231     // FIXME: Can we turn this into an error?
1232     PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1233                                      ProtocolLoc, AtProtoInterfaceLoc,
1234                                      /*PrevDecl=*/Def);
1235 
1236     if (SkipBody && !SemaRef.hasVisibleDefinition(Def)) {
1237       SkipBody->CheckSameAsPrevious = true;
1238       SkipBody->New = PDecl;
1239       SkipBody->Previous = Def;
1240     } else {
1241       // If we already have a definition, complain.
1242       Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1243       Diag(Def->getLocation(), diag::note_previous_definition);
1244     }
1245 
1246     // If we are using modules, add the decl to the context in order to
1247     // serialize something meaningful.
1248     if (getLangOpts().Modules)
1249       SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1250     PDecl->startDuplicateDefinitionForComparison();
1251   } else {
1252     if (PrevDecl) {
1253       // Check for circular dependencies among protocol declarations. This can
1254       // only happen if this protocol was forward-declared.
1255       ObjCList<ObjCProtocolDecl> PList;
1256       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1257       err = CheckForwardProtocolDeclarationForCircularDependency(
1258               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1259     }
1260 
1261     // Create the new declaration.
1262     PDecl = ObjCProtocolDecl::Create(Context, SemaRef.CurContext, ProtocolName,
1263                                      ProtocolLoc, AtProtoInterfaceLoc,
1264                                      /*PrevDecl=*/PrevDecl);
1265 
1266     SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1267     PDecl->startDefinition();
1268   }
1269 
1270   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, AttrList);
1271   SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1272   SemaRef.ProcessAPINotes(PDecl);
1273 
1274   // Merge attributes from previous declarations.
1275   if (PrevDecl)
1276     SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1277 
1278   if (!err && NumProtoRefs ) {
1279     /// Check then save referenced protocols.
1280     diagnoseUseOfProtocols(SemaRef, PDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1281                            NumProtoRefs, ProtoLocs);
1282     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1283                            ProtoLocs, Context);
1284   }
1285 
1286   CheckObjCDeclScope(PDecl);
1287   ActOnObjCContainerStartDefinition(PDecl);
1288   return PDecl;
1289 }
1290 
1291 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1292                                           ObjCProtocolDecl *&UndefinedProtocol) {
1293   if (!PDecl->hasDefinition() ||
1294       !PDecl->getDefinition()->isUnconditionallyVisible()) {
1295     UndefinedProtocol = PDecl;
1296     return true;
1297   }
1298 
1299   for (auto *PI : PDecl->protocols())
1300     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1301       UndefinedProtocol = PI;
1302       return true;
1303     }
1304   return false;
1305 }
1306 
1307 /// FindProtocolDeclaration - This routine looks up protocols and
1308 /// issues an error if they are not declared. It returns list of
1309 /// protocol declarations in its 'Protocols' argument.
1310 void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations,
1311                                        bool ForObjCContainer,
1312                                        ArrayRef<IdentifierLocPair> ProtocolId,
1313                                        SmallVectorImpl<Decl *> &Protocols) {
1314   for (const IdentifierLocPair &Pair : ProtocolId) {
1315     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1316     if (!PDecl) {
1317       DeclFilterCCC<ObjCProtocolDecl> CCC{};
1318       TypoCorrection Corrected =
1319           SemaRef.CorrectTypo(DeclarationNameInfo(Pair.first, Pair.second),
1320                               Sema::LookupObjCProtocolName, SemaRef.TUScope,
1321                               nullptr, CCC, Sema::CTK_ErrorRecovery);
1322       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1323         SemaRef.diagnoseTypo(Corrected,
1324                              PDiag(diag::err_undeclared_protocol_suggest)
1325                                  << Pair.first);
1326     }
1327 
1328     if (!PDecl) {
1329       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1330       continue;
1331     }
1332     // If this is a forward protocol declaration, get its definition.
1333     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1334       PDecl = PDecl->getDefinition();
1335 
1336     // For an objc container, delay protocol reference checking until after we
1337     // can set the objc decl as the availability context, otherwise check now.
1338     if (!ForObjCContainer) {
1339       (void)SemaRef.DiagnoseUseOfDecl(PDecl, Pair.second);
1340     }
1341 
1342     // If this is a forward declaration and we are supposed to warn in this
1343     // case, do it.
1344     // FIXME: Recover nicely in the hidden case.
1345     ObjCProtocolDecl *UndefinedProtocol;
1346 
1347     if (WarnOnDeclarations &&
1348         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1349       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1350       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1351         << UndefinedProtocol;
1352     }
1353     Protocols.push_back(PDecl);
1354   }
1355 }
1356 
1357 namespace {
1358 // Callback to only accept typo corrections that are either
1359 // Objective-C protocols or valid Objective-C type arguments.
1360 class ObjCTypeArgOrProtocolValidatorCCC final
1361     : public CorrectionCandidateCallback {
1362   ASTContext &Context;
1363   Sema::LookupNameKind LookupKind;
1364  public:
1365   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1366                                     Sema::LookupNameKind lookupKind)
1367     : Context(context), LookupKind(lookupKind) { }
1368 
1369   bool ValidateCandidate(const TypoCorrection &candidate) override {
1370     // If we're allowed to find protocols and we have a protocol, accept it.
1371     if (LookupKind != Sema::LookupOrdinaryName) {
1372       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1373         return true;
1374     }
1375 
1376     // If we're allowed to find type names and we have one, accept it.
1377     if (LookupKind != Sema::LookupObjCProtocolName) {
1378       // If we have a type declaration, we might accept this result.
1379       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1380         // If we found a tag declaration outside of C++, skip it. This
1381         // can happy because we look for any name when there is no
1382         // bias to protocol or type names.
1383         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1384           return false;
1385 
1386         // Make sure the type is something we would accept as a type
1387         // argument.
1388         auto type = Context.getTypeDeclType(typeDecl);
1389         if (type->isObjCObjectPointerType() ||
1390             type->isBlockPointerType() ||
1391             type->isDependentType() ||
1392             type->isObjCObjectType())
1393           return true;
1394 
1395         return false;
1396       }
1397 
1398       // If we have an Objective-C class type, accept it; there will
1399       // be another fix to add the '*'.
1400       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1401         return true;
1402 
1403       return false;
1404     }
1405 
1406     return false;
1407   }
1408 
1409   std::unique_ptr<CorrectionCandidateCallback> clone() override {
1410     return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1411   }
1412 };
1413 } // end anonymous namespace
1414 
1415 void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1416                                             SourceLocation ProtocolLoc,
1417                                             IdentifierInfo *TypeArgId,
1418                                             SourceLocation TypeArgLoc,
1419                                             bool SelectProtocolFirst) {
1420   Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1421       << SelectProtocolFirst << TypeArgId << ProtocolId
1422       << SourceRange(ProtocolLoc);
1423 }
1424 
1425 void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers(
1426     Scope *S, ParsedType baseType, SourceLocation lAngleLoc,
1427     ArrayRef<IdentifierInfo *> identifiers,
1428     ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc,
1429     SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs,
1430     SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc,
1431     SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc,
1432     bool warnOnIncompleteProtocols) {
1433   ASTContext &Context = getASTContext();
1434   // Local function that updates the declaration specifiers with
1435   // protocol information.
1436   unsigned numProtocolsResolved = 0;
1437   auto resolvedAsProtocols = [&] {
1438     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1439 
1440     // Determine whether the base type is a parameterized class, in
1441     // which case we want to warn about typos such as
1442     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1443     ObjCInterfaceDecl *baseClass = nullptr;
1444     QualType base = SemaRef.GetTypeFromParser(baseType, nullptr);
1445     bool allAreTypeNames = false;
1446     SourceLocation firstClassNameLoc;
1447     if (!base.isNull()) {
1448       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1449         baseClass = objcObjectType->getInterface();
1450         if (baseClass) {
1451           if (auto typeParams = baseClass->getTypeParamList()) {
1452             if (typeParams->size() == numProtocolsResolved) {
1453               // Note that we should be looking for type names, too.
1454               allAreTypeNames = true;
1455             }
1456           }
1457         }
1458       }
1459     }
1460 
1461     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1462       ObjCProtocolDecl *&proto
1463         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1464       // For an objc container, delay protocol reference checking until after we
1465       // can set the objc decl as the availability context, otherwise check now.
1466       if (!warnOnIncompleteProtocols) {
1467         (void)SemaRef.DiagnoseUseOfDecl(proto, identifierLocs[i]);
1468       }
1469 
1470       // If this is a forward protocol declaration, get its definition.
1471       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1472         proto = proto->getDefinition();
1473 
1474       // If this is a forward declaration and we are supposed to warn in this
1475       // case, do it.
1476       // FIXME: Recover nicely in the hidden case.
1477       ObjCProtocolDecl *forwardDecl = nullptr;
1478       if (warnOnIncompleteProtocols &&
1479           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1480         Diag(identifierLocs[i], diag::warn_undef_protocolref)
1481           << proto->getDeclName();
1482         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1483           << forwardDecl;
1484       }
1485 
1486       // If everything this far has been a type name (and we care
1487       // about such things), check whether this name refers to a type
1488       // as well.
1489       if (allAreTypeNames) {
1490         if (auto *decl =
1491                 SemaRef.LookupSingleName(S, identifiers[i], identifierLocs[i],
1492                                          Sema::LookupOrdinaryName)) {
1493           if (isa<ObjCInterfaceDecl>(decl)) {
1494             if (firstClassNameLoc.isInvalid())
1495               firstClassNameLoc = identifierLocs[i];
1496           } else if (!isa<TypeDecl>(decl)) {
1497             // Not a type.
1498             allAreTypeNames = false;
1499           }
1500         } else {
1501           allAreTypeNames = false;
1502         }
1503       }
1504     }
1505 
1506     // All of the protocols listed also have type names, and at least
1507     // one is an Objective-C class name. Check whether all of the
1508     // protocol conformances are declared by the base class itself, in
1509     // which case we warn.
1510     if (allAreTypeNames && firstClassNameLoc.isValid()) {
1511       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1512       Context.CollectInheritedProtocols(baseClass, knownProtocols);
1513       bool allProtocolsDeclared = true;
1514       for (auto *proto : protocols) {
1515         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1516           allProtocolsDeclared = false;
1517           break;
1518         }
1519       }
1520 
1521       if (allProtocolsDeclared) {
1522         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1523             << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1524             << FixItHint::CreateInsertion(
1525                    SemaRef.getLocForEndOfToken(firstClassNameLoc), " *");
1526       }
1527     }
1528 
1529     protocolLAngleLoc = lAngleLoc;
1530     protocolRAngleLoc = rAngleLoc;
1531     assert(protocols.size() == identifierLocs.size());
1532   };
1533 
1534   // Attempt to resolve all of the identifiers as protocols.
1535   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1536     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1537     protocols.push_back(proto);
1538     if (proto)
1539       ++numProtocolsResolved;
1540   }
1541 
1542   // If all of the names were protocols, these were protocol qualifiers.
1543   if (numProtocolsResolved == identifiers.size())
1544     return resolvedAsProtocols();
1545 
1546   // Attempt to resolve all of the identifiers as type names or
1547   // Objective-C class names. The latter is technically ill-formed,
1548   // but is probably something like \c NSArray<NSView *> missing the
1549   // \c*.
1550   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1551   SmallVector<TypeOrClassDecl, 4> typeDecls;
1552   unsigned numTypeDeclsResolved = 0;
1553   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1554     NamedDecl *decl = SemaRef.LookupSingleName(
1555         S, identifiers[i], identifierLocs[i], Sema::LookupOrdinaryName);
1556     if (!decl) {
1557       typeDecls.push_back(TypeOrClassDecl());
1558       continue;
1559     }
1560 
1561     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1562       typeDecls.push_back(typeDecl);
1563       ++numTypeDeclsResolved;
1564       continue;
1565     }
1566 
1567     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1568       typeDecls.push_back(objcClass);
1569       ++numTypeDeclsResolved;
1570       continue;
1571     }
1572 
1573     typeDecls.push_back(TypeOrClassDecl());
1574   }
1575 
1576   AttributeFactory attrFactory;
1577 
1578   // Local function that forms a reference to the given type or
1579   // Objective-C class declaration.
1580   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1581                                 -> TypeResult {
1582     // Form declaration specifiers. They simply refer to the type.
1583     DeclSpec DS(attrFactory);
1584     const char* prevSpec; // unused
1585     unsigned diagID; // unused
1586     QualType type;
1587     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1588       type = Context.getTypeDeclType(actualTypeDecl);
1589     else
1590       type = Context.getObjCInterfaceType(cast<ObjCInterfaceDecl *>(typeDecl));
1591     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1592     ParsedType parsedType = SemaRef.CreateParsedType(type, parsedTSInfo);
1593     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1594                        parsedType, Context.getPrintingPolicy());
1595     // Use the identifier location for the type source range.
1596     DS.SetRangeStart(loc);
1597     DS.SetRangeEnd(loc);
1598 
1599     // Form the declarator.
1600     Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1601 
1602     // If we have a typedef of an Objective-C class type that is missing a '*',
1603     // add the '*'.
1604     if (type->getAs<ObjCInterfaceType>()) {
1605       SourceLocation starLoc = SemaRef.getLocForEndOfToken(loc);
1606       D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1607                                                 SourceLocation(),
1608                                                 SourceLocation(),
1609                                                 SourceLocation(),
1610                                                 SourceLocation(),
1611                                                 SourceLocation()),
1612                                                 starLoc);
1613 
1614       // Diagnose the missing '*'.
1615       Diag(loc, diag::err_objc_type_arg_missing_star)
1616         << type
1617         << FixItHint::CreateInsertion(starLoc, " *");
1618     }
1619 
1620     // Convert this to a type.
1621     return SemaRef.ActOnTypeName(D);
1622   };
1623 
1624   // Local function that updates the declaration specifiers with
1625   // type argument information.
1626   auto resolvedAsTypeDecls = [&] {
1627     // We did not resolve these as protocols.
1628     protocols.clear();
1629 
1630     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1631     // Map type declarations to type arguments.
1632     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1633       // Map type reference to a type.
1634       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1635       if (!type.isUsable()) {
1636         typeArgs.clear();
1637         return;
1638       }
1639 
1640       typeArgs.push_back(type.get());
1641     }
1642 
1643     typeArgsLAngleLoc = lAngleLoc;
1644     typeArgsRAngleLoc = rAngleLoc;
1645   };
1646 
1647   // If all of the identifiers can be resolved as type names or
1648   // Objective-C class names, we have type arguments.
1649   if (numTypeDeclsResolved == identifiers.size())
1650     return resolvedAsTypeDecls();
1651 
1652   // Error recovery: some names weren't found, or we have a mix of
1653   // type and protocol names. Go resolve all of the unresolved names
1654   // and complain if we can't find a consistent answer.
1655   Sema::LookupNameKind lookupKind = Sema::LookupAnyName;
1656   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1657     // If we already have a protocol or type. Check whether it is the
1658     // right thing.
1659     if (protocols[i] || typeDecls[i]) {
1660       // If we haven't figured out whether we want types or protocols
1661       // yet, try to figure it out from this name.
1662       if (lookupKind == Sema::LookupAnyName) {
1663         // If this name refers to both a protocol and a type (e.g., \c
1664         // NSObject), don't conclude anything yet.
1665         if (protocols[i] && typeDecls[i])
1666           continue;
1667 
1668         // Otherwise, let this name decide whether we'll be correcting
1669         // toward types or protocols.
1670         lookupKind = protocols[i] ? Sema::LookupObjCProtocolName
1671                                   : Sema::LookupOrdinaryName;
1672         continue;
1673       }
1674 
1675       // If we want protocols and we have a protocol, there's nothing
1676       // more to do.
1677       if (lookupKind == Sema::LookupObjCProtocolName && protocols[i])
1678         continue;
1679 
1680       // If we want types and we have a type declaration, there's
1681       // nothing more to do.
1682       if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i])
1683         continue;
1684 
1685       // We have a conflict: some names refer to protocols and others
1686       // refer to types.
1687       DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1688                                    identifiers[i], identifierLocs[i],
1689                                    protocols[i] != nullptr);
1690 
1691       protocols.clear();
1692       typeArgs.clear();
1693       return;
1694     }
1695 
1696     // Perform typo correction on the name.
1697     ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1698     TypoCorrection corrected = SemaRef.CorrectTypo(
1699         DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1700         nullptr, CCC, Sema::CTK_ErrorRecovery);
1701     if (corrected) {
1702       // Did we find a protocol?
1703       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1704         SemaRef.diagnoseTypo(corrected,
1705                              PDiag(diag::err_undeclared_protocol_suggest)
1706                                  << identifiers[i]);
1707         lookupKind = Sema::LookupObjCProtocolName;
1708         protocols[i] = proto;
1709         ++numProtocolsResolved;
1710         continue;
1711       }
1712 
1713       // Did we find a type?
1714       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1715         SemaRef.diagnoseTypo(corrected,
1716                              PDiag(diag::err_unknown_typename_suggest)
1717                                  << identifiers[i]);
1718         lookupKind = Sema::LookupOrdinaryName;
1719         typeDecls[i] = typeDecl;
1720         ++numTypeDeclsResolved;
1721         continue;
1722       }
1723 
1724       // Did we find an Objective-C class?
1725       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1726         SemaRef.diagnoseTypo(corrected,
1727                              PDiag(diag::err_unknown_type_or_class_name_suggest)
1728                                  << identifiers[i] << true);
1729         lookupKind = Sema::LookupOrdinaryName;
1730         typeDecls[i] = objcClass;
1731         ++numTypeDeclsResolved;
1732         continue;
1733       }
1734     }
1735 
1736     // We couldn't find anything.
1737     Diag(identifierLocs[i],
1738          (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing
1739           : lookupKind == Sema::LookupObjCProtocolName
1740               ? diag::err_undeclared_protocol
1741               : diag::err_unknown_typename))
1742         << identifiers[i];
1743     protocols.clear();
1744     typeArgs.clear();
1745     return;
1746   }
1747 
1748   // If all of the names were (corrected to) protocols, these were
1749   // protocol qualifiers.
1750   if (numProtocolsResolved == identifiers.size())
1751     return resolvedAsProtocols();
1752 
1753   // Otherwise, all of the names were (corrected to) types.
1754   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1755   return resolvedAsTypeDecls();
1756 }
1757 
1758 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1759 /// a class method in its extension.
1760 ///
1761 void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1762                                                 ObjCInterfaceDecl *ID) {
1763   if (!ID)
1764     return;  // Possibly due to previous error
1765 
1766   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1767   for (auto *MD : ID->methods())
1768     MethodMap[MD->getSelector()] = MD;
1769 
1770   if (MethodMap.empty())
1771     return;
1772   for (const auto *Method : CAT->methods()) {
1773     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1774     if (PrevMethod &&
1775         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1776         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1777       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1778             << Method->getDeclName();
1779       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1780     }
1781   }
1782 }
1783 
1784 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1785 SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration(
1786     SourceLocation AtProtocolLoc, ArrayRef<IdentifierLocPair> IdentList,
1787     const ParsedAttributesView &attrList) {
1788   ASTContext &Context = getASTContext();
1789   SmallVector<Decl *, 8> DeclsInGroup;
1790   for (const IdentifierLocPair &IdentPair : IdentList) {
1791     IdentifierInfo *Ident = IdentPair.first;
1792     ObjCProtocolDecl *PrevDecl = LookupProtocol(
1793         Ident, IdentPair.second, SemaRef.forRedeclarationInCurContext());
1794     ObjCProtocolDecl *PDecl =
1795         ObjCProtocolDecl::Create(Context, SemaRef.CurContext, Ident,
1796                                  IdentPair.second, AtProtocolLoc, PrevDecl);
1797 
1798     SemaRef.PushOnScopeChains(PDecl, SemaRef.TUScope);
1799     CheckObjCDeclScope(PDecl);
1800 
1801     SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, PDecl, attrList);
1802     SemaRef.AddPragmaAttributes(SemaRef.TUScope, PDecl);
1803 
1804     if (PrevDecl)
1805       SemaRef.mergeDeclAttributes(PDecl, PrevDecl);
1806 
1807     DeclsInGroup.push_back(PDecl);
1808   }
1809 
1810   return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
1811 }
1812 
1813 ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface(
1814     SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName,
1815     SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1816     const IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1817     Decl *const *ProtoRefs, unsigned NumProtoRefs,
1818     const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1819     const ParsedAttributesView &AttrList) {
1820   ASTContext &Context = getASTContext();
1821   ObjCCategoryDecl *CDecl;
1822   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1823 
1824   /// Check that class of this category is already completely declared.
1825 
1826   if (!IDecl ||
1827       SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1828                                   diag::err_category_forward_interface,
1829                                   CategoryName == nullptr)) {
1830     // Create an invalid ObjCCategoryDecl to serve as context for
1831     // the enclosing method declarations.  We mark the decl invalid
1832     // to make it clear that this isn't a valid AST.
1833     CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext,
1834                                      AtInterfaceLoc, ClassLoc, CategoryLoc,
1835                                      CategoryName, IDecl, typeParamList);
1836     CDecl->setInvalidDecl();
1837     SemaRef.CurContext->addDecl(CDecl);
1838 
1839     if (!IDecl)
1840       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1841     ActOnObjCContainerStartDefinition(CDecl);
1842     return CDecl;
1843   }
1844 
1845   if (!CategoryName && IDecl->getImplementation()) {
1846     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1847     Diag(IDecl->getImplementation()->getLocation(),
1848           diag::note_implementation_declared);
1849   }
1850 
1851   if (CategoryName) {
1852     /// Check for duplicate interface declaration for this category
1853     if (ObjCCategoryDecl *Previous
1854           = IDecl->FindCategoryDeclaration(CategoryName)) {
1855       // Class extensions can be declared multiple times, categories cannot.
1856       Diag(CategoryLoc, diag::warn_dup_category_def)
1857         << ClassName << CategoryName;
1858       Diag(Previous->getLocation(), diag::note_previous_definition);
1859     }
1860   }
1861 
1862   // If we have a type parameter list, check it.
1863   if (typeParamList) {
1864     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1865       if (checkTypeParamListConsistency(
1866               SemaRef, prevTypeParamList, typeParamList,
1867               CategoryName ? TypeParamListContext::Category
1868                            : TypeParamListContext::Extension))
1869         typeParamList = nullptr;
1870     } else {
1871       Diag(typeParamList->getLAngleLoc(),
1872            diag::err_objc_parameterized_category_nonclass)
1873         << (CategoryName != nullptr)
1874         << ClassName
1875         << typeParamList->getSourceRange();
1876 
1877       typeParamList = nullptr;
1878     }
1879   }
1880 
1881   CDecl = ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtInterfaceLoc,
1882                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
1883                                    typeParamList);
1884   // FIXME: PushOnScopeChains?
1885   SemaRef.CurContext->addDecl(CDecl);
1886 
1887   // Process the attributes before looking at protocols to ensure that the
1888   // availability attribute is attached to the category to provide availability
1889   // checking for protocol uses.
1890   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, AttrList);
1891   SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1892 
1893   if (NumProtoRefs) {
1894     diagnoseUseOfProtocols(SemaRef, CDecl, (ObjCProtocolDecl *const *)ProtoRefs,
1895                            NumProtoRefs, ProtoLocs);
1896     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1897                            ProtoLocs, Context);
1898     // Protocols in the class extension belong to the class.
1899     if (CDecl->IsClassExtension())
1900      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1901                                             NumProtoRefs, Context);
1902   }
1903 
1904   CheckObjCDeclScope(CDecl);
1905   ActOnObjCContainerStartDefinition(CDecl);
1906   return CDecl;
1907 }
1908 
1909 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1910 /// category implementation declaration and build an ObjCCategoryImplDecl
1911 /// object.
1912 ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation(
1913     SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName,
1914     SourceLocation ClassLoc, const IdentifierInfo *CatName,
1915     SourceLocation CatLoc, const ParsedAttributesView &Attrs) {
1916   ASTContext &Context = getASTContext();
1917   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1918   ObjCCategoryDecl *CatIDecl = nullptr;
1919   if (IDecl && IDecl->hasDefinition()) {
1920     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1921     if (!CatIDecl) {
1922       // Category @implementation with no corresponding @interface.
1923       // Create and install one.
1924       CatIDecl =
1925           ObjCCategoryDecl::Create(Context, SemaRef.CurContext, AtCatImplLoc,
1926                                    ClassLoc, CatLoc, CatName, IDecl,
1927                                    /*typeParamList=*/nullptr);
1928       CatIDecl->setImplicit();
1929     }
1930   }
1931 
1932   ObjCCategoryImplDecl *CDecl =
1933       ObjCCategoryImplDecl::Create(Context, SemaRef.CurContext, CatName, IDecl,
1934                                    ClassLoc, AtCatImplLoc, CatLoc);
1935   /// Check that class of this category is already completely declared.
1936   if (!IDecl) {
1937     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1938     CDecl->setInvalidDecl();
1939   } else if (SemaRef.RequireCompleteType(ClassLoc,
1940                                          Context.getObjCInterfaceType(IDecl),
1941                                          diag::err_undef_interface)) {
1942     CDecl->setInvalidDecl();
1943   }
1944 
1945   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, CDecl, Attrs);
1946   SemaRef.AddPragmaAttributes(SemaRef.TUScope, CDecl);
1947 
1948   // FIXME: PushOnScopeChains?
1949   SemaRef.CurContext->addDecl(CDecl);
1950 
1951   // If the interface has the objc_runtime_visible attribute, we
1952   // cannot implement a category for it.
1953   if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1954     Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1955       << IDecl->getDeclName();
1956   }
1957 
1958   /// Check that CatName, category name, is not used in another implementation.
1959   if (CatIDecl) {
1960     if (CatIDecl->getImplementation()) {
1961       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1962         << CatName;
1963       Diag(CatIDecl->getImplementation()->getLocation(),
1964            diag::note_previous_definition);
1965       CDecl->setInvalidDecl();
1966     } else {
1967       CatIDecl->setImplementation(CDecl);
1968       // Warn on implementating category of deprecated class under
1969       // -Wdeprecated-implementations flag.
1970       DiagnoseObjCImplementedDeprecations(SemaRef, CatIDecl,
1971                                           CDecl->getLocation());
1972     }
1973   }
1974 
1975   CheckObjCDeclScope(CDecl);
1976   ActOnObjCContainerStartDefinition(CDecl);
1977   return CDecl;
1978 }
1979 
1980 ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation(
1981     SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName,
1982     SourceLocation ClassLoc, const IdentifierInfo *SuperClassname,
1983     SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1984   ASTContext &Context = getASTContext();
1985   ObjCInterfaceDecl *IDecl = nullptr;
1986   // Check for another declaration kind with the same name.
1987   NamedDecl *PrevDecl = SemaRef.LookupSingleName(
1988       SemaRef.TUScope, ClassName, ClassLoc, Sema::LookupOrdinaryName,
1989       SemaRef.forRedeclarationInCurContext());
1990   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1991     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1992     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1993   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1994     // FIXME: This will produce an error if the definition of the interface has
1995     // been imported from a module but is not visible.
1996     SemaRef.RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1997                                 diag::warn_undef_interface);
1998   } else {
1999     // We did not find anything with the name ClassName; try to correct for
2000     // typos in the class name.
2001     ObjCInterfaceValidatorCCC CCC{};
2002     TypoCorrection Corrected = SemaRef.CorrectTypo(
2003         DeclarationNameInfo(ClassName, ClassLoc), Sema::LookupOrdinaryName,
2004         SemaRef.TUScope, nullptr, CCC, Sema::CTK_NonError);
2005     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2006       // Suggest the (potentially) correct interface name. Don't provide a
2007       // code-modification hint or use the typo name for recovery, because
2008       // this is just a warning. The program may actually be correct.
2009       SemaRef.diagnoseTypo(
2010           Corrected, PDiag(diag::warn_undef_interface_suggest) << ClassName,
2011           /*ErrorRecovery*/ false);
2012     } else {
2013       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2014     }
2015   }
2016 
2017   // Check that super class name is valid class name
2018   ObjCInterfaceDecl *SDecl = nullptr;
2019   if (SuperClassname) {
2020     // Check if a different kind of symbol declared in this scope.
2021     PrevDecl =
2022         SemaRef.LookupSingleName(SemaRef.TUScope, SuperClassname, SuperClassLoc,
2023                                  Sema::LookupOrdinaryName);
2024     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2025       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2026         << SuperClassname;
2027       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2028     } else {
2029       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2030       if (SDecl && !SDecl->hasDefinition())
2031         SDecl = nullptr;
2032       if (!SDecl)
2033         Diag(SuperClassLoc, diag::err_undef_superclass)
2034           << SuperClassname << ClassName;
2035       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2036         // This implementation and its interface do not have the same
2037         // super class.
2038         Diag(SuperClassLoc, diag::err_conflicting_super_class)
2039           << SDecl->getDeclName();
2040         Diag(SDecl->getLocation(), diag::note_previous_definition);
2041       }
2042     }
2043   }
2044 
2045   if (!IDecl) {
2046     // Legacy case of @implementation with no corresponding @interface.
2047     // Build, chain & install the interface decl into the identifier.
2048 
2049     // FIXME: Do we support attributes on the @implementation? If so we should
2050     // copy them over.
2051     IDecl =
2052         ObjCInterfaceDecl::Create(Context, SemaRef.CurContext, AtClassImplLoc,
2053                                   ClassName, /*typeParamList=*/nullptr,
2054                                   /*PrevDecl=*/nullptr, ClassLoc, true);
2055     SemaRef.AddPragmaAttributes(SemaRef.TUScope, IDecl);
2056     IDecl->startDefinition();
2057     if (SDecl) {
2058       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2059                              Context.getObjCInterfaceType(SDecl),
2060                              SuperClassLoc));
2061       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2062     } else {
2063       IDecl->setEndOfDefinitionLoc(ClassLoc);
2064     }
2065 
2066     SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
2067   } else {
2068     // Mark the interface as being completed, even if it was just as
2069     //   @class ....;
2070     // declaration; the user cannot reopen it.
2071     if (!IDecl->hasDefinition())
2072       IDecl->startDefinition();
2073   }
2074 
2075   ObjCImplementationDecl *IMPDecl =
2076       ObjCImplementationDecl::Create(Context, SemaRef.CurContext, IDecl, SDecl,
2077                                      ClassLoc, AtClassImplLoc, SuperClassLoc);
2078 
2079   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, IMPDecl, Attrs);
2080   SemaRef.AddPragmaAttributes(SemaRef.TUScope, IMPDecl);
2081 
2082   if (CheckObjCDeclScope(IMPDecl)) {
2083     ActOnObjCContainerStartDefinition(IMPDecl);
2084     return IMPDecl;
2085   }
2086 
2087   // Check that there is no duplicate implementation of this class.
2088   if (IDecl->getImplementation()) {
2089     // FIXME: Don't leak everything!
2090     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2091     Diag(IDecl->getImplementation()->getLocation(),
2092          diag::note_previous_definition);
2093     IMPDecl->setInvalidDecl();
2094   } else { // add it to the list.
2095     IDecl->setImplementation(IMPDecl);
2096     SemaRef.PushOnScopeChains(IMPDecl, SemaRef.TUScope);
2097     // Warn on implementating deprecated class under
2098     // -Wdeprecated-implementations flag.
2099     DiagnoseObjCImplementedDeprecations(SemaRef, IDecl, IMPDecl->getLocation());
2100   }
2101 
2102   // If the superclass has the objc_runtime_visible attribute, we
2103   // cannot implement a subclass of it.
2104   if (IDecl->getSuperClass() &&
2105       IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2106     Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2107       << IDecl->getDeclName()
2108       << IDecl->getSuperClass()->getDeclName();
2109   }
2110 
2111   ActOnObjCContainerStartDefinition(IMPDecl);
2112   return IMPDecl;
2113 }
2114 
2115 SemaObjC::DeclGroupPtrTy
2116 SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
2117                                         ArrayRef<Decl *> Decls) {
2118   SmallVector<Decl *, 64> DeclsInGroup;
2119   DeclsInGroup.reserve(Decls.size() + 1);
2120 
2121   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2122     Decl *Dcl = Decls[i];
2123     if (!Dcl)
2124       continue;
2125     if (Dcl->getDeclContext()->isFileContext())
2126       Dcl->setTopLevelDeclInObjCContainer();
2127     DeclsInGroup.push_back(Dcl);
2128   }
2129 
2130   DeclsInGroup.push_back(ObjCImpDecl);
2131 
2132   return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
2133 }
2134 
2135 void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2136                                         ObjCIvarDecl **ivars, unsigned numIvars,
2137                                         SourceLocation RBrace) {
2138   assert(ImpDecl && "missing implementation decl");
2139   ASTContext &Context = getASTContext();
2140   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2141   if (!IDecl)
2142     return;
2143   /// Check case of non-existing \@interface decl.
2144   /// (legacy objective-c \@implementation decl without an \@interface decl).
2145   /// Add implementations's ivar to the synthesize class's ivar list.
2146   if (IDecl->isImplicitInterfaceDecl()) {
2147     IDecl->setEndOfDefinitionLoc(RBrace);
2148     // Add ivar's to class's DeclContext.
2149     for (unsigned i = 0, e = numIvars; i != e; ++i) {
2150       ivars[i]->setLexicalDeclContext(ImpDecl);
2151       // In a 'fragile' runtime the ivar was added to the implicit
2152       // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2153       // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2154       // therefore also needs to be propagated to the ObjCInterfaceDecl.
2155       if (!getLangOpts().ObjCRuntime.isFragile())
2156         IDecl->makeDeclVisibleInContext(ivars[i]);
2157       ImpDecl->addDecl(ivars[i]);
2158     }
2159 
2160     return;
2161   }
2162   // If implementation has empty ivar list, just return.
2163   if (numIvars == 0)
2164     return;
2165 
2166   assert(ivars && "missing @implementation ivars");
2167   if (getLangOpts().ObjCRuntime.isNonFragile()) {
2168     if (ImpDecl->getSuperClass())
2169       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2170     for (unsigned i = 0; i < numIvars; i++) {
2171       ObjCIvarDecl* ImplIvar = ivars[i];
2172       if (const ObjCIvarDecl *ClsIvar =
2173             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2174         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2175         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2176         continue;
2177       }
2178       // Check class extensions (unnamed categories) for duplicate ivars.
2179       for (const auto *CDecl : IDecl->visible_extensions()) {
2180         if (const ObjCIvarDecl *ClsExtIvar =
2181             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2182           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2183           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2184           continue;
2185         }
2186       }
2187       // Instance ivar to Implementation's DeclContext.
2188       ImplIvar->setLexicalDeclContext(ImpDecl);
2189       IDecl->makeDeclVisibleInContext(ImplIvar);
2190       ImpDecl->addDecl(ImplIvar);
2191     }
2192     return;
2193   }
2194   // Check interface's Ivar list against those in the implementation.
2195   // names and types must match.
2196   //
2197   unsigned j = 0;
2198   ObjCInterfaceDecl::ivar_iterator
2199     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2200   for (; numIvars > 0 && IVI != IVE; ++IVI) {
2201     ObjCIvarDecl* ImplIvar = ivars[j++];
2202     ObjCIvarDecl* ClsIvar = *IVI;
2203     assert (ImplIvar && "missing implementation ivar");
2204     assert (ClsIvar && "missing class ivar");
2205 
2206     // First, make sure the types match.
2207     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2208       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2209         << ImplIvar->getIdentifier()
2210         << ImplIvar->getType() << ClsIvar->getType();
2211       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2212     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2213                ImplIvar->getBitWidthValue() != ClsIvar->getBitWidthValue()) {
2214       Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2215            diag::err_conflicting_ivar_bitwidth)
2216           << ImplIvar->getIdentifier();
2217       Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2218            diag::note_previous_definition);
2219     }
2220     // Make sure the names are identical.
2221     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2222       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2223         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2224       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2225     }
2226     --numIvars;
2227   }
2228 
2229   if (numIvars > 0)
2230     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2231   else if (IVI != IVE)
2232     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2233 }
2234 
2235 static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) {
2236   // No point warning no definition of method which is 'unavailable'.
2237   return M->getAvailability() != AR_Unavailable;
2238 }
2239 
2240 static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2241                                 ObjCMethodDecl *method, bool &IncompleteImpl,
2242                                 unsigned DiagID,
2243                                 NamedDecl *NeededFor = nullptr) {
2244   if (!shouldWarnUndefinedMethod(method))
2245     return;
2246 
2247   // FIXME: For now ignore 'IncompleteImpl'.
2248   // Previously we grouped all unimplemented methods under a single
2249   // warning, but some users strongly voiced that they would prefer
2250   // separate warnings.  We will give that approach a try, as that
2251   // matches what we do with protocols.
2252   {
2253     const SemaBase::SemaDiagnosticBuilder &B =
2254         S.Diag(Impl->getLocation(), DiagID);
2255     B << method;
2256     if (NeededFor)
2257       B << NeededFor;
2258 
2259     // Add an empty definition at the end of the @implementation.
2260     std::string FixItStr;
2261     llvm::raw_string_ostream Out(FixItStr);
2262     method->print(Out, Impl->getASTContext().getPrintingPolicy());
2263     Out << " {\n}\n\n";
2264 
2265     SourceLocation Loc = Impl->getAtEndRange().getBegin();
2266     B << FixItHint::CreateInsertion(Loc, FixItStr);
2267   }
2268 
2269   // Issue a note to the original declaration.
2270   SourceLocation MethodLoc = method->getBeginLoc();
2271   if (MethodLoc.isValid())
2272     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2273 }
2274 
2275 /// Determines if type B can be substituted for type A.  Returns true if we can
2276 /// guarantee that anything that the user will do to an object of type A can
2277 /// also be done to an object of type B.  This is trivially true if the two
2278 /// types are the same, or if B is a subclass of A.  It becomes more complex
2279 /// in cases where protocols are involved.
2280 ///
2281 /// Object types in Objective-C describe the minimum requirements for an
2282 /// object, rather than providing a complete description of a type.  For
2283 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2284 /// The principle of substitutability means that we may use an instance of A
2285 /// anywhere that we may use an instance of B - it will implement all of the
2286 /// ivars of B and all of the methods of B.
2287 ///
2288 /// This substitutability is important when type checking methods, because
2289 /// the implementation may have stricter type definitions than the interface.
2290 /// The interface specifies minimum requirements, but the implementation may
2291 /// have more accurate ones.  For example, a method may privately accept
2292 /// instances of B, but only publish that it accepts instances of A.  Any
2293 /// object passed to it will be type checked against B, and so will implicitly
2294 /// by a valid A*.  Similarly, a method may return a subclass of the class that
2295 /// it is declared as returning.
2296 ///
2297 /// This is most important when considering subclassing.  A method in a
2298 /// subclass must accept any object as an argument that its superclass's
2299 /// implementation accepts.  It may, however, accept a more general type
2300 /// without breaking substitutability (i.e. you can still use the subclass
2301 /// anywhere that you can use the superclass, but not vice versa).  The
2302 /// converse requirement applies to return types: the return type for a
2303 /// subclass method must be a valid object of the kind that the superclass
2304 /// advertises, but it may be specified more accurately.  This avoids the need
2305 /// for explicit down-casting by callers.
2306 ///
2307 /// Note: This is a stricter requirement than for assignment.
2308 static bool isObjCTypeSubstitutable(ASTContext &Context,
2309                                     const ObjCObjectPointerType *A,
2310                                     const ObjCObjectPointerType *B,
2311                                     bool rejectId) {
2312   // Reject a protocol-unqualified id.
2313   if (rejectId && B->isObjCIdType()) return false;
2314 
2315   // If B is a qualified id, then A must also be a qualified id and it must
2316   // implement all of the protocols in B.  It may not be a qualified class.
2317   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2318   // stricter definition so it is not substitutable for id<A>.
2319   if (B->isObjCQualifiedIdType()) {
2320     return A->isObjCQualifiedIdType() &&
2321            Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2322   }
2323 
2324   /*
2325   // id is a special type that bypasses type checking completely.  We want a
2326   // warning when it is used in one place but not another.
2327   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2328 
2329 
2330   // If B is a qualified id, then A must also be a qualified id (which it isn't
2331   // if we've got this far)
2332   if (B->isObjCQualifiedIdType()) return false;
2333   */
2334 
2335   // Now we know that A and B are (potentially-qualified) class types.  The
2336   // normal rules for assignment apply.
2337   return Context.canAssignObjCInterfaces(A, B);
2338 }
2339 
2340 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2341   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2342 }
2343 
2344 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2345 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2346                                   Decl::ObjCDeclQualifier y) {
2347   return (x & ~Decl::OBJC_TQ_CSNullability) !=
2348          (y & ~Decl::OBJC_TQ_CSNullability);
2349 }
2350 
2351 static bool CheckMethodOverrideReturn(Sema &S,
2352                                       ObjCMethodDecl *MethodImpl,
2353                                       ObjCMethodDecl *MethodDecl,
2354                                       bool IsProtocolMethodDecl,
2355                                       bool IsOverridingMode,
2356                                       bool Warn) {
2357   if (IsProtocolMethodDecl &&
2358       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2359                             MethodImpl->getObjCDeclQualifier())) {
2360     if (Warn) {
2361       S.Diag(MethodImpl->getLocation(),
2362              (IsOverridingMode
2363                   ? diag::warn_conflicting_overriding_ret_type_modifiers
2364                   : diag::warn_conflicting_ret_type_modifiers))
2365           << MethodImpl->getDeclName()
2366           << MethodImpl->getReturnTypeSourceRange();
2367       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2368           << MethodDecl->getReturnTypeSourceRange();
2369     }
2370     else
2371       return false;
2372   }
2373   if (Warn && IsOverridingMode &&
2374       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2375       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2376                                                  MethodDecl->getReturnType(),
2377                                                  false)) {
2378     auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2379     auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2380     S.Diag(MethodImpl->getLocation(),
2381            diag::warn_conflicting_nullability_attr_overriding_ret_types)
2382         << DiagNullabilityKind(nullabilityMethodImpl,
2383                                ((MethodImpl->getObjCDeclQualifier() &
2384                                  Decl::OBJC_TQ_CSNullability) != 0))
2385         << DiagNullabilityKind(nullabilityMethodDecl,
2386                                ((MethodDecl->getObjCDeclQualifier() &
2387                                  Decl::OBJC_TQ_CSNullability) != 0));
2388     S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2389   }
2390 
2391   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2392                                        MethodDecl->getReturnType()))
2393     return true;
2394   if (!Warn)
2395     return false;
2396 
2397   unsigned DiagID =
2398     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2399                      : diag::warn_conflicting_ret_types;
2400 
2401   // Mismatches between ObjC pointers go into a different warning
2402   // category, and sometimes they're even completely explicitly allowed.
2403   if (const ObjCObjectPointerType *ImplPtrTy =
2404           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2405     if (const ObjCObjectPointerType *IfacePtrTy =
2406             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2407       // Allow non-matching return types as long as they don't violate
2408       // the principle of substitutability.  Specifically, we permit
2409       // return types that are subclasses of the declared return type,
2410       // or that are more-qualified versions of the declared type.
2411       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2412         return false;
2413 
2414       DiagID =
2415         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2416                          : diag::warn_non_covariant_ret_types;
2417     }
2418   }
2419 
2420   S.Diag(MethodImpl->getLocation(), DiagID)
2421       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2422       << MethodImpl->getReturnType()
2423       << MethodImpl->getReturnTypeSourceRange();
2424   S.Diag(MethodDecl->getLocation(), IsOverridingMode
2425                                         ? diag::note_previous_declaration
2426                                         : diag::note_previous_definition)
2427       << MethodDecl->getReturnTypeSourceRange();
2428   return false;
2429 }
2430 
2431 static bool CheckMethodOverrideParam(Sema &S,
2432                                      ObjCMethodDecl *MethodImpl,
2433                                      ObjCMethodDecl *MethodDecl,
2434                                      ParmVarDecl *ImplVar,
2435                                      ParmVarDecl *IfaceVar,
2436                                      bool IsProtocolMethodDecl,
2437                                      bool IsOverridingMode,
2438                                      bool Warn) {
2439   if (IsProtocolMethodDecl &&
2440       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2441                             IfaceVar->getObjCDeclQualifier())) {
2442     if (Warn) {
2443       if (IsOverridingMode)
2444         S.Diag(ImplVar->getLocation(),
2445                diag::warn_conflicting_overriding_param_modifiers)
2446             << getTypeRange(ImplVar->getTypeSourceInfo())
2447             << MethodImpl->getDeclName();
2448       else S.Diag(ImplVar->getLocation(),
2449              diag::warn_conflicting_param_modifiers)
2450           << getTypeRange(ImplVar->getTypeSourceInfo())
2451           << MethodImpl->getDeclName();
2452       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2453           << getTypeRange(IfaceVar->getTypeSourceInfo());
2454     }
2455     else
2456       return false;
2457   }
2458 
2459   QualType ImplTy = ImplVar->getType();
2460   QualType IfaceTy = IfaceVar->getType();
2461   if (Warn && IsOverridingMode &&
2462       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2463       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2464     S.Diag(ImplVar->getLocation(),
2465            diag::warn_conflicting_nullability_attr_overriding_param_types)
2466         << DiagNullabilityKind(*ImplTy->getNullability(),
2467                                ((ImplVar->getObjCDeclQualifier() &
2468                                  Decl::OBJC_TQ_CSNullability) != 0))
2469         << DiagNullabilityKind(*IfaceTy->getNullability(),
2470                                ((IfaceVar->getObjCDeclQualifier() &
2471                                  Decl::OBJC_TQ_CSNullability) != 0));
2472     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2473   }
2474   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2475     return true;
2476 
2477   if (!Warn)
2478     return false;
2479   unsigned DiagID =
2480     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2481                      : diag::warn_conflicting_param_types;
2482 
2483   // Mismatches between ObjC pointers go into a different warning
2484   // category, and sometimes they're even completely explicitly allowed..
2485   if (const ObjCObjectPointerType *ImplPtrTy =
2486         ImplTy->getAs<ObjCObjectPointerType>()) {
2487     if (const ObjCObjectPointerType *IfacePtrTy =
2488           IfaceTy->getAs<ObjCObjectPointerType>()) {
2489       // Allow non-matching argument types as long as they don't
2490       // violate the principle of substitutability.  Specifically, the
2491       // implementation must accept any objects that the superclass
2492       // accepts, however it may also accept others.
2493       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2494         return false;
2495 
2496       DiagID =
2497       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2498                        : diag::warn_non_contravariant_param_types;
2499     }
2500   }
2501 
2502   S.Diag(ImplVar->getLocation(), DiagID)
2503     << getTypeRange(ImplVar->getTypeSourceInfo())
2504     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2505   S.Diag(IfaceVar->getLocation(),
2506          (IsOverridingMode ? diag::note_previous_declaration
2507                            : diag::note_previous_definition))
2508     << getTypeRange(IfaceVar->getTypeSourceInfo());
2509   return false;
2510 }
2511 
2512 /// In ARC, check whether the conventional meanings of the two methods
2513 /// match.  If they don't, it's a hard error.
2514 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2515                                       ObjCMethodDecl *decl) {
2516   ObjCMethodFamily implFamily = impl->getMethodFamily();
2517   ObjCMethodFamily declFamily = decl->getMethodFamily();
2518   if (implFamily == declFamily) return false;
2519 
2520   // Since conventions are sorted by selector, the only possibility is
2521   // that the types differ enough to cause one selector or the other
2522   // to fall out of the family.
2523   assert(implFamily == OMF_None || declFamily == OMF_None);
2524 
2525   // No further diagnostics required on invalid declarations.
2526   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2527 
2528   const ObjCMethodDecl *unmatched = impl;
2529   ObjCMethodFamily family = declFamily;
2530   unsigned errorID = diag::err_arc_lost_method_convention;
2531   unsigned noteID = diag::note_arc_lost_method_convention;
2532   if (declFamily == OMF_None) {
2533     unmatched = decl;
2534     family = implFamily;
2535     errorID = diag::err_arc_gained_method_convention;
2536     noteID = diag::note_arc_gained_method_convention;
2537   }
2538 
2539   // Indexes into a %select clause in the diagnostic.
2540   enum FamilySelector {
2541     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2542   };
2543   FamilySelector familySelector = FamilySelector();
2544 
2545   switch (family) {
2546   case OMF_None: llvm_unreachable("logic error, no method convention");
2547   case OMF_retain:
2548   case OMF_release:
2549   case OMF_autorelease:
2550   case OMF_dealloc:
2551   case OMF_finalize:
2552   case OMF_retainCount:
2553   case OMF_self:
2554   case OMF_initialize:
2555   case OMF_performSelector:
2556     // Mismatches for these methods don't change ownership
2557     // conventions, so we don't care.
2558     return false;
2559 
2560   case OMF_init: familySelector = F_init; break;
2561   case OMF_alloc: familySelector = F_alloc; break;
2562   case OMF_copy: familySelector = F_copy; break;
2563   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2564   case OMF_new: familySelector = F_new; break;
2565   }
2566 
2567   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2568   ReasonSelector reasonSelector;
2569 
2570   // The only reason these methods don't fall within their families is
2571   // due to unusual result types.
2572   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2573     reasonSelector = R_UnrelatedReturn;
2574   } else {
2575     reasonSelector = R_NonObjectReturn;
2576   }
2577 
2578   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2579   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2580 
2581   return true;
2582 }
2583 
2584 void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2585                                            ObjCMethodDecl *MethodDecl,
2586                                            bool IsProtocolMethodDecl) {
2587   if (getLangOpts().ObjCAutoRefCount &&
2588       checkMethodFamilyMismatch(SemaRef, ImpMethodDecl, MethodDecl))
2589     return;
2590 
2591   CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2592                             IsProtocolMethodDecl, false, true);
2593 
2594   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2595        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2596        EF = MethodDecl->param_end();
2597        IM != EM && IF != EF; ++IM, ++IF) {
2598     CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM, *IF,
2599                              IsProtocolMethodDecl, false, true);
2600   }
2601 
2602   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2603     Diag(ImpMethodDecl->getLocation(),
2604          diag::warn_conflicting_variadic);
2605     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2606   }
2607 }
2608 
2609 void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2610                                                 ObjCMethodDecl *Overridden,
2611                                                 bool IsProtocolMethodDecl) {
2612 
2613   CheckMethodOverrideReturn(SemaRef, Method, Overridden, IsProtocolMethodDecl,
2614                             true, true);
2615 
2616   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2617        IF = Overridden->param_begin(), EM = Method->param_end(),
2618        EF = Overridden->param_end();
2619        IM != EM && IF != EF; ++IM, ++IF) {
2620     CheckMethodOverrideParam(SemaRef, Method, Overridden, *IM, *IF,
2621                              IsProtocolMethodDecl, true, true);
2622   }
2623 
2624   if (Method->isVariadic() != Overridden->isVariadic()) {
2625     Diag(Method->getLocation(),
2626          diag::warn_conflicting_overriding_variadic);
2627     Diag(Overridden->getLocation(), diag::note_previous_declaration);
2628   }
2629 }
2630 
2631 /// WarnExactTypedMethods - This routine issues a warning if method
2632 /// implementation declaration matches exactly that of its declaration.
2633 void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2634                                      ObjCMethodDecl *MethodDecl,
2635                                      bool IsProtocolMethodDecl) {
2636   ASTContext &Context = getASTContext();
2637   // don't issue warning when protocol method is optional because primary
2638   // class is not required to implement it and it is safe for protocol
2639   // to implement it.
2640   if (MethodDecl->getImplementationControl() ==
2641       ObjCImplementationControl::Optional)
2642     return;
2643   // don't issue warning when primary class's method is
2644   // deprecated/unavailable.
2645   if (MethodDecl->hasAttr<UnavailableAttr>() ||
2646       MethodDecl->hasAttr<DeprecatedAttr>())
2647     return;
2648 
2649   bool match = CheckMethodOverrideReturn(SemaRef, ImpMethodDecl, MethodDecl,
2650                                          IsProtocolMethodDecl, false, false);
2651   if (match)
2652     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2653          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2654          EF = MethodDecl->param_end();
2655          IM != EM && IF != EF; ++IM, ++IF) {
2656       match = CheckMethodOverrideParam(SemaRef, ImpMethodDecl, MethodDecl, *IM,
2657                                        *IF, IsProtocolMethodDecl, false, false);
2658       if (!match)
2659         break;
2660     }
2661   if (match)
2662     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2663   if (match)
2664     match = !(MethodDecl->isClassMethod() &&
2665               MethodDecl->getSelector() == GetNullarySelector("load", Context));
2666 
2667   if (match) {
2668     Diag(ImpMethodDecl->getLocation(),
2669          diag::warn_category_method_impl_match);
2670     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2671       << MethodDecl->getDeclName();
2672   }
2673 }
2674 
2675 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2676 /// improve the efficiency of selector lookups and type checking by associating
2677 /// with each protocol / interface / category the flattened instance tables. If
2678 /// we used an immutable set to keep the table then it wouldn't add significant
2679 /// memory cost and it would be handy for lookups.
2680 
2681 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2682 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2683 
2684 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2685                                            ProtocolNameSet &PNS) {
2686   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2687     PNS.insert(PDecl->getIdentifier());
2688   for (const auto *PI : PDecl->protocols())
2689     findProtocolsWithExplicitImpls(PI, PNS);
2690 }
2691 
2692 /// Recursively populates a set with all conformed protocols in a class
2693 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2694 /// attribute.
2695 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2696                                            ProtocolNameSet &PNS) {
2697   if (!Super)
2698     return;
2699 
2700   for (const auto *I : Super->all_referenced_protocols())
2701     findProtocolsWithExplicitImpls(I, PNS);
2702 
2703   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2704 }
2705 
2706 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2707 /// Declared in protocol, and those referenced by it.
2708 static void CheckProtocolMethodDefs(
2709     Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2710     const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap,
2711     ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2712   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2713   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2714                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
2715   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2716 
2717   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2718   ObjCInterfaceDecl *NSIDecl = nullptr;
2719 
2720   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2721   // then we should check if any class in the super class hierarchy also
2722   // conforms to this protocol, either directly or via protocol inheritance.
2723   // If so, we can skip checking this protocol completely because we
2724   // know that a parent class already satisfies this protocol.
2725   //
2726   // Note: we could generalize this logic for all protocols, and merely
2727   // add the limit on looking at the super class chain for just
2728   // specially marked protocols.  This may be a good optimization.  This
2729   // change is restricted to 'objc_protocol_requires_explicit_implementation'
2730   // protocols for now for controlled evaluation.
2731   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2732     if (!ProtocolsExplictImpl) {
2733       ProtocolsExplictImpl.reset(new ProtocolNameSet);
2734       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2735     }
2736     if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2737       return;
2738 
2739     // If no super class conforms to the protocol, we should not search
2740     // for methods in the super class to implicitly satisfy the protocol.
2741     Super = nullptr;
2742   }
2743 
2744   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2745     // check to see if class implements forwardInvocation method and objects
2746     // of this class are derived from 'NSProxy' so that to forward requests
2747     // from one object to another.
2748     // Under such conditions, which means that every method possible is
2749     // implemented in the class, we should not issue "Method definition not
2750     // found" warnings.
2751     // FIXME: Use a general GetUnarySelector method for this.
2752     const IdentifierInfo *II = &S.Context.Idents.get("forwardInvocation");
2753     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2754     if (InsMap.count(fISelector))
2755       // Is IDecl derived from 'NSProxy'? If so, no instance methods
2756       // need be implemented in the implementation.
2757       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2758   }
2759 
2760   // If this is a forward protocol declaration, get its definition.
2761   if (!PDecl->isThisDeclarationADefinition() &&
2762       PDecl->getDefinition())
2763     PDecl = PDecl->getDefinition();
2764 
2765   // If a method lookup fails locally we still need to look and see if
2766   // the method was implemented by a base class or an inherited
2767   // protocol. This lookup is slow, but occurs rarely in correct code
2768   // and otherwise would terminate in a warning.
2769 
2770   // check unimplemented instance methods.
2771   if (!NSIDecl)
2772     for (auto *method : PDecl->instance_methods()) {
2773       if (method->getImplementationControl() !=
2774               ObjCImplementationControl::Optional &&
2775           !method->isPropertyAccessor() &&
2776           !InsMap.count(method->getSelector()) &&
2777           (!Super || !Super->lookupMethod(
2778                          method->getSelector(), true /* instance */,
2779                          false /* shallowCategory */, true /* followsSuper */,
2780                          nullptr /* category */))) {
2781         // If a method is not implemented in the category implementation but
2782         // has been declared in its primary class, superclass,
2783         // or in one of their protocols, no need to issue the warning.
2784         // This is because method will be implemented in the primary class
2785         // or one of its super class implementation.
2786 
2787         // Ugly, but necessary. Method declared in protocol might have
2788         // have been synthesized due to a property declared in the class which
2789         // uses the protocol.
2790         if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2791                 method->getSelector(), true /* instance */,
2792                 true /* shallowCategoryLookup */, false /* followSuper */))
2793           if (C || MethodInClass->isPropertyAccessor())
2794             continue;
2795         unsigned DIAG = diag::warn_unimplemented_protocol_method;
2796         if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2797           WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2798         }
2799       }
2800     }
2801   // check unimplemented class methods
2802   for (auto *method : PDecl->class_methods()) {
2803     if (method->getImplementationControl() !=
2804             ObjCImplementationControl::Optional &&
2805         !ClsMap.count(method->getSelector()) &&
2806         (!Super || !Super->lookupMethod(
2807                        method->getSelector(), false /* class method */,
2808                        false /* shallowCategoryLookup */,
2809                        true /* followSuper */, nullptr /* category */))) {
2810       // See above comment for instance method lookups.
2811       if (C && IDecl->lookupMethod(method->getSelector(),
2812                                    false /* class */,
2813                                    true /* shallowCategoryLookup */,
2814                                    false /* followSuper */))
2815         continue;
2816 
2817       unsigned DIAG = diag::warn_unimplemented_protocol_method;
2818       if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2819         WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2820       }
2821     }
2822   }
2823   // Check on this protocols's referenced protocols, recursively.
2824   for (auto *PI : PDecl->protocols())
2825     CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2826                             ProtocolsExplictImpl);
2827 }
2828 
2829 /// MatchAllMethodDeclarations - Check methods declared in interface
2830 /// or protocol against those declared in their implementations.
2831 ///
2832 void SemaObjC::MatchAllMethodDeclarations(
2833     const SelectorSet &InsMap, const SelectorSet &ClsMap,
2834     SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl,
2835     ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass,
2836     bool WarnCategoryMethodImpl) {
2837   // Check and see if instance methods in class interface have been
2838   // implemented in the implementation class. If so, their types match.
2839   for (auto *I : CDecl->instance_methods()) {
2840     if (!InsMapSeen.insert(I->getSelector()).second)
2841       continue;
2842     if (!I->isPropertyAccessor() &&
2843         !InsMap.count(I->getSelector())) {
2844       if (ImmediateClass)
2845         WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2846                             diag::warn_undef_method_impl);
2847       continue;
2848     } else {
2849       ObjCMethodDecl *ImpMethodDecl =
2850         IMPDecl->getInstanceMethod(I->getSelector());
2851       assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2852              "Expected to find the method through lookup as well");
2853       // ImpMethodDecl may be null as in a @dynamic property.
2854       if (ImpMethodDecl) {
2855         // Skip property accessor function stubs.
2856         if (ImpMethodDecl->isSynthesizedAccessorStub())
2857           continue;
2858         if (!WarnCategoryMethodImpl)
2859           WarnConflictingTypedMethods(ImpMethodDecl, I,
2860                                       isa<ObjCProtocolDecl>(CDecl));
2861         else if (!I->isPropertyAccessor())
2862           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2863       }
2864     }
2865   }
2866 
2867   // Check and see if class methods in class interface have been
2868   // implemented in the implementation class. If so, their types match.
2869   for (auto *I : CDecl->class_methods()) {
2870     if (!ClsMapSeen.insert(I->getSelector()).second)
2871       continue;
2872     if (!I->isPropertyAccessor() &&
2873         !ClsMap.count(I->getSelector())) {
2874       if (ImmediateClass)
2875         WarnUndefinedMethod(SemaRef, IMPDecl, I, IncompleteImpl,
2876                             diag::warn_undef_method_impl);
2877     } else {
2878       ObjCMethodDecl *ImpMethodDecl =
2879         IMPDecl->getClassMethod(I->getSelector());
2880       assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2881              "Expected to find the method through lookup as well");
2882       // ImpMethodDecl may be null as in a @dynamic property.
2883       if (ImpMethodDecl) {
2884         // Skip property accessor function stubs.
2885         if (ImpMethodDecl->isSynthesizedAccessorStub())
2886           continue;
2887         if (!WarnCategoryMethodImpl)
2888           WarnConflictingTypedMethods(ImpMethodDecl, I,
2889                                       isa<ObjCProtocolDecl>(CDecl));
2890         else if (!I->isPropertyAccessor())
2891           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2892       }
2893     }
2894   }
2895 
2896   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2897     // Also, check for methods declared in protocols inherited by
2898     // this protocol.
2899     for (auto *PI : PD->protocols())
2900       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2901                                  IMPDecl, PI, IncompleteImpl, false,
2902                                  WarnCategoryMethodImpl);
2903   }
2904 
2905   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2906     // when checking that methods in implementation match their declaration,
2907     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2908     // extension; as well as those in categories.
2909     if (!WarnCategoryMethodImpl) {
2910       for (auto *Cat : I->visible_categories())
2911         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912                                    IMPDecl, Cat, IncompleteImpl,
2913                                    ImmediateClass && Cat->IsClassExtension(),
2914                                    WarnCategoryMethodImpl);
2915     } else {
2916       // Also methods in class extensions need be looked at next.
2917       for (auto *Ext : I->visible_extensions())
2918         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2919                                    IMPDecl, Ext, IncompleteImpl, false,
2920                                    WarnCategoryMethodImpl);
2921     }
2922 
2923     // Check for any implementation of a methods declared in protocol.
2924     for (auto *PI : I->all_referenced_protocols())
2925       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2926                                  IMPDecl, PI, IncompleteImpl, false,
2927                                  WarnCategoryMethodImpl);
2928 
2929     // FIXME. For now, we are not checking for exact match of methods
2930     // in category implementation and its primary class's super class.
2931     if (!WarnCategoryMethodImpl && I->getSuperClass())
2932       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2933                                  IMPDecl,
2934                                  I->getSuperClass(), IncompleteImpl, false);
2935   }
2936 }
2937 
2938 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2939 /// category matches with those implemented in its primary class and
2940 /// warns each time an exact match is found.
2941 void SemaObjC::CheckCategoryVsClassMethodMatches(
2942     ObjCCategoryImplDecl *CatIMPDecl) {
2943   // Get category's primary class.
2944   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2945   if (!CatDecl)
2946     return;
2947   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2948   if (!IDecl)
2949     return;
2950   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2951   SelectorSet InsMap, ClsMap;
2952 
2953   for (const auto *I : CatIMPDecl->instance_methods()) {
2954     Selector Sel = I->getSelector();
2955     // When checking for methods implemented in the category, skip over
2956     // those declared in category class's super class. This is because
2957     // the super class must implement the method.
2958     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2959       continue;
2960     InsMap.insert(Sel);
2961   }
2962 
2963   for (const auto *I : CatIMPDecl->class_methods()) {
2964     Selector Sel = I->getSelector();
2965     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2966       continue;
2967     ClsMap.insert(Sel);
2968   }
2969   if (InsMap.empty() && ClsMap.empty())
2970     return;
2971 
2972   SelectorSet InsMapSeen, ClsMapSeen;
2973   bool IncompleteImpl = false;
2974   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2975                              CatIMPDecl, IDecl,
2976                              IncompleteImpl, false,
2977                              true /*WarnCategoryMethodImpl*/);
2978 }
2979 
2980 void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl,
2981                                          ObjCContainerDecl *CDecl,
2982                                          bool IncompleteImpl) {
2983   SelectorSet InsMap;
2984   // Check and see if instance methods in class interface have been
2985   // implemented in the implementation class.
2986   for (const auto *I : IMPDecl->instance_methods())
2987     InsMap.insert(I->getSelector());
2988 
2989   // Add the selectors for getters/setters of @dynamic properties.
2990   for (const auto *PImpl : IMPDecl->property_impls()) {
2991     // We only care about @dynamic implementations.
2992     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2993       continue;
2994 
2995     const auto *P = PImpl->getPropertyDecl();
2996     if (!P) continue;
2997 
2998     InsMap.insert(P->getGetterName());
2999     if (!P->getSetterName().isNull())
3000       InsMap.insert(P->getSetterName());
3001   }
3002 
3003   // Check and see if properties declared in the interface have either 1)
3004   // an implementation or 2) there is a @synthesize/@dynamic implementation
3005   // of the property in the @implementation.
3006   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3007     bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties &&
3008                                 getLangOpts().ObjCRuntime.isNonFragile() &&
3009                                 !IDecl->isObjCRequiresPropertyDefs();
3010     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3011   }
3012 
3013   // Diagnose null-resettable synthesized setters.
3014   diagnoseNullResettableSynthesizedSetters(IMPDecl);
3015 
3016   SelectorSet ClsMap;
3017   for (const auto *I : IMPDecl->class_methods())
3018     ClsMap.insert(I->getSelector());
3019 
3020   // Check for type conflict of methods declared in a class/protocol and
3021   // its implementation; if any.
3022   SelectorSet InsMapSeen, ClsMapSeen;
3023   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3024                              IMPDecl, CDecl,
3025                              IncompleteImpl, true);
3026 
3027   // check all methods implemented in category against those declared
3028   // in its primary class.
3029   if (ObjCCategoryImplDecl *CatDecl =
3030         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3031     CheckCategoryVsClassMethodMatches(CatDecl);
3032 
3033   // Check the protocol list for unimplemented methods in the @implementation
3034   // class.
3035   // Check and see if class methods in class interface have been
3036   // implemented in the implementation class.
3037 
3038   LazyProtocolNameSet ExplicitImplProtocols;
3039 
3040   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3041     for (auto *PI : I->all_referenced_protocols())
3042       CheckProtocolMethodDefs(SemaRef, IMPDecl, PI, IncompleteImpl, InsMap,
3043                               ClsMap, I, ExplicitImplProtocols);
3044   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3045     // For extended class, unimplemented methods in its protocols will
3046     // be reported in the primary class.
3047     if (!C->IsClassExtension()) {
3048       for (auto *P : C->protocols())
3049         CheckProtocolMethodDefs(SemaRef, IMPDecl, P, IncompleteImpl, InsMap,
3050                                 ClsMap, CDecl, ExplicitImplProtocols);
3051       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3052                                       /*SynthesizeProperties=*/false);
3053     }
3054   } else
3055     llvm_unreachable("invalid ObjCContainerDecl type.");
3056 }
3057 
3058 SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration(
3059     SourceLocation AtClassLoc, IdentifierInfo **IdentList,
3060     SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists,
3061     unsigned NumElts) {
3062   ASTContext &Context = getASTContext();
3063   SmallVector<Decl *, 8> DeclsInGroup;
3064   for (unsigned i = 0; i != NumElts; ++i) {
3065     // Check for another declaration kind with the same name.
3066     NamedDecl *PrevDecl = SemaRef.LookupSingleName(
3067         SemaRef.TUScope, IdentList[i], IdentLocs[i], Sema::LookupOrdinaryName,
3068         SemaRef.forRedeclarationInCurContext());
3069     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3070       // GCC apparently allows the following idiom:
3071       //
3072       // typedef NSObject < XCElementTogglerP > XCElementToggler;
3073       // @class XCElementToggler;
3074       //
3075       // Here we have chosen to ignore the forward class declaration
3076       // with a warning. Since this is the implied behavior.
3077       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3078       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3079         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3080         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3081       } else {
3082         // a forward class declaration matching a typedef name of a class refers
3083         // to the underlying class. Just ignore the forward class with a warning
3084         // as this will force the intended behavior which is to lookup the
3085         // typedef name.
3086         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3087           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3088               << IdentList[i];
3089           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3090           continue;
3091         }
3092       }
3093     }
3094 
3095     // Create a declaration to describe this forward declaration.
3096     ObjCInterfaceDecl *PrevIDecl
3097       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3098 
3099     IdentifierInfo *ClassName = IdentList[i];
3100     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3101       // A previous decl with a different name is because of
3102       // @compatibility_alias, for example:
3103       // \code
3104       //   @class NewImage;
3105       //   @compatibility_alias OldImage NewImage;
3106       // \endcode
3107       // A lookup for 'OldImage' will return the 'NewImage' decl.
3108       //
3109       // In such a case use the real declaration name, instead of the alias one,
3110       // otherwise we will break IdentifierResolver and redecls-chain invariants.
3111       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3112       // has been aliased.
3113       ClassName = PrevIDecl->getIdentifier();
3114     }
3115 
3116     // If this forward declaration has type parameters, compare them with the
3117     // type parameters of the previous declaration.
3118     ObjCTypeParamList *TypeParams = TypeParamLists[i];
3119     if (PrevIDecl && TypeParams) {
3120       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3121         // Check for consistency with the previous declaration.
3122         if (checkTypeParamListConsistency(
3123                 SemaRef, PrevTypeParams, TypeParams,
3124                 TypeParamListContext::ForwardDeclaration)) {
3125           TypeParams = nullptr;
3126         }
3127       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3128         // The @interface does not have type parameters. Complain.
3129         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3130           << ClassName
3131           << TypeParams->getSourceRange();
3132         Diag(Def->getLocation(), diag::note_defined_here)
3133           << ClassName;
3134 
3135         TypeParams = nullptr;
3136       }
3137     }
3138 
3139     ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create(
3140         Context, SemaRef.CurContext, AtClassLoc, ClassName, TypeParams,
3141         PrevIDecl, IdentLocs[i]);
3142     IDecl->setAtEndRange(IdentLocs[i]);
3143 
3144     if (PrevIDecl)
3145       SemaRef.mergeDeclAttributes(IDecl, PrevIDecl);
3146 
3147     SemaRef.PushOnScopeChains(IDecl, SemaRef.TUScope);
3148     CheckObjCDeclScope(IDecl);
3149     DeclsInGroup.push_back(IDecl);
3150   }
3151 
3152   return SemaRef.BuildDeclaratorGroup(DeclsInGroup);
3153 }
3154 
3155 static bool tryMatchRecordTypes(ASTContext &Context,
3156                                 SemaObjC::MethodMatchStrategy strategy,
3157                                 const Type *left, const Type *right);
3158 
3159 static bool matchTypes(ASTContext &Context,
3160                        SemaObjC::MethodMatchStrategy strategy, QualType leftQT,
3161                        QualType rightQT) {
3162   const Type *left =
3163     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3164   const Type *right =
3165     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3166 
3167   if (left == right) return true;
3168 
3169   // If we're doing a strict match, the types have to match exactly.
3170   if (strategy == SemaObjC::MMS_strict)
3171     return false;
3172 
3173   if (left->isIncompleteType() || right->isIncompleteType()) return false;
3174 
3175   // Otherwise, use this absurdly complicated algorithm to try to
3176   // validate the basic, low-level compatibility of the two types.
3177 
3178   // As a minimum, require the sizes and alignments to match.
3179   TypeInfo LeftTI = Context.getTypeInfo(left);
3180   TypeInfo RightTI = Context.getTypeInfo(right);
3181   if (LeftTI.Width != RightTI.Width)
3182     return false;
3183 
3184   if (LeftTI.Align != RightTI.Align)
3185     return false;
3186 
3187   // Consider all the kinds of non-dependent canonical types:
3188   // - functions and arrays aren't possible as return and parameter types
3189 
3190   // - vector types of equal size can be arbitrarily mixed
3191   if (isa<VectorType>(left)) return isa<VectorType>(right);
3192   if (isa<VectorType>(right)) return false;
3193 
3194   // - references should only match references of identical type
3195   // - structs, unions, and Objective-C objects must match more-or-less
3196   //   exactly
3197   // - everything else should be a scalar
3198   if (!left->isScalarType() || !right->isScalarType())
3199     return tryMatchRecordTypes(Context, strategy, left, right);
3200 
3201   // Make scalars agree in kind, except count bools as chars, and group
3202   // all non-member pointers together.
3203   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3204   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3205   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3206   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3207   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3208     leftSK = Type::STK_ObjCObjectPointer;
3209   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3210     rightSK = Type::STK_ObjCObjectPointer;
3211 
3212   // Note that data member pointers and function member pointers don't
3213   // intermix because of the size differences.
3214 
3215   return (leftSK == rightSK);
3216 }
3217 
3218 static bool tryMatchRecordTypes(ASTContext &Context,
3219                                 SemaObjC::MethodMatchStrategy strategy,
3220                                 const Type *lt, const Type *rt) {
3221   assert(lt && rt && lt != rt);
3222 
3223   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3224   RecordDecl *left = cast<RecordType>(lt)->getDecl();
3225   RecordDecl *right = cast<RecordType>(rt)->getDecl();
3226 
3227   // Require union-hood to match.
3228   if (left->isUnion() != right->isUnion()) return false;
3229 
3230   // Require an exact match if either is non-POD.
3231   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3232       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3233     return false;
3234 
3235   // Require size and alignment to match.
3236   TypeInfo LeftTI = Context.getTypeInfo(lt);
3237   TypeInfo RightTI = Context.getTypeInfo(rt);
3238   if (LeftTI.Width != RightTI.Width)
3239     return false;
3240 
3241   if (LeftTI.Align != RightTI.Align)
3242     return false;
3243 
3244   // Require fields to match.
3245   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3246   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3247   for (; li != le && ri != re; ++li, ++ri) {
3248     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3249       return false;
3250   }
3251   return (li == le && ri == re);
3252 }
3253 
3254 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3255 /// returns true, or false, accordingly.
3256 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3257 bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3258                                           const ObjCMethodDecl *right,
3259                                           MethodMatchStrategy strategy) {
3260   ASTContext &Context = getASTContext();
3261   if (!matchTypes(Context, strategy, left->getReturnType(),
3262                   right->getReturnType()))
3263     return false;
3264 
3265   // If either is hidden, it is not considered to match.
3266   if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3267     return false;
3268 
3269   if (left->isDirectMethod() != right->isDirectMethod())
3270     return false;
3271 
3272   if (getLangOpts().ObjCAutoRefCount &&
3273       (left->hasAttr<NSReturnsRetainedAttr>()
3274          != right->hasAttr<NSReturnsRetainedAttr>() ||
3275        left->hasAttr<NSConsumesSelfAttr>()
3276          != right->hasAttr<NSConsumesSelfAttr>()))
3277     return false;
3278 
3279   ObjCMethodDecl::param_const_iterator
3280     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3281     re = right->param_end();
3282 
3283   for (; li != le && ri != re; ++li, ++ri) {
3284     assert(ri != right->param_end() && "Param mismatch");
3285     const ParmVarDecl *lparm = *li, *rparm = *ri;
3286 
3287     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3288       return false;
3289 
3290     if (getLangOpts().ObjCAutoRefCount &&
3291         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3292       return false;
3293   }
3294   return true;
3295 }
3296 
3297 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3298                                                ObjCMethodDecl *MethodInList) {
3299   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3300   auto *MethodInListProtocol =
3301       dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3302   // If this method belongs to a protocol but the method in list does not, or
3303   // vice versa, we say the context is not the same.
3304   if ((MethodProtocol && !MethodInListProtocol) ||
3305       (!MethodProtocol && MethodInListProtocol))
3306     return false;
3307 
3308   if (MethodProtocol && MethodInListProtocol)
3309     return true;
3310 
3311   ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3312   ObjCInterfaceDecl *MethodInListInterface =
3313       MethodInList->getClassInterface();
3314   return MethodInterface == MethodInListInterface;
3315 }
3316 
3317 void SemaObjC::addMethodToGlobalList(ObjCMethodList *List,
3318                                      ObjCMethodDecl *Method) {
3319   // Record at the head of the list whether there were 0, 1, or >= 2 methods
3320   // inside categories.
3321   if (ObjCCategoryDecl *CD =
3322           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3323     if (!CD->IsClassExtension() && List->getBits() < 2)
3324       List->setBits(List->getBits() + 1);
3325 
3326   // If the list is empty, make it a singleton list.
3327   if (List->getMethod() == nullptr) {
3328     List->setMethod(Method);
3329     List->setNext(nullptr);
3330     return;
3331   }
3332 
3333   // We've seen a method with this name, see if we have already seen this type
3334   // signature.
3335   ObjCMethodList *Previous = List;
3336   ObjCMethodList *ListWithSameDeclaration = nullptr;
3337   for (; List; Previous = List, List = List->getNext()) {
3338     // If we are building a module, keep all of the methods.
3339     if (getLangOpts().isCompilingModule())
3340       continue;
3341 
3342     bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3343                                                       List->getMethod());
3344     // Looking for method with a type bound requires the correct context exists.
3345     // We need to insert a method into the list if the context is different.
3346     // If the method's declaration matches the list
3347     // a> the method belongs to a different context: we need to insert it, in
3348     //    order to emit the availability message, we need to prioritize over
3349     //    availability among the methods with the same declaration.
3350     // b> the method belongs to the same context: there is no need to insert a
3351     //    new entry.
3352     // If the method's declaration does not match the list, we insert it to the
3353     // end.
3354     if (!SameDeclaration ||
3355         !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3356       // Even if two method types do not match, we would like to say
3357       // there is more than one declaration so unavailability/deprecated
3358       // warning is not too noisy.
3359       if (!Method->isDefined())
3360         List->setHasMoreThanOneDecl(true);
3361 
3362       // For methods with the same declaration, the one that is deprecated
3363       // should be put in the front for better diagnostics.
3364       if (Method->isDeprecated() && SameDeclaration &&
3365           !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3366         ListWithSameDeclaration = List;
3367 
3368       if (Method->isUnavailable() && SameDeclaration &&
3369           !ListWithSameDeclaration &&
3370           List->getMethod()->getAvailability() < AR_Deprecated)
3371         ListWithSameDeclaration = List;
3372       continue;
3373     }
3374 
3375     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3376 
3377     // Propagate the 'defined' bit.
3378     if (Method->isDefined())
3379       PrevObjCMethod->setDefined(true);
3380     else {
3381       // Objective-C doesn't allow an @interface for a class after its
3382       // @implementation. So if Method is not defined and there already is
3383       // an entry for this type signature, Method has to be for a different
3384       // class than PrevObjCMethod.
3385       List->setHasMoreThanOneDecl(true);
3386     }
3387 
3388     // If a method is deprecated, push it in the global pool.
3389     // This is used for better diagnostics.
3390     if (Method->isDeprecated()) {
3391       if (!PrevObjCMethod->isDeprecated())
3392         List->setMethod(Method);
3393     }
3394     // If the new method is unavailable, push it into global pool
3395     // unless previous one is deprecated.
3396     if (Method->isUnavailable()) {
3397       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3398         List->setMethod(Method);
3399     }
3400 
3401     return;
3402   }
3403 
3404   // We have a new signature for an existing method - add it.
3405   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3406   ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>();
3407 
3408   // We insert it right before ListWithSameDeclaration.
3409   if (ListWithSameDeclaration) {
3410     auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3411     // FIXME: should we clear the other bits in ListWithSameDeclaration?
3412     ListWithSameDeclaration->setMethod(Method);
3413     ListWithSameDeclaration->setNext(List);
3414     return;
3415   }
3416 
3417   Previous->setNext(new (Mem) ObjCMethodList(Method));
3418 }
3419 
3420 /// Read the contents of the method pool for a given selector from
3421 /// external storage.
3422 void SemaObjC::ReadMethodPool(Selector Sel) {
3423   assert(SemaRef.ExternalSource && "We need an external AST source");
3424   SemaRef.ExternalSource->ReadMethodPool(Sel);
3425 }
3426 
3427 void SemaObjC::updateOutOfDateSelector(Selector Sel) {
3428   if (!SemaRef.ExternalSource)
3429     return;
3430   SemaRef.ExternalSource->updateOutOfDateSelector(Sel);
3431 }
3432 
3433 void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3434                                      bool instance) {
3435   // Ignore methods of invalid containers.
3436   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3437     return;
3438 
3439   if (SemaRef.ExternalSource)
3440     ReadMethodPool(Method->getSelector());
3441 
3442   auto &Lists = MethodPool[Method->getSelector()];
3443 
3444   Method->setDefined(impl);
3445 
3446   ObjCMethodList &Entry = instance ? Lists.first : Lists.second;
3447   addMethodToGlobalList(&Entry, Method);
3448 }
3449 
3450 /// Determines if this is an "acceptable" loose mismatch in the global
3451 /// method pool.  This exists mostly as a hack to get around certain
3452 /// global mismatches which we can't afford to make warnings / errors.
3453 /// Really, what we want is a way to take a method out of the global
3454 /// method pool.
3455 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3456                                        ObjCMethodDecl *other) {
3457   if (!chosen->isInstanceMethod())
3458     return false;
3459 
3460   if (chosen->isDirectMethod() != other->isDirectMethod())
3461     return false;
3462 
3463   Selector sel = chosen->getSelector();
3464   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3465     return false;
3466 
3467   // Don't complain about mismatches for -length if the method we
3468   // chose has an integral result type.
3469   return (chosen->getReturnType()->isIntegerType());
3470 }
3471 
3472 /// Return true if the given method is wthin the type bound.
3473 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3474                                      const ObjCObjectType *TypeBound) {
3475   if (!TypeBound)
3476     return true;
3477 
3478   if (TypeBound->isObjCId())
3479     // FIXME: should we handle the case of bounding to id<A, B> differently?
3480     return true;
3481 
3482   auto *BoundInterface = TypeBound->getInterface();
3483   assert(BoundInterface && "unexpected object type!");
3484 
3485   // Check if the Method belongs to a protocol. We should allow any method
3486   // defined in any protocol, because any subclass could adopt the protocol.
3487   auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3488   if (MethodProtocol) {
3489     return true;
3490   }
3491 
3492   // If the Method belongs to a class, check if it belongs to the class
3493   // hierarchy of the class bound.
3494   if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3495     // We allow methods declared within classes that are part of the hierarchy
3496     // of the class bound (superclass of, subclass of, or the same as the class
3497     // bound).
3498     return MethodInterface == BoundInterface ||
3499            MethodInterface->isSuperClassOf(BoundInterface) ||
3500            BoundInterface->isSuperClassOf(MethodInterface);
3501   }
3502   llvm_unreachable("unknown method context");
3503 }
3504 
3505 /// We first select the type of the method: Instance or Factory, then collect
3506 /// all methods with that type.
3507 bool SemaObjC::CollectMultipleMethodsInGlobalPool(
3508     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3509     bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) {
3510   if (SemaRef.ExternalSource)
3511     ReadMethodPool(Sel);
3512 
3513   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3514   if (Pos == MethodPool.end())
3515     return false;
3516 
3517   // Gather the non-hidden methods.
3518   ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3519                              Pos->second.second;
3520   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3521     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3522       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3523         Methods.push_back(M->getMethod());
3524     }
3525 
3526   // Return if we find any method with the desired kind.
3527   if (!Methods.empty())
3528     return Methods.size() > 1;
3529 
3530   if (!CheckTheOther)
3531     return false;
3532 
3533   // Gather the other kind.
3534   ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3535                               Pos->second.first;
3536   for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3537     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3538       if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3539         Methods.push_back(M->getMethod());
3540     }
3541 
3542   return Methods.size() > 1;
3543 }
3544 
3545 bool SemaObjC::AreMultipleMethodsInGlobalPool(
3546     Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3547     bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3548   // Diagnose finding more than one method in global pool.
3549   SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3550   FilteredMethods.push_back(BestMethod);
3551 
3552   for (auto *M : Methods)
3553     if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3554       FilteredMethods.push_back(M);
3555 
3556   if (FilteredMethods.size() > 1)
3557     DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3558                                        receiverIdOrClass);
3559 
3560   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3561   // Test for no method in the pool which should not trigger any warning by
3562   // caller.
3563   if (Pos == MethodPool.end())
3564     return true;
3565   ObjCMethodList &MethList =
3566     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3567   return MethList.hasMoreThanOneDecl();
3568 }
3569 
3570 ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3571                                                    bool receiverIdOrClass,
3572                                                    bool instance) {
3573   if (SemaRef.ExternalSource)
3574     ReadMethodPool(Sel);
3575 
3576   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3577   if (Pos == MethodPool.end())
3578     return nullptr;
3579 
3580   // Gather the non-hidden methods.
3581   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3582   SmallVector<ObjCMethodDecl *, 4> Methods;
3583   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3584     if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3585       return M->getMethod();
3586   }
3587   return nullptr;
3588 }
3589 
3590 void SemaObjC::DiagnoseMultipleMethodInGlobalPool(
3591     SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R,
3592     bool receiverIdOrClass) {
3593   // We found multiple methods, so we may have to complain.
3594   bool issueDiagnostic = false, issueError = false;
3595 
3596   // We support a warning which complains about *any* difference in
3597   // method signature.
3598   bool strictSelectorMatch =
3599       receiverIdOrClass &&
3600       !getDiagnostics().isIgnored(diag::warn_strict_multiple_method_decl,
3601                                   R.getBegin());
3602   if (strictSelectorMatch) {
3603     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3604       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3605         issueDiagnostic = true;
3606         break;
3607       }
3608     }
3609   }
3610 
3611   // If we didn't see any strict differences, we won't see any loose
3612   // differences.  In ARC, however, we also need to check for loose
3613   // mismatches, because most of them are errors.
3614   if (!strictSelectorMatch ||
3615       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3616     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3617       // This checks if the methods differ in type mismatch.
3618       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3619           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3620         issueDiagnostic = true;
3621         if (getLangOpts().ObjCAutoRefCount)
3622           issueError = true;
3623         break;
3624       }
3625     }
3626 
3627   if (issueDiagnostic) {
3628     if (issueError)
3629       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3630     else if (strictSelectorMatch)
3631       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3632     else
3633       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3634 
3635     Diag(Methods[0]->getBeginLoc(),
3636          issueError ? diag::note_possibility : diag::note_using)
3637         << Methods[0]->getSourceRange();
3638     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3639       Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3640           << Methods[I]->getSourceRange();
3641     }
3642   }
3643 }
3644 
3645 ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) {
3646   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3647   if (Pos == MethodPool.end())
3648     return nullptr;
3649 
3650   auto &Methods = Pos->second;
3651   for (const ObjCMethodList *Method = &Methods.first; Method;
3652        Method = Method->getNext())
3653     if (Method->getMethod() &&
3654         (Method->getMethod()->isDefined() ||
3655          Method->getMethod()->isPropertyAccessor()))
3656       return Method->getMethod();
3657 
3658   for (const ObjCMethodList *Method = &Methods.second; Method;
3659        Method = Method->getNext())
3660     if (Method->getMethod() &&
3661         (Method->getMethod()->isDefined() ||
3662          Method->getMethod()->isPropertyAccessor()))
3663       return Method->getMethod();
3664   return nullptr;
3665 }
3666 
3667 static void
3668 HelperSelectorsForTypoCorrection(
3669                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3670                       StringRef Typo, const ObjCMethodDecl * Method) {
3671   const unsigned MaxEditDistance = 1;
3672   unsigned BestEditDistance = MaxEditDistance + 1;
3673   std::string MethodName = Method->getSelector().getAsString();
3674 
3675   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3676   if (MinPossibleEditDistance > 0 &&
3677       Typo.size() / MinPossibleEditDistance < 1)
3678     return;
3679   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3680   if (EditDistance > MaxEditDistance)
3681     return;
3682   if (EditDistance == BestEditDistance)
3683     BestMethod.push_back(Method);
3684   else if (EditDistance < BestEditDistance) {
3685     BestMethod.clear();
3686     BestMethod.push_back(Method);
3687   }
3688 }
3689 
3690 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3691                                      QualType ObjectType) {
3692   if (ObjectType.isNull())
3693     return true;
3694   if (S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3695                                         true /*Instance method*/))
3696     return true;
3697   return S.ObjC().LookupMethodInObjectType(Sel, ObjectType,
3698                                            false /*Class method*/) != nullptr;
3699 }
3700 
3701 const ObjCMethodDecl *
3702 SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) {
3703   unsigned NumArgs = Sel.getNumArgs();
3704   SmallVector<const ObjCMethodDecl *, 8> Methods;
3705   bool ObjectIsId = true, ObjectIsClass = true;
3706   if (ObjectType.isNull())
3707     ObjectIsId = ObjectIsClass = false;
3708   else if (!ObjectType->isObjCObjectPointerType())
3709     return nullptr;
3710   else if (const ObjCObjectPointerType *ObjCPtr =
3711            ObjectType->getAsObjCInterfacePointerType()) {
3712     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3713     ObjectIsId = ObjectIsClass = false;
3714   }
3715   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3716     ObjectIsClass = false;
3717   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3718     ObjectIsId = false;
3719   else
3720     return nullptr;
3721 
3722   for (GlobalMethodPool::iterator b = MethodPool.begin(),
3723        e = MethodPool.end(); b != e; b++) {
3724     // instance methods
3725     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3726       if (M->getMethod() &&
3727           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3728           (M->getMethod()->getSelector() != Sel)) {
3729         if (ObjectIsId)
3730           Methods.push_back(M->getMethod());
3731         else if (!ObjectIsClass &&
3732                  HelperIsMethodInObjCType(
3733                      SemaRef, M->getMethod()->getSelector(), ObjectType))
3734           Methods.push_back(M->getMethod());
3735       }
3736     // class methods
3737     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3738       if (M->getMethod() &&
3739           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3740           (M->getMethod()->getSelector() != Sel)) {
3741         if (ObjectIsClass)
3742           Methods.push_back(M->getMethod());
3743         else if (!ObjectIsId &&
3744                  HelperIsMethodInObjCType(
3745                      SemaRef, M->getMethod()->getSelector(), ObjectType))
3746           Methods.push_back(M->getMethod());
3747       }
3748   }
3749 
3750   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3751   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3752     HelperSelectorsForTypoCorrection(SelectedMethods,
3753                                      Sel.getAsString(), Methods[i]);
3754   }
3755   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3756 }
3757 
3758 /// DiagnoseDuplicateIvars -
3759 /// Check for duplicate ivars in the entire class at the start of
3760 /// \@implementation. This becomes necessary because class extension can
3761 /// add ivars to a class in random order which will not be known until
3762 /// class's \@implementation is seen.
3763 void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3764                                       ObjCInterfaceDecl *SID) {
3765   for (auto *Ivar : ID->ivars()) {
3766     if (Ivar->isInvalidDecl())
3767       continue;
3768     if (IdentifierInfo *II = Ivar->getIdentifier()) {
3769       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3770       if (prevIvar) {
3771         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3772         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3773         Ivar->setInvalidDecl();
3774       }
3775     }
3776   }
3777 }
3778 
3779 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3780 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3781   if (S.getLangOpts().ObjCWeak) return;
3782 
3783   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3784          ivar; ivar = ivar->getNextIvar()) {
3785     if (ivar->isInvalidDecl()) continue;
3786     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3787       if (S.getLangOpts().ObjCWeakRuntime) {
3788         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3789       } else {
3790         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3791       }
3792     }
3793   }
3794 }
3795 
3796 /// Diagnose attempts to use flexible array member with retainable object type.
3797 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3798                                                   ObjCInterfaceDecl *ID) {
3799   if (!S.getLangOpts().ObjCAutoRefCount)
3800     return;
3801 
3802   for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3803        ivar = ivar->getNextIvar()) {
3804     if (ivar->isInvalidDecl())
3805       continue;
3806     QualType IvarTy = ivar->getType();
3807     if (IvarTy->isIncompleteArrayType() &&
3808         (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3809         IvarTy->isObjCLifetimeType()) {
3810       S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3811       ivar->setInvalidDecl();
3812     }
3813   }
3814 }
3815 
3816 SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const {
3817   switch (SemaRef.CurContext->getDeclKind()) {
3818   case Decl::ObjCInterface:
3819     return SemaObjC::OCK_Interface;
3820   case Decl::ObjCProtocol:
3821     return SemaObjC::OCK_Protocol;
3822   case Decl::ObjCCategory:
3823     if (cast<ObjCCategoryDecl>(SemaRef.CurContext)->IsClassExtension())
3824       return SemaObjC::OCK_ClassExtension;
3825     return SemaObjC::OCK_Category;
3826   case Decl::ObjCImplementation:
3827     return SemaObjC::OCK_Implementation;
3828   case Decl::ObjCCategoryImpl:
3829     return SemaObjC::OCK_CategoryImplementation;
3830 
3831   default:
3832     return SemaObjC::OCK_None;
3833   }
3834 }
3835 
3836 static bool IsVariableSizedType(QualType T) {
3837   if (T->isIncompleteArrayType())
3838     return true;
3839   const auto *RecordTy = T->getAs<RecordType>();
3840   return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3841 }
3842 
3843 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3844   ObjCInterfaceDecl *IntfDecl = nullptr;
3845   ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3846       ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3847   if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3848     Ivars = IntfDecl->ivars();
3849   } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3850     IntfDecl = ImplDecl->getClassInterface();
3851     Ivars = ImplDecl->ivars();
3852   } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3853     if (CategoryDecl->IsClassExtension()) {
3854       IntfDecl = CategoryDecl->getClassInterface();
3855       Ivars = CategoryDecl->ivars();
3856     }
3857   }
3858 
3859   // Check if variable sized ivar is in interface and visible to subclasses.
3860   if (!isa<ObjCInterfaceDecl>(OCD)) {
3861     for (auto *ivar : Ivars) {
3862       if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3863         S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3864             << ivar->getDeclName() << ivar->getType();
3865       }
3866     }
3867   }
3868 
3869   // Subsequent checks require interface decl.
3870   if (!IntfDecl)
3871     return;
3872 
3873   // Check if variable sized ivar is followed by another ivar.
3874   for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3875        ivar = ivar->getNextIvar()) {
3876     if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3877       continue;
3878     QualType IvarTy = ivar->getType();
3879     bool IsInvalidIvar = false;
3880     if (IvarTy->isIncompleteArrayType()) {
3881       S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3882           << ivar->getDeclName() << IvarTy
3883           << llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C.
3884       IsInvalidIvar = true;
3885     } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3886       if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3887         S.Diag(ivar->getLocation(),
3888                diag::err_objc_variable_sized_type_not_at_end)
3889             << ivar->getDeclName() << IvarTy;
3890         IsInvalidIvar = true;
3891       }
3892     }
3893     if (IsInvalidIvar) {
3894       S.Diag(ivar->getNextIvar()->getLocation(),
3895              diag::note_next_ivar_declaration)
3896           << ivar->getNextIvar()->getSynthesize();
3897       ivar->setInvalidDecl();
3898     }
3899   }
3900 
3901   // Check if ObjC container adds ivars after variable sized ivar in superclass.
3902   // Perform the check only if OCD is the first container to declare ivars to
3903   // avoid multiple warnings for the same ivar.
3904   ObjCIvarDecl *FirstIvar =
3905       (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3906   if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3907     const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3908     while (SuperClass && SuperClass->ivar_empty())
3909       SuperClass = SuperClass->getSuperClass();
3910     if (SuperClass) {
3911       auto IvarIter = SuperClass->ivar_begin();
3912       std::advance(IvarIter, SuperClass->ivar_size() - 1);
3913       const ObjCIvarDecl *LastIvar = *IvarIter;
3914       if (IsVariableSizedType(LastIvar->getType())) {
3915         S.Diag(FirstIvar->getLocation(),
3916                diag::warn_superclass_variable_sized_type_not_at_end)
3917             << FirstIvar->getDeclName() << LastIvar->getDeclName()
3918             << LastIvar->getType() << SuperClass->getDeclName();
3919         S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3920             << LastIvar->getDeclName();
3921       }
3922     }
3923   }
3924 }
3925 
3926 static void DiagnoseCategoryDirectMembersProtocolConformance(
3927     Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3928 
3929 static void DiagnoseCategoryDirectMembersProtocolConformance(
3930     Sema &S, ObjCCategoryDecl *CDecl,
3931     const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3932   for (auto *PI : Protocols)
3933     DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
3934 }
3935 
3936 static void DiagnoseCategoryDirectMembersProtocolConformance(
3937     Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3938   if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3939     PDecl = PDecl->getDefinition();
3940 
3941   llvm::SmallVector<const Decl *, 4> DirectMembers;
3942   const auto *IDecl = CDecl->getClassInterface();
3943   for (auto *MD : PDecl->methods()) {
3944     if (!MD->isPropertyAccessor()) {
3945       if (const auto *CMD =
3946               IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3947         if (CMD->isDirectMethod())
3948           DirectMembers.push_back(CMD);
3949       }
3950     }
3951   }
3952   for (auto *PD : PDecl->properties()) {
3953     if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3954             PD->getIdentifier(),
3955             PD->isClassProperty()
3956                 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3957                 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3958       if (CPD->isDirectProperty())
3959         DirectMembers.push_back(CPD);
3960     }
3961   }
3962   if (!DirectMembers.empty()) {
3963     S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3964         << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3965     for (const auto *MD : DirectMembers)
3966       S.Diag(MD->getLocation(), diag::note_direct_member_here);
3967     return;
3968   }
3969 
3970   // Check on this protocols's referenced protocols, recursively.
3971   DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3972                                                    PDecl->protocols());
3973 }
3974 
3975 // Note: For class/category implementations, allMethods is always null.
3976 Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd,
3977                            ArrayRef<Decl *> allMethods,
3978                            ArrayRef<DeclGroupPtrTy> allTUVars) {
3979   ASTContext &Context = getASTContext();
3980   if (getObjCContainerKind() == SemaObjC::OCK_None)
3981     return nullptr;
3982 
3983   assert(AtEnd.isValid() && "Invalid location for '@end'");
3984 
3985   auto *OCD = cast<ObjCContainerDecl>(SemaRef.CurContext);
3986   Decl *ClassDecl = OCD;
3987 
3988   bool isInterfaceDeclKind =
3989         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3990          || isa<ObjCProtocolDecl>(ClassDecl);
3991   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3992 
3993   // Make synthesized accessor stub functions visible.
3994   // ActOnPropertyImplDecl() creates them as not visible in case
3995   // they are overridden by an explicit method that is encountered
3996   // later.
3997   if (auto *OID = dyn_cast<ObjCImplementationDecl>(SemaRef.CurContext)) {
3998     for (auto *PropImpl : OID->property_impls()) {
3999       if (auto *Getter = PropImpl->getGetterMethodDecl())
4000         if (Getter->isSynthesizedAccessorStub())
4001           OID->addDecl(Getter);
4002       if (auto *Setter = PropImpl->getSetterMethodDecl())
4003         if (Setter->isSynthesizedAccessorStub())
4004           OID->addDecl(Setter);
4005     }
4006   }
4007 
4008   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4009   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4010   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4011 
4012   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4013     ObjCMethodDecl *Method =
4014       cast_or_null<ObjCMethodDecl>(allMethods[i]);
4015 
4016     if (!Method) continue;  // Already issued a diagnostic.
4017     if (Method->isInstanceMethod()) {
4018       /// Check for instance method of the same name with incompatible types
4019       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4020       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4021                               : false;
4022       if ((isInterfaceDeclKind && PrevMethod && !match)
4023           || (checkIdenticalMethods && match)) {
4024           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4025             << Method->getDeclName();
4026           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4027         Method->setInvalidDecl();
4028       } else {
4029         if (PrevMethod) {
4030           Method->setAsRedeclaration(PrevMethod);
4031           if (!Context.getSourceManager().isInSystemHeader(
4032                  Method->getLocation()))
4033             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4034               << Method->getDeclName();
4035           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4036         }
4037         InsMap[Method->getSelector()] = Method;
4038         /// The following allows us to typecheck messages to "id".
4039         AddInstanceMethodToGlobalPool(Method);
4040       }
4041     } else {
4042       /// Check for class method of the same name with incompatible types
4043       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4044       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4045                               : false;
4046       if ((isInterfaceDeclKind && PrevMethod && !match)
4047           || (checkIdenticalMethods && match)) {
4048         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4049           << Method->getDeclName();
4050         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4051         Method->setInvalidDecl();
4052       } else {
4053         if (PrevMethod) {
4054           Method->setAsRedeclaration(PrevMethod);
4055           if (!Context.getSourceManager().isInSystemHeader(
4056                  Method->getLocation()))
4057             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4058               << Method->getDeclName();
4059           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4060         }
4061         ClsMap[Method->getSelector()] = Method;
4062         AddFactoryMethodToGlobalPool(Method);
4063       }
4064     }
4065   }
4066   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4067     // Nothing to do here.
4068   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4069     // Categories are used to extend the class by declaring new methods.
4070     // By the same token, they are also used to add new properties. No
4071     // need to compare the added property to those in the class.
4072 
4073     if (C->IsClassExtension()) {
4074       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4075       DiagnoseClassExtensionDupMethods(C, CCPrimary);
4076     }
4077 
4078     DiagnoseCategoryDirectMembersProtocolConformance(SemaRef, C,
4079                                                      C->protocols());
4080   }
4081   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4082     if (CDecl->getIdentifier())
4083       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4084       // user-defined setter/getter. It also synthesizes setter/getter methods
4085       // and adds them to the DeclContext and global method pools.
4086       for (auto *I : CDecl->properties())
4087         ProcessPropertyDecl(I);
4088     CDecl->setAtEndRange(AtEnd);
4089   }
4090   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4091     IC->setAtEndRange(AtEnd);
4092     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4093       // Any property declared in a class extension might have user
4094       // declared setter or getter in current class extension or one
4095       // of the other class extensions. Mark them as synthesized as
4096       // property will be synthesized when property with same name is
4097       // seen in the @implementation.
4098       for (const auto *Ext : IDecl->visible_extensions()) {
4099         for (const auto *Property : Ext->instance_properties()) {
4100           // Skip over properties declared @dynamic
4101           if (const ObjCPropertyImplDecl *PIDecl
4102               = IC->FindPropertyImplDecl(Property->getIdentifier(),
4103                                          Property->getQueryKind()))
4104             if (PIDecl->getPropertyImplementation()
4105                   == ObjCPropertyImplDecl::Dynamic)
4106               continue;
4107 
4108           for (const auto *Ext : IDecl->visible_extensions()) {
4109             if (ObjCMethodDecl *GetterMethod =
4110                     Ext->getInstanceMethod(Property->getGetterName()))
4111               GetterMethod->setPropertyAccessor(true);
4112             if (!Property->isReadOnly())
4113               if (ObjCMethodDecl *SetterMethod
4114                     = Ext->getInstanceMethod(Property->getSetterName()))
4115                 SetterMethod->setPropertyAccessor(true);
4116           }
4117         }
4118       }
4119       ImplMethodsVsClassMethods(S, IC, IDecl);
4120       AtomicPropertySetterGetterRules(IC, IDecl);
4121       DiagnoseOwningPropertyGetterSynthesis(IC);
4122       DiagnoseUnusedBackingIvarInAccessor(S, IC);
4123       if (IDecl->hasDesignatedInitializers())
4124         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4125       DiagnoseWeakIvars(SemaRef, IC);
4126       DiagnoseRetainableFlexibleArrayMember(SemaRef, IDecl);
4127 
4128       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4129       if (IDecl->getSuperClass() == nullptr) {
4130         // This class has no superclass, so check that it has been marked with
4131         // __attribute((objc_root_class)).
4132         if (!HasRootClassAttr) {
4133           SourceLocation DeclLoc(IDecl->getLocation());
4134           SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(DeclLoc));
4135           Diag(DeclLoc, diag::warn_objc_root_class_missing)
4136             << IDecl->getIdentifier();
4137           // See if NSObject is in the current scope, and if it is, suggest
4138           // adding " : NSObject " to the class declaration.
4139           NamedDecl *IF = SemaRef.LookupSingleName(
4140               SemaRef.TUScope, NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4141               DeclLoc, Sema::LookupOrdinaryName);
4142           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4143           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4144             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4145               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4146           } else {
4147             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4148           }
4149         }
4150       } else if (HasRootClassAttr) {
4151         // Complain that only root classes may have this attribute.
4152         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4153       }
4154 
4155       if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4156         // An interface can subclass another interface with a
4157         // objc_subclassing_restricted attribute when it has that attribute as
4158         // well (because of interfaces imported from Swift). Therefore we have
4159         // to check if we can subclass in the implementation as well.
4160         if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4161             Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4162           Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4163           Diag(Super->getLocation(), diag::note_class_declared);
4164         }
4165       }
4166 
4167       if (IDecl->hasAttr<ObjCClassStubAttr>())
4168         Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4169 
4170       if (getLangOpts().ObjCRuntime.isNonFragile()) {
4171         while (IDecl->getSuperClass()) {
4172           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4173           IDecl = IDecl->getSuperClass();
4174         }
4175       }
4176     }
4177     SetIvarInitializers(IC);
4178   } else if (ObjCCategoryImplDecl* CatImplClass =
4179                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4180     CatImplClass->setAtEndRange(AtEnd);
4181 
4182     // Find category interface decl and then check that all methods declared
4183     // in this interface are implemented in the category @implementation.
4184     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4185       if (ObjCCategoryDecl *Cat
4186             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4187         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4188       }
4189     }
4190   } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4191     if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4192       if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4193           Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4194         Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4195         Diag(Super->getLocation(), diag::note_class_declared);
4196       }
4197     }
4198 
4199     if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4200         !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4201       Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4202   }
4203   DiagnoseVariableSizedIvars(SemaRef, OCD);
4204   if (isInterfaceDeclKind) {
4205     // Reject invalid vardecls.
4206     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4207       DeclGroupRef DG = allTUVars[i].get();
4208       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4209         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4210           if (!VDecl->hasExternalStorage())
4211             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4212         }
4213     }
4214   }
4215   ActOnObjCContainerFinishDefinition();
4216 
4217   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4218     DeclGroupRef DG = allTUVars[i].get();
4219     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4220       (*I)->setTopLevelDeclInObjCContainer();
4221     SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(DG);
4222   }
4223 
4224   SemaRef.ActOnDocumentableDecl(ClassDecl);
4225   return ClassDecl;
4226 }
4227 
4228 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4229 /// objective-c's type qualifier from the parser version of the same info.
4230 static Decl::ObjCDeclQualifier
4231 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4232   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4233 }
4234 
4235 /// Check whether the declared result type of the given Objective-C
4236 /// method declaration is compatible with the method's class.
4237 ///
4238 static SemaObjC::ResultTypeCompatibilityKind
4239 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4240                                     ObjCInterfaceDecl *CurrentClass) {
4241   QualType ResultType = Method->getReturnType();
4242 
4243   // If an Objective-C method inherits its related result type, then its
4244   // declared result type must be compatible with its own class type. The
4245   // declared result type is compatible if:
4246   if (const ObjCObjectPointerType *ResultObjectType
4247                                 = ResultType->getAs<ObjCObjectPointerType>()) {
4248     //   - it is id or qualified id, or
4249     if (ResultObjectType->isObjCIdType() ||
4250         ResultObjectType->isObjCQualifiedIdType())
4251       return SemaObjC::RTC_Compatible;
4252 
4253     if (CurrentClass) {
4254       if (ObjCInterfaceDecl *ResultClass
4255                                       = ResultObjectType->getInterfaceDecl()) {
4256         //   - it is the same as the method's class type, or
4257         if (declaresSameEntity(CurrentClass, ResultClass))
4258           return SemaObjC::RTC_Compatible;
4259 
4260         //   - it is a superclass of the method's class type
4261         if (ResultClass->isSuperClassOf(CurrentClass))
4262           return SemaObjC::RTC_Compatible;
4263       }
4264     } else {
4265       // Any Objective-C pointer type might be acceptable for a protocol
4266       // method; we just don't know.
4267       return SemaObjC::RTC_Unknown;
4268     }
4269   }
4270 
4271   return SemaObjC::RTC_Incompatible;
4272 }
4273 
4274 namespace {
4275 /// A helper class for searching for methods which a particular method
4276 /// overrides.
4277 class OverrideSearch {
4278 public:
4279   const ObjCMethodDecl *Method;
4280   llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4281   bool Recursive;
4282 
4283 public:
4284   OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4285     Selector selector = method->getSelector();
4286 
4287     // Bypass this search if we've never seen an instance/class method
4288     // with this selector before.
4289     SemaObjC::GlobalMethodPool::iterator it =
4290         S.ObjC().MethodPool.find(selector);
4291     if (it == S.ObjC().MethodPool.end()) {
4292       if (!S.getExternalSource()) return;
4293       S.ObjC().ReadMethodPool(selector);
4294 
4295       it = S.ObjC().MethodPool.find(selector);
4296       if (it == S.ObjC().MethodPool.end())
4297         return;
4298     }
4299     const ObjCMethodList &list =
4300       method->isInstanceMethod() ? it->second.first : it->second.second;
4301     if (!list.getMethod()) return;
4302 
4303     const ObjCContainerDecl *container
4304       = cast<ObjCContainerDecl>(method->getDeclContext());
4305 
4306     // Prevent the search from reaching this container again.  This is
4307     // important with categories, which override methods from the
4308     // interface and each other.
4309     if (const ObjCCategoryDecl *Category =
4310             dyn_cast<ObjCCategoryDecl>(container)) {
4311       searchFromContainer(container);
4312       if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4313         searchFromContainer(Interface);
4314     } else {
4315       searchFromContainer(container);
4316     }
4317   }
4318 
4319   typedef decltype(Overridden)::iterator iterator;
4320   iterator begin() const { return Overridden.begin(); }
4321   iterator end() const { return Overridden.end(); }
4322 
4323 private:
4324   void searchFromContainer(const ObjCContainerDecl *container) {
4325     if (container->isInvalidDecl()) return;
4326 
4327     switch (container->getDeclKind()) {
4328 #define OBJCCONTAINER(type, base) \
4329     case Decl::type: \
4330       searchFrom(cast<type##Decl>(container)); \
4331       break;
4332 #define ABSTRACT_DECL(expansion)
4333 #define DECL(type, base) \
4334     case Decl::type:
4335 #include "clang/AST/DeclNodes.inc"
4336       llvm_unreachable("not an ObjC container!");
4337     }
4338   }
4339 
4340   void searchFrom(const ObjCProtocolDecl *protocol) {
4341     if (!protocol->hasDefinition())
4342       return;
4343 
4344     // A method in a protocol declaration overrides declarations from
4345     // referenced ("parent") protocols.
4346     search(protocol->getReferencedProtocols());
4347   }
4348 
4349   void searchFrom(const ObjCCategoryDecl *category) {
4350     // A method in a category declaration overrides declarations from
4351     // the main class and from protocols the category references.
4352     // The main class is handled in the constructor.
4353     search(category->getReferencedProtocols());
4354   }
4355 
4356   void searchFrom(const ObjCCategoryImplDecl *impl) {
4357     // A method in a category definition that has a category
4358     // declaration overrides declarations from the category
4359     // declaration.
4360     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4361       search(category);
4362       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4363         search(Interface);
4364 
4365     // Otherwise it overrides declarations from the class.
4366     } else if (const auto *Interface = impl->getClassInterface()) {
4367       search(Interface);
4368     }
4369   }
4370 
4371   void searchFrom(const ObjCInterfaceDecl *iface) {
4372     // A method in a class declaration overrides declarations from
4373     if (!iface->hasDefinition())
4374       return;
4375 
4376     //   - categories,
4377     for (auto *Cat : iface->known_categories())
4378       search(Cat);
4379 
4380     //   - the super class, and
4381     if (ObjCInterfaceDecl *super = iface->getSuperClass())
4382       search(super);
4383 
4384     //   - any referenced protocols.
4385     search(iface->getReferencedProtocols());
4386   }
4387 
4388   void searchFrom(const ObjCImplementationDecl *impl) {
4389     // A method in a class implementation overrides declarations from
4390     // the class interface.
4391     if (const auto *Interface = impl->getClassInterface())
4392       search(Interface);
4393   }
4394 
4395   void search(const ObjCProtocolList &protocols) {
4396     for (const auto *Proto : protocols)
4397       search(Proto);
4398   }
4399 
4400   void search(const ObjCContainerDecl *container) {
4401     // Check for a method in this container which matches this selector.
4402     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4403                                                 Method->isInstanceMethod(),
4404                                                 /*AllowHidden=*/true);
4405 
4406     // If we find one, record it and bail out.
4407     if (meth) {
4408       Overridden.insert(meth);
4409       return;
4410     }
4411 
4412     // Otherwise, search for methods that a hypothetical method here
4413     // would have overridden.
4414 
4415     // Note that we're now in a recursive case.
4416     Recursive = true;
4417 
4418     searchFromContainer(container);
4419   }
4420 };
4421 } // end anonymous namespace
4422 
4423 void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4424                                               ObjCMethodDecl *overridden) {
4425   if (overridden->isDirectMethod()) {
4426     const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4427     Diag(method->getLocation(), diag::err_objc_override_direct_method);
4428     Diag(attr->getLocation(), diag::note_previous_declaration);
4429   } else if (method->isDirectMethod()) {
4430     const auto *attr = method->getAttr<ObjCDirectAttr>();
4431     Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4432         << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4433     Diag(overridden->getLocation(), diag::note_previous_declaration);
4434   }
4435 }
4436 
4437 void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4438                                         ObjCInterfaceDecl *CurrentClass,
4439                                         ResultTypeCompatibilityKind RTC) {
4440   ASTContext &Context = getASTContext();
4441   if (!ObjCMethod)
4442     return;
4443   auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4444     // Checking canonical decl works across modules.
4445     return M->getClassInterface()->getCanonicalDecl() ==
4446            CurrentClass->getCanonicalDecl();
4447   };
4448   // Search for overridden methods and merge information down from them.
4449   OverrideSearch overrides(SemaRef, ObjCMethod);
4450   // Keep track if the method overrides any method in the class's base classes,
4451   // its protocols, or its categories' protocols; we will keep that info
4452   // in the ObjCMethodDecl.
4453   // For this info, a method in an implementation is not considered as
4454   // overriding the same method in the interface or its categories.
4455   bool hasOverriddenMethodsInBaseOrProtocol = false;
4456   for (ObjCMethodDecl *overridden : overrides) {
4457     if (!hasOverriddenMethodsInBaseOrProtocol) {
4458       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4459           !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4460         CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4461         hasOverriddenMethodsInBaseOrProtocol = true;
4462       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4463         // OverrideSearch will return as "overridden" the same method in the
4464         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4465         // check whether a category of a base class introduced a method with the
4466         // same selector, after the interface method declaration.
4467         // To avoid unnecessary lookups in the majority of cases, we use the
4468         // extra info bits in GlobalMethodPool to check whether there were any
4469         // category methods with this selector.
4470         GlobalMethodPool::iterator It =
4471             MethodPool.find(ObjCMethod->getSelector());
4472         if (It != MethodPool.end()) {
4473           ObjCMethodList &List =
4474             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4475           unsigned CategCount = List.getBits();
4476           if (CategCount > 0) {
4477             // If the method is in a category we'll do lookup if there were at
4478             // least 2 category methods recorded, otherwise only one will do.
4479             if (CategCount > 1 ||
4480                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4481               OverrideSearch overrides(SemaRef, overridden);
4482               for (ObjCMethodDecl *SuperOverridden : overrides) {
4483                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4484                     !IsMethodInCurrentClass(SuperOverridden)) {
4485                   CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4486                   hasOverriddenMethodsInBaseOrProtocol = true;
4487                   overridden->setOverriding(true);
4488                   break;
4489                 }
4490               }
4491             }
4492           }
4493         }
4494       }
4495     }
4496 
4497     // Propagate down the 'related result type' bit from overridden methods.
4498     if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType())
4499       ObjCMethod->setRelatedResultType();
4500 
4501     // Then merge the declarations.
4502     SemaRef.mergeObjCMethodDecls(ObjCMethod, overridden);
4503 
4504     if (ObjCMethod->isImplicit() && overridden->isImplicit())
4505       continue; // Conflicting properties are detected elsewhere.
4506 
4507     // Check for overriding methods
4508     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4509         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4510       CheckConflictingOverridingMethod(ObjCMethod, overridden,
4511               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4512 
4513     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4514         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4515         !overridden->isImplicit() /* not meant for properties */) {
4516       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4517                                           E = ObjCMethod->param_end();
4518       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4519                                      PrevE = overridden->param_end();
4520       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4521         assert(PrevI != overridden->param_end() && "Param mismatch");
4522         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4523         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4524         // If type of argument of method in this class does not match its
4525         // respective argument type in the super class method, issue warning;
4526         if (!Context.typesAreCompatible(T1, T2)) {
4527           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4528             << T1 << T2;
4529           Diag(overridden->getLocation(), diag::note_previous_declaration);
4530           break;
4531         }
4532       }
4533     }
4534   }
4535 
4536   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4537 }
4538 
4539 /// Merge type nullability from for a redeclaration of the same entity,
4540 /// producing the updated type of the redeclared entity.
4541 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4542                                               QualType type,
4543                                               bool usesCSKeyword,
4544                                               SourceLocation prevLoc,
4545                                               QualType prevType,
4546                                               bool prevUsesCSKeyword) {
4547   // Determine the nullability of both types.
4548   auto nullability = type->getNullability();
4549   auto prevNullability = prevType->getNullability();
4550 
4551   // Easy case: both have nullability.
4552   if (nullability.has_value() == prevNullability.has_value()) {
4553     // Neither has nullability; continue.
4554     if (!nullability)
4555       return type;
4556 
4557     // The nullabilities are equivalent; do nothing.
4558     if (*nullability == *prevNullability)
4559       return type;
4560 
4561     // Complain about mismatched nullability.
4562     S.Diag(loc, diag::err_nullability_conflicting)
4563       << DiagNullabilityKind(*nullability, usesCSKeyword)
4564       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4565     return type;
4566   }
4567 
4568   // If it's the redeclaration that has nullability, don't change anything.
4569   if (nullability)
4570     return type;
4571 
4572   // Otherwise, provide the result with the same nullability.
4573   return S.Context.getAttributedType(*prevNullability, type, type);
4574 }
4575 
4576 /// Merge information from the declaration of a method in the \@interface
4577 /// (or a category/extension) into the corresponding method in the
4578 /// @implementation (for a class or category).
4579 static void mergeInterfaceMethodToImpl(Sema &S,
4580                                        ObjCMethodDecl *method,
4581                                        ObjCMethodDecl *prevMethod) {
4582   // Merge the objc_requires_super attribute.
4583   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4584       !method->hasAttr<ObjCRequiresSuperAttr>()) {
4585     // merge the attribute into implementation.
4586     method->addAttr(
4587       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4588                                             method->getLocation()));
4589   }
4590 
4591   // Merge nullability of the result type.
4592   QualType newReturnType
4593     = mergeTypeNullabilityForRedecl(
4594         S, method->getReturnTypeSourceRange().getBegin(),
4595         method->getReturnType(),
4596         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4597         prevMethod->getReturnTypeSourceRange().getBegin(),
4598         prevMethod->getReturnType(),
4599         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4600   method->setReturnType(newReturnType);
4601 
4602   // Handle each of the parameters.
4603   unsigned numParams = method->param_size();
4604   unsigned numPrevParams = prevMethod->param_size();
4605   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4606     ParmVarDecl *param = method->param_begin()[i];
4607     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4608 
4609     // Merge nullability.
4610     QualType newParamType
4611       = mergeTypeNullabilityForRedecl(
4612           S, param->getLocation(), param->getType(),
4613           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4614           prevParam->getLocation(), prevParam->getType(),
4615           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4616     param->setType(newParamType);
4617   }
4618 }
4619 
4620 /// Verify that the method parameters/return value have types that are supported
4621 /// by the x86 target.
4622 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4623                                           const ObjCMethodDecl *Method) {
4624   assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4625              llvm::Triple::x86 &&
4626          "x86-specific check invoked for a different target");
4627   SourceLocation Loc;
4628   QualType T;
4629   for (const ParmVarDecl *P : Method->parameters()) {
4630     if (P->getType()->isVectorType()) {
4631       Loc = P->getBeginLoc();
4632       T = P->getType();
4633       break;
4634     }
4635   }
4636   if (Loc.isInvalid()) {
4637     if (Method->getReturnType()->isVectorType()) {
4638       Loc = Method->getReturnTypeSourceRange().getBegin();
4639       T = Method->getReturnType();
4640     } else
4641       return;
4642   }
4643 
4644   // Vector parameters/return values are not supported by objc_msgSend on x86 in
4645   // iOS < 9 and macOS < 10.11.
4646   const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4647   VersionTuple AcceptedInVersion;
4648   if (Triple.getOS() == llvm::Triple::IOS)
4649     AcceptedInVersion = VersionTuple(/*Major=*/9);
4650   else if (Triple.isMacOSX())
4651     AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4652   else
4653     return;
4654   if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4655       AcceptedInVersion)
4656     return;
4657   SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4658       << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4659                                                        : /*parameter*/ 0)
4660       << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4661 }
4662 
4663 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4664   if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4665       CD->hasAttr<ObjCDirectMembersAttr>()) {
4666     Method->addAttr(
4667         ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4668   }
4669 }
4670 
4671 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4672                                          ObjCMethodDecl *Method,
4673                                          ObjCImplDecl *ImpDecl = nullptr) {
4674   auto Sel = Method->getSelector();
4675   bool isInstance = Method->isInstanceMethod();
4676   bool diagnosed = false;
4677 
4678   auto diagClash = [&](const ObjCMethodDecl *IMD) {
4679     if (diagnosed || IMD->isImplicit())
4680       return;
4681     if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4682       S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4683           << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4684           << Method->getDeclName();
4685       S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4686       diagnosed = true;
4687     }
4688   };
4689 
4690   // Look for any other declaration of this method anywhere we can see in this
4691   // compilation unit.
4692   //
4693   // We do not use IDecl->lookupMethod() because we have specific needs:
4694   //
4695   // - we absolutely do not need to walk protocols, because
4696   //   diag::err_objc_direct_on_protocol has already been emitted
4697   //   during parsing if there's a conflict,
4698   //
4699   // - when we do not find a match in a given @interface container,
4700   //   we need to attempt looking it up in the @implementation block if the
4701   //   translation unit sees it to find more clashes.
4702 
4703   if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4704     diagClash(IMD);
4705   else if (auto *Impl = IDecl->getImplementation())
4706     if (Impl != ImpDecl)
4707       if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4708         diagClash(IMD);
4709 
4710   for (const auto *Cat : IDecl->visible_categories())
4711     if (auto *IMD = Cat->getMethod(Sel, isInstance))
4712       diagClash(IMD);
4713     else if (auto CatImpl = Cat->getImplementation())
4714       if (CatImpl != ImpDecl)
4715         if (auto *IMD = Cat->getMethod(Sel, isInstance))
4716           diagClash(IMD);
4717 }
4718 
4719 ParmVarDecl *SemaObjC::ActOnMethodParmDeclaration(Scope *S,
4720                                                   ObjCArgInfo &ArgInfo,
4721                                                   int ParamIndex,
4722                                                   bool MethodDefinition) {
4723   ASTContext &Context = getASTContext();
4724   QualType ArgType;
4725   TypeSourceInfo *DI;
4726 
4727   if (!ArgInfo.Type) {
4728     ArgType = Context.getObjCIdType();
4729     DI = nullptr;
4730   } else {
4731     ArgType = SemaRef.GetTypeFromParser(ArgInfo.Type, &DI);
4732   }
4733   LookupResult R(SemaRef, ArgInfo.Name, ArgInfo.NameLoc,
4734                  Sema::LookupOrdinaryName,
4735                  SemaRef.forRedeclarationInCurContext());
4736   SemaRef.LookupName(R, S);
4737   if (R.isSingleResult()) {
4738     NamedDecl *PrevDecl = R.getFoundDecl();
4739     if (S->isDeclScope(PrevDecl)) {
4740       Diag(ArgInfo.NameLoc,
4741            (MethodDefinition ? diag::warn_method_param_redefinition
4742                              : diag::warn_method_param_declaration))
4743           << ArgInfo.Name;
4744       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4745     }
4746   }
4747   SourceLocation StartLoc =
4748       DI ? DI->getTypeLoc().getBeginLoc() : ArgInfo.NameLoc;
4749 
4750   // Temporarily put parameter variables in the translation unit. This is what
4751   // ActOnParamDeclarator does in the case of C arguments to the Objective-C
4752   // method too.
4753   ParmVarDecl *Param = SemaRef.CheckParameter(
4754       Context.getTranslationUnitDecl(), StartLoc, ArgInfo.NameLoc, ArgInfo.Name,
4755       ArgType, DI, SC_None);
4756   Param->setObjCMethodScopeInfo(ParamIndex);
4757   Param->setObjCDeclQualifier(
4758       CvtQTToAstBitMask(ArgInfo.DeclSpec.getObjCDeclQualifier()));
4759 
4760   // Apply the attributes to the parameter.
4761   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, Param, ArgInfo.ArgAttrs);
4762   SemaRef.AddPragmaAttributes(SemaRef.TUScope, Param);
4763   if (Param->hasAttr<BlocksAttr>()) {
4764     Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4765     Param->setInvalidDecl();
4766   }
4767 
4768   S->AddDecl(Param);
4769   SemaRef.IdResolver.AddDecl(Param);
4770   return Param;
4771 }
4772 
4773 Decl *SemaObjC::ActOnMethodDeclaration(
4774     Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4775     tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4776     ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4777     // optional arguments. The number of types/arguments is obtained
4778     // from the Sel.getNumArgs().
4779     ParmVarDecl **ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4780     unsigned CNumArgs, // c-style args
4781     const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4782     bool isVariadic, bool MethodDefinition) {
4783   ASTContext &Context = getASTContext();
4784   // Make sure we can establish a context for the method.
4785   if (!SemaRef.CurContext->isObjCContainer()) {
4786     Diag(MethodLoc, diag::err_missing_method_context);
4787     return nullptr;
4788   }
4789 
4790   Decl *ClassDecl = cast<ObjCContainerDecl>(SemaRef.CurContext);
4791   QualType resultDeclType;
4792 
4793   bool HasRelatedResultType = false;
4794   TypeSourceInfo *ReturnTInfo = nullptr;
4795   if (ReturnType) {
4796     resultDeclType = SemaRef.GetTypeFromParser(ReturnType, &ReturnTInfo);
4797 
4798     if (SemaRef.CheckFunctionReturnType(resultDeclType, MethodLoc))
4799       return nullptr;
4800 
4801     QualType bareResultType = resultDeclType;
4802     (void)AttributedType::stripOuterNullability(bareResultType);
4803     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4804   } else { // get the type for "id".
4805     resultDeclType = Context.getObjCIdType();
4806     Diag(MethodLoc, diag::warn_missing_method_return_type)
4807       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4808   }
4809 
4810   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4811       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo,
4812       SemaRef.CurContext, MethodType == tok::minus, isVariadic,
4813       /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4814       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4815       MethodDeclKind == tok::objc_optional
4816           ? ObjCImplementationControl::Optional
4817           : ObjCImplementationControl::Required,
4818       HasRelatedResultType);
4819 
4820   SmallVector<ParmVarDecl*, 16> Params;
4821   for (unsigned I = 0; I < Sel.getNumArgs(); ++I) {
4822     ParmVarDecl *Param = ArgInfo[I];
4823     Param->setDeclContext(ObjCMethod);
4824     SemaRef.ProcessAPINotes(Param);
4825     Params.push_back(Param);
4826   }
4827 
4828   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4829     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4830     QualType ArgType = Param->getType();
4831     if (ArgType.isNull())
4832       ArgType = Context.getObjCIdType();
4833     else
4834       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4835       ArgType = Context.getAdjustedParameterType(ArgType);
4836 
4837     Param->setDeclContext(ObjCMethod);
4838     Params.push_back(Param);
4839   }
4840 
4841   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4842   ObjCMethod->setObjCDeclQualifier(
4843     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4844 
4845   SemaRef.ProcessDeclAttributeList(SemaRef.TUScope, ObjCMethod, AttrList);
4846   SemaRef.AddPragmaAttributes(SemaRef.TUScope, ObjCMethod);
4847   SemaRef.ProcessAPINotes(ObjCMethod);
4848 
4849   // Add the method now.
4850   const ObjCMethodDecl *PrevMethod = nullptr;
4851   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4852     if (MethodType == tok::minus) {
4853       PrevMethod = ImpDecl->getInstanceMethod(Sel);
4854       ImpDecl->addInstanceMethod(ObjCMethod);
4855     } else {
4856       PrevMethod = ImpDecl->getClassMethod(Sel);
4857       ImpDecl->addClassMethod(ObjCMethod);
4858     }
4859 
4860     // If this method overrides a previous @synthesize declaration,
4861     // register it with the property.  Linear search through all
4862     // properties here, because the autosynthesized stub hasn't been
4863     // made visible yet, so it can be overridden by a later
4864     // user-specified implementation.
4865     for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4866       if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4867         if (Setter->getSelector() == Sel &&
4868             Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4869           assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4870           PropertyImpl->setSetterMethodDecl(ObjCMethod);
4871         }
4872       if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4873         if (Getter->getSelector() == Sel &&
4874             Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4875           assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4876           PropertyImpl->setGetterMethodDecl(ObjCMethod);
4877           break;
4878         }
4879     }
4880 
4881     // A method is either tagged direct explicitly, or inherits it from its
4882     // canonical declaration.
4883     //
4884     // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4885     // because IDecl->lookupMethod() returns more possible matches than just
4886     // the canonical declaration.
4887     if (!ObjCMethod->isDirectMethod()) {
4888       const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4889       if (CanonicalMD->isDirectMethod()) {
4890         const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4891         ObjCMethod->addAttr(
4892             ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4893       }
4894     }
4895 
4896     // Merge information from the @interface declaration into the
4897     // @implementation.
4898     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4899       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4900                                           ObjCMethod->isInstanceMethod())) {
4901         mergeInterfaceMethodToImpl(SemaRef, ObjCMethod, IMD);
4902 
4903         // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4904         // in one of these places:
4905         //
4906         // (1) the canonical declaration in an @interface container paired
4907         //     with the ImplDecl,
4908         // (2) non canonical declarations in @interface not paired with the
4909         //     ImplDecl for the same Class,
4910         // (3) any superclass container.
4911         //
4912         // Direct methods only allow for canonical declarations in the matching
4913         // container (case 1).
4914         //
4915         // Direct methods overriding a superclass declaration (case 3) is
4916         // handled during overrides checks in CheckObjCMethodOverrides().
4917         //
4918         // We deal with same-class container mismatches (Case 2) here.
4919         if (IDecl == IMD->getClassInterface()) {
4920           auto diagContainerMismatch = [&] {
4921             int decl = 0, impl = 0;
4922 
4923             if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4924               decl = Cat->IsClassExtension() ? 1 : 2;
4925 
4926             if (isa<ObjCCategoryImplDecl>(ImpDecl))
4927               impl = 1 + (decl != 0);
4928 
4929             Diag(ObjCMethod->getLocation(),
4930                  diag::err_objc_direct_impl_decl_mismatch)
4931                 << decl << impl;
4932             Diag(IMD->getLocation(), diag::note_previous_declaration);
4933           };
4934 
4935           if (ObjCMethod->isDirectMethod()) {
4936             const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4937             if (ObjCMethod->getCanonicalDecl() != IMD) {
4938               diagContainerMismatch();
4939             } else if (!IMD->isDirectMethod()) {
4940               Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4941               Diag(IMD->getLocation(), diag::note_previous_declaration);
4942             }
4943           } else if (IMD->isDirectMethod()) {
4944             const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4945             if (ObjCMethod->getCanonicalDecl() != IMD) {
4946               diagContainerMismatch();
4947             } else {
4948               ObjCMethod->addAttr(
4949                   ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4950             }
4951           }
4952         }
4953 
4954         // Warn about defining -dealloc in a category.
4955         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4956             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4957           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4958             << ObjCMethod->getDeclName();
4959         }
4960       } else {
4961         mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4962         checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod, ImpDecl);
4963       }
4964 
4965       // Warn if a method declared in a protocol to which a category or
4966       // extension conforms is non-escaping and the implementation's method is
4967       // escaping.
4968       for (auto *C : IDecl->visible_categories())
4969         for (auto &P : C->protocols())
4970           if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4971                                           ObjCMethod->isInstanceMethod())) {
4972             assert(ObjCMethod->parameters().size() ==
4973                        IMD->parameters().size() &&
4974                    "Methods have different number of parameters");
4975             auto OI = IMD->param_begin(), OE = IMD->param_end();
4976             auto NI = ObjCMethod->param_begin();
4977             for (; OI != OE; ++OI, ++NI)
4978               diagnoseNoescape(*NI, *OI, C, P, SemaRef);
4979           }
4980     }
4981   } else {
4982     if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4983       mergeObjCDirectMembers(SemaRef, ClassDecl, ObjCMethod);
4984 
4985       ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4986       if (!IDecl)
4987         IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4988       // For valid code, we should always know the primary interface
4989       // declaration by now, however for invalid code we'll keep parsing
4990       // but we won't find the primary interface and IDecl will be nil.
4991       if (IDecl)
4992         checkObjCDirectMethodClashes(SemaRef, IDecl, ObjCMethod);
4993     }
4994 
4995     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4996   }
4997 
4998   if (PrevMethod) {
4999     // You can never have two method definitions with the same name.
5000     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
5001       << ObjCMethod->getDeclName();
5002     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
5003     ObjCMethod->setInvalidDecl();
5004     return ObjCMethod;
5005   }
5006 
5007   // If this Objective-C method does not have a related result type, but we
5008   // are allowed to infer related result types, try to do so based on the
5009   // method family.
5010   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
5011   if (!CurrentClass) {
5012     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
5013       CurrentClass = Cat->getClassInterface();
5014     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
5015       CurrentClass = Impl->getClassInterface();
5016     else if (ObjCCategoryImplDecl *CatImpl
5017                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
5018       CurrentClass = CatImpl->getClassInterface();
5019   }
5020 
5021   ResultTypeCompatibilityKind RTC =
5022       CheckRelatedResultTypeCompatibility(SemaRef, ObjCMethod, CurrentClass);
5023 
5024   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5025 
5026   bool ARCError = false;
5027   if (getLangOpts().ObjCAutoRefCount)
5028     ARCError = CheckARCMethodDecl(ObjCMethod);
5029 
5030   // Infer the related result type when possible.
5031   if (!ARCError && RTC == SemaObjC::RTC_Compatible &&
5032       !ObjCMethod->hasRelatedResultType() &&
5033       getLangOpts().ObjCInferRelatedResultType) {
5034     bool InferRelatedResultType = false;
5035     switch (ObjCMethod->getMethodFamily()) {
5036     case OMF_None:
5037     case OMF_copy:
5038     case OMF_dealloc:
5039     case OMF_finalize:
5040     case OMF_mutableCopy:
5041     case OMF_release:
5042     case OMF_retainCount:
5043     case OMF_initialize:
5044     case OMF_performSelector:
5045       break;
5046 
5047     case OMF_alloc:
5048     case OMF_new:
5049         InferRelatedResultType = ObjCMethod->isClassMethod();
5050       break;
5051 
5052     case OMF_init:
5053     case OMF_autorelease:
5054     case OMF_retain:
5055     case OMF_self:
5056       InferRelatedResultType = ObjCMethod->isInstanceMethod();
5057       break;
5058     }
5059 
5060     if (InferRelatedResultType &&
5061         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5062       ObjCMethod->setRelatedResultType();
5063   }
5064 
5065   if (MethodDefinition &&
5066       Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5067     checkObjCMethodX86VectorTypes(SemaRef, ObjCMethod);
5068 
5069   // + load method cannot have availability attributes. It get called on
5070   // startup, so it has to have the availability of the deployment target.
5071   if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5072     if (ObjCMethod->isClassMethod() &&
5073         ObjCMethod->getSelector().getAsString() == "load") {
5074       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5075           << 0;
5076       ObjCMethod->dropAttr<AvailabilityAttr>();
5077     }
5078   }
5079 
5080   // Insert the invisible arguments, self and _cmd!
5081   ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5082 
5083   SemaRef.ActOnDocumentableDecl(ObjCMethod);
5084 
5085   return ObjCMethod;
5086 }
5087 
5088 bool SemaObjC::CheckObjCDeclScope(Decl *D) {
5089   // Following is also an error. But it is caused by a missing @end
5090   // and diagnostic is issued elsewhere.
5091   if (isa<ObjCContainerDecl>(SemaRef.CurContext->getRedeclContext()))
5092     return false;
5093 
5094   // If we switched context to translation unit while we are still lexically in
5095   // an objc container, it means the parser missed emitting an error.
5096   if (isa<TranslationUnitDecl>(
5097           SemaRef.getCurLexicalContext()->getRedeclContext()))
5098     return false;
5099 
5100   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5101   D->setInvalidDecl();
5102 
5103   return true;
5104 }
5105 
5106 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
5107 /// instance variables of ClassName into Decls.
5108 void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5109                          const IdentifierInfo *ClassName,
5110                          SmallVectorImpl<Decl *> &Decls) {
5111   ASTContext &Context = getASTContext();
5112   // Check that ClassName is a valid class
5113   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5114   if (!Class) {
5115     Diag(DeclStart, diag::err_undef_interface) << ClassName;
5116     return;
5117   }
5118   if (getLangOpts().ObjCRuntime.isNonFragile()) {
5119     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5120     return;
5121   }
5122 
5123   // Collect the instance variables
5124   SmallVector<const ObjCIvarDecl*, 32> Ivars;
5125   Context.DeepCollectObjCIvars(Class, true, Ivars);
5126   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5127   for (unsigned i = 0; i < Ivars.size(); i++) {
5128     const FieldDecl* ID = Ivars[i];
5129     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5130     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5131                                            /*FIXME: StartL=*/ID->getLocation(),
5132                                            ID->getLocation(),
5133                                            ID->getIdentifier(), ID->getType(),
5134                                            ID->getBitWidth());
5135     Decls.push_back(FD);
5136   }
5137 
5138   // Introduce all of these fields into the appropriate scope.
5139   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5140        D != Decls.end(); ++D) {
5141     FieldDecl *FD = cast<FieldDecl>(*D);
5142     if (getLangOpts().CPlusPlus)
5143       SemaRef.PushOnScopeChains(FD, S);
5144     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5145       Record->addDecl(FD);
5146   }
5147 }
5148 
5149 /// Build a type-check a new Objective-C exception variable declaration.
5150 VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5151                                           SourceLocation StartLoc,
5152                                           SourceLocation IdLoc,
5153                                           const IdentifierInfo *Id,
5154                                           bool Invalid) {
5155   ASTContext &Context = getASTContext();
5156   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5157   // duration shall not be qualified by an address-space qualifier."
5158   // Since all parameters have automatic store duration, they can not have
5159   // an address space.
5160   if (T.getAddressSpace() != LangAS::Default) {
5161     Diag(IdLoc, diag::err_arg_with_address_space);
5162     Invalid = true;
5163   }
5164 
5165   // An @catch parameter must be an unqualified object pointer type;
5166   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5167   if (Invalid) {
5168     // Don't do any further checking.
5169   } else if (T->isDependentType()) {
5170     // Okay: we don't know what this type will instantiate to.
5171   } else if (T->isObjCQualifiedIdType()) {
5172     Invalid = true;
5173     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5174   } else if (T->isObjCIdType()) {
5175     // Okay: we don't know what this type will instantiate to.
5176   } else if (!T->isObjCObjectPointerType()) {
5177     Invalid = true;
5178     Diag(IdLoc, diag::err_catch_param_not_objc_type);
5179   } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5180     Invalid = true;
5181     Diag(IdLoc, diag::err_catch_param_not_objc_type);
5182   }
5183 
5184   VarDecl *New = VarDecl::Create(Context, SemaRef.CurContext, StartLoc, IdLoc,
5185                                  Id, T, TInfo, SC_None);
5186   New->setExceptionVariable(true);
5187 
5188   // In ARC, infer 'retaining' for variables of retainable type.
5189   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5190     Invalid = true;
5191 
5192   if (Invalid)
5193     New->setInvalidDecl();
5194   return New;
5195 }
5196 
5197 Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5198   const DeclSpec &DS = D.getDeclSpec();
5199 
5200   // We allow the "register" storage class on exception variables because
5201   // GCC did, but we drop it completely. Any other storage class is an error.
5202   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5203     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5204       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5205   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5206     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5207       << DeclSpec::getSpecifierName(SCS);
5208   }
5209   if (DS.isInlineSpecified())
5210     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5211         << getLangOpts().CPlusPlus17;
5212   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5213     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5214          diag::err_invalid_thread)
5215      << DeclSpec::getSpecifierName(TSCS);
5216   D.getMutableDeclSpec().ClearStorageClassSpecs();
5217 
5218   SemaRef.DiagnoseFunctionSpecifiers(D.getDeclSpec());
5219 
5220   // Check that there are no default arguments inside the type of this
5221   // exception object (C++ only).
5222   if (getLangOpts().CPlusPlus)
5223     SemaRef.CheckExtraCXXDefaultArguments(D);
5224 
5225   TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5226   QualType ExceptionType = TInfo->getType();
5227 
5228   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5229                                         D.getSourceRange().getBegin(),
5230                                         D.getIdentifierLoc(),
5231                                         D.getIdentifier(),
5232                                         D.isInvalidType());
5233 
5234   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5235   if (D.getCXXScopeSpec().isSet()) {
5236     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5237       << D.getCXXScopeSpec().getRange();
5238     New->setInvalidDecl();
5239   }
5240 
5241   // Add the parameter declaration into this scope.
5242   S->AddDecl(New);
5243   if (D.getIdentifier())
5244     SemaRef.IdResolver.AddDecl(New);
5245 
5246   SemaRef.ProcessDeclAttributes(S, New, D);
5247 
5248   if (New->hasAttr<BlocksAttr>())
5249     Diag(New->getLocation(), diag::err_block_on_nonlocal);
5250   return New;
5251 }
5252 
5253 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5254 /// initialization.
5255 void SemaObjC::CollectIvarsToConstructOrDestruct(
5256     ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) {
5257   ASTContext &Context = getASTContext();
5258   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5259        Iv= Iv->getNextIvar()) {
5260     QualType QT = Context.getBaseElementType(Iv->getType());
5261     if (QT->isRecordType())
5262       Ivars.push_back(Iv);
5263   }
5264 }
5265 
5266 void SemaObjC::DiagnoseUseOfUnimplementedSelectors() {
5267   ASTContext &Context = getASTContext();
5268   // Load referenced selectors from the external source.
5269   if (SemaRef.ExternalSource) {
5270     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5271     SemaRef.ExternalSource->ReadReferencedSelectors(Sels);
5272     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5273       ReferencedSelectors[Sels[I].first] = Sels[I].second;
5274   }
5275 
5276   // Warning will be issued only when selector table is
5277   // generated (which means there is at lease one implementation
5278   // in the TU). This is to match gcc's behavior.
5279   if (ReferencedSelectors.empty() ||
5280       !Context.AnyObjCImplementation())
5281     return;
5282   for (auto &SelectorAndLocation : ReferencedSelectors) {
5283     Selector Sel = SelectorAndLocation.first;
5284     SourceLocation Loc = SelectorAndLocation.second;
5285     if (!LookupImplementedMethodInGlobalPool(Sel))
5286       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5287   }
5288 }
5289 
5290 ObjCIvarDecl *
5291 SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5292                                          const ObjCPropertyDecl *&PDecl) const {
5293   if (Method->isClassMethod())
5294     return nullptr;
5295   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5296   if (!IDecl)
5297     return nullptr;
5298   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5299                                /*shallowCategoryLookup=*/false,
5300                                /*followSuper=*/false);
5301   if (!Method || !Method->isPropertyAccessor())
5302     return nullptr;
5303   if ((PDecl = Method->findPropertyDecl()))
5304     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5305       // property backing ivar must belong to property's class
5306       // or be a private ivar in class's implementation.
5307       // FIXME. fix the const-ness issue.
5308       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5309                                                         IV->getIdentifier());
5310       return IV;
5311     }
5312   return nullptr;
5313 }
5314 
5315 namespace {
5316 /// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property
5317 /// accessor references the backing ivar.
5318 class UnusedBackingIvarChecker : public DynamicRecursiveASTVisitor {
5319 public:
5320   Sema &S;
5321   const ObjCMethodDecl *Method;
5322   const ObjCIvarDecl *IvarD;
5323   bool AccessedIvar;
5324   bool InvokedSelfMethod;
5325 
5326   UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5327                            const ObjCIvarDecl *IvarD)
5328       : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false),
5329         InvokedSelfMethod(false) {
5330     assert(IvarD);
5331   }
5332 
5333   bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) override {
5334     if (E->getDecl() == IvarD) {
5335       AccessedIvar = true;
5336       return false;
5337     }
5338     return true;
5339   }
5340 
5341   bool VisitObjCMessageExpr(ObjCMessageExpr *E) override {
5342     if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5343         S.ObjC().isSelfExpr(E->getInstanceReceiver(), Method)) {
5344       InvokedSelfMethod = true;
5345     }
5346     return true;
5347   }
5348 };
5349 } // end anonymous namespace
5350 
5351 void SemaObjC::DiagnoseUnusedBackingIvarInAccessor(
5352     Scope *S, const ObjCImplementationDecl *ImplD) {
5353   if (S->hasUnrecoverableErrorOccurred())
5354     return;
5355 
5356   for (const auto *CurMethod : ImplD->instance_methods()) {
5357     unsigned DIAG = diag::warn_unused_property_backing_ivar;
5358     SourceLocation Loc = CurMethod->getLocation();
5359     if (getDiagnostics().isIgnored(DIAG, Loc))
5360       continue;
5361 
5362     const ObjCPropertyDecl *PDecl;
5363     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5364     if (!IV)
5365       continue;
5366 
5367     if (CurMethod->isSynthesizedAccessorStub())
5368       continue;
5369 
5370     UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV);
5371     Checker.TraverseStmt(CurMethod->getBody());
5372     if (Checker.AccessedIvar)
5373       continue;
5374 
5375     // Do not issue this warning if backing ivar is used somewhere and accessor
5376     // implementation makes a self call. This is to prevent false positive in
5377     // cases where the ivar is accessed by another method that the accessor
5378     // delegates to.
5379     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5380       Diag(Loc, DIAG) << IV;
5381       Diag(PDecl->getLocation(), diag::note_property_declare);
5382     }
5383   }
5384 }
5385 
5386 QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount(
5387     QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) {
5388   ASTContext &Context = getASTContext();
5389   // In ARC, infer a lifetime qualifier for appropriate parameter types.
5390   if (!getLangOpts().ObjCAutoRefCount ||
5391       T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
5392     return T;
5393 
5394   Qualifiers::ObjCLifetime Lifetime;
5395 
5396   // Special cases for arrays:
5397   //   - if it's const, use __unsafe_unretained
5398   //   - otherwise, it's an error
5399   if (T->isArrayType()) {
5400     if (!T.isConstQualified()) {
5401       if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics())
5402         SemaRef.DelayedDiagnostics.add(
5403             sema::DelayedDiagnostic::makeForbiddenType(
5404                 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
5405       else
5406         Diag(NameLoc, diag::err_arc_array_param_no_ownership)
5407             << TSInfo->getTypeLoc().getSourceRange();
5408     }
5409     Lifetime = Qualifiers::OCL_ExplicitNone;
5410   } else {
5411     Lifetime = T->getObjCARCImplicitLifetime();
5412   }
5413   T = Context.getLifetimeQualifiedType(T, Lifetime);
5414 
5415   return T;
5416 }
5417 
5418 ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id,
5419                                                   SourceLocation IdLoc,
5420                                                   bool DoTypoCorrection) {
5421   // The third "scope" argument is 0 since we aren't enabling lazy built-in
5422   // creation from this context.
5423   NamedDecl *IDecl = SemaRef.LookupSingleName(SemaRef.TUScope, Id, IdLoc,
5424                                               Sema::LookupOrdinaryName);
5425 
5426   if (!IDecl && DoTypoCorrection) {
5427     // Perform typo correction at the given location, but only if we
5428     // find an Objective-C class name.
5429     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
5430     if (TypoCorrection C = SemaRef.CorrectTypo(
5431             DeclarationNameInfo(Id, IdLoc), Sema::LookupOrdinaryName,
5432             SemaRef.TUScope, nullptr, CCC, Sema::CTK_ErrorRecovery)) {
5433       SemaRef.diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
5434       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
5435       Id = IDecl->getIdentifier();
5436     }
5437   }
5438   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
5439   // This routine must always return a class definition, if any.
5440   if (Def && Def->getDefinition())
5441     Def = Def->getDefinition();
5442   return Def;
5443 }
5444 
5445 bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) {
5446   ASTContext &Context = getASTContext();
5447   QualType type = decl->getType();
5448   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5449   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5450     // Various kinds of declaration aren't allowed to be __autoreleasing.
5451     unsigned kind = -1U;
5452     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5453       if (var->hasAttr<BlocksAttr>())
5454         kind = 0; // __block
5455       else if (!var->hasLocalStorage())
5456         kind = 1; // global
5457     } else if (isa<ObjCIvarDecl>(decl)) {
5458       kind = 3; // ivar
5459     } else if (isa<FieldDecl>(decl)) {
5460       kind = 2; // field
5461     }
5462 
5463     if (kind != -1U) {
5464       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) << kind;
5465     }
5466   } else if (lifetime == Qualifiers::OCL_None) {
5467     // Try to infer lifetime.
5468     if (!type->isObjCLifetimeType())
5469       return false;
5470 
5471     lifetime = type->getObjCARCImplicitLifetime();
5472     type = Context.getLifetimeQualifiedType(type, lifetime);
5473     decl->setType(type);
5474   }
5475 
5476   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5477     // Thread-local variables cannot have lifetime.
5478     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5479         var->getTLSKind()) {
5480       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5481           << var->getType();
5482       return true;
5483     }
5484   }
5485 
5486   return false;
5487 }
5488 
5489 ObjCContainerDecl *SemaObjC::getObjCDeclContext() const {
5490   return (dyn_cast_or_null<ObjCContainerDecl>(SemaRef.CurContext));
5491 }
5492 
5493 void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
5494   if (!getLangOpts().CPlusPlus)
5495     return;
5496   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5497     ASTContext &Context = getASTContext();
5498     SmallVector<ObjCIvarDecl *, 8> ivars;
5499     CollectIvarsToConstructOrDestruct(OID, ivars);
5500     if (ivars.empty())
5501       return;
5502     SmallVector<CXXCtorInitializer *, 32> AllToInit;
5503     for (unsigned i = 0; i < ivars.size(); i++) {
5504       FieldDecl *Field = ivars[i];
5505       if (Field->isInvalidDecl())
5506         continue;
5507 
5508       CXXCtorInitializer *Member;
5509       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
5510       InitializationKind InitKind =
5511           InitializationKind::CreateDefault(ObjCImplementation->getLocation());
5512 
5513       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {});
5514       ExprResult MemberInit =
5515           InitSeq.Perform(SemaRef, InitEntity, InitKind, {});
5516       MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
5517       // Note, MemberInit could actually come back empty if no initialization
5518       // is required (e.g., because it would call a trivial default constructor)
5519       if (!MemberInit.get() || MemberInit.isInvalid())
5520         continue;
5521 
5522       Member = new (Context)
5523           CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(),
5524                              MemberInit.getAs<Expr>(), SourceLocation());
5525       AllToInit.push_back(Member);
5526 
5527       // Be sure that the destructor is accessible and is marked as referenced.
5528       if (const RecordType *RecordTy =
5529               Context.getBaseElementType(Field->getType())
5530                   ->getAs<RecordType>()) {
5531         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
5532         if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(RD)) {
5533           SemaRef.MarkFunctionReferenced(Field->getLocation(), Destructor);
5534           SemaRef.CheckDestructorAccess(
5535               Field->getLocation(), Destructor,
5536               PDiag(diag::err_access_dtor_ivar)
5537                   << Context.getBaseElementType(Field->getType()));
5538         }
5539       }
5540     }
5541     ObjCImplementation->setIvarInitializers(Context, AllToInit.data(),
5542                                             AllToInit.size());
5543   }
5544 }
5545 
5546 /// TranslateIvarVisibility - Translate visibility from a token ID to an
5547 ///  AST enum value.
5548 static ObjCIvarDecl::AccessControl
5549 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5550   switch (ivarVisibility) {
5551   default:
5552     llvm_unreachable("Unknown visitibility kind");
5553   case tok::objc_private:
5554     return ObjCIvarDecl::Private;
5555   case tok::objc_public:
5556     return ObjCIvarDecl::Public;
5557   case tok::objc_protected:
5558     return ObjCIvarDecl::Protected;
5559   case tok::objc_package:
5560     return ObjCIvarDecl::Package;
5561   }
5562 }
5563 
5564 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
5565 /// in order to create an IvarDecl object for it.
5566 Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
5567                           Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
5568 
5569   const IdentifierInfo *II = D.getIdentifier();
5570   SourceLocation Loc = DeclStart;
5571   if (II)
5572     Loc = D.getIdentifierLoc();
5573 
5574   // FIXME: Unnamed fields can be handled in various different ways, for
5575   // example, unnamed unions inject all members into the struct namespace!
5576 
5577   TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D);
5578   QualType T = TInfo->getType();
5579 
5580   if (BitWidth) {
5581     // 6.7.2.1p3, 6.7.2.1p4
5582     BitWidth =
5583         SemaRef.VerifyBitField(Loc, II, T, /*IsMsStruct*/ false, BitWidth)
5584             .get();
5585     if (!BitWidth)
5586       D.setInvalidType();
5587   } else {
5588     // Not a bitfield.
5589 
5590     // validate II.
5591   }
5592   if (T->isReferenceType()) {
5593     Diag(Loc, diag::err_ivar_reference_type);
5594     D.setInvalidType();
5595   }
5596   // C99 6.7.2.1p8: A member of a structure or union may have any type other
5597   // than a variably modified type.
5598   else if (T->isVariablyModifiedType()) {
5599     if (!SemaRef.tryToFixVariablyModifiedVarType(
5600             TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
5601       D.setInvalidType();
5602   }
5603 
5604   // Get the visibility (access control) for this ivar.
5605   ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword
5606                                        ? TranslateIvarVisibility(Visibility)
5607                                        : ObjCIvarDecl::None;
5608   // Must set ivar's DeclContext to its enclosing interface.
5609   ObjCContainerDecl *EnclosingDecl =
5610       cast<ObjCContainerDecl>(SemaRef.CurContext);
5611   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
5612     return nullptr;
5613   ObjCContainerDecl *EnclosingContext;
5614   if (ObjCImplementationDecl *IMPDecl =
5615           dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5616     if (getLangOpts().ObjCRuntime.isFragile()) {
5617       // Case of ivar declared in an implementation. Context is that of its
5618       // class.
5619       EnclosingContext = IMPDecl->getClassInterface();
5620       assert(EnclosingContext && "Implementation has no class interface!");
5621     } else
5622       EnclosingContext = EnclosingDecl;
5623   } else {
5624     if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5625       if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
5626         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5627         return nullptr;
5628       }
5629     }
5630     EnclosingContext = EnclosingDecl;
5631   }
5632 
5633   // Construct the decl.
5634   ObjCIvarDecl *NewID =
5635       ObjCIvarDecl::Create(getASTContext(), EnclosingContext, DeclStart, Loc,
5636                            II, T, TInfo, ac, BitWidth);
5637 
5638   if (T->containsErrors())
5639     NewID->setInvalidDecl();
5640 
5641   if (II) {
5642     NamedDecl *PrevDecl =
5643         SemaRef.LookupSingleName(S, II, Loc, Sema::LookupMemberName,
5644                                  RedeclarationKind::ForVisibleRedeclaration);
5645     if (PrevDecl && SemaRef.isDeclInScope(PrevDecl, EnclosingContext, S) &&
5646         !isa<TagDecl>(PrevDecl)) {
5647       Diag(Loc, diag::err_duplicate_member) << II;
5648       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5649       NewID->setInvalidDecl();
5650     }
5651   }
5652 
5653   // Process attributes attached to the ivar.
5654   SemaRef.ProcessDeclAttributes(S, NewID, D);
5655 
5656   if (D.isInvalidType())
5657     NewID->setInvalidDecl();
5658 
5659   // In ARC, infer 'retaining' for ivars of retainable type.
5660   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
5661     NewID->setInvalidDecl();
5662 
5663   if (D.getDeclSpec().isModulePrivateSpecified())
5664     NewID->setModulePrivate();
5665 
5666   if (II) {
5667     // FIXME: When interfaces are DeclContexts, we'll need to add
5668     // these to the interface.
5669     S->AddDecl(NewID);
5670     SemaRef.IdResolver.AddDecl(NewID);
5671   }
5672 
5673   if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() &&
5674       isa<ObjCInterfaceDecl>(EnclosingDecl))
5675     Diag(Loc, diag::warn_ivars_in_interface);
5676 
5677   return NewID;
5678 }
5679