1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a flow-sensitive, path-insensitive analysis of 10 // determining reachable blocks within a CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Analysis/Analyses/ReachableCode.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/DynamicRecursiveASTVisitor.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/ParentMap.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/Analysis/AnalysisDeclContext.h" 23 #include "clang/Analysis/CFG.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Lex/Preprocessor.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include <optional> 30 31 using namespace clang; 32 33 //===----------------------------------------------------------------------===// 34 // Core Reachability Analysis routines. 35 //===----------------------------------------------------------------------===// 36 37 static bool isEnumConstant(const Expr *Ex) { 38 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex); 39 if (!DR) 40 return false; 41 return isa<EnumConstantDecl>(DR->getDecl()); 42 } 43 44 static bool isTrivialExpression(const Expr *Ex) { 45 Ex = Ex->IgnoreParenCasts(); 46 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) || 47 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) || 48 isa<CharacterLiteral>(Ex) || 49 isEnumConstant(Ex); 50 } 51 52 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) { 53 // Check if the block ends with a do...while() and see if 'S' is the 54 // condition. 55 if (const Stmt *Term = B->getTerminatorStmt()) { 56 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) { 57 const Expr *Cond = DS->getCond()->IgnoreParenCasts(); 58 return Cond == S && isTrivialExpression(Cond); 59 } 60 } 61 return false; 62 } 63 64 static bool isBuiltinUnreachable(const Stmt *S) { 65 if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) 66 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl())) 67 return FDecl->getIdentifier() && 68 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable; 69 return false; 70 } 71 72 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S, 73 ASTContext &C) { 74 if (B->empty()) { 75 // Happens if S is B's terminator and B contains nothing else 76 // (e.g. a CFGBlock containing only a goto). 77 return false; 78 } 79 if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) { 80 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) { 81 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C); 82 } 83 } 84 return false; 85 } 86 87 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) { 88 // Look to see if the current control flow ends with a 'return', and see if 89 // 'S' is a substatement. The 'return' may not be the last element in the 90 // block, or may be in a subsequent block because of destructors. 91 const CFGBlock *Current = B; 92 while (true) { 93 for (const CFGElement &CE : llvm::reverse(*Current)) { 94 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 95 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) { 96 if (RS == S) 97 return true; 98 if (const Expr *RE = RS->getRetValue()) { 99 RE = RE->IgnoreParenCasts(); 100 if (RE == S) 101 return true; 102 ParentMap PM(const_cast<Expr *>(RE)); 103 // If 'S' is in the ParentMap, it is a subexpression of 104 // the return statement. 105 return PM.getParent(S); 106 } 107 } 108 break; 109 } 110 } 111 // Note also that we are restricting the search for the return statement 112 // to stop at control-flow; only part of a return statement may be dead, 113 // without the whole return statement being dead. 114 if (Current->getTerminator().isTemporaryDtorsBranch()) { 115 // Temporary destructors have a predictable control flow, thus we want to 116 // look into the next block for the return statement. 117 // We look into the false branch, as we know the true branch only contains 118 // the call to the destructor. 119 assert(Current->succ_size() == 2); 120 Current = *(Current->succ_begin() + 1); 121 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) { 122 // If there is only one successor, we're not dealing with outgoing control 123 // flow. Thus, look into the next block. 124 Current = *Current->succ_begin(); 125 if (Current->pred_size() > 1) { 126 // If there is more than one predecessor, we're dealing with incoming 127 // control flow - if the return statement is in that block, it might 128 // well be reachable via a different control flow, thus it's not dead. 129 return false; 130 } 131 } else { 132 // We hit control flow or a dead end. Stop searching. 133 return false; 134 } 135 } 136 llvm_unreachable("Broke out of infinite loop."); 137 } 138 139 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) { 140 assert(Loc.isMacroID()); 141 SourceLocation Last; 142 do { 143 Last = Loc; 144 Loc = SM.getImmediateMacroCallerLoc(Loc); 145 } while (Loc.isMacroID()); 146 return Last; 147 } 148 149 /// Returns true if the statement is expanded from a configuration macro. 150 static bool isExpandedFromConfigurationMacro(const Stmt *S, 151 Preprocessor &PP, 152 bool IgnoreYES_NO = false) { 153 // FIXME: This is not very precise. Here we just check to see if the 154 // value comes from a macro, but we can do much better. This is likely 155 // to be over conservative. This logic is factored into a separate function 156 // so that we can refine it later. 157 SourceLocation L = S->getBeginLoc(); 158 if (L.isMacroID()) { 159 SourceManager &SM = PP.getSourceManager(); 160 if (IgnoreYES_NO) { 161 // The Objective-C constant 'YES' and 'NO' 162 // are defined as macros. Do not treat them 163 // as configuration values. 164 SourceLocation TopL = getTopMostMacro(L, SM); 165 StringRef MacroName = PP.getImmediateMacroName(TopL); 166 if (MacroName == "YES" || MacroName == "NO") 167 return false; 168 } else if (!PP.getLangOpts().CPlusPlus) { 169 // Do not treat C 'false' and 'true' macros as configuration values. 170 SourceLocation TopL = getTopMostMacro(L, SM); 171 StringRef MacroName = PP.getImmediateMacroName(TopL); 172 if (MacroName == "false" || MacroName == "true") 173 return false; 174 } 175 return true; 176 } 177 return false; 178 } 179 180 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP); 181 182 /// Returns true if the statement represents a configuration value. 183 /// 184 /// A configuration value is something usually determined at compile-time 185 /// to conditionally always execute some branch. Such guards are for 186 /// "sometimes unreachable" code. Such code is usually not interesting 187 /// to report as unreachable, and may mask truly unreachable code within 188 /// those blocks. 189 static bool isConfigurationValue(const Stmt *S, 190 Preprocessor &PP, 191 SourceRange *SilenceableCondVal = nullptr, 192 bool IncludeIntegers = true, 193 bool WrappedInParens = false) { 194 if (!S) 195 return false; 196 197 if (const auto *Ex = dyn_cast<Expr>(S)) 198 S = Ex->IgnoreImplicit(); 199 200 if (const auto *Ex = dyn_cast<Expr>(S)) 201 S = Ex->IgnoreCasts(); 202 203 // Special case looking for the sigil '()' around an integer literal. 204 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S)) 205 if (!PE->getBeginLoc().isMacroID()) 206 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal, 207 IncludeIntegers, true); 208 209 if (const Expr *Ex = dyn_cast<Expr>(S)) 210 S = Ex->IgnoreCasts(); 211 212 bool IgnoreYES_NO = false; 213 214 switch (S->getStmtClass()) { 215 case Stmt::CallExprClass: { 216 const FunctionDecl *Callee = 217 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl()); 218 return Callee ? Callee->isConstexpr() : false; 219 } 220 case Stmt::DeclRefExprClass: 221 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP); 222 case Stmt::ObjCBoolLiteralExprClass: 223 IgnoreYES_NO = true; 224 [[fallthrough]]; 225 case Stmt::CXXBoolLiteralExprClass: 226 case Stmt::IntegerLiteralClass: { 227 const Expr *E = cast<Expr>(S); 228 if (IncludeIntegers) { 229 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid()) 230 *SilenceableCondVal = E->getSourceRange(); 231 return WrappedInParens || 232 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO); 233 } 234 return false; 235 } 236 case Stmt::MemberExprClass: 237 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP); 238 case Stmt::UnaryExprOrTypeTraitExprClass: 239 return true; 240 case Stmt::BinaryOperatorClass: { 241 const BinaryOperator *B = cast<BinaryOperator>(S); 242 // Only include raw integers (not enums) as configuration 243 // values if they are used in a logical or comparison operator 244 // (not arithmetic). 245 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp()); 246 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal, 247 IncludeIntegers) || 248 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal, 249 IncludeIntegers); 250 } 251 case Stmt::UnaryOperatorClass: { 252 const UnaryOperator *UO = cast<UnaryOperator>(S); 253 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus) 254 return false; 255 bool SilenceableCondValNotSet = 256 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid(); 257 bool IsSubExprConfigValue = 258 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal, 259 IncludeIntegers, WrappedInParens); 260 // Update the silenceable condition value source range only if the range 261 // was set directly by the child expression. 262 if (SilenceableCondValNotSet && 263 SilenceableCondVal->getBegin().isValid() && 264 *SilenceableCondVal == 265 UO->getSubExpr()->IgnoreCasts()->getSourceRange()) 266 *SilenceableCondVal = UO->getSourceRange(); 267 return IsSubExprConfigValue; 268 } 269 default: 270 return false; 271 } 272 } 273 274 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) { 275 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) 276 return isConfigurationValue(ED->getInitExpr(), PP); 277 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 278 // As a heuristic, treat globals as configuration values. Note 279 // that we only will get here if Sema evaluated this 280 // condition to a constant expression, which means the global 281 // had to be declared in a way to be a truly constant value. 282 // We could generalize this to local variables, but it isn't 283 // clear if those truly represent configuration values that 284 // gate unreachable code. 285 if (!VD->hasLocalStorage()) 286 return true; 287 288 // As a heuristic, locals that have been marked 'const' explicitly 289 // can be treated as configuration values as well. 290 return VD->getType().isLocalConstQualified(); 291 } 292 return false; 293 } 294 295 /// Returns true if we should always explore all successors of a block. 296 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B, 297 Preprocessor &PP) { 298 if (const Stmt *Term = B->getTerminatorStmt()) { 299 if (isa<SwitchStmt>(Term)) 300 return true; 301 // Specially handle '||' and '&&'. 302 if (isa<BinaryOperator>(Term)) { 303 return isConfigurationValue(Term, PP); 304 } 305 // Do not treat constexpr if statement successors as unreachable in warnings 306 // since the point of these statements is to determine branches at compile 307 // time. 308 if (const auto *IS = dyn_cast<IfStmt>(Term); 309 IS != nullptr && IS->isConstexpr()) 310 return true; 311 } 312 313 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false); 314 return isConfigurationValue(Cond, PP); 315 } 316 317 static unsigned scanFromBlock(const CFGBlock *Start, 318 llvm::BitVector &Reachable, 319 Preprocessor *PP, 320 bool IncludeSometimesUnreachableEdges) { 321 unsigned count = 0; 322 323 // Prep work queue 324 SmallVector<const CFGBlock*, 32> WL; 325 326 // The entry block may have already been marked reachable 327 // by the caller. 328 if (!Reachable[Start->getBlockID()]) { 329 ++count; 330 Reachable[Start->getBlockID()] = true; 331 } 332 333 WL.push_back(Start); 334 335 // Find the reachable blocks from 'Start'. 336 while (!WL.empty()) { 337 const CFGBlock *item = WL.pop_back_val(); 338 339 // There are cases where we want to treat all successors as reachable. 340 // The idea is that some "sometimes unreachable" code is not interesting, 341 // and that we should forge ahead and explore those branches anyway. 342 // This allows us to potentially uncover some "always unreachable" code 343 // within the "sometimes unreachable" code. 344 // Look at the successors and mark then reachable. 345 std::optional<bool> TreatAllSuccessorsAsReachable; 346 if (!IncludeSometimesUnreachableEdges) 347 TreatAllSuccessorsAsReachable = false; 348 349 for (CFGBlock::const_succ_iterator I = item->succ_begin(), 350 E = item->succ_end(); I != E; ++I) { 351 const CFGBlock *B = *I; 352 if (!B) do { 353 const CFGBlock *UB = I->getPossiblyUnreachableBlock(); 354 if (!UB) 355 break; 356 357 if (!TreatAllSuccessorsAsReachable) { 358 assert(PP); 359 TreatAllSuccessorsAsReachable = 360 shouldTreatSuccessorsAsReachable(item, *PP); 361 } 362 363 if (*TreatAllSuccessorsAsReachable) { 364 B = UB; 365 break; 366 } 367 } 368 while (false); 369 370 if (B) { 371 unsigned blockID = B->getBlockID(); 372 if (!Reachable[blockID]) { 373 Reachable.set(blockID); 374 WL.push_back(B); 375 ++count; 376 } 377 } 378 } 379 } 380 return count; 381 } 382 383 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start, 384 Preprocessor &PP, 385 llvm::BitVector &Reachable) { 386 return scanFromBlock(Start, Reachable, &PP, true); 387 } 388 389 //===----------------------------------------------------------------------===// 390 // Dead Code Scanner. 391 //===----------------------------------------------------------------------===// 392 393 namespace { 394 class DeadCodeScan { 395 llvm::BitVector Visited; 396 llvm::BitVector &Reachable; 397 SmallVector<const CFGBlock *, 10> WorkList; 398 Preprocessor &PP; 399 ASTContext &C; 400 401 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12> 402 DeferredLocsTy; 403 404 DeferredLocsTy DeferredLocs; 405 406 public: 407 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C) 408 : Visited(reachable.size()), 409 Reachable(reachable), 410 PP(PP), C(C) {} 411 412 void enqueue(const CFGBlock *block); 413 unsigned scanBackwards(const CFGBlock *Start, 414 clang::reachable_code::Callback &CB); 415 416 bool isDeadCodeRoot(const CFGBlock *Block); 417 418 const Stmt *findDeadCode(const CFGBlock *Block); 419 420 void reportDeadCode(const CFGBlock *B, 421 const Stmt *S, 422 clang::reachable_code::Callback &CB); 423 }; 424 } 425 426 void DeadCodeScan::enqueue(const CFGBlock *block) { 427 unsigned blockID = block->getBlockID(); 428 if (Reachable[blockID] || Visited[blockID]) 429 return; 430 Visited[blockID] = true; 431 WorkList.push_back(block); 432 } 433 434 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) { 435 bool isDeadRoot = true; 436 437 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 438 E = Block->pred_end(); I != E; ++I) { 439 if (const CFGBlock *PredBlock = *I) { 440 unsigned blockID = PredBlock->getBlockID(); 441 if (Visited[blockID]) { 442 isDeadRoot = false; 443 continue; 444 } 445 if (!Reachable[blockID]) { 446 isDeadRoot = false; 447 Visited[blockID] = true; 448 WorkList.push_back(PredBlock); 449 continue; 450 } 451 } 452 } 453 454 return isDeadRoot; 455 } 456 457 // Check if the given `DeadStmt` is a coroutine statement and is a substmt of 458 // the coroutine statement. `Block` is the CFGBlock containing the `DeadStmt`. 459 static bool isInCoroutineStmt(const Stmt *DeadStmt, const CFGBlock *Block) { 460 // The coroutine statement, co_return, co_await, or co_yield. 461 const Stmt *CoroStmt = nullptr; 462 // Find the first coroutine statement after the DeadStmt in the block. 463 bool AfterDeadStmt = false; 464 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I != E; 465 ++I) 466 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 467 const Stmt *S = CS->getStmt(); 468 if (S == DeadStmt) 469 AfterDeadStmt = true; 470 if (AfterDeadStmt && 471 // For simplicity, we only check simple coroutine statements. 472 (llvm::isa<CoreturnStmt>(S) || llvm::isa<CoroutineSuspendExpr>(S))) { 473 CoroStmt = S; 474 break; 475 } 476 } 477 if (!CoroStmt) 478 return false; 479 struct Checker : DynamicRecursiveASTVisitor { 480 const Stmt *DeadStmt; 481 bool CoroutineSubStmt = false; 482 Checker(const Stmt *S) : DeadStmt(S) { 483 // Statements captured in the CFG can be implicit. 484 ShouldVisitImplicitCode = true; 485 } 486 487 bool VisitStmt(Stmt *S) override { 488 if (S == DeadStmt) 489 CoroutineSubStmt = true; 490 return true; 491 } 492 }; 493 Checker checker(DeadStmt); 494 checker.TraverseStmt(const_cast<Stmt *>(CoroStmt)); 495 return checker.CoroutineSubStmt; 496 } 497 498 static bool isValidDeadStmt(const Stmt *S, const clang::CFGBlock *Block) { 499 if (S->getBeginLoc().isInvalid()) 500 return false; 501 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) 502 return BO->getOpcode() != BO_Comma; 503 // Coroutine statements are never considered dead statements, because removing 504 // them may change the function semantic if it is the only coroutine statement 505 // of the coroutine. 506 return !isInCoroutineStmt(S, Block); 507 } 508 509 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) { 510 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I) 511 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) { 512 const Stmt *S = CS->getStmt(); 513 if (isValidDeadStmt(S, Block)) 514 return S; 515 } 516 517 CFGTerminator T = Block->getTerminator(); 518 if (T.isStmtBranch()) { 519 const Stmt *S = T.getStmt(); 520 if (S && isValidDeadStmt(S, Block)) 521 return S; 522 } 523 524 return nullptr; 525 } 526 527 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1, 528 const std::pair<const CFGBlock *, const Stmt *> *p2) { 529 if (p1->second->getBeginLoc() < p2->second->getBeginLoc()) 530 return -1; 531 if (p2->second->getBeginLoc() < p1->second->getBeginLoc()) 532 return 1; 533 return 0; 534 } 535 536 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start, 537 clang::reachable_code::Callback &CB) { 538 539 unsigned count = 0; 540 enqueue(Start); 541 542 while (!WorkList.empty()) { 543 const CFGBlock *Block = WorkList.pop_back_val(); 544 545 // It is possible that this block has been marked reachable after 546 // it was enqueued. 547 if (Reachable[Block->getBlockID()]) 548 continue; 549 550 // Look for any dead code within the block. 551 const Stmt *S = findDeadCode(Block); 552 553 if (!S) { 554 // No dead code. Possibly an empty block. Look at dead predecessors. 555 for (CFGBlock::const_pred_iterator I = Block->pred_begin(), 556 E = Block->pred_end(); I != E; ++I) { 557 if (const CFGBlock *predBlock = *I) 558 enqueue(predBlock); 559 } 560 continue; 561 } 562 563 // Specially handle macro-expanded code. 564 if (S->getBeginLoc().isMacroID()) { 565 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 566 continue; 567 } 568 569 if (isDeadCodeRoot(Block)) { 570 reportDeadCode(Block, S, CB); 571 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 572 } 573 else { 574 // Record this statement as the possibly best location in a 575 // strongly-connected component of dead code for emitting a 576 // warning. 577 DeferredLocs.push_back(std::make_pair(Block, S)); 578 } 579 } 580 581 // If we didn't find a dead root, then report the dead code with the 582 // earliest location. 583 if (!DeferredLocs.empty()) { 584 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp); 585 for (const auto &I : DeferredLocs) { 586 const CFGBlock *Block = I.first; 587 if (Reachable[Block->getBlockID()]) 588 continue; 589 reportDeadCode(Block, I.second, CB); 590 count += scanMaybeReachableFromBlock(Block, PP, Reachable); 591 } 592 } 593 594 return count; 595 } 596 597 static SourceLocation GetUnreachableLoc(const Stmt *S, 598 SourceRange &R1, 599 SourceRange &R2) { 600 R1 = R2 = SourceRange(); 601 602 if (const Expr *Ex = dyn_cast<Expr>(S)) 603 S = Ex->IgnoreParenImpCasts(); 604 605 switch (S->getStmtClass()) { 606 case Expr::BinaryOperatorClass: { 607 const BinaryOperator *BO = cast<BinaryOperator>(S); 608 return BO->getOperatorLoc(); 609 } 610 case Expr::UnaryOperatorClass: { 611 const UnaryOperator *UO = cast<UnaryOperator>(S); 612 R1 = UO->getSubExpr()->getSourceRange(); 613 return UO->getOperatorLoc(); 614 } 615 case Expr::CompoundAssignOperatorClass: { 616 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S); 617 R1 = CAO->getLHS()->getSourceRange(); 618 R2 = CAO->getRHS()->getSourceRange(); 619 return CAO->getOperatorLoc(); 620 } 621 case Expr::BinaryConditionalOperatorClass: 622 case Expr::ConditionalOperatorClass: { 623 const AbstractConditionalOperator *CO = 624 cast<AbstractConditionalOperator>(S); 625 return CO->getQuestionLoc(); 626 } 627 case Expr::MemberExprClass: { 628 const MemberExpr *ME = cast<MemberExpr>(S); 629 R1 = ME->getSourceRange(); 630 return ME->getMemberLoc(); 631 } 632 case Expr::ArraySubscriptExprClass: { 633 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S); 634 R1 = ASE->getLHS()->getSourceRange(); 635 R2 = ASE->getRHS()->getSourceRange(); 636 return ASE->getRBracketLoc(); 637 } 638 case Expr::CStyleCastExprClass: { 639 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S); 640 R1 = CSC->getSubExpr()->getSourceRange(); 641 return CSC->getLParenLoc(); 642 } 643 case Expr::CXXFunctionalCastExprClass: { 644 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S); 645 R1 = CE->getSubExpr()->getSourceRange(); 646 return CE->getBeginLoc(); 647 } 648 case Stmt::CXXTryStmtClass: { 649 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc(); 650 } 651 case Expr::ObjCBridgedCastExprClass: { 652 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S); 653 R1 = CSC->getSubExpr()->getSourceRange(); 654 return CSC->getLParenLoc(); 655 } 656 default: ; 657 } 658 R1 = S->getSourceRange(); 659 return S->getBeginLoc(); 660 } 661 662 void DeadCodeScan::reportDeadCode(const CFGBlock *B, 663 const Stmt *S, 664 clang::reachable_code::Callback &CB) { 665 // Classify the unreachable code found, or suppress it in some cases. 666 reachable_code::UnreachableKind UK = reachable_code::UK_Other; 667 668 if (isa<BreakStmt>(S)) { 669 UK = reachable_code::UK_Break; 670 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) || 671 isBuiltinAssumeFalse(B, S, C)) { 672 return; 673 } 674 else if (isDeadReturn(B, S)) { 675 UK = reachable_code::UK_Return; 676 } 677 678 const auto *AS = dyn_cast<AttributedStmt>(S); 679 bool HasFallThroughAttr = 680 AS && hasSpecificAttr<FallThroughAttr>(AS->getAttrs()); 681 682 SourceRange SilenceableCondVal; 683 684 if (UK == reachable_code::UK_Other) { 685 // Check if the dead code is part of the "loop target" of 686 // a for/for-range loop. This is the block that contains 687 // the increment code. 688 if (const Stmt *LoopTarget = B->getLoopTarget()) { 689 SourceLocation Loc = LoopTarget->getBeginLoc(); 690 SourceRange R1(Loc, Loc), R2; 691 692 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) { 693 const Expr *Inc = FS->getInc(); 694 Loc = Inc->getBeginLoc(); 695 R2 = Inc->getSourceRange(); 696 } 697 698 CB.HandleUnreachable(reachable_code::UK_Loop_Increment, Loc, 699 SourceRange(), SourceRange(Loc, Loc), R2, 700 HasFallThroughAttr); 701 return; 702 } 703 704 // Check if the dead block has a predecessor whose branch has 705 // a configuration value that *could* be modified to 706 // silence the warning. 707 CFGBlock::const_pred_iterator PI = B->pred_begin(); 708 if (PI != B->pred_end()) { 709 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) { 710 const Stmt *TermCond = 711 PredBlock->getTerminatorCondition(/* strip parens */ false); 712 isConfigurationValue(TermCond, PP, &SilenceableCondVal); 713 } 714 } 715 } 716 717 SourceRange R1, R2; 718 SourceLocation Loc = GetUnreachableLoc(S, R1, R2); 719 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2, HasFallThroughAttr); 720 } 721 722 //===----------------------------------------------------------------------===// 723 // Reachability APIs. 724 //===----------------------------------------------------------------------===// 725 726 namespace clang { namespace reachable_code { 727 728 void Callback::anchor() { } 729 730 unsigned ScanReachableFromBlock(const CFGBlock *Start, 731 llvm::BitVector &Reachable) { 732 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false); 733 } 734 735 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP, 736 Callback &CB) { 737 738 CFG *cfg = AC.getCFG(); 739 if (!cfg) 740 return; 741 742 // Scan for reachable blocks from the entrance of the CFG. 743 // If there are no unreachable blocks, we're done. 744 llvm::BitVector reachable(cfg->getNumBlockIDs()); 745 unsigned numReachable = 746 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable); 747 if (numReachable == cfg->getNumBlockIDs()) 748 return; 749 750 // If there aren't explicit EH edges, we should include the 'try' dispatch 751 // blocks as roots. 752 if (!AC.getCFGBuildOptions().AddEHEdges) { 753 for (const CFGBlock *B : cfg->try_blocks()) 754 numReachable += scanMaybeReachableFromBlock(B, PP, reachable); 755 if (numReachable == cfg->getNumBlockIDs()) 756 return; 757 } 758 759 // There are some unreachable blocks. We need to find the root blocks that 760 // contain code that should be considered unreachable. 761 for (const CFGBlock *block : *cfg) { 762 // A block may have been marked reachable during this loop. 763 if (reachable[block->getBlockID()]) 764 continue; 765 766 DeadCodeScan DS(reachable, PP, AC.getASTContext()); 767 numReachable += DS.scanBackwards(block, CB); 768 769 if (numReachable == cfg->getNumBlockIDs()) 770 return; 771 } 772 } 773 774 }} // end namespace clang::reachable_code 775