1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Availability.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/LocInfoType.h" 27 #include "clang/Basic/PrettyStackTrace.h" 28 #include "clang/Lex/LiteralSupport.h" 29 #include "clang/Parse/Parser.h" 30 #include "clang/Parse/RAIIObjectsForParser.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/EnterExpressionEvaluationContext.h" 33 #include "clang/Sema/ParsedTemplate.h" 34 #include "clang/Sema/Scope.h" 35 #include "clang/Sema/SemaCUDA.h" 36 #include "clang/Sema/SemaCodeCompletion.h" 37 #include "clang/Sema/SemaObjC.h" 38 #include "clang/Sema/SemaOpenACC.h" 39 #include "clang/Sema/SemaOpenMP.h" 40 #include "clang/Sema/SemaSYCL.h" 41 #include "clang/Sema/TypoCorrection.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include <optional> 44 using namespace clang; 45 46 /// Simple precedence-based parser for binary/ternary operators. 47 /// 48 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 49 /// production. C99 specifies that the LHS of an assignment operator should be 50 /// parsed as a unary-expression, but consistency dictates that it be a 51 /// conditional-expession. In practice, the important thing here is that the 52 /// LHS of an assignment has to be an l-value, which productions between 53 /// unary-expression and conditional-expression don't produce. Because we want 54 /// consistency, we parse the LHS as a conditional-expression, then check for 55 /// l-value-ness in semantic analysis stages. 56 /// 57 /// \verbatim 58 /// pm-expression: [C++ 5.5] 59 /// cast-expression 60 /// pm-expression '.*' cast-expression 61 /// pm-expression '->*' cast-expression 62 /// 63 /// multiplicative-expression: [C99 6.5.5] 64 /// Note: in C++, apply pm-expression instead of cast-expression 65 /// cast-expression 66 /// multiplicative-expression '*' cast-expression 67 /// multiplicative-expression '/' cast-expression 68 /// multiplicative-expression '%' cast-expression 69 /// 70 /// additive-expression: [C99 6.5.6] 71 /// multiplicative-expression 72 /// additive-expression '+' multiplicative-expression 73 /// additive-expression '-' multiplicative-expression 74 /// 75 /// shift-expression: [C99 6.5.7] 76 /// additive-expression 77 /// shift-expression '<<' additive-expression 78 /// shift-expression '>>' additive-expression 79 /// 80 /// compare-expression: [C++20 expr.spaceship] 81 /// shift-expression 82 /// compare-expression '<=>' shift-expression 83 /// 84 /// relational-expression: [C99 6.5.8] 85 /// compare-expression 86 /// relational-expression '<' compare-expression 87 /// relational-expression '>' compare-expression 88 /// relational-expression '<=' compare-expression 89 /// relational-expression '>=' compare-expression 90 /// 91 /// equality-expression: [C99 6.5.9] 92 /// relational-expression 93 /// equality-expression '==' relational-expression 94 /// equality-expression '!=' relational-expression 95 /// 96 /// AND-expression: [C99 6.5.10] 97 /// equality-expression 98 /// AND-expression '&' equality-expression 99 /// 100 /// exclusive-OR-expression: [C99 6.5.11] 101 /// AND-expression 102 /// exclusive-OR-expression '^' AND-expression 103 /// 104 /// inclusive-OR-expression: [C99 6.5.12] 105 /// exclusive-OR-expression 106 /// inclusive-OR-expression '|' exclusive-OR-expression 107 /// 108 /// logical-AND-expression: [C99 6.5.13] 109 /// inclusive-OR-expression 110 /// logical-AND-expression '&&' inclusive-OR-expression 111 /// 112 /// logical-OR-expression: [C99 6.5.14] 113 /// logical-AND-expression 114 /// logical-OR-expression '||' logical-AND-expression 115 /// 116 /// conditional-expression: [C99 6.5.15] 117 /// logical-OR-expression 118 /// logical-OR-expression '?' expression ':' conditional-expression 119 /// [GNU] logical-OR-expression '?' ':' conditional-expression 120 /// [C++] the third operand is an assignment-expression 121 /// 122 /// assignment-expression: [C99 6.5.16] 123 /// conditional-expression 124 /// unary-expression assignment-operator assignment-expression 125 /// [C++] throw-expression [C++ 15] 126 /// 127 /// assignment-operator: one of 128 /// = *= /= %= += -= <<= >>= &= ^= |= 129 /// 130 /// expression: [C99 6.5.17] 131 /// assignment-expression ...[opt] 132 /// expression ',' assignment-expression ...[opt] 133 /// \endverbatim 134 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 135 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 136 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 137 } 138 139 /// This routine is called when the '@' is seen and consumed. 140 /// Current token is an Identifier and is not a 'try'. This 141 /// routine is necessary to disambiguate \@try-statement from, 142 /// for example, \@encode-expression. 143 /// 144 ExprResult 145 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 146 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 147 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 148 } 149 150 /// This routine is called when a leading '__extension__' is seen and 151 /// consumed. This is necessary because the token gets consumed in the 152 /// process of disambiguating between an expression and a declaration. 153 ExprResult 154 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 155 ExprResult LHS(true); 156 { 157 // Silence extension warnings in the sub-expression 158 ExtensionRAIIObject O(Diags); 159 160 LHS = ParseCastExpression(AnyCastExpr); 161 } 162 163 if (!LHS.isInvalid()) 164 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 165 LHS.get()); 166 167 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 168 } 169 170 /// Parse an expr that doesn't include (top-level) commas. 171 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 172 if (Tok.is(tok::code_completion)) { 173 cutOffParsing(); 174 Actions.CodeCompletion().CodeCompleteExpression( 175 getCurScope(), PreferredType.get(Tok.getLocation())); 176 return ExprError(); 177 } 178 179 if (Tok.is(tok::kw_throw)) 180 return ParseThrowExpression(); 181 if (Tok.is(tok::kw_co_yield)) 182 return ParseCoyieldExpression(); 183 184 ExprResult LHS = ParseCastExpression(AnyCastExpr, 185 /*isAddressOfOperand=*/false, 186 isTypeCast); 187 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 188 } 189 190 ExprResult Parser::ParseConditionalExpression() { 191 if (Tok.is(tok::code_completion)) { 192 cutOffParsing(); 193 Actions.CodeCompletion().CodeCompleteExpression( 194 getCurScope(), PreferredType.get(Tok.getLocation())); 195 return ExprError(); 196 } 197 198 ExprResult LHS = ParseCastExpression( 199 AnyCastExpr, /*isAddressOfOperand=*/false, NotTypeCast); 200 return ParseRHSOfBinaryExpression(LHS, prec::Conditional); 201 } 202 203 /// Parse an assignment expression where part of an Objective-C message 204 /// send has already been parsed. 205 /// 206 /// In this case \p LBracLoc indicates the location of the '[' of the message 207 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 208 /// the receiver of the message. 209 /// 210 /// Since this handles full assignment-expression's, it handles postfix 211 /// expressions and other binary operators for these expressions as well. 212 ExprResult 213 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 214 SourceLocation SuperLoc, 215 ParsedType ReceiverType, 216 Expr *ReceiverExpr) { 217 ExprResult R 218 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 219 ReceiverType, ReceiverExpr); 220 R = ParsePostfixExpressionSuffix(R); 221 return ParseRHSOfBinaryExpression(R, prec::Assignment); 222 } 223 224 ExprResult 225 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 226 assert(Actions.ExprEvalContexts.back().Context == 227 Sema::ExpressionEvaluationContext::ConstantEvaluated && 228 "Call this function only if your ExpressionEvaluationContext is " 229 "already ConstantEvaluated"); 230 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast)); 231 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 232 return Actions.ActOnConstantExpression(Res); 233 } 234 235 ExprResult Parser::ParseConstantExpression() { 236 // C++03 [basic.def.odr]p2: 237 // An expression is potentially evaluated unless it appears where an 238 // integral constant expression is required (see 5.19) [...]. 239 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 240 EnterExpressionEvaluationContext ConstantEvaluated( 241 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 242 return ParseConstantExpressionInExprEvalContext(NotTypeCast); 243 } 244 245 ExprResult Parser::ParseArrayBoundExpression() { 246 EnterExpressionEvaluationContext ConstantEvaluated( 247 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 248 // If we parse the bound of a VLA... we parse a non-constant 249 // constant-expression! 250 Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true; 251 // For a VLA type inside an unevaluated operator like: 252 // 253 // sizeof(typeof(*(int (*)[N])array)) 254 // 255 // N and array are supposed to be ODR-used. 256 // Initially when encountering `array`, it is deemed unevaluated and non-ODR 257 // used because that occurs before parsing the type cast. Therefore we use 258 // Sema::TransformToPotentiallyEvaluated() to rebuild the expression to ensure 259 // it's actually ODR-used. 260 // 261 // However, in other unevaluated contexts as in constraint substitution, it 262 // would end up rebuilding the type twice which is unnecessary. So we push up 263 // a flag to help distinguish these cases. 264 for (auto Iter = Actions.ExprEvalContexts.rbegin() + 1; 265 Iter != Actions.ExprEvalContexts.rend(); ++Iter) { 266 if (!Iter->isUnevaluated()) 267 break; 268 Iter->InConditionallyConstantEvaluateContext = true; 269 } 270 return ParseConstantExpressionInExprEvalContext(NotTypeCast); 271 } 272 273 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 274 EnterExpressionEvaluationContext ConstantEvaluated( 275 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 276 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast)); 277 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 278 return Actions.ActOnCaseExpr(CaseLoc, Res); 279 } 280 281 /// Parse a constraint-expression. 282 /// 283 /// \verbatim 284 /// constraint-expression: C++2a[temp.constr.decl]p1 285 /// logical-or-expression 286 /// \endverbatim 287 ExprResult Parser::ParseConstraintExpression() { 288 EnterExpressionEvaluationContext ConstantEvaluated( 289 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 290 ExprResult LHS(ParseCastExpression(AnyCastExpr)); 291 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 292 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) { 293 Actions.CorrectDelayedTyposInExpr(Res); 294 return ExprError(); 295 } 296 return Res; 297 } 298 299 /// \brief Parse a constraint-logical-and-expression. 300 /// 301 /// \verbatim 302 /// C++2a[temp.constr.decl]p1 303 /// constraint-logical-and-expression: 304 /// primary-expression 305 /// constraint-logical-and-expression '&&' primary-expression 306 /// 307 /// \endverbatim 308 ExprResult 309 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) { 310 EnterExpressionEvaluationContext ConstantEvaluated( 311 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 312 bool NotPrimaryExpression = false; 313 auto ParsePrimary = [&] () { 314 ExprResult E = ParseCastExpression(PrimaryExprOnly, 315 /*isAddressOfOperand=*/false, 316 /*isTypeCast=*/NotTypeCast, 317 /*isVectorLiteral=*/false, 318 &NotPrimaryExpression); 319 if (E.isInvalid()) 320 return ExprError(); 321 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) { 322 E = ParsePostfixExpressionSuffix(E); 323 // Use InclusiveOr, the precedence just after '&&' to not parse the 324 // next arguments to the logical and. 325 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr); 326 if (!E.isInvalid()) 327 Diag(E.get()->getExprLoc(), 328 Note 329 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause 330 : diag::err_unparenthesized_non_primary_expr_in_requires_clause) 331 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(") 332 << FixItHint::CreateInsertion( 333 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")") 334 << E.get()->getSourceRange(); 335 return E; 336 }; 337 338 if (NotPrimaryExpression || 339 // Check if the following tokens must be a part of a non-primary 340 // expression 341 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 342 /*CPlusPlus11=*/true) > prec::LogicalAnd || 343 // Postfix operators other than '(' (which will be checked for in 344 // CheckConstraintExpression). 345 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) || 346 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) { 347 E = RecoverFromNonPrimary(E, /*Note=*/false); 348 if (E.isInvalid()) 349 return ExprError(); 350 NotPrimaryExpression = false; 351 } 352 bool PossibleNonPrimary; 353 bool IsConstraintExpr = 354 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary, 355 IsTrailingRequiresClause); 356 if (!IsConstraintExpr || PossibleNonPrimary) { 357 // Atomic constraint might be an unparenthesized non-primary expression 358 // (such as a binary operator), in which case we might get here (e.g. in 359 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore 360 // the rest of the addition expression). Try to parse the rest of it here. 361 if (PossibleNonPrimary) 362 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr); 363 Actions.CorrectDelayedTyposInExpr(E); 364 return ExprError(); 365 } 366 return E; 367 }; 368 ExprResult LHS = ParsePrimary(); 369 if (LHS.isInvalid()) 370 return ExprError(); 371 while (Tok.is(tok::ampamp)) { 372 SourceLocation LogicalAndLoc = ConsumeToken(); 373 ExprResult RHS = ParsePrimary(); 374 if (RHS.isInvalid()) { 375 Actions.CorrectDelayedTyposInExpr(LHS); 376 return ExprError(); 377 } 378 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc, 379 tok::ampamp, LHS.get(), RHS.get()); 380 if (!Op.isUsable()) { 381 Actions.CorrectDelayedTyposInExpr(RHS); 382 Actions.CorrectDelayedTyposInExpr(LHS); 383 return ExprError(); 384 } 385 LHS = Op; 386 } 387 return LHS; 388 } 389 390 /// \brief Parse a constraint-logical-or-expression. 391 /// 392 /// \verbatim 393 /// C++2a[temp.constr.decl]p1 394 /// constraint-logical-or-expression: 395 /// constraint-logical-and-expression 396 /// constraint-logical-or-expression '||' 397 /// constraint-logical-and-expression 398 /// 399 /// \endverbatim 400 ExprResult 401 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) { 402 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause)); 403 if (!LHS.isUsable()) 404 return ExprError(); 405 while (Tok.is(tok::pipepipe)) { 406 SourceLocation LogicalOrLoc = ConsumeToken(); 407 ExprResult RHS = 408 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause); 409 if (!RHS.isUsable()) { 410 Actions.CorrectDelayedTyposInExpr(LHS); 411 return ExprError(); 412 } 413 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc, 414 tok::pipepipe, LHS.get(), RHS.get()); 415 if (!Op.isUsable()) { 416 Actions.CorrectDelayedTyposInExpr(RHS); 417 Actions.CorrectDelayedTyposInExpr(LHS); 418 return ExprError(); 419 } 420 LHS = Op; 421 } 422 return LHS; 423 } 424 425 bool Parser::isNotExpressionStart() { 426 tok::TokenKind K = Tok.getKind(); 427 if (K == tok::l_brace || K == tok::r_brace || 428 K == tok::kw_for || K == tok::kw_while || 429 K == tok::kw_if || K == tok::kw_else || 430 K == tok::kw_goto || K == tok::kw_try) 431 return true; 432 // If this is a decl-specifier, we can't be at the start of an expression. 433 return isKnownToBeDeclarationSpecifier(); 434 } 435 436 bool Parser::isFoldOperator(prec::Level Level) const { 437 return Level > prec::Unknown && Level != prec::Conditional && 438 Level != prec::Spaceship; 439 } 440 441 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 442 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 443 } 444 445 /// Parse a binary expression that starts with \p LHS and has a 446 /// precedence of at least \p MinPrec. 447 ExprResult 448 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 449 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 450 GreaterThanIsOperator, 451 getLangOpts().CPlusPlus11); 452 SourceLocation ColonLoc; 453 454 auto SavedType = PreferredType; 455 while (true) { 456 // Every iteration may rely on a preferred type for the whole expression. 457 PreferredType = SavedType; 458 // If this token has a lower precedence than we are allowed to parse (e.g. 459 // because we are called recursively, or because the token is not a binop), 460 // then we are done! 461 if (NextTokPrec < MinPrec) 462 return LHS; 463 464 // Consume the operator, saving the operator token for error reporting. 465 Token OpToken = Tok; 466 ConsumeToken(); 467 468 // If we're potentially in a template-id, we may now be able to determine 469 // whether we're actually in one or not. 470 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 471 tok::greatergreatergreater) && 472 checkPotentialAngleBracketDelimiter(OpToken)) 473 return ExprError(); 474 475 // Bail out when encountering a comma followed by a token which can't 476 // possibly be the start of an expression. For instance: 477 // int f() { return 1, } 478 // We can't do this before consuming the comma, because 479 // isNotExpressionStart() looks at the token stream. 480 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 481 PP.EnterToken(Tok, /*IsReinject*/true); 482 Tok = OpToken; 483 return LHS; 484 } 485 486 // If the next token is an ellipsis, then this is a fold-expression. Leave 487 // it alone so we can handle it in the paren expression. 488 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 489 // FIXME: We can't check this via lookahead before we consume the token 490 // because that tickles a lexer bug. 491 PP.EnterToken(Tok, /*IsReinject*/true); 492 Tok = OpToken; 493 return LHS; 494 } 495 496 // In Objective-C++, alternative operator tokens can be used as keyword args 497 // in message expressions. Unconsume the token so that it can reinterpreted 498 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 499 // [foo meth:0 and:0]; 500 // [foo not_eq]; 501 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 502 Tok.isOneOf(tok::colon, tok::r_square) && 503 OpToken.getIdentifierInfo() != nullptr) { 504 PP.EnterToken(Tok, /*IsReinject*/true); 505 Tok = OpToken; 506 return LHS; 507 } 508 509 // Special case handling for the ternary operator. 510 ExprResult TernaryMiddle(true); 511 if (NextTokPrec == prec::Conditional) { 512 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 513 // Parse a braced-init-list here for error recovery purposes. 514 SourceLocation BraceLoc = Tok.getLocation(); 515 TernaryMiddle = ParseBraceInitializer(); 516 if (!TernaryMiddle.isInvalid()) { 517 Diag(BraceLoc, diag::err_init_list_bin_op) 518 << /*RHS*/ 1 << PP.getSpelling(OpToken) 519 << Actions.getExprRange(TernaryMiddle.get()); 520 TernaryMiddle = ExprError(); 521 } 522 } else if (Tok.isNot(tok::colon)) { 523 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 524 ColonProtectionRAIIObject X(*this); 525 526 // Handle this production specially: 527 // logical-OR-expression '?' expression ':' conditional-expression 528 // In particular, the RHS of the '?' is 'expression', not 529 // 'logical-OR-expression' as we might expect. 530 TernaryMiddle = ParseExpression(); 531 } else { 532 // Special case handling of "X ? Y : Z" where Y is empty: 533 // logical-OR-expression '?' ':' conditional-expression [GNU] 534 TernaryMiddle = nullptr; 535 Diag(Tok, diag::ext_gnu_conditional_expr); 536 } 537 538 if (TernaryMiddle.isInvalid()) { 539 Actions.CorrectDelayedTyposInExpr(LHS); 540 LHS = ExprError(); 541 TernaryMiddle = nullptr; 542 } 543 544 if (!TryConsumeToken(tok::colon, ColonLoc)) { 545 // Otherwise, we're missing a ':'. Assume that this was a typo that 546 // the user forgot. If we're not in a macro expansion, we can suggest 547 // a fixit hint. If there were two spaces before the current token, 548 // suggest inserting the colon in between them, otherwise insert ": ". 549 SourceLocation FILoc = Tok.getLocation(); 550 const char *FIText = ": "; 551 const SourceManager &SM = PP.getSourceManager(); 552 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 553 assert(FILoc.isFileID()); 554 bool IsInvalid = false; 555 const char *SourcePtr = 556 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 557 if (!IsInvalid && *SourcePtr == ' ') { 558 SourcePtr = 559 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 560 if (!IsInvalid && *SourcePtr == ' ') { 561 FILoc = FILoc.getLocWithOffset(-1); 562 FIText = ":"; 563 } 564 } 565 } 566 567 Diag(Tok, diag::err_expected) 568 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 569 Diag(OpToken, diag::note_matching) << tok::question; 570 ColonLoc = Tok.getLocation(); 571 } 572 } 573 574 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 575 OpToken.getKind()); 576 // Parse another leaf here for the RHS of the operator. 577 // ParseCastExpression works here because all RHS expressions in C have it 578 // as a prefix, at least. However, in C++, an assignment-expression could 579 // be a throw-expression, which is not a valid cast-expression. 580 // Therefore we need some special-casing here. 581 // Also note that the third operand of the conditional operator is 582 // an assignment-expression in C++, and in C++11, we can have a 583 // braced-init-list on the RHS of an assignment. For better diagnostics, 584 // parse as if we were allowed braced-init-lists everywhere, and check that 585 // they only appear on the RHS of assignments later. 586 ExprResult RHS; 587 bool RHSIsInitList = false; 588 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 589 RHS = ParseBraceInitializer(); 590 RHSIsInitList = true; 591 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 592 RHS = ParseAssignmentExpression(); 593 else 594 RHS = ParseCastExpression(AnyCastExpr); 595 596 if (RHS.isInvalid()) { 597 // FIXME: Errors generated by the delayed typo correction should be 598 // printed before errors from parsing the RHS, not after. 599 Actions.CorrectDelayedTyposInExpr(LHS); 600 if (TernaryMiddle.isUsable()) 601 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 602 LHS = ExprError(); 603 } 604 605 // Remember the precedence of this operator and get the precedence of the 606 // operator immediately to the right of the RHS. 607 prec::Level ThisPrec = NextTokPrec; 608 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 609 getLangOpts().CPlusPlus11); 610 611 // Assignment and conditional expressions are right-associative. 612 bool isRightAssoc = ThisPrec == prec::Conditional || 613 ThisPrec == prec::Assignment; 614 615 // Get the precedence of the operator to the right of the RHS. If it binds 616 // more tightly with RHS than we do, evaluate it completely first. 617 if (ThisPrec < NextTokPrec || 618 (ThisPrec == NextTokPrec && isRightAssoc)) { 619 if (!RHS.isInvalid() && RHSIsInitList) { 620 Diag(Tok, diag::err_init_list_bin_op) 621 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 622 RHS = ExprError(); 623 } 624 // If this is left-associative, only parse things on the RHS that bind 625 // more tightly than the current operator. If it is right-associative, it 626 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 627 // A=(B=(C=D)), where each paren is a level of recursion here. 628 // The function takes ownership of the RHS. 629 RHS = ParseRHSOfBinaryExpression(RHS, 630 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 631 RHSIsInitList = false; 632 633 if (RHS.isInvalid()) { 634 // FIXME: Errors generated by the delayed typo correction should be 635 // printed before errors from ParseRHSOfBinaryExpression, not after. 636 Actions.CorrectDelayedTyposInExpr(LHS); 637 if (TernaryMiddle.isUsable()) 638 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 639 LHS = ExprError(); 640 } 641 642 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 643 getLangOpts().CPlusPlus11); 644 } 645 646 if (!RHS.isInvalid() && RHSIsInitList) { 647 if (ThisPrec == prec::Assignment) { 648 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 649 << Actions.getExprRange(RHS.get()); 650 } else if (ColonLoc.isValid()) { 651 Diag(ColonLoc, diag::err_init_list_bin_op) 652 << /*RHS*/1 << ":" 653 << Actions.getExprRange(RHS.get()); 654 LHS = ExprError(); 655 } else { 656 Diag(OpToken, diag::err_init_list_bin_op) 657 << /*RHS*/1 << PP.getSpelling(OpToken) 658 << Actions.getExprRange(RHS.get()); 659 LHS = ExprError(); 660 } 661 } 662 663 ExprResult OrigLHS = LHS; 664 if (!LHS.isInvalid()) { 665 // Combine the LHS and RHS into the LHS (e.g. build AST). 666 if (TernaryMiddle.isInvalid()) { 667 // If we're using '>>' as an operator within a template 668 // argument list (in C++98), suggest the addition of 669 // parentheses so that the code remains well-formed in C++0x. 670 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 671 SuggestParentheses(OpToken.getLocation(), 672 diag::warn_cxx11_right_shift_in_template_arg, 673 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 674 Actions.getExprRange(RHS.get()).getEnd())); 675 676 ExprResult BinOp = 677 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 678 OpToken.getKind(), LHS.get(), RHS.get()); 679 if (BinOp.isInvalid()) 680 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 681 RHS.get()->getEndLoc(), 682 {LHS.get(), RHS.get()}); 683 684 LHS = BinOp; 685 } else { 686 ExprResult CondOp = Actions.ActOnConditionalOp( 687 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(), 688 RHS.get()); 689 if (CondOp.isInvalid()) { 690 std::vector<clang::Expr *> Args; 691 // TernaryMiddle can be null for the GNU conditional expr extension. 692 if (TernaryMiddle.get()) 693 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()}; 694 else 695 Args = {LHS.get(), RHS.get()}; 696 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 697 RHS.get()->getEndLoc(), Args); 698 } 699 700 LHS = CondOp; 701 } 702 // In this case, ActOnBinOp or ActOnConditionalOp performed the 703 // CorrectDelayedTyposInExpr check. 704 if (!getLangOpts().CPlusPlus) 705 continue; 706 } 707 708 // Ensure potential typos aren't left undiagnosed. 709 if (LHS.isInvalid()) { 710 Actions.CorrectDelayedTyposInExpr(OrigLHS); 711 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 712 Actions.CorrectDelayedTyposInExpr(RHS); 713 } 714 } 715 } 716 717 /// Parse a cast-expression, unary-expression or primary-expression, based 718 /// on \p ExprType. 719 /// 720 /// \p isAddressOfOperand exists because an id-expression that is the 721 /// operand of address-of gets special treatment due to member pointers. 722 /// 723 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 724 bool isAddressOfOperand, 725 TypeCastState isTypeCast, 726 bool isVectorLiteral, 727 bool *NotPrimaryExpression) { 728 bool NotCastExpr; 729 ExprResult Res = ParseCastExpression(ParseKind, 730 isAddressOfOperand, 731 NotCastExpr, 732 isTypeCast, 733 isVectorLiteral, 734 NotPrimaryExpression); 735 if (NotCastExpr) 736 Diag(Tok, diag::err_expected_expression); 737 return Res; 738 } 739 740 namespace { 741 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 742 public: 743 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 744 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 745 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 746 } 747 748 bool ValidateCandidate(const TypoCorrection &candidate) override { 749 NamedDecl *ND = candidate.getCorrectionDecl(); 750 if (!ND) 751 return candidate.isKeyword(); 752 753 if (isa<TypeDecl>(ND)) 754 return WantTypeSpecifiers; 755 756 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 757 return false; 758 759 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 760 return true; 761 762 for (auto *C : candidate) { 763 NamedDecl *ND = C->getUnderlyingDecl(); 764 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 765 return true; 766 } 767 return false; 768 } 769 770 std::unique_ptr<CorrectionCandidateCallback> clone() override { 771 return std::make_unique<CastExpressionIdValidator>(*this); 772 } 773 774 private: 775 Token NextToken; 776 bool AllowNonTypes; 777 }; 778 } 779 780 bool Parser::isRevertibleTypeTrait(const IdentifierInfo *II, 781 tok::TokenKind *Kind) { 782 if (RevertibleTypeTraits.empty()) { 783 // Revertible type trait is a feature for backwards compatibility with older 784 // standard libraries that declare their own structs with the same name as 785 // the builtins listed below. New builtins should NOT be added to this list. 786 #define RTT_JOIN(X, Y) X##Y 787 #define REVERTIBLE_TYPE_TRAIT(Name) \ 788 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] = RTT_JOIN(tok::kw_, Name) 789 790 REVERTIBLE_TYPE_TRAIT(__is_abstract); 791 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 792 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 793 REVERTIBLE_TYPE_TRAIT(__is_array); 794 REVERTIBLE_TYPE_TRAIT(__is_assignable); 795 REVERTIBLE_TYPE_TRAIT(__is_base_of); 796 REVERTIBLE_TYPE_TRAIT(__is_bounded_array); 797 REVERTIBLE_TYPE_TRAIT(__is_class); 798 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 799 REVERTIBLE_TYPE_TRAIT(__is_compound); 800 REVERTIBLE_TYPE_TRAIT(__is_const); 801 REVERTIBLE_TYPE_TRAIT(__is_constructible); 802 REVERTIBLE_TYPE_TRAIT(__is_convertible); 803 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 804 REVERTIBLE_TYPE_TRAIT(__is_destructible); 805 REVERTIBLE_TYPE_TRAIT(__is_empty); 806 REVERTIBLE_TYPE_TRAIT(__is_enum); 807 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 808 REVERTIBLE_TYPE_TRAIT(__is_final); 809 REVERTIBLE_TYPE_TRAIT(__is_function); 810 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 811 REVERTIBLE_TYPE_TRAIT(__is_integral); 812 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 813 REVERTIBLE_TYPE_TRAIT(__is_literal); 814 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 815 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 816 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 817 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 818 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 819 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 820 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 821 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 822 REVERTIBLE_TYPE_TRAIT(__is_object); 823 REVERTIBLE_TYPE_TRAIT(__is_pod); 824 REVERTIBLE_TYPE_TRAIT(__is_pointer); 825 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 826 REVERTIBLE_TYPE_TRAIT(__is_reference); 827 REVERTIBLE_TYPE_TRAIT(__is_referenceable); 828 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 829 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 830 REVERTIBLE_TYPE_TRAIT(__is_same); 831 REVERTIBLE_TYPE_TRAIT(__is_scalar); 832 REVERTIBLE_TYPE_TRAIT(__is_scoped_enum); 833 REVERTIBLE_TYPE_TRAIT(__is_sealed); 834 REVERTIBLE_TYPE_TRAIT(__is_signed); 835 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 836 REVERTIBLE_TYPE_TRAIT(__is_trivial); 837 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 838 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 839 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 840 REVERTIBLE_TYPE_TRAIT(__is_unbounded_array); 841 REVERTIBLE_TYPE_TRAIT(__is_union); 842 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 843 REVERTIBLE_TYPE_TRAIT(__is_void); 844 REVERTIBLE_TYPE_TRAIT(__is_volatile); 845 REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary); 846 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) \ 847 REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait)); 848 #include "clang/Basic/TransformTypeTraits.def" 849 #undef REVERTIBLE_TYPE_TRAIT 850 #undef RTT_JOIN 851 } 852 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known = 853 RevertibleTypeTraits.find(II); 854 if (Known != RevertibleTypeTraits.end()) { 855 if (Kind) 856 *Kind = Known->second; 857 return true; 858 } 859 return false; 860 } 861 862 ExprResult Parser::ParseBuiltinPtrauthTypeDiscriminator() { 863 SourceLocation Loc = ConsumeToken(); 864 865 BalancedDelimiterTracker T(*this, tok::l_paren); 866 if (T.expectAndConsume()) 867 return ExprError(); 868 869 TypeResult Ty = ParseTypeName(); 870 if (Ty.isInvalid()) { 871 SkipUntil(tok::r_paren, StopAtSemi); 872 return ExprError(); 873 } 874 875 SourceLocation EndLoc = Tok.getLocation(); 876 T.consumeClose(); 877 return Actions.ActOnUnaryExprOrTypeTraitExpr( 878 Loc, UETT_PtrAuthTypeDiscriminator, 879 /*isType=*/true, Ty.get().getAsOpaquePtr(), SourceRange(Loc, EndLoc)); 880 } 881 882 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 883 /// a unary-expression. 884 /// 885 /// \p isAddressOfOperand exists because an id-expression that is the operand 886 /// of address-of gets special treatment due to member pointers. NotCastExpr 887 /// is set to true if the token is not the start of a cast-expression, and no 888 /// diagnostic is emitted in this case and no tokens are consumed. 889 /// 890 /// \verbatim 891 /// cast-expression: [C99 6.5.4] 892 /// unary-expression 893 /// '(' type-name ')' cast-expression 894 /// 895 /// unary-expression: [C99 6.5.3] 896 /// postfix-expression 897 /// '++' unary-expression 898 /// '--' unary-expression 899 /// [Coro] 'co_await' cast-expression 900 /// unary-operator cast-expression 901 /// 'sizeof' unary-expression 902 /// 'sizeof' '(' type-name ')' 903 /// [C++11] 'sizeof' '...' '(' identifier ')' 904 /// [GNU] '__alignof' unary-expression 905 /// [GNU] '__alignof' '(' type-name ')' 906 /// [C11] '_Alignof' '(' type-name ')' 907 /// [C++11] 'alignof' '(' type-id ')' 908 /// [GNU] '&&' identifier 909 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 910 /// [C++] new-expression 911 /// [C++] delete-expression 912 /// 913 /// unary-operator: one of 914 /// '&' '*' '+' '-' '~' '!' 915 /// [GNU] '__extension__' '__real' '__imag' 916 /// 917 /// primary-expression: [C99 6.5.1] 918 /// [C99] identifier 919 /// [C++] id-expression 920 /// constant 921 /// string-literal 922 /// [C++] boolean-literal [C++ 2.13.5] 923 /// [C++11] 'nullptr' [C++11 2.14.7] 924 /// [C++11] user-defined-literal 925 /// '(' expression ')' 926 /// [C11] generic-selection 927 /// [C++2a] requires-expression 928 /// '__func__' [C99 6.4.2.2] 929 /// [GNU] '__FUNCTION__' 930 /// [MS] '__FUNCDNAME__' 931 /// [MS] 'L__FUNCTION__' 932 /// [MS] '__FUNCSIG__' 933 /// [MS] 'L__FUNCSIG__' 934 /// [GNU] '__PRETTY_FUNCTION__' 935 /// [GNU] '(' compound-statement ')' 936 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 937 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 938 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 939 /// assign-expr ')' 940 /// [GNU] '__builtin_FILE' '(' ')' 941 /// [CLANG] '__builtin_FILE_NAME' '(' ')' 942 /// [GNU] '__builtin_FUNCTION' '(' ')' 943 /// [MS] '__builtin_FUNCSIG' '(' ')' 944 /// [GNU] '__builtin_LINE' '(' ')' 945 /// [CLANG] '__builtin_COLUMN' '(' ')' 946 /// [GNU] '__builtin_source_location' '(' ')' 947 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 948 /// [GNU] '__null' 949 /// [OBJC] '[' objc-message-expr ']' 950 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 951 /// [OBJC] '\@protocol' '(' identifier ')' 952 /// [OBJC] '\@encode' '(' type-name ')' 953 /// [OBJC] objc-string-literal 954 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 955 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 956 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 957 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 958 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 959 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 960 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 961 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 962 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 963 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 964 /// [C++] 'this' [C++ 9.3.2] 965 /// [G++] unary-type-trait '(' type-id ')' 966 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 967 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 968 /// [clang] '^' block-literal 969 /// 970 /// constant: [C99 6.4.4] 971 /// integer-constant 972 /// floating-constant 973 /// enumeration-constant -> identifier 974 /// character-constant 975 /// 976 /// id-expression: [C++ 5.1] 977 /// unqualified-id 978 /// qualified-id 979 /// 980 /// unqualified-id: [C++ 5.1] 981 /// identifier 982 /// operator-function-id 983 /// conversion-function-id 984 /// '~' class-name 985 /// template-id 986 /// 987 /// new-expression: [C++ 5.3.4] 988 /// '::'[opt] 'new' new-placement[opt] new-type-id 989 /// new-initializer[opt] 990 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 991 /// new-initializer[opt] 992 /// 993 /// delete-expression: [C++ 5.3.5] 994 /// '::'[opt] 'delete' cast-expression 995 /// '::'[opt] 'delete' '[' ']' cast-expression 996 /// 997 /// [GNU/Embarcadero] unary-type-trait: 998 /// '__is_arithmetic' 999 /// '__is_floating_point' 1000 /// '__is_integral' 1001 /// '__is_lvalue_expr' 1002 /// '__is_rvalue_expr' 1003 /// '__is_complete_type' 1004 /// '__is_void' 1005 /// '__is_array' 1006 /// '__is_function' 1007 /// '__is_reference' 1008 /// '__is_lvalue_reference' 1009 /// '__is_rvalue_reference' 1010 /// '__is_fundamental' 1011 /// '__is_object' 1012 /// '__is_scalar' 1013 /// '__is_compound' 1014 /// '__is_pointer' 1015 /// '__is_member_object_pointer' 1016 /// '__is_member_function_pointer' 1017 /// '__is_member_pointer' 1018 /// '__is_const' 1019 /// '__is_volatile' 1020 /// '__is_trivial' 1021 /// '__is_standard_layout' 1022 /// '__is_signed' 1023 /// '__is_unsigned' 1024 /// 1025 /// [GNU] unary-type-trait: 1026 /// '__has_nothrow_assign' 1027 /// '__has_nothrow_copy' 1028 /// '__has_nothrow_constructor' 1029 /// '__has_trivial_assign' [TODO] 1030 /// '__has_trivial_copy' [TODO] 1031 /// '__has_trivial_constructor' 1032 /// '__has_trivial_destructor' 1033 /// '__has_virtual_destructor' 1034 /// '__is_abstract' [TODO] 1035 /// '__is_class' 1036 /// '__is_empty' [TODO] 1037 /// '__is_enum' 1038 /// '__is_final' 1039 /// '__is_pod' 1040 /// '__is_polymorphic' 1041 /// '__is_sealed' [MS] 1042 /// '__is_trivial' 1043 /// '__is_union' 1044 /// '__has_unique_object_representations' 1045 /// 1046 /// [Clang] unary-type-trait: 1047 /// '__is_aggregate' 1048 /// '__trivially_copyable' 1049 /// 1050 /// binary-type-trait: 1051 /// [GNU] '__is_base_of' 1052 /// [MS] '__is_convertible_to' 1053 /// '__is_convertible' 1054 /// '__is_same' 1055 /// 1056 /// [Embarcadero] array-type-trait: 1057 /// '__array_rank' 1058 /// '__array_extent' 1059 /// 1060 /// [Embarcadero] expression-trait: 1061 /// '__is_lvalue_expr' 1062 /// '__is_rvalue_expr' 1063 /// \endverbatim 1064 /// 1065 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 1066 bool isAddressOfOperand, 1067 bool &NotCastExpr, 1068 TypeCastState isTypeCast, 1069 bool isVectorLiteral, 1070 bool *NotPrimaryExpression) { 1071 ExprResult Res; 1072 tok::TokenKind SavedKind = Tok.getKind(); 1073 auto SavedType = PreferredType; 1074 NotCastExpr = false; 1075 1076 // Are postfix-expression suffix operators permitted after this 1077 // cast-expression? If not, and we find some, we'll parse them anyway and 1078 // diagnose them. 1079 bool AllowSuffix = true; 1080 1081 // This handles all of cast-expression, unary-expression, postfix-expression, 1082 // and primary-expression. We handle them together like this for efficiency 1083 // and to simplify handling of an expression starting with a '(' token: which 1084 // may be one of a parenthesized expression, cast-expression, compound literal 1085 // expression, or statement expression. 1086 // 1087 // If the parsed tokens consist of a primary-expression, the cases below 1088 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 1089 // to handle the postfix expression suffixes. Cases that cannot be followed 1090 // by postfix exprs should set AllowSuffix to false. 1091 switch (SavedKind) { 1092 case tok::l_paren: { 1093 // If this expression is limited to being a unary-expression, the paren can 1094 // not start a cast expression. 1095 ParenParseOption ParenExprType; 1096 switch (ParseKind) { 1097 case CastParseKind::UnaryExprOnly: 1098 assert(getLangOpts().CPlusPlus && "not possible to get here in C"); 1099 [[fallthrough]]; 1100 case CastParseKind::AnyCastExpr: 1101 ParenExprType = ParenParseOption::CastExpr; 1102 break; 1103 case CastParseKind::PrimaryExprOnly: 1104 ParenExprType = FoldExpr; 1105 break; 1106 } 1107 ParsedType CastTy; 1108 SourceLocation RParenLoc; 1109 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 1110 isTypeCast == IsTypeCast, CastTy, RParenLoc); 1111 1112 // FIXME: What should we do if a vector literal is followed by a 1113 // postfix-expression suffix? Usually postfix operators are permitted on 1114 // literals. 1115 if (isVectorLiteral) 1116 return Res; 1117 1118 switch (ParenExprType) { 1119 case SimpleExpr: break; // Nothing else to do. 1120 case CompoundStmt: break; // Nothing else to do. 1121 case CompoundLiteral: 1122 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 1123 // postfix-expression exist, parse them now. 1124 break; 1125 case CastExpr: 1126 // We have parsed the cast-expression and no postfix-expr pieces are 1127 // following. 1128 return Res; 1129 case FoldExpr: 1130 // We only parsed a fold-expression. There might be postfix-expr pieces 1131 // afterwards; parse them now. 1132 break; 1133 } 1134 1135 break; 1136 } 1137 1138 // primary-expression 1139 case tok::numeric_constant: 1140 case tok::binary_data: 1141 // constant: integer-constant 1142 // constant: floating-constant 1143 1144 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 1145 ConsumeToken(); 1146 break; 1147 1148 case tok::kw_true: 1149 case tok::kw_false: 1150 Res = ParseCXXBoolLiteral(); 1151 break; 1152 1153 case tok::kw___objc_yes: 1154 case tok::kw___objc_no: 1155 Res = ParseObjCBoolLiteral(); 1156 break; 1157 1158 case tok::kw_nullptr: 1159 if (getLangOpts().CPlusPlus) 1160 Diag(Tok, diag::warn_cxx98_compat_nullptr); 1161 else 1162 Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword 1163 : diag::ext_c_nullptr) << Tok.getName(); 1164 1165 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 1166 break; 1167 1168 case tok::annot_primary_expr: 1169 case tok::annot_overload_set: 1170 Res = getExprAnnotation(Tok); 1171 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set) 1172 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get()); 1173 ConsumeAnnotationToken(); 1174 if (!Res.isInvalid() && Tok.is(tok::less)) 1175 checkPotentialAngleBracket(Res); 1176 break; 1177 1178 case tok::annot_non_type: 1179 case tok::annot_non_type_dependent: 1180 case tok::annot_non_type_undeclared: { 1181 CXXScopeSpec SS; 1182 Token Replacement; 1183 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 1184 assert(!Res.isUnset() && 1185 "should not perform typo correction on annotation token"); 1186 break; 1187 } 1188 1189 case tok::annot_embed: { 1190 injectEmbedTokens(); 1191 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1192 isVectorLiteral, NotPrimaryExpression); 1193 } 1194 1195 case tok::kw___super: 1196 case tok::kw_decltype: 1197 // Annotate the token and tail recurse. 1198 if (TryAnnotateTypeOrScopeToken()) 1199 return ExprError(); 1200 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 1201 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1202 isVectorLiteral, NotPrimaryExpression); 1203 1204 case tok::identifier: 1205 ParseIdentifier: { // primary-expression: identifier 1206 // unqualified-id: identifier 1207 // constant: enumeration-constant 1208 // Turn a potentially qualified name into a annot_typename or 1209 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 1210 if (getLangOpts().CPlusPlus) { 1211 // Avoid the unnecessary parse-time lookup in the common case 1212 // where the syntax forbids a type. 1213 Token Next = NextToken(); 1214 1215 if (Next.is(tok::ellipsis) && Tok.is(tok::identifier) && 1216 GetLookAheadToken(2).is(tok::l_square)) { 1217 // Annotate the token and tail recurse. 1218 // If the token is not annotated, then it might be an expression pack 1219 // indexing 1220 if (!TryAnnotateTypeOrScopeToken() && 1221 Tok.isOneOf(tok::annot_pack_indexing_type, tok::annot_cxxscope)) 1222 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1223 isVectorLiteral, NotPrimaryExpression); 1224 } 1225 1226 // If this identifier was reverted from a token ID, and the next token 1227 // is a parenthesis, this is likely to be a use of a type trait. Check 1228 // those tokens. 1229 else if (Next.is(tok::l_paren) && Tok.is(tok::identifier) && 1230 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 1231 IdentifierInfo *II = Tok.getIdentifierInfo(); 1232 tok::TokenKind Kind; 1233 if (isRevertibleTypeTrait(II, &Kind)) { 1234 Tok.setKind(Kind); 1235 return ParseCastExpression(ParseKind, isAddressOfOperand, 1236 NotCastExpr, isTypeCast, 1237 isVectorLiteral, NotPrimaryExpression); 1238 } 1239 } 1240 1241 else if ((!ColonIsSacred && Next.is(tok::colon)) || 1242 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 1243 tok::l_brace)) { 1244 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1245 if (TryAnnotateTypeOrScopeToken()) 1246 return ExprError(); 1247 if (!Tok.is(tok::identifier)) 1248 return ParseCastExpression(ParseKind, isAddressOfOperand, 1249 NotCastExpr, isTypeCast, 1250 isVectorLiteral, 1251 NotPrimaryExpression); 1252 } 1253 } 1254 1255 // Consume the identifier so that we can see if it is followed by a '(' or 1256 // '.'. 1257 IdentifierInfo &II = *Tok.getIdentifierInfo(); 1258 SourceLocation ILoc = ConsumeToken(); 1259 1260 // Support 'Class.property' and 'super.property' notation. 1261 if (getLangOpts().ObjC && Tok.is(tok::period) && 1262 (Actions.getTypeName(II, ILoc, getCurScope()) || 1263 // Allow the base to be 'super' if in an objc-method. 1264 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 1265 ConsumeToken(); 1266 1267 if (Tok.is(tok::code_completion) && &II != Ident_super) { 1268 cutOffParsing(); 1269 Actions.CodeCompletion().CodeCompleteObjCClassPropertyRefExpr( 1270 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 1271 return ExprError(); 1272 } 1273 // Allow either an identifier or the keyword 'class' (in C++). 1274 if (Tok.isNot(tok::identifier) && 1275 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 1276 Diag(Tok, diag::err_expected_property_name); 1277 return ExprError(); 1278 } 1279 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 1280 SourceLocation PropertyLoc = ConsumeToken(); 1281 1282 Res = Actions.ObjC().ActOnClassPropertyRefExpr(II, PropertyName, ILoc, 1283 PropertyLoc); 1284 break; 1285 } 1286 1287 // In an Objective-C method, if we have "super" followed by an identifier, 1288 // the token sequence is ill-formed. However, if there's a ':' or ']' after 1289 // that identifier, this is probably a message send with a missing open 1290 // bracket. Treat it as such. 1291 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 1292 getCurScope()->isInObjcMethodScope() && 1293 ((Tok.is(tok::identifier) && 1294 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1295 Tok.is(tok::code_completion))) { 1296 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1297 nullptr); 1298 break; 1299 } 1300 1301 // If we have an Objective-C class name followed by an identifier 1302 // and either ':' or ']', this is an Objective-C class message 1303 // send that's missing the opening '['. Recovery 1304 // appropriately. Also take this path if we're performing code 1305 // completion after an Objective-C class name. 1306 if (getLangOpts().ObjC && 1307 ((Tok.is(tok::identifier) && !InMessageExpression) || 1308 Tok.is(tok::code_completion))) { 1309 const Token& Next = NextToken(); 1310 if (Tok.is(tok::code_completion) || 1311 Next.is(tok::colon) || Next.is(tok::r_square)) 1312 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1313 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1314 // Fake up a Declarator to use with ActOnTypeName. 1315 DeclSpec DS(AttrFactory); 1316 DS.SetRangeStart(ILoc); 1317 DS.SetRangeEnd(ILoc); 1318 const char *PrevSpec = nullptr; 1319 unsigned DiagID; 1320 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1321 Actions.getASTContext().getPrintingPolicy()); 1322 1323 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1324 DeclaratorContext::TypeName); 1325 TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo); 1326 if (Ty.isInvalid()) 1327 break; 1328 1329 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1330 SourceLocation(), 1331 Ty.get(), nullptr); 1332 break; 1333 } 1334 } 1335 1336 // Make sure to pass down the right value for isAddressOfOperand. 1337 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1338 isAddressOfOperand = false; 1339 1340 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1341 // need to know whether or not this identifier is a function designator or 1342 // not. 1343 UnqualifiedId Name; 1344 CXXScopeSpec ScopeSpec; 1345 SourceLocation TemplateKWLoc; 1346 Token Replacement; 1347 CastExpressionIdValidator Validator( 1348 /*Next=*/Tok, 1349 /*AllowTypes=*/isTypeCast != NotTypeCast, 1350 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1351 Validator.IsAddressOfOperand = isAddressOfOperand; 1352 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1353 Validator.WantExpressionKeywords = false; 1354 Validator.WantRemainingKeywords = false; 1355 } else { 1356 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1357 } 1358 Name.setIdentifier(&II, ILoc); 1359 Res = Actions.ActOnIdExpression( 1360 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1361 isAddressOfOperand, &Validator, 1362 /*IsInlineAsmIdentifier=*/false, 1363 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1364 if (!Res.isInvalid() && Res.isUnset()) { 1365 UnconsumeToken(Replacement); 1366 return ParseCastExpression(ParseKind, isAddressOfOperand, 1367 NotCastExpr, isTypeCast, 1368 /*isVectorLiteral=*/false, 1369 NotPrimaryExpression); 1370 } 1371 Res = tryParseCXXPackIndexingExpression(Res); 1372 if (!Res.isInvalid() && Tok.is(tok::less)) 1373 checkPotentialAngleBracket(Res); 1374 break; 1375 } 1376 case tok::char_constant: // constant: character-constant 1377 case tok::wide_char_constant: 1378 case tok::utf8_char_constant: 1379 case tok::utf16_char_constant: 1380 case tok::utf32_char_constant: 1381 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1382 ConsumeToken(); 1383 break; 1384 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1385 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1386 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1387 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1388 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1389 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1390 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1391 // Function local predefined macros are represented by PredefinedExpr except 1392 // when Microsoft extensions are enabled and one of these macros is adjacent 1393 // to a string literal or another one of these macros. 1394 if (!(getLangOpts().MicrosoftExt && 1395 tokenIsLikeStringLiteral(Tok, getLangOpts()) && 1396 tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) { 1397 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1398 ConsumeToken(); 1399 break; 1400 } 1401 [[fallthrough]]; // treat MS function local macros as concatenable strings 1402 case tok::string_literal: // primary-expression: string-literal 1403 case tok::wide_string_literal: 1404 case tok::utf8_string_literal: 1405 case tok::utf16_string_literal: 1406 case tok::utf32_string_literal: 1407 Res = ParseStringLiteralExpression(true); 1408 break; 1409 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1410 Res = ParseGenericSelectionExpression(); 1411 break; 1412 case tok::kw___builtin_available: 1413 Res = ParseAvailabilityCheckExpr(Tok.getLocation()); 1414 break; 1415 case tok::kw___builtin_va_arg: 1416 case tok::kw___builtin_offsetof: 1417 case tok::kw___builtin_choose_expr: 1418 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1419 case tok::kw___builtin_convertvector: 1420 case tok::kw___builtin_COLUMN: 1421 case tok::kw___builtin_FILE: 1422 case tok::kw___builtin_FILE_NAME: 1423 case tok::kw___builtin_FUNCTION: 1424 case tok::kw___builtin_FUNCSIG: 1425 case tok::kw___builtin_LINE: 1426 case tok::kw___builtin_source_location: 1427 if (NotPrimaryExpression) 1428 *NotPrimaryExpression = true; 1429 // This parses the complete suffix; we can return early. 1430 return ParseBuiltinPrimaryExpression(); 1431 case tok::kw___null: 1432 Res = Actions.ActOnGNUNullExpr(ConsumeToken()); 1433 break; 1434 1435 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1436 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1437 if (NotPrimaryExpression) 1438 *NotPrimaryExpression = true; 1439 // C++ [expr.unary] has: 1440 // unary-expression: 1441 // ++ cast-expression 1442 // -- cast-expression 1443 Token SavedTok = Tok; 1444 ConsumeToken(); 1445 1446 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1447 SavedTok.getLocation()); 1448 // One special case is implicitly handled here: if the preceding tokens are 1449 // an ambiguous cast expression, such as "(T())++", then we recurse to 1450 // determine whether the '++' is prefix or postfix. 1451 Res = ParseCastExpression(getLangOpts().CPlusPlus ? 1452 UnaryExprOnly : AnyCastExpr, 1453 /*isAddressOfOperand*/false, NotCastExpr, 1454 NotTypeCast); 1455 if (NotCastExpr) { 1456 // If we return with NotCastExpr = true, we must not consume any tokens, 1457 // so put the token back where we found it. 1458 assert(Res.isInvalid()); 1459 UnconsumeToken(SavedTok); 1460 return ExprError(); 1461 } 1462 if (!Res.isInvalid()) { 1463 Expr *Arg = Res.get(); 1464 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1465 SavedKind, Arg); 1466 if (Res.isInvalid()) 1467 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(), 1468 Arg->getEndLoc(), Arg); 1469 } 1470 return Res; 1471 } 1472 case tok::amp: { // unary-expression: '&' cast-expression 1473 if (NotPrimaryExpression) 1474 *NotPrimaryExpression = true; 1475 // Special treatment because of member pointers 1476 SourceLocation SavedLoc = ConsumeToken(); 1477 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1478 1479 Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true); 1480 if (!Res.isInvalid()) { 1481 Expr *Arg = Res.get(); 1482 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1483 if (Res.isInvalid()) 1484 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(), 1485 Arg); 1486 } 1487 return Res; 1488 } 1489 1490 case tok::star: // unary-expression: '*' cast-expression 1491 case tok::plus: // unary-expression: '+' cast-expression 1492 case tok::minus: // unary-expression: '-' cast-expression 1493 case tok::tilde: // unary-expression: '~' cast-expression 1494 case tok::exclaim: // unary-expression: '!' cast-expression 1495 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1496 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1497 if (NotPrimaryExpression) 1498 *NotPrimaryExpression = true; 1499 SourceLocation SavedLoc = ConsumeToken(); 1500 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1501 Res = ParseCastExpression(AnyCastExpr); 1502 if (!Res.isInvalid()) { 1503 Expr *Arg = Res.get(); 1504 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg, 1505 isAddressOfOperand); 1506 if (Res.isInvalid()) 1507 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg); 1508 } 1509 return Res; 1510 } 1511 1512 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1513 if (NotPrimaryExpression) 1514 *NotPrimaryExpression = true; 1515 SourceLocation CoawaitLoc = ConsumeToken(); 1516 Res = ParseCastExpression(AnyCastExpr); 1517 if (!Res.isInvalid()) 1518 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1519 return Res; 1520 } 1521 1522 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1523 // __extension__ silences extension warnings in the subexpression. 1524 if (NotPrimaryExpression) 1525 *NotPrimaryExpression = true; 1526 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1527 SourceLocation SavedLoc = ConsumeToken(); 1528 Res = ParseCastExpression(AnyCastExpr); 1529 if (!Res.isInvalid()) 1530 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1531 return Res; 1532 } 1533 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1534 diagnoseUseOfC11Keyword(Tok); 1535 [[fallthrough]]; 1536 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1537 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1538 // unary-expression: '__alignof' '(' type-name ')' 1539 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1540 // unary-expression: 'sizeof' '(' type-name ')' 1541 // unary-expression: '__datasizeof' unary-expression 1542 // unary-expression: '__datasizeof' '(' type-name ')' 1543 case tok::kw___datasizeof: 1544 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1545 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1546 case tok::kw___builtin_omp_required_simd_align: 1547 case tok::kw___builtin_vectorelements: 1548 if (NotPrimaryExpression) 1549 *NotPrimaryExpression = true; 1550 AllowSuffix = false; 1551 Res = ParseUnaryExprOrTypeTraitExpression(); 1552 break; 1553 case tok::ampamp: { // unary-expression: '&&' identifier 1554 if (NotPrimaryExpression) 1555 *NotPrimaryExpression = true; 1556 SourceLocation AmpAmpLoc = ConsumeToken(); 1557 if (Tok.isNot(tok::identifier)) 1558 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1559 1560 if (getCurScope()->getFnParent() == nullptr) 1561 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1562 1563 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1564 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1565 Tok.getLocation()); 1566 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1567 ConsumeToken(); 1568 AllowSuffix = false; 1569 break; 1570 } 1571 case tok::kw_const_cast: 1572 case tok::kw_dynamic_cast: 1573 case tok::kw_reinterpret_cast: 1574 case tok::kw_static_cast: 1575 case tok::kw_addrspace_cast: 1576 if (NotPrimaryExpression) 1577 *NotPrimaryExpression = true; 1578 Res = ParseCXXCasts(); 1579 break; 1580 case tok::kw___builtin_bit_cast: 1581 if (NotPrimaryExpression) 1582 *NotPrimaryExpression = true; 1583 Res = ParseBuiltinBitCast(); 1584 break; 1585 case tok::kw_typeid: 1586 if (NotPrimaryExpression) 1587 *NotPrimaryExpression = true; 1588 Res = ParseCXXTypeid(); 1589 break; 1590 case tok::kw___uuidof: 1591 if (NotPrimaryExpression) 1592 *NotPrimaryExpression = true; 1593 Res = ParseCXXUuidof(); 1594 break; 1595 case tok::kw_this: 1596 Res = ParseCXXThis(); 1597 break; 1598 case tok::kw___builtin_sycl_unique_stable_name: 1599 Res = ParseSYCLUniqueStableNameExpression(); 1600 break; 1601 1602 case tok::annot_typename: 1603 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1604 TypeResult Type = getTypeAnnotation(Tok); 1605 1606 // Fake up a Declarator to use with ActOnTypeName. 1607 DeclSpec DS(AttrFactory); 1608 DS.SetRangeStart(Tok.getLocation()); 1609 DS.SetRangeEnd(Tok.getLastLoc()); 1610 1611 const char *PrevSpec = nullptr; 1612 unsigned DiagID; 1613 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1614 PrevSpec, DiagID, Type, 1615 Actions.getASTContext().getPrintingPolicy()); 1616 1617 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1618 DeclaratorContext::TypeName); 1619 TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo); 1620 if (Ty.isInvalid()) 1621 break; 1622 1623 ConsumeAnnotationToken(); 1624 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1625 Ty.get(), nullptr); 1626 break; 1627 } 1628 [[fallthrough]]; 1629 1630 case tok::annot_decltype: 1631 case tok::annot_pack_indexing_type: 1632 case tok::kw_char: 1633 case tok::kw_wchar_t: 1634 case tok::kw_char8_t: 1635 case tok::kw_char16_t: 1636 case tok::kw_char32_t: 1637 case tok::kw_bool: 1638 case tok::kw_short: 1639 case tok::kw_int: 1640 case tok::kw_long: 1641 case tok::kw___int64: 1642 case tok::kw___int128: 1643 case tok::kw__ExtInt: 1644 case tok::kw__BitInt: 1645 case tok::kw_signed: 1646 case tok::kw_unsigned: 1647 case tok::kw_half: 1648 case tok::kw_float: 1649 case tok::kw_double: 1650 case tok::kw___bf16: 1651 case tok::kw__Float16: 1652 case tok::kw___float128: 1653 case tok::kw___ibm128: 1654 case tok::kw_void: 1655 case tok::kw_auto: 1656 case tok::kw_typename: 1657 case tok::kw_typeof: 1658 case tok::kw___vector: 1659 case tok::kw__Accum: 1660 case tok::kw__Fract: 1661 case tok::kw__Sat: 1662 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1663 #include "clang/Basic/OpenCLImageTypes.def" 1664 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case tok::kw_##Name: 1665 #include "clang/Basic/HLSLIntangibleTypes.def" 1666 { 1667 if (!getLangOpts().CPlusPlus) { 1668 Diag(Tok, diag::err_expected_expression); 1669 return ExprError(); 1670 } 1671 1672 // Everything henceforth is a postfix-expression. 1673 if (NotPrimaryExpression) 1674 *NotPrimaryExpression = true; 1675 1676 if (SavedKind == tok::kw_typename) { 1677 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1678 // typename-specifier braced-init-list 1679 if (TryAnnotateTypeOrScopeToken()) 1680 return ExprError(); 1681 1682 if (!Tok.isSimpleTypeSpecifier(getLangOpts())) 1683 // We are trying to parse a simple-type-specifier but might not get such 1684 // a token after error recovery. 1685 return ExprError(); 1686 } 1687 1688 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1689 // simple-type-specifier braced-init-list 1690 // 1691 DeclSpec DS(AttrFactory); 1692 1693 ParseCXXSimpleTypeSpecifier(DS); 1694 if (Tok.isNot(tok::l_paren) && 1695 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1696 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1697 << DS.getSourceRange()); 1698 1699 if (Tok.is(tok::l_brace)) 1700 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1701 1702 Res = ParseCXXTypeConstructExpression(DS); 1703 break; 1704 } 1705 1706 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1707 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1708 // (We can end up in this situation after tentative parsing.) 1709 if (TryAnnotateTypeOrScopeToken()) 1710 return ExprError(); 1711 if (!Tok.is(tok::annot_cxxscope)) 1712 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1713 isTypeCast, isVectorLiteral, 1714 NotPrimaryExpression); 1715 1716 Token Next = NextToken(); 1717 if (Next.is(tok::annot_template_id)) { 1718 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1719 if (TemplateId->Kind == TNK_Type_template) { 1720 // We have a qualified template-id that we know refers to a 1721 // type, translate it into a type and continue parsing as a 1722 // cast expression. 1723 CXXScopeSpec SS; 1724 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1725 /*ObjectHasErrors=*/false, 1726 /*EnteringContext=*/false); 1727 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes); 1728 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1729 isTypeCast, isVectorLiteral, 1730 NotPrimaryExpression); 1731 } 1732 } 1733 1734 // Parse as an id-expression. 1735 Res = ParseCXXIdExpression(isAddressOfOperand); 1736 break; 1737 } 1738 1739 case tok::annot_template_id: { // [C++] template-id 1740 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1741 if (TemplateId->Kind == TNK_Type_template) { 1742 // We have a template-id that we know refers to a type, 1743 // translate it into a type and continue parsing as a cast 1744 // expression. 1745 CXXScopeSpec SS; 1746 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes); 1747 return ParseCastExpression(ParseKind, isAddressOfOperand, 1748 NotCastExpr, isTypeCast, isVectorLiteral, 1749 NotPrimaryExpression); 1750 } 1751 1752 // Fall through to treat the template-id as an id-expression. 1753 [[fallthrough]]; 1754 } 1755 1756 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1757 Res = ParseCXXIdExpression(isAddressOfOperand); 1758 break; 1759 1760 case tok::coloncolon: { 1761 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1762 // annotates the token, tail recurse. 1763 if (TryAnnotateTypeOrScopeToken()) 1764 return ExprError(); 1765 if (!Tok.is(tok::coloncolon)) 1766 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1767 isVectorLiteral, NotPrimaryExpression); 1768 1769 // ::new -> [C++] new-expression 1770 // ::delete -> [C++] delete-expression 1771 SourceLocation CCLoc = ConsumeToken(); 1772 if (Tok.is(tok::kw_new)) { 1773 if (NotPrimaryExpression) 1774 *NotPrimaryExpression = true; 1775 Res = ParseCXXNewExpression(true, CCLoc); 1776 AllowSuffix = false; 1777 break; 1778 } 1779 if (Tok.is(tok::kw_delete)) { 1780 if (NotPrimaryExpression) 1781 *NotPrimaryExpression = true; 1782 Res = ParseCXXDeleteExpression(true, CCLoc); 1783 AllowSuffix = false; 1784 break; 1785 } 1786 1787 // This is not a type name or scope specifier, it is an invalid expression. 1788 Diag(CCLoc, diag::err_expected_expression); 1789 return ExprError(); 1790 } 1791 1792 case tok::kw_new: // [C++] new-expression 1793 if (NotPrimaryExpression) 1794 *NotPrimaryExpression = true; 1795 Res = ParseCXXNewExpression(false, Tok.getLocation()); 1796 AllowSuffix = false; 1797 break; 1798 1799 case tok::kw_delete: // [C++] delete-expression 1800 if (NotPrimaryExpression) 1801 *NotPrimaryExpression = true; 1802 Res = ParseCXXDeleteExpression(false, Tok.getLocation()); 1803 AllowSuffix = false; 1804 break; 1805 1806 case tok::kw_requires: // [C++2a] requires-expression 1807 Res = ParseRequiresExpression(); 1808 AllowSuffix = false; 1809 break; 1810 1811 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1812 if (NotPrimaryExpression) 1813 *NotPrimaryExpression = true; 1814 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1815 SourceLocation KeyLoc = ConsumeToken(); 1816 BalancedDelimiterTracker T(*this, tok::l_paren); 1817 1818 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1819 return ExprError(); 1820 // C++11 [expr.unary.noexcept]p1: 1821 // The noexcept operator determines whether the evaluation of its operand, 1822 // which is an unevaluated operand, can throw an exception. 1823 EnterExpressionEvaluationContext Unevaluated( 1824 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1825 Res = ParseExpression(); 1826 1827 T.consumeClose(); 1828 1829 if (!Res.isInvalid()) 1830 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(), 1831 T.getCloseLocation()); 1832 AllowSuffix = false; 1833 break; 1834 } 1835 1836 #define TYPE_TRAIT(N,Spelling,K) \ 1837 case tok::kw_##Spelling: 1838 #include "clang/Basic/TokenKinds.def" 1839 Res = ParseTypeTrait(); 1840 break; 1841 1842 case tok::kw___array_rank: 1843 case tok::kw___array_extent: 1844 if (NotPrimaryExpression) 1845 *NotPrimaryExpression = true; 1846 Res = ParseArrayTypeTrait(); 1847 break; 1848 1849 case tok::kw___builtin_ptrauth_type_discriminator: 1850 return ParseBuiltinPtrauthTypeDiscriminator(); 1851 1852 case tok::kw___is_lvalue_expr: 1853 case tok::kw___is_rvalue_expr: 1854 if (NotPrimaryExpression) 1855 *NotPrimaryExpression = true; 1856 Res = ParseExpressionTrait(); 1857 break; 1858 1859 case tok::at: { 1860 if (NotPrimaryExpression) 1861 *NotPrimaryExpression = true; 1862 SourceLocation AtLoc = ConsumeToken(); 1863 return ParseObjCAtExpression(AtLoc); 1864 } 1865 case tok::caret: 1866 Res = ParseBlockLiteralExpression(); 1867 break; 1868 case tok::code_completion: { 1869 cutOffParsing(); 1870 Actions.CodeCompletion().CodeCompleteExpression( 1871 getCurScope(), PreferredType.get(Tok.getLocation())); 1872 return ExprError(); 1873 } 1874 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: 1875 #include "clang/Basic/TransformTypeTraits.def" 1876 // HACK: libstdc++ uses some of the transform-type-traits as alias 1877 // templates, so we need to work around this. 1878 if (!NextToken().is(tok::l_paren)) { 1879 Tok.setKind(tok::identifier); 1880 Diag(Tok, diag::ext_keyword_as_ident) 1881 << Tok.getIdentifierInfo()->getName() << 0; 1882 goto ParseIdentifier; 1883 } 1884 goto ExpectedExpression; 1885 case tok::l_square: 1886 if (getLangOpts().CPlusPlus) { 1887 if (getLangOpts().ObjC) { 1888 // C++11 lambda expressions and Objective-C message sends both start with a 1889 // square bracket. There are three possibilities here: 1890 // we have a valid lambda expression, we have an invalid lambda 1891 // expression, or we have something that doesn't appear to be a lambda. 1892 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1893 Res = TryParseLambdaExpression(); 1894 if (!Res.isInvalid() && !Res.get()) { 1895 // We assume Objective-C++ message expressions are not 1896 // primary-expressions. 1897 if (NotPrimaryExpression) 1898 *NotPrimaryExpression = true; 1899 Res = ParseObjCMessageExpression(); 1900 } 1901 break; 1902 } 1903 Res = ParseLambdaExpression(); 1904 break; 1905 } 1906 if (getLangOpts().ObjC) { 1907 Res = ParseObjCMessageExpression(); 1908 break; 1909 } 1910 [[fallthrough]]; 1911 default: 1912 ExpectedExpression: 1913 NotCastExpr = true; 1914 return ExprError(); 1915 } 1916 1917 // Check to see whether Res is a function designator only. If it is and we 1918 // are compiling for OpenCL, we need to return an error as this implies 1919 // that the address of the function is being taken, which is illegal in CL. 1920 1921 if (ParseKind == PrimaryExprOnly) 1922 // This is strictly a primary-expression - no postfix-expr pieces should be 1923 // parsed. 1924 return Res; 1925 1926 if (!AllowSuffix) { 1927 // FIXME: Don't parse a primary-expression suffix if we encountered a parse 1928 // error already. 1929 if (Res.isInvalid()) 1930 return Res; 1931 1932 switch (Tok.getKind()) { 1933 case tok::l_square: 1934 case tok::l_paren: 1935 case tok::plusplus: 1936 case tok::minusminus: 1937 // "expected ';'" or similar is probably the right diagnostic here. Let 1938 // the caller decide what to do. 1939 if (Tok.isAtStartOfLine()) 1940 return Res; 1941 1942 [[fallthrough]]; 1943 case tok::period: 1944 case tok::arrow: 1945 break; 1946 1947 default: 1948 return Res; 1949 } 1950 1951 // This was a unary-expression for which a postfix-expression suffix is 1952 // not permitted by the grammar (eg, a sizeof expression or 1953 // new-expression or similar). Diagnose but parse the suffix anyway. 1954 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens) 1955 << Tok.getKind() << Res.get()->getSourceRange() 1956 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(") 1957 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation), 1958 ")"); 1959 } 1960 1961 // These can be followed by postfix-expr pieces. 1962 PreferredType = SavedType; 1963 Res = ParsePostfixExpressionSuffix(Res); 1964 if (getLangOpts().OpenCL && 1965 !getActions().getOpenCLOptions().isAvailableOption( 1966 "__cl_clang_function_pointers", getLangOpts())) 1967 if (Expr *PostfixExpr = Res.get()) { 1968 QualType Ty = PostfixExpr->getType(); 1969 if (!Ty.isNull() && Ty->isFunctionType()) { 1970 Diag(PostfixExpr->getExprLoc(), 1971 diag::err_opencl_taking_function_address_parser); 1972 return ExprError(); 1973 } 1974 } 1975 1976 return Res; 1977 } 1978 1979 /// Once the leading part of a postfix-expression is parsed, this 1980 /// method parses any suffixes that apply. 1981 /// 1982 /// \verbatim 1983 /// postfix-expression: [C99 6.5.2] 1984 /// primary-expression 1985 /// postfix-expression '[' expression ']' 1986 /// postfix-expression '[' braced-init-list ']' 1987 /// postfix-expression '[' expression-list [opt] ']' [C++23 12.4.5] 1988 /// postfix-expression '(' argument-expression-list[opt] ')' 1989 /// postfix-expression '.' identifier 1990 /// postfix-expression '->' identifier 1991 /// postfix-expression '++' 1992 /// postfix-expression '--' 1993 /// '(' type-name ')' '{' initializer-list '}' 1994 /// '(' type-name ')' '{' initializer-list ',' '}' 1995 /// 1996 /// argument-expression-list: [C99 6.5.2] 1997 /// argument-expression ...[opt] 1998 /// argument-expression-list ',' assignment-expression ...[opt] 1999 /// \endverbatim 2000 ExprResult 2001 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 2002 // Now that the primary-expression piece of the postfix-expression has been 2003 // parsed, see if there are any postfix-expression pieces here. 2004 SourceLocation Loc; 2005 auto SavedType = PreferredType; 2006 while (true) { 2007 // Each iteration relies on preferred type for the whole expression. 2008 PreferredType = SavedType; 2009 switch (Tok.getKind()) { 2010 case tok::code_completion: 2011 if (InMessageExpression) 2012 return LHS; 2013 2014 cutOffParsing(); 2015 Actions.CodeCompletion().CodeCompletePostfixExpression( 2016 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 2017 return ExprError(); 2018 2019 case tok::identifier: 2020 // If we see identifier: after an expression, and we're not already in a 2021 // message send, then this is probably a message send with a missing 2022 // opening bracket '['. 2023 if (getLangOpts().ObjC && !InMessageExpression && 2024 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 2025 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 2026 nullptr, LHS.get()); 2027 break; 2028 } 2029 // Fall through; this isn't a message send. 2030 [[fallthrough]]; 2031 2032 default: // Not a postfix-expression suffix. 2033 return LHS; 2034 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 2035 // If we have a array postfix expression that starts on a new line and 2036 // Objective-C is enabled, it is highly likely that the user forgot a 2037 // semicolon after the base expression and that the array postfix-expr is 2038 // actually another message send. In this case, do some look-ahead to see 2039 // if the contents of the square brackets are obviously not a valid 2040 // expression and recover by pretending there is no suffix. 2041 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 2042 isSimpleObjCMessageExpression()) 2043 return LHS; 2044 2045 // Reject array indices starting with a lambda-expression. '[[' is 2046 // reserved for attributes. 2047 if (CheckProhibitedCXX11Attribute()) { 2048 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2049 return ExprError(); 2050 } 2051 BalancedDelimiterTracker T(*this, tok::l_square); 2052 T.consumeOpen(); 2053 Loc = T.getOpenLocation(); 2054 ExprResult Length, Stride; 2055 SourceLocation ColonLocFirst, ColonLocSecond; 2056 ExprVector ArgExprs; 2057 bool HasError = false; 2058 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 2059 2060 // We try to parse a list of indexes in all language mode first 2061 // and, in we find 0 or one index, we try to parse an OpenMP/OpenACC array 2062 // section. This allow us to support C++23 multi dimensional subscript and 2063 // OpenMP/OpenACC sections in the same language mode. 2064 if ((!getLangOpts().OpenMP && !AllowOpenACCArraySections) || 2065 Tok.isNot(tok::colon)) { 2066 if (!getLangOpts().CPlusPlus23) { 2067 ExprResult Idx; 2068 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 2069 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 2070 Idx = ParseBraceInitializer(); 2071 } else { 2072 Idx = ParseExpression(); // May be a comma expression 2073 } 2074 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 2075 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 2076 if (Idx.isInvalid()) { 2077 HasError = true; 2078 } else { 2079 ArgExprs.push_back(Idx.get()); 2080 } 2081 } else if (Tok.isNot(tok::r_square)) { 2082 if (ParseExpressionList(ArgExprs)) { 2083 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 2084 HasError = true; 2085 } 2086 } 2087 } 2088 2089 // Handle OpenACC first, since 'AllowOpenACCArraySections' is only enabled 2090 // when actively parsing a 'var' in a 'var-list' during clause/'cache' 2091 // parsing, so it is the most specific, and best allows us to handle 2092 // OpenACC and OpenMP at the same time. 2093 if (ArgExprs.size() <= 1 && AllowOpenACCArraySections) { 2094 ColonProtectionRAIIObject RAII(*this); 2095 if (Tok.is(tok::colon)) { 2096 // Consume ':' 2097 ColonLocFirst = ConsumeToken(); 2098 if (Tok.isNot(tok::r_square)) 2099 Length = Actions.CorrectDelayedTyposInExpr(ParseExpression()); 2100 } 2101 } else if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) { 2102 ColonProtectionRAIIObject RAII(*this); 2103 if (Tok.is(tok::colon)) { 2104 // Consume ':' 2105 ColonLocFirst = ConsumeToken(); 2106 if (Tok.isNot(tok::r_square) && 2107 (getLangOpts().OpenMP < 50 || 2108 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) { 2109 Length = ParseExpression(); 2110 Length = Actions.CorrectDelayedTyposInExpr(Length); 2111 } 2112 } 2113 if (getLangOpts().OpenMP >= 50 && 2114 (OMPClauseKind == llvm::omp::Clause::OMPC_to || 2115 OMPClauseKind == llvm::omp::Clause::OMPC_from) && 2116 Tok.is(tok::colon)) { 2117 // Consume ':' 2118 ColonLocSecond = ConsumeToken(); 2119 if (Tok.isNot(tok::r_square)) { 2120 Stride = ParseExpression(); 2121 } 2122 } 2123 } 2124 2125 SourceLocation RLoc = Tok.getLocation(); 2126 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 2127 2128 if (!LHS.isInvalid() && !HasError && !Length.isInvalid() && 2129 !Stride.isInvalid() && Tok.is(tok::r_square)) { 2130 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) { 2131 // Like above, AllowOpenACCArraySections is 'more specific' and only 2132 // enabled when actively parsing a 'var' in a 'var-list' during 2133 // clause/'cache' construct parsing, so it is more specific. So we 2134 // should do it first, so that the correct node gets created. 2135 if (AllowOpenACCArraySections) { 2136 assert(!Stride.isUsable() && !ColonLocSecond.isValid() && 2137 "Stride/second colon not allowed for OpenACC"); 2138 LHS = Actions.OpenACC().ActOnArraySectionExpr( 2139 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0], 2140 ColonLocFirst, Length.get(), RLoc); 2141 } else { 2142 LHS = Actions.OpenMP().ActOnOMPArraySectionExpr( 2143 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0], 2144 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), 2145 RLoc); 2146 } 2147 } else { 2148 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 2149 ArgExprs, RLoc); 2150 } 2151 } else { 2152 LHS = ExprError(); 2153 } 2154 2155 // Match the ']'. 2156 T.consumeClose(); 2157 break; 2158 } 2159 2160 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 2161 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 2162 // '(' argument-expression-list[opt] ')' 2163 tok::TokenKind OpKind = Tok.getKind(); 2164 InMessageExpressionRAIIObject InMessage(*this, false); 2165 2166 Expr *ExecConfig = nullptr; 2167 2168 BalancedDelimiterTracker PT(*this, tok::l_paren); 2169 2170 if (OpKind == tok::lesslessless) { 2171 ExprVector ExecConfigExprs; 2172 SourceLocation OpenLoc = ConsumeToken(); 2173 2174 if (ParseSimpleExpressionList(ExecConfigExprs)) { 2175 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2176 LHS = ExprError(); 2177 } 2178 2179 SourceLocation CloseLoc; 2180 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 2181 } else if (LHS.isInvalid()) { 2182 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2183 } else { 2184 // There was an error closing the brackets 2185 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 2186 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 2187 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2188 LHS = ExprError(); 2189 } 2190 2191 if (!LHS.isInvalid()) { 2192 if (ExpectAndConsume(tok::l_paren)) 2193 LHS = ExprError(); 2194 else 2195 Loc = PrevTokLocation; 2196 } 2197 2198 if (!LHS.isInvalid()) { 2199 ExprResult ECResult = Actions.CUDA().ActOnExecConfigExpr( 2200 getCurScope(), OpenLoc, ExecConfigExprs, CloseLoc); 2201 if (ECResult.isInvalid()) 2202 LHS = ExprError(); 2203 else 2204 ExecConfig = ECResult.get(); 2205 } 2206 } else { 2207 PT.consumeOpen(); 2208 Loc = PT.getOpenLocation(); 2209 } 2210 2211 ExprVector ArgExprs; 2212 auto RunSignatureHelp = [&]() -> QualType { 2213 QualType PreferredType = 2214 Actions.CodeCompletion().ProduceCallSignatureHelp( 2215 LHS.get(), ArgExprs, PT.getOpenLocation()); 2216 CalledSignatureHelp = true; 2217 return PreferredType; 2218 }; 2219 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 2220 if (Tok.isNot(tok::r_paren)) { 2221 bool HasTrailingComma = false; 2222 bool HasError = ParseExpressionList( 2223 ArgExprs, 2224 [&] { 2225 PreferredType.enterFunctionArgument(Tok.getLocation(), 2226 RunSignatureHelp); 2227 }, 2228 /*FailImmediatelyOnInvalidExpr*/ false, 2229 /*EarlyTypoCorrection*/ false, &HasTrailingComma); 2230 2231 if (HasError && !HasTrailingComma) { 2232 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2233 // If we got an error when parsing expression list, we don't call 2234 // the CodeCompleteCall handler inside the parser. So call it here 2235 // to make sure we get overload suggestions even when we are in the 2236 // middle of a parameter. 2237 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 2238 RunSignatureHelp(); 2239 LHS = ExprError(); 2240 } else if (LHS.isInvalid()) { 2241 for (auto &E : ArgExprs) 2242 Actions.CorrectDelayedTyposInExpr(E); 2243 } 2244 } 2245 } 2246 2247 // Match the ')'. 2248 if (LHS.isInvalid()) { 2249 SkipUntil(tok::r_paren, StopAtSemi); 2250 } else if (Tok.isNot(tok::r_paren)) { 2251 bool HadDelayedTypo = false; 2252 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 2253 HadDelayedTypo = true; 2254 for (auto &E : ArgExprs) 2255 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 2256 HadDelayedTypo = true; 2257 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 2258 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 2259 // the unmatched l_paren. 2260 if (HadDelayedTypo) 2261 SkipUntil(tok::r_paren, StopAtSemi); 2262 else 2263 PT.consumeClose(); 2264 LHS = ExprError(); 2265 } else { 2266 Expr *Fn = LHS.get(); 2267 SourceLocation RParLoc = Tok.getLocation(); 2268 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc, 2269 ExecConfig); 2270 if (LHS.isInvalid()) { 2271 ArgExprs.insert(ArgExprs.begin(), Fn); 2272 LHS = 2273 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs); 2274 } 2275 PT.consumeClose(); 2276 } 2277 2278 break; 2279 } 2280 case tok::arrow: 2281 case tok::period: { 2282 // postfix-expression: p-e '->' template[opt] id-expression 2283 // postfix-expression: p-e '.' template[opt] id-expression 2284 tok::TokenKind OpKind = Tok.getKind(); 2285 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 2286 2287 CXXScopeSpec SS; 2288 ParsedType ObjectType; 2289 bool MayBePseudoDestructor = false; 2290 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 2291 2292 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 2293 2294 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 2295 Expr *Base = OrigLHS; 2296 const Type* BaseType = Base->getType().getTypePtrOrNull(); 2297 if (BaseType && Tok.is(tok::l_paren) && 2298 (BaseType->isFunctionType() || 2299 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 2300 Diag(OpLoc, diag::err_function_is_not_record) 2301 << OpKind << Base->getSourceRange() 2302 << FixItHint::CreateRemoval(OpLoc); 2303 return ParsePostfixExpressionSuffix(Base); 2304 } 2305 2306 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc, 2307 OpKind, ObjectType, 2308 MayBePseudoDestructor); 2309 if (LHS.isInvalid()) { 2310 // Clang will try to perform expression based completion as a 2311 // fallback, which is confusing in case of member references. So we 2312 // stop here without any completions. 2313 if (Tok.is(tok::code_completion)) { 2314 cutOffParsing(); 2315 return ExprError(); 2316 } 2317 break; 2318 } 2319 ParseOptionalCXXScopeSpecifier( 2320 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2321 /*EnteringContext=*/false, &MayBePseudoDestructor); 2322 if (SS.isNotEmpty()) 2323 ObjectType = nullptr; 2324 } 2325 2326 if (Tok.is(tok::code_completion)) { 2327 tok::TokenKind CorrectedOpKind = 2328 OpKind == tok::arrow ? tok::period : tok::arrow; 2329 ExprResult CorrectedLHS(/*Invalid=*/true); 2330 if (getLangOpts().CPlusPlus && OrigLHS) { 2331 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a 2332 // hack. 2333 Sema::TentativeAnalysisScope Trap(Actions); 2334 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 2335 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 2336 MayBePseudoDestructor); 2337 } 2338 2339 Expr *Base = LHS.get(); 2340 Expr *CorrectedBase = CorrectedLHS.get(); 2341 if (!CorrectedBase && !getLangOpts().CPlusPlus) 2342 CorrectedBase = Base; 2343 2344 // Code completion for a member access expression. 2345 cutOffParsing(); 2346 Actions.CodeCompletion().CodeCompleteMemberReferenceExpr( 2347 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 2348 Base && ExprStatementTokLoc == Base->getBeginLoc(), 2349 PreferredType.get(Tok.getLocation())); 2350 2351 return ExprError(); 2352 } 2353 2354 if (MayBePseudoDestructor && !LHS.isInvalid()) { 2355 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 2356 ObjectType); 2357 break; 2358 } 2359 2360 // Either the action has told us that this cannot be a 2361 // pseudo-destructor expression (based on the type of base 2362 // expression), or we didn't see a '~' in the right place. We 2363 // can still parse a destructor name here, but in that case it 2364 // names a real destructor. 2365 // Allow explicit constructor calls in Microsoft mode. 2366 // FIXME: Add support for explicit call of template constructor. 2367 SourceLocation TemplateKWLoc; 2368 UnqualifiedId Name; 2369 if (getLangOpts().ObjC && OpKind == tok::period && 2370 Tok.is(tok::kw_class)) { 2371 // Objective-C++: 2372 // After a '.' in a member access expression, treat the keyword 2373 // 'class' as if it were an identifier. 2374 // 2375 // This hack allows property access to the 'class' method because it is 2376 // such a common method name. For other C++ keywords that are 2377 // Objective-C method names, one must use the message send syntax. 2378 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2379 SourceLocation Loc = ConsumeToken(); 2380 Name.setIdentifier(Id, Loc); 2381 } else if (ParseUnqualifiedId( 2382 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2383 /*EnteringContext=*/false, 2384 /*AllowDestructorName=*/true, 2385 /*AllowConstructorName=*/ 2386 getLangOpts().MicrosoftExt && SS.isNotEmpty(), 2387 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) { 2388 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2389 LHS = ExprError(); 2390 } 2391 2392 if (!LHS.isInvalid()) 2393 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 2394 OpKind, SS, TemplateKWLoc, Name, 2395 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 2396 : nullptr); 2397 if (!LHS.isInvalid()) { 2398 if (Tok.is(tok::less)) 2399 checkPotentialAngleBracket(LHS); 2400 } else if (OrigLHS && Name.isValid()) { 2401 // Preserve the LHS if the RHS is an invalid member. 2402 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(), 2403 Name.getEndLoc(), {OrigLHS}); 2404 } 2405 break; 2406 } 2407 case tok::plusplus: // postfix-expression: postfix-expression '++' 2408 case tok::minusminus: // postfix-expression: postfix-expression '--' 2409 if (!LHS.isInvalid()) { 2410 Expr *Arg = LHS.get(); 2411 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 2412 Tok.getKind(), Arg); 2413 if (LHS.isInvalid()) 2414 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(), 2415 Tok.getLocation(), Arg); 2416 } 2417 ConsumeToken(); 2418 break; 2419 } 2420 } 2421 } 2422 2423 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 2424 /// vec_step and we are at the start of an expression or a parenthesized 2425 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 2426 /// expression (isCastExpr == false) or the type (isCastExpr == true). 2427 /// 2428 /// \verbatim 2429 /// unary-expression: [C99 6.5.3] 2430 /// 'sizeof' unary-expression 2431 /// 'sizeof' '(' type-name ')' 2432 /// [Clang] '__datasizeof' unary-expression 2433 /// [Clang] '__datasizeof' '(' type-name ')' 2434 /// [GNU] '__alignof' unary-expression 2435 /// [GNU] '__alignof' '(' type-name ')' 2436 /// [C11] '_Alignof' '(' type-name ')' 2437 /// [C++0x] 'alignof' '(' type-id ')' 2438 /// 2439 /// [GNU] typeof-specifier: 2440 /// typeof ( expressions ) 2441 /// typeof ( type-name ) 2442 /// [GNU/C++] typeof unary-expression 2443 /// [C23] typeof-specifier: 2444 /// typeof '(' typeof-specifier-argument ')' 2445 /// typeof_unqual '(' typeof-specifier-argument ')' 2446 /// 2447 /// typeof-specifier-argument: 2448 /// expression 2449 /// type-name 2450 /// 2451 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 2452 /// vec_step ( expressions ) 2453 /// vec_step ( type-name ) 2454 /// \endverbatim 2455 ExprResult 2456 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 2457 bool &isCastExpr, 2458 ParsedType &CastTy, 2459 SourceRange &CastRange) { 2460 2461 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof, 2462 tok::kw___datasizeof, tok::kw___alignof, tok::kw_alignof, 2463 tok::kw__Alignof, tok::kw_vec_step, 2464 tok::kw___builtin_omp_required_simd_align, 2465 tok::kw___builtin_vectorelements) && 2466 "Not a typeof/sizeof/alignof/vec_step expression!"); 2467 2468 ExprResult Operand; 2469 2470 // If the operand doesn't start with an '(', it must be an expression. 2471 if (Tok.isNot(tok::l_paren)) { 2472 // If construct allows a form without parenthesis, user may forget to put 2473 // pathenthesis around type name. 2474 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2475 tok::kw_alignof, tok::kw__Alignof)) { 2476 if (isTypeIdUnambiguously()) { 2477 DeclSpec DS(AttrFactory); 2478 ParseSpecifierQualifierList(DS); 2479 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 2480 DeclaratorContext::TypeName); 2481 ParseDeclarator(DeclaratorInfo); 2482 2483 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 2484 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 2485 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) { 2486 Diag(OpTok.getLocation(), 2487 diag::err_expected_parentheses_around_typename) 2488 << OpTok.getName(); 2489 } else { 2490 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 2491 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(") 2492 << FixItHint::CreateInsertion(RParenLoc, ")"); 2493 } 2494 isCastExpr = true; 2495 return ExprEmpty(); 2496 } 2497 } 2498 2499 isCastExpr = false; 2500 if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) && 2501 !getLangOpts().CPlusPlus) { 2502 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 2503 << tok::l_paren; 2504 return ExprError(); 2505 } 2506 2507 // If we're parsing a chain that consists of keywords that could be 2508 // followed by a non-parenthesized expression, BalancedDelimiterTracker 2509 // is not going to help when the nesting is too deep. In this corner case 2510 // we continue to parse with sufficient stack space to avoid crashing. 2511 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2512 tok::kw_alignof, tok::kw__Alignof) && 2513 Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2514 tok::kw_alignof, tok::kw__Alignof)) 2515 Actions.runWithSufficientStackSpace(Tok.getLocation(), [&] { 2516 Operand = ParseCastExpression(UnaryExprOnly); 2517 }); 2518 else 2519 Operand = ParseCastExpression(UnaryExprOnly); 2520 } else { 2521 // If it starts with a '(', we know that it is either a parenthesized 2522 // type-name, or it is a unary-expression that starts with a compound 2523 // literal, or starts with a primary-expression that is a parenthesized 2524 // expression. 2525 ParenParseOption ExprType = CastExpr; 2526 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 2527 2528 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 2529 false, CastTy, RParenLoc); 2530 CastRange = SourceRange(LParenLoc, RParenLoc); 2531 2532 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 2533 // a type. 2534 if (ExprType == CastExpr) { 2535 isCastExpr = true; 2536 return ExprEmpty(); 2537 } 2538 2539 if (getLangOpts().CPlusPlus || 2540 !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) { 2541 // GNU typeof in C requires the expression to be parenthesized. Not so for 2542 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 2543 // the start of a unary-expression, but doesn't include any postfix 2544 // pieces. Parse these now if present. 2545 if (!Operand.isInvalid()) 2546 Operand = ParsePostfixExpressionSuffix(Operand.get()); 2547 } 2548 } 2549 2550 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 2551 isCastExpr = false; 2552 return Operand; 2553 } 2554 2555 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as 2556 /// a parameter. 2557 ExprResult Parser::ParseSYCLUniqueStableNameExpression() { 2558 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) && 2559 "Not __builtin_sycl_unique_stable_name"); 2560 2561 SourceLocation OpLoc = ConsumeToken(); 2562 BalancedDelimiterTracker T(*this, tok::l_paren); 2563 2564 // __builtin_sycl_unique_stable_name expressions are always parenthesized. 2565 if (T.expectAndConsume(diag::err_expected_lparen_after, 2566 "__builtin_sycl_unique_stable_name")) 2567 return ExprError(); 2568 2569 TypeResult Ty = ParseTypeName(); 2570 2571 if (Ty.isInvalid()) { 2572 T.skipToEnd(); 2573 return ExprError(); 2574 } 2575 2576 if (T.consumeClose()) 2577 return ExprError(); 2578 2579 return Actions.SYCL().ActOnUniqueStableNameExpr( 2580 OpLoc, T.getOpenLocation(), T.getCloseLocation(), Ty.get()); 2581 } 2582 2583 /// Parse a sizeof or alignof expression. 2584 /// 2585 /// \verbatim 2586 /// unary-expression: [C99 6.5.3] 2587 /// 'sizeof' unary-expression 2588 /// 'sizeof' '(' type-name ')' 2589 /// [C++11] 'sizeof' '...' '(' identifier ')' 2590 /// [Clang] '__datasizeof' unary-expression 2591 /// [Clang] '__datasizeof' '(' type-name ')' 2592 /// [GNU] '__alignof' unary-expression 2593 /// [GNU] '__alignof' '(' type-name ')' 2594 /// [C11] '_Alignof' '(' type-name ')' 2595 /// [C++11] 'alignof' '(' type-id ')' 2596 /// \endverbatim 2597 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 2598 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2599 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 2600 tok::kw___builtin_omp_required_simd_align, 2601 tok::kw___builtin_vectorelements) && 2602 "Not a sizeof/alignof/vec_step expression!"); 2603 Token OpTok = Tok; 2604 ConsumeToken(); 2605 2606 // [C++11] 'sizeof' '...' '(' identifier ')' 2607 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 2608 SourceLocation EllipsisLoc = ConsumeToken(); 2609 SourceLocation LParenLoc, RParenLoc; 2610 IdentifierInfo *Name = nullptr; 2611 SourceLocation NameLoc; 2612 if (Tok.is(tok::l_paren)) { 2613 BalancedDelimiterTracker T(*this, tok::l_paren); 2614 T.consumeOpen(); 2615 LParenLoc = T.getOpenLocation(); 2616 if (Tok.is(tok::identifier)) { 2617 Name = Tok.getIdentifierInfo(); 2618 NameLoc = ConsumeToken(); 2619 T.consumeClose(); 2620 RParenLoc = T.getCloseLocation(); 2621 if (RParenLoc.isInvalid()) 2622 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2623 } else { 2624 Diag(Tok, diag::err_expected_parameter_pack); 2625 SkipUntil(tok::r_paren, StopAtSemi); 2626 } 2627 } else if (Tok.is(tok::identifier)) { 2628 Name = Tok.getIdentifierInfo(); 2629 NameLoc = ConsumeToken(); 2630 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2631 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2632 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2633 << Name 2634 << FixItHint::CreateInsertion(LParenLoc, "(") 2635 << FixItHint::CreateInsertion(RParenLoc, ")"); 2636 } else { 2637 Diag(Tok, diag::err_sizeof_parameter_pack); 2638 } 2639 2640 if (!Name) 2641 return ExprError(); 2642 2643 EnterExpressionEvaluationContext Unevaluated( 2644 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2645 Sema::ReuseLambdaContextDecl); 2646 2647 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2648 OpTok.getLocation(), 2649 *Name, NameLoc, 2650 RParenLoc); 2651 } 2652 2653 if (getLangOpts().CPlusPlus && 2654 OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2655 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2656 else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof)) 2657 Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName(); 2658 2659 EnterExpressionEvaluationContext Unevaluated( 2660 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2661 Sema::ReuseLambdaContextDecl); 2662 2663 bool isCastExpr; 2664 ParsedType CastTy; 2665 SourceRange CastRange; 2666 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2667 isCastExpr, 2668 CastTy, 2669 CastRange); 2670 2671 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2672 switch (OpTok.getKind()) { 2673 case tok::kw_alignof: 2674 case tok::kw__Alignof: 2675 ExprKind = UETT_AlignOf; 2676 break; 2677 case tok::kw___alignof: 2678 ExprKind = UETT_PreferredAlignOf; 2679 break; 2680 case tok::kw_vec_step: 2681 ExprKind = UETT_VecStep; 2682 break; 2683 case tok::kw___builtin_omp_required_simd_align: 2684 ExprKind = UETT_OpenMPRequiredSimdAlign; 2685 break; 2686 case tok::kw___datasizeof: 2687 ExprKind = UETT_DataSizeOf; 2688 break; 2689 case tok::kw___builtin_vectorelements: 2690 ExprKind = UETT_VectorElements; 2691 break; 2692 default: 2693 break; 2694 } 2695 2696 if (isCastExpr) 2697 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2698 ExprKind, 2699 /*IsType=*/true, 2700 CastTy.getAsOpaquePtr(), 2701 CastRange); 2702 2703 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2704 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2705 2706 // If we get here, the operand to the sizeof/alignof was an expression. 2707 if (!Operand.isInvalid()) 2708 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2709 ExprKind, 2710 /*IsType=*/false, 2711 Operand.get(), 2712 CastRange); 2713 return Operand; 2714 } 2715 2716 /// ParseBuiltinPrimaryExpression 2717 /// 2718 /// \verbatim 2719 /// primary-expression: [C99 6.5.1] 2720 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2721 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2722 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2723 /// assign-expr ')' 2724 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2725 /// [GNU] '__builtin_FILE' '(' ')' 2726 /// [CLANG] '__builtin_FILE_NAME' '(' ')' 2727 /// [GNU] '__builtin_FUNCTION' '(' ')' 2728 /// [MS] '__builtin_FUNCSIG' '(' ')' 2729 /// [GNU] '__builtin_LINE' '(' ')' 2730 /// [CLANG] '__builtin_COLUMN' '(' ')' 2731 /// [GNU] '__builtin_source_location' '(' ')' 2732 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2733 /// 2734 /// [GNU] offsetof-member-designator: 2735 /// [GNU] identifier 2736 /// [GNU] offsetof-member-designator '.' identifier 2737 /// [GNU] offsetof-member-designator '[' expression ']' 2738 /// \endverbatim 2739 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2740 ExprResult Res; 2741 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2742 2743 tok::TokenKind T = Tok.getKind(); 2744 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2745 2746 // All of these start with an open paren. 2747 if (Tok.isNot(tok::l_paren)) 2748 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2749 << tok::l_paren); 2750 2751 BalancedDelimiterTracker PT(*this, tok::l_paren); 2752 PT.consumeOpen(); 2753 2754 // TODO: Build AST. 2755 2756 switch (T) { 2757 default: llvm_unreachable("Not a builtin primary expression!"); 2758 case tok::kw___builtin_va_arg: { 2759 ExprResult Expr(ParseAssignmentExpression()); 2760 2761 if (ExpectAndConsume(tok::comma)) { 2762 SkipUntil(tok::r_paren, StopAtSemi); 2763 Expr = ExprError(); 2764 } 2765 2766 TypeResult Ty = ParseTypeName(); 2767 2768 if (Tok.isNot(tok::r_paren)) { 2769 Diag(Tok, diag::err_expected) << tok::r_paren; 2770 Expr = ExprError(); 2771 } 2772 2773 if (Expr.isInvalid() || Ty.isInvalid()) 2774 Res = ExprError(); 2775 else 2776 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2777 break; 2778 } 2779 case tok::kw___builtin_offsetof: { 2780 SourceLocation TypeLoc = Tok.getLocation(); 2781 auto OOK = Sema::OffsetOfKind::OOK_Builtin; 2782 if (Tok.getLocation().isMacroID()) { 2783 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 2784 Tok.getLocation(), PP.getSourceManager(), getLangOpts()); 2785 if (MacroName == "offsetof") 2786 OOK = Sema::OffsetOfKind::OOK_Macro; 2787 } 2788 TypeResult Ty; 2789 { 2790 OffsetOfStateRAIIObject InOffsetof(*this, OOK); 2791 Ty = ParseTypeName(); 2792 if (Ty.isInvalid()) { 2793 SkipUntil(tok::r_paren, StopAtSemi); 2794 return ExprError(); 2795 } 2796 } 2797 2798 if (ExpectAndConsume(tok::comma)) { 2799 SkipUntil(tok::r_paren, StopAtSemi); 2800 return ExprError(); 2801 } 2802 2803 // We must have at least one identifier here. 2804 if (Tok.isNot(tok::identifier)) { 2805 Diag(Tok, diag::err_expected) << tok::identifier; 2806 SkipUntil(tok::r_paren, StopAtSemi); 2807 return ExprError(); 2808 } 2809 2810 // Keep track of the various subcomponents we see. 2811 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2812 2813 Comps.push_back(Sema::OffsetOfComponent()); 2814 Comps.back().isBrackets = false; 2815 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2816 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2817 2818 // FIXME: This loop leaks the index expressions on error. 2819 while (true) { 2820 if (Tok.is(tok::period)) { 2821 // offsetof-member-designator: offsetof-member-designator '.' identifier 2822 Comps.push_back(Sema::OffsetOfComponent()); 2823 Comps.back().isBrackets = false; 2824 Comps.back().LocStart = ConsumeToken(); 2825 2826 if (Tok.isNot(tok::identifier)) { 2827 Diag(Tok, diag::err_expected) << tok::identifier; 2828 SkipUntil(tok::r_paren, StopAtSemi); 2829 return ExprError(); 2830 } 2831 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2832 Comps.back().LocEnd = ConsumeToken(); 2833 } else if (Tok.is(tok::l_square)) { 2834 if (CheckProhibitedCXX11Attribute()) 2835 return ExprError(); 2836 2837 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2838 Comps.push_back(Sema::OffsetOfComponent()); 2839 Comps.back().isBrackets = true; 2840 BalancedDelimiterTracker ST(*this, tok::l_square); 2841 ST.consumeOpen(); 2842 Comps.back().LocStart = ST.getOpenLocation(); 2843 Res = ParseExpression(); 2844 if (Res.isInvalid()) { 2845 SkipUntil(tok::r_paren, StopAtSemi); 2846 return Res; 2847 } 2848 Comps.back().U.E = Res.get(); 2849 2850 ST.consumeClose(); 2851 Comps.back().LocEnd = ST.getCloseLocation(); 2852 } else { 2853 if (Tok.isNot(tok::r_paren)) { 2854 PT.consumeClose(); 2855 Res = ExprError(); 2856 } else if (Ty.isInvalid()) { 2857 Res = ExprError(); 2858 } else { 2859 PT.consumeClose(); 2860 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2861 Ty.get(), Comps, 2862 PT.getCloseLocation()); 2863 } 2864 break; 2865 } 2866 } 2867 break; 2868 } 2869 case tok::kw___builtin_choose_expr: { 2870 ExprResult Cond(ParseAssignmentExpression()); 2871 if (Cond.isInvalid()) { 2872 SkipUntil(tok::r_paren, StopAtSemi); 2873 return Cond; 2874 } 2875 if (ExpectAndConsume(tok::comma)) { 2876 SkipUntil(tok::r_paren, StopAtSemi); 2877 return ExprError(); 2878 } 2879 2880 ExprResult Expr1(ParseAssignmentExpression()); 2881 if (Expr1.isInvalid()) { 2882 SkipUntil(tok::r_paren, StopAtSemi); 2883 return Expr1; 2884 } 2885 if (ExpectAndConsume(tok::comma)) { 2886 SkipUntil(tok::r_paren, StopAtSemi); 2887 return ExprError(); 2888 } 2889 2890 ExprResult Expr2(ParseAssignmentExpression()); 2891 if (Expr2.isInvalid()) { 2892 SkipUntil(tok::r_paren, StopAtSemi); 2893 return Expr2; 2894 } 2895 if (Tok.isNot(tok::r_paren)) { 2896 Diag(Tok, diag::err_expected) << tok::r_paren; 2897 return ExprError(); 2898 } 2899 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2900 Expr2.get(), ConsumeParen()); 2901 break; 2902 } 2903 case tok::kw___builtin_astype: { 2904 // The first argument is an expression to be converted, followed by a comma. 2905 ExprResult Expr(ParseAssignmentExpression()); 2906 if (Expr.isInvalid()) { 2907 SkipUntil(tok::r_paren, StopAtSemi); 2908 return ExprError(); 2909 } 2910 2911 if (ExpectAndConsume(tok::comma)) { 2912 SkipUntil(tok::r_paren, StopAtSemi); 2913 return ExprError(); 2914 } 2915 2916 // Second argument is the type to bitcast to. 2917 TypeResult DestTy = ParseTypeName(); 2918 if (DestTy.isInvalid()) 2919 return ExprError(); 2920 2921 // Attempt to consume the r-paren. 2922 if (Tok.isNot(tok::r_paren)) { 2923 Diag(Tok, diag::err_expected) << tok::r_paren; 2924 SkipUntil(tok::r_paren, StopAtSemi); 2925 return ExprError(); 2926 } 2927 2928 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2929 ConsumeParen()); 2930 break; 2931 } 2932 case tok::kw___builtin_convertvector: { 2933 // The first argument is an expression to be converted, followed by a comma. 2934 ExprResult Expr(ParseAssignmentExpression()); 2935 if (Expr.isInvalid()) { 2936 SkipUntil(tok::r_paren, StopAtSemi); 2937 return ExprError(); 2938 } 2939 2940 if (ExpectAndConsume(tok::comma)) { 2941 SkipUntil(tok::r_paren, StopAtSemi); 2942 return ExprError(); 2943 } 2944 2945 // Second argument is the type to bitcast to. 2946 TypeResult DestTy = ParseTypeName(); 2947 if (DestTy.isInvalid()) 2948 return ExprError(); 2949 2950 // Attempt to consume the r-paren. 2951 if (Tok.isNot(tok::r_paren)) { 2952 Diag(Tok, diag::err_expected) << tok::r_paren; 2953 SkipUntil(tok::r_paren, StopAtSemi); 2954 return ExprError(); 2955 } 2956 2957 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2958 ConsumeParen()); 2959 break; 2960 } 2961 case tok::kw___builtin_COLUMN: 2962 case tok::kw___builtin_FILE: 2963 case tok::kw___builtin_FILE_NAME: 2964 case tok::kw___builtin_FUNCTION: 2965 case tok::kw___builtin_FUNCSIG: 2966 case tok::kw___builtin_LINE: 2967 case tok::kw___builtin_source_location: { 2968 // Attempt to consume the r-paren. 2969 if (Tok.isNot(tok::r_paren)) { 2970 Diag(Tok, diag::err_expected) << tok::r_paren; 2971 SkipUntil(tok::r_paren, StopAtSemi); 2972 return ExprError(); 2973 } 2974 SourceLocIdentKind Kind = [&] { 2975 switch (T) { 2976 case tok::kw___builtin_FILE: 2977 return SourceLocIdentKind::File; 2978 case tok::kw___builtin_FILE_NAME: 2979 return SourceLocIdentKind::FileName; 2980 case tok::kw___builtin_FUNCTION: 2981 return SourceLocIdentKind::Function; 2982 case tok::kw___builtin_FUNCSIG: 2983 return SourceLocIdentKind::FuncSig; 2984 case tok::kw___builtin_LINE: 2985 return SourceLocIdentKind::Line; 2986 case tok::kw___builtin_COLUMN: 2987 return SourceLocIdentKind::Column; 2988 case tok::kw___builtin_source_location: 2989 return SourceLocIdentKind::SourceLocStruct; 2990 default: 2991 llvm_unreachable("invalid keyword"); 2992 } 2993 }(); 2994 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2995 break; 2996 } 2997 } 2998 2999 if (Res.isInvalid()) 3000 return ExprError(); 3001 3002 // These can be followed by postfix-expr pieces because they are 3003 // primary-expressions. 3004 return ParsePostfixExpressionSuffix(Res.get()); 3005 } 3006 3007 bool Parser::tryParseOpenMPArrayShapingCastPart() { 3008 assert(Tok.is(tok::l_square) && "Expected open bracket"); 3009 bool ErrorFound = true; 3010 TentativeParsingAction TPA(*this); 3011 do { 3012 if (Tok.isNot(tok::l_square)) 3013 break; 3014 // Consume '[' 3015 ConsumeBracket(); 3016 // Skip inner expression. 3017 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end, 3018 StopAtSemi | StopBeforeMatch)) 3019 ; 3020 if (Tok.isNot(tok::r_square)) 3021 break; 3022 // Consume ']' 3023 ConsumeBracket(); 3024 // Found ')' - done. 3025 if (Tok.is(tok::r_paren)) { 3026 ErrorFound = false; 3027 break; 3028 } 3029 } while (Tok.isNot(tok::annot_pragma_openmp_end)); 3030 TPA.Revert(); 3031 return !ErrorFound; 3032 } 3033 3034 /// ParseParenExpression - This parses the unit that starts with a '(' token, 3035 /// based on what is allowed by ExprType. The actual thing parsed is returned 3036 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 3037 /// not the parsed cast-expression. 3038 /// 3039 /// \verbatim 3040 /// primary-expression: [C99 6.5.1] 3041 /// '(' expression ')' 3042 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 3043 /// postfix-expression: [C99 6.5.2] 3044 /// '(' type-name ')' '{' initializer-list '}' 3045 /// '(' type-name ')' '{' initializer-list ',' '}' 3046 /// cast-expression: [C99 6.5.4] 3047 /// '(' type-name ')' cast-expression 3048 /// [ARC] bridged-cast-expression 3049 /// [ARC] bridged-cast-expression: 3050 /// (__bridge type-name) cast-expression 3051 /// (__bridge_transfer type-name) cast-expression 3052 /// (__bridge_retained type-name) cast-expression 3053 /// fold-expression: [C++1z] 3054 /// '(' cast-expression fold-operator '...' ')' 3055 /// '(' '...' fold-operator cast-expression ')' 3056 /// '(' cast-expression fold-operator '...' 3057 /// fold-operator cast-expression ')' 3058 /// [OPENMP] Array shaping operation 3059 /// '(' '[' expression ']' { '[' expression ']' } cast-expression 3060 /// \endverbatim 3061 ExprResult 3062 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 3063 bool isTypeCast, ParsedType &CastTy, 3064 SourceLocation &RParenLoc) { 3065 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 3066 ColonProtectionRAIIObject ColonProtection(*this, false); 3067 BalancedDelimiterTracker T(*this, tok::l_paren); 3068 if (T.consumeOpen()) 3069 return ExprError(); 3070 SourceLocation OpenLoc = T.getOpenLocation(); 3071 3072 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 3073 3074 ExprResult Result(true); 3075 bool isAmbiguousTypeId; 3076 CastTy = nullptr; 3077 3078 if (Tok.is(tok::code_completion)) { 3079 cutOffParsing(); 3080 Actions.CodeCompletion().CodeCompleteExpression( 3081 getCurScope(), PreferredType.get(Tok.getLocation()), 3082 /*IsParenthesized=*/ExprType >= CompoundLiteral); 3083 return ExprError(); 3084 } 3085 3086 // Diagnose use of bridge casts in non-arc mode. 3087 bool BridgeCast = (getLangOpts().ObjC && 3088 Tok.isOneOf(tok::kw___bridge, 3089 tok::kw___bridge_transfer, 3090 tok::kw___bridge_retained, 3091 tok::kw___bridge_retain)); 3092 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 3093 if (!TryConsumeToken(tok::kw___bridge)) { 3094 StringRef BridgeCastName = Tok.getName(); 3095 SourceLocation BridgeKeywordLoc = ConsumeToken(); 3096 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 3097 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 3098 << BridgeCastName 3099 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 3100 } 3101 BridgeCast = false; 3102 } 3103 3104 // None of these cases should fall through with an invalid Result 3105 // unless they've already reported an error. 3106 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 3107 Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro 3108 : diag::ext_gnu_statement_expr); 3109 3110 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin); 3111 3112 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 3113 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 3114 } else { 3115 // Find the nearest non-record decl context. Variables declared in a 3116 // statement expression behave as if they were declared in the enclosing 3117 // function, block, or other code construct. 3118 DeclContext *CodeDC = Actions.CurContext; 3119 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 3120 CodeDC = CodeDC->getParent(); 3121 assert(CodeDC && !CodeDC->isFileContext() && 3122 "statement expr not in code context"); 3123 } 3124 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 3125 3126 Actions.ActOnStartStmtExpr(); 3127 3128 StmtResult Stmt(ParseCompoundStatement(true)); 3129 ExprType = CompoundStmt; 3130 3131 // If the substmt parsed correctly, build the AST node. 3132 if (!Stmt.isInvalid()) { 3133 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(), 3134 Tok.getLocation()); 3135 } else { 3136 Actions.ActOnStmtExprError(); 3137 } 3138 } 3139 } else if (ExprType >= CompoundLiteral && BridgeCast) { 3140 tok::TokenKind tokenKind = Tok.getKind(); 3141 SourceLocation BridgeKeywordLoc = ConsumeToken(); 3142 3143 // Parse an Objective-C ARC ownership cast expression. 3144 ObjCBridgeCastKind Kind; 3145 if (tokenKind == tok::kw___bridge) 3146 Kind = OBC_Bridge; 3147 else if (tokenKind == tok::kw___bridge_transfer) 3148 Kind = OBC_BridgeTransfer; 3149 else if (tokenKind == tok::kw___bridge_retained) 3150 Kind = OBC_BridgeRetained; 3151 else { 3152 // As a hopefully temporary workaround, allow __bridge_retain as 3153 // a synonym for __bridge_retained, but only in system headers. 3154 assert(tokenKind == tok::kw___bridge_retain); 3155 Kind = OBC_BridgeRetained; 3156 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 3157 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 3158 << FixItHint::CreateReplacement(BridgeKeywordLoc, 3159 "__bridge_retained"); 3160 } 3161 3162 TypeResult Ty = ParseTypeName(); 3163 T.consumeClose(); 3164 ColonProtection.restore(); 3165 RParenLoc = T.getCloseLocation(); 3166 3167 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 3168 ExprResult SubExpr = ParseCastExpression(AnyCastExpr); 3169 3170 if (Ty.isInvalid() || SubExpr.isInvalid()) 3171 return ExprError(); 3172 3173 return Actions.ObjC().ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 3174 BridgeKeywordLoc, Ty.get(), 3175 RParenLoc, SubExpr.get()); 3176 } else if (ExprType >= CompoundLiteral && 3177 isTypeIdInParens(isAmbiguousTypeId)) { 3178 3179 // Otherwise, this is a compound literal expression or cast expression. 3180 3181 // In C++, if the type-id is ambiguous we disambiguate based on context. 3182 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 3183 // in which case we should treat it as type-id. 3184 // if stopIfCastExpr is false, we need to determine the context past the 3185 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 3186 if (isAmbiguousTypeId && !stopIfCastExpr) { 3187 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 3188 ColonProtection); 3189 RParenLoc = T.getCloseLocation(); 3190 return res; 3191 } 3192 3193 // Parse the type declarator. 3194 DeclSpec DS(AttrFactory); 3195 ParseSpecifierQualifierList(DS); 3196 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 3197 DeclaratorContext::TypeName); 3198 ParseDeclarator(DeclaratorInfo); 3199 3200 // If our type is followed by an identifier and either ':' or ']', then 3201 // this is probably an Objective-C message send where the leading '[' is 3202 // missing. Recover as if that were the case. 3203 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 3204 !InMessageExpression && getLangOpts().ObjC && 3205 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 3206 TypeResult Ty; 3207 { 3208 InMessageExpressionRAIIObject InMessage(*this, false); 3209 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3210 } 3211 Result = ParseObjCMessageExpressionBody(SourceLocation(), 3212 SourceLocation(), 3213 Ty.get(), nullptr); 3214 } else { 3215 // Match the ')'. 3216 T.consumeClose(); 3217 ColonProtection.restore(); 3218 RParenLoc = T.getCloseLocation(); 3219 if (Tok.is(tok::l_brace)) { 3220 ExprType = CompoundLiteral; 3221 TypeResult Ty; 3222 { 3223 InMessageExpressionRAIIObject InMessage(*this, false); 3224 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3225 } 3226 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 3227 } 3228 3229 if (Tok.is(tok::l_paren)) { 3230 // This could be OpenCL vector Literals 3231 if (getLangOpts().OpenCL) 3232 { 3233 TypeResult Ty; 3234 { 3235 InMessageExpressionRAIIObject InMessage(*this, false); 3236 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3237 } 3238 if(Ty.isInvalid()) 3239 { 3240 return ExprError(); 3241 } 3242 QualType QT = Ty.get().get().getCanonicalType(); 3243 if (QT->isVectorType()) 3244 { 3245 // We parsed '(' vector-type-name ')' followed by '(' 3246 3247 // Parse the cast-expression that follows it next. 3248 // isVectorLiteral = true will make sure we don't parse any 3249 // Postfix expression yet 3250 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3251 /*isAddressOfOperand=*/false, 3252 /*isTypeCast=*/IsTypeCast, 3253 /*isVectorLiteral=*/true); 3254 3255 if (!Result.isInvalid()) { 3256 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3257 DeclaratorInfo, CastTy, 3258 RParenLoc, Result.get()); 3259 } 3260 3261 // After we performed the cast we can check for postfix-expr pieces. 3262 if (!Result.isInvalid()) { 3263 Result = ParsePostfixExpressionSuffix(Result); 3264 } 3265 3266 return Result; 3267 } 3268 } 3269 } 3270 3271 if (ExprType == CastExpr) { 3272 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 3273 3274 if (DeclaratorInfo.isInvalidType()) 3275 return ExprError(); 3276 3277 // Note that this doesn't parse the subsequent cast-expression, it just 3278 // returns the parsed type to the callee. 3279 if (stopIfCastExpr) { 3280 TypeResult Ty; 3281 { 3282 InMessageExpressionRAIIObject InMessage(*this, false); 3283 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3284 } 3285 CastTy = Ty.get(); 3286 return ExprResult(); 3287 } 3288 3289 // Reject the cast of super idiom in ObjC. 3290 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 3291 Tok.getIdentifierInfo() == Ident_super && 3292 getCurScope()->isInObjcMethodScope() && 3293 GetLookAheadToken(1).isNot(tok::period)) { 3294 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 3295 << SourceRange(OpenLoc, RParenLoc); 3296 return ExprError(); 3297 } 3298 3299 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 3300 // Parse the cast-expression that follows it next. 3301 // TODO: For cast expression with CastTy. 3302 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3303 /*isAddressOfOperand=*/false, 3304 /*isTypeCast=*/IsTypeCast); 3305 if (!Result.isInvalid()) { 3306 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3307 DeclaratorInfo, CastTy, 3308 RParenLoc, Result.get()); 3309 } 3310 return Result; 3311 } 3312 3313 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 3314 return ExprError(); 3315 } 3316 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 3317 isFoldOperator(NextToken().getKind())) { 3318 ExprType = FoldExpr; 3319 return ParseFoldExpression(ExprResult(), T); 3320 } else if (isTypeCast) { 3321 // Parse the expression-list. 3322 InMessageExpressionRAIIObject InMessage(*this, false); 3323 ExprVector ArgExprs; 3324 3325 if (!ParseSimpleExpressionList(ArgExprs)) { 3326 // FIXME: If we ever support comma expressions as operands to 3327 // fold-expressions, we'll need to allow multiple ArgExprs here. 3328 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 3329 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 3330 ExprType = FoldExpr; 3331 return ParseFoldExpression(ArgExprs[0], T); 3332 } 3333 3334 ExprType = SimpleExpr; 3335 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 3336 ArgExprs); 3337 } 3338 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing && 3339 ExprType == CastExpr && Tok.is(tok::l_square) && 3340 tryParseOpenMPArrayShapingCastPart()) { 3341 bool ErrorFound = false; 3342 SmallVector<Expr *, 4> OMPDimensions; 3343 SmallVector<SourceRange, 4> OMPBracketsRanges; 3344 do { 3345 BalancedDelimiterTracker TS(*this, tok::l_square); 3346 TS.consumeOpen(); 3347 ExprResult NumElements = 3348 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3349 if (!NumElements.isUsable()) { 3350 ErrorFound = true; 3351 while (!SkipUntil(tok::r_square, tok::r_paren, 3352 StopAtSemi | StopBeforeMatch)) 3353 ; 3354 } 3355 TS.consumeClose(); 3356 OMPDimensions.push_back(NumElements.get()); 3357 OMPBracketsRanges.push_back(TS.getRange()); 3358 } while (Tok.isNot(tok::r_paren)); 3359 // Match the ')'. 3360 T.consumeClose(); 3361 RParenLoc = T.getCloseLocation(); 3362 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3363 if (ErrorFound) { 3364 Result = ExprError(); 3365 } else if (!Result.isInvalid()) { 3366 Result = Actions.OpenMP().ActOnOMPArrayShapingExpr( 3367 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges); 3368 } 3369 return Result; 3370 } else { 3371 InMessageExpressionRAIIObject InMessage(*this, false); 3372 3373 Result = ParseExpression(MaybeTypeCast); 3374 if (!getLangOpts().CPlusPlus && Result.isUsable()) { 3375 // Correct typos in non-C++ code earlier so that implicit-cast-like 3376 // expressions are parsed correctly. 3377 Result = Actions.CorrectDelayedTyposInExpr(Result); 3378 } 3379 3380 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 3381 NextToken().is(tok::ellipsis)) { 3382 ExprType = FoldExpr; 3383 return ParseFoldExpression(Result, T); 3384 } 3385 ExprType = SimpleExpr; 3386 3387 // Don't build a paren expression unless we actually match a ')'. 3388 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3389 Result = 3390 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 3391 } 3392 3393 // Match the ')'. 3394 if (Result.isInvalid()) { 3395 SkipUntil(tok::r_paren, StopAtSemi); 3396 return ExprError(); 3397 } 3398 3399 T.consumeClose(); 3400 RParenLoc = T.getCloseLocation(); 3401 return Result; 3402 } 3403 3404 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 3405 /// and we are at the left brace. 3406 /// 3407 /// \verbatim 3408 /// postfix-expression: [C99 6.5.2] 3409 /// '(' type-name ')' '{' initializer-list '}' 3410 /// '(' type-name ')' '{' initializer-list ',' '}' 3411 /// \endverbatim 3412 ExprResult 3413 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 3414 SourceLocation LParenLoc, 3415 SourceLocation RParenLoc) { 3416 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 3417 if (!getLangOpts().C99) // Compound literals don't exist in C90. 3418 Diag(LParenLoc, diag::ext_c99_compound_literal); 3419 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get()); 3420 ExprResult Result = ParseInitializer(); 3421 if (!Result.isInvalid() && Ty) 3422 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 3423 return Result; 3424 } 3425 3426 /// ParseStringLiteralExpression - This handles the various token types that 3427 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 3428 /// translation phase #6]. 3429 /// 3430 /// \verbatim 3431 /// primary-expression: [C99 6.5.1] 3432 /// string-literal 3433 /// \verbatim 3434 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 3435 return ParseStringLiteralExpression(AllowUserDefinedLiteral, 3436 /*Unevaluated=*/false); 3437 } 3438 3439 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() { 3440 return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false, 3441 /*Unevaluated=*/true); 3442 } 3443 3444 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral, 3445 bool Unevaluated) { 3446 assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) && 3447 "Not a string-literal-like token!"); 3448 3449 // String concatenation. 3450 // Note: some keywords like __FUNCTION__ are not considered to be strings 3451 // for concatenation purposes, unless Microsoft extensions are enabled. 3452 SmallVector<Token, 4> StringToks; 3453 3454 do { 3455 StringToks.push_back(Tok); 3456 ConsumeAnyToken(); 3457 } while (tokenIsLikeStringLiteral(Tok, getLangOpts())); 3458 3459 if (Unevaluated) { 3460 assert(!AllowUserDefinedLiteral && "UDL are always evaluated"); 3461 return Actions.ActOnUnevaluatedStringLiteral(StringToks); 3462 } 3463 3464 // Pass the set of string tokens, ready for concatenation, to the actions. 3465 return Actions.ActOnStringLiteral(StringToks, 3466 AllowUserDefinedLiteral ? getCurScope() 3467 : nullptr); 3468 } 3469 3470 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 3471 /// [C11 6.5.1.1]. 3472 /// 3473 /// \verbatim 3474 /// generic-selection: 3475 /// _Generic ( assignment-expression , generic-assoc-list ) 3476 /// generic-assoc-list: 3477 /// generic-association 3478 /// generic-assoc-list , generic-association 3479 /// generic-association: 3480 /// type-name : assignment-expression 3481 /// default : assignment-expression 3482 /// \endverbatim 3483 /// 3484 /// As an extension, Clang also accepts: 3485 /// \verbatim 3486 /// generic-selection: 3487 /// _Generic ( type-name, generic-assoc-list ) 3488 /// \endverbatim 3489 ExprResult Parser::ParseGenericSelectionExpression() { 3490 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 3491 3492 diagnoseUseOfC11Keyword(Tok); 3493 3494 SourceLocation KeyLoc = ConsumeToken(); 3495 BalancedDelimiterTracker T(*this, tok::l_paren); 3496 if (T.expectAndConsume()) 3497 return ExprError(); 3498 3499 // We either have a controlling expression or we have a controlling type, and 3500 // we need to figure out which it is. 3501 TypeResult ControllingType; 3502 ExprResult ControllingExpr; 3503 if (isTypeIdForGenericSelection()) { 3504 ControllingType = ParseTypeName(); 3505 if (ControllingType.isInvalid()) { 3506 SkipUntil(tok::r_paren, StopAtSemi); 3507 return ExprError(); 3508 } 3509 const auto *LIT = cast<LocInfoType>(ControllingType.get().get()); 3510 SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 3511 Diag(Loc, getLangOpts().C2y ? diag::warn_c2y_compat_generic_with_type_arg 3512 : diag::ext_c2y_generic_with_type_arg); 3513 } else { 3514 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 3515 // not evaluated." 3516 EnterExpressionEvaluationContext Unevaluated( 3517 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 3518 ControllingExpr = 3519 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3520 if (ControllingExpr.isInvalid()) { 3521 SkipUntil(tok::r_paren, StopAtSemi); 3522 return ExprError(); 3523 } 3524 } 3525 3526 if (ExpectAndConsume(tok::comma)) { 3527 SkipUntil(tok::r_paren, StopAtSemi); 3528 return ExprError(); 3529 } 3530 3531 SourceLocation DefaultLoc; 3532 SmallVector<ParsedType, 12> Types; 3533 ExprVector Exprs; 3534 do { 3535 ParsedType Ty; 3536 if (Tok.is(tok::kw_default)) { 3537 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 3538 // generic association." 3539 if (!DefaultLoc.isInvalid()) { 3540 Diag(Tok, diag::err_duplicate_default_assoc); 3541 Diag(DefaultLoc, diag::note_previous_default_assoc); 3542 SkipUntil(tok::r_paren, StopAtSemi); 3543 return ExprError(); 3544 } 3545 DefaultLoc = ConsumeToken(); 3546 Ty = nullptr; 3547 } else { 3548 ColonProtectionRAIIObject X(*this); 3549 TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association); 3550 if (TR.isInvalid()) { 3551 SkipUntil(tok::r_paren, StopAtSemi); 3552 return ExprError(); 3553 } 3554 Ty = TR.get(); 3555 } 3556 Types.push_back(Ty); 3557 3558 if (ExpectAndConsume(tok::colon)) { 3559 SkipUntil(tok::r_paren, StopAtSemi); 3560 return ExprError(); 3561 } 3562 3563 // FIXME: These expressions should be parsed in a potentially potentially 3564 // evaluated context. 3565 ExprResult ER( 3566 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 3567 if (ER.isInvalid()) { 3568 SkipUntil(tok::r_paren, StopAtSemi); 3569 return ExprError(); 3570 } 3571 Exprs.push_back(ER.get()); 3572 } while (TryConsumeToken(tok::comma)); 3573 3574 T.consumeClose(); 3575 if (T.getCloseLocation().isInvalid()) 3576 return ExprError(); 3577 3578 void *ExprOrTy = ControllingExpr.isUsable() 3579 ? ControllingExpr.get() 3580 : ControllingType.get().getAsOpaquePtr(); 3581 3582 return Actions.ActOnGenericSelectionExpr( 3583 KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(), 3584 ExprOrTy, Types, Exprs); 3585 } 3586 3587 /// Parse A C++1z fold-expression after the opening paren and optional 3588 /// left-hand-side expression. 3589 /// 3590 /// \verbatim 3591 /// fold-expression: 3592 /// ( cast-expression fold-operator ... ) 3593 /// ( ... fold-operator cast-expression ) 3594 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 3595 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 3596 BalancedDelimiterTracker &T) { 3597 if (LHS.isInvalid()) { 3598 T.skipToEnd(); 3599 return true; 3600 } 3601 3602 tok::TokenKind Kind = tok::unknown; 3603 SourceLocation FirstOpLoc; 3604 if (LHS.isUsable()) { 3605 Kind = Tok.getKind(); 3606 assert(isFoldOperator(Kind) && "missing fold-operator"); 3607 FirstOpLoc = ConsumeToken(); 3608 } 3609 3610 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 3611 SourceLocation EllipsisLoc = ConsumeToken(); 3612 3613 ExprResult RHS; 3614 if (Tok.isNot(tok::r_paren)) { 3615 if (!isFoldOperator(Tok.getKind())) 3616 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 3617 3618 if (Kind != tok::unknown && Tok.getKind() != Kind) 3619 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 3620 << SourceRange(FirstOpLoc); 3621 Kind = Tok.getKind(); 3622 ConsumeToken(); 3623 3624 RHS = ParseExpression(); 3625 if (RHS.isInvalid()) { 3626 T.skipToEnd(); 3627 return true; 3628 } 3629 } 3630 3631 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 3632 ? diag::warn_cxx14_compat_fold_expression 3633 : diag::ext_fold_expression); 3634 3635 T.consumeClose(); 3636 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(), 3637 Kind, EllipsisLoc, RHS.get(), 3638 T.getCloseLocation()); 3639 } 3640 3641 void Parser::injectEmbedTokens() { 3642 EmbedAnnotationData *Data = 3643 reinterpret_cast<EmbedAnnotationData *>(Tok.getAnnotationValue()); 3644 MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>( 3645 Data->BinaryData.size() * 2 - 1), 3646 Data->BinaryData.size() * 2 - 1); 3647 unsigned I = 0; 3648 for (auto &Byte : Data->BinaryData) { 3649 Toks[I].startToken(); 3650 Toks[I].setKind(tok::binary_data); 3651 Toks[I].setLocation(Tok.getLocation()); 3652 Toks[I].setLength(1); 3653 Toks[I].setLiteralData(&Byte); 3654 if (I != ((Data->BinaryData.size() - 1) * 2)) { 3655 Toks[I + 1].startToken(); 3656 Toks[I + 1].setKind(tok::comma); 3657 Toks[I + 1].setLocation(Tok.getLocation()); 3658 } 3659 I += 2; 3660 } 3661 PP.EnterTokenStream(std::move(Toks), /*DisableMacroExpansion=*/true, 3662 /*IsReinject=*/true); 3663 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); 3664 } 3665 3666 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 3667 /// 3668 /// \verbatim 3669 /// argument-expression-list: 3670 /// assignment-expression 3671 /// argument-expression-list , assignment-expression 3672 /// 3673 /// [C++] expression-list: 3674 /// [C++] assignment-expression 3675 /// [C++] expression-list , assignment-expression 3676 /// 3677 /// [C++0x] expression-list: 3678 /// [C++0x] initializer-list 3679 /// 3680 /// [C++0x] initializer-list 3681 /// [C++0x] initializer-clause ...[opt] 3682 /// [C++0x] initializer-list , initializer-clause ...[opt] 3683 /// 3684 /// [C++0x] initializer-clause: 3685 /// [C++0x] assignment-expression 3686 /// [C++0x] braced-init-list 3687 /// \endverbatim 3688 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 3689 llvm::function_ref<void()> ExpressionStarts, 3690 bool FailImmediatelyOnInvalidExpr, 3691 bool EarlyTypoCorrection, 3692 bool *HasTrailingComma) { 3693 bool SawError = false; 3694 while (true) { 3695 if (ExpressionStarts) 3696 ExpressionStarts(); 3697 3698 ExprResult Expr; 3699 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 3700 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 3701 Expr = ParseBraceInitializer(); 3702 } else 3703 Expr = ParseAssignmentExpression(); 3704 3705 if (EarlyTypoCorrection) 3706 Expr = Actions.CorrectDelayedTyposInExpr(Expr); 3707 3708 if (Tok.is(tok::ellipsis)) 3709 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 3710 else if (Tok.is(tok::code_completion)) { 3711 // There's nothing to suggest in here as we parsed a full expression. 3712 // Instead fail and propagate the error since caller might have something 3713 // the suggest, e.g. signature help in function call. Note that this is 3714 // performed before pushing the \p Expr, so that signature help can report 3715 // current argument correctly. 3716 SawError = true; 3717 cutOffParsing(); 3718 break; 3719 } 3720 if (Expr.isInvalid()) { 3721 SawError = true; 3722 if (FailImmediatelyOnInvalidExpr) 3723 break; 3724 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); 3725 } else { 3726 Exprs.push_back(Expr.get()); 3727 } 3728 3729 if (Tok.isNot(tok::comma)) 3730 break; 3731 // Move to the next argument, remember where the comma was. 3732 Token Comma = Tok; 3733 ConsumeToken(); 3734 checkPotentialAngleBracketDelimiter(Comma); 3735 3736 if (Tok.is(tok::r_paren)) { 3737 if (HasTrailingComma) 3738 *HasTrailingComma = true; 3739 break; 3740 } 3741 } 3742 if (SawError) { 3743 // Ensure typos get diagnosed when errors were encountered while parsing the 3744 // expression list. 3745 for (auto &E : Exprs) { 3746 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 3747 if (Expr.isUsable()) E = Expr.get(); 3748 } 3749 } 3750 return SawError; 3751 } 3752 3753 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 3754 /// used for misc language extensions. 3755 /// 3756 /// \verbatim 3757 /// simple-expression-list: 3758 /// assignment-expression 3759 /// simple-expression-list , assignment-expression 3760 /// \endverbatim 3761 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) { 3762 while (true) { 3763 ExprResult Expr = ParseAssignmentExpression(); 3764 if (Expr.isInvalid()) 3765 return true; 3766 3767 Exprs.push_back(Expr.get()); 3768 3769 // We might be parsing the LHS of a fold-expression. If we reached the fold 3770 // operator, stop. 3771 if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis)) 3772 return false; 3773 3774 // Move to the next argument, remember where the comma was. 3775 Token Comma = Tok; 3776 ConsumeToken(); 3777 checkPotentialAngleBracketDelimiter(Comma); 3778 } 3779 } 3780 3781 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 3782 /// 3783 /// \verbatim 3784 /// [clang] block-id: 3785 /// [clang] specifier-qualifier-list block-declarator 3786 /// \endverbatim 3787 void Parser::ParseBlockId(SourceLocation CaretLoc) { 3788 if (Tok.is(tok::code_completion)) { 3789 cutOffParsing(); 3790 Actions.CodeCompletion().CodeCompleteOrdinaryName( 3791 getCurScope(), SemaCodeCompletion::PCC_Type); 3792 return; 3793 } 3794 3795 // Parse the specifier-qualifier-list piece. 3796 DeclSpec DS(AttrFactory); 3797 ParseSpecifierQualifierList(DS); 3798 3799 // Parse the block-declarator. 3800 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 3801 DeclaratorContext::BlockLiteral); 3802 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3803 ParseDeclarator(DeclaratorInfo); 3804 3805 MaybeParseGNUAttributes(DeclaratorInfo); 3806 3807 // Inform sema that we are starting a block. 3808 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 3809 } 3810 3811 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 3812 /// like ^(int x){ return x+1; } 3813 /// 3814 /// \verbatim 3815 /// block-literal: 3816 /// [clang] '^' block-args[opt] compound-statement 3817 /// [clang] '^' block-id compound-statement 3818 /// [clang] block-args: 3819 /// [clang] '(' parameter-list ')' 3820 /// \endverbatim 3821 ExprResult Parser::ParseBlockLiteralExpression() { 3822 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3823 SourceLocation CaretLoc = ConsumeToken(); 3824 3825 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3826 "block literal parsing"); 3827 3828 // Enter a scope to hold everything within the block. This includes the 3829 // argument decls, decls within the compound expression, etc. This also 3830 // allows determining whether a variable reference inside the block is 3831 // within or outside of the block. 3832 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3833 Scope::CompoundStmtScope | Scope::DeclScope); 3834 3835 // Inform sema that we are starting a block. 3836 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3837 3838 // Parse the return type if present. 3839 DeclSpec DS(AttrFactory); 3840 Declarator ParamInfo(DS, ParsedAttributesView::none(), 3841 DeclaratorContext::BlockLiteral); 3842 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3843 // FIXME: Since the return type isn't actually parsed, it can't be used to 3844 // fill ParamInfo with an initial valid range, so do it manually. 3845 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3846 3847 // If this block has arguments, parse them. There is no ambiguity here with 3848 // the expression case, because the expression case requires a parameter list. 3849 if (Tok.is(tok::l_paren)) { 3850 ParseParenDeclarator(ParamInfo); 3851 // Parse the pieces after the identifier as if we had "int(...)". 3852 // SetIdentifier sets the source range end, but in this case we're past 3853 // that location. 3854 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3855 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3856 ParamInfo.SetRangeEnd(Tmp); 3857 if (ParamInfo.isInvalidType()) { 3858 // If there was an error parsing the arguments, they may have 3859 // tried to use ^(x+y) which requires an argument list. Just 3860 // skip the whole block literal. 3861 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3862 return ExprError(); 3863 } 3864 3865 MaybeParseGNUAttributes(ParamInfo); 3866 3867 // Inform sema that we are starting a block. 3868 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3869 } else if (!Tok.is(tok::l_brace)) { 3870 ParseBlockId(CaretLoc); 3871 } else { 3872 // Otherwise, pretend we saw (void). 3873 SourceLocation NoLoc; 3874 ParamInfo.AddTypeInfo( 3875 DeclaratorChunk::getFunction(/*HasProto=*/true, 3876 /*IsAmbiguous=*/false, 3877 /*RParenLoc=*/NoLoc, 3878 /*ArgInfo=*/nullptr, 3879 /*NumParams=*/0, 3880 /*EllipsisLoc=*/NoLoc, 3881 /*RParenLoc=*/NoLoc, 3882 /*RefQualifierIsLvalueRef=*/true, 3883 /*RefQualifierLoc=*/NoLoc, 3884 /*MutableLoc=*/NoLoc, EST_None, 3885 /*ESpecRange=*/SourceRange(), 3886 /*Exceptions=*/nullptr, 3887 /*ExceptionRanges=*/nullptr, 3888 /*NumExceptions=*/0, 3889 /*NoexceptExpr=*/nullptr, 3890 /*ExceptionSpecTokens=*/nullptr, 3891 /*DeclsInPrototype=*/{}, CaretLoc, 3892 CaretLoc, ParamInfo), 3893 CaretLoc); 3894 3895 MaybeParseGNUAttributes(ParamInfo); 3896 3897 // Inform sema that we are starting a block. 3898 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3899 } 3900 3901 3902 ExprResult Result(true); 3903 if (!Tok.is(tok::l_brace)) { 3904 // Saw something like: ^expr 3905 Diag(Tok, diag::err_expected_expression); 3906 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3907 return ExprError(); 3908 } 3909 3910 StmtResult Stmt(ParseCompoundStatementBody()); 3911 BlockScope.Exit(); 3912 if (!Stmt.isInvalid()) 3913 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3914 else 3915 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3916 return Result; 3917 } 3918 3919 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3920 /// 3921 /// '__objc_yes' 3922 /// '__objc_no' 3923 ExprResult Parser::ParseObjCBoolLiteral() { 3924 tok::TokenKind Kind = Tok.getKind(); 3925 return Actions.ObjC().ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3926 } 3927 3928 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3929 /// true if invalid. 3930 static bool CheckAvailabilitySpecList(Parser &P, 3931 ArrayRef<AvailabilitySpec> AvailSpecs) { 3932 llvm::SmallSet<StringRef, 4> Platforms; 3933 bool HasOtherPlatformSpec = false; 3934 bool Valid = true; 3935 for (const auto &Spec : AvailSpecs) { 3936 if (Spec.isOtherPlatformSpec()) { 3937 if (HasOtherPlatformSpec) { 3938 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3939 Valid = false; 3940 } 3941 3942 HasOtherPlatformSpec = true; 3943 continue; 3944 } 3945 3946 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3947 if (!Inserted) { 3948 // Rule out multiple version specs referring to the same platform. 3949 // For example, we emit an error for: 3950 // @available(macos 10.10, macos 10.11, *) 3951 StringRef Platform = Spec.getPlatform(); 3952 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3953 << Spec.getEndLoc() << Platform; 3954 Valid = false; 3955 } 3956 } 3957 3958 if (!HasOtherPlatformSpec) { 3959 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3960 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3961 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3962 return true; 3963 } 3964 3965 return !Valid; 3966 } 3967 3968 /// Parse availability query specification. 3969 /// 3970 /// availability-spec: 3971 /// '*' 3972 /// identifier version-tuple 3973 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3974 if (Tok.is(tok::star)) { 3975 return AvailabilitySpec(ConsumeToken()); 3976 } else { 3977 // Parse the platform name. 3978 if (Tok.is(tok::code_completion)) { 3979 cutOffParsing(); 3980 Actions.CodeCompletion().CodeCompleteAvailabilityPlatformName(); 3981 return std::nullopt; 3982 } 3983 if (Tok.isNot(tok::identifier)) { 3984 Diag(Tok, diag::err_avail_query_expected_platform_name); 3985 return std::nullopt; 3986 } 3987 3988 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3989 SourceRange VersionRange; 3990 VersionTuple Version = ParseVersionTuple(VersionRange); 3991 3992 if (Version.empty()) 3993 return std::nullopt; 3994 3995 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3996 StringRef Platform = 3997 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3998 3999 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty() || 4000 (GivenPlatform.contains("xros") || GivenPlatform.contains("xrOS"))) { 4001 Diag(PlatformIdentifier->Loc, 4002 diag::err_avail_query_unrecognized_platform_name) 4003 << GivenPlatform; 4004 return std::nullopt; 4005 } 4006 4007 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 4008 VersionRange.getEnd()); 4009 } 4010 } 4011 4012 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 4013 assert(Tok.is(tok::kw___builtin_available) || 4014 Tok.isObjCAtKeyword(tok::objc_available)); 4015 4016 // Eat the available or __builtin_available. 4017 ConsumeToken(); 4018 4019 BalancedDelimiterTracker Parens(*this, tok::l_paren); 4020 if (Parens.expectAndConsume()) 4021 return ExprError(); 4022 4023 SmallVector<AvailabilitySpec, 4> AvailSpecs; 4024 bool HasError = false; 4025 while (true) { 4026 std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 4027 if (!Spec) 4028 HasError = true; 4029 else 4030 AvailSpecs.push_back(*Spec); 4031 4032 if (!TryConsumeToken(tok::comma)) 4033 break; 4034 } 4035 4036 if (HasError) { 4037 SkipUntil(tok::r_paren, StopAtSemi); 4038 return ExprError(); 4039 } 4040 4041 CheckAvailabilitySpecList(*this, AvailSpecs); 4042 4043 if (Parens.consumeClose()) 4044 return ExprError(); 4045 4046 return Actions.ObjC().ActOnObjCAvailabilityCheckExpr( 4047 AvailSpecs, BeginLoc, Parens.getCloseLocation()); 4048 } 4049