xref: /llvm-project/clang/lib/CodeGen/MicrosoftCXXABI.cpp (revision 6292a808b3524d9ba6f4ce55bc5b9e547b088dd8)
1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10 // The class in this file generates structures that follow the Microsoft
11 // Visual C++ ABI, which is actually not very well documented at all outside
12 // of Microsoft.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGVTables.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenTypes.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/CXXInheritance.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/AST/VTableBuilder.h"
29 #include "clang/CodeGen/ConstantInitBuilder.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringSet.h"
32 #include "llvm/IR/Intrinsics.h"
33 
34 using namespace clang;
35 using namespace CodeGen;
36 
37 namespace {
38 
39 /// Holds all the vbtable globals for a given class.
40 struct VBTableGlobals {
41   const VPtrInfoVector *VBTables;
42   SmallVector<llvm::GlobalVariable *, 2> Globals;
43 };
44 
45 class MicrosoftCXXABI : public CGCXXABI {
46 public:
47   MicrosoftCXXABI(CodeGenModule &CGM)
48       : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
49         ClassHierarchyDescriptorType(nullptr),
50         CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
51         ThrowInfoType(nullptr) {
52     assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() ||
53              CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) &&
54            "visibility export mapping option unimplemented in this ABI");
55   }
56 
57   bool HasThisReturn(GlobalDecl GD) const override;
58   bool hasMostDerivedReturn(GlobalDecl GD) const override;
59 
60   bool classifyReturnType(CGFunctionInfo &FI) const override;
61 
62   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
63 
64   bool isSRetParameterAfterThis() const override { return true; }
65 
66   bool isThisCompleteObject(GlobalDecl GD) const override {
67     // The Microsoft ABI doesn't use separate complete-object vs.
68     // base-object variants of constructors, but it does of destructors.
69     if (isa<CXXDestructorDecl>(GD.getDecl())) {
70       switch (GD.getDtorType()) {
71       case Dtor_Complete:
72       case Dtor_Deleting:
73         return true;
74 
75       case Dtor_Base:
76         return false;
77 
78       case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
79       }
80       llvm_unreachable("bad dtor kind");
81     }
82 
83     // No other kinds.
84     return false;
85   }
86 
87   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
88                               FunctionArgList &Args) const override {
89     assert(Args.size() >= 2 &&
90            "expected the arglist to have at least two args!");
91     // The 'most_derived' parameter goes second if the ctor is variadic and
92     // has v-bases.
93     if (CD->getParent()->getNumVBases() > 0 &&
94         CD->getType()->castAs<FunctionProtoType>()->isVariadic())
95       return 2;
96     return 1;
97   }
98 
99   std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
100     std::vector<CharUnits> VBPtrOffsets;
101     const ASTContext &Context = getContext();
102     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
103 
104     const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
105     for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
106       const ASTRecordLayout &SubobjectLayout =
107           Context.getASTRecordLayout(VBT->IntroducingObject);
108       CharUnits Offs = VBT->NonVirtualOffset;
109       Offs += SubobjectLayout.getVBPtrOffset();
110       if (VBT->getVBaseWithVPtr())
111         Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
112       VBPtrOffsets.push_back(Offs);
113     }
114     llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
115     return VBPtrOffsets;
116   }
117 
118   StringRef GetPureVirtualCallName() override { return "_purecall"; }
119   StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
120 
121   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
122                                Address Ptr, QualType ElementType,
123                                const CXXDestructorDecl *Dtor) override;
124 
125   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
126   void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
127 
128   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
129 
130   llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
131                                                    const VPtrInfo &Info);
132 
133   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
134   CatchTypeInfo
135   getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
136 
137   /// MSVC needs an extra flag to indicate a catchall.
138   CatchTypeInfo getCatchAllTypeInfo() override {
139     // For -EHa catch(...) must handle HW exception
140     // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions
141     if (getContext().getLangOpts().EHAsynch)
142       return CatchTypeInfo{nullptr, 0};
143     else
144       return CatchTypeInfo{nullptr, 0x40};
145   }
146 
147   bool shouldTypeidBeNullChecked(QualType SrcRecordTy) override;
148   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
149   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
150                           Address ThisPtr,
151                           llvm::Type *StdTypeInfoPtrTy) override;
152 
153   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
154                                           QualType SrcRecordTy) override;
155 
156   bool shouldEmitExactDynamicCast(QualType DestRecordTy) override {
157     // TODO: Add support for exact dynamic_casts.
158     return false;
159   }
160   llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value,
161                                     QualType SrcRecordTy, QualType DestTy,
162                                     QualType DestRecordTy,
163                                     llvm::BasicBlock *CastSuccess,
164                                     llvm::BasicBlock *CastFail) override {
165     llvm_unreachable("unsupported");
166   }
167 
168   llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value,
169                                    QualType SrcRecordTy, QualType DestTy,
170                                    QualType DestRecordTy,
171                                    llvm::BasicBlock *CastEnd) override;
172 
173   llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
174                                      QualType SrcRecordTy) override;
175 
176   bool EmitBadCastCall(CodeGenFunction &CGF) override;
177   bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
178     return false;
179   }
180 
181   llvm::Value *
182   GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
183                             const CXXRecordDecl *ClassDecl,
184                             const CXXRecordDecl *BaseClassDecl) override;
185 
186   llvm::BasicBlock *
187   EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
188                                 const CXXRecordDecl *RD) override;
189 
190   llvm::BasicBlock *
191   EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
192 
193   void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
194                                               const CXXRecordDecl *RD) override;
195 
196   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
197 
198   // Background on MSVC destructors
199   // ==============================
200   //
201   // Both Itanium and MSVC ABIs have destructor variants.  The variant names
202   // roughly correspond in the following way:
203   //   Itanium       Microsoft
204   //   Base       -> no name, just ~Class
205   //   Complete   -> vbase destructor
206   //   Deleting   -> scalar deleting destructor
207   //                 vector deleting destructor
208   //
209   // The base and complete destructors are the same as in Itanium, although the
210   // complete destructor does not accept a VTT parameter when there are virtual
211   // bases.  A separate mechanism involving vtordisps is used to ensure that
212   // virtual methods of destroyed subobjects are not called.
213   //
214   // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
215   // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
216   // pointer points to an array.  The scalar deleting destructor assumes that
217   // bit 2 is zero, and therefore does not contain a loop.
218   //
219   // For virtual destructors, only one entry is reserved in the vftable, and it
220   // always points to the vector deleting destructor.  The vector deleting
221   // destructor is the most general, so it can be used to destroy objects in
222   // place, delete single heap objects, or delete arrays.
223   //
224   // A TU defining a non-inline destructor is only guaranteed to emit a base
225   // destructor, and all of the other variants are emitted on an as-needed basis
226   // in COMDATs.  Because a non-base destructor can be emitted in a TU that
227   // lacks a definition for the destructor, non-base destructors must always
228   // delegate to or alias the base destructor.
229 
230   AddedStructorArgCounts
231   buildStructorSignature(GlobalDecl GD,
232                          SmallVectorImpl<CanQualType> &ArgTys) override;
233 
234   /// Non-base dtors should be emitted as delegating thunks in this ABI.
235   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
236                               CXXDtorType DT) const override {
237     return DT != Dtor_Base;
238   }
239 
240   void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
241                                   const CXXDestructorDecl *Dtor,
242                                   CXXDtorType DT) const override;
243 
244   llvm::GlobalValue::LinkageTypes
245   getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
246                           CXXDtorType DT) const override;
247 
248   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
249 
250   const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override {
251     auto *MD = cast<CXXMethodDecl>(GD.getDecl());
252 
253     if (MD->isVirtual()) {
254       GlobalDecl LookupGD = GD;
255       if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
256         // Complete dtors take a pointer to the complete object,
257         // thus don't need adjustment.
258         if (GD.getDtorType() == Dtor_Complete)
259           return MD->getParent();
260 
261         // There's only Dtor_Deleting in vftable but it shares the this
262         // adjustment with the base one, so look up the deleting one instead.
263         LookupGD = GlobalDecl(DD, Dtor_Deleting);
264       }
265       MethodVFTableLocation ML =
266           CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
267 
268       // The vbases might be ordered differently in the final overrider object
269       // and the complete object, so the "this" argument may sometimes point to
270       // memory that has no particular type (e.g. past the complete object).
271       // In this case, we just use a generic pointer type.
272       // FIXME: might want to have a more precise type in the non-virtual
273       // multiple inheritance case.
274       if (ML.VBase || !ML.VFPtrOffset.isZero())
275         return nullptr;
276     }
277     return MD->getParent();
278   }
279 
280   Address
281   adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
282                                            Address This,
283                                            bool VirtualCall) override;
284 
285   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
286                                  FunctionArgList &Params) override;
287 
288   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
289 
290   AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF,
291                                                const CXXConstructorDecl *D,
292                                                CXXCtorType Type,
293                                                bool ForVirtualBase,
294                                                bool Delegating) override;
295 
296   llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF,
297                                              const CXXDestructorDecl *DD,
298                                              CXXDtorType Type,
299                                              bool ForVirtualBase,
300                                              bool Delegating) override;
301 
302   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
303                           CXXDtorType Type, bool ForVirtualBase,
304                           bool Delegating, Address This,
305                           QualType ThisTy) override;
306 
307   void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
308                               llvm::GlobalVariable *VTable);
309 
310   void emitVTableDefinitions(CodeGenVTables &CGVT,
311                              const CXXRecordDecl *RD) override;
312 
313   bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
314                                            CodeGenFunction::VPtr Vptr) override;
315 
316   /// Don't initialize vptrs if dynamic class
317   /// is marked with the 'novtable' attribute.
318   bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
319     return !VTableClass->hasAttr<MSNoVTableAttr>();
320   }
321 
322   llvm::Constant *
323   getVTableAddressPoint(BaseSubobject Base,
324                         const CXXRecordDecl *VTableClass) override;
325 
326   llvm::Value *getVTableAddressPointInStructor(
327       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
328       BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
329 
330   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
331                                         CharUnits VPtrOffset) override;
332 
333   CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
334                                      Address This, llvm::Type *Ty,
335                                      SourceLocation Loc) override;
336 
337   llvm::Value *
338   EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor,
339                             CXXDtorType DtorType, Address This,
340                             DeleteOrMemberCallExpr E,
341                             llvm::CallBase **CallOrInvoke) override;
342 
343   void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
344                                         CallArgList &CallArgs) override {
345     assert(GD.getDtorType() == Dtor_Deleting &&
346            "Only deleting destructor thunks are available in this ABI");
347     CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
348                  getContext().IntTy);
349   }
350 
351   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
352 
353   llvm::GlobalVariable *
354   getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
355                    llvm::GlobalVariable::LinkageTypes Linkage);
356 
357   llvm::GlobalVariable *
358   getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
359                                   const CXXRecordDecl *DstRD) {
360     SmallString<256> OutName;
361     llvm::raw_svector_ostream Out(OutName);
362     getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
363     StringRef MangledName = OutName.str();
364 
365     if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
366       return VDispMap;
367 
368     MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
369     unsigned NumEntries = 1 + SrcRD->getNumVBases();
370     SmallVector<llvm::Constant *, 4> Map(NumEntries,
371                                          llvm::UndefValue::get(CGM.IntTy));
372     Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
373     bool AnyDifferent = false;
374     for (const auto &I : SrcRD->vbases()) {
375       const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
376       if (!DstRD->isVirtuallyDerivedFrom(VBase))
377         continue;
378 
379       unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
380       unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
381       Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
382       AnyDifferent |= SrcVBIndex != DstVBIndex;
383     }
384     // This map would be useless, don't use it.
385     if (!AnyDifferent)
386       return nullptr;
387 
388     llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
389     llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
390     llvm::GlobalValue::LinkageTypes Linkage =
391         SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
392             ? llvm::GlobalValue::LinkOnceODRLinkage
393             : llvm::GlobalValue::InternalLinkage;
394     auto *VDispMap = new llvm::GlobalVariable(
395         CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
396         /*Initializer=*/Init, MangledName);
397     return VDispMap;
398   }
399 
400   void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
401                              llvm::GlobalVariable *GV) const;
402 
403   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
404                        GlobalDecl GD, bool ReturnAdjustment) override {
405     GVALinkage Linkage =
406         getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
407 
408     if (Linkage == GVA_Internal)
409       Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
410     else if (ReturnAdjustment)
411       Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
412     else
413       Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
414   }
415 
416   bool exportThunk() override { return false; }
417 
418   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
419                                      const CXXRecordDecl * /*UnadjustedClass*/,
420                                      const ThunkInfo &TI) override;
421 
422   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
423                                        const CXXRecordDecl * /*UnadjustedClass*/,
424                                        const ReturnAdjustment &RA) override;
425 
426   void EmitThreadLocalInitFuncs(
427       CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
428       ArrayRef<llvm::Function *> CXXThreadLocalInits,
429       ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
430 
431   bool usesThreadWrapperFunction(const VarDecl *VD) const override {
432     return getContext().getLangOpts().isCompatibleWithMSVC(
433                LangOptions::MSVC2019_5) &&
434            CGM.getCodeGenOpts().TlsGuards &&
435            (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD));
436   }
437   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
438                                       QualType LValType) override;
439 
440   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
441                        llvm::GlobalVariable *DeclPtr,
442                        bool PerformInit) override;
443   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
444                           llvm::FunctionCallee Dtor,
445                           llvm::Constant *Addr) override;
446 
447   // ==== Notes on array cookies =========
448   //
449   // MSVC seems to only use cookies when the class has a destructor; a
450   // two-argument usual array deallocation function isn't sufficient.
451   //
452   // For example, this code prints "100" and "1":
453   //   struct A {
454   //     char x;
455   //     void *operator new[](size_t sz) {
456   //       printf("%u\n", sz);
457   //       return malloc(sz);
458   //     }
459   //     void operator delete[](void *p, size_t sz) {
460   //       printf("%u\n", sz);
461   //       free(p);
462   //     }
463   //   };
464   //   int main() {
465   //     A *p = new A[100];
466   //     delete[] p;
467   //   }
468   // Whereas it prints "104" and "104" if you give A a destructor.
469 
470   bool requiresArrayCookie(const CXXDeleteExpr *expr,
471                            QualType elementType) override;
472   bool requiresArrayCookie(const CXXNewExpr *expr) override;
473   CharUnits getArrayCookieSizeImpl(QualType type) override;
474   Address InitializeArrayCookie(CodeGenFunction &CGF,
475                                 Address NewPtr,
476                                 llvm::Value *NumElements,
477                                 const CXXNewExpr *expr,
478                                 QualType ElementType) override;
479   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
480                                    Address allocPtr,
481                                    CharUnits cookieSize) override;
482 
483   friend struct MSRTTIBuilder;
484 
485   bool isImageRelative() const {
486     return CGM.getTarget().getPointerWidth(LangAS::Default) == 64;
487   }
488 
489   // 5 routines for constructing the llvm types for MS RTTI structs.
490   llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
491     llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
492     TDTypeName += llvm::utostr(TypeInfoString.size());
493     llvm::StructType *&TypeDescriptorType =
494         TypeDescriptorTypeMap[TypeInfoString.size()];
495     if (TypeDescriptorType)
496       return TypeDescriptorType;
497     llvm::Type *FieldTypes[] = {
498         CGM.Int8PtrPtrTy,
499         CGM.Int8PtrTy,
500         llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
501     TypeDescriptorType =
502         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
503     return TypeDescriptorType;
504   }
505 
506   llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
507     if (!isImageRelative())
508       return PtrType;
509     return CGM.IntTy;
510   }
511 
512   llvm::StructType *getBaseClassDescriptorType() {
513     if (BaseClassDescriptorType)
514       return BaseClassDescriptorType;
515     llvm::Type *FieldTypes[] = {
516         getImageRelativeType(CGM.Int8PtrTy),
517         CGM.IntTy,
518         CGM.IntTy,
519         CGM.IntTy,
520         CGM.IntTy,
521         CGM.IntTy,
522         getImageRelativeType(CGM.UnqualPtrTy),
523     };
524     BaseClassDescriptorType = llvm::StructType::create(
525         CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
526     return BaseClassDescriptorType;
527   }
528 
529   llvm::StructType *getClassHierarchyDescriptorType() {
530     if (ClassHierarchyDescriptorType)
531       return ClassHierarchyDescriptorType;
532     // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
533     llvm::Type *FieldTypes[] = {CGM.IntTy, CGM.IntTy, CGM.IntTy,
534                                 getImageRelativeType(CGM.UnqualPtrTy)};
535     ClassHierarchyDescriptorType =
536         llvm::StructType::create(FieldTypes, "rtti.ClassHierarchyDescriptor");
537     return ClassHierarchyDescriptorType;
538   }
539 
540   llvm::StructType *getCompleteObjectLocatorType() {
541     if (CompleteObjectLocatorType)
542       return CompleteObjectLocatorType;
543     llvm::Type *FieldTypes[] = {
544         CGM.IntTy,
545         CGM.IntTy,
546         CGM.IntTy,
547         getImageRelativeType(CGM.Int8PtrTy),
548         getImageRelativeType(CGM.UnqualPtrTy),
549         getImageRelativeType(CGM.VoidTy),
550     };
551     llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
552     if (!isImageRelative())
553       FieldTypesRef = FieldTypesRef.drop_back();
554     CompleteObjectLocatorType =
555         llvm::StructType::create(FieldTypesRef, "rtti.CompleteObjectLocator");
556     return CompleteObjectLocatorType;
557   }
558 
559   llvm::GlobalVariable *getImageBase() {
560     StringRef Name = "__ImageBase";
561     if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
562       return GV;
563 
564     auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
565                                         /*isConstant=*/true,
566                                         llvm::GlobalValue::ExternalLinkage,
567                                         /*Initializer=*/nullptr, Name);
568     CGM.setDSOLocal(GV);
569     return GV;
570   }
571 
572   llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
573     if (!isImageRelative())
574       return PtrVal;
575 
576     if (PtrVal->isNullValue())
577       return llvm::Constant::getNullValue(CGM.IntTy);
578 
579     llvm::Constant *ImageBaseAsInt =
580         llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
581     llvm::Constant *PtrValAsInt =
582         llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
583     llvm::Constant *Diff =
584         llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
585                                    /*HasNUW=*/true, /*HasNSW=*/true);
586     return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
587   }
588 
589 private:
590   MicrosoftMangleContext &getMangleContext() {
591     return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
592   }
593 
594   llvm::Constant *getZeroInt() {
595     return llvm::ConstantInt::get(CGM.IntTy, 0);
596   }
597 
598   llvm::Constant *getAllOnesInt() {
599     return  llvm::Constant::getAllOnesValue(CGM.IntTy);
600   }
601 
602   CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
603 
604   void
605   GetNullMemberPointerFields(const MemberPointerType *MPT,
606                              llvm::SmallVectorImpl<llvm::Constant *> &fields);
607 
608   /// Shared code for virtual base adjustment.  Returns the offset from
609   /// the vbptr to the virtual base.  Optionally returns the address of the
610   /// vbptr itself.
611   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
612                                        Address Base,
613                                        llvm::Value *VBPtrOffset,
614                                        llvm::Value *VBTableOffset,
615                                        llvm::Value **VBPtr = nullptr);
616 
617   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
618                                        Address Base,
619                                        int32_t VBPtrOffset,
620                                        int32_t VBTableOffset,
621                                        llvm::Value **VBPtr = nullptr) {
622     assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
623     llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
624                 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
625     return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
626   }
627 
628   std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
629   performBaseAdjustment(CodeGenFunction &CGF, Address Value,
630                         QualType SrcRecordTy);
631 
632   /// Performs a full virtual base adjustment.  Used to dereference
633   /// pointers to members of virtual bases.
634   llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
635                                  const CXXRecordDecl *RD, Address Base,
636                                  llvm::Value *VirtualBaseAdjustmentOffset,
637                                  llvm::Value *VBPtrOffset /* optional */);
638 
639   /// Emits a full member pointer with the fields common to data and
640   /// function member pointers.
641   llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
642                                         bool IsMemberFunction,
643                                         const CXXRecordDecl *RD,
644                                         CharUnits NonVirtualBaseAdjustment,
645                                         unsigned VBTableIndex);
646 
647   bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
648                                    llvm::Constant *MP);
649 
650   /// - Initialize all vbptrs of 'this' with RD as the complete type.
651   void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
652 
653   /// Caching wrapper around VBTableBuilder::enumerateVBTables().
654   const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
655 
656   /// Generate a thunk for calling a virtual member function MD.
657   llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
658                                          const MethodVFTableLocation &ML);
659 
660   llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
661                                         CharUnits offset);
662 
663 public:
664   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
665 
666   bool isZeroInitializable(const MemberPointerType *MPT) override;
667 
668   bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
669     const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
670     return RD->hasAttr<MSInheritanceAttr>();
671   }
672 
673   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
674 
675   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
676                                         CharUnits offset) override;
677   llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
678   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
679 
680   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
681                                            llvm::Value *L,
682                                            llvm::Value *R,
683                                            const MemberPointerType *MPT,
684                                            bool Inequality) override;
685 
686   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
687                                           llvm::Value *MemPtr,
688                                           const MemberPointerType *MPT) override;
689 
690   llvm::Value *
691   EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
692                                Address Base, llvm::Value *MemPtr,
693                                const MemberPointerType *MPT) override;
694 
695   llvm::Value *EmitNonNullMemberPointerConversion(
696       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
697       CastKind CK, CastExpr::path_const_iterator PathBegin,
698       CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
699       CGBuilderTy &Builder);
700 
701   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
702                                            const CastExpr *E,
703                                            llvm::Value *Src) override;
704 
705   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
706                                               llvm::Constant *Src) override;
707 
708   llvm::Constant *EmitMemberPointerConversion(
709       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
710       CastKind CK, CastExpr::path_const_iterator PathBegin,
711       CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
712 
713   CGCallee
714   EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
715                                   Address This, llvm::Value *&ThisPtrForCall,
716                                   llvm::Value *MemPtr,
717                                   const MemberPointerType *MPT) override;
718 
719   void emitCXXStructor(GlobalDecl GD) override;
720 
721   llvm::StructType *getCatchableTypeType() {
722     if (CatchableTypeType)
723       return CatchableTypeType;
724     llvm::Type *FieldTypes[] = {
725         CGM.IntTy,                           // Flags
726         getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
727         CGM.IntTy,                           // NonVirtualAdjustment
728         CGM.IntTy,                           // OffsetToVBPtr
729         CGM.IntTy,                           // VBTableIndex
730         CGM.IntTy,                           // Size
731         getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
732     };
733     CatchableTypeType = llvm::StructType::create(
734         CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
735     return CatchableTypeType;
736   }
737 
738   llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
739     llvm::StructType *&CatchableTypeArrayType =
740         CatchableTypeArrayTypeMap[NumEntries];
741     if (CatchableTypeArrayType)
742       return CatchableTypeArrayType;
743 
744     llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
745     CTATypeName += llvm::utostr(NumEntries);
746     llvm::Type *CTType = getImageRelativeType(CGM.UnqualPtrTy);
747     llvm::Type *FieldTypes[] = {
748         CGM.IntTy,                               // NumEntries
749         llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
750     };
751     CatchableTypeArrayType =
752         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
753     return CatchableTypeArrayType;
754   }
755 
756   llvm::StructType *getThrowInfoType() {
757     if (ThrowInfoType)
758       return ThrowInfoType;
759     llvm::Type *FieldTypes[] = {
760         CGM.IntTy,                           // Flags
761         getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
762         getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
763         getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
764     };
765     ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
766                                              "eh.ThrowInfo");
767     return ThrowInfoType;
768   }
769 
770   llvm::FunctionCallee getThrowFn() {
771     // _CxxThrowException is passed an exception object and a ThrowInfo object
772     // which describes the exception.
773     llvm::Type *Args[] = {CGM.Int8PtrTy, CGM.UnqualPtrTy};
774     llvm::FunctionType *FTy =
775         llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
776     llvm::FunctionCallee Throw =
777         CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
778     // _CxxThrowException is stdcall on 32-bit x86 platforms.
779     if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
780       if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
781         Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
782     }
783     return Throw;
784   }
785 
786   llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
787                                           CXXCtorType CT);
788 
789   llvm::Constant *getCatchableType(QualType T,
790                                    uint32_t NVOffset = 0,
791                                    int32_t VBPtrOffset = -1,
792                                    uint32_t VBIndex = 0);
793 
794   llvm::GlobalVariable *getCatchableTypeArray(QualType T);
795 
796   llvm::GlobalVariable *getThrowInfo(QualType T) override;
797 
798   std::pair<llvm::Value *, const CXXRecordDecl *>
799   LoadVTablePtr(CodeGenFunction &CGF, Address This,
800                 const CXXRecordDecl *RD) override;
801 
802   bool
803   isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override;
804 
805 private:
806   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
807   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
808   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
809   /// All the vftables that have been referenced.
810   VFTablesMapTy VFTablesMap;
811   VTablesMapTy VTablesMap;
812 
813   /// This set holds the record decls we've deferred vtable emission for.
814   llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
815 
816 
817   /// All the vbtables which have been referenced.
818   llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
819 
820   /// Info on the global variable used to guard initialization of static locals.
821   /// The BitIndex field is only used for externally invisible declarations.
822   struct GuardInfo {
823     GuardInfo() = default;
824     llvm::GlobalVariable *Guard = nullptr;
825     unsigned BitIndex = 0;
826   };
827 
828   /// Map from DeclContext to the current guard variable.  We assume that the
829   /// AST is visited in source code order.
830   llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
831   llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
832   llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
833 
834   llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
835   llvm::StructType *BaseClassDescriptorType;
836   llvm::StructType *ClassHierarchyDescriptorType;
837   llvm::StructType *CompleteObjectLocatorType;
838 
839   llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
840 
841   llvm::StructType *CatchableTypeType;
842   llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
843   llvm::StructType *ThrowInfoType;
844 };
845 
846 }
847 
848 CGCXXABI::RecordArgABI
849 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
850   // Use the default C calling convention rules for things that can be passed in
851   // registers, i.e. non-trivially copyable records or records marked with
852   // [[trivial_abi]].
853   if (RD->canPassInRegisters())
854     return RAA_Default;
855 
856   switch (CGM.getTarget().getTriple().getArch()) {
857   default:
858     // FIXME: Implement for other architectures.
859     return RAA_Indirect;
860 
861   case llvm::Triple::thumb:
862     // Pass things indirectly for now because it is simple.
863     // FIXME: This is incompatible with MSVC for arguments with a dtor and no
864     // copy ctor.
865     return RAA_Indirect;
866 
867   case llvm::Triple::x86: {
868     // If the argument has *required* alignment greater than four bytes, pass
869     // it indirectly. Prior to MSVC version 19.14, passing overaligned
870     // arguments was not supported and resulted in a compiler error. In 19.14
871     // and later versions, such arguments are now passed indirectly.
872     TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl());
873     if (Info.isAlignRequired() && Info.Align > 4)
874       return RAA_Indirect;
875 
876     // If C++ prohibits us from making a copy, construct the arguments directly
877     // into argument memory.
878     return RAA_DirectInMemory;
879   }
880 
881   case llvm::Triple::x86_64:
882   case llvm::Triple::aarch64:
883     return RAA_Indirect;
884   }
885 
886   llvm_unreachable("invalid enum");
887 }
888 
889 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
890                                               const CXXDeleteExpr *DE,
891                                               Address Ptr,
892                                               QualType ElementType,
893                                               const CXXDestructorDecl *Dtor) {
894   // FIXME: Provide a source location here even though there's no
895   // CXXMemberCallExpr for dtor call.
896   bool UseGlobalDelete = DE->isGlobalDelete();
897   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
898   llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE,
899                                                   /*CallOrInvoke=*/nullptr);
900   if (UseGlobalDelete)
901     CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
902 }
903 
904 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
905   llvm::Value *Args[] = {llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
906                          llvm::ConstantPointerNull::get(CGM.UnqualPtrTy)};
907   llvm::FunctionCallee Fn = getThrowFn();
908   if (isNoReturn)
909     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
910   else
911     CGF.EmitRuntimeCallOrInvoke(Fn, Args);
912 }
913 
914 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
915                                      const CXXCatchStmt *S) {
916   // In the MS ABI, the runtime handles the copy, and the catch handler is
917   // responsible for destruction.
918   VarDecl *CatchParam = S->getExceptionDecl();
919   llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
920   llvm::CatchPadInst *CPI =
921       cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHIIt());
922   CGF.CurrentFuncletPad = CPI;
923 
924   // If this is a catch-all or the catch parameter is unnamed, we don't need to
925   // emit an alloca to the object.
926   if (!CatchParam || !CatchParam->getDeclName()) {
927     CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
928     return;
929   }
930 
931   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
932   CPI->setArgOperand(2, var.getObjectAddress(CGF).emitRawPointer(CGF));
933   CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
934   CGF.EmitAutoVarCleanups(var);
935 }
936 
937 /// We need to perform a generic polymorphic operation (like a typeid
938 /// or a cast), which requires an object with a vfptr.  Adjust the
939 /// address to point to an object with a vfptr.
940 std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
941 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
942                                        QualType SrcRecordTy) {
943   Value = Value.withElementType(CGF.Int8Ty);
944   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
945   const ASTContext &Context = getContext();
946 
947   // If the class itself has a vfptr, great.  This check implicitly
948   // covers non-virtual base subobjects: a class with its own virtual
949   // functions would be a candidate to be a primary base.
950   if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
951     return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
952                            SrcDecl);
953 
954   // Okay, one of the vbases must have a vfptr, or else this isn't
955   // actually a polymorphic class.
956   const CXXRecordDecl *PolymorphicBase = nullptr;
957   for (auto &Base : SrcDecl->vbases()) {
958     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
959     if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
960       PolymorphicBase = BaseDecl;
961       break;
962     }
963   }
964   assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
965 
966   llvm::Value *Offset =
967     GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
968   llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
969       Value.getElementType(), Value.emitRawPointer(CGF), Offset);
970   CharUnits VBaseAlign =
971     CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
972   return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset,
973                          PolymorphicBase);
974 }
975 
976 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(QualType SrcRecordTy) {
977   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
978   return !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
979 }
980 
981 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
982                                         llvm::Value *Argument) {
983   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
984   llvm::FunctionType *FTy =
985       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
986   llvm::Value *Args[] = {Argument};
987   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
988   return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
989 }
990 
991 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
992   llvm::CallBase *Call =
993       emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
994   Call->setDoesNotReturn();
995   CGF.Builder.CreateUnreachable();
996 }
997 
998 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
999                                          QualType SrcRecordTy,
1000                                          Address ThisPtr,
1001                                          llvm::Type *StdTypeInfoPtrTy) {
1002   std::tie(ThisPtr, std::ignore, std::ignore) =
1003       performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
1004   llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.emitRawPointer(CGF));
1005   return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
1006 }
1007 
1008 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
1009                                                          QualType SrcRecordTy) {
1010   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1011   return SrcIsPtr &&
1012          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
1013 }
1014 
1015 llvm::Value *MicrosoftCXXABI::emitDynamicCastCall(
1016     CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy,
1017     QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
1018   llvm::Value *SrcRTTI =
1019       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1020   llvm::Value *DestRTTI =
1021       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1022 
1023   llvm::Value *Offset;
1024   std::tie(This, Offset, std::ignore) =
1025       performBaseAdjustment(CGF, This, SrcRecordTy);
1026   llvm::Value *ThisPtr = This.emitRawPointer(CGF);
1027   Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
1028 
1029   // PVOID __RTDynamicCast(
1030   //   PVOID inptr,
1031   //   LONG VfDelta,
1032   //   PVOID SrcType,
1033   //   PVOID TargetType,
1034   //   BOOL isReference)
1035   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
1036                             CGF.Int8PtrTy, CGF.Int32Ty};
1037   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1038       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1039       "__RTDynamicCast");
1040   llvm::Value *Args[] = {
1041       ThisPtr, Offset, SrcRTTI, DestRTTI,
1042       llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1043   return CGF.EmitRuntimeCallOrInvoke(Function, Args);
1044 }
1045 
1046 llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF,
1047                                                     Address Value,
1048                                                     QualType SrcRecordTy) {
1049   std::tie(Value, std::ignore, std::ignore) =
1050       performBaseAdjustment(CGF, Value, SrcRecordTy);
1051 
1052   // PVOID __RTCastToVoid(
1053   //   PVOID inptr)
1054   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1055   llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1056       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1057       "__RTCastToVoid");
1058   llvm::Value *Args[] = {Value.emitRawPointer(CGF)};
1059   return CGF.EmitRuntimeCall(Function, Args);
1060 }
1061 
1062 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1063   return false;
1064 }
1065 
1066 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1067     CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1068     const CXXRecordDecl *BaseClassDecl) {
1069   const ASTContext &Context = getContext();
1070   int64_t VBPtrChars =
1071       Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1072   llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1073   CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1074   CharUnits VBTableChars =
1075       IntSize *
1076       CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1077   llvm::Value *VBTableOffset =
1078       llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1079 
1080   llvm::Value *VBPtrToNewBase =
1081       GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1082   VBPtrToNewBase =
1083       CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1084   return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1085 }
1086 
1087 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1088   return isa<CXXConstructorDecl>(GD.getDecl());
1089 }
1090 
1091 static bool isDeletingDtor(GlobalDecl GD) {
1092   return isa<CXXDestructorDecl>(GD.getDecl()) &&
1093          GD.getDtorType() == Dtor_Deleting;
1094 }
1095 
1096 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1097   return isDeletingDtor(GD);
1098 }
1099 
1100 static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty,
1101                              CodeGenModule &CGM) {
1102   // On AArch64, HVAs that can be passed in registers can also be returned
1103   // in registers. (Note this is using the MSVC definition of an HVA; see
1104   // isPermittedToBeHomogeneousAggregate().)
1105   const Type *Base = nullptr;
1106   uint64_t NumElts = 0;
1107   if (CGM.getTarget().getTriple().isAArch64() &&
1108       CGM.getABIInfo().isHomogeneousAggregate(Ty, Base, NumElts) &&
1109       isa<VectorType>(Base)) {
1110     return true;
1111   }
1112 
1113   // We use the C++14 definition of an aggregate, so we also
1114   // check for:
1115   //   No private or protected non static data members.
1116   //   No base classes
1117   //   No virtual functions
1118   // Additionally, we need to ensure that there is a trivial copy assignment
1119   // operator, a trivial destructor, no user-provided constructors and no
1120   // deleted copy assignment operator.
1121 
1122   // We need to cover two cases when checking for a deleted copy assignment
1123   // operator.
1124   //
1125   // struct S { int& r; };
1126   // The above will have an implicit copy assignment operator that is deleted
1127   // and there will not be a `CXXMethodDecl` for the copy assignment operator.
1128   // This is handled by the `needsImplicitCopyAssignment()` check below.
1129   //
1130   // struct S { S& operator=(const S&) = delete; int i; };
1131   // The above will not have an implicit copy assignment operator that is
1132   // deleted but there is a deleted `CXXMethodDecl` for the declared copy
1133   // assignment operator. This is handled by the `isDeleted()` check below.
1134 
1135   if (RD->hasProtectedFields() || RD->hasPrivateFields())
1136     return false;
1137   if (RD->getNumBases() > 0)
1138     return false;
1139   if (RD->isPolymorphic())
1140     return false;
1141   if (RD->hasNonTrivialCopyAssignment())
1142     return false;
1143   if (RD->needsImplicitCopyAssignment() && !RD->hasSimpleCopyAssignment())
1144     return false;
1145   for (const Decl *D : RD->decls()) {
1146     if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
1147       if (Ctor->isUserProvided())
1148         return false;
1149     } else if (auto *Template = dyn_cast<FunctionTemplateDecl>(D)) {
1150       if (isa<CXXConstructorDecl>(Template->getTemplatedDecl()))
1151         return false;
1152     } else if (auto *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
1153       if (MethodDecl->isCopyAssignmentOperator() && MethodDecl->isDeleted())
1154         return false;
1155     }
1156   }
1157   if (RD->hasNonTrivialDestructor())
1158     return false;
1159   return true;
1160 }
1161 
1162 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1163   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1164   if (!RD)
1165     return false;
1166 
1167   bool isTrivialForABI = RD->canPassInRegisters() &&
1168                          isTrivialForMSVC(RD, FI.getReturnType(), CGM);
1169 
1170   // MSVC always returns structs indirectly from C++ instance methods.
1171   bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod();
1172 
1173   if (isIndirectReturn) {
1174     CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1175     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1176 
1177     // MSVC always passes `this` before the `sret` parameter.
1178     FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
1179 
1180     // On AArch64, use the `inreg` attribute if the object is considered to not
1181     // be trivially copyable, or if this is an instance method struct return.
1182     FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64());
1183 
1184     return true;
1185   }
1186 
1187   // Otherwise, use the C ABI rules.
1188   return false;
1189 }
1190 
1191 llvm::BasicBlock *
1192 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1193                                                const CXXRecordDecl *RD) {
1194   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1195   assert(IsMostDerivedClass &&
1196          "ctor for a class with virtual bases must have an implicit parameter");
1197   llvm::Value *IsCompleteObject =
1198     CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1199 
1200   llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1201   llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1202   CGF.Builder.CreateCondBr(IsCompleteObject,
1203                            CallVbaseCtorsBB, SkipVbaseCtorsBB);
1204 
1205   CGF.EmitBlock(CallVbaseCtorsBB);
1206 
1207   // Fill in the vbtable pointers here.
1208   EmitVBPtrStores(CGF, RD);
1209 
1210   // CGF will put the base ctor calls in this basic block for us later.
1211 
1212   return SkipVbaseCtorsBB;
1213 }
1214 
1215 llvm::BasicBlock *
1216 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1217   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1218   assert(IsMostDerivedClass &&
1219          "ctor for a class with virtual bases must have an implicit parameter");
1220   llvm::Value *IsCompleteObject =
1221       CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1222 
1223   llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1224   llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1225   CGF.Builder.CreateCondBr(IsCompleteObject,
1226                            CallVbaseDtorsBB, SkipVbaseDtorsBB);
1227 
1228   CGF.EmitBlock(CallVbaseDtorsBB);
1229   // CGF will put the base dtor calls in this basic block for us later.
1230 
1231   return SkipVbaseDtorsBB;
1232 }
1233 
1234 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1235     CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1236   // In most cases, an override for a vbase virtual method can adjust
1237   // the "this" parameter by applying a constant offset.
1238   // However, this is not enough while a constructor or a destructor of some
1239   // class X is being executed if all the following conditions are met:
1240   //  - X has virtual bases, (1)
1241   //  - X overrides a virtual method M of a vbase Y, (2)
1242   //  - X itself is a vbase of the most derived class.
1243   //
1244   // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1245   // which holds the extra amount of "this" adjustment we must do when we use
1246   // the X vftables (i.e. during X ctor or dtor).
1247   // Outside the ctors and dtors, the values of vtorDisps are zero.
1248 
1249   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1250   typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1251   const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1252   CGBuilderTy &Builder = CGF.Builder;
1253 
1254   llvm::Value *Int8This = nullptr;  // Initialize lazily.
1255 
1256   for (const CXXBaseSpecifier &S : RD->vbases()) {
1257     const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1258     auto I = VBaseMap.find(VBase);
1259     assert(I != VBaseMap.end());
1260     if (!I->second.hasVtorDisp())
1261       continue;
1262 
1263     llvm::Value *VBaseOffset =
1264         GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1265     uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1266 
1267     // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1268     llvm::Value *VtorDispValue = Builder.CreateSub(
1269         VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1270         "vtordisp.value");
1271     VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1272 
1273     if (!Int8This)
1274       Int8This = getThisValue(CGF);
1275 
1276     llvm::Value *VtorDispPtr =
1277         Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset);
1278     // vtorDisp is always the 32-bits before the vbase in the class layout.
1279     VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4);
1280 
1281     Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1282                                CharUnits::fromQuantity(4));
1283   }
1284 }
1285 
1286 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1287                                   const CXXMethodDecl *MD) {
1288   CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1289       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1290   CallingConv ActualCallingConv =
1291       MD->getType()->castAs<FunctionProtoType>()->getCallConv();
1292   return ExpectedCallingConv == ActualCallingConv;
1293 }
1294 
1295 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1296   // There's only one constructor type in this ABI.
1297   CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1298 
1299   // Exported default constructors either have a simple call-site where they use
1300   // the typical calling convention and have a single 'this' pointer for an
1301   // argument -or- they get a wrapper function which appropriately thunks to the
1302   // real default constructor.  This thunk is the default constructor closure.
1303   if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() &&
1304       D->isDefined()) {
1305     if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1306       llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1307       Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1308       CGM.setGVProperties(Fn, D);
1309     }
1310   }
1311 }
1312 
1313 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1314                                       const CXXRecordDecl *RD) {
1315   Address This = getThisAddress(CGF);
1316   This = This.withElementType(CGM.Int8Ty);
1317   const ASTContext &Context = getContext();
1318   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1319 
1320   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1321   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1322     const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1323     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1324     const ASTRecordLayout &SubobjectLayout =
1325         Context.getASTRecordLayout(VBT->IntroducingObject);
1326     CharUnits Offs = VBT->NonVirtualOffset;
1327     Offs += SubobjectLayout.getVBPtrOffset();
1328     if (VBT->getVBaseWithVPtr())
1329       Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1330     Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1331     llvm::Value *GVPtr =
1332         CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1333     VBPtr = VBPtr.withElementType(GVPtr->getType());
1334     CGF.Builder.CreateStore(GVPtr, VBPtr);
1335   }
1336 }
1337 
1338 CGCXXABI::AddedStructorArgCounts
1339 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1340                                         SmallVectorImpl<CanQualType> &ArgTys) {
1341   AddedStructorArgCounts Added;
1342   // TODO: 'for base' flag
1343   if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1344       GD.getDtorType() == Dtor_Deleting) {
1345     // The scalar deleting destructor takes an implicit int parameter.
1346     ArgTys.push_back(getContext().IntTy);
1347     ++Added.Suffix;
1348   }
1349   auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1350   if (!CD)
1351     return Added;
1352 
1353   // All parameters are already in place except is_most_derived, which goes
1354   // after 'this' if it's variadic and last if it's not.
1355 
1356   const CXXRecordDecl *Class = CD->getParent();
1357   const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1358   if (Class->getNumVBases()) {
1359     if (FPT->isVariadic()) {
1360       ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1361       ++Added.Prefix;
1362     } else {
1363       ArgTys.push_back(getContext().IntTy);
1364       ++Added.Suffix;
1365     }
1366   }
1367 
1368   return Added;
1369 }
1370 
1371 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1372                                                  const CXXDestructorDecl *Dtor,
1373                                                  CXXDtorType DT) const {
1374   // Deleting destructor variants are never imported or exported. Give them the
1375   // default storage class.
1376   if (DT == Dtor_Deleting) {
1377     GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1378   } else {
1379     const NamedDecl *ND = Dtor;
1380     CGM.setDLLImportDLLExport(GV, ND);
1381   }
1382 }
1383 
1384 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1385     GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1386   // Internal things are always internal, regardless of attributes. After this,
1387   // we know the thunk is externally visible.
1388   if (Linkage == GVA_Internal)
1389     return llvm::GlobalValue::InternalLinkage;
1390 
1391   switch (DT) {
1392   case Dtor_Base:
1393     // The base destructor most closely tracks the user-declared constructor, so
1394     // we delegate back to the normal declarator case.
1395     return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage);
1396   case Dtor_Complete:
1397     // The complete destructor is like an inline function, but it may be
1398     // imported and therefore must be exported as well. This requires changing
1399     // the linkage if a DLL attribute is present.
1400     if (Dtor->hasAttr<DLLExportAttr>())
1401       return llvm::GlobalValue::WeakODRLinkage;
1402     if (Dtor->hasAttr<DLLImportAttr>())
1403       return llvm::GlobalValue::AvailableExternallyLinkage;
1404     return llvm::GlobalValue::LinkOnceODRLinkage;
1405   case Dtor_Deleting:
1406     // Deleting destructors are like inline functions. They have vague linkage
1407     // and are emitted everywhere they are used. They are internal if the class
1408     // is internal.
1409     return llvm::GlobalValue::LinkOnceODRLinkage;
1410   case Dtor_Comdat:
1411     llvm_unreachable("MS C++ ABI does not support comdat dtors");
1412   }
1413   llvm_unreachable("invalid dtor type");
1414 }
1415 
1416 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1417   // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1418   // other destructor variants are delegating thunks.
1419   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1420 
1421   // If the class is dllexported, emit the complete (vbase) destructor wherever
1422   // the base dtor is emitted.
1423   // FIXME: To match MSVC, this should only be done when the class is exported
1424   // with -fdllexport-inlines enabled.
1425   if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>())
1426     CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
1427 }
1428 
1429 CharUnits
1430 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1431   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1432 
1433   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1434     // Complete destructors take a pointer to the complete object as a
1435     // parameter, thus don't need this adjustment.
1436     if (GD.getDtorType() == Dtor_Complete)
1437       return CharUnits();
1438 
1439     // There's no Dtor_Base in vftable but it shares the this adjustment with
1440     // the deleting one, so look it up instead.
1441     GD = GlobalDecl(DD, Dtor_Deleting);
1442   }
1443 
1444   MethodVFTableLocation ML =
1445       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1446   CharUnits Adjustment = ML.VFPtrOffset;
1447 
1448   // Normal virtual instance methods need to adjust from the vfptr that first
1449   // defined the virtual method to the virtual base subobject, but destructors
1450   // do not.  The vector deleting destructor thunk applies this adjustment for
1451   // us if necessary.
1452   if (isa<CXXDestructorDecl>(MD))
1453     Adjustment = CharUnits::Zero();
1454 
1455   if (ML.VBase) {
1456     const ASTRecordLayout &DerivedLayout =
1457         getContext().getASTRecordLayout(MD->getParent());
1458     Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1459   }
1460 
1461   return Adjustment;
1462 }
1463 
1464 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1465     CodeGenFunction &CGF, GlobalDecl GD, Address This,
1466     bool VirtualCall) {
1467   if (!VirtualCall) {
1468     // If the call of a virtual function is not virtual, we just have to
1469     // compensate for the adjustment the virtual function does in its prologue.
1470     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1471     if (Adjustment.isZero())
1472       return This;
1473 
1474     This = This.withElementType(CGF.Int8Ty);
1475     assert(Adjustment.isPositive());
1476     return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1477   }
1478 
1479   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1480 
1481   GlobalDecl LookupGD = GD;
1482   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1483     // Complete dtors take a pointer to the complete object,
1484     // thus don't need adjustment.
1485     if (GD.getDtorType() == Dtor_Complete)
1486       return This;
1487 
1488     // There's only Dtor_Deleting in vftable but it shares the this adjustment
1489     // with the base one, so look up the deleting one instead.
1490     LookupGD = GlobalDecl(DD, Dtor_Deleting);
1491   }
1492   MethodVFTableLocation ML =
1493       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1494 
1495   CharUnits StaticOffset = ML.VFPtrOffset;
1496 
1497   // Base destructors expect 'this' to point to the beginning of the base
1498   // subobject, not the first vfptr that happens to contain the virtual dtor.
1499   // However, we still need to apply the virtual base adjustment.
1500   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1501     StaticOffset = CharUnits::Zero();
1502 
1503   Address Result = This;
1504   if (ML.VBase) {
1505     Result = Result.withElementType(CGF.Int8Ty);
1506 
1507     const CXXRecordDecl *Derived = MD->getParent();
1508     const CXXRecordDecl *VBase = ML.VBase;
1509     llvm::Value *VBaseOffset =
1510       GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1511     llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP(
1512         Result.getElementType(), Result.emitRawPointer(CGF), VBaseOffset);
1513     CharUnits VBaseAlign =
1514       CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1515     Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign);
1516   }
1517   if (!StaticOffset.isZero()) {
1518     assert(StaticOffset.isPositive());
1519     Result = Result.withElementType(CGF.Int8Ty);
1520     if (ML.VBase) {
1521       // Non-virtual adjustment might result in a pointer outside the allocated
1522       // object, e.g. if the final overrider class is laid out after the virtual
1523       // base that declares a method in the most derived class.
1524       // FIXME: Update the code that emits this adjustment in thunks prologues.
1525       Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1526     } else {
1527       Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1528     }
1529   }
1530   return Result;
1531 }
1532 
1533 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1534                                                 QualType &ResTy,
1535                                                 FunctionArgList &Params) {
1536   ASTContext &Context = getContext();
1537   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1538   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1539   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1540     auto *IsMostDerived = ImplicitParamDecl::Create(
1541         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1542         &Context.Idents.get("is_most_derived"), Context.IntTy,
1543         ImplicitParamKind::Other);
1544     // The 'most_derived' parameter goes second if the ctor is variadic and last
1545     // if it's not.  Dtors can't be variadic.
1546     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1547     if (FPT->isVariadic())
1548       Params.insert(Params.begin() + 1, IsMostDerived);
1549     else
1550       Params.push_back(IsMostDerived);
1551     getStructorImplicitParamDecl(CGF) = IsMostDerived;
1552   } else if (isDeletingDtor(CGF.CurGD)) {
1553     auto *ShouldDelete = ImplicitParamDecl::Create(
1554         Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1555         &Context.Idents.get("should_call_delete"), Context.IntTy,
1556         ImplicitParamKind::Other);
1557     Params.push_back(ShouldDelete);
1558     getStructorImplicitParamDecl(CGF) = ShouldDelete;
1559   }
1560 }
1561 
1562 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1563   // Naked functions have no prolog.
1564   if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1565     return;
1566 
1567   // Overridden virtual methods of non-primary bases need to adjust the incoming
1568   // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1569   // sizeof(void*) to adjust from B* to C*:
1570   //   struct A { virtual void a(); };
1571   //   struct B { virtual void b(); };
1572   //   struct C : A, B { virtual void b(); };
1573   //
1574   // Leave the value stored in the 'this' alloca unadjusted, so that the
1575   // debugger sees the unadjusted value. Microsoft debuggers require this, and
1576   // will apply the ThisAdjustment in the method type information.
1577   // FIXME: Do something better for DWARF debuggers, which won't expect this,
1578   // without making our codegen depend on debug info settings.
1579   llvm::Value *This = loadIncomingCXXThis(CGF);
1580   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1581   if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1582     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1583     if (!Adjustment.isZero()) {
1584       assert(Adjustment.isPositive());
1585       This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1586                                                     -Adjustment.getQuantity());
1587     }
1588   }
1589   setCXXABIThisValue(CGF, This);
1590 
1591   // If this is a function that the ABI specifies returns 'this', initialize
1592   // the return slot to 'this' at the start of the function.
1593   //
1594   // Unlike the setting of return types, this is done within the ABI
1595   // implementation instead of by clients of CGCXXABI because:
1596   // 1) getThisValue is currently protected
1597   // 2) in theory, an ABI could implement 'this' returns some other way;
1598   //    HasThisReturn only specifies a contract, not the implementation
1599   if (HasThisReturn(CGF.CurGD) || hasMostDerivedReturn(CGF.CurGD))
1600     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1601 
1602   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1603     assert(getStructorImplicitParamDecl(CGF) &&
1604            "no implicit parameter for a constructor with virtual bases?");
1605     getStructorImplicitParamValue(CGF)
1606       = CGF.Builder.CreateLoad(
1607           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1608           "is_most_derived");
1609   }
1610 
1611   if (isDeletingDtor(CGF.CurGD)) {
1612     assert(getStructorImplicitParamDecl(CGF) &&
1613            "no implicit parameter for a deleting destructor?");
1614     getStructorImplicitParamValue(CGF)
1615       = CGF.Builder.CreateLoad(
1616           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1617           "should_call_delete");
1618   }
1619 }
1620 
1621 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs(
1622     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1623     bool ForVirtualBase, bool Delegating) {
1624   assert(Type == Ctor_Complete || Type == Ctor_Base);
1625 
1626   // Check if we need a 'most_derived' parameter.
1627   if (!D->getParent()->getNumVBases())
1628     return AddedStructorArgs{};
1629 
1630   // Add the 'most_derived' argument second if we are variadic or last if not.
1631   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1632   llvm::Value *MostDerivedArg;
1633   if (Delegating) {
1634     MostDerivedArg = getStructorImplicitParamValue(CGF);
1635   } else {
1636     MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1637   }
1638   if (FPT->isVariadic()) {
1639     return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}});
1640   }
1641   return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}});
1642 }
1643 
1644 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam(
1645     CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type,
1646     bool ForVirtualBase, bool Delegating) {
1647   return nullptr;
1648 }
1649 
1650 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1651                                          const CXXDestructorDecl *DD,
1652                                          CXXDtorType Type, bool ForVirtualBase,
1653                                          bool Delegating, Address This,
1654                                          QualType ThisTy) {
1655   // Use the base destructor variant in place of the complete destructor variant
1656   // if the class has no virtual bases. This effectively implements some of the
1657   // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1658   if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1659     Type = Dtor_Base;
1660 
1661   GlobalDecl GD(DD, Type);
1662   CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1663 
1664   if (DD->isVirtual()) {
1665     assert(Type != CXXDtorType::Dtor_Deleting &&
1666            "The deleting destructor should only be called via a virtual call");
1667     This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1668                                                     This, false);
1669   }
1670 
1671   llvm::BasicBlock *BaseDtorEndBB = nullptr;
1672   if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1673     BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1674   }
1675 
1676   llvm::Value *Implicit =
1677       getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase,
1678                                     Delegating); // = nullptr
1679   CGF.EmitCXXDestructorCall(GD, Callee, CGF.getAsNaturalPointerTo(This, ThisTy),
1680                             ThisTy,
1681                             /*ImplicitParam=*/Implicit,
1682                             /*ImplicitParamTy=*/QualType(), /*E=*/nullptr);
1683   if (BaseDtorEndBB) {
1684     // Complete object handler should continue to be the remaining
1685     CGF.Builder.CreateBr(BaseDtorEndBB);
1686     CGF.EmitBlock(BaseDtorEndBB);
1687   }
1688 }
1689 
1690 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1691                                              const CXXRecordDecl *RD,
1692                                              llvm::GlobalVariable *VTable) {
1693   // Emit type metadata on vtables with LTO or IR instrumentation.
1694   // In IR instrumentation, the type metadata could be used to find out vtable
1695   // definitions (for type profiling) among all global variables.
1696   if (!CGM.getCodeGenOpts().LTOUnit &&
1697       !CGM.getCodeGenOpts().hasProfileIRInstr())
1698     return;
1699 
1700   // TODO: Should VirtualFunctionElimination also be supported here?
1701   // See similar handling in CodeGenModule::EmitVTableTypeMetadata.
1702   if (CGM.getCodeGenOpts().WholeProgramVTables) {
1703     llvm::DenseSet<const CXXRecordDecl *> Visited;
1704     llvm::GlobalObject::VCallVisibility TypeVis =
1705         CGM.GetVCallVisibilityLevel(RD, Visited);
1706     if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1707       VTable->setVCallVisibilityMetadata(TypeVis);
1708   }
1709 
1710   // The location of the first virtual function pointer in the virtual table,
1711   // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1712   // disabled, or sizeof(void*) if RTTI is enabled.
1713   CharUnits AddressPoint =
1714       getContext().getLangOpts().RTTIData
1715           ? getContext().toCharUnitsFromBits(
1716                 getContext().getTargetInfo().getPointerWidth(LangAS::Default))
1717           : CharUnits::Zero();
1718 
1719   if (Info.PathToIntroducingObject.empty()) {
1720     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1721     return;
1722   }
1723 
1724   // Add a bitset entry for the least derived base belonging to this vftable.
1725   CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1726                             Info.PathToIntroducingObject.back());
1727 
1728   // Add a bitset entry for each derived class that is laid out at the same
1729   // offset as the least derived base.
1730   for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1731     const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1732     const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1733 
1734     const ASTRecordLayout &Layout =
1735         getContext().getASTRecordLayout(DerivedRD);
1736     CharUnits Offset;
1737     auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1738     if (VBI == Layout.getVBaseOffsetsMap().end())
1739       Offset = Layout.getBaseClassOffset(BaseRD);
1740     else
1741       Offset = VBI->second.VBaseOffset;
1742     if (!Offset.isZero())
1743       return;
1744     CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1745   }
1746 
1747   // Finally do the same for the most derived class.
1748   if (Info.FullOffsetInMDC.isZero())
1749     CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1750 }
1751 
1752 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1753                                             const CXXRecordDecl *RD) {
1754   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1755   const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1756 
1757   for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1758     llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1759     if (VTable->hasInitializer())
1760       continue;
1761 
1762     const VTableLayout &VTLayout =
1763       VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1764 
1765     llvm::Constant *RTTI = nullptr;
1766     if (any_of(VTLayout.vtable_components(),
1767                [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1768       RTTI = getMSCompleteObjectLocator(RD, *Info);
1769 
1770     ConstantInitBuilder builder(CGM);
1771     auto components = builder.beginStruct();
1772     CGVT.createVTableInitializer(components, VTLayout, RTTI,
1773                                  VTable->hasLocalLinkage());
1774     components.finishAndSetAsInitializer(VTable);
1775 
1776     emitVTableTypeMetadata(*Info, RD, VTable);
1777   }
1778 }
1779 
1780 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1781     CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1782   return Vptr.NearestVBase != nullptr;
1783 }
1784 
1785 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1786     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1787     const CXXRecordDecl *NearestVBase) {
1788   llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1789   if (!VTableAddressPoint) {
1790     assert(Base.getBase()->getNumVBases() &&
1791            !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1792   }
1793   return VTableAddressPoint;
1794 }
1795 
1796 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1797                               const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1798                               SmallString<256> &Name) {
1799   llvm::raw_svector_ostream Out(Name);
1800   MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1801 }
1802 
1803 llvm::Constant *
1804 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1805                                        const CXXRecordDecl *VTableClass) {
1806   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1807   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1808   return VFTablesMap[ID];
1809 }
1810 
1811 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1812                                                        CharUnits VPtrOffset) {
1813   // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1814   // shouldn't be used in the given record type. We want to cache this result in
1815   // VFTablesMap, thus a simple zero check is not sufficient.
1816 
1817   VFTableIdTy ID(RD, VPtrOffset);
1818   VTablesMapTy::iterator I;
1819   bool Inserted;
1820   std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1821   if (!Inserted)
1822     return I->second;
1823 
1824   llvm::GlobalVariable *&VTable = I->second;
1825 
1826   MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1827   const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1828 
1829   if (DeferredVFTables.insert(RD).second) {
1830     // We haven't processed this record type before.
1831     // Queue up this vtable for possible deferred emission.
1832     CGM.addDeferredVTable(RD);
1833 
1834 #ifndef NDEBUG
1835     // Create all the vftables at once in order to make sure each vftable has
1836     // a unique mangled name.
1837     llvm::StringSet<> ObservedMangledNames;
1838     for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1839       SmallString<256> Name;
1840       mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1841       if (!ObservedMangledNames.insert(Name.str()).second)
1842         llvm_unreachable("Already saw this mangling before?");
1843     }
1844 #endif
1845   }
1846 
1847   const std::unique_ptr<VPtrInfo> *VFPtrI =
1848       llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) {
1849         return VPI->FullOffsetInMDC == VPtrOffset;
1850       });
1851   if (VFPtrI == VFPtrs.end()) {
1852     VFTablesMap[ID] = nullptr;
1853     return nullptr;
1854   }
1855   const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1856 
1857   SmallString<256> VFTableName;
1858   mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1859 
1860   // Classes marked __declspec(dllimport) need vftables generated on the
1861   // import-side in order to support features like constexpr.  No other
1862   // translation unit relies on the emission of the local vftable, translation
1863   // units are expected to generate them as needed.
1864   //
1865   // Because of this unique behavior, we maintain this logic here instead of
1866   // getVTableLinkage.
1867   llvm::GlobalValue::LinkageTypes VFTableLinkage =
1868       RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1869                                    : CGM.getVTableLinkage(RD);
1870   bool VFTableComesFromAnotherTU =
1871       llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1872       llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1873   bool VTableAliasIsRequred =
1874       !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1875 
1876   if (llvm::GlobalValue *VFTable =
1877           CGM.getModule().getNamedGlobal(VFTableName)) {
1878     VFTablesMap[ID] = VFTable;
1879     VTable = VTableAliasIsRequred
1880                  ? cast<llvm::GlobalVariable>(
1881                        cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject())
1882                  : cast<llvm::GlobalVariable>(VFTable);
1883     return VTable;
1884   }
1885 
1886   const VTableLayout &VTLayout =
1887       VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1888   llvm::GlobalValue::LinkageTypes VTableLinkage =
1889       VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1890 
1891   StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1892 
1893   llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1894 
1895   // Create a backing variable for the contents of VTable.  The VTable may
1896   // or may not include space for a pointer to RTTI data.
1897   llvm::GlobalValue *VFTable;
1898   VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1899                                     /*isConstant=*/true, VTableLinkage,
1900                                     /*Initializer=*/nullptr, VTableName);
1901   VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1902 
1903   llvm::Comdat *C = nullptr;
1904   if (!VFTableComesFromAnotherTU &&
1905       llvm::GlobalValue::isWeakForLinker(VFTableLinkage))
1906     C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1907 
1908   // Only insert a pointer into the VFTable for RTTI data if we are not
1909   // importing it.  We never reference the RTTI data directly so there is no
1910   // need to make room for it.
1911   if (VTableAliasIsRequred) {
1912     llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1913                                  llvm::ConstantInt::get(CGM.Int32Ty, 0),
1914                                  llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1915     // Create a GEP which points just after the first entry in the VFTable,
1916     // this should be the location of the first virtual method.
1917     llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1918         VTable->getValueType(), VTable, GEPIndices);
1919     if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1920       VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1921       if (C)
1922         C->setSelectionKind(llvm::Comdat::Largest);
1923     }
1924     VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1925                                         /*AddressSpace=*/0, VFTableLinkage,
1926                                         VFTableName.str(), VTableGEP,
1927                                         &CGM.getModule());
1928     VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1929   } else {
1930     // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1931     // be referencing any RTTI data.
1932     // The GlobalVariable will end up being an appropriate definition of the
1933     // VFTable.
1934     VFTable = VTable;
1935   }
1936   if (C)
1937     VTable->setComdat(C);
1938 
1939   if (RD->hasAttr<DLLExportAttr>())
1940     VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1941 
1942   VFTablesMap[ID] = VFTable;
1943   return VTable;
1944 }
1945 
1946 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1947                                                     GlobalDecl GD,
1948                                                     Address This,
1949                                                     llvm::Type *Ty,
1950                                                     SourceLocation Loc) {
1951   CGBuilderTy &Builder = CGF.Builder;
1952 
1953   Ty = CGF.UnqualPtrTy;
1954   Address VPtr =
1955       adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1956 
1957   auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1958   llvm::Value *VTable =
1959       CGF.GetVTablePtr(VPtr, CGF.UnqualPtrTy, MethodDecl->getParent());
1960 
1961   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1962   MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1963 
1964   // Compute the identity of the most derived class whose virtual table is
1965   // located at the MethodVFTableLocation ML.
1966   auto getObjectWithVPtr = [&] {
1967     return llvm::find_if(VFTContext.getVFPtrOffsets(
1968                              ML.VBase ? ML.VBase : MethodDecl->getParent()),
1969                          [&](const std::unique_ptr<VPtrInfo> &Info) {
1970                            return Info->FullOffsetInMDC == ML.VFPtrOffset;
1971                          })
1972         ->get()
1973         ->ObjectWithVPtr;
1974   };
1975 
1976   llvm::Value *VFunc;
1977   if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1978     VFunc = CGF.EmitVTableTypeCheckedLoad(
1979         getObjectWithVPtr(), VTable, Ty,
1980         ML.Index *
1981             CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) /
1982             8);
1983   } else {
1984     if (CGM.getCodeGenOpts().PrepareForLTO)
1985       CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1986 
1987     llvm::Value *VFuncPtr =
1988         Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn");
1989     VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign());
1990   }
1991 
1992   CGCallee Callee(GD, VFunc);
1993   return Callee;
1994 }
1995 
1996 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1997     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1998     Address This, DeleteOrMemberCallExpr E, llvm::CallBase **CallOrInvoke) {
1999   auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
2000   auto *D = E.dyn_cast<const CXXDeleteExpr *>();
2001   assert((CE != nullptr) ^ (D != nullptr));
2002   assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
2003   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
2004 
2005   // We have only one destructor in the vftable but can get both behaviors
2006   // by passing an implicit int parameter.
2007   GlobalDecl GD(Dtor, Dtor_Deleting);
2008   const CGFunctionInfo *FInfo =
2009       &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
2010   llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
2011   CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
2012 
2013   ASTContext &Context = getContext();
2014   llvm::Value *ImplicitParam = llvm::ConstantInt::get(
2015       llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
2016       DtorType == Dtor_Deleting);
2017 
2018   QualType ThisTy;
2019   if (CE) {
2020     ThisTy = CE->getObjectType();
2021   } else {
2022     ThisTy = D->getDestroyedType();
2023   }
2024 
2025   This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
2026   RValue RV =
2027       CGF.EmitCXXDestructorCall(GD, Callee, This.emitRawPointer(CGF), ThisTy,
2028                                 ImplicitParam, Context.IntTy, CE, CallOrInvoke);
2029   return RV.getScalarVal();
2030 }
2031 
2032 const VBTableGlobals &
2033 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
2034   // At this layer, we can key the cache off of a single class, which is much
2035   // easier than caching each vbtable individually.
2036   llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
2037   bool Added;
2038   std::tie(Entry, Added) =
2039       VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
2040   VBTableGlobals &VBGlobals = Entry->second;
2041   if (!Added)
2042     return VBGlobals;
2043 
2044   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2045   VBGlobals.VBTables = &Context.enumerateVBTables(RD);
2046 
2047   // Cache the globals for all vbtables so we don't have to recompute the
2048   // mangled names.
2049   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
2050   for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
2051                                       E = VBGlobals.VBTables->end();
2052        I != E; ++I) {
2053     VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
2054   }
2055 
2056   return VBGlobals;
2057 }
2058 
2059 llvm::Function *
2060 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
2061                                         const MethodVFTableLocation &ML) {
2062   assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
2063          "can't form pointers to ctors or virtual dtors");
2064 
2065   // Calculate the mangled name.
2066   SmallString<256> ThunkName;
2067   llvm::raw_svector_ostream Out(ThunkName);
2068   getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
2069 
2070   // If the thunk has been generated previously, just return it.
2071   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
2072     return cast<llvm::Function>(GV);
2073 
2074   // Create the llvm::Function.
2075   const CGFunctionInfo &FnInfo =
2076       CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
2077   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
2078   llvm::Function *ThunkFn =
2079       llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
2080                              ThunkName.str(), &CGM.getModule());
2081   assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
2082 
2083   ThunkFn->setLinkage(MD->isExternallyVisible()
2084                           ? llvm::GlobalValue::LinkOnceODRLinkage
2085                           : llvm::GlobalValue::InternalLinkage);
2086   if (MD->isExternallyVisible())
2087     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
2088 
2089   CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
2090   CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
2091 
2092   // Add the "thunk" attribute so that LLVM knows that the return type is
2093   // meaningless. These thunks can be used to call functions with differing
2094   // return types, and the caller is required to cast the prototype
2095   // appropriately to extract the correct value.
2096   ThunkFn->addFnAttr("thunk");
2097 
2098   // These thunks can be compared, so they are not unnamed.
2099   ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2100 
2101   // Start codegen.
2102   CodeGenFunction CGF(CGM);
2103   CGF.CurGD = GlobalDecl(MD);
2104   CGF.CurFuncIsThunk = true;
2105 
2106   // Build FunctionArgs, but only include the implicit 'this' parameter
2107   // declaration.
2108   FunctionArgList FunctionArgs;
2109   buildThisParam(CGF, FunctionArgs);
2110 
2111   // Start defining the function.
2112   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2113                     FunctionArgs, MD->getLocation(), SourceLocation());
2114 
2115   ApplyDebugLocation AL(CGF, MD->getLocation());
2116   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2117 
2118   // Load the vfptr and then callee from the vftable.  The callee should have
2119   // adjusted 'this' so that the vfptr is at offset zero.
2120   llvm::Type *ThunkPtrTy = CGF.UnqualPtrTy;
2121   llvm::Value *VTable =
2122       CGF.GetVTablePtr(getThisAddress(CGF), CGF.UnqualPtrTy, MD->getParent());
2123 
2124   llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64(
2125       ThunkPtrTy, VTable, ML.Index, "vfn");
2126   llvm::Value *Callee =
2127     CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign());
2128 
2129   CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2130 
2131   return ThunkFn;
2132 }
2133 
2134 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2135   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2136   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2137     const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2138     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2139     if (GV->isDeclaration())
2140       emitVBTableDefinition(*VBT, RD, GV);
2141   }
2142 }
2143 
2144 llvm::GlobalVariable *
2145 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2146                                   llvm::GlobalVariable::LinkageTypes Linkage) {
2147   SmallString<256> OutName;
2148   llvm::raw_svector_ostream Out(OutName);
2149   getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2150   StringRef Name = OutName.str();
2151 
2152   llvm::ArrayType *VBTableType =
2153       llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2154 
2155   assert(!CGM.getModule().getNamedGlobal(Name) &&
2156          "vbtable with this name already exists: mangling bug?");
2157   CharUnits Alignment =
2158       CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2159   llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2160       Name, VBTableType, Linkage, Alignment.getAsAlign());
2161   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2162 
2163   if (RD->hasAttr<DLLImportAttr>())
2164     GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2165   else if (RD->hasAttr<DLLExportAttr>())
2166     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2167 
2168   if (!GV->hasExternalLinkage())
2169     emitVBTableDefinition(VBT, RD, GV);
2170 
2171   return GV;
2172 }
2173 
2174 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2175                                             const CXXRecordDecl *RD,
2176                                             llvm::GlobalVariable *GV) const {
2177   const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2178 
2179   assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2180          "should only emit vbtables for classes with vbtables");
2181 
2182   const ASTRecordLayout &BaseLayout =
2183       getContext().getASTRecordLayout(VBT.IntroducingObject);
2184   const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2185 
2186   SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2187                                            nullptr);
2188 
2189   // The offset from ObjectWithVPtr's vbptr to itself always leads.
2190   CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2191   Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2192 
2193   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2194   for (const auto &I : ObjectWithVPtr->vbases()) {
2195     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2196     CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2197     assert(!Offset.isNegative());
2198 
2199     // Make it relative to the subobject vbptr.
2200     CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2201     if (VBT.getVBaseWithVPtr())
2202       CompleteVBPtrOffset +=
2203           DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2204     Offset -= CompleteVBPtrOffset;
2205 
2206     unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2207     assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2208     Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2209   }
2210 
2211   assert(Offsets.size() ==
2212          cast<llvm::ArrayType>(GV->getValueType())->getNumElements());
2213   llvm::ArrayType *VBTableType =
2214     llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2215   llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2216   GV->setInitializer(Init);
2217 
2218   if (RD->hasAttr<DLLImportAttr>())
2219     GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2220 }
2221 
2222 llvm::Value *MicrosoftCXXABI::performThisAdjustment(
2223     CodeGenFunction &CGF, Address This,
2224     const CXXRecordDecl * /*UnadjustedClass*/, const ThunkInfo &TI) {
2225   const ThisAdjustment &TA = TI.This;
2226   if (TA.isEmpty())
2227     return This.emitRawPointer(CGF);
2228 
2229   This = This.withElementType(CGF.Int8Ty);
2230 
2231   llvm::Value *V;
2232   if (TA.Virtual.isEmpty()) {
2233     V = This.emitRawPointer(CGF);
2234   } else {
2235     assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2236     // Adjust the this argument based on the vtordisp value.
2237     Address VtorDispPtr =
2238         CGF.Builder.CreateConstInBoundsByteGEP(This,
2239                  CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2240     VtorDispPtr = VtorDispPtr.withElementType(CGF.Int32Ty);
2241     llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2242     V = CGF.Builder.CreateGEP(This.getElementType(), This.emitRawPointer(CGF),
2243                               CGF.Builder.CreateNeg(VtorDisp));
2244 
2245     // Unfortunately, having applied the vtordisp means that we no
2246     // longer really have a known alignment for the vbptr step.
2247     // We'll assume the vbptr is pointer-aligned.
2248 
2249     if (TA.Virtual.Microsoft.VBPtrOffset) {
2250       // If the final overrider is defined in a virtual base other than the one
2251       // that holds the vfptr, we have to use a vtordispex thunk which looks up
2252       // the vbtable of the derived class.
2253       assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2254       assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2255       llvm::Value *VBPtr;
2256       llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr(
2257           CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()),
2258           -TA.Virtual.Microsoft.VBPtrOffset,
2259           TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2260       V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2261     }
2262   }
2263 
2264   if (TA.NonVirtual) {
2265     // Non-virtual adjustment might result in a pointer outside the allocated
2266     // object, e.g. if the final overrider class is laid out after the virtual
2267     // base that declares a method in the most derived class.
2268     V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual);
2269   }
2270 
2271   // Don't need to bitcast back, the call CodeGen will handle this.
2272   return V;
2273 }
2274 
2275 llvm::Value *MicrosoftCXXABI::performReturnAdjustment(
2276     CodeGenFunction &CGF, Address Ret,
2277     const CXXRecordDecl * /*UnadjustedClass*/, const ReturnAdjustment &RA) {
2278 
2279   if (RA.isEmpty())
2280     return Ret.emitRawPointer(CGF);
2281 
2282   Ret = Ret.withElementType(CGF.Int8Ty);
2283 
2284   llvm::Value *V = Ret.emitRawPointer(CGF);
2285   if (RA.Virtual.Microsoft.VBIndex) {
2286     assert(RA.Virtual.Microsoft.VBIndex > 0);
2287     int32_t IntSize = CGF.getIntSize().getQuantity();
2288     llvm::Value *VBPtr;
2289     llvm::Value *VBaseOffset =
2290         GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2291                                 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2292     V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2293   }
2294 
2295   if (RA.NonVirtual)
2296     V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2297 
2298   return V;
2299 }
2300 
2301 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2302                                    QualType elementType) {
2303   // Microsoft seems to completely ignore the possibility of a
2304   // two-argument usual deallocation function.
2305   return elementType.isDestructedType();
2306 }
2307 
2308 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2309   // Microsoft seems to completely ignore the possibility of a
2310   // two-argument usual deallocation function.
2311   return expr->getAllocatedType().isDestructedType();
2312 }
2313 
2314 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2315   // The array cookie is always a size_t; we then pad that out to the
2316   // alignment of the element type.
2317   ASTContext &Ctx = getContext();
2318   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2319                   Ctx.getTypeAlignInChars(type));
2320 }
2321 
2322 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2323                                                   Address allocPtr,
2324                                                   CharUnits cookieSize) {
2325   Address numElementsPtr = allocPtr.withElementType(CGF.SizeTy);
2326   return CGF.Builder.CreateLoad(numElementsPtr);
2327 }
2328 
2329 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2330                                                Address newPtr,
2331                                                llvm::Value *numElements,
2332                                                const CXXNewExpr *expr,
2333                                                QualType elementType) {
2334   assert(requiresArrayCookie(expr));
2335 
2336   // The size of the cookie.
2337   CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2338 
2339   // Compute an offset to the cookie.
2340   Address cookiePtr = newPtr;
2341 
2342   // Write the number of elements into the appropriate slot.
2343   Address numElementsPtr = cookiePtr.withElementType(CGF.SizeTy);
2344   CGF.Builder.CreateStore(numElements, numElementsPtr);
2345 
2346   // Finally, compute a pointer to the actual data buffer by skipping
2347   // over the cookie completely.
2348   return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2349 }
2350 
2351 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2352                                         llvm::FunctionCallee Dtor,
2353                                         llvm::Constant *Addr) {
2354   // Create a function which calls the destructor.
2355   llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2356 
2357   // extern "C" int __tlregdtor(void (*f)(void));
2358   llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2359       CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2360 
2361   llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2362       TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2363   if (llvm::Function *TLRegDtorFn =
2364           dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2365     TLRegDtorFn->setDoesNotThrow();
2366 
2367   CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2368 }
2369 
2370 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2371                                          llvm::FunctionCallee Dtor,
2372                                          llvm::Constant *Addr) {
2373   if (D.isNoDestroy(CGM.getContext()))
2374     return;
2375 
2376   if (D.getTLSKind())
2377     return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2378 
2379   // HLSL doesn't support atexit.
2380   if (CGM.getLangOpts().HLSL)
2381     return CGM.AddCXXDtorEntry(Dtor, Addr);
2382 
2383   // The default behavior is to use atexit.
2384   CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2385 }
2386 
2387 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2388     CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2389     ArrayRef<llvm::Function *> CXXThreadLocalInits,
2390     ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2391   if (CXXThreadLocalInits.empty())
2392     return;
2393 
2394   CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2395                                   llvm::Triple::x86
2396                               ? "/include:___dyn_tls_init@12"
2397                               : "/include:__dyn_tls_init");
2398 
2399   // This will create a GV in the .CRT$XDU section.  It will point to our
2400   // initialization function.  The CRT will call all of these function
2401   // pointers at start-up time and, eventually, at thread-creation time.
2402   auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2403     llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2404         CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2405         llvm::GlobalVariable::InternalLinkage, InitFunc,
2406         Twine(InitFunc->getName(), "$initializer$"));
2407     InitFuncPtr->setSection(".CRT$XDU");
2408     // This variable has discardable linkage, we have to add it to @llvm.used to
2409     // ensure it won't get discarded.
2410     CGM.addUsedGlobal(InitFuncPtr);
2411     return InitFuncPtr;
2412   };
2413 
2414   std::vector<llvm::Function *> NonComdatInits;
2415   for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2416     llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2417         CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2418     llvm::Function *F = CXXThreadLocalInits[I];
2419 
2420     // If the GV is already in a comdat group, then we have to join it.
2421     if (llvm::Comdat *C = GV->getComdat())
2422       AddToXDU(F)->setComdat(C);
2423     else
2424       NonComdatInits.push_back(F);
2425   }
2426 
2427   if (!NonComdatInits.empty()) {
2428     llvm::FunctionType *FTy =
2429         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2430     llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(
2431         FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2432         SourceLocation(), /*TLS=*/true);
2433     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2434 
2435     AddToXDU(InitFunc);
2436   }
2437 }
2438 
2439 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) {
2440   // __tls_guard comes from the MSVC runtime and reflects
2441   // whether TLS has been initialized for a particular thread.
2442   // It is set from within __dyn_tls_init by the runtime.
2443   // Every library and executable has its own variable.
2444   llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext());
2445   llvm::Constant *TlsGuardConstant =
2446       CGM.CreateRuntimeVariable(VTy, "__tls_guard");
2447   llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant);
2448 
2449   TlsGuard->setThreadLocal(true);
2450 
2451   return TlsGuard;
2452 }
2453 
2454 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) {
2455   // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers
2456   // dynamic TLS initialization by calling __dyn_tls_init internally.
2457   llvm::FunctionType *FTy =
2458       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {},
2459                               /*isVarArg=*/false);
2460   return CGM.CreateRuntimeFunction(
2461       FTy, "__dyn_tls_on_demand_init",
2462       llvm::AttributeList::get(CGM.getLLVMContext(),
2463                                llvm::AttributeList::FunctionIndex,
2464                                llvm::Attribute::NoUnwind),
2465       /*Local=*/true);
2466 }
2467 
2468 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard,
2469                               llvm::BasicBlock *DynInitBB,
2470                               llvm::BasicBlock *ContinueBB) {
2471   llvm::LoadInst *TlsGuardValue =
2472       CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One()));
2473   llvm::Value *CmpResult =
2474       CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0));
2475   CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB);
2476 }
2477 
2478 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF,
2479                                              llvm::GlobalValue *TlsGuard,
2480                                              llvm::BasicBlock *ContinueBB) {
2481   llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM);
2482   llvm::Function *InitializerFunction =
2483       cast<llvm::Function>(Initializer.getCallee());
2484   llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction);
2485   CallVal->setCallingConv(InitializerFunction->getCallingConv());
2486 
2487   CGF.Builder.CreateBr(ContinueBB);
2488 }
2489 
2490 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) {
2491   llvm::BasicBlock *DynInitBB =
2492       CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn);
2493   llvm::BasicBlock *ContinueBB =
2494       CGF.createBasicBlock("dyntls.continue", CGF.CurFn);
2495 
2496   llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM);
2497 
2498   emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB);
2499   CGF.Builder.SetInsertPoint(DynInitBB);
2500   emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB);
2501   CGF.Builder.SetInsertPoint(ContinueBB);
2502 }
2503 
2504 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2505                                                      const VarDecl *VD,
2506                                                      QualType LValType) {
2507   // Dynamic TLS initialization works by checking the state of a
2508   // guard variable (__tls_guard) to see whether TLS initialization
2509   // for a thread has happend yet.
2510   // If not, the initialization is triggered on-demand
2511   // by calling __dyn_tls_on_demand_init.
2512   emitDynamicTlsInitialization(CGF);
2513 
2514   // Emit the variable just like any regular global variable.
2515 
2516   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2517   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2518 
2519   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2520   Address Addr(V, RealVarTy, Alignment);
2521 
2522   LValue LV = VD->getType()->isReferenceType()
2523                   ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2524                                                   AlignmentSource::Decl)
2525                   : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl);
2526   return LV;
2527 }
2528 
2529 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2530   StringRef VarName("_Init_thread_epoch");
2531   CharUnits Align = CGM.getIntAlign();
2532   if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2533     return ConstantAddress(GV, GV->getValueType(), Align);
2534   auto *GV = new llvm::GlobalVariable(
2535       CGM.getModule(), CGM.IntTy,
2536       /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2537       /*Initializer=*/nullptr, VarName,
2538       /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2539   GV->setAlignment(Align.getAsAlign());
2540   return ConstantAddress(GV, GV->getValueType(), Align);
2541 }
2542 
2543 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2544   llvm::FunctionType *FTy =
2545       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2546                               CGM.UnqualPtrTy, /*isVarArg=*/false);
2547   return CGM.CreateRuntimeFunction(
2548       FTy, "_Init_thread_header",
2549       llvm::AttributeList::get(CGM.getLLVMContext(),
2550                                llvm::AttributeList::FunctionIndex,
2551                                llvm::Attribute::NoUnwind),
2552       /*Local=*/true);
2553 }
2554 
2555 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2556   llvm::FunctionType *FTy =
2557       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2558                               CGM.UnqualPtrTy, /*isVarArg=*/false);
2559   return CGM.CreateRuntimeFunction(
2560       FTy, "_Init_thread_footer",
2561       llvm::AttributeList::get(CGM.getLLVMContext(),
2562                                llvm::AttributeList::FunctionIndex,
2563                                llvm::Attribute::NoUnwind),
2564       /*Local=*/true);
2565 }
2566 
2567 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2568   llvm::FunctionType *FTy =
2569       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2570                               CGM.UnqualPtrTy, /*isVarArg=*/false);
2571   return CGM.CreateRuntimeFunction(
2572       FTy, "_Init_thread_abort",
2573       llvm::AttributeList::get(CGM.getLLVMContext(),
2574                                llvm::AttributeList::FunctionIndex,
2575                                llvm::Attribute::NoUnwind),
2576       /*Local=*/true);
2577 }
2578 
2579 namespace {
2580 struct ResetGuardBit final : EHScopeStack::Cleanup {
2581   Address Guard;
2582   unsigned GuardNum;
2583   ResetGuardBit(Address Guard, unsigned GuardNum)
2584       : Guard(Guard), GuardNum(GuardNum) {}
2585 
2586   void Emit(CodeGenFunction &CGF, Flags flags) override {
2587     // Reset the bit in the mask so that the static variable may be
2588     // reinitialized.
2589     CGBuilderTy &Builder = CGF.Builder;
2590     llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2591     llvm::ConstantInt *Mask =
2592         llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2593     Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2594   }
2595 };
2596 
2597 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2598   llvm::Value *Guard;
2599   CallInitThreadAbort(RawAddress Guard) : Guard(Guard.getPointer()) {}
2600 
2601   void Emit(CodeGenFunction &CGF, Flags flags) override {
2602     // Calling _Init_thread_abort will reset the guard's state.
2603     CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2604   }
2605 };
2606 }
2607 
2608 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2609                                       llvm::GlobalVariable *GV,
2610                                       bool PerformInit) {
2611   // MSVC only uses guards for static locals.
2612   if (!D.isStaticLocal()) {
2613     assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2614     // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2615     llvm::Function *F = CGF.CurFn;
2616     F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2617     F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2618     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2619     return;
2620   }
2621 
2622   bool ThreadlocalStatic = D.getTLSKind();
2623   bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2624 
2625   // Thread-safe static variables which aren't thread-specific have a
2626   // per-variable guard.
2627   bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2628 
2629   CGBuilderTy &Builder = CGF.Builder;
2630   llvm::IntegerType *GuardTy = CGF.Int32Ty;
2631   llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2632   CharUnits GuardAlign = CharUnits::fromQuantity(4);
2633 
2634   // Get the guard variable for this function if we have one already.
2635   GuardInfo *GI = nullptr;
2636   if (ThreadlocalStatic)
2637     GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2638   else if (!ThreadsafeStatic)
2639     GI = &GuardVariableMap[D.getDeclContext()];
2640 
2641   llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2642   unsigned GuardNum;
2643   if (D.isExternallyVisible()) {
2644     // Externally visible variables have to be numbered in Sema to properly
2645     // handle unreachable VarDecls.
2646     GuardNum = getContext().getStaticLocalNumber(&D);
2647     assert(GuardNum > 0);
2648     GuardNum--;
2649   } else if (HasPerVariableGuard) {
2650     GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2651   } else {
2652     // Non-externally visible variables are numbered here in CodeGen.
2653     GuardNum = GI->BitIndex++;
2654   }
2655 
2656   if (!HasPerVariableGuard && GuardNum >= 32) {
2657     if (D.isExternallyVisible())
2658       ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2659     GuardNum %= 32;
2660     GuardVar = nullptr;
2661   }
2662 
2663   if (!GuardVar) {
2664     // Mangle the name for the guard.
2665     SmallString<256> GuardName;
2666     {
2667       llvm::raw_svector_ostream Out(GuardName);
2668       if (HasPerVariableGuard)
2669         getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2670                                                                Out);
2671       else
2672         getMangleContext().mangleStaticGuardVariable(&D, Out);
2673     }
2674 
2675     // Create the guard variable with a zero-initializer. Just absorb linkage,
2676     // visibility and dll storage class from the guarded variable.
2677     GuardVar =
2678         new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2679                                  GV->getLinkage(), Zero, GuardName.str());
2680     GuardVar->setVisibility(GV->getVisibility());
2681     GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2682     GuardVar->setAlignment(GuardAlign.getAsAlign());
2683     if (GuardVar->isWeakForLinker())
2684       GuardVar->setComdat(
2685           CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2686     if (D.getTLSKind())
2687       CGM.setTLSMode(GuardVar, D);
2688     if (GI && !HasPerVariableGuard)
2689       GI->Guard = GuardVar;
2690   }
2691 
2692   ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign);
2693 
2694   assert(GuardVar->getLinkage() == GV->getLinkage() &&
2695          "static local from the same function had different linkage");
2696 
2697   if (!HasPerVariableGuard) {
2698     // Pseudo code for the test:
2699     // if (!(GuardVar & MyGuardBit)) {
2700     //   GuardVar |= MyGuardBit;
2701     //   ... initialize the object ...;
2702     // }
2703 
2704     // Test our bit from the guard variable.
2705     llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2706     llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2707     llvm::Value *NeedsInit =
2708         Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2709     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2710     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2711     CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2712                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2713 
2714     // Set our bit in the guard variable and emit the initializer and add a global
2715     // destructor if appropriate.
2716     CGF.EmitBlock(InitBlock);
2717     Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2718     CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2719     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2720     CGF.PopCleanupBlock();
2721     Builder.CreateBr(EndBlock);
2722 
2723     // Continue.
2724     CGF.EmitBlock(EndBlock);
2725   } else {
2726     // Pseudo code for the test:
2727     // if (TSS > _Init_thread_epoch) {
2728     //   _Init_thread_header(&TSS);
2729     //   if (TSS == -1) {
2730     //     ... initialize the object ...;
2731     //     _Init_thread_footer(&TSS);
2732     //   }
2733     // }
2734     //
2735     // The algorithm is almost identical to what can be found in the appendix
2736     // found in N2325.
2737 
2738     // This BasicBLock determines whether or not we have any work to do.
2739     llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2740     FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2741     llvm::LoadInst *InitThreadEpoch =
2742         Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2743     llvm::Value *IsUninitialized =
2744         Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2745     llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2746     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2747     CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2748                                  CodeGenFunction::GuardKind::VariableGuard, &D);
2749 
2750     // This BasicBlock attempts to determine whether or not this thread is
2751     // responsible for doing the initialization.
2752     CGF.EmitBlock(AttemptInitBlock);
2753     CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2754                                 GuardAddr.getPointer());
2755     llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2756     SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2757     llvm::Value *ShouldDoInit =
2758         Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2759     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2760     Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2761 
2762     // Ok, we ended up getting selected as the initializing thread.
2763     CGF.EmitBlock(InitBlock);
2764     CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2765     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2766     CGF.PopCleanupBlock();
2767     CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2768                                 GuardAddr.getPointer());
2769     Builder.CreateBr(EndBlock);
2770 
2771     CGF.EmitBlock(EndBlock);
2772   }
2773 }
2774 
2775 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2776   // Null-ness for function memptrs only depends on the first field, which is
2777   // the function pointer.  The rest don't matter, so we can zero initialize.
2778   if (MPT->isMemberFunctionPointer())
2779     return true;
2780 
2781   // The virtual base adjustment field is always -1 for null, so if we have one
2782   // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
2783   // valid field offset.
2784   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2785   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2786   return (!inheritanceModelHasVBTableOffsetField(Inheritance) &&
2787           RD->nullFieldOffsetIsZero());
2788 }
2789 
2790 llvm::Type *
2791 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2792   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2793   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2794   llvm::SmallVector<llvm::Type *, 4> fields;
2795   if (MPT->isMemberFunctionPointer())
2796     fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
2797   else
2798     fields.push_back(CGM.IntTy);  // FieldOffset
2799 
2800   if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2801                                        Inheritance))
2802     fields.push_back(CGM.IntTy);
2803   if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2804     fields.push_back(CGM.IntTy);
2805   if (inheritanceModelHasVBTableOffsetField(Inheritance))
2806     fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
2807 
2808   if (fields.size() == 1)
2809     return fields[0];
2810   return llvm::StructType::get(CGM.getLLVMContext(), fields);
2811 }
2812 
2813 void MicrosoftCXXABI::
2814 GetNullMemberPointerFields(const MemberPointerType *MPT,
2815                            llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2816   assert(fields.empty());
2817   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2818   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2819   if (MPT->isMemberFunctionPointer()) {
2820     // FunctionPointerOrVirtualThunk
2821     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2822   } else {
2823     if (RD->nullFieldOffsetIsZero())
2824       fields.push_back(getZeroInt());  // FieldOffset
2825     else
2826       fields.push_back(getAllOnesInt());  // FieldOffset
2827   }
2828 
2829   if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2830                                        Inheritance))
2831     fields.push_back(getZeroInt());
2832   if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2833     fields.push_back(getZeroInt());
2834   if (inheritanceModelHasVBTableOffsetField(Inheritance))
2835     fields.push_back(getAllOnesInt());
2836 }
2837 
2838 llvm::Constant *
2839 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2840   llvm::SmallVector<llvm::Constant *, 4> fields;
2841   GetNullMemberPointerFields(MPT, fields);
2842   if (fields.size() == 1)
2843     return fields[0];
2844   llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2845   assert(Res->getType() == ConvertMemberPointerType(MPT));
2846   return Res;
2847 }
2848 
2849 llvm::Constant *
2850 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2851                                        bool IsMemberFunction,
2852                                        const CXXRecordDecl *RD,
2853                                        CharUnits NonVirtualBaseAdjustment,
2854                                        unsigned VBTableIndex) {
2855   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2856 
2857   // Single inheritance class member pointer are represented as scalars instead
2858   // of aggregates.
2859   if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance))
2860     return FirstField;
2861 
2862   llvm::SmallVector<llvm::Constant *, 4> fields;
2863   fields.push_back(FirstField);
2864 
2865   if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance))
2866     fields.push_back(llvm::ConstantInt::get(
2867       CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2868 
2869   if (inheritanceModelHasVBPtrOffsetField(Inheritance)) {
2870     CharUnits Offs = CharUnits::Zero();
2871     if (VBTableIndex)
2872       Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2873     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2874   }
2875 
2876   // The rest of the fields are adjusted by conversions to a more derived class.
2877   if (inheritanceModelHasVBTableOffsetField(Inheritance))
2878     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2879 
2880   return llvm::ConstantStruct::getAnon(fields);
2881 }
2882 
2883 llvm::Constant *
2884 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2885                                        CharUnits offset) {
2886   return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
2887 }
2888 
2889 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
2890                                                        CharUnits offset) {
2891   if (RD->getMSInheritanceModel() ==
2892       MSInheritanceModel::Virtual)
2893     offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2894   llvm::Constant *FirstField =
2895     llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2896   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2897                                CharUnits::Zero(), /*VBTableIndex=*/0);
2898 }
2899 
2900 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2901                                                    QualType MPType) {
2902   const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2903   const ValueDecl *MPD = MP.getMemberPointerDecl();
2904   if (!MPD)
2905     return EmitNullMemberPointer(DstTy);
2906 
2907   ASTContext &Ctx = getContext();
2908   ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2909 
2910   llvm::Constant *C;
2911   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2912     C = EmitMemberFunctionPointer(MD);
2913   } else {
2914     // For a pointer to data member, start off with the offset of the field in
2915     // the class in which it was declared, and convert from there if necessary.
2916     // For indirect field decls, get the outermost anonymous field and use the
2917     // parent class.
2918     CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2919     const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
2920     if (!FD)
2921       FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
2922     const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
2923     RD = RD->getMostRecentNonInjectedDecl();
2924     C = EmitMemberDataPointer(RD, FieldOffset);
2925   }
2926 
2927   if (!MemberPointerPath.empty()) {
2928     const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2929     const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2930     const MemberPointerType *SrcTy =
2931         Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2932             ->castAs<MemberPointerType>();
2933 
2934     bool DerivedMember = MP.isMemberPointerToDerivedMember();
2935     SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2936     const CXXRecordDecl *PrevRD = SrcRD;
2937     for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2938       const CXXRecordDecl *Base = nullptr;
2939       const CXXRecordDecl *Derived = nullptr;
2940       if (DerivedMember) {
2941         Base = PathElem;
2942         Derived = PrevRD;
2943       } else {
2944         Base = PrevRD;
2945         Derived = PathElem;
2946       }
2947       for (const CXXBaseSpecifier &BS : Derived->bases())
2948         if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2949             Base->getCanonicalDecl())
2950           DerivedToBasePath.push_back(&BS);
2951       PrevRD = PathElem;
2952     }
2953     assert(DerivedToBasePath.size() == MemberPointerPath.size());
2954 
2955     CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2956                                 : CK_BaseToDerivedMemberPointer;
2957     C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2958                                     DerivedToBasePath.end(), C);
2959   }
2960   return C;
2961 }
2962 
2963 llvm::Constant *
2964 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2965   assert(MD->isInstance() && "Member function must not be static!");
2966 
2967   CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2968   const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2969   CodeGenTypes &Types = CGM.getTypes();
2970 
2971   unsigned VBTableIndex = 0;
2972   llvm::Constant *FirstField;
2973   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2974   if (!MD->isVirtual()) {
2975     llvm::Type *Ty;
2976     // Check whether the function has a computable LLVM signature.
2977     if (Types.isFuncTypeConvertible(FPT)) {
2978       // The function has a computable LLVM signature; use the correct type.
2979       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2980     } else {
2981       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2982       // function type is incomplete.
2983       Ty = CGM.PtrDiffTy;
2984     }
2985     FirstField = CGM.GetAddrOfFunction(MD, Ty);
2986   } else {
2987     auto &VTableContext = CGM.getMicrosoftVTableContext();
2988     MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2989     FirstField = EmitVirtualMemPtrThunk(MD, ML);
2990     // Include the vfptr adjustment if the method is in a non-primary vftable.
2991     NonVirtualBaseAdjustment += ML.VFPtrOffset;
2992     if (ML.VBase)
2993       VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2994   }
2995 
2996   if (VBTableIndex == 0 &&
2997       RD->getMSInheritanceModel() ==
2998           MSInheritanceModel::Virtual)
2999     NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
3000 
3001   // The rest of the fields are common with data member pointers.
3002   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
3003                                NonVirtualBaseAdjustment, VBTableIndex);
3004 }
3005 
3006 /// Member pointers are the same if they're either bitwise identical *or* both
3007 /// null.  Null-ness for function members is determined by the first field,
3008 /// while for data member pointers we must compare all fields.
3009 llvm::Value *
3010 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
3011                                              llvm::Value *L,
3012                                              llvm::Value *R,
3013                                              const MemberPointerType *MPT,
3014                                              bool Inequality) {
3015   CGBuilderTy &Builder = CGF.Builder;
3016 
3017   // Handle != comparisons by switching the sense of all boolean operations.
3018   llvm::ICmpInst::Predicate Eq;
3019   llvm::Instruction::BinaryOps And, Or;
3020   if (Inequality) {
3021     Eq = llvm::ICmpInst::ICMP_NE;
3022     And = llvm::Instruction::Or;
3023     Or = llvm::Instruction::And;
3024   } else {
3025     Eq = llvm::ICmpInst::ICMP_EQ;
3026     And = llvm::Instruction::And;
3027     Or = llvm::Instruction::Or;
3028   }
3029 
3030   // If this is a single field member pointer (single inheritance), this is a
3031   // single icmp.
3032   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3033   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3034   if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(),
3035                                       Inheritance))
3036     return Builder.CreateICmp(Eq, L, R);
3037 
3038   // Compare the first field.
3039   llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
3040   llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
3041   llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
3042 
3043   // Compare everything other than the first field.
3044   llvm::Value *Res = nullptr;
3045   llvm::StructType *LType = cast<llvm::StructType>(L->getType());
3046   for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
3047     llvm::Value *LF = Builder.CreateExtractValue(L, I);
3048     llvm::Value *RF = Builder.CreateExtractValue(R, I);
3049     llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
3050     if (Res)
3051       Res = Builder.CreateBinOp(And, Res, Cmp);
3052     else
3053       Res = Cmp;
3054   }
3055 
3056   // Check if the first field is 0 if this is a function pointer.
3057   if (MPT->isMemberFunctionPointer()) {
3058     // (l1 == r1 && ...) || l0 == 0
3059     llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
3060     llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
3061     Res = Builder.CreateBinOp(Or, Res, IsZero);
3062   }
3063 
3064   // Combine the comparison of the first field, which must always be true for
3065   // this comparison to succeeed.
3066   return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
3067 }
3068 
3069 llvm::Value *
3070 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
3071                                             llvm::Value *MemPtr,
3072                                             const MemberPointerType *MPT) {
3073   CGBuilderTy &Builder = CGF.Builder;
3074   llvm::SmallVector<llvm::Constant *, 4> fields;
3075   // We only need one field for member functions.
3076   if (MPT->isMemberFunctionPointer())
3077     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
3078   else
3079     GetNullMemberPointerFields(MPT, fields);
3080   assert(!fields.empty());
3081   llvm::Value *FirstField = MemPtr;
3082   if (MemPtr->getType()->isStructTy())
3083     FirstField = Builder.CreateExtractValue(MemPtr, 0);
3084   llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
3085 
3086   // For function member pointers, we only need to test the function pointer
3087   // field.  The other fields if any can be garbage.
3088   if (MPT->isMemberFunctionPointer())
3089     return Res;
3090 
3091   // Otherwise, emit a series of compares and combine the results.
3092   for (int I = 1, E = fields.size(); I < E; ++I) {
3093     llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
3094     llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
3095     Res = Builder.CreateOr(Res, Next, "memptr.tobool");
3096   }
3097   return Res;
3098 }
3099 
3100 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
3101                                                   llvm::Constant *Val) {
3102   // Function pointers are null if the pointer in the first field is null.
3103   if (MPT->isMemberFunctionPointer()) {
3104     llvm::Constant *FirstField = Val->getType()->isStructTy() ?
3105       Val->getAggregateElement(0U) : Val;
3106     return FirstField->isNullValue();
3107   }
3108 
3109   // If it's not a function pointer and it's zero initializable, we can easily
3110   // check zero.
3111   if (isZeroInitializable(MPT) && Val->isNullValue())
3112     return true;
3113 
3114   // Otherwise, break down all the fields for comparison.  Hopefully these
3115   // little Constants are reused, while a big null struct might not be.
3116   llvm::SmallVector<llvm::Constant *, 4> Fields;
3117   GetNullMemberPointerFields(MPT, Fields);
3118   if (Fields.size() == 1) {
3119     assert(Val->getType()->isIntegerTy());
3120     return Val == Fields[0];
3121   }
3122 
3123   unsigned I, E;
3124   for (I = 0, E = Fields.size(); I != E; ++I) {
3125     if (Val->getAggregateElement(I) != Fields[I])
3126       break;
3127   }
3128   return I == E;
3129 }
3130 
3131 llvm::Value *
3132 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
3133                                          Address This,
3134                                          llvm::Value *VBPtrOffset,
3135                                          llvm::Value *VBTableOffset,
3136                                          llvm::Value **VBPtrOut) {
3137   CGBuilderTy &Builder = CGF.Builder;
3138   // Load the vbtable pointer from the vbptr in the instance.
3139   llvm::Value *VBPtr = Builder.CreateInBoundsGEP(
3140       CGM.Int8Ty, This.emitRawPointer(CGF), VBPtrOffset, "vbptr");
3141   if (VBPtrOut)
3142     *VBPtrOut = VBPtr;
3143 
3144   CharUnits VBPtrAlign;
3145   if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
3146     VBPtrAlign = This.getAlignment().alignmentAtOffset(
3147                                    CharUnits::fromQuantity(CI->getSExtValue()));
3148   } else {
3149     VBPtrAlign = CGF.getPointerAlign();
3150   }
3151 
3152   llvm::Value *VBTable =
3153       Builder.CreateAlignedLoad(CGM.UnqualPtrTy, VBPtr, VBPtrAlign, "vbtable");
3154 
3155   // Translate from byte offset to table index. It improves analyzability.
3156   llvm::Value *VBTableIndex = Builder.CreateAShr(
3157       VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
3158       "vbtindex", /*isExact=*/true);
3159 
3160   // Load an i32 offset from the vb-table.
3161   llvm::Value *VBaseOffs =
3162       Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex);
3163   return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs,
3164                                    CharUnits::fromQuantity(4), "vbase_offs");
3165 }
3166 
3167 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
3168 // it.
3169 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
3170     CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
3171     Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
3172   CGBuilderTy &Builder = CGF.Builder;
3173   Base = Base.withElementType(CGM.Int8Ty);
3174   llvm::BasicBlock *OriginalBB = nullptr;
3175   llvm::BasicBlock *SkipAdjustBB = nullptr;
3176   llvm::BasicBlock *VBaseAdjustBB = nullptr;
3177 
3178   // In the unspecified inheritance model, there might not be a vbtable at all,
3179   // in which case we need to skip the virtual base lookup.  If there is a
3180   // vbtable, the first entry is a no-op entry that gives back the original
3181   // base, so look for a virtual base adjustment offset of zero.
3182   if (VBPtrOffset) {
3183     OriginalBB = Builder.GetInsertBlock();
3184     VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
3185     SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
3186     llvm::Value *IsVirtual =
3187       Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
3188                            "memptr.is_vbase");
3189     Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
3190     CGF.EmitBlock(VBaseAdjustBB);
3191   }
3192 
3193   // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3194   // know the vbptr offset.
3195   if (!VBPtrOffset) {
3196     CharUnits offs = CharUnits::Zero();
3197     if (!RD->hasDefinition()) {
3198       DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3199       unsigned DiagID = Diags.getCustomDiagID(
3200           DiagnosticsEngine::Error,
3201           "member pointer representation requires a "
3202           "complete class type for %0 to perform this expression");
3203       Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3204     } else if (RD->getNumVBases())
3205       offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3206     VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3207   }
3208   llvm::Value *VBPtr = nullptr;
3209   llvm::Value *VBaseOffs =
3210     GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3211   llvm::Value *AdjustedBase =
3212     Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs);
3213 
3214   // Merge control flow with the case where we didn't have to adjust.
3215   if (VBaseAdjustBB) {
3216     Builder.CreateBr(SkipAdjustBB);
3217     CGF.EmitBlock(SkipAdjustBB);
3218     llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3219     Phi->addIncoming(Base.emitRawPointer(CGF), OriginalBB);
3220     Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3221     return Phi;
3222   }
3223   return AdjustedBase;
3224 }
3225 
3226 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3227     CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3228     const MemberPointerType *MPT) {
3229   assert(MPT->isMemberDataPointer());
3230   CGBuilderTy &Builder = CGF.Builder;
3231   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3232   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3233 
3234   // Extract the fields we need, regardless of model.  We'll apply them if we
3235   // have them.
3236   llvm::Value *FieldOffset = MemPtr;
3237   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3238   llvm::Value *VBPtrOffset = nullptr;
3239   if (MemPtr->getType()->isStructTy()) {
3240     // We need to extract values.
3241     unsigned I = 0;
3242     FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3243     if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3244       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3245     if (inheritanceModelHasVBTableOffsetField(Inheritance))
3246       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3247   }
3248 
3249   llvm::Value *Addr;
3250   if (VirtualBaseAdjustmentOffset) {
3251     Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3252                              VBPtrOffset);
3253   } else {
3254     Addr = Base.emitRawPointer(CGF);
3255   }
3256 
3257   // Apply the offset, which we assume is non-null.
3258   return Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset,
3259                                    "memptr.offset");
3260 }
3261 
3262 llvm::Value *
3263 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3264                                              const CastExpr *E,
3265                                              llvm::Value *Src) {
3266   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3267          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3268          E->getCastKind() == CK_ReinterpretMemberPointer);
3269 
3270   // Use constant emission if we can.
3271   if (isa<llvm::Constant>(Src))
3272     return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3273 
3274   // We may be adding or dropping fields from the member pointer, so we need
3275   // both types and the inheritance models of both records.
3276   const MemberPointerType *SrcTy =
3277     E->getSubExpr()->getType()->castAs<MemberPointerType>();
3278   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3279   bool IsFunc = SrcTy->isMemberFunctionPointer();
3280 
3281   // If the classes use the same null representation, reinterpret_cast is a nop.
3282   bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3283   if (IsReinterpret && IsFunc)
3284     return Src;
3285 
3286   CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3287   CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3288   if (IsReinterpret &&
3289       SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3290     return Src;
3291 
3292   CGBuilderTy &Builder = CGF.Builder;
3293 
3294   // Branch past the conversion if Src is null.
3295   llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3296   llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3297 
3298   // C++ 5.2.10p9: The null member pointer value is converted to the null member
3299   //   pointer value of the destination type.
3300   if (IsReinterpret) {
3301     // For reinterpret casts, sema ensures that src and dst are both functions
3302     // or data and have the same size, which means the LLVM types should match.
3303     assert(Src->getType() == DstNull->getType());
3304     return Builder.CreateSelect(IsNotNull, Src, DstNull);
3305   }
3306 
3307   llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3308   llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3309   llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3310   Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3311   CGF.EmitBlock(ConvertBB);
3312 
3313   llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3314       SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3315       Builder);
3316 
3317   Builder.CreateBr(ContinueBB);
3318 
3319   // In the continuation, choose between DstNull and Dst.
3320   CGF.EmitBlock(ContinueBB);
3321   llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3322   Phi->addIncoming(DstNull, OriginalBB);
3323   Phi->addIncoming(Dst, ConvertBB);
3324   return Phi;
3325 }
3326 
3327 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3328     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3329     CastExpr::path_const_iterator PathBegin,
3330     CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3331     CGBuilderTy &Builder) {
3332   const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3333   const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3334   MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel();
3335   MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel();
3336   bool IsFunc = SrcTy->isMemberFunctionPointer();
3337   bool IsConstant = isa<llvm::Constant>(Src);
3338 
3339   // Decompose src.
3340   llvm::Value *FirstField = Src;
3341   llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3342   llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3343   llvm::Value *VBPtrOffset = getZeroInt();
3344   if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) {
3345     // We need to extract values.
3346     unsigned I = 0;
3347     FirstField = Builder.CreateExtractValue(Src, I++);
3348     if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance))
3349       NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3350     if (inheritanceModelHasVBPtrOffsetField(SrcInheritance))
3351       VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3352     if (inheritanceModelHasVBTableOffsetField(SrcInheritance))
3353       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3354   }
3355 
3356   bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3357   const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3358   const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3359 
3360   // For data pointers, we adjust the field offset directly.  For functions, we
3361   // have a separate field.
3362   llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3363 
3364   // The virtual inheritance model has a quirk: the virtual base table is always
3365   // referenced when dereferencing a member pointer even if the member pointer
3366   // is non-virtual.  This is accounted for by adjusting the non-virtual offset
3367   // to point backwards to the top of the MDC from the first VBase.  Undo this
3368   // adjustment to normalize the member pointer.
3369   llvm::Value *SrcVBIndexEqZero =
3370       Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3371   if (SrcInheritance == MSInheritanceModel::Virtual) {
3372     if (int64_t SrcOffsetToFirstVBase =
3373             getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3374       llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3375           SrcVBIndexEqZero,
3376           llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3377           getZeroInt());
3378       NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3379     }
3380   }
3381 
3382   // A non-zero vbindex implies that we are dealing with a source member in a
3383   // floating virtual base in addition to some non-virtual offset.  If the
3384   // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3385   // fixed, base.  The difference between these two cases is that the vbindex +
3386   // nvoffset *always* point to the member regardless of what context they are
3387   // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
3388   // base requires explicit nv adjustment.
3389   llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3390       CGM.IntTy,
3391       CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3392           .getQuantity());
3393 
3394   llvm::Value *NVDisp;
3395   if (IsDerivedToBase)
3396     NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3397   else
3398     NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3399 
3400   NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3401 
3402   // Update the vbindex to an appropriate value in the destination because
3403   // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3404   llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3405   if (inheritanceModelHasVBTableOffsetField(DstInheritance) &&
3406       inheritanceModelHasVBTableOffsetField(SrcInheritance)) {
3407     if (llvm::GlobalVariable *VDispMap =
3408             getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3409       llvm::Value *VBIndex = Builder.CreateExactUDiv(
3410           VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3411       if (IsConstant) {
3412         llvm::Constant *Mapping = VDispMap->getInitializer();
3413         VirtualBaseAdjustmentOffset =
3414             Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3415       } else {
3416         llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3417         VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad(
3418             CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(),
3419                                                  VDispMap, Idxs),
3420             CharUnits::fromQuantity(4));
3421       }
3422 
3423       DstVBIndexEqZero =
3424           Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3425     }
3426   }
3427 
3428   // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
3429   // it to the offset of the vbptr.
3430   if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) {
3431     llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3432         CGM.IntTy,
3433         getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3434     VBPtrOffset =
3435         Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3436   }
3437 
3438   // Likewise, apply a similar adjustment so that dereferencing the member
3439   // pointer correctly accounts for the distance between the start of the first
3440   // virtual base and the top of the MDC.
3441   if (DstInheritance == MSInheritanceModel::Virtual) {
3442     if (int64_t DstOffsetToFirstVBase =
3443             getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3444       llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3445           DstVBIndexEqZero,
3446           llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3447           getZeroInt());
3448       NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3449     }
3450   }
3451 
3452   // Recompose dst from the null struct and the adjusted fields from src.
3453   llvm::Value *Dst;
3454   if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) {
3455     Dst = FirstField;
3456   } else {
3457     Dst = llvm::PoisonValue::get(ConvertMemberPointerType(DstTy));
3458     unsigned Idx = 0;
3459     Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3460     if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance))
3461       Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3462     if (inheritanceModelHasVBPtrOffsetField(DstInheritance))
3463       Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3464     if (inheritanceModelHasVBTableOffsetField(DstInheritance))
3465       Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3466   }
3467   return Dst;
3468 }
3469 
3470 llvm::Constant *
3471 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3472                                              llvm::Constant *Src) {
3473   const MemberPointerType *SrcTy =
3474       E->getSubExpr()->getType()->castAs<MemberPointerType>();
3475   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3476 
3477   CastKind CK = E->getCastKind();
3478 
3479   return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3480                                      E->path_end(), Src);
3481 }
3482 
3483 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3484     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3485     CastExpr::path_const_iterator PathBegin,
3486     CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3487   assert(CK == CK_DerivedToBaseMemberPointer ||
3488          CK == CK_BaseToDerivedMemberPointer ||
3489          CK == CK_ReinterpretMemberPointer);
3490   // If src is null, emit a new null for dst.  We can't return src because dst
3491   // might have a new representation.
3492   if (MemberPointerConstantIsNull(SrcTy, Src))
3493     return EmitNullMemberPointer(DstTy);
3494 
3495   // We don't need to do anything for reinterpret_casts of non-null member
3496   // pointers.  We should only get here when the two type representations have
3497   // the same size.
3498   if (CK == CK_ReinterpretMemberPointer)
3499     return Src;
3500 
3501   CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3502   auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3503       SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3504 
3505   return Dst;
3506 }
3507 
3508 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3509     CodeGenFunction &CGF, const Expr *E, Address This,
3510     llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3511     const MemberPointerType *MPT) {
3512   assert(MPT->isMemberFunctionPointer());
3513   const FunctionProtoType *FPT =
3514     MPT->getPointeeType()->castAs<FunctionProtoType>();
3515   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3516   CGBuilderTy &Builder = CGF.Builder;
3517 
3518   MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3519 
3520   // Extract the fields we need, regardless of model.  We'll apply them if we
3521   // have them.
3522   llvm::Value *FunctionPointer = MemPtr;
3523   llvm::Value *NonVirtualBaseAdjustment = nullptr;
3524   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3525   llvm::Value *VBPtrOffset = nullptr;
3526   if (MemPtr->getType()->isStructTy()) {
3527     // We need to extract values.
3528     unsigned I = 0;
3529     FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3530     if (inheritanceModelHasNVOffsetField(MPT, Inheritance))
3531       NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3532     if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3533       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3534     if (inheritanceModelHasVBTableOffsetField(Inheritance))
3535       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3536   }
3537 
3538   if (VirtualBaseAdjustmentOffset) {
3539     ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3540                                    VirtualBaseAdjustmentOffset, VBPtrOffset);
3541   } else {
3542     ThisPtrForCall = This.emitRawPointer(CGF);
3543   }
3544 
3545   if (NonVirtualBaseAdjustment)
3546     ThisPtrForCall = Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisPtrForCall,
3547                                                NonVirtualBaseAdjustment);
3548 
3549   CGCallee Callee(FPT, FunctionPointer);
3550   return Callee;
3551 }
3552 
3553 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3554   return new MicrosoftCXXABI(CGM);
3555 }
3556 
3557 // MS RTTI Overview:
3558 // The run time type information emitted by cl.exe contains 5 distinct types of
3559 // structures.  Many of them reference each other.
3560 //
3561 // TypeInfo:  Static classes that are returned by typeid.
3562 //
3563 // CompleteObjectLocator:  Referenced by vftables.  They contain information
3564 //   required for dynamic casting, including OffsetFromTop.  They also contain
3565 //   a reference to the TypeInfo for the type and a reference to the
3566 //   CompleteHierarchyDescriptor for the type.
3567 //
3568 // ClassHierarchyDescriptor: Contains information about a class hierarchy.
3569 //   Used during dynamic_cast to walk a class hierarchy.  References a base
3570 //   class array and the size of said array.
3571 //
3572 // BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
3573 //   somewhat of a misnomer because the most derived class is also in the list
3574 //   as well as multiple copies of virtual bases (if they occur multiple times
3575 //   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for
3576 //   every path in the hierarchy, in pre-order depth first order.  Note, we do
3577 //   not declare a specific llvm type for BaseClassArray, it's merely an array
3578 //   of BaseClassDescriptor pointers.
3579 //
3580 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3581 //   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3582 //   BaseClassArray is.  It contains information about a class within a
3583 //   hierarchy such as: is this base is ambiguous and what is its offset in the
3584 //   vbtable.  The names of the BaseClassDescriptors have all of their fields
3585 //   mangled into them so they can be aggressively deduplicated by the linker.
3586 
3587 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3588   StringRef MangledName("??_7type_info@@6B@");
3589   if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3590     return VTable;
3591   return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3592                                   /*isConstant=*/true,
3593                                   llvm::GlobalVariable::ExternalLinkage,
3594                                   /*Initializer=*/nullptr, MangledName);
3595 }
3596 
3597 namespace {
3598 
3599 /// A Helper struct that stores information about a class in a class
3600 /// hierarchy.  The information stored in these structs struct is used during
3601 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3602 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3603 // implicit depth first pre-order tree connectivity.  getFirstChild and
3604 // getNextSibling allow us to walk the tree efficiently.
3605 struct MSRTTIClass {
3606   enum {
3607     IsPrivateOnPath = 1 | 8,
3608     IsAmbiguous = 2,
3609     IsPrivate = 4,
3610     IsVirtual = 16,
3611     HasHierarchyDescriptor = 64
3612   };
3613   MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3614   uint32_t initialize(const MSRTTIClass *Parent,
3615                       const CXXBaseSpecifier *Specifier);
3616 
3617   MSRTTIClass *getFirstChild() { return this + 1; }
3618   static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3619     return Child + 1 + Child->NumBases;
3620   }
3621 
3622   const CXXRecordDecl *RD, *VirtualRoot;
3623   uint32_t Flags, NumBases, OffsetInVBase;
3624 };
3625 
3626 /// Recursively initialize the base class array.
3627 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3628                                  const CXXBaseSpecifier *Specifier) {
3629   Flags = HasHierarchyDescriptor;
3630   if (!Parent) {
3631     VirtualRoot = nullptr;
3632     OffsetInVBase = 0;
3633   } else {
3634     if (Specifier->getAccessSpecifier() != AS_public)
3635       Flags |= IsPrivate | IsPrivateOnPath;
3636     if (Specifier->isVirtual()) {
3637       Flags |= IsVirtual;
3638       VirtualRoot = RD;
3639       OffsetInVBase = 0;
3640     } else {
3641       if (Parent->Flags & IsPrivateOnPath)
3642         Flags |= IsPrivateOnPath;
3643       VirtualRoot = Parent->VirtualRoot;
3644       OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3645           .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3646     }
3647   }
3648   NumBases = 0;
3649   MSRTTIClass *Child = getFirstChild();
3650   for (const CXXBaseSpecifier &Base : RD->bases()) {
3651     NumBases += Child->initialize(this, &Base) + 1;
3652     Child = getNextChild(Child);
3653   }
3654   return NumBases;
3655 }
3656 
3657 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3658   switch (Ty->getLinkage()) {
3659   case Linkage::Invalid:
3660     llvm_unreachable("Linkage hasn't been computed!");
3661 
3662   case Linkage::None:
3663   case Linkage::Internal:
3664   case Linkage::UniqueExternal:
3665     return llvm::GlobalValue::InternalLinkage;
3666 
3667   case Linkage::VisibleNone:
3668   case Linkage::Module:
3669   case Linkage::External:
3670     return llvm::GlobalValue::LinkOnceODRLinkage;
3671   }
3672   llvm_unreachable("Invalid linkage!");
3673 }
3674 
3675 /// An ephemeral helper class for building MS RTTI types.  It caches some
3676 /// calls to the module and information about the most derived class in a
3677 /// hierarchy.
3678 struct MSRTTIBuilder {
3679   enum {
3680     HasBranchingHierarchy = 1,
3681     HasVirtualBranchingHierarchy = 2,
3682     HasAmbiguousBases = 4
3683   };
3684 
3685   MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3686       : CGM(ABI.CGM), Context(CGM.getContext()),
3687         VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3688         Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3689         ABI(ABI) {}
3690 
3691   llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3692   llvm::GlobalVariable *
3693   getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3694   llvm::GlobalVariable *getClassHierarchyDescriptor();
3695   llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3696 
3697   CodeGenModule &CGM;
3698   ASTContext &Context;
3699   llvm::LLVMContext &VMContext;
3700   llvm::Module &Module;
3701   const CXXRecordDecl *RD;
3702   llvm::GlobalVariable::LinkageTypes Linkage;
3703   MicrosoftCXXABI &ABI;
3704 };
3705 
3706 } // namespace
3707 
3708 /// Recursively serializes a class hierarchy in pre-order depth first
3709 /// order.
3710 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3711                                     const CXXRecordDecl *RD) {
3712   Classes.push_back(MSRTTIClass(RD));
3713   for (const CXXBaseSpecifier &Base : RD->bases())
3714     serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3715 }
3716 
3717 /// Find ambiguity among base classes.
3718 static void
3719 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3720   llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3721   llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3722   llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3723   for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3724     if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3725         !VirtualBases.insert(Class->RD).second) {
3726       Class = MSRTTIClass::getNextChild(Class);
3727       continue;
3728     }
3729     if (!UniqueBases.insert(Class->RD).second)
3730       AmbiguousBases.insert(Class->RD);
3731     Class++;
3732   }
3733   if (AmbiguousBases.empty())
3734     return;
3735   for (MSRTTIClass &Class : Classes)
3736     if (AmbiguousBases.count(Class.RD))
3737       Class.Flags |= MSRTTIClass::IsAmbiguous;
3738 }
3739 
3740 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3741   SmallString<256> MangledName;
3742   {
3743     llvm::raw_svector_ostream Out(MangledName);
3744     ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3745   }
3746 
3747   // Check to see if we've already declared this ClassHierarchyDescriptor.
3748   if (auto CHD = Module.getNamedGlobal(MangledName))
3749     return CHD;
3750 
3751   // Serialize the class hierarchy and initialize the CHD Fields.
3752   SmallVector<MSRTTIClass, 8> Classes;
3753   serializeClassHierarchy(Classes, RD);
3754   Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3755   detectAmbiguousBases(Classes);
3756   int Flags = 0;
3757   for (const MSRTTIClass &Class : Classes) {
3758     if (Class.RD->getNumBases() > 1)
3759       Flags |= HasBranchingHierarchy;
3760     // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
3761     // believe the field isn't actually used.
3762     if (Class.Flags & MSRTTIClass::IsAmbiguous)
3763       Flags |= HasAmbiguousBases;
3764   }
3765   if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3766     Flags |= HasVirtualBranchingHierarchy;
3767   // These gep indices are used to get the address of the first element of the
3768   // base class array.
3769   llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3770                                llvm::ConstantInt::get(CGM.IntTy, 0)};
3771 
3772   // Forward-declare the class hierarchy descriptor
3773   auto Type = ABI.getClassHierarchyDescriptorType();
3774   auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3775                                       /*Initializer=*/nullptr,
3776                                       MangledName);
3777   if (CHD->isWeakForLinker())
3778     CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3779 
3780   auto *Bases = getBaseClassArray(Classes);
3781 
3782   // Initialize the base class ClassHierarchyDescriptor.
3783   llvm::Constant *Fields[] = {
3784       llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3785       llvm::ConstantInt::get(CGM.IntTy, Flags),
3786       llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3787       ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3788           Bases->getValueType(), Bases,
3789           llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3790   };
3791   CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3792   return CHD;
3793 }
3794 
3795 llvm::GlobalVariable *
3796 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3797   SmallString<256> MangledName;
3798   {
3799     llvm::raw_svector_ostream Out(MangledName);
3800     ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3801   }
3802 
3803   // Forward-declare the base class array.
3804   // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3805   // mode) bytes of padding.  We provide a pointer sized amount of padding by
3806   // adding +1 to Classes.size().  The sections have pointer alignment and are
3807   // marked pick-any so it shouldn't matter.
3808   llvm::Type *PtrType = ABI.getImageRelativeType(CGM.UnqualPtrTy);
3809   auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3810   auto *BCA =
3811       new llvm::GlobalVariable(Module, ArrType,
3812                                /*isConstant=*/true, Linkage,
3813                                /*Initializer=*/nullptr, MangledName);
3814   if (BCA->isWeakForLinker())
3815     BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3816 
3817   // Initialize the BaseClassArray.
3818   SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3819   for (MSRTTIClass &Class : Classes)
3820     BaseClassArrayData.push_back(
3821         ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3822   BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3823   BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3824   return BCA;
3825 }
3826 
3827 llvm::GlobalVariable *
3828 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3829   // Compute the fields for the BaseClassDescriptor.  They are computed up front
3830   // because they are mangled into the name of the object.
3831   uint32_t OffsetInVBTable = 0;
3832   int32_t VBPtrOffset = -1;
3833   if (Class.VirtualRoot) {
3834     auto &VTableContext = CGM.getMicrosoftVTableContext();
3835     OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3836     VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3837   }
3838 
3839   SmallString<256> MangledName;
3840   {
3841     llvm::raw_svector_ostream Out(MangledName);
3842     ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3843         Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3844         Class.Flags, Out);
3845   }
3846 
3847   // Check to see if we've already declared this object.
3848   if (auto BCD = Module.getNamedGlobal(MangledName))
3849     return BCD;
3850 
3851   // Forward-declare the base class descriptor.
3852   auto Type = ABI.getBaseClassDescriptorType();
3853   auto BCD =
3854       new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3855                                /*Initializer=*/nullptr, MangledName);
3856   if (BCD->isWeakForLinker())
3857     BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3858 
3859   // Initialize the BaseClassDescriptor.
3860   llvm::Constant *Fields[] = {
3861       ABI.getImageRelativeConstant(
3862           ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3863       llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3864       llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3865       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3866       llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3867       llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3868       ABI.getImageRelativeConstant(
3869           MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3870   };
3871   BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3872   return BCD;
3873 }
3874 
3875 llvm::GlobalVariable *
3876 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3877   SmallString<256> MangledName;
3878   {
3879     llvm::raw_svector_ostream Out(MangledName);
3880     ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3881   }
3882 
3883   // Check to see if we've already computed this complete object locator.
3884   if (auto COL = Module.getNamedGlobal(MangledName))
3885     return COL;
3886 
3887   // Compute the fields of the complete object locator.
3888   int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3889   int VFPtrOffset = 0;
3890   // The offset includes the vtordisp if one exists.
3891   if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3892     if (Context.getASTRecordLayout(RD)
3893       .getVBaseOffsetsMap()
3894       .find(VBase)
3895       ->second.hasVtorDisp())
3896       VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3897 
3898   // Forward-declare the complete object locator.
3899   llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3900   auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3901     /*Initializer=*/nullptr, MangledName);
3902 
3903   // Initialize the CompleteObjectLocator.
3904   llvm::Constant *Fields[] = {
3905       llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3906       llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3907       llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3908       ABI.getImageRelativeConstant(
3909           CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3910       ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3911       ABI.getImageRelativeConstant(COL),
3912   };
3913   llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3914   if (!ABI.isImageRelative())
3915     FieldsRef = FieldsRef.drop_back();
3916   COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3917   if (COL->isWeakForLinker())
3918     COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3919   return COL;
3920 }
3921 
3922 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3923                                    bool &IsConst, bool &IsVolatile,
3924                                    bool &IsUnaligned) {
3925   T = Context.getExceptionObjectType(T);
3926 
3927   // C++14 [except.handle]p3:
3928   //   A handler is a match for an exception object of type E if [...]
3929   //     - the handler is of type cv T or const T& where T is a pointer type and
3930   //       E is a pointer type that can be converted to T by [...]
3931   //         - a qualification conversion
3932   IsConst = false;
3933   IsVolatile = false;
3934   IsUnaligned = false;
3935   QualType PointeeType = T->getPointeeType();
3936   if (!PointeeType.isNull()) {
3937     IsConst = PointeeType.isConstQualified();
3938     IsVolatile = PointeeType.isVolatileQualified();
3939     IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3940   }
3941 
3942   // Member pointer types like "const int A::*" are represented by having RTTI
3943   // for "int A::*" and separately storing the const qualifier.
3944   if (const auto *MPTy = T->getAs<MemberPointerType>())
3945     T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3946                                      MPTy->getClass());
3947 
3948   // Pointer types like "const int * const *" are represented by having RTTI
3949   // for "const int **" and separately storing the const qualifier.
3950   if (T->isPointerType())
3951     T = Context.getPointerType(PointeeType.getUnqualifiedType());
3952 
3953   return T;
3954 }
3955 
3956 CatchTypeInfo
3957 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3958                                               QualType CatchHandlerType) {
3959   // TypeDescriptors for exceptions never have qualified pointer types,
3960   // qualifiers are stored separately in order to support qualification
3961   // conversions.
3962   bool IsConst, IsVolatile, IsUnaligned;
3963   Type =
3964       decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3965 
3966   bool IsReference = CatchHandlerType->isReferenceType();
3967 
3968   uint32_t Flags = 0;
3969   if (IsConst)
3970     Flags |= 1;
3971   if (IsVolatile)
3972     Flags |= 2;
3973   if (IsUnaligned)
3974     Flags |= 4;
3975   if (IsReference)
3976     Flags |= 8;
3977 
3978   return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3979                        Flags};
3980 }
3981 
3982 /// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3983 /// llvm::GlobalVariable * because different type descriptors have different
3984 /// types, and need to be abstracted.  They are abstracting by casting the
3985 /// address to an Int8PtrTy.
3986 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3987   SmallString<256> MangledName;
3988   {
3989     llvm::raw_svector_ostream Out(MangledName);
3990     getMangleContext().mangleCXXRTTI(Type, Out);
3991   }
3992 
3993   // Check to see if we've already declared this TypeDescriptor.
3994   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3995     return GV;
3996 
3997   // Note for the future: If we would ever like to do deferred emission of
3998   // RTTI, check if emitting vtables opportunistically need any adjustment.
3999 
4000   // Compute the fields for the TypeDescriptor.
4001   SmallString<256> TypeInfoString;
4002   {
4003     llvm::raw_svector_ostream Out(TypeInfoString);
4004     getMangleContext().mangleCXXRTTIName(Type, Out);
4005   }
4006 
4007   // Declare and initialize the TypeDescriptor.
4008   llvm::Constant *Fields[] = {
4009     getTypeInfoVTable(CGM),                        // VFPtr
4010     llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
4011     llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
4012   llvm::StructType *TypeDescriptorType =
4013       getTypeDescriptorType(TypeInfoString);
4014   auto *Var = new llvm::GlobalVariable(
4015       CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
4016       getLinkageForRTTI(Type),
4017       llvm::ConstantStruct::get(TypeDescriptorType, Fields),
4018       MangledName);
4019   if (Var->isWeakForLinker())
4020     Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
4021   return Var;
4022 }
4023 
4024 /// Gets or a creates a Microsoft CompleteObjectLocator.
4025 llvm::GlobalVariable *
4026 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
4027                                             const VPtrInfo &Info) {
4028   return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
4029 }
4030 
4031 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
4032   if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
4033     // There are no constructor variants, always emit the complete destructor.
4034     llvm::Function *Fn =
4035         CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
4036     CGM.maybeSetTrivialComdat(*ctor, *Fn);
4037     return;
4038   }
4039 
4040   auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
4041 
4042   // Emit the base destructor if the base and complete (vbase) destructors are
4043   // equivalent. This effectively implements -mconstructor-aliases as part of
4044   // the ABI.
4045   if (GD.getDtorType() == Dtor_Complete &&
4046       dtor->getParent()->getNumVBases() == 0)
4047     GD = GD.getWithDtorType(Dtor_Base);
4048 
4049   // The base destructor is equivalent to the base destructor of its
4050   // base class if there is exactly one non-virtual base class with a
4051   // non-trivial destructor, there are no fields with a non-trivial
4052   // destructor, and the body of the destructor is trivial.
4053   if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
4054     return;
4055 
4056   llvm::Function *Fn = CGM.codegenCXXStructor(GD);
4057   if (Fn->isWeakForLinker())
4058     Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
4059 }
4060 
4061 llvm::Function *
4062 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
4063                                          CXXCtorType CT) {
4064   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
4065 
4066   // Calculate the mangled name.
4067   SmallString<256> ThunkName;
4068   llvm::raw_svector_ostream Out(ThunkName);
4069   getMangleContext().mangleName(GlobalDecl(CD, CT), Out);
4070 
4071   // If the thunk has been generated previously, just return it.
4072   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
4073     return cast<llvm::Function>(GV);
4074 
4075   // Create the llvm::Function.
4076   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
4077   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
4078   const CXXRecordDecl *RD = CD->getParent();
4079   QualType RecordTy = getContext().getRecordType(RD);
4080   llvm::Function *ThunkFn = llvm::Function::Create(
4081       ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
4082   ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
4083       FnInfo.getEffectiveCallingConvention()));
4084   if (ThunkFn->isWeakForLinker())
4085     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
4086   bool IsCopy = CT == Ctor_CopyingClosure;
4087 
4088   // Start codegen.
4089   CodeGenFunction CGF(CGM);
4090   CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
4091 
4092   // Build FunctionArgs.
4093   FunctionArgList FunctionArgs;
4094 
4095   // A constructor always starts with a 'this' pointer as its first argument.
4096   buildThisParam(CGF, FunctionArgs);
4097 
4098   // Following the 'this' pointer is a reference to the source object that we
4099   // are copying from.
4100   ImplicitParamDecl SrcParam(
4101       getContext(), /*DC=*/nullptr, SourceLocation(),
4102       &getContext().Idents.get("src"),
4103       getContext().getLValueReferenceType(RecordTy,
4104                                           /*SpelledAsLValue=*/true),
4105       ImplicitParamKind::Other);
4106   if (IsCopy)
4107     FunctionArgs.push_back(&SrcParam);
4108 
4109   // Constructors for classes which utilize virtual bases have an additional
4110   // parameter which indicates whether or not it is being delegated to by a more
4111   // derived constructor.
4112   ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
4113                                   SourceLocation(),
4114                                   &getContext().Idents.get("is_most_derived"),
4115                                   getContext().IntTy, ImplicitParamKind::Other);
4116   // Only add the parameter to the list if the class has virtual bases.
4117   if (RD->getNumVBases() > 0)
4118     FunctionArgs.push_back(&IsMostDerived);
4119 
4120   // Start defining the function.
4121   auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4122   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
4123                     FunctionArgs, CD->getLocation(), SourceLocation());
4124   // Create a scope with an artificial location for the body of this function.
4125   auto AL = ApplyDebugLocation::CreateArtificial(CGF);
4126   setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
4127   llvm::Value *This = getThisValue(CGF);
4128 
4129   llvm::Value *SrcVal =
4130       IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
4131              : nullptr;
4132 
4133   CallArgList Args;
4134 
4135   // Push the this ptr.
4136   Args.add(RValue::get(This), CD->getThisType());
4137 
4138   // Push the src ptr.
4139   if (SrcVal)
4140     Args.add(RValue::get(SrcVal), SrcParam.getType());
4141 
4142   // Add the rest of the default arguments.
4143   SmallVector<const Stmt *, 4> ArgVec;
4144   ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
4145   for (const ParmVarDecl *PD : params) {
4146     assert(PD->hasDefaultArg() && "ctor closure lacks default args");
4147     ArgVec.push_back(PD->getDefaultArg());
4148   }
4149 
4150   CodeGenFunction::RunCleanupsScope Cleanups(CGF);
4151 
4152   const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
4153   CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
4154 
4155   // Insert any ABI-specific implicit constructor arguments.
4156   AddedStructorArgCounts ExtraArgs =
4157       addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
4158                                  /*ForVirtualBase=*/false,
4159                                  /*Delegating=*/false, Args);
4160   // Call the destructor with our arguments.
4161   llvm::Constant *CalleePtr =
4162       CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4163   CGCallee Callee =
4164       CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
4165   const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
4166       Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
4167   CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
4168 
4169   Cleanups.ForceCleanup();
4170 
4171   // Emit the ret instruction, remove any temporary instructions created for the
4172   // aid of CodeGen.
4173   CGF.FinishFunction(SourceLocation());
4174 
4175   return ThunkFn;
4176 }
4177 
4178 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4179                                                   uint32_t NVOffset,
4180                                                   int32_t VBPtrOffset,
4181                                                   uint32_t VBIndex) {
4182   assert(!T->isReferenceType());
4183 
4184   CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4185   const CXXConstructorDecl *CD =
4186       RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4187   CXXCtorType CT = Ctor_Complete;
4188   if (CD)
4189     if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4190       CT = Ctor_CopyingClosure;
4191 
4192   uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4193   SmallString<256> MangledName;
4194   {
4195     llvm::raw_svector_ostream Out(MangledName);
4196     getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4197                                               VBPtrOffset, VBIndex, Out);
4198   }
4199   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4200     return getImageRelativeConstant(GV);
4201 
4202   // The TypeDescriptor is used by the runtime to determine if a catch handler
4203   // is appropriate for the exception object.
4204   llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4205 
4206   // The runtime is responsible for calling the copy constructor if the
4207   // exception is caught by value.
4208   llvm::Constant *CopyCtor;
4209   if (CD) {
4210     if (CT == Ctor_CopyingClosure)
4211       CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4212     else
4213       CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4214   } else {
4215     CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4216   }
4217   CopyCtor = getImageRelativeConstant(CopyCtor);
4218 
4219   bool IsScalar = !RD;
4220   bool HasVirtualBases = false;
4221   bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4222   QualType PointeeType = T;
4223   if (T->isPointerType())
4224     PointeeType = T->getPointeeType();
4225   if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4226     HasVirtualBases = RD->getNumVBases() > 0;
4227     if (IdentifierInfo *II = RD->getIdentifier())
4228       IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4229   }
4230 
4231   // Encode the relevant CatchableType properties into the Flags bitfield.
4232   // FIXME: Figure out how bits 2 or 8 can get set.
4233   uint32_t Flags = 0;
4234   if (IsScalar)
4235     Flags |= 1;
4236   if (HasVirtualBases)
4237     Flags |= 4;
4238   if (IsStdBadAlloc)
4239     Flags |= 16;
4240 
4241   llvm::Constant *Fields[] = {
4242       llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
4243       TD,                                             // TypeDescriptor
4244       llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
4245       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4246       llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
4247       llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
4248       CopyCtor                                        // CopyCtor
4249   };
4250   llvm::StructType *CTType = getCatchableTypeType();
4251   auto *GV = new llvm::GlobalVariable(
4252       CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4253       llvm::ConstantStruct::get(CTType, Fields), MangledName);
4254   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4255   GV->setSection(".xdata");
4256   if (GV->isWeakForLinker())
4257     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4258   return getImageRelativeConstant(GV);
4259 }
4260 
4261 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4262   assert(!T->isReferenceType());
4263 
4264   // See if we've already generated a CatchableTypeArray for this type before.
4265   llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4266   if (CTA)
4267     return CTA;
4268 
4269   // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4270   // using a SmallSetVector.  Duplicates may arise due to virtual bases
4271   // occurring more than once in the hierarchy.
4272   llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4273 
4274   // C++14 [except.handle]p3:
4275   //   A handler is a match for an exception object of type E if [...]
4276   //     - the handler is of type cv T or cv T& and T is an unambiguous public
4277   //       base class of E, or
4278   //     - the handler is of type cv T or const T& where T is a pointer type and
4279   //       E is a pointer type that can be converted to T by [...]
4280   //         - a standard pointer conversion (4.10) not involving conversions to
4281   //           pointers to private or protected or ambiguous classes
4282   const CXXRecordDecl *MostDerivedClass = nullptr;
4283   bool IsPointer = T->isPointerType();
4284   if (IsPointer)
4285     MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4286   else
4287     MostDerivedClass = T->getAsCXXRecordDecl();
4288 
4289   // Collect all the unambiguous public bases of the MostDerivedClass.
4290   if (MostDerivedClass) {
4291     const ASTContext &Context = getContext();
4292     const ASTRecordLayout &MostDerivedLayout =
4293         Context.getASTRecordLayout(MostDerivedClass);
4294     MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4295     SmallVector<MSRTTIClass, 8> Classes;
4296     serializeClassHierarchy(Classes, MostDerivedClass);
4297     Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4298     detectAmbiguousBases(Classes);
4299     for (const MSRTTIClass &Class : Classes) {
4300       // Skip any ambiguous or private bases.
4301       if (Class.Flags &
4302           (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4303         continue;
4304       // Write down how to convert from a derived pointer to a base pointer.
4305       uint32_t OffsetInVBTable = 0;
4306       int32_t VBPtrOffset = -1;
4307       if (Class.VirtualRoot) {
4308         OffsetInVBTable =
4309           VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4310         VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4311       }
4312 
4313       // Turn our record back into a pointer if the exception object is a
4314       // pointer.
4315       QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4316       if (IsPointer)
4317         RTTITy = Context.getPointerType(RTTITy);
4318       CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4319                                              VBPtrOffset, OffsetInVBTable));
4320     }
4321   }
4322 
4323   // C++14 [except.handle]p3:
4324   //   A handler is a match for an exception object of type E if
4325   //     - The handler is of type cv T or cv T& and E and T are the same type
4326   //       (ignoring the top-level cv-qualifiers)
4327   CatchableTypes.insert(getCatchableType(T));
4328 
4329   // C++14 [except.handle]p3:
4330   //   A handler is a match for an exception object of type E if
4331   //     - the handler is of type cv T or const T& where T is a pointer type and
4332   //       E is a pointer type that can be converted to T by [...]
4333   //         - a standard pointer conversion (4.10) not involving conversions to
4334   //           pointers to private or protected or ambiguous classes
4335   //
4336   // C++14 [conv.ptr]p2:
4337   //   A prvalue of type "pointer to cv T," where T is an object type, can be
4338   //   converted to a prvalue of type "pointer to cv void".
4339   if (IsPointer && T->getPointeeType()->isObjectType())
4340     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4341 
4342   // C++14 [except.handle]p3:
4343   //   A handler is a match for an exception object of type E if [...]
4344   //     - the handler is of type cv T or const T& where T is a pointer or
4345   //       pointer to member type and E is std::nullptr_t.
4346   //
4347   // We cannot possibly list all possible pointer types here, making this
4348   // implementation incompatible with the standard.  However, MSVC includes an
4349   // entry for pointer-to-void in this case.  Let's do the same.
4350   if (T->isNullPtrType())
4351     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4352 
4353   uint32_t NumEntries = CatchableTypes.size();
4354   llvm::Type *CTType = getImageRelativeType(CGM.UnqualPtrTy);
4355   llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4356   llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4357   llvm::Constant *Fields[] = {
4358       llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
4359       llvm::ConstantArray::get(
4360           AT, llvm::ArrayRef(CatchableTypes.begin(),
4361                              CatchableTypes.end())) // CatchableTypes
4362   };
4363   SmallString<256> MangledName;
4364   {
4365     llvm::raw_svector_ostream Out(MangledName);
4366     getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4367   }
4368   CTA = new llvm::GlobalVariable(
4369       CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4370       llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4371   CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4372   CTA->setSection(".xdata");
4373   if (CTA->isWeakForLinker())
4374     CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4375   return CTA;
4376 }
4377 
4378 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4379   bool IsConst, IsVolatile, IsUnaligned;
4380   T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4381 
4382   // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4383   // the exception object may be caught as.
4384   llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4385   // The first field in a CatchableTypeArray is the number of CatchableTypes.
4386   // This is used as a component of the mangled name which means that we need to
4387   // know what it is in order to see if we have previously generated the
4388   // ThrowInfo.
4389   uint32_t NumEntries =
4390       cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4391           ->getLimitedValue();
4392 
4393   SmallString<256> MangledName;
4394   {
4395     llvm::raw_svector_ostream Out(MangledName);
4396     getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4397                                           NumEntries, Out);
4398   }
4399 
4400   // Reuse a previously generated ThrowInfo if we have generated an appropriate
4401   // one before.
4402   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4403     return GV;
4404 
4405   // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4406   // be at least as CV qualified.  Encode this requirement into the Flags
4407   // bitfield.
4408   uint32_t Flags = 0;
4409   if (IsConst)
4410     Flags |= 1;
4411   if (IsVolatile)
4412     Flags |= 2;
4413   if (IsUnaligned)
4414     Flags |= 4;
4415 
4416   // The cleanup-function (a destructor) must be called when the exception
4417   // object's lifetime ends.
4418   llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4419   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4420     if (CXXDestructorDecl *DtorD = RD->getDestructor())
4421       if (!DtorD->isTrivial())
4422         CleanupFn = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete));
4423   // This is unused as far as we can tell, initialize it to null.
4424   llvm::Constant *ForwardCompat =
4425       getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4426   llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(CTA);
4427   llvm::StructType *TIType = getThrowInfoType();
4428   llvm::Constant *Fields[] = {
4429       llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4430       getImageRelativeConstant(CleanupFn),      // CleanupFn
4431       ForwardCompat,                            // ForwardCompat
4432       PointerToCatchableTypes                   // CatchableTypeArray
4433   };
4434   auto *GV = new llvm::GlobalVariable(
4435       CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4436       llvm::ConstantStruct::get(TIType, Fields), MangledName.str());
4437   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4438   GV->setSection(".xdata");
4439   if (GV->isWeakForLinker())
4440     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4441   return GV;
4442 }
4443 
4444 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4445   const Expr *SubExpr = E->getSubExpr();
4446   assert(SubExpr && "SubExpr cannot be null");
4447   QualType ThrowType = SubExpr->getType();
4448   // The exception object lives on the stack and it's address is passed to the
4449   // runtime function.
4450   Address AI = CGF.CreateMemTemp(ThrowType);
4451   CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4452                        /*IsInit=*/true);
4453 
4454   // The so-called ThrowInfo is used to describe how the exception object may be
4455   // caught.
4456   llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4457 
4458   // Call into the runtime to throw the exception.
4459   llvm::Value *Args[] = {AI.emitRawPointer(CGF), TI};
4460   CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4461 }
4462 
4463 std::pair<llvm::Value *, const CXXRecordDecl *>
4464 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4465                                const CXXRecordDecl *RD) {
4466   std::tie(This, std::ignore, RD) =
4467       performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4468   return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4469 }
4470 
4471 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate(
4472     const CXXRecordDecl *RD) const {
4473   // All aggregates are permitted to be HFA on non-ARM platforms, which mostly
4474   // affects vectorcall on x64/x86.
4475   if (!CGM.getTarget().getTriple().isAArch64())
4476     return true;
4477   // MSVC Windows on Arm64 has its own rules for determining if a type is HFA
4478   // that are inconsistent with the AAPCS64 ABI. The following are our best
4479   // determination of those rules so far, based on observation of MSVC's
4480   // behavior.
4481   if (RD->isEmpty())
4482     return false;
4483   if (RD->isPolymorphic())
4484     return false;
4485   if (RD->hasNonTrivialCopyAssignment())
4486     return false;
4487   if (RD->hasNonTrivialDestructor())
4488     return false;
4489   if (RD->hasNonTrivialDefaultConstructor())
4490     return false;
4491   // These two are somewhat redundant given the caller
4492   // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that
4493   // caller doesn't consider empty bases/fields to be non-homogenous, but it
4494   // looks like Microsoft's AArch64 ABI does care about these empty types &
4495   // anything containing/derived from one is non-homogeneous.
4496   // Instead we could add another CXXABI entry point to query this property and
4497   // have ABIInfo::isHomogeneousAggregate use that property.
4498   // I don't think any other of the features listed above could be true of a
4499   // base/field while not true of the outer struct. For example, if you have a
4500   // base/field that has an non-trivial copy assignment/dtor/default ctor, then
4501   // the outer struct's corresponding operation must be non-trivial.
4502   for (const CXXBaseSpecifier &B : RD->bases()) {
4503     if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) {
4504       if (!isPermittedToBeHomogeneousAggregate(FRD))
4505         return false;
4506     }
4507   }
4508   // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate
4509   // checking for padding - but maybe there are ways to end up with an empty
4510   // field without padding? Not that I know of, so don't check fields here &
4511   // rely on the padding check.
4512   return true;
4513 }
4514