xref: /llvm-project/clang/lib/AST/ByteCode/Compiler.cpp (revision 51c7338cc671c90ba9345b53c7ca01dc461341ed)
1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Compiler.h"
10 #include "ByteCodeEmitter.h"
11 #include "Context.h"
12 #include "FixedPoint.h"
13 #include "Floating.h"
14 #include "Function.h"
15 #include "InterpShared.h"
16 #include "PrimType.h"
17 #include "Program.h"
18 #include "clang/AST/Attr.h"
19 
20 using namespace clang;
21 using namespace clang::interp;
22 
23 using APSInt = llvm::APSInt;
24 
25 namespace clang {
26 namespace interp {
27 
28 /// Scope used to handle temporaries in toplevel variable declarations.
29 template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
30 public:
31   DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
32       : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
33         OldInitializingDecl(Ctx->InitializingDecl) {
34     Ctx->InitializingDecl = VD;
35     Ctx->InitStack.push_back(InitLink::Decl(VD));
36   }
37 
38   void addExtended(const Scope::Local &Local) override {
39     return this->addLocal(Local);
40   }
41 
42   ~DeclScope() {
43     this->Ctx->InitializingDecl = OldInitializingDecl;
44     this->Ctx->InitStack.pop_back();
45   }
46 
47 private:
48   Program::DeclScope Scope;
49   const ValueDecl *OldInitializingDecl;
50 };
51 
52 /// Scope used to handle initialization methods.
53 template <class Emitter> class OptionScope final {
54 public:
55   /// Root constructor, compiling or discarding primitives.
56   OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
57               bool NewInitializing)
58       : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
59         OldInitializing(Ctx->Initializing) {
60     Ctx->DiscardResult = NewDiscardResult;
61     Ctx->Initializing = NewInitializing;
62   }
63 
64   ~OptionScope() {
65     Ctx->DiscardResult = OldDiscardResult;
66     Ctx->Initializing = OldInitializing;
67   }
68 
69 private:
70   /// Parent context.
71   Compiler<Emitter> *Ctx;
72   /// Old discard flag to restore.
73   bool OldDiscardResult;
74   bool OldInitializing;
75 };
76 
77 template <class Emitter>
78 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
79   switch (Kind) {
80   case K_This:
81     return Ctx->emitThis(E);
82   case K_Field:
83     // We're assuming there's a base pointer on the stack already.
84     return Ctx->emitGetPtrFieldPop(Offset, E);
85   case K_Temp:
86     return Ctx->emitGetPtrLocal(Offset, E);
87   case K_Decl:
88     return Ctx->visitDeclRef(D, E);
89   case K_Elem:
90     if (!Ctx->emitConstUint32(Offset, E))
91       return false;
92     return Ctx->emitArrayElemPtrPopUint32(E);
93   case K_RVO:
94     return Ctx->emitRVOPtr(E);
95   case K_InitList:
96     return true;
97   default:
98     llvm_unreachable("Unhandled InitLink kind");
99   }
100   return true;
101 }
102 
103 /// Scope managing label targets.
104 template <class Emitter> class LabelScope {
105 public:
106   virtual ~LabelScope() {}
107 
108 protected:
109   LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
110   /// Compiler instance.
111   Compiler<Emitter> *Ctx;
112 };
113 
114 /// Sets the context for break/continue statements.
115 template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
116 public:
117   using LabelTy = typename Compiler<Emitter>::LabelTy;
118   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
119 
120   LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
121       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
122         OldContinueLabel(Ctx->ContinueLabel),
123         OldBreakVarScope(Ctx->BreakVarScope),
124         OldContinueVarScope(Ctx->ContinueVarScope) {
125     this->Ctx->BreakLabel = BreakLabel;
126     this->Ctx->ContinueLabel = ContinueLabel;
127     this->Ctx->BreakVarScope = this->Ctx->VarScope;
128     this->Ctx->ContinueVarScope = this->Ctx->VarScope;
129   }
130 
131   ~LoopScope() {
132     this->Ctx->BreakLabel = OldBreakLabel;
133     this->Ctx->ContinueLabel = OldContinueLabel;
134     this->Ctx->ContinueVarScope = OldContinueVarScope;
135     this->Ctx->BreakVarScope = OldBreakVarScope;
136   }
137 
138 private:
139   OptLabelTy OldBreakLabel;
140   OptLabelTy OldContinueLabel;
141   VariableScope<Emitter> *OldBreakVarScope;
142   VariableScope<Emitter> *OldContinueVarScope;
143 };
144 
145 // Sets the context for a switch scope, mapping labels.
146 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
147 public:
148   using LabelTy = typename Compiler<Emitter>::LabelTy;
149   using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
150   using CaseMap = typename Compiler<Emitter>::CaseMap;
151 
152   SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
153               OptLabelTy DefaultLabel)
154       : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
155         OldDefaultLabel(this->Ctx->DefaultLabel),
156         OldCaseLabels(std::move(this->Ctx->CaseLabels)),
157         OldLabelVarScope(Ctx->BreakVarScope) {
158     this->Ctx->BreakLabel = BreakLabel;
159     this->Ctx->DefaultLabel = DefaultLabel;
160     this->Ctx->CaseLabels = std::move(CaseLabels);
161     this->Ctx->BreakVarScope = this->Ctx->VarScope;
162   }
163 
164   ~SwitchScope() {
165     this->Ctx->BreakLabel = OldBreakLabel;
166     this->Ctx->DefaultLabel = OldDefaultLabel;
167     this->Ctx->CaseLabels = std::move(OldCaseLabels);
168     this->Ctx->BreakVarScope = OldLabelVarScope;
169   }
170 
171 private:
172   OptLabelTy OldBreakLabel;
173   OptLabelTy OldDefaultLabel;
174   CaseMap OldCaseLabels;
175   VariableScope<Emitter> *OldLabelVarScope;
176 };
177 
178 template <class Emitter> class StmtExprScope final {
179 public:
180   StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
181     Ctx->InStmtExpr = true;
182   }
183 
184   ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
185 
186 private:
187   Compiler<Emitter> *Ctx;
188   bool OldFlag;
189 };
190 
191 } // namespace interp
192 } // namespace clang
193 
194 template <class Emitter>
195 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
196   const Expr *SubExpr = CE->getSubExpr();
197   switch (CE->getCastKind()) {
198 
199   case CK_LValueToRValue: {
200     if (DiscardResult)
201       return this->discard(SubExpr);
202 
203     std::optional<PrimType> SubExprT = classify(SubExpr->getType());
204     // Prepare storage for the result.
205     if (!Initializing && !SubExprT) {
206       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
207       if (!LocalIndex)
208         return false;
209       if (!this->emitGetPtrLocal(*LocalIndex, CE))
210         return false;
211     }
212 
213     if (!this->visit(SubExpr))
214       return false;
215 
216     if (SubExprT)
217       return this->emitLoadPop(*SubExprT, CE);
218 
219     // If the subexpr type is not primitive, we need to perform a copy here.
220     // This happens for example in C when dereferencing a pointer of struct
221     // type.
222     return this->emitMemcpy(CE);
223   }
224 
225   case CK_DerivedToBaseMemberPointer: {
226     assert(classifyPrim(CE->getType()) == PT_MemberPtr);
227     assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
228     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
229     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
230 
231     unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
232                                                QualType(FromMP->getClass(), 0));
233 
234     if (!this->delegate(SubExpr))
235       return false;
236 
237     return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
238   }
239 
240   case CK_BaseToDerivedMemberPointer: {
241     assert(classifyPrim(CE) == PT_MemberPtr);
242     assert(classifyPrim(SubExpr) == PT_MemberPtr);
243     const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
244     const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
245 
246     unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
247                                                QualType(ToMP->getClass(), 0));
248 
249     if (!this->delegate(SubExpr))
250       return false;
251     return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
252   }
253 
254   case CK_UncheckedDerivedToBase:
255   case CK_DerivedToBase: {
256     if (DiscardResult)
257       return this->discard(SubExpr);
258 
259     if (!this->delegate(SubExpr))
260       return false;
261 
262     const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
263       if (const auto *PT = dyn_cast<PointerType>(Ty))
264         return PT->getPointeeType()->getAsCXXRecordDecl();
265       return Ty->getAsCXXRecordDecl();
266     };
267 
268     // FIXME: We can express a series of non-virtual casts as a single
269     // GetPtrBasePop op.
270     QualType CurType = SubExpr->getType();
271     for (const CXXBaseSpecifier *B : CE->path()) {
272       if (B->isVirtual()) {
273         if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
274           return false;
275         CurType = B->getType();
276       } else {
277         unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
278         if (!this->emitGetPtrBasePop(DerivedOffset, CE))
279           return false;
280         CurType = B->getType();
281       }
282     }
283 
284     return true;
285   }
286 
287   case CK_BaseToDerived: {
288     if (DiscardResult)
289       return this->discard(SubExpr);
290 
291     if (!this->delegate(SubExpr))
292       return false;
293 
294     unsigned DerivedOffset =
295         collectBaseOffset(SubExpr->getType(), CE->getType());
296 
297     return this->emitGetPtrDerivedPop(DerivedOffset, CE);
298   }
299 
300   case CK_FloatingCast: {
301     // HLSL uses CK_FloatingCast to cast between vectors.
302     if (!SubExpr->getType()->isFloatingType() ||
303         !CE->getType()->isFloatingType())
304       return false;
305     if (DiscardResult)
306       return this->discard(SubExpr);
307     if (!this->visit(SubExpr))
308       return false;
309     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
310     return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
311   }
312 
313   case CK_IntegralToFloating: {
314     if (DiscardResult)
315       return this->discard(SubExpr);
316     std::optional<PrimType> FromT = classify(SubExpr->getType());
317     if (!FromT)
318       return false;
319 
320     if (!this->visit(SubExpr))
321       return false;
322 
323     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
324     return this->emitCastIntegralFloating(*FromT, TargetSemantics,
325                                           getFPOptions(CE), CE);
326   }
327 
328   case CK_FloatingToBoolean:
329   case CK_FloatingToIntegral: {
330     if (DiscardResult)
331       return this->discard(SubExpr);
332 
333     std::optional<PrimType> ToT = classify(CE->getType());
334 
335     if (!ToT)
336       return false;
337 
338     if (!this->visit(SubExpr))
339       return false;
340 
341     if (ToT == PT_IntAP)
342       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
343                                               getFPOptions(CE), CE);
344     if (ToT == PT_IntAPS)
345       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
346                                                getFPOptions(CE), CE);
347 
348     return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
349   }
350 
351   case CK_NullToPointer:
352   case CK_NullToMemberPointer: {
353     if (!this->discard(SubExpr))
354       return false;
355     if (DiscardResult)
356       return true;
357 
358     const Descriptor *Desc = nullptr;
359     const QualType PointeeType = CE->getType()->getPointeeType();
360     if (!PointeeType.isNull()) {
361       if (std::optional<PrimType> T = classify(PointeeType))
362         Desc = P.createDescriptor(SubExpr, *T);
363       else
364         Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
365                                   std::nullopt, true, false,
366                                   /*IsMutable=*/false, nullptr);
367     }
368 
369     uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(CE->getType());
370     return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE);
371   }
372 
373   case CK_PointerToIntegral: {
374     if (DiscardResult)
375       return this->discard(SubExpr);
376 
377     if (!this->visit(SubExpr))
378       return false;
379 
380     // If SubExpr doesn't result in a pointer, make it one.
381     if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
382       assert(isPtrType(FromT));
383       if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
384         return false;
385     }
386 
387     PrimType T = classifyPrim(CE->getType());
388     if (T == PT_IntAP)
389       return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
390                                              CE);
391     if (T == PT_IntAPS)
392       return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
393                                               CE);
394     return this->emitCastPointerIntegral(T, CE);
395   }
396 
397   case CK_ArrayToPointerDecay: {
398     if (!this->visit(SubExpr))
399       return false;
400     if (!this->emitArrayDecay(CE))
401       return false;
402     if (DiscardResult)
403       return this->emitPopPtr(CE);
404     return true;
405   }
406 
407   case CK_IntegralToPointer: {
408     QualType IntType = SubExpr->getType();
409     assert(IntType->isIntegralOrEnumerationType());
410     if (!this->visit(SubExpr))
411       return false;
412     // FIXME: I think the discard is wrong since the int->ptr cast might cause a
413     // diagnostic.
414     PrimType T = classifyPrim(IntType);
415     if (DiscardResult)
416       return this->emitPop(T, CE);
417 
418     QualType PtrType = CE->getType();
419     const Descriptor *Desc;
420     if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
421       Desc = P.createDescriptor(SubExpr, *T);
422     else if (PtrType->getPointeeType()->isVoidType())
423       Desc = nullptr;
424     else
425       Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
426                                 Descriptor::InlineDescMD, true, false,
427                                 /*IsMutable=*/false, nullptr);
428 
429     if (!this->emitGetIntPtr(T, Desc, CE))
430       return false;
431 
432     PrimType DestPtrT = classifyPrim(PtrType);
433     if (DestPtrT == PT_Ptr)
434       return true;
435 
436     // In case we're converting the integer to a non-Pointer.
437     return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
438   }
439 
440   case CK_AtomicToNonAtomic:
441   case CK_ConstructorConversion:
442   case CK_FunctionToPointerDecay:
443   case CK_NonAtomicToAtomic:
444   case CK_NoOp:
445   case CK_UserDefinedConversion:
446   case CK_AddressSpaceConversion:
447   case CK_CPointerToObjCPointerCast:
448     return this->delegate(SubExpr);
449 
450   case CK_BitCast: {
451     // Reject bitcasts to atomic types.
452     if (CE->getType()->isAtomicType()) {
453       if (!this->discard(SubExpr))
454         return false;
455       return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
456     }
457 
458     if (DiscardResult)
459       return this->discard(SubExpr);
460 
461     QualType SubExprTy = SubExpr->getType();
462     std::optional<PrimType> FromT = classify(SubExprTy);
463     // Casts from integer/vector to vector.
464     if (CE->getType()->isVectorType())
465       return this->emitBuiltinBitCast(CE);
466 
467     std::optional<PrimType> ToT = classify(CE->getType());
468     if (!FromT || !ToT)
469       return false;
470 
471     assert(isPtrType(*FromT));
472     assert(isPtrType(*ToT));
473     if (FromT == ToT) {
474       if (CE->getType()->isVoidPointerType())
475         return this->delegate(SubExpr);
476 
477       if (!this->visit(SubExpr))
478         return false;
479       if (FromT == PT_Ptr)
480         return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
481       return true;
482     }
483 
484     if (!this->visit(SubExpr))
485       return false;
486     return this->emitDecayPtr(*FromT, *ToT, CE);
487   }
488 
489   case CK_LValueToRValueBitCast:
490     return this->emitBuiltinBitCast(CE);
491 
492   case CK_IntegralToBoolean:
493   case CK_FixedPointToBoolean:
494   case CK_BooleanToSignedIntegral:
495   case CK_IntegralCast: {
496     if (DiscardResult)
497       return this->discard(SubExpr);
498     std::optional<PrimType> FromT = classify(SubExpr->getType());
499     std::optional<PrimType> ToT = classify(CE->getType());
500 
501     if (!FromT || !ToT)
502       return false;
503 
504     if (!this->visit(SubExpr))
505       return false;
506 
507     // Possibly diagnose casts to enum types if the target type does not
508     // have a fixed size.
509     if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
510       if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
511           ET && !ET->getDecl()->isFixed()) {
512         if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
513           return false;
514       }
515     }
516 
517     auto maybeNegate = [&]() -> bool {
518       if (CE->getCastKind() == CK_BooleanToSignedIntegral)
519         return this->emitNeg(*ToT, CE);
520       return true;
521     };
522 
523     if (ToT == PT_IntAP)
524       return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
525              maybeNegate();
526     if (ToT == PT_IntAPS)
527       return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
528              maybeNegate();
529 
530     if (FromT == ToT)
531       return true;
532     if (!this->emitCast(*FromT, *ToT, CE))
533       return false;
534 
535     return maybeNegate();
536   }
537 
538   case CK_PointerToBoolean:
539   case CK_MemberPointerToBoolean: {
540     PrimType PtrT = classifyPrim(SubExpr->getType());
541 
542     if (!this->visit(SubExpr))
543       return false;
544     return this->emitIsNonNull(PtrT, CE);
545   }
546 
547   case CK_IntegralComplexToBoolean:
548   case CK_FloatingComplexToBoolean: {
549     if (DiscardResult)
550       return this->discard(SubExpr);
551     if (!this->visit(SubExpr))
552       return false;
553     return this->emitComplexBoolCast(SubExpr);
554   }
555 
556   case CK_IntegralComplexToReal:
557   case CK_FloatingComplexToReal:
558     return this->emitComplexReal(SubExpr);
559 
560   case CK_IntegralRealToComplex:
561   case CK_FloatingRealToComplex: {
562     // We're creating a complex value here, so we need to
563     // allocate storage for it.
564     if (!Initializing) {
565       unsigned LocalIndex = allocateTemporary(CE);
566       if (!this->emitGetPtrLocal(LocalIndex, CE))
567         return false;
568     }
569 
570     // Init the complex value to {SubExpr, 0}.
571     if (!this->visitArrayElemInit(0, SubExpr))
572       return false;
573     // Zero-init the second element.
574     PrimType T = classifyPrim(SubExpr->getType());
575     if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
576       return false;
577     return this->emitInitElem(T, 1, SubExpr);
578   }
579 
580   case CK_IntegralComplexCast:
581   case CK_FloatingComplexCast:
582   case CK_IntegralComplexToFloatingComplex:
583   case CK_FloatingComplexToIntegralComplex: {
584     assert(CE->getType()->isAnyComplexType());
585     assert(SubExpr->getType()->isAnyComplexType());
586     if (DiscardResult)
587       return this->discard(SubExpr);
588 
589     if (!Initializing) {
590       std::optional<unsigned> LocalIndex = allocateLocal(CE);
591       if (!LocalIndex)
592         return false;
593       if (!this->emitGetPtrLocal(*LocalIndex, CE))
594         return false;
595     }
596 
597     // Location for the SubExpr.
598     // Since SubExpr is of complex type, visiting it results in a pointer
599     // anyway, so we just create a temporary pointer variable.
600     unsigned SubExprOffset = allocateLocalPrimitive(
601         SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
602     if (!this->visit(SubExpr))
603       return false;
604     if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
605       return false;
606 
607     PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
608     QualType DestElemType =
609         CE->getType()->getAs<ComplexType>()->getElementType();
610     PrimType DestElemT = classifyPrim(DestElemType);
611     // Cast both elements individually.
612     for (unsigned I = 0; I != 2; ++I) {
613       if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
614         return false;
615       if (!this->emitArrayElemPop(SourceElemT, I, CE))
616         return false;
617 
618       // Do the cast.
619       if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
620         return false;
621 
622       // Save the value.
623       if (!this->emitInitElem(DestElemT, I, CE))
624         return false;
625     }
626     return true;
627   }
628 
629   case CK_VectorSplat: {
630     assert(!classify(CE->getType()));
631     assert(classify(SubExpr->getType()));
632     assert(CE->getType()->isVectorType());
633 
634     if (DiscardResult)
635       return this->discard(SubExpr);
636 
637     if (!Initializing) {
638       std::optional<unsigned> LocalIndex = allocateLocal(CE);
639       if (!LocalIndex)
640         return false;
641       if (!this->emitGetPtrLocal(*LocalIndex, CE))
642         return false;
643     }
644 
645     const auto *VT = CE->getType()->getAs<VectorType>();
646     PrimType ElemT = classifyPrim(SubExpr->getType());
647     unsigned ElemOffset = allocateLocalPrimitive(
648         SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
649 
650     // Prepare a local variable for the scalar value.
651     if (!this->visit(SubExpr))
652       return false;
653     if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
654       return false;
655 
656     if (!this->emitSetLocal(ElemT, ElemOffset, CE))
657       return false;
658 
659     for (unsigned I = 0; I != VT->getNumElements(); ++I) {
660       if (!this->emitGetLocal(ElemT, ElemOffset, CE))
661         return false;
662       if (!this->emitInitElem(ElemT, I, CE))
663         return false;
664     }
665 
666     return true;
667   }
668 
669   case CK_HLSLVectorTruncation: {
670     assert(SubExpr->getType()->isVectorType());
671     if (std::optional<PrimType> ResultT = classify(CE)) {
672       assert(!DiscardResult);
673       // Result must be either a float or integer. Take the first element.
674       if (!this->visit(SubExpr))
675         return false;
676       return this->emitArrayElemPop(*ResultT, 0, CE);
677     }
678     // Otherwise, this truncates from one vector type to another.
679     assert(CE->getType()->isVectorType());
680 
681     if (!Initializing) {
682       unsigned LocalIndex = allocateTemporary(CE);
683       if (!this->emitGetPtrLocal(LocalIndex, CE))
684         return false;
685     }
686     unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
687     assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
688     if (!this->visit(SubExpr))
689       return false;
690     return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
691                                ToSize, CE);
692   };
693 
694   case CK_IntegralToFixedPoint: {
695     if (!this->visit(SubExpr))
696       return false;
697 
698     auto Sem =
699         Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
700     return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()),
701                                             Sem, CE);
702   }
703   case CK_FloatingToFixedPoint: {
704     if (!this->visit(SubExpr))
705       return false;
706 
707     auto Sem =
708         Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
709     return this->emitCastFloatingFixedPoint(Sem, CE);
710   }
711   case CK_FixedPointToFloating: {
712     if (!this->visit(SubExpr))
713       return false;
714     const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
715     return this->emitCastFixedPointFloating(TargetSemantics, CE);
716   }
717   case CK_FixedPointToIntegral: {
718     if (!this->visit(SubExpr))
719       return false;
720     return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE);
721   }
722   case CK_FixedPointCast: {
723     if (!this->visit(SubExpr))
724       return false;
725     auto Sem =
726         Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
727     return this->emitCastFixedPoint(Sem, CE);
728   }
729 
730   case CK_ToVoid:
731     return discard(SubExpr);
732 
733   default:
734     return this->emitInvalid(CE);
735   }
736   llvm_unreachable("Unhandled clang::CastKind enum");
737 }
738 
739 template <class Emitter>
740 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
741   if (DiscardResult)
742     return true;
743 
744   return this->emitConst(LE->getValue(), LE);
745 }
746 
747 template <class Emitter>
748 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
749   if (DiscardResult)
750     return true;
751 
752   return this->emitConstFloat(E->getValue(), E);
753 }
754 
755 template <class Emitter>
756 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
757   assert(E->getType()->isAnyComplexType());
758   if (DiscardResult)
759     return true;
760 
761   if (!Initializing) {
762     unsigned LocalIndex = allocateTemporary(E);
763     if (!this->emitGetPtrLocal(LocalIndex, E))
764       return false;
765   }
766 
767   const Expr *SubExpr = E->getSubExpr();
768   PrimType SubExprT = classifyPrim(SubExpr->getType());
769 
770   if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
771     return false;
772   if (!this->emitInitElem(SubExprT, 0, SubExpr))
773     return false;
774   return this->visitArrayElemInit(1, SubExpr);
775 }
776 
777 template <class Emitter>
778 bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
779   assert(E->getType()->isFixedPointType());
780   assert(classifyPrim(E) == PT_FixedPoint);
781 
782   if (DiscardResult)
783     return true;
784 
785   auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
786   APInt Value = E->getValue();
787   return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
788 }
789 
790 template <class Emitter>
791 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
792   return this->delegate(E->getSubExpr());
793 }
794 
795 template <class Emitter>
796 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
797   // Need short-circuiting for these.
798   if (BO->isLogicalOp() && !BO->getType()->isVectorType())
799     return this->VisitLogicalBinOp(BO);
800 
801   const Expr *LHS = BO->getLHS();
802   const Expr *RHS = BO->getRHS();
803 
804   // Handle comma operators. Just discard the LHS
805   // and delegate to RHS.
806   if (BO->isCommaOp()) {
807     if (!this->discard(LHS))
808       return false;
809     if (RHS->getType()->isVoidType())
810       return this->discard(RHS);
811 
812     return this->delegate(RHS);
813   }
814 
815   if (BO->getType()->isAnyComplexType())
816     return this->VisitComplexBinOp(BO);
817   if (BO->getType()->isVectorType())
818     return this->VisitVectorBinOp(BO);
819   if ((LHS->getType()->isAnyComplexType() ||
820        RHS->getType()->isAnyComplexType()) &&
821       BO->isComparisonOp())
822     return this->emitComplexComparison(LHS, RHS, BO);
823   if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
824     return this->VisitFixedPointBinOp(BO);
825 
826   if (BO->isPtrMemOp()) {
827     if (!this->visit(LHS))
828       return false;
829 
830     if (!this->visit(RHS))
831       return false;
832 
833     if (!this->emitToMemberPtr(BO))
834       return false;
835 
836     if (classifyPrim(BO) == PT_MemberPtr)
837       return true;
838 
839     if (!this->emitCastMemberPtrPtr(BO))
840       return false;
841     return DiscardResult ? this->emitPopPtr(BO) : true;
842   }
843 
844   // Typecheck the args.
845   std::optional<PrimType> LT = classify(LHS);
846   std::optional<PrimType> RT = classify(RHS);
847   std::optional<PrimType> T = classify(BO->getType());
848 
849   // Special case for C++'s three-way/spaceship operator <=>, which
850   // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
851   // have a PrimType).
852   if (!T && BO->getOpcode() == BO_Cmp) {
853     if (DiscardResult)
854       return true;
855     const ComparisonCategoryInfo *CmpInfo =
856         Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
857     assert(CmpInfo);
858 
859     // We need a temporary variable holding our return value.
860     if (!Initializing) {
861       std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
862       if (!this->emitGetPtrLocal(*ResultIndex, BO))
863         return false;
864     }
865 
866     if (!visit(LHS) || !visit(RHS))
867       return false;
868 
869     return this->emitCMP3(*LT, CmpInfo, BO);
870   }
871 
872   if (!LT || !RT || !T)
873     return false;
874 
875   // Pointer arithmetic special case.
876   if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
877     if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
878       return this->VisitPointerArithBinOp(BO);
879   }
880 
881   // Assignmentes require us to evalute the RHS first.
882   if (BO->getOpcode() == BO_Assign) {
883     if (!visit(RHS) || !visit(LHS))
884       return false;
885     if (!this->emitFlip(*LT, *RT, BO))
886       return false;
887   } else {
888     if (!visit(LHS) || !visit(RHS))
889       return false;
890   }
891 
892   // For languages such as C, cast the result of one
893   // of our comparision opcodes to T (which is usually int).
894   auto MaybeCastToBool = [this, T, BO](bool Result) {
895     if (!Result)
896       return false;
897     if (DiscardResult)
898       return this->emitPop(*T, BO);
899     if (T != PT_Bool)
900       return this->emitCast(PT_Bool, *T, BO);
901     return true;
902   };
903 
904   auto Discard = [this, T, BO](bool Result) {
905     if (!Result)
906       return false;
907     return DiscardResult ? this->emitPop(*T, BO) : true;
908   };
909 
910   switch (BO->getOpcode()) {
911   case BO_EQ:
912     return MaybeCastToBool(this->emitEQ(*LT, BO));
913   case BO_NE:
914     return MaybeCastToBool(this->emitNE(*LT, BO));
915   case BO_LT:
916     return MaybeCastToBool(this->emitLT(*LT, BO));
917   case BO_LE:
918     return MaybeCastToBool(this->emitLE(*LT, BO));
919   case BO_GT:
920     return MaybeCastToBool(this->emitGT(*LT, BO));
921   case BO_GE:
922     return MaybeCastToBool(this->emitGE(*LT, BO));
923   case BO_Sub:
924     if (BO->getType()->isFloatingType())
925       return Discard(this->emitSubf(getFPOptions(BO), BO));
926     return Discard(this->emitSub(*T, BO));
927   case BO_Add:
928     if (BO->getType()->isFloatingType())
929       return Discard(this->emitAddf(getFPOptions(BO), BO));
930     return Discard(this->emitAdd(*T, BO));
931   case BO_Mul:
932     if (BO->getType()->isFloatingType())
933       return Discard(this->emitMulf(getFPOptions(BO), BO));
934     return Discard(this->emitMul(*T, BO));
935   case BO_Rem:
936     return Discard(this->emitRem(*T, BO));
937   case BO_Div:
938     if (BO->getType()->isFloatingType())
939       return Discard(this->emitDivf(getFPOptions(BO), BO));
940     return Discard(this->emitDiv(*T, BO));
941   case BO_Assign:
942     if (DiscardResult)
943       return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
944                                      : this->emitStorePop(*T, BO);
945     if (LHS->refersToBitField()) {
946       if (!this->emitStoreBitField(*T, BO))
947         return false;
948     } else {
949       if (!this->emitStore(*T, BO))
950         return false;
951     }
952     // Assignments aren't necessarily lvalues in C.
953     // Load from them in that case.
954     if (!BO->isLValue())
955       return this->emitLoadPop(*T, BO);
956     return true;
957   case BO_And:
958     return Discard(this->emitBitAnd(*T, BO));
959   case BO_Or:
960     return Discard(this->emitBitOr(*T, BO));
961   case BO_Shl:
962     return Discard(this->emitShl(*LT, *RT, BO));
963   case BO_Shr:
964     return Discard(this->emitShr(*LT, *RT, BO));
965   case BO_Xor:
966     return Discard(this->emitBitXor(*T, BO));
967   case BO_LOr:
968   case BO_LAnd:
969     llvm_unreachable("Already handled earlier");
970   default:
971     return false;
972   }
973 
974   llvm_unreachable("Unhandled binary op");
975 }
976 
977 /// Perform addition/subtraction of a pointer and an integer or
978 /// subtraction of two pointers.
979 template <class Emitter>
980 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
981   BinaryOperatorKind Op = E->getOpcode();
982   const Expr *LHS = E->getLHS();
983   const Expr *RHS = E->getRHS();
984 
985   if ((Op != BO_Add && Op != BO_Sub) ||
986       (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
987     return false;
988 
989   std::optional<PrimType> LT = classify(LHS);
990   std::optional<PrimType> RT = classify(RHS);
991 
992   if (!LT || !RT)
993     return false;
994 
995   // Visit the given pointer expression and optionally convert to a PT_Ptr.
996   auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
997     if (!this->visit(E))
998       return false;
999     if (T != PT_Ptr)
1000       return this->emitDecayPtr(T, PT_Ptr, E);
1001     return true;
1002   };
1003 
1004   if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
1005     if (Op != BO_Sub)
1006       return false;
1007 
1008     assert(E->getType()->isIntegerType());
1009     if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
1010       return false;
1011 
1012     PrimType IntT = classifyPrim(E->getType());
1013     if (!this->emitSubPtr(IntT, E))
1014       return false;
1015     return DiscardResult ? this->emitPop(IntT, E) : true;
1016   }
1017 
1018   PrimType OffsetType;
1019   if (LHS->getType()->isIntegerType()) {
1020     if (!visitAsPointer(RHS, *RT))
1021       return false;
1022     if (!this->visit(LHS))
1023       return false;
1024     OffsetType = *LT;
1025   } else if (RHS->getType()->isIntegerType()) {
1026     if (!visitAsPointer(LHS, *LT))
1027       return false;
1028     if (!this->visit(RHS))
1029       return false;
1030     OffsetType = *RT;
1031   } else {
1032     return false;
1033   }
1034 
1035   // Do the operation and optionally transform to
1036   // result pointer type.
1037   if (Op == BO_Add) {
1038     if (!this->emitAddOffset(OffsetType, E))
1039       return false;
1040 
1041     if (classifyPrim(E) != PT_Ptr)
1042       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1043     return true;
1044   } else if (Op == BO_Sub) {
1045     if (!this->emitSubOffset(OffsetType, E))
1046       return false;
1047 
1048     if (classifyPrim(E) != PT_Ptr)
1049       return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
1050     return true;
1051   }
1052 
1053   return false;
1054 }
1055 
1056 template <class Emitter>
1057 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
1058   assert(E->isLogicalOp());
1059   BinaryOperatorKind Op = E->getOpcode();
1060   const Expr *LHS = E->getLHS();
1061   const Expr *RHS = E->getRHS();
1062   std::optional<PrimType> T = classify(E->getType());
1063 
1064   if (Op == BO_LOr) {
1065     // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
1066     LabelTy LabelTrue = this->getLabel();
1067     LabelTy LabelEnd = this->getLabel();
1068 
1069     if (!this->visitBool(LHS))
1070       return false;
1071     if (!this->jumpTrue(LabelTrue))
1072       return false;
1073 
1074     if (!this->visitBool(RHS))
1075       return false;
1076     if (!this->jump(LabelEnd))
1077       return false;
1078 
1079     this->emitLabel(LabelTrue);
1080     this->emitConstBool(true, E);
1081     this->fallthrough(LabelEnd);
1082     this->emitLabel(LabelEnd);
1083 
1084   } else {
1085     assert(Op == BO_LAnd);
1086     // Logical AND.
1087     // Visit LHS. Only visit RHS if LHS was TRUE.
1088     LabelTy LabelFalse = this->getLabel();
1089     LabelTy LabelEnd = this->getLabel();
1090 
1091     if (!this->visitBool(LHS))
1092       return false;
1093     if (!this->jumpFalse(LabelFalse))
1094       return false;
1095 
1096     if (!this->visitBool(RHS))
1097       return false;
1098     if (!this->jump(LabelEnd))
1099       return false;
1100 
1101     this->emitLabel(LabelFalse);
1102     this->emitConstBool(false, E);
1103     this->fallthrough(LabelEnd);
1104     this->emitLabel(LabelEnd);
1105   }
1106 
1107   if (DiscardResult)
1108     return this->emitPopBool(E);
1109 
1110   // For C, cast back to integer type.
1111   assert(T);
1112   if (T != PT_Bool)
1113     return this->emitCast(PT_Bool, *T, E);
1114   return true;
1115 }
1116 
1117 template <class Emitter>
1118 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
1119   // Prepare storage for result.
1120   if (!Initializing) {
1121     unsigned LocalIndex = allocateTemporary(E);
1122     if (!this->emitGetPtrLocal(LocalIndex, E))
1123       return false;
1124   }
1125 
1126   // Both LHS and RHS might _not_ be of complex type, but one of them
1127   // needs to be.
1128   const Expr *LHS = E->getLHS();
1129   const Expr *RHS = E->getRHS();
1130 
1131   PrimType ResultElemT = this->classifyComplexElementType(E->getType());
1132   unsigned ResultOffset = ~0u;
1133   if (!DiscardResult)
1134     ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
1135 
1136   // Save result pointer in ResultOffset
1137   if (!this->DiscardResult) {
1138     if (!this->emitDupPtr(E))
1139       return false;
1140     if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
1141       return false;
1142   }
1143   QualType LHSType = LHS->getType();
1144   if (const auto *AT = LHSType->getAs<AtomicType>())
1145     LHSType = AT->getValueType();
1146   QualType RHSType = RHS->getType();
1147   if (const auto *AT = RHSType->getAs<AtomicType>())
1148     RHSType = AT->getValueType();
1149 
1150   bool LHSIsComplex = LHSType->isAnyComplexType();
1151   unsigned LHSOffset;
1152   bool RHSIsComplex = RHSType->isAnyComplexType();
1153 
1154   // For ComplexComplex Mul, we have special ops to make their implementation
1155   // easier.
1156   BinaryOperatorKind Op = E->getOpcode();
1157   if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
1158     assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
1159            classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
1160     PrimType ElemT =
1161         classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
1162     if (!this->visit(LHS))
1163       return false;
1164     if (!this->visit(RHS))
1165       return false;
1166     return this->emitMulc(ElemT, E);
1167   }
1168 
1169   if (Op == BO_Div && RHSIsComplex) {
1170     QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
1171     PrimType ElemT = classifyPrim(ElemQT);
1172     // If the LHS is not complex, we still need to do the full complex
1173     // division, so just stub create a complex value and stub it out with
1174     // the LHS and a zero.
1175 
1176     if (!LHSIsComplex) {
1177       // This is using the RHS type for the fake-complex LHS.
1178       LHSOffset = allocateTemporary(RHS);
1179 
1180       if (!this->emitGetPtrLocal(LHSOffset, E))
1181         return false;
1182 
1183       if (!this->visit(LHS))
1184         return false;
1185       // real is LHS
1186       if (!this->emitInitElem(ElemT, 0, E))
1187         return false;
1188       // imag is zero
1189       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1190         return false;
1191       if (!this->emitInitElem(ElemT, 1, E))
1192         return false;
1193     } else {
1194       if (!this->visit(LHS))
1195         return false;
1196     }
1197 
1198     if (!this->visit(RHS))
1199       return false;
1200     return this->emitDivc(ElemT, E);
1201   }
1202 
1203   // Evaluate LHS and save value to LHSOffset.
1204   if (LHSType->isAnyComplexType()) {
1205     LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1206     if (!this->visit(LHS))
1207       return false;
1208     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1209       return false;
1210   } else {
1211     PrimType LHST = classifyPrim(LHSType);
1212     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
1213     if (!this->visit(LHS))
1214       return false;
1215     if (!this->emitSetLocal(LHST, LHSOffset, E))
1216       return false;
1217   }
1218 
1219   // Same with RHS.
1220   unsigned RHSOffset;
1221   if (RHSType->isAnyComplexType()) {
1222     RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1223     if (!this->visit(RHS))
1224       return false;
1225     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1226       return false;
1227   } else {
1228     PrimType RHST = classifyPrim(RHSType);
1229     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
1230     if (!this->visit(RHS))
1231       return false;
1232     if (!this->emitSetLocal(RHST, RHSOffset, E))
1233       return false;
1234   }
1235 
1236   // For both LHS and RHS, either load the value from the complex pointer, or
1237   // directly from the local variable. For index 1 (i.e. the imaginary part),
1238   // just load 0 and do the operation anyway.
1239   auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
1240                                  unsigned ElemIndex, unsigned Offset,
1241                                  const Expr *E) -> bool {
1242     if (IsComplex) {
1243       if (!this->emitGetLocal(PT_Ptr, Offset, E))
1244         return false;
1245       return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
1246                                     ElemIndex, E);
1247     }
1248     if (ElemIndex == 0 || !LoadZero)
1249       return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
1250     return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
1251                                       E);
1252   };
1253 
1254   // Now we can get pointers to the LHS and RHS from the offsets above.
1255   for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
1256     // Result pointer for the store later.
1257     if (!this->DiscardResult) {
1258       if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
1259         return false;
1260     }
1261 
1262     // The actual operation.
1263     switch (Op) {
1264     case BO_Add:
1265       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1266         return false;
1267 
1268       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1269         return false;
1270       if (ResultElemT == PT_Float) {
1271         if (!this->emitAddf(getFPOptions(E), E))
1272           return false;
1273       } else {
1274         if (!this->emitAdd(ResultElemT, E))
1275           return false;
1276       }
1277       break;
1278     case BO_Sub:
1279       if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
1280         return false;
1281 
1282       if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
1283         return false;
1284       if (ResultElemT == PT_Float) {
1285         if (!this->emitSubf(getFPOptions(E), E))
1286           return false;
1287       } else {
1288         if (!this->emitSub(ResultElemT, E))
1289           return false;
1290       }
1291       break;
1292     case BO_Mul:
1293       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1294         return false;
1295 
1296       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1297         return false;
1298 
1299       if (ResultElemT == PT_Float) {
1300         if (!this->emitMulf(getFPOptions(E), E))
1301           return false;
1302       } else {
1303         if (!this->emitMul(ResultElemT, E))
1304           return false;
1305       }
1306       break;
1307     case BO_Div:
1308       assert(!RHSIsComplex);
1309       if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
1310         return false;
1311 
1312       if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
1313         return false;
1314 
1315       if (ResultElemT == PT_Float) {
1316         if (!this->emitDivf(getFPOptions(E), E))
1317           return false;
1318       } else {
1319         if (!this->emitDiv(ResultElemT, E))
1320           return false;
1321       }
1322       break;
1323 
1324     default:
1325       return false;
1326     }
1327 
1328     if (!this->DiscardResult) {
1329       // Initialize array element with the value we just computed.
1330       if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
1331         return false;
1332     } else {
1333       if (!this->emitPop(ResultElemT, E))
1334         return false;
1335     }
1336   }
1337   return true;
1338 }
1339 
1340 template <class Emitter>
1341 bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
1342   assert(!E->isCommaOp() &&
1343          "Comma op should be handled in VisitBinaryOperator");
1344   assert(E->getType()->isVectorType());
1345   assert(E->getLHS()->getType()->isVectorType());
1346   assert(E->getRHS()->getType()->isVectorType());
1347 
1348   // Prepare storage for result.
1349   if (!Initializing && !E->isCompoundAssignmentOp()) {
1350     unsigned LocalIndex = allocateTemporary(E);
1351     if (!this->emitGetPtrLocal(LocalIndex, E))
1352       return false;
1353   }
1354 
1355   const Expr *LHS = E->getLHS();
1356   const Expr *RHS = E->getRHS();
1357   const auto *VecTy = E->getType()->getAs<VectorType>();
1358   auto Op = E->isCompoundAssignmentOp()
1359                 ? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
1360                 : E->getOpcode();
1361 
1362   PrimType ElemT = this->classifyVectorElementType(LHS->getType());
1363   PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
1364   PrimType ResultElemT = this->classifyVectorElementType(E->getType());
1365 
1366   // Evaluate LHS and save value to LHSOffset.
1367   unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
1368   if (!this->visit(LHS))
1369     return false;
1370   if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
1371     return false;
1372 
1373   // Evaluate RHS and save value to RHSOffset.
1374   unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
1375   if (!this->visit(RHS))
1376     return false;
1377   if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
1378     return false;
1379 
1380   if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
1381     return false;
1382 
1383   // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
1384   // integer promotion.
1385   bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
1386   QualType PromotTy =
1387       Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
1388   PrimType PromotT = classifyPrim(PromotTy);
1389   PrimType OpT = NeedIntPromot ? PromotT : ElemT;
1390 
1391   auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
1392     if (!this->emitGetLocal(PT_Ptr, Offset, E))
1393       return false;
1394     if (!this->emitArrayElemPop(ElemT, Index, E))
1395       return false;
1396     if (E->isLogicalOp()) {
1397       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
1398         return false;
1399       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1400         return false;
1401     } else if (NeedIntPromot) {
1402       if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
1403         return false;
1404     }
1405     return true;
1406   };
1407 
1408 #define EMIT_ARITH_OP(OP)                                                      \
1409   {                                                                            \
1410     if (ElemT == PT_Float) {                                                   \
1411       if (!this->emit##OP##f(getFPOptions(E), E))                              \
1412         return false;                                                          \
1413     } else {                                                                   \
1414       if (!this->emit##OP(ElemT, E))                                           \
1415         return false;                                                          \
1416     }                                                                          \
1417     break;                                                                     \
1418   }
1419 
1420   for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
1421     if (!getElem(LHSOffset, ElemT, I))
1422       return false;
1423     if (!getElem(RHSOffset, RHSElemT, I))
1424       return false;
1425     switch (Op) {
1426     case BO_Add:
1427       EMIT_ARITH_OP(Add)
1428     case BO_Sub:
1429       EMIT_ARITH_OP(Sub)
1430     case BO_Mul:
1431       EMIT_ARITH_OP(Mul)
1432     case BO_Div:
1433       EMIT_ARITH_OP(Div)
1434     case BO_Rem:
1435       if (!this->emitRem(ElemT, E))
1436         return false;
1437       break;
1438     case BO_And:
1439       if (!this->emitBitAnd(OpT, E))
1440         return false;
1441       break;
1442     case BO_Or:
1443       if (!this->emitBitOr(OpT, E))
1444         return false;
1445       break;
1446     case BO_Xor:
1447       if (!this->emitBitXor(OpT, E))
1448         return false;
1449       break;
1450     case BO_Shl:
1451       if (!this->emitShl(OpT, RHSElemT, E))
1452         return false;
1453       break;
1454     case BO_Shr:
1455       if (!this->emitShr(OpT, RHSElemT, E))
1456         return false;
1457       break;
1458     case BO_EQ:
1459       if (!this->emitEQ(ElemT, E))
1460         return false;
1461       break;
1462     case BO_NE:
1463       if (!this->emitNE(ElemT, E))
1464         return false;
1465       break;
1466     case BO_LE:
1467       if (!this->emitLE(ElemT, E))
1468         return false;
1469       break;
1470     case BO_LT:
1471       if (!this->emitLT(ElemT, E))
1472         return false;
1473       break;
1474     case BO_GE:
1475       if (!this->emitGE(ElemT, E))
1476         return false;
1477       break;
1478     case BO_GT:
1479       if (!this->emitGT(ElemT, E))
1480         return false;
1481       break;
1482     case BO_LAnd:
1483       // a && b is equivalent to a!=0 & b!=0
1484       if (!this->emitBitAnd(ResultElemT, E))
1485         return false;
1486       break;
1487     case BO_LOr:
1488       // a || b is equivalent to a!=0 | b!=0
1489       if (!this->emitBitOr(ResultElemT, E))
1490         return false;
1491       break;
1492     default:
1493       return this->emitInvalid(E);
1494     }
1495 
1496     // The result of the comparison is a vector of the same width and number
1497     // of elements as the comparison operands with a signed integral element
1498     // type.
1499     //
1500     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
1501     if (E->isComparisonOp()) {
1502       if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
1503         return false;
1504       if (!this->emitNeg(ResultElemT, E))
1505         return false;
1506     }
1507 
1508     // If we performed an integer promotion, we need to cast the compute result
1509     // into result vector element type.
1510     if (NeedIntPromot &&
1511         !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
1512       return false;
1513 
1514     // Initialize array element with the value we just computed.
1515     if (!this->emitInitElem(ResultElemT, I, E))
1516       return false;
1517   }
1518 
1519   if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
1520     return false;
1521   return true;
1522 }
1523 
1524 template <class Emitter>
1525 bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
1526   const Expr *LHS = E->getLHS();
1527   const Expr *RHS = E->getRHS();
1528   const ASTContext &ASTCtx = Ctx.getASTContext();
1529 
1530   assert(LHS->getType()->isFixedPointType() ||
1531          RHS->getType()->isFixedPointType());
1532 
1533   auto LHSSema = ASTCtx.getFixedPointSemantics(LHS->getType());
1534   auto LHSSemaInt = LHSSema.toOpaqueInt();
1535   auto RHSSema = ASTCtx.getFixedPointSemantics(RHS->getType());
1536   auto RHSSemaInt = RHSSema.toOpaqueInt();
1537 
1538   if (!this->visit(LHS))
1539     return false;
1540   if (!LHS->getType()->isFixedPointType()) {
1541     if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()),
1542                                           LHSSemaInt, E))
1543       return false;
1544   }
1545 
1546   if (!this->visit(RHS))
1547     return false;
1548   if (!RHS->getType()->isFixedPointType()) {
1549     if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()),
1550                                           RHSSemaInt, E))
1551       return false;
1552   }
1553 
1554   // Convert the result to the target semantics.
1555   auto ConvertResult = [&](bool R) -> bool {
1556     if (!R)
1557       return false;
1558     auto ResultSema = ASTCtx.getFixedPointSemantics(E->getType()).toOpaqueInt();
1559     auto CommonSema = LHSSema.getCommonSemantics(RHSSema).toOpaqueInt();
1560     if (ResultSema != CommonSema)
1561       return this->emitCastFixedPoint(ResultSema, E);
1562     return true;
1563   };
1564 
1565   auto MaybeCastToBool = [&](bool Result) {
1566     if (!Result)
1567       return false;
1568     PrimType T = classifyPrim(E);
1569     if (DiscardResult)
1570       return this->emitPop(T, E);
1571     if (T != PT_Bool)
1572       return this->emitCast(PT_Bool, T, E);
1573     return true;
1574   };
1575 
1576   switch (E->getOpcode()) {
1577   case BO_EQ:
1578     return MaybeCastToBool(this->emitEQFixedPoint(E));
1579   case BO_NE:
1580     return MaybeCastToBool(this->emitNEFixedPoint(E));
1581   case BO_LT:
1582     return MaybeCastToBool(this->emitLTFixedPoint(E));
1583   case BO_LE:
1584     return MaybeCastToBool(this->emitLEFixedPoint(E));
1585   case BO_GT:
1586     return MaybeCastToBool(this->emitGTFixedPoint(E));
1587   case BO_GE:
1588     return MaybeCastToBool(this->emitGEFixedPoint(E));
1589   case BO_Add:
1590     return ConvertResult(this->emitAddFixedPoint(E));
1591   case BO_Sub:
1592     return ConvertResult(this->emitSubFixedPoint(E));
1593   case BO_Mul:
1594     return ConvertResult(this->emitMulFixedPoint(E));
1595   case BO_Div:
1596     return ConvertResult(this->emitDivFixedPoint(E));
1597   case BO_Shl:
1598     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E));
1599   case BO_Shr:
1600     return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E));
1601 
1602   default:
1603     return this->emitInvalid(E);
1604   }
1605 
1606   llvm_unreachable("unhandled binop opcode");
1607 }
1608 
1609 template <class Emitter>
1610 bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) {
1611   const Expr *SubExpr = E->getSubExpr();
1612   assert(SubExpr->getType()->isFixedPointType());
1613 
1614   switch (E->getOpcode()) {
1615   case UO_Plus:
1616     return this->delegate(SubExpr);
1617   case UO_Minus:
1618     if (!this->visit(SubExpr))
1619       return false;
1620     return this->emitNegFixedPoint(E);
1621   default:
1622     return false;
1623   }
1624 
1625   llvm_unreachable("Unhandled unary opcode");
1626 }
1627 
1628 template <class Emitter>
1629 bool Compiler<Emitter>::VisitImplicitValueInitExpr(
1630     const ImplicitValueInitExpr *E) {
1631   QualType QT = E->getType();
1632 
1633   if (std::optional<PrimType> T = classify(QT))
1634     return this->visitZeroInitializer(*T, QT, E);
1635 
1636   if (QT->isRecordType()) {
1637     const RecordDecl *RD = QT->getAsRecordDecl();
1638     assert(RD);
1639     if (RD->isInvalidDecl())
1640       return false;
1641 
1642     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1643         CXXRD && CXXRD->getNumVBases() > 0) {
1644       // TODO: Diagnose.
1645       return false;
1646     }
1647 
1648     const Record *R = getRecord(QT);
1649     if (!R)
1650       return false;
1651 
1652     assert(Initializing);
1653     return this->visitZeroRecordInitializer(R, E);
1654   }
1655 
1656   if (QT->isIncompleteArrayType())
1657     return true;
1658 
1659   if (QT->isArrayType())
1660     return this->visitZeroArrayInitializer(QT, E);
1661 
1662   if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
1663     assert(Initializing);
1664     QualType ElemQT = ComplexTy->getElementType();
1665     PrimType ElemT = classifyPrim(ElemQT);
1666     for (unsigned I = 0; I < 2; ++I) {
1667       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1668         return false;
1669       if (!this->emitInitElem(ElemT, I, E))
1670         return false;
1671     }
1672     return true;
1673   }
1674 
1675   if (const auto *VecT = E->getType()->getAs<VectorType>()) {
1676     unsigned NumVecElements = VecT->getNumElements();
1677     QualType ElemQT = VecT->getElementType();
1678     PrimType ElemT = classifyPrim(ElemQT);
1679 
1680     for (unsigned I = 0; I < NumVecElements; ++I) {
1681       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1682         return false;
1683       if (!this->emitInitElem(ElemT, I, E))
1684         return false;
1685     }
1686     return true;
1687   }
1688 
1689   return false;
1690 }
1691 
1692 template <class Emitter>
1693 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1694   const Expr *LHS = E->getLHS();
1695   const Expr *RHS = E->getRHS();
1696   const Expr *Index = E->getIdx();
1697 
1698   if (DiscardResult)
1699     return this->discard(LHS) && this->discard(RHS);
1700 
1701   // C++17's rules require us to evaluate the LHS first, regardless of which
1702   // side is the base.
1703   bool Success = true;
1704   for (const Expr *SubExpr : {LHS, RHS}) {
1705     if (!this->visit(SubExpr))
1706       Success = false;
1707   }
1708 
1709   if (!Success)
1710     return false;
1711 
1712   PrimType IndexT = classifyPrim(Index->getType());
1713   // If the index is first, we need to change that.
1714   if (LHS == Index) {
1715     if (!this->emitFlip(PT_Ptr, IndexT, E))
1716       return false;
1717   }
1718 
1719   return this->emitArrayElemPtrPop(IndexT, E);
1720 }
1721 
1722 template <class Emitter>
1723 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
1724                                       const Expr *ArrayFiller, const Expr *E) {
1725   InitLinkScope<Emitter> ILS(this, InitLink::InitList());
1726 
1727   QualType QT = E->getType();
1728   if (const auto *AT = QT->getAs<AtomicType>())
1729     QT = AT->getValueType();
1730 
1731   if (QT->isVoidType()) {
1732     if (Inits.size() == 0)
1733       return true;
1734     return this->emitInvalid(E);
1735   }
1736 
1737   // Handle discarding first.
1738   if (DiscardResult) {
1739     for (const Expr *Init : Inits) {
1740       if (!this->discard(Init))
1741         return false;
1742     }
1743     return true;
1744   }
1745 
1746   // Primitive values.
1747   if (std::optional<PrimType> T = classify(QT)) {
1748     assert(!DiscardResult);
1749     if (Inits.size() == 0)
1750       return this->visitZeroInitializer(*T, QT, E);
1751     assert(Inits.size() == 1);
1752     return this->delegate(Inits[0]);
1753   }
1754 
1755   if (QT->isRecordType()) {
1756     const Record *R = getRecord(QT);
1757 
1758     if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
1759       return this->delegate(Inits[0]);
1760 
1761     auto initPrimitiveField = [=](const Record::Field *FieldToInit,
1762                                   const Expr *Init, PrimType T) -> bool {
1763       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1764       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1765       if (!this->visit(Init))
1766         return false;
1767 
1768       if (FieldToInit->isBitField())
1769         return this->emitInitBitField(T, FieldToInit, E);
1770       return this->emitInitField(T, FieldToInit->Offset, E);
1771     };
1772 
1773     auto initCompositeField = [=](const Record::Field *FieldToInit,
1774                                   const Expr *Init) -> bool {
1775       InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
1776       InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
1777 
1778       // Non-primitive case. Get a pointer to the field-to-initialize
1779       // on the stack and recurse into visitInitializer().
1780       if (!this->emitGetPtrField(FieldToInit->Offset, Init))
1781         return false;
1782       if (!this->visitInitializer(Init))
1783         return false;
1784       return this->emitPopPtr(E);
1785     };
1786 
1787     if (R->isUnion()) {
1788       if (Inits.size() == 0) {
1789         if (!this->visitZeroRecordInitializer(R, E))
1790           return false;
1791       } else {
1792         const Expr *Init = Inits[0];
1793         const FieldDecl *FToInit = nullptr;
1794         if (const auto *ILE = dyn_cast<InitListExpr>(E))
1795           FToInit = ILE->getInitializedFieldInUnion();
1796         else
1797           FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
1798 
1799         const Record::Field *FieldToInit = R->getField(FToInit);
1800         if (std::optional<PrimType> T = classify(Init)) {
1801           if (!initPrimitiveField(FieldToInit, Init, *T))
1802             return false;
1803         } else {
1804           if (!initCompositeField(FieldToInit, Init))
1805             return false;
1806         }
1807       }
1808       return this->emitFinishInit(E);
1809     }
1810 
1811     assert(!R->isUnion());
1812     unsigned InitIndex = 0;
1813     for (const Expr *Init : Inits) {
1814       // Skip unnamed bitfields.
1815       while (InitIndex < R->getNumFields() &&
1816              R->getField(InitIndex)->Decl->isUnnamedBitField())
1817         ++InitIndex;
1818 
1819       if (std::optional<PrimType> T = classify(Init)) {
1820         const Record::Field *FieldToInit = R->getField(InitIndex);
1821         if (!initPrimitiveField(FieldToInit, Init, *T))
1822           return false;
1823         ++InitIndex;
1824       } else {
1825         // Initializer for a direct base class.
1826         if (const Record::Base *B = R->getBase(Init->getType())) {
1827           if (!this->emitGetPtrBase(B->Offset, Init))
1828             return false;
1829 
1830           if (!this->visitInitializer(Init))
1831             return false;
1832 
1833           if (!this->emitFinishInitPop(E))
1834             return false;
1835           // Base initializers don't increase InitIndex, since they don't count
1836           // into the Record's fields.
1837         } else {
1838           const Record::Field *FieldToInit = R->getField(InitIndex);
1839           if (!initCompositeField(FieldToInit, Init))
1840             return false;
1841           ++InitIndex;
1842         }
1843       }
1844     }
1845     return this->emitFinishInit(E);
1846   }
1847 
1848   if (QT->isArrayType()) {
1849     if (Inits.size() == 1 && QT == Inits[0]->getType())
1850       return this->delegate(Inits[0]);
1851 
1852     unsigned ElementIndex = 0;
1853     for (const Expr *Init : Inits) {
1854       if (const auto *EmbedS =
1855               dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
1856         PrimType TargetT = classifyPrim(Init->getType());
1857 
1858         auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
1859           PrimType InitT = classifyPrim(Init->getType());
1860           if (!this->visit(Init))
1861             return false;
1862           if (InitT != TargetT) {
1863             if (!this->emitCast(InitT, TargetT, E))
1864               return false;
1865           }
1866           return this->emitInitElem(TargetT, ElemIndex, Init);
1867         };
1868         if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
1869           return false;
1870       } else {
1871         if (!this->visitArrayElemInit(ElementIndex, Init))
1872           return false;
1873         ++ElementIndex;
1874       }
1875     }
1876 
1877     // Expand the filler expression.
1878     // FIXME: This should go away.
1879     if (ArrayFiller) {
1880       const ConstantArrayType *CAT =
1881           Ctx.getASTContext().getAsConstantArrayType(QT);
1882       uint64_t NumElems = CAT->getZExtSize();
1883 
1884       for (; ElementIndex != NumElems; ++ElementIndex) {
1885         if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
1886           return false;
1887       }
1888     }
1889 
1890     return this->emitFinishInit(E);
1891   }
1892 
1893   if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
1894     unsigned NumInits = Inits.size();
1895 
1896     if (NumInits == 1)
1897       return this->delegate(Inits[0]);
1898 
1899     QualType ElemQT = ComplexTy->getElementType();
1900     PrimType ElemT = classifyPrim(ElemQT);
1901     if (NumInits == 0) {
1902       // Zero-initialize both elements.
1903       for (unsigned I = 0; I < 2; ++I) {
1904         if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1905           return false;
1906         if (!this->emitInitElem(ElemT, I, E))
1907           return false;
1908       }
1909     } else if (NumInits == 2) {
1910       unsigned InitIndex = 0;
1911       for (const Expr *Init : Inits) {
1912         if (!this->visit(Init))
1913           return false;
1914 
1915         if (!this->emitInitElem(ElemT, InitIndex, E))
1916           return false;
1917         ++InitIndex;
1918       }
1919     }
1920     return true;
1921   }
1922 
1923   if (const auto *VecT = QT->getAs<VectorType>()) {
1924     unsigned NumVecElements = VecT->getNumElements();
1925     assert(NumVecElements >= Inits.size());
1926 
1927     QualType ElemQT = VecT->getElementType();
1928     PrimType ElemT = classifyPrim(ElemQT);
1929 
1930     // All initializer elements.
1931     unsigned InitIndex = 0;
1932     for (const Expr *Init : Inits) {
1933       if (!this->visit(Init))
1934         return false;
1935 
1936       // If the initializer is of vector type itself, we have to deconstruct
1937       // that and initialize all the target fields from the initializer fields.
1938       if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
1939         if (!this->emitCopyArray(ElemT, 0, InitIndex,
1940                                  InitVecT->getNumElements(), E))
1941           return false;
1942         InitIndex += InitVecT->getNumElements();
1943       } else {
1944         if (!this->emitInitElem(ElemT, InitIndex, E))
1945           return false;
1946         ++InitIndex;
1947       }
1948     }
1949 
1950     assert(InitIndex <= NumVecElements);
1951 
1952     // Fill the rest with zeroes.
1953     for (; InitIndex != NumVecElements; ++InitIndex) {
1954       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
1955         return false;
1956       if (!this->emitInitElem(ElemT, InitIndex, E))
1957         return false;
1958     }
1959     return true;
1960   }
1961 
1962   return false;
1963 }
1964 
1965 /// Pointer to the array(not the element!) must be on the stack when calling
1966 /// this.
1967 template <class Emitter>
1968 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
1969                                            const Expr *Init) {
1970   if (std::optional<PrimType> T = classify(Init->getType())) {
1971     // Visit the primitive element like normal.
1972     if (!this->visit(Init))
1973       return false;
1974     return this->emitInitElem(*T, ElemIndex, Init);
1975   }
1976 
1977   InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
1978   // Advance the pointer currently on the stack to the given
1979   // dimension.
1980   if (!this->emitConstUint32(ElemIndex, Init))
1981     return false;
1982   if (!this->emitArrayElemPtrUint32(Init))
1983     return false;
1984   if (!this->visitInitializer(Init))
1985     return false;
1986   return this->emitFinishInitPop(Init);
1987 }
1988 
1989 template <class Emitter>
1990 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
1991   return this->visitInitList(E->inits(), E->getArrayFiller(), E);
1992 }
1993 
1994 template <class Emitter>
1995 bool Compiler<Emitter>::VisitCXXParenListInitExpr(
1996     const CXXParenListInitExpr *E) {
1997   return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
1998 }
1999 
2000 template <class Emitter>
2001 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
2002     const SubstNonTypeTemplateParmExpr *E) {
2003   return this->delegate(E->getReplacement());
2004 }
2005 
2006 template <class Emitter>
2007 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
2008   std::optional<PrimType> T = classify(E->getType());
2009   if (T && E->hasAPValueResult()) {
2010     // Try to emit the APValue directly, without visiting the subexpr.
2011     // This will only fail if we can't emit the APValue, so won't emit any
2012     // diagnostics or any double values.
2013     if (DiscardResult)
2014       return true;
2015 
2016     if (this->visitAPValue(E->getAPValueResult(), *T, E))
2017       return true;
2018   }
2019   return this->delegate(E->getSubExpr());
2020 }
2021 
2022 template <class Emitter>
2023 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
2024   auto It = E->begin();
2025   return this->visit(*It);
2026 }
2027 
2028 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
2029                              UnaryExprOrTypeTrait Kind) {
2030   bool AlignOfReturnsPreferred =
2031       ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
2032 
2033   // C++ [expr.alignof]p3:
2034   //     When alignof is applied to a reference type, the result is the
2035   //     alignment of the referenced type.
2036   if (const auto *Ref = T->getAs<ReferenceType>())
2037     T = Ref->getPointeeType();
2038 
2039   if (T.getQualifiers().hasUnaligned())
2040     return CharUnits::One();
2041 
2042   // __alignof is defined to return the preferred alignment.
2043   // Before 8, clang returned the preferred alignment for alignof and
2044   // _Alignof as well.
2045   if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
2046     return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
2047 
2048   return ASTCtx.getTypeAlignInChars(T);
2049 }
2050 
2051 template <class Emitter>
2052 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
2053     const UnaryExprOrTypeTraitExpr *E) {
2054   UnaryExprOrTypeTrait Kind = E->getKind();
2055   const ASTContext &ASTCtx = Ctx.getASTContext();
2056 
2057   if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
2058     QualType ArgType = E->getTypeOfArgument();
2059 
2060     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2061     //   the result is the size of the referenced type."
2062     if (const auto *Ref = ArgType->getAs<ReferenceType>())
2063       ArgType = Ref->getPointeeType();
2064 
2065     CharUnits Size;
2066     if (ArgType->isVoidType() || ArgType->isFunctionType())
2067       Size = CharUnits::One();
2068     else {
2069       if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
2070         return this->emitInvalid(E);
2071 
2072       if (Kind == UETT_SizeOf)
2073         Size = ASTCtx.getTypeSizeInChars(ArgType);
2074       else
2075         Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
2076     }
2077 
2078     if (DiscardResult)
2079       return true;
2080 
2081     return this->emitConst(Size.getQuantity(), E);
2082   }
2083 
2084   if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
2085     CharUnits Size;
2086 
2087     if (E->isArgumentType()) {
2088       QualType ArgType = E->getTypeOfArgument();
2089 
2090       Size = AlignOfType(ArgType, ASTCtx, Kind);
2091     } else {
2092       // Argument is an expression, not a type.
2093       const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
2094 
2095       // The kinds of expressions that we have special-case logic here for
2096       // should be kept up to date with the special checks for those
2097       // expressions in Sema.
2098 
2099       // alignof decl is always accepted, even if it doesn't make sense: we
2100       // default to 1 in those cases.
2101       if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
2102         Size = ASTCtx.getDeclAlign(DRE->getDecl(),
2103                                    /*RefAsPointee*/ true);
2104       else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
2105         Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
2106                                    /*RefAsPointee*/ true);
2107       else
2108         Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
2109     }
2110 
2111     if (DiscardResult)
2112       return true;
2113 
2114     return this->emitConst(Size.getQuantity(), E);
2115   }
2116 
2117   if (Kind == UETT_VectorElements) {
2118     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
2119       return this->emitConst(VT->getNumElements(), E);
2120     assert(E->getTypeOfArgument()->isSizelessVectorType());
2121     return this->emitSizelessVectorElementSize(E);
2122   }
2123 
2124   if (Kind == UETT_VecStep) {
2125     if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
2126       unsigned N = VT->getNumElements();
2127 
2128       // The vec_step built-in functions that take a 3-component
2129       // vector return 4. (OpenCL 1.1 spec 6.11.12)
2130       if (N == 3)
2131         N = 4;
2132 
2133       return this->emitConst(N, E);
2134     }
2135     return this->emitConst(1, E);
2136   }
2137 
2138   if (Kind == UETT_OpenMPRequiredSimdAlign) {
2139     assert(E->isArgumentType());
2140     unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType());
2141 
2142     return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E);
2143   }
2144 
2145   if (Kind == UETT_PtrAuthTypeDiscriminator) {
2146     if (E->getArgumentType()->isDependentType())
2147       return this->emitInvalid(E);
2148 
2149     return this->emitConst(
2150         const_cast<ASTContext &>(ASTCtx).getPointerAuthTypeDiscriminator(
2151             E->getArgumentType()),
2152         E);
2153   }
2154 
2155   return false;
2156 }
2157 
2158 template <class Emitter>
2159 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
2160   // 'Base.Member'
2161   const Expr *Base = E->getBase();
2162   const ValueDecl *Member = E->getMemberDecl();
2163 
2164   if (DiscardResult)
2165     return this->discard(Base);
2166 
2167   // MemberExprs are almost always lvalues, in which case we don't need to
2168   // do the load. But sometimes they aren't.
2169   const auto maybeLoadValue = [&]() -> bool {
2170     if (E->isGLValue())
2171       return true;
2172     if (std::optional<PrimType> T = classify(E))
2173       return this->emitLoadPop(*T, E);
2174     return false;
2175   };
2176 
2177   if (const auto *VD = dyn_cast<VarDecl>(Member)) {
2178     // I am almost confident in saying that a var decl must be static
2179     // and therefore registered as a global variable. But this will probably
2180     // turn out to be wrong some time in the future, as always.
2181     if (auto GlobalIndex = P.getGlobal(VD))
2182       return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
2183     return false;
2184   }
2185 
2186   if (!isa<FieldDecl>(Member)) {
2187     if (!this->discard(Base) && !this->emitSideEffect(E))
2188       return false;
2189 
2190     return this->visitDeclRef(Member, E);
2191   }
2192 
2193   if (Initializing) {
2194     if (!this->delegate(Base))
2195       return false;
2196   } else {
2197     if (!this->visit(Base))
2198       return false;
2199   }
2200 
2201   // Base above gives us a pointer on the stack.
2202   const auto *FD = cast<FieldDecl>(Member);
2203   const RecordDecl *RD = FD->getParent();
2204   const Record *R = getRecord(RD);
2205   if (!R)
2206     return false;
2207   const Record::Field *F = R->getField(FD);
2208   // Leave a pointer to the field on the stack.
2209   if (F->Decl->getType()->isReferenceType())
2210     return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
2211   return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
2212 }
2213 
2214 template <class Emitter>
2215 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
2216   // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
2217   // stand-alone, e.g. via EvaluateAsInt().
2218   if (!ArrayIndex)
2219     return false;
2220   return this->emitConst(*ArrayIndex, E);
2221 }
2222 
2223 template <class Emitter>
2224 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
2225   assert(Initializing);
2226   assert(!DiscardResult);
2227 
2228   // We visit the common opaque expression here once so we have its value
2229   // cached.
2230   if (!this->discard(E->getCommonExpr()))
2231     return false;
2232 
2233   // TODO: This compiles to quite a lot of bytecode if the array is larger.
2234   //   Investigate compiling this to a loop.
2235   const Expr *SubExpr = E->getSubExpr();
2236   size_t Size = E->getArraySize().getZExtValue();
2237 
2238   // So, every iteration, we execute an assignment here
2239   // where the LHS is on the stack (the target array)
2240   // and the RHS is our SubExpr.
2241   for (size_t I = 0; I != Size; ++I) {
2242     ArrayIndexScope<Emitter> IndexScope(this, I);
2243     BlockScope<Emitter> BS(this);
2244 
2245     if (!this->visitArrayElemInit(I, SubExpr))
2246       return false;
2247     if (!BS.destroyLocals())
2248       return false;
2249   }
2250   return true;
2251 }
2252 
2253 template <class Emitter>
2254 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
2255   const Expr *SourceExpr = E->getSourceExpr();
2256   if (!SourceExpr)
2257     return false;
2258 
2259   if (Initializing)
2260     return this->visitInitializer(SourceExpr);
2261 
2262   PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
2263   if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
2264     return this->emitGetLocal(SubExprT, It->second, E);
2265 
2266   if (!this->visit(SourceExpr))
2267     return false;
2268 
2269   // At this point we either have the evaluated source expression or a pointer
2270   // to an object on the stack. We want to create a local variable that stores
2271   // this value.
2272   unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
2273   if (!this->emitSetLocal(SubExprT, LocalIndex, E))
2274     return false;
2275 
2276   // Here the local variable is created but the value is removed from the stack,
2277   // so we put it back if the caller needs it.
2278   if (!DiscardResult) {
2279     if (!this->emitGetLocal(SubExprT, LocalIndex, E))
2280       return false;
2281   }
2282 
2283   // This is cleaned up when the local variable is destroyed.
2284   OpaqueExprs.insert({E, LocalIndex});
2285 
2286   return true;
2287 }
2288 
2289 template <class Emitter>
2290 bool Compiler<Emitter>::VisitAbstractConditionalOperator(
2291     const AbstractConditionalOperator *E) {
2292   const Expr *Condition = E->getCond();
2293   const Expr *TrueExpr = E->getTrueExpr();
2294   const Expr *FalseExpr = E->getFalseExpr();
2295 
2296   LabelTy LabelEnd = this->getLabel();   // Label after the operator.
2297   LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
2298 
2299   if (!this->visitBool(Condition))
2300     return false;
2301 
2302   if (!this->jumpFalse(LabelFalse))
2303     return false;
2304 
2305   {
2306     LocalScope<Emitter> S(this);
2307     if (!this->delegate(TrueExpr))
2308       return false;
2309     if (!S.destroyLocals())
2310       return false;
2311   }
2312 
2313   if (!this->jump(LabelEnd))
2314     return false;
2315 
2316   this->emitLabel(LabelFalse);
2317 
2318   {
2319     LocalScope<Emitter> S(this);
2320     if (!this->delegate(FalseExpr))
2321       return false;
2322     if (!S.destroyLocals())
2323       return false;
2324   }
2325 
2326   this->fallthrough(LabelEnd);
2327   this->emitLabel(LabelEnd);
2328 
2329   return true;
2330 }
2331 
2332 template <class Emitter>
2333 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
2334   if (DiscardResult)
2335     return true;
2336 
2337   if (!Initializing) {
2338     unsigned StringIndex = P.createGlobalString(E);
2339     return this->emitGetPtrGlobal(StringIndex, E);
2340   }
2341 
2342   // We are initializing an array on the stack.
2343   const ConstantArrayType *CAT =
2344       Ctx.getASTContext().getAsConstantArrayType(E->getType());
2345   assert(CAT && "a string literal that's not a constant array?");
2346 
2347   // If the initializer string is too long, a diagnostic has already been
2348   // emitted. Read only the array length from the string literal.
2349   unsigned ArraySize = CAT->getZExtSize();
2350   unsigned N = std::min(ArraySize, E->getLength());
2351   size_t CharWidth = E->getCharByteWidth();
2352 
2353   for (unsigned I = 0; I != N; ++I) {
2354     uint32_t CodeUnit = E->getCodeUnit(I);
2355 
2356     if (CharWidth == 1) {
2357       this->emitConstSint8(CodeUnit, E);
2358       this->emitInitElemSint8(I, E);
2359     } else if (CharWidth == 2) {
2360       this->emitConstUint16(CodeUnit, E);
2361       this->emitInitElemUint16(I, E);
2362     } else if (CharWidth == 4) {
2363       this->emitConstUint32(CodeUnit, E);
2364       this->emitInitElemUint32(I, E);
2365     } else {
2366       llvm_unreachable("unsupported character width");
2367     }
2368   }
2369 
2370   // Fill up the rest of the char array with NUL bytes.
2371   for (unsigned I = N; I != ArraySize; ++I) {
2372     if (CharWidth == 1) {
2373       this->emitConstSint8(0, E);
2374       this->emitInitElemSint8(I, E);
2375     } else if (CharWidth == 2) {
2376       this->emitConstUint16(0, E);
2377       this->emitInitElemUint16(I, E);
2378     } else if (CharWidth == 4) {
2379       this->emitConstUint32(0, E);
2380       this->emitInitElemUint32(I, E);
2381     } else {
2382       llvm_unreachable("unsupported character width");
2383     }
2384   }
2385 
2386   return true;
2387 }
2388 
2389 template <class Emitter>
2390 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2391   if (DiscardResult)
2392     return true;
2393   return this->emitDummyPtr(E, E);
2394 }
2395 
2396 template <class Emitter>
2397 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2398   auto &A = Ctx.getASTContext();
2399   std::string Str;
2400   A.getObjCEncodingForType(E->getEncodedType(), Str);
2401   StringLiteral *SL =
2402       StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
2403                             /*Pascal=*/false, E->getType(), E->getAtLoc());
2404   return this->delegate(SL);
2405 }
2406 
2407 template <class Emitter>
2408 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
2409     const SYCLUniqueStableNameExpr *E) {
2410   if (DiscardResult)
2411     return true;
2412 
2413   assert(!Initializing);
2414 
2415   auto &A = Ctx.getASTContext();
2416   std::string ResultStr = E->ComputeName(A);
2417 
2418   QualType CharTy = A.CharTy.withConst();
2419   APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
2420   QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
2421                                             ArraySizeModifier::Normal, 0);
2422 
2423   StringLiteral *SL =
2424       StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
2425                             /*Pascal=*/false, ArrayTy, E->getLocation());
2426 
2427   unsigned StringIndex = P.createGlobalString(SL);
2428   return this->emitGetPtrGlobal(StringIndex, E);
2429 }
2430 
2431 template <class Emitter>
2432 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
2433   if (DiscardResult)
2434     return true;
2435   return this->emitConst(E->getValue(), E);
2436 }
2437 
2438 template <class Emitter>
2439 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
2440     const CompoundAssignOperator *E) {
2441 
2442   const Expr *LHS = E->getLHS();
2443   const Expr *RHS = E->getRHS();
2444   QualType LHSType = LHS->getType();
2445   QualType LHSComputationType = E->getComputationLHSType();
2446   QualType ResultType = E->getComputationResultType();
2447   std::optional<PrimType> LT = classify(LHSComputationType);
2448   std::optional<PrimType> RT = classify(ResultType);
2449 
2450   assert(ResultType->isFloatingType());
2451 
2452   if (!LT || !RT)
2453     return false;
2454 
2455   PrimType LHST = classifyPrim(LHSType);
2456 
2457   // C++17 onwards require that we evaluate the RHS first.
2458   // Compute RHS and save it in a temporary variable so we can
2459   // load it again later.
2460   if (!visit(RHS))
2461     return false;
2462 
2463   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2464   if (!this->emitSetLocal(*RT, TempOffset, E))
2465     return false;
2466 
2467   // First, visit LHS.
2468   if (!visit(LHS))
2469     return false;
2470   if (!this->emitLoad(LHST, E))
2471     return false;
2472 
2473   // If necessary, convert LHS to its computation type.
2474   if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
2475                           LHSComputationType, E))
2476     return false;
2477 
2478   // Now load RHS.
2479   if (!this->emitGetLocal(*RT, TempOffset, E))
2480     return false;
2481 
2482   switch (E->getOpcode()) {
2483   case BO_AddAssign:
2484     if (!this->emitAddf(getFPOptions(E), E))
2485       return false;
2486     break;
2487   case BO_SubAssign:
2488     if (!this->emitSubf(getFPOptions(E), E))
2489       return false;
2490     break;
2491   case BO_MulAssign:
2492     if (!this->emitMulf(getFPOptions(E), E))
2493       return false;
2494     break;
2495   case BO_DivAssign:
2496     if (!this->emitDivf(getFPOptions(E), E))
2497       return false;
2498     break;
2499   default:
2500     return false;
2501   }
2502 
2503   if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
2504     return false;
2505 
2506   if (DiscardResult)
2507     return this->emitStorePop(LHST, E);
2508   return this->emitStore(LHST, E);
2509 }
2510 
2511 template <class Emitter>
2512 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
2513     const CompoundAssignOperator *E) {
2514   BinaryOperatorKind Op = E->getOpcode();
2515   const Expr *LHS = E->getLHS();
2516   const Expr *RHS = E->getRHS();
2517   std::optional<PrimType> LT = classify(LHS->getType());
2518   std::optional<PrimType> RT = classify(RHS->getType());
2519 
2520   if (Op != BO_AddAssign && Op != BO_SubAssign)
2521     return false;
2522 
2523   if (!LT || !RT)
2524     return false;
2525 
2526   if (!visit(LHS))
2527     return false;
2528 
2529   if (!this->emitLoad(*LT, LHS))
2530     return false;
2531 
2532   if (!visit(RHS))
2533     return false;
2534 
2535   if (Op == BO_AddAssign) {
2536     if (!this->emitAddOffset(*RT, E))
2537       return false;
2538   } else {
2539     if (!this->emitSubOffset(*RT, E))
2540       return false;
2541   }
2542 
2543   if (DiscardResult)
2544     return this->emitStorePopPtr(E);
2545   return this->emitStorePtr(E);
2546 }
2547 
2548 template <class Emitter>
2549 bool Compiler<Emitter>::VisitCompoundAssignOperator(
2550     const CompoundAssignOperator *E) {
2551   if (E->getType()->isVectorType())
2552     return VisitVectorBinOp(E);
2553 
2554   const Expr *LHS = E->getLHS();
2555   const Expr *RHS = E->getRHS();
2556   std::optional<PrimType> LHSComputationT =
2557       classify(E->getComputationLHSType());
2558   std::optional<PrimType> LT = classify(LHS->getType());
2559   std::optional<PrimType> RT = classify(RHS->getType());
2560   std::optional<PrimType> ResultT = classify(E->getType());
2561 
2562   if (!Ctx.getLangOpts().CPlusPlus14)
2563     return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
2564 
2565   if (!LT || !RT || !ResultT || !LHSComputationT)
2566     return false;
2567 
2568   // Handle floating point operations separately here, since they
2569   // require special care.
2570 
2571   if (ResultT == PT_Float || RT == PT_Float)
2572     return VisitFloatCompoundAssignOperator(E);
2573 
2574   if (E->getType()->isPointerType())
2575     return VisitPointerCompoundAssignOperator(E);
2576 
2577   assert(!E->getType()->isPointerType() && "Handled above");
2578   assert(!E->getType()->isFloatingType() && "Handled above");
2579 
2580   // C++17 onwards require that we evaluate the RHS first.
2581   // Compute RHS and save it in a temporary variable so we can
2582   // load it again later.
2583   // FIXME: Compound assignments are unsequenced in C, so we might
2584   //   have to figure out how to reject them.
2585   if (!visit(RHS))
2586     return false;
2587 
2588   unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
2589 
2590   if (!this->emitSetLocal(*RT, TempOffset, E))
2591     return false;
2592 
2593   // Get LHS pointer, load its value and cast it to the
2594   // computation type if necessary.
2595   if (!visit(LHS))
2596     return false;
2597   if (!this->emitLoad(*LT, E))
2598     return false;
2599   if (LT != LHSComputationT) {
2600     if (!this->emitCast(*LT, *LHSComputationT, E))
2601       return false;
2602   }
2603 
2604   // Get the RHS value on the stack.
2605   if (!this->emitGetLocal(*RT, TempOffset, E))
2606     return false;
2607 
2608   // Perform operation.
2609   switch (E->getOpcode()) {
2610   case BO_AddAssign:
2611     if (!this->emitAdd(*LHSComputationT, E))
2612       return false;
2613     break;
2614   case BO_SubAssign:
2615     if (!this->emitSub(*LHSComputationT, E))
2616       return false;
2617     break;
2618   case BO_MulAssign:
2619     if (!this->emitMul(*LHSComputationT, E))
2620       return false;
2621     break;
2622   case BO_DivAssign:
2623     if (!this->emitDiv(*LHSComputationT, E))
2624       return false;
2625     break;
2626   case BO_RemAssign:
2627     if (!this->emitRem(*LHSComputationT, E))
2628       return false;
2629     break;
2630   case BO_ShlAssign:
2631     if (!this->emitShl(*LHSComputationT, *RT, E))
2632       return false;
2633     break;
2634   case BO_ShrAssign:
2635     if (!this->emitShr(*LHSComputationT, *RT, E))
2636       return false;
2637     break;
2638   case BO_AndAssign:
2639     if (!this->emitBitAnd(*LHSComputationT, E))
2640       return false;
2641     break;
2642   case BO_XorAssign:
2643     if (!this->emitBitXor(*LHSComputationT, E))
2644       return false;
2645     break;
2646   case BO_OrAssign:
2647     if (!this->emitBitOr(*LHSComputationT, E))
2648       return false;
2649     break;
2650   default:
2651     llvm_unreachable("Unimplemented compound assign operator");
2652   }
2653 
2654   // And now cast from LHSComputationT to ResultT.
2655   if (ResultT != LHSComputationT) {
2656     if (!this->emitCast(*LHSComputationT, *ResultT, E))
2657       return false;
2658   }
2659 
2660   // And store the result in LHS.
2661   if (DiscardResult) {
2662     if (LHS->refersToBitField())
2663       return this->emitStoreBitFieldPop(*ResultT, E);
2664     return this->emitStorePop(*ResultT, E);
2665   }
2666   if (LHS->refersToBitField())
2667     return this->emitStoreBitField(*ResultT, E);
2668   return this->emitStore(*ResultT, E);
2669 }
2670 
2671 template <class Emitter>
2672 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
2673   LocalScope<Emitter> ES(this);
2674   const Expr *SubExpr = E->getSubExpr();
2675 
2676   return this->delegate(SubExpr) && ES.destroyLocals(E);
2677 }
2678 
2679 template <class Emitter>
2680 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
2681     const MaterializeTemporaryExpr *E) {
2682   const Expr *SubExpr = E->getSubExpr();
2683 
2684   if (Initializing) {
2685     // We already have a value, just initialize that.
2686     return this->delegate(SubExpr);
2687   }
2688   // If we don't end up using the materialized temporary anyway, don't
2689   // bother creating it.
2690   if (DiscardResult)
2691     return this->discard(SubExpr);
2692 
2693   // When we're initializing a global variable *or* the storage duration of
2694   // the temporary is explicitly static, create a global variable.
2695   std::optional<PrimType> SubExprT = classify(SubExpr);
2696   bool IsStatic = E->getStorageDuration() == SD_Static;
2697   if (IsStatic) {
2698     std::optional<unsigned> GlobalIndex = P.createGlobal(E);
2699     if (!GlobalIndex)
2700       return false;
2701 
2702     const LifetimeExtendedTemporaryDecl *TempDecl =
2703         E->getLifetimeExtendedTemporaryDecl();
2704     if (IsStatic)
2705       assert(TempDecl);
2706 
2707     if (SubExprT) {
2708       if (!this->visit(SubExpr))
2709         return false;
2710       if (IsStatic) {
2711         if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
2712           return false;
2713       } else {
2714         if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
2715           return false;
2716       }
2717       return this->emitGetPtrGlobal(*GlobalIndex, E);
2718     }
2719 
2720     if (!this->checkLiteralType(SubExpr))
2721       return false;
2722     // Non-primitive values.
2723     if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2724       return false;
2725     if (!this->visitInitializer(SubExpr))
2726       return false;
2727     if (IsStatic)
2728       return this->emitInitGlobalTempComp(TempDecl, E);
2729     return true;
2730   }
2731 
2732   // For everyhing else, use local variables.
2733   if (SubExprT) {
2734     unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
2735                                                  /*IsExtended=*/true);
2736     if (!this->visit(SubExpr))
2737       return false;
2738     if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
2739       return false;
2740     return this->emitGetPtrLocal(LocalIndex, E);
2741   } else {
2742 
2743     if (!this->checkLiteralType(SubExpr))
2744       return false;
2745 
2746     const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
2747     if (std::optional<unsigned> LocalIndex =
2748             allocateLocal(E, Inner->getType(), E->getExtendingDecl())) {
2749       InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
2750       if (!this->emitGetPtrLocal(*LocalIndex, E))
2751         return false;
2752       return this->visitInitializer(SubExpr) && this->emitFinishInit(E);
2753     }
2754   }
2755   return false;
2756 }
2757 
2758 template <class Emitter>
2759 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
2760     const CXXBindTemporaryExpr *E) {
2761   return this->delegate(E->getSubExpr());
2762 }
2763 
2764 template <class Emitter>
2765 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
2766   const Expr *Init = E->getInitializer();
2767   if (DiscardResult)
2768     return this->discard(Init);
2769 
2770   if (Initializing) {
2771     // We already have a value, just initialize that.
2772     return this->visitInitializer(Init) && this->emitFinishInit(E);
2773   }
2774 
2775   std::optional<PrimType> T = classify(E->getType());
2776   if (E->isFileScope()) {
2777     // Avoid creating a variable if this is a primitive RValue anyway.
2778     if (T && !E->isLValue())
2779       return this->delegate(Init);
2780 
2781     if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
2782       if (!this->emitGetPtrGlobal(*GlobalIndex, E))
2783         return false;
2784 
2785       if (T) {
2786         if (!this->visit(Init))
2787           return false;
2788         return this->emitInitGlobal(*T, *GlobalIndex, E);
2789       }
2790 
2791       return this->visitInitializer(Init) && this->emitFinishInit(E);
2792     }
2793 
2794     return false;
2795   }
2796 
2797   // Otherwise, use a local variable.
2798   if (T && !E->isLValue()) {
2799     // For primitive types, we just visit the initializer.
2800     return this->delegate(Init);
2801   } else {
2802     unsigned LocalIndex;
2803 
2804     if (T)
2805       LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
2806     else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
2807       LocalIndex = *MaybeIndex;
2808     else
2809       return false;
2810 
2811     if (!this->emitGetPtrLocal(LocalIndex, E))
2812       return false;
2813 
2814     if (T) {
2815       if (!this->visit(Init)) {
2816         return false;
2817       }
2818       return this->emitInit(*T, E);
2819     } else {
2820       if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
2821         return false;
2822     }
2823     return true;
2824   }
2825 
2826   return false;
2827 }
2828 
2829 template <class Emitter>
2830 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
2831   if (DiscardResult)
2832     return true;
2833   if (E->getType()->isBooleanType())
2834     return this->emitConstBool(E->getValue(), E);
2835   return this->emitConst(E->getValue(), E);
2836 }
2837 
2838 template <class Emitter>
2839 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
2840   if (DiscardResult)
2841     return true;
2842   return this->emitConst(E->getValue(), E);
2843 }
2844 
2845 template <class Emitter>
2846 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
2847   if (DiscardResult)
2848     return true;
2849 
2850   assert(Initializing);
2851   const Record *R = P.getOrCreateRecord(E->getLambdaClass());
2852 
2853   auto *CaptureInitIt = E->capture_init_begin();
2854   // Initialize all fields (which represent lambda captures) of the
2855   // record with their initializers.
2856   for (const Record::Field &F : R->fields()) {
2857     const Expr *Init = *CaptureInitIt;
2858     ++CaptureInitIt;
2859 
2860     if (!Init)
2861       continue;
2862 
2863     if (std::optional<PrimType> T = classify(Init)) {
2864       if (!this->visit(Init))
2865         return false;
2866 
2867       if (!this->emitInitField(*T, F.Offset, E))
2868         return false;
2869     } else {
2870       if (!this->emitGetPtrField(F.Offset, E))
2871         return false;
2872 
2873       if (!this->visitInitializer(Init))
2874         return false;
2875 
2876       if (!this->emitPopPtr(E))
2877         return false;
2878     }
2879   }
2880 
2881   return true;
2882 }
2883 
2884 template <class Emitter>
2885 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
2886   if (DiscardResult)
2887     return true;
2888 
2889   if (!Initializing) {
2890     unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E);
2891     return this->emitGetPtrGlobal(StringIndex, E);
2892   }
2893 
2894   return this->delegate(E->getFunctionName());
2895 }
2896 
2897 template <class Emitter>
2898 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
2899   if (E->getSubExpr() && !this->discard(E->getSubExpr()))
2900     return false;
2901 
2902   return this->emitInvalid(E);
2903 }
2904 
2905 template <class Emitter>
2906 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
2907     const CXXReinterpretCastExpr *E) {
2908   const Expr *SubExpr = E->getSubExpr();
2909 
2910   std::optional<PrimType> FromT = classify(SubExpr);
2911   std::optional<PrimType> ToT = classify(E);
2912 
2913   if (!FromT || !ToT)
2914     return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
2915 
2916   if (FromT == PT_Ptr || ToT == PT_Ptr) {
2917     // Both types could be PT_Ptr because their expressions are glvalues.
2918     std::optional<PrimType> PointeeFromT;
2919     if (SubExpr->getType()->isPointerOrReferenceType())
2920       PointeeFromT = classify(SubExpr->getType()->getPointeeType());
2921     else
2922       PointeeFromT = classify(SubExpr->getType());
2923 
2924     std::optional<PrimType> PointeeToT;
2925     if (E->getType()->isPointerOrReferenceType())
2926       PointeeToT = classify(E->getType()->getPointeeType());
2927     else
2928       PointeeToT = classify(E->getType());
2929 
2930     bool Fatal = true;
2931     if (PointeeToT && PointeeFromT) {
2932       if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
2933         Fatal = false;
2934     }
2935 
2936     if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2937       return false;
2938 
2939     if (E->getCastKind() == CK_LValueBitCast)
2940       return this->delegate(SubExpr);
2941     return this->VisitCastExpr(E);
2942   }
2943 
2944   // Try to actually do the cast.
2945   bool Fatal = (ToT != FromT);
2946   if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
2947     return false;
2948 
2949   return this->VisitCastExpr(E);
2950 }
2951 
2952 template <class Emitter>
2953 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
2954   assert(E->getType()->isBooleanType());
2955 
2956   if (DiscardResult)
2957     return true;
2958   return this->emitConstBool(E->getValue(), E);
2959 }
2960 
2961 template <class Emitter>
2962 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
2963   QualType T = E->getType();
2964   assert(!classify(T));
2965 
2966   if (T->isRecordType()) {
2967     const CXXConstructorDecl *Ctor = E->getConstructor();
2968 
2969     // Trivial copy/move constructor. Avoid copy.
2970     if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
2971         Ctor->isTrivial() &&
2972         E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
2973                                         T->getAsCXXRecordDecl()))
2974       return this->visitInitializer(E->getArg(0));
2975 
2976     // If we're discarding a construct expression, we still need
2977     // to allocate a variable and call the constructor and destructor.
2978     if (DiscardResult) {
2979       if (Ctor->isTrivial())
2980         return true;
2981       assert(!Initializing);
2982       std::optional<unsigned> LocalIndex = allocateLocal(E);
2983 
2984       if (!LocalIndex)
2985         return false;
2986 
2987       if (!this->emitGetPtrLocal(*LocalIndex, E))
2988         return false;
2989     }
2990 
2991     // Zero initialization.
2992     if (E->requiresZeroInitialization()) {
2993       const Record *R = getRecord(E->getType());
2994 
2995       if (!this->visitZeroRecordInitializer(R, E))
2996         return false;
2997 
2998       // If the constructor is trivial anyway, we're done.
2999       if (Ctor->isTrivial())
3000         return true;
3001     }
3002 
3003     const Function *Func = getFunction(Ctor);
3004 
3005     if (!Func)
3006       return false;
3007 
3008     assert(Func->hasThisPointer());
3009     assert(!Func->hasRVO());
3010 
3011     //  The This pointer is already on the stack because this is an initializer,
3012     //  but we need to dup() so the call() below has its own copy.
3013     if (!this->emitDupPtr(E))
3014       return false;
3015 
3016     // Constructor arguments.
3017     for (const auto *Arg : E->arguments()) {
3018       if (!this->visit(Arg))
3019         return false;
3020     }
3021 
3022     if (Func->isVariadic()) {
3023       uint32_t VarArgSize = 0;
3024       unsigned NumParams = Func->getNumWrittenParams();
3025       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
3026         VarArgSize +=
3027             align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
3028       }
3029       if (!this->emitCallVar(Func, VarArgSize, E))
3030         return false;
3031     } else {
3032       if (!this->emitCall(Func, 0, E)) {
3033         // When discarding, we don't need the result anyway, so clean up
3034         // the instance dup we did earlier in case surrounding code wants
3035         // to keep evaluating.
3036         if (DiscardResult)
3037           (void)this->emitPopPtr(E);
3038         return false;
3039       }
3040     }
3041 
3042     if (DiscardResult)
3043       return this->emitPopPtr(E);
3044     return this->emitFinishInit(E);
3045   }
3046 
3047   if (T->isArrayType()) {
3048     const ConstantArrayType *CAT =
3049         Ctx.getASTContext().getAsConstantArrayType(E->getType());
3050     if (!CAT)
3051       return false;
3052 
3053     size_t NumElems = CAT->getZExtSize();
3054     const Function *Func = getFunction(E->getConstructor());
3055     if (!Func || !Func->isConstexpr())
3056       return false;
3057 
3058     // FIXME(perf): We're calling the constructor once per array element here,
3059     //   in the old intepreter we had a special-case for trivial constructors.
3060     for (size_t I = 0; I != NumElems; ++I) {
3061       if (!this->emitConstUint64(I, E))
3062         return false;
3063       if (!this->emitArrayElemPtrUint64(E))
3064         return false;
3065 
3066       // Constructor arguments.
3067       for (const auto *Arg : E->arguments()) {
3068         if (!this->visit(Arg))
3069           return false;
3070       }
3071 
3072       if (!this->emitCall(Func, 0, E))
3073         return false;
3074     }
3075     return true;
3076   }
3077 
3078   return false;
3079 }
3080 
3081 template <class Emitter>
3082 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
3083   if (DiscardResult)
3084     return true;
3085 
3086   const APValue Val =
3087       E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
3088 
3089   // Things like __builtin_LINE().
3090   if (E->getType()->isIntegerType()) {
3091     assert(Val.isInt());
3092     const APSInt &I = Val.getInt();
3093     return this->emitConst(I, E);
3094   }
3095   // Otherwise, the APValue is an LValue, with only one element.
3096   // Theoretically, we don't need the APValue at all of course.
3097   assert(E->getType()->isPointerType());
3098   assert(Val.isLValue());
3099   const APValue::LValueBase &Base = Val.getLValueBase();
3100   if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
3101     return this->visit(LValueExpr);
3102 
3103   // Otherwise, we have a decl (which is the case for
3104   // __builtin_source_location).
3105   assert(Base.is<const ValueDecl *>());
3106   assert(Val.getLValuePath().size() == 0);
3107   const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
3108   assert(BaseDecl);
3109 
3110   auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
3111 
3112   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
3113   if (!GlobalIndex)
3114     return false;
3115 
3116   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3117     return false;
3118 
3119   const Record *R = getRecord(E->getType());
3120   const APValue &V = UGCD->getValue();
3121   for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
3122     const Record::Field *F = R->getField(I);
3123     const APValue &FieldValue = V.getStructField(I);
3124 
3125     PrimType FieldT = classifyPrim(F->Decl->getType());
3126 
3127     if (!this->visitAPValue(FieldValue, FieldT, E))
3128       return false;
3129     if (!this->emitInitField(FieldT, F->Offset, E))
3130       return false;
3131   }
3132 
3133   // Leave the pointer to the global on the stack.
3134   return true;
3135 }
3136 
3137 template <class Emitter>
3138 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
3139   unsigned N = E->getNumComponents();
3140   if (N == 0)
3141     return false;
3142 
3143   for (unsigned I = 0; I != N; ++I) {
3144     const OffsetOfNode &Node = E->getComponent(I);
3145     if (Node.getKind() == OffsetOfNode::Array) {
3146       const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
3147       PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
3148 
3149       if (DiscardResult) {
3150         if (!this->discard(ArrayIndexExpr))
3151           return false;
3152         continue;
3153       }
3154 
3155       if (!this->visit(ArrayIndexExpr))
3156         return false;
3157       // Cast to Sint64.
3158       if (IndexT != PT_Sint64) {
3159         if (!this->emitCast(IndexT, PT_Sint64, E))
3160           return false;
3161       }
3162     }
3163   }
3164 
3165   if (DiscardResult)
3166     return true;
3167 
3168   PrimType T = classifyPrim(E->getType());
3169   return this->emitOffsetOf(T, E, E);
3170 }
3171 
3172 template <class Emitter>
3173 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
3174     const CXXScalarValueInitExpr *E) {
3175   QualType Ty = E->getType();
3176 
3177   if (DiscardResult || Ty->isVoidType())
3178     return true;
3179 
3180   if (std::optional<PrimType> T = classify(Ty))
3181     return this->visitZeroInitializer(*T, Ty, E);
3182 
3183   if (const auto *CT = Ty->getAs<ComplexType>()) {
3184     if (!Initializing) {
3185       std::optional<unsigned> LocalIndex = allocateLocal(E);
3186       if (!LocalIndex)
3187         return false;
3188       if (!this->emitGetPtrLocal(*LocalIndex, E))
3189         return false;
3190     }
3191 
3192     // Initialize both fields to 0.
3193     QualType ElemQT = CT->getElementType();
3194     PrimType ElemT = classifyPrim(ElemQT);
3195 
3196     for (unsigned I = 0; I != 2; ++I) {
3197       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3198         return false;
3199       if (!this->emitInitElem(ElemT, I, E))
3200         return false;
3201     }
3202     return true;
3203   }
3204 
3205   if (const auto *VT = Ty->getAs<VectorType>()) {
3206     // FIXME: Code duplication with the _Complex case above.
3207     if (!Initializing) {
3208       std::optional<unsigned> LocalIndex = allocateLocal(E);
3209       if (!LocalIndex)
3210         return false;
3211       if (!this->emitGetPtrLocal(*LocalIndex, E))
3212         return false;
3213     }
3214 
3215     // Initialize all fields to 0.
3216     QualType ElemQT = VT->getElementType();
3217     PrimType ElemT = classifyPrim(ElemQT);
3218 
3219     for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
3220       if (!this->visitZeroInitializer(ElemT, ElemQT, E))
3221         return false;
3222       if (!this->emitInitElem(ElemT, I, E))
3223         return false;
3224     }
3225     return true;
3226   }
3227 
3228   return false;
3229 }
3230 
3231 template <class Emitter>
3232 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
3233   return this->emitConst(E->getPackLength(), E);
3234 }
3235 
3236 template <class Emitter>
3237 bool Compiler<Emitter>::VisitGenericSelectionExpr(
3238     const GenericSelectionExpr *E) {
3239   return this->delegate(E->getResultExpr());
3240 }
3241 
3242 template <class Emitter>
3243 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
3244   return this->delegate(E->getChosenSubExpr());
3245 }
3246 
3247 template <class Emitter>
3248 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
3249   if (DiscardResult)
3250     return true;
3251 
3252   return this->emitConst(E->getValue(), E);
3253 }
3254 
3255 template <class Emitter>
3256 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
3257     const CXXInheritedCtorInitExpr *E) {
3258   const CXXConstructorDecl *Ctor = E->getConstructor();
3259   assert(!Ctor->isTrivial() &&
3260          "Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
3261   const Function *F = this->getFunction(Ctor);
3262   assert(F);
3263   assert(!F->hasRVO());
3264   assert(F->hasThisPointer());
3265 
3266   if (!this->emitDupPtr(SourceInfo{}))
3267     return false;
3268 
3269   // Forward all arguments of the current function (which should be a
3270   // constructor itself) to the inherited ctor.
3271   // This is necessary because the calling code has pushed the pointer
3272   // of the correct base for  us already, but the arguments need
3273   // to come after.
3274   unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
3275   for (const ParmVarDecl *PD : Ctor->parameters()) {
3276     PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
3277 
3278     if (!this->emitGetParam(PT, Offset, E))
3279       return false;
3280     Offset += align(primSize(PT));
3281   }
3282 
3283   return this->emitCall(F, 0, E);
3284 }
3285 
3286 template <class Emitter>
3287 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
3288   assert(classifyPrim(E->getType()) == PT_Ptr);
3289   const Expr *Init = E->getInitializer();
3290   QualType ElementType = E->getAllocatedType();
3291   std::optional<PrimType> ElemT = classify(ElementType);
3292   unsigned PlacementArgs = E->getNumPlacementArgs();
3293   const FunctionDecl *OperatorNew = E->getOperatorNew();
3294   const Expr *PlacementDest = nullptr;
3295   bool IsNoThrow = false;
3296 
3297   if (PlacementArgs != 0) {
3298     // FIXME: There is no restriction on this, but it's not clear that any
3299     // other form makes any sense. We get here for cases such as:
3300     //
3301     //   new (std::align_val_t{N}) X(int)
3302     //
3303     // (which should presumably be valid only if N is a multiple of
3304     // alignof(int), and in any case can't be deallocated unless N is
3305     // alignof(X) and X has new-extended alignment).
3306     if (PlacementArgs == 1) {
3307       const Expr *Arg1 = E->getPlacementArg(0);
3308       if (Arg1->getType()->isNothrowT()) {
3309         if (!this->discard(Arg1))
3310           return false;
3311         IsNoThrow = true;
3312       } else {
3313         // Invalid unless we have C++26 or are in a std:: function.
3314         if (!this->emitInvalidNewDeleteExpr(E, E))
3315           return false;
3316 
3317         // If we have a placement-new destination, we'll later use that instead
3318         // of allocating.
3319         if (OperatorNew->isReservedGlobalPlacementOperator())
3320           PlacementDest = Arg1;
3321       }
3322     } else {
3323       // Always invalid.
3324       return this->emitInvalid(E);
3325     }
3326   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
3327     return this->emitInvalidNewDeleteExpr(E, E);
3328 
3329   const Descriptor *Desc;
3330   if (!PlacementDest) {
3331     if (ElemT) {
3332       if (E->isArray())
3333         Desc = nullptr; // We're not going to use it in this case.
3334       else
3335         Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
3336                                   /*IsConst=*/false, /*IsTemporary=*/false,
3337                                   /*IsMutable=*/false);
3338     } else {
3339       Desc = P.createDescriptor(
3340           E, ElementType.getTypePtr(),
3341           E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
3342           /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
3343     }
3344   }
3345 
3346   if (E->isArray()) {
3347     std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
3348     if (!ArraySizeExpr)
3349       return false;
3350 
3351     const Expr *Stripped = *ArraySizeExpr;
3352     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
3353          Stripped = ICE->getSubExpr())
3354       if (ICE->getCastKind() != CK_NoOp &&
3355           ICE->getCastKind() != CK_IntegralCast)
3356         break;
3357 
3358     PrimType SizeT = classifyPrim(Stripped->getType());
3359 
3360     if (PlacementDest) {
3361       if (!this->visit(PlacementDest))
3362         return false;
3363       if (!this->visit(Stripped))
3364         return false;
3365       if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
3366         return false;
3367     } else {
3368       if (!this->visit(Stripped))
3369         return false;
3370 
3371       if (ElemT) {
3372         // N primitive elements.
3373         if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
3374           return false;
3375       } else {
3376         // N Composite elements.
3377         if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
3378           return false;
3379       }
3380     }
3381 
3382     if (Init && !this->visitInitializer(Init))
3383       return false;
3384 
3385   } else {
3386     if (PlacementDest) {
3387       if (!this->visit(PlacementDest))
3388         return false;
3389       if (!this->emitCheckNewTypeMismatch(E, E))
3390         return false;
3391     } else {
3392       // Allocate just one element.
3393       if (!this->emitAlloc(Desc, E))
3394         return false;
3395     }
3396 
3397     if (Init) {
3398       if (ElemT) {
3399         if (!this->visit(Init))
3400           return false;
3401 
3402         if (!this->emitInit(*ElemT, E))
3403           return false;
3404       } else {
3405         // Composite.
3406         if (!this->visitInitializer(Init))
3407           return false;
3408       }
3409     }
3410   }
3411 
3412   if (DiscardResult)
3413     return this->emitPopPtr(E);
3414 
3415   return true;
3416 }
3417 
3418 template <class Emitter>
3419 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
3420   const Expr *Arg = E->getArgument();
3421 
3422   const FunctionDecl *OperatorDelete = E->getOperatorDelete();
3423 
3424   if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
3425     return this->emitInvalidNewDeleteExpr(E, E);
3426 
3427   // Arg must be an lvalue.
3428   if (!this->visit(Arg))
3429     return false;
3430 
3431   return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E);
3432 }
3433 
3434 template <class Emitter>
3435 bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
3436   if (DiscardResult)
3437     return true;
3438 
3439   const Function *Func = nullptr;
3440   if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
3441     Func = F;
3442 
3443   if (!Func)
3444     return false;
3445   return this->emitGetFnPtr(Func, E);
3446 }
3447 
3448 template <class Emitter>
3449 bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
3450   const Type *TypeInfoType = E->getType().getTypePtr();
3451 
3452   if (!E->isPotentiallyEvaluated()) {
3453     if (DiscardResult)
3454       return true;
3455 
3456     if (E->isTypeOperand())
3457       return this->emitGetTypeid(
3458           E->getTypeOperand(Ctx.getASTContext()).getTypePtr(), TypeInfoType, E);
3459     return this->emitGetTypeid(E->getExprOperand()->getType().getTypePtr(),
3460                                TypeInfoType, E);
3461   }
3462 
3463   // Otherwise, we need to evaluate the expression operand.
3464   assert(E->getExprOperand());
3465   assert(E->getExprOperand()->isLValue());
3466 
3467   if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E))
3468     return false;
3469 
3470   if (!this->visit(E->getExprOperand()))
3471     return false;
3472 
3473   if (!this->emitGetTypeidPtr(TypeInfoType, E))
3474     return false;
3475   if (DiscardResult)
3476     return this->emitPopPtr(E);
3477   return true;
3478 }
3479 
3480 template <class Emitter>
3481 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
3482   assert(Ctx.getLangOpts().CPlusPlus);
3483   return this->emitConstBool(E->getValue(), E);
3484 }
3485 
3486 template <class Emitter>
3487 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
3488   if (DiscardResult)
3489     return true;
3490   assert(!Initializing);
3491 
3492   const MSGuidDecl *GuidDecl = E->getGuidDecl();
3493   const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
3494   assert(RD);
3495   // If the definiton of the result type is incomplete, just return a dummy.
3496   // If (and when) that is read from, we will fail, but not now.
3497   if (!RD->isCompleteDefinition())
3498     return this->emitDummyPtr(GuidDecl, E);
3499 
3500   std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
3501   if (!GlobalIndex)
3502     return false;
3503   if (!this->emitGetPtrGlobal(*GlobalIndex, E))
3504     return false;
3505 
3506   assert(this->getRecord(E->getType()));
3507 
3508   const APValue &V = GuidDecl->getAsAPValue();
3509   if (V.getKind() == APValue::None)
3510     return true;
3511 
3512   assert(V.isStruct());
3513   assert(V.getStructNumBases() == 0);
3514   if (!this->visitAPValueInitializer(V, E))
3515     return false;
3516 
3517   return this->emitFinishInit(E);
3518 }
3519 
3520 template <class Emitter>
3521 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
3522   assert(classifyPrim(E->getType()) == PT_Bool);
3523   if (DiscardResult)
3524     return true;
3525   return this->emitConstBool(E->isSatisfied(), E);
3526 }
3527 
3528 template <class Emitter>
3529 bool Compiler<Emitter>::VisitConceptSpecializationExpr(
3530     const ConceptSpecializationExpr *E) {
3531   assert(classifyPrim(E->getType()) == PT_Bool);
3532   if (DiscardResult)
3533     return true;
3534   return this->emitConstBool(E->isSatisfied(), E);
3535 }
3536 
3537 template <class Emitter>
3538 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
3539     const CXXRewrittenBinaryOperator *E) {
3540   return this->delegate(E->getSemanticForm());
3541 }
3542 
3543 template <class Emitter>
3544 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
3545 
3546   for (const Expr *SemE : E->semantics()) {
3547     if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
3548       if (SemE == E->getResultExpr())
3549         return false;
3550 
3551       if (OVE->isUnique())
3552         continue;
3553 
3554       if (!this->discard(OVE))
3555         return false;
3556     } else if (SemE == E->getResultExpr()) {
3557       if (!this->delegate(SemE))
3558         return false;
3559     } else {
3560       if (!this->discard(SemE))
3561         return false;
3562     }
3563   }
3564   return true;
3565 }
3566 
3567 template <class Emitter>
3568 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
3569   return this->delegate(E->getSelectedExpr());
3570 }
3571 
3572 template <class Emitter>
3573 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
3574   return this->emitError(E);
3575 }
3576 
3577 template <class Emitter>
3578 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
3579   assert(E->getType()->isVoidPointerType());
3580 
3581   unsigned Offset = allocateLocalPrimitive(
3582       E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3583 
3584   return this->emitGetLocal(PT_Ptr, Offset, E);
3585 }
3586 
3587 template <class Emitter>
3588 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
3589   assert(Initializing);
3590   const auto *VT = E->getType()->castAs<VectorType>();
3591   QualType ElemType = VT->getElementType();
3592   PrimType ElemT = classifyPrim(ElemType);
3593   const Expr *Src = E->getSrcExpr();
3594   QualType SrcType = Src->getType();
3595   PrimType SrcElemT = classifyVectorElementType(SrcType);
3596 
3597   unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
3598   if (!this->visit(Src))
3599     return false;
3600   if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
3601     return false;
3602 
3603   for (unsigned I = 0; I != VT->getNumElements(); ++I) {
3604     if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
3605       return false;
3606     if (!this->emitArrayElemPop(SrcElemT, I, E))
3607       return false;
3608 
3609     // Cast to the desired result element type.
3610     if (SrcElemT != ElemT) {
3611       if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
3612         return false;
3613     } else if (ElemType->isFloatingType() && SrcType != ElemType) {
3614       const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType);
3615       if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E))
3616         return false;
3617     }
3618     if (!this->emitInitElem(ElemT, I, E))
3619       return false;
3620   }
3621 
3622   return true;
3623 }
3624 
3625 template <class Emitter>
3626 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
3627   assert(Initializing);
3628   assert(E->getNumSubExprs() > 2);
3629 
3630   const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
3631   const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
3632   PrimType ElemT = classifyPrim(VT->getElementType());
3633   unsigned NumInputElems = VT->getNumElements();
3634   unsigned NumOutputElems = E->getNumSubExprs() - 2;
3635   assert(NumOutputElems > 0);
3636 
3637   // Save both input vectors to a local variable.
3638   unsigned VectorOffsets[2];
3639   for (unsigned I = 0; I != 2; ++I) {
3640     VectorOffsets[I] = this->allocateLocalPrimitive(
3641         Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
3642     if (!this->visit(Vecs[I]))
3643       return false;
3644     if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
3645       return false;
3646   }
3647   for (unsigned I = 0; I != NumOutputElems; ++I) {
3648     APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
3649     assert(ShuffleIndex >= -1);
3650     if (ShuffleIndex == -1)
3651       return this->emitInvalidShuffleVectorIndex(I, E);
3652 
3653     assert(ShuffleIndex < (NumInputElems * 2));
3654     if (!this->emitGetLocal(PT_Ptr,
3655                             VectorOffsets[ShuffleIndex >= NumInputElems], E))
3656       return false;
3657     unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
3658     if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
3659       return false;
3660 
3661     if (!this->emitInitElem(ElemT, I, E))
3662       return false;
3663   }
3664 
3665   return true;
3666 }
3667 
3668 template <class Emitter>
3669 bool Compiler<Emitter>::VisitExtVectorElementExpr(
3670     const ExtVectorElementExpr *E) {
3671   const Expr *Base = E->getBase();
3672   assert(
3673       Base->getType()->isVectorType() ||
3674       Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
3675 
3676   SmallVector<uint32_t, 4> Indices;
3677   E->getEncodedElementAccess(Indices);
3678 
3679   if (Indices.size() == 1) {
3680     if (!this->visit(Base))
3681       return false;
3682 
3683     if (E->isGLValue()) {
3684       if (!this->emitConstUint32(Indices[0], E))
3685         return false;
3686       return this->emitArrayElemPtrPop(PT_Uint32, E);
3687     }
3688     // Else, also load the value.
3689     return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
3690   }
3691 
3692   // Create a local variable for the base.
3693   unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
3694                                                /*IsExtended=*/false);
3695   if (!this->visit(Base))
3696     return false;
3697   if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
3698     return false;
3699 
3700   // Now the vector variable for the return value.
3701   if (!Initializing) {
3702     std::optional<unsigned> ResultIndex;
3703     ResultIndex = allocateLocal(E);
3704     if (!ResultIndex)
3705       return false;
3706     if (!this->emitGetPtrLocal(*ResultIndex, E))
3707       return false;
3708   }
3709 
3710   assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
3711 
3712   PrimType ElemT =
3713       classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
3714   uint32_t DstIndex = 0;
3715   for (uint32_t I : Indices) {
3716     if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
3717       return false;
3718     if (!this->emitArrayElemPop(ElemT, I, E))
3719       return false;
3720     if (!this->emitInitElem(ElemT, DstIndex, E))
3721       return false;
3722     ++DstIndex;
3723   }
3724 
3725   // Leave the result pointer on the stack.
3726   assert(!DiscardResult);
3727   return true;
3728 }
3729 
3730 template <class Emitter>
3731 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
3732   const Expr *SubExpr = E->getSubExpr();
3733   if (!E->isExpressibleAsConstantInitializer())
3734     return this->discard(SubExpr) && this->emitInvalid(E);
3735 
3736   if (DiscardResult)
3737     return true;
3738 
3739   assert(classifyPrim(E) == PT_Ptr);
3740   return this->emitDummyPtr(E, E);
3741 }
3742 
3743 template <class Emitter>
3744 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
3745     const CXXStdInitializerListExpr *E) {
3746   const Expr *SubExpr = E->getSubExpr();
3747   const ConstantArrayType *ArrayType =
3748       Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
3749   const Record *R = getRecord(E->getType());
3750   assert(Initializing);
3751   assert(SubExpr->isGLValue());
3752 
3753   if (!this->visit(SubExpr))
3754     return false;
3755   if (!this->emitConstUint8(0, E))
3756     return false;
3757   if (!this->emitArrayElemPtrPopUint8(E))
3758     return false;
3759   if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
3760     return false;
3761 
3762   PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
3763   if (isIntegralType(SecondFieldT)) {
3764     if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
3765                          SecondFieldT, E))
3766       return false;
3767     return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
3768   }
3769   assert(SecondFieldT == PT_Ptr);
3770 
3771   if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
3772     return false;
3773   if (!this->emitExpandPtr(E))
3774     return false;
3775   if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
3776     return false;
3777   if (!this->emitArrayElemPtrPop(PT_Uint64, E))
3778     return false;
3779   return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
3780 }
3781 
3782 template <class Emitter>
3783 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
3784   BlockScope<Emitter> BS(this);
3785   StmtExprScope<Emitter> SS(this);
3786 
3787   const CompoundStmt *CS = E->getSubStmt();
3788   const Stmt *Result = CS->getStmtExprResult();
3789   for (const Stmt *S : CS->body()) {
3790     if (S != Result) {
3791       if (!this->visitStmt(S))
3792         return false;
3793       continue;
3794     }
3795 
3796     assert(S == Result);
3797     if (const Expr *ResultExpr = dyn_cast<Expr>(S))
3798       return this->delegate(ResultExpr);
3799     return this->emitUnsupported(E);
3800   }
3801 
3802   return BS.destroyLocals();
3803 }
3804 
3805 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
3806   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
3807                              /*NewInitializing=*/false);
3808   return this->Visit(E);
3809 }
3810 
3811 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
3812   // We're basically doing:
3813   // OptionScope<Emitter> Scope(this, DicardResult, Initializing);
3814   // but that's unnecessary of course.
3815   return this->Visit(E);
3816 }
3817 
3818 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
3819   if (E->getType().isNull())
3820     return false;
3821 
3822   if (E->getType()->isVoidType())
3823     return this->discard(E);
3824 
3825   // Create local variable to hold the return value.
3826   if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
3827       !classify(E->getType())) {
3828     std::optional<unsigned> LocalIndex = allocateLocal(E);
3829     if (!LocalIndex)
3830       return false;
3831 
3832     if (!this->emitGetPtrLocal(*LocalIndex, E))
3833       return false;
3834     InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
3835     return this->visitInitializer(E);
3836   }
3837 
3838   //  Otherwise,we have a primitive return value, produce the value directly
3839   //  and push it on the stack.
3840   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3841                              /*NewInitializing=*/false);
3842   return this->Visit(E);
3843 }
3844 
3845 template <class Emitter>
3846 bool Compiler<Emitter>::visitInitializer(const Expr *E) {
3847   assert(!classify(E->getType()));
3848 
3849   OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
3850                              /*NewInitializing=*/true);
3851   return this->Visit(E);
3852 }
3853 
3854 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
3855   std::optional<PrimType> T = classify(E->getType());
3856   if (!T) {
3857     // Convert complex values to bool.
3858     if (E->getType()->isAnyComplexType()) {
3859       if (!this->visit(E))
3860         return false;
3861       return this->emitComplexBoolCast(E);
3862     }
3863     return false;
3864   }
3865 
3866   if (!this->visit(E))
3867     return false;
3868 
3869   if (T == PT_Bool)
3870     return true;
3871 
3872   // Convert pointers to bool.
3873   if (T == PT_Ptr || T == PT_FnPtr) {
3874     if (!this->emitNull(*T, 0, nullptr, E))
3875       return false;
3876     return this->emitNE(*T, E);
3877   }
3878 
3879   // Or Floats.
3880   if (T == PT_Float)
3881     return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
3882 
3883   // Or anything else we can.
3884   return this->emitCast(*T, PT_Bool, E);
3885 }
3886 
3887 template <class Emitter>
3888 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
3889                                              const Expr *E) {
3890   switch (T) {
3891   case PT_Bool:
3892     return this->emitZeroBool(E);
3893   case PT_Sint8:
3894     return this->emitZeroSint8(E);
3895   case PT_Uint8:
3896     return this->emitZeroUint8(E);
3897   case PT_Sint16:
3898     return this->emitZeroSint16(E);
3899   case PT_Uint16:
3900     return this->emitZeroUint16(E);
3901   case PT_Sint32:
3902     return this->emitZeroSint32(E);
3903   case PT_Uint32:
3904     return this->emitZeroUint32(E);
3905   case PT_Sint64:
3906     return this->emitZeroSint64(E);
3907   case PT_Uint64:
3908     return this->emitZeroUint64(E);
3909   case PT_IntAP:
3910     return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
3911   case PT_IntAPS:
3912     return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
3913   case PT_Ptr:
3914     return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT),
3915                              nullptr, E);
3916   case PT_FnPtr:
3917     return this->emitNullFnPtr(0, nullptr, E);
3918   case PT_MemberPtr:
3919     return this->emitNullMemberPtr(0, nullptr, E);
3920   case PT_Float:
3921     return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
3922   case PT_FixedPoint: {
3923     auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
3924     return this->emitConstFixedPoint(FixedPoint::zero(Sem), E);
3925   }
3926     llvm_unreachable("Implement");
3927   }
3928   llvm_unreachable("unknown primitive type");
3929 }
3930 
3931 template <class Emitter>
3932 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
3933                                                    const Expr *E) {
3934   assert(E);
3935   assert(R);
3936   // Fields
3937   for (const Record::Field &Field : R->fields()) {
3938     if (Field.Decl->isUnnamedBitField())
3939       continue;
3940 
3941     const Descriptor *D = Field.Desc;
3942     if (D->isPrimitive()) {
3943       QualType QT = D->getType();
3944       PrimType T = classifyPrim(D->getType());
3945       if (!this->visitZeroInitializer(T, QT, E))
3946         return false;
3947       if (!this->emitInitField(T, Field.Offset, E))
3948         return false;
3949       if (R->isUnion())
3950         break;
3951       continue;
3952     }
3953 
3954     if (!this->emitGetPtrField(Field.Offset, E))
3955       return false;
3956 
3957     if (D->isPrimitiveArray()) {
3958       QualType ET = D->getElemQualType();
3959       PrimType T = classifyPrim(ET);
3960       for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
3961         if (!this->visitZeroInitializer(T, ET, E))
3962           return false;
3963         if (!this->emitInitElem(T, I, E))
3964           return false;
3965       }
3966     } else if (D->isCompositeArray()) {
3967       // Can't be a vector or complex field.
3968       if (!this->visitZeroArrayInitializer(D->getType(), E))
3969         return false;
3970     } else if (D->isRecord()) {
3971       if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
3972         return false;
3973     } else {
3974       assert(false);
3975     }
3976 
3977     if (!this->emitFinishInitPop(E))
3978       return false;
3979 
3980     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
3981     // object's first non-static named data member is zero-initialized
3982     if (R->isUnion())
3983       break;
3984   }
3985 
3986   for (const Record::Base &B : R->bases()) {
3987     if (!this->emitGetPtrBase(B.Offset, E))
3988       return false;
3989     if (!this->visitZeroRecordInitializer(B.R, E))
3990       return false;
3991     if (!this->emitFinishInitPop(E))
3992       return false;
3993   }
3994 
3995   // FIXME: Virtual bases.
3996 
3997   return true;
3998 }
3999 
4000 template <class Emitter>
4001 bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) {
4002   assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType());
4003   const ArrayType *AT = T->getAsArrayTypeUnsafe();
4004   QualType ElemType = AT->getElementType();
4005   size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize();
4006 
4007   if (std::optional<PrimType> ElemT = classify(ElemType)) {
4008     for (size_t I = 0; I != NumElems; ++I) {
4009       if (!this->visitZeroInitializer(*ElemT, ElemType, E))
4010         return false;
4011       if (!this->emitInitElem(*ElemT, I, E))
4012         return false;
4013     }
4014     return true;
4015   } else if (ElemType->isRecordType()) {
4016     const Record *R = getRecord(ElemType);
4017 
4018     for (size_t I = 0; I != NumElems; ++I) {
4019       if (!this->emitConstUint32(I, E))
4020         return false;
4021       if (!this->emitArrayElemPtr(PT_Uint32, E))
4022         return false;
4023       if (!this->visitZeroRecordInitializer(R, E))
4024         return false;
4025       if (!this->emitPopPtr(E))
4026         return false;
4027     }
4028     return true;
4029   } else if (ElemType->isArrayType()) {
4030     for (size_t I = 0; I != NumElems; ++I) {
4031       if (!this->emitConstUint32(I, E))
4032         return false;
4033       if (!this->emitArrayElemPtr(PT_Uint32, E))
4034         return false;
4035       if (!this->visitZeroArrayInitializer(ElemType, E))
4036         return false;
4037       if (!this->emitPopPtr(E))
4038         return false;
4039     }
4040     return true;
4041   }
4042 
4043   return false;
4044 }
4045 
4046 template <class Emitter>
4047 template <typename T>
4048 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
4049   switch (Ty) {
4050   case PT_Sint8:
4051     return this->emitConstSint8(Value, E);
4052   case PT_Uint8:
4053     return this->emitConstUint8(Value, E);
4054   case PT_Sint16:
4055     return this->emitConstSint16(Value, E);
4056   case PT_Uint16:
4057     return this->emitConstUint16(Value, E);
4058   case PT_Sint32:
4059     return this->emitConstSint32(Value, E);
4060   case PT_Uint32:
4061     return this->emitConstUint32(Value, E);
4062   case PT_Sint64:
4063     return this->emitConstSint64(Value, E);
4064   case PT_Uint64:
4065     return this->emitConstUint64(Value, E);
4066   case PT_Bool:
4067     return this->emitConstBool(Value, E);
4068   case PT_Ptr:
4069   case PT_FnPtr:
4070   case PT_MemberPtr:
4071   case PT_Float:
4072   case PT_IntAP:
4073   case PT_IntAPS:
4074   case PT_FixedPoint:
4075     llvm_unreachable("Invalid integral type");
4076     break;
4077   }
4078   llvm_unreachable("unknown primitive type");
4079 }
4080 
4081 template <class Emitter>
4082 template <typename T>
4083 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
4084   return this->emitConst(Value, classifyPrim(E->getType()), E);
4085 }
4086 
4087 template <class Emitter>
4088 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
4089                                   const Expr *E) {
4090   if (Ty == PT_IntAPS)
4091     return this->emitConstIntAPS(Value, E);
4092   if (Ty == PT_IntAP)
4093     return this->emitConstIntAP(Value, E);
4094 
4095   if (Value.isSigned())
4096     return this->emitConst(Value.getSExtValue(), Ty, E);
4097   return this->emitConst(Value.getZExtValue(), Ty, E);
4098 }
4099 
4100 template <class Emitter>
4101 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
4102   return this->emitConst(Value, classifyPrim(E->getType()), E);
4103 }
4104 
4105 template <class Emitter>
4106 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
4107                                                    bool IsConst,
4108                                                    bool IsExtended) {
4109   // Make sure we don't accidentally register the same decl twice.
4110   if (const auto *VD =
4111           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4112     assert(!P.getGlobal(VD));
4113     assert(!Locals.contains(VD));
4114     (void)VD;
4115   }
4116 
4117   // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
4118   //   (int){12} in C. Consider using Expr::isTemporaryObject() instead
4119   //   or isa<MaterializeTemporaryExpr>().
4120   Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
4121                                      isa<const Expr *>(Src));
4122   Scope::Local Local = this->createLocal(D);
4123   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
4124     Locals.insert({VD, Local});
4125   VarScope->add(Local, IsExtended);
4126   return Local.Offset;
4127 }
4128 
4129 template <class Emitter>
4130 std::optional<unsigned>
4131 Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty,
4132                                  const ValueDecl *ExtendingDecl) {
4133   // Make sure we don't accidentally register the same decl twice.
4134   if ([[maybe_unused]] const auto *VD =
4135           dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4136     assert(!P.getGlobal(VD));
4137     assert(!Locals.contains(VD));
4138   }
4139 
4140   const ValueDecl *Key = nullptr;
4141   const Expr *Init = nullptr;
4142   bool IsTemporary = false;
4143   if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
4144     Key = VD;
4145     Ty = VD->getType();
4146 
4147     if (const auto *VarD = dyn_cast<VarDecl>(VD))
4148       Init = VarD->getInit();
4149   }
4150   if (auto *E = Src.dyn_cast<const Expr *>()) {
4151     IsTemporary = true;
4152     if (Ty.isNull())
4153       Ty = E->getType();
4154   }
4155 
4156   Descriptor *D = P.createDescriptor(
4157       Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4158       IsTemporary, /*IsMutable=*/false, Init);
4159   if (!D)
4160     return std::nullopt;
4161 
4162   Scope::Local Local = this->createLocal(D);
4163   if (Key)
4164     Locals.insert({Key, Local});
4165   if (ExtendingDecl)
4166     VarScope->addExtended(Local, ExtendingDecl);
4167   else
4168     VarScope->add(Local, false);
4169   return Local.Offset;
4170 }
4171 
4172 template <class Emitter>
4173 unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
4174   QualType Ty = E->getType();
4175   assert(!Ty->isRecordType());
4176 
4177   Descriptor *D = P.createDescriptor(
4178       E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
4179       /*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
4180   assert(D);
4181 
4182   Scope::Local Local = this->createLocal(D);
4183   VariableScope<Emitter> *S = VarScope;
4184   assert(S);
4185   // Attach to topmost scope.
4186   while (S->getParent())
4187     S = S->getParent();
4188   assert(S && !S->getParent());
4189   S->addLocal(Local);
4190   return Local.Offset;
4191 }
4192 
4193 template <class Emitter>
4194 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
4195   if (const PointerType *PT = dyn_cast<PointerType>(Ty))
4196     return PT->getPointeeType()->getAs<RecordType>();
4197   return Ty->getAs<RecordType>();
4198 }
4199 
4200 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
4201   if (const auto *RecordTy = getRecordTy(Ty))
4202     return getRecord(RecordTy->getDecl());
4203   return nullptr;
4204 }
4205 
4206 template <class Emitter>
4207 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
4208   return P.getOrCreateRecord(RD);
4209 }
4210 
4211 template <class Emitter>
4212 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
4213   return Ctx.getOrCreateFunction(FD);
4214 }
4215 
4216 template <class Emitter>
4217 bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
4218   LocalScope<Emitter> RootScope(this);
4219 
4220   // If we won't destroy the toplevel scope, check for memory leaks first.
4221   if (!DestroyToplevelScope) {
4222     if (!this->emitCheckAllocations(E))
4223       return false;
4224   }
4225 
4226   auto maybeDestroyLocals = [&]() -> bool {
4227     if (DestroyToplevelScope)
4228       return RootScope.destroyLocals() && this->emitCheckAllocations(E);
4229     return this->emitCheckAllocations(E);
4230   };
4231 
4232   // Void expressions.
4233   if (E->getType()->isVoidType()) {
4234     if (!visit(E))
4235       return false;
4236     return this->emitRetVoid(E) && maybeDestroyLocals();
4237   }
4238 
4239   // Expressions with a primitive return type.
4240   if (std::optional<PrimType> T = classify(E)) {
4241     if (!visit(E))
4242       return false;
4243 
4244     return this->emitRet(*T, E) && maybeDestroyLocals();
4245   }
4246 
4247   // Expressions with a composite return type.
4248   // For us, that means everything we don't
4249   // have a PrimType for.
4250   if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
4251     InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalOffset));
4252     if (!this->emitGetPtrLocal(*LocalOffset, E))
4253       return false;
4254 
4255     if (!visitInitializer(E))
4256       return false;
4257 
4258     if (!this->emitFinishInit(E))
4259       return false;
4260     // We are destroying the locals AFTER the Ret op.
4261     // The Ret op needs to copy the (alive) values, but the
4262     // destructors may still turn the entire expression invalid.
4263     return this->emitRetValue(E) && maybeDestroyLocals();
4264   }
4265 
4266   return maybeDestroyLocals() && this->emitCheckAllocations(E) && false;
4267 }
4268 
4269 template <class Emitter>
4270 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
4271 
4272   auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
4273 
4274   if (R.notCreated())
4275     return R;
4276 
4277   if (R)
4278     return true;
4279 
4280   if (!R && Context::shouldBeGloballyIndexed(VD)) {
4281     if (auto GlobalIndex = P.getGlobal(VD)) {
4282       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4283       GlobalInlineDescriptor &GD =
4284           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4285 
4286       GD.InitState = GlobalInitState::InitializerFailed;
4287       GlobalBlock->invokeDtor();
4288     }
4289   }
4290 
4291   return R;
4292 }
4293 
4294 /// Toplevel visitDeclAndReturn().
4295 /// We get here from evaluateAsInitializer().
4296 /// We need to evaluate the initializer and return its value.
4297 template <class Emitter>
4298 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
4299                                            bool ConstantContext) {
4300   std::optional<PrimType> VarT = classify(VD->getType());
4301 
4302   // We only create variables if we're evaluating in a constant context.
4303   // Otherwise, just evaluate the initializer and return it.
4304   if (!ConstantContext) {
4305     DeclScope<Emitter> LS(this, VD);
4306     if (!this->visit(VD->getAnyInitializer()))
4307       return false;
4308     return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() &&
4309            this->emitCheckAllocations(VD);
4310   }
4311 
4312   LocalScope<Emitter> VDScope(this, VD);
4313   if (!this->visitVarDecl(VD, /*Toplevel=*/true))
4314     return false;
4315 
4316   if (Context::shouldBeGloballyIndexed(VD)) {
4317     auto GlobalIndex = P.getGlobal(VD);
4318     assert(GlobalIndex); // visitVarDecl() didn't return false.
4319     if (VarT) {
4320       if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
4321         return false;
4322     } else {
4323       if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
4324         return false;
4325     }
4326   } else {
4327     auto Local = Locals.find(VD);
4328     assert(Local != Locals.end()); // Same here.
4329     if (VarT) {
4330       if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
4331         return false;
4332     } else {
4333       if (!this->emitGetPtrLocal(Local->second.Offset, VD))
4334         return false;
4335     }
4336   }
4337 
4338   // Return the value.
4339   if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
4340     // If the Ret above failed and this is a global variable, mark it as
4341     // uninitialized, even everything else succeeded.
4342     if (Context::shouldBeGloballyIndexed(VD)) {
4343       auto GlobalIndex = P.getGlobal(VD);
4344       assert(GlobalIndex);
4345       Block *GlobalBlock = P.getGlobal(*GlobalIndex);
4346       GlobalInlineDescriptor &GD =
4347           *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
4348 
4349       GD.InitState = GlobalInitState::InitializerFailed;
4350       GlobalBlock->invokeDtor();
4351     }
4352     return false;
4353   }
4354 
4355   return VDScope.destroyLocals() && this->emitCheckAllocations(VD);
4356 }
4357 
4358 template <class Emitter>
4359 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
4360                                                  bool Toplevel) {
4361   // We don't know what to do with these, so just return false.
4362   if (VD->getType().isNull())
4363     return false;
4364 
4365   // This case is EvalEmitter-only. If we won't create any instructions for the
4366   // initializer anyway, don't bother creating the variable in the first place.
4367   if (!this->isActive())
4368     return VarCreationState::NotCreated();
4369 
4370   const Expr *Init = VD->getInit();
4371   std::optional<PrimType> VarT = classify(VD->getType());
4372 
4373   if (Init && Init->isValueDependent())
4374     return false;
4375 
4376   if (Context::shouldBeGloballyIndexed(VD)) {
4377     auto checkDecl = [&]() -> bool {
4378       bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
4379       return !NeedsOp || this->emitCheckDecl(VD, VD);
4380     };
4381 
4382     auto initGlobal = [&](unsigned GlobalIndex) -> bool {
4383       assert(Init);
4384 
4385       if (VarT) {
4386         if (!this->visit(Init))
4387           return checkDecl() && false;
4388 
4389         return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
4390       }
4391 
4392       if (!checkDecl())
4393         return false;
4394 
4395       if (!this->emitGetPtrGlobal(GlobalIndex, Init))
4396         return false;
4397 
4398       if (!visitInitializer(Init))
4399         return false;
4400 
4401       if (!this->emitFinishInit(Init))
4402         return false;
4403 
4404       return this->emitPopPtr(Init);
4405     };
4406 
4407     DeclScope<Emitter> LocalScope(this, VD);
4408 
4409     // We've already seen and initialized this global.
4410     if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
4411       if (P.getPtrGlobal(*GlobalIndex).isInitialized())
4412         return checkDecl();
4413 
4414       // The previous attempt at initialization might've been unsuccessful,
4415       // so let's try this one.
4416       return Init && checkDecl() && initGlobal(*GlobalIndex);
4417     }
4418 
4419     std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
4420 
4421     if (!GlobalIndex)
4422       return false;
4423 
4424     return !Init || (checkDecl() && initGlobal(*GlobalIndex));
4425   } else {
4426     InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
4427 
4428     if (VarT) {
4429       unsigned Offset = this->allocateLocalPrimitive(
4430           VD, *VarT, VD->getType().isConstQualified());
4431       if (Init) {
4432         // If this is a toplevel declaration, create a scope for the
4433         // initializer.
4434         if (Toplevel) {
4435           LocalScope<Emitter> Scope(this);
4436           if (!this->visit(Init))
4437             return false;
4438           return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
4439         } else {
4440           if (!this->visit(Init))
4441             return false;
4442           return this->emitSetLocal(*VarT, Offset, VD);
4443         }
4444       }
4445     } else {
4446       if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
4447         if (!Init)
4448           return true;
4449 
4450         if (!this->emitGetPtrLocal(*Offset, Init))
4451           return false;
4452 
4453         if (!visitInitializer(Init))
4454           return false;
4455 
4456         if (!this->emitFinishInit(Init))
4457           return false;
4458 
4459         return this->emitPopPtr(Init);
4460       }
4461       return false;
4462     }
4463     return true;
4464   }
4465 
4466   return false;
4467 }
4468 
4469 template <class Emitter>
4470 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
4471                                      const Expr *E) {
4472   assert(!DiscardResult);
4473   if (Val.isInt())
4474     return this->emitConst(Val.getInt(), ValType, E);
4475   else if (Val.isFloat())
4476     return this->emitConstFloat(Val.getFloat(), E);
4477 
4478   if (Val.isLValue()) {
4479     if (Val.isNullPointer())
4480       return this->emitNull(ValType, 0, nullptr, E);
4481     APValue::LValueBase Base = Val.getLValueBase();
4482     if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
4483       return this->visit(BaseExpr);
4484     else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
4485       return this->visitDeclRef(VD, E);
4486     }
4487   } else if (Val.isMemberPointer()) {
4488     if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
4489       return this->emitGetMemberPtr(MemberDecl, E);
4490     return this->emitNullMemberPtr(0, nullptr, E);
4491   }
4492 
4493   return false;
4494 }
4495 
4496 template <class Emitter>
4497 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
4498                                                 const Expr *E) {
4499 
4500   if (Val.isStruct()) {
4501     const Record *R = this->getRecord(E->getType());
4502     assert(R);
4503     for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
4504       const APValue &F = Val.getStructField(I);
4505       const Record::Field *RF = R->getField(I);
4506 
4507       if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
4508         PrimType T = classifyPrim(RF->Decl->getType());
4509         if (!this->visitAPValue(F, T, E))
4510           return false;
4511         if (!this->emitInitField(T, RF->Offset, E))
4512           return false;
4513       } else if (F.isArray()) {
4514         assert(RF->Desc->isPrimitiveArray());
4515         const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
4516         PrimType ElemT = classifyPrim(ArrType->getElementType());
4517         assert(ArrType);
4518 
4519         if (!this->emitGetPtrField(RF->Offset, E))
4520           return false;
4521 
4522         for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
4523           if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
4524             return false;
4525           if (!this->emitInitElem(ElemT, A, E))
4526             return false;
4527         }
4528 
4529         if (!this->emitPopPtr(E))
4530           return false;
4531       } else if (F.isStruct() || F.isUnion()) {
4532         if (!this->emitGetPtrField(RF->Offset, E))
4533           return false;
4534         if (!this->visitAPValueInitializer(F, E))
4535           return false;
4536         if (!this->emitPopPtr(E))
4537           return false;
4538       } else {
4539         assert(false && "I don't think this should be possible");
4540       }
4541     }
4542     return true;
4543   } else if (Val.isUnion()) {
4544     const FieldDecl *UnionField = Val.getUnionField();
4545     const Record *R = this->getRecord(UnionField->getParent());
4546     assert(R);
4547     const APValue &F = Val.getUnionValue();
4548     const Record::Field *RF = R->getField(UnionField);
4549     PrimType T = classifyPrim(RF->Decl->getType());
4550     if (!this->visitAPValue(F, T, E))
4551       return false;
4552     return this->emitInitField(T, RF->Offset, E);
4553   }
4554   // TODO: Other types.
4555 
4556   return false;
4557 }
4558 
4559 template <class Emitter>
4560 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
4561                                              unsigned BuiltinID) {
4562   const Function *Func = getFunction(E->getDirectCallee());
4563   if (!Func)
4564     return false;
4565 
4566   // For these, we're expected to ultimately return an APValue pointing
4567   // to the CallExpr. This is needed to get the correct codegen.
4568   if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
4569       BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
4570       BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
4571       BuiltinID == Builtin::BI__builtin_function_start) {
4572     if (DiscardResult)
4573       return true;
4574     return this->emitDummyPtr(E, E);
4575   }
4576 
4577   QualType ReturnType = E->getType();
4578   std::optional<PrimType> ReturnT = classify(E);
4579 
4580   // Non-primitive return type. Prepare storage.
4581   if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
4582     std::optional<unsigned> LocalIndex = allocateLocal(E);
4583     if (!LocalIndex)
4584       return false;
4585     if (!this->emitGetPtrLocal(*LocalIndex, E))
4586       return false;
4587   }
4588 
4589   if (!Func->isUnevaluatedBuiltin()) {
4590     // Put arguments on the stack.
4591     for (const auto *Arg : E->arguments()) {
4592       if (!this->visit(Arg))
4593         return false;
4594     }
4595   }
4596 
4597   if (!this->emitCallBI(Func, E, BuiltinID, E))
4598     return false;
4599 
4600   if (DiscardResult && !ReturnType->isVoidType()) {
4601     assert(ReturnT);
4602     return this->emitPop(*ReturnT, E);
4603   }
4604 
4605   return true;
4606 }
4607 
4608 template <class Emitter>
4609 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
4610   if (unsigned BuiltinID = E->getBuiltinCallee())
4611     return VisitBuiltinCallExpr(E, BuiltinID);
4612 
4613   const FunctionDecl *FuncDecl = E->getDirectCallee();
4614   // Calls to replaceable operator new/operator delete.
4615   if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
4616     if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
4617         FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
4618       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
4619     } else {
4620       assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
4621       return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
4622     }
4623   }
4624   // Explicit calls to trivial destructors
4625   if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl);
4626       DD && DD->isTrivial())
4627     return true;
4628 
4629   QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
4630   std::optional<PrimType> T = classify(ReturnType);
4631   bool HasRVO = !ReturnType->isVoidType() && !T;
4632 
4633   if (HasRVO) {
4634     if (DiscardResult) {
4635       // If we need to discard the return value but the function returns its
4636       // value via an RVO pointer, we need to create one such pointer just
4637       // for this call.
4638       if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4639         if (!this->emitGetPtrLocal(*LocalIndex, E))
4640           return false;
4641       }
4642     } else {
4643       // We need the result. Prepare a pointer to return or
4644       // dup the current one.
4645       if (!Initializing) {
4646         if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
4647           if (!this->emitGetPtrLocal(*LocalIndex, E))
4648             return false;
4649         }
4650       }
4651       if (!this->emitDupPtr(E))
4652         return false;
4653     }
4654   }
4655 
4656   SmallVector<const Expr *, 8> Args(
4657       llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
4658 
4659   bool IsAssignmentOperatorCall = false;
4660   if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
4661       OCE && OCE->isAssignmentOp()) {
4662     // Just like with regular assignments, we need to special-case assignment
4663     // operators here and evaluate the RHS (the second arg) before the LHS (the
4664     // first arg. We fix this by using a Flip op later.
4665     assert(Args.size() == 2);
4666     IsAssignmentOperatorCall = true;
4667     std::reverse(Args.begin(), Args.end());
4668   }
4669   // Calling a static operator will still
4670   // pass the instance, but we don't need it.
4671   // Discard it here.
4672   if (isa<CXXOperatorCallExpr>(E)) {
4673     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
4674         MD && MD->isStatic()) {
4675       if (!this->discard(E->getArg(0)))
4676         return false;
4677       // Drop first arg.
4678       Args.erase(Args.begin());
4679     }
4680   }
4681 
4682   std::optional<unsigned> CalleeOffset;
4683   // Add the (optional, implicit) This pointer.
4684   if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
4685     if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
4686       // If we end up creating a CallPtr op for this, we need the base of the
4687       // member pointer as the instance pointer, and later extract the function
4688       // decl as the function pointer.
4689       const Expr *Callee = E->getCallee();
4690       CalleeOffset =
4691           this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
4692       if (!this->visit(Callee))
4693         return false;
4694       if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
4695         return false;
4696       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4697         return false;
4698       if (!this->emitGetMemberPtrBase(E))
4699         return false;
4700     } else if (!this->visit(MC->getImplicitObjectArgument())) {
4701       return false;
4702     }
4703   } else if (!FuncDecl) {
4704     const Expr *Callee = E->getCallee();
4705     CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
4706     if (!this->visit(Callee))
4707       return false;
4708     if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
4709       return false;
4710   }
4711 
4712   llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
4713   // Put arguments on the stack.
4714   unsigned ArgIndex = 0;
4715   for (const auto *Arg : Args) {
4716     if (!this->visit(Arg))
4717       return false;
4718 
4719     // If we know the callee already, check the known parametrs for nullability.
4720     if (FuncDecl && NonNullArgs[ArgIndex]) {
4721       PrimType ArgT = classify(Arg).value_or(PT_Ptr);
4722       if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
4723         if (!this->emitCheckNonNullArg(ArgT, Arg))
4724           return false;
4725       }
4726     }
4727     ++ArgIndex;
4728   }
4729 
4730   // Undo the argument reversal we did earlier.
4731   if (IsAssignmentOperatorCall) {
4732     assert(Args.size() == 2);
4733     PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
4734     PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
4735     if (!this->emitFlip(Arg2T, Arg1T, E))
4736       return false;
4737   }
4738 
4739   if (FuncDecl) {
4740     const Function *Func = getFunction(FuncDecl);
4741     if (!Func)
4742       return false;
4743     assert(HasRVO == Func->hasRVO());
4744 
4745     bool HasQualifier = false;
4746     if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
4747       HasQualifier = ME->hasQualifier();
4748 
4749     bool IsVirtual = false;
4750     if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
4751       IsVirtual = MD->isVirtual();
4752 
4753     // In any case call the function. The return value will end up on the stack
4754     // and if the function has RVO, we already have the pointer on the stack to
4755     // write the result into.
4756     if (IsVirtual && !HasQualifier) {
4757       uint32_t VarArgSize = 0;
4758       unsigned NumParams =
4759           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4760       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4761         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4762 
4763       if (!this->emitCallVirt(Func, VarArgSize, E))
4764         return false;
4765     } else if (Func->isVariadic()) {
4766       uint32_t VarArgSize = 0;
4767       unsigned NumParams =
4768           Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
4769       for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
4770         VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4771       if (!this->emitCallVar(Func, VarArgSize, E))
4772         return false;
4773     } else {
4774       if (!this->emitCall(Func, 0, E))
4775         return false;
4776     }
4777   } else {
4778     // Indirect call. Visit the callee, which will leave a FunctionPointer on
4779     // the stack. Cleanup of the returned value if necessary will be done after
4780     // the function call completed.
4781 
4782     // Sum the size of all args from the call expr.
4783     uint32_t ArgSize = 0;
4784     for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
4785       ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
4786 
4787     // Get the callee, either from a member pointer or function pointer saved in
4788     // CalleeOffset.
4789     if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
4790       if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
4791         return false;
4792       if (!this->emitGetMemberPtrDecl(E))
4793         return false;
4794     } else {
4795       if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
4796         return false;
4797     }
4798     if (!this->emitCallPtr(ArgSize, E, E))
4799       return false;
4800   }
4801 
4802   // Cleanup for discarded return values.
4803   if (DiscardResult && !ReturnType->isVoidType() && T)
4804     return this->emitPop(*T, E);
4805 
4806   return true;
4807 }
4808 
4809 template <class Emitter>
4810 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4811   SourceLocScope<Emitter> SLS(this, E);
4812 
4813   return this->delegate(E->getExpr());
4814 }
4815 
4816 template <class Emitter>
4817 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4818   SourceLocScope<Emitter> SLS(this, E);
4819 
4820   return this->delegate(E->getExpr());
4821 }
4822 
4823 template <class Emitter>
4824 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
4825   if (DiscardResult)
4826     return true;
4827 
4828   return this->emitConstBool(E->getValue(), E);
4829 }
4830 
4831 template <class Emitter>
4832 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
4833     const CXXNullPtrLiteralExpr *E) {
4834   if (DiscardResult)
4835     return true;
4836 
4837   uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(E->getType());
4838   return this->emitNullPtr(Val, nullptr, E);
4839 }
4840 
4841 template <class Emitter>
4842 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
4843   if (DiscardResult)
4844     return true;
4845 
4846   assert(E->getType()->isIntegerType());
4847 
4848   PrimType T = classifyPrim(E->getType());
4849   return this->emitZero(T, E);
4850 }
4851 
4852 template <class Emitter>
4853 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
4854   if (DiscardResult)
4855     return true;
4856 
4857   if (this->LambdaThisCapture.Offset > 0) {
4858     if (this->LambdaThisCapture.IsPtr)
4859       return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
4860     return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
4861   }
4862 
4863   // In some circumstances, the 'this' pointer does not actually refer to the
4864   // instance pointer of the current function frame, but e.g. to the declaration
4865   // currently being initialized. Here we emit the necessary instruction(s) for
4866   // this scenario.
4867   if (!InitStackActive)
4868     return this->emitThis(E);
4869 
4870   if (!InitStack.empty()) {
4871     // If our init stack is, for example:
4872     // 0 Stack: 3 (decl)
4873     // 1 Stack: 6 (init list)
4874     // 2 Stack: 1 (field)
4875     // 3 Stack: 6 (init list)
4876     // 4 Stack: 1 (field)
4877     //
4878     // We want to find the LAST element in it that's an init list,
4879     // which is marked with the K_InitList marker. The index right
4880     // before that points to an init list. We need to find the
4881     // elements before the K_InitList element that point to a base
4882     // (e.g. a decl or This), optionally followed by field, elem, etc.
4883     // In the example above, we want to emit elements [0..2].
4884     unsigned StartIndex = 0;
4885     unsigned EndIndex = 0;
4886     // Find the init list.
4887     for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
4888       if (InitStack[StartIndex].Kind == InitLink::K_InitList ||
4889           InitStack[StartIndex].Kind == InitLink::K_This) {
4890         EndIndex = StartIndex;
4891         --StartIndex;
4892         break;
4893       }
4894     }
4895 
4896     // Walk backwards to find the base.
4897     for (; StartIndex > 0; --StartIndex) {
4898       if (InitStack[StartIndex].Kind == InitLink::K_InitList)
4899         continue;
4900 
4901       if (InitStack[StartIndex].Kind != InitLink::K_Field &&
4902           InitStack[StartIndex].Kind != InitLink::K_Elem)
4903         break;
4904     }
4905 
4906     // Emit the instructions.
4907     for (unsigned I = StartIndex; I != EndIndex; ++I) {
4908       if (InitStack[I].Kind == InitLink::K_InitList)
4909         continue;
4910       if (!InitStack[I].template emit<Emitter>(this, E))
4911         return false;
4912     }
4913     return true;
4914   }
4915   return this->emitThis(E);
4916 }
4917 
4918 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
4919   switch (S->getStmtClass()) {
4920   case Stmt::CompoundStmtClass:
4921     return visitCompoundStmt(cast<CompoundStmt>(S));
4922   case Stmt::DeclStmtClass:
4923     return visitDeclStmt(cast<DeclStmt>(S));
4924   case Stmt::ReturnStmtClass:
4925     return visitReturnStmt(cast<ReturnStmt>(S));
4926   case Stmt::IfStmtClass:
4927     return visitIfStmt(cast<IfStmt>(S));
4928   case Stmt::WhileStmtClass:
4929     return visitWhileStmt(cast<WhileStmt>(S));
4930   case Stmt::DoStmtClass:
4931     return visitDoStmt(cast<DoStmt>(S));
4932   case Stmt::ForStmtClass:
4933     return visitForStmt(cast<ForStmt>(S));
4934   case Stmt::CXXForRangeStmtClass:
4935     return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
4936   case Stmt::BreakStmtClass:
4937     return visitBreakStmt(cast<BreakStmt>(S));
4938   case Stmt::ContinueStmtClass:
4939     return visitContinueStmt(cast<ContinueStmt>(S));
4940   case Stmt::SwitchStmtClass:
4941     return visitSwitchStmt(cast<SwitchStmt>(S));
4942   case Stmt::CaseStmtClass:
4943     return visitCaseStmt(cast<CaseStmt>(S));
4944   case Stmt::DefaultStmtClass:
4945     return visitDefaultStmt(cast<DefaultStmt>(S));
4946   case Stmt::AttributedStmtClass:
4947     return visitAttributedStmt(cast<AttributedStmt>(S));
4948   case Stmt::CXXTryStmtClass:
4949     return visitCXXTryStmt(cast<CXXTryStmt>(S));
4950   case Stmt::NullStmtClass:
4951     return true;
4952   // Always invalid statements.
4953   case Stmt::GCCAsmStmtClass:
4954   case Stmt::MSAsmStmtClass:
4955   case Stmt::GotoStmtClass:
4956     return this->emitInvalid(S);
4957   case Stmt::LabelStmtClass:
4958     return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
4959   default: {
4960     if (const auto *E = dyn_cast<Expr>(S))
4961       return this->discard(E);
4962     return false;
4963   }
4964   }
4965 }
4966 
4967 template <class Emitter>
4968 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
4969   BlockScope<Emitter> Scope(this);
4970   for (const auto *InnerStmt : S->body())
4971     if (!visitStmt(InnerStmt))
4972       return false;
4973   return Scope.destroyLocals();
4974 }
4975 
4976 template <class Emitter>
4977 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
4978   for (const auto *D : DS->decls()) {
4979     if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
4980             FunctionDecl>(D))
4981       continue;
4982 
4983     const auto *VD = dyn_cast<VarDecl>(D);
4984     if (!VD)
4985       return false;
4986     if (!this->visitVarDecl(VD))
4987       return false;
4988 
4989     // Register decomposition decl holding vars.
4990     if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) {
4991       for (auto *BD : DD->bindings())
4992         if (auto *KD = BD->getHoldingVar()) {
4993           if (!this->visitVarDecl(KD))
4994             return false;
4995         }
4996     }
4997   }
4998 
4999   return true;
5000 }
5001 
5002 template <class Emitter>
5003 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
5004   if (this->InStmtExpr)
5005     return this->emitUnsupported(RS);
5006 
5007   if (const Expr *RE = RS->getRetValue()) {
5008     LocalScope<Emitter> RetScope(this);
5009     if (ReturnType) {
5010       // Primitive types are simply returned.
5011       if (!this->visit(RE))
5012         return false;
5013       this->emitCleanup();
5014       return this->emitRet(*ReturnType, RS);
5015     } else if (RE->getType()->isVoidType()) {
5016       if (!this->visit(RE))
5017         return false;
5018     } else {
5019       InitLinkScope<Emitter> ILS(this, InitLink::RVO());
5020       // RVO - construct the value in the return location.
5021       if (!this->emitRVOPtr(RE))
5022         return false;
5023       if (!this->visitInitializer(RE))
5024         return false;
5025       if (!this->emitPopPtr(RE))
5026         return false;
5027 
5028       this->emitCleanup();
5029       return this->emitRetVoid(RS);
5030     }
5031   }
5032 
5033   // Void return.
5034   this->emitCleanup();
5035   return this->emitRetVoid(RS);
5036 }
5037 
5038 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
5039   if (auto *CondInit = IS->getInit())
5040     if (!visitStmt(CondInit))
5041       return false;
5042 
5043   if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
5044     if (!visitDeclStmt(CondDecl))
5045       return false;
5046 
5047   // Compile condition.
5048   if (IS->isNonNegatedConsteval()) {
5049     if (!this->emitIsConstantContext(IS))
5050       return false;
5051   } else if (IS->isNegatedConsteval()) {
5052     if (!this->emitIsConstantContext(IS))
5053       return false;
5054     if (!this->emitInv(IS))
5055       return false;
5056   } else {
5057     if (!this->visitBool(IS->getCond()))
5058       return false;
5059   }
5060 
5061   if (const Stmt *Else = IS->getElse()) {
5062     LabelTy LabelElse = this->getLabel();
5063     LabelTy LabelEnd = this->getLabel();
5064     if (!this->jumpFalse(LabelElse))
5065       return false;
5066     {
5067       LocalScope<Emitter> ThenScope(this);
5068       if (!visitStmt(IS->getThen()))
5069         return false;
5070       if (!ThenScope.destroyLocals())
5071         return false;
5072     }
5073     if (!this->jump(LabelEnd))
5074       return false;
5075     this->emitLabel(LabelElse);
5076     {
5077       LocalScope<Emitter> ElseScope(this);
5078       if (!visitStmt(Else))
5079         return false;
5080       if (!ElseScope.destroyLocals())
5081         return false;
5082     }
5083     this->emitLabel(LabelEnd);
5084   } else {
5085     LabelTy LabelEnd = this->getLabel();
5086     if (!this->jumpFalse(LabelEnd))
5087       return false;
5088     {
5089       LocalScope<Emitter> ThenScope(this);
5090       if (!visitStmt(IS->getThen()))
5091         return false;
5092       if (!ThenScope.destroyLocals())
5093         return false;
5094     }
5095     this->emitLabel(LabelEnd);
5096   }
5097 
5098   return true;
5099 }
5100 
5101 template <class Emitter>
5102 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
5103   const Expr *Cond = S->getCond();
5104   const Stmt *Body = S->getBody();
5105 
5106   LabelTy CondLabel = this->getLabel(); // Label before the condition.
5107   LabelTy EndLabel = this->getLabel();  // Label after the loop.
5108   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
5109 
5110   this->fallthrough(CondLabel);
5111   this->emitLabel(CondLabel);
5112 
5113   {
5114     LocalScope<Emitter> CondScope(this);
5115     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5116       if (!visitDeclStmt(CondDecl))
5117         return false;
5118 
5119     if (!this->visitBool(Cond))
5120       return false;
5121     if (!this->jumpFalse(EndLabel))
5122       return false;
5123 
5124     if (!this->visitStmt(Body))
5125       return false;
5126 
5127     if (!CondScope.destroyLocals())
5128       return false;
5129   }
5130   if (!this->jump(CondLabel))
5131     return false;
5132   this->fallthrough(EndLabel);
5133   this->emitLabel(EndLabel);
5134 
5135   return true;
5136 }
5137 
5138 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
5139   const Expr *Cond = S->getCond();
5140   const Stmt *Body = S->getBody();
5141 
5142   LabelTy StartLabel = this->getLabel();
5143   LabelTy EndLabel = this->getLabel();
5144   LabelTy CondLabel = this->getLabel();
5145   LoopScope<Emitter> LS(this, EndLabel, CondLabel);
5146 
5147   this->fallthrough(StartLabel);
5148   this->emitLabel(StartLabel);
5149 
5150   {
5151     LocalScope<Emitter> CondScope(this);
5152     if (!this->visitStmt(Body))
5153       return false;
5154     this->fallthrough(CondLabel);
5155     this->emitLabel(CondLabel);
5156     if (!this->visitBool(Cond))
5157       return false;
5158 
5159     if (!CondScope.destroyLocals())
5160       return false;
5161   }
5162   if (!this->jumpTrue(StartLabel))
5163     return false;
5164 
5165   this->fallthrough(EndLabel);
5166   this->emitLabel(EndLabel);
5167   return true;
5168 }
5169 
5170 template <class Emitter>
5171 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
5172   // for (Init; Cond; Inc) { Body }
5173   const Stmt *Init = S->getInit();
5174   const Expr *Cond = S->getCond();
5175   const Expr *Inc = S->getInc();
5176   const Stmt *Body = S->getBody();
5177 
5178   LabelTy EndLabel = this->getLabel();
5179   LabelTy CondLabel = this->getLabel();
5180   LabelTy IncLabel = this->getLabel();
5181   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5182 
5183   if (Init && !this->visitStmt(Init))
5184     return false;
5185 
5186   this->fallthrough(CondLabel);
5187   this->emitLabel(CondLabel);
5188 
5189   {
5190     LocalScope<Emitter> CondScope(this);
5191     if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5192       if (!visitDeclStmt(CondDecl))
5193         return false;
5194 
5195     if (Cond) {
5196       if (!this->visitBool(Cond))
5197         return false;
5198       if (!this->jumpFalse(EndLabel))
5199         return false;
5200     }
5201 
5202     if (Body && !this->visitStmt(Body))
5203       return false;
5204 
5205     this->fallthrough(IncLabel);
5206     this->emitLabel(IncLabel);
5207     if (Inc && !this->discard(Inc))
5208       return false;
5209 
5210     if (!CondScope.destroyLocals())
5211       return false;
5212   }
5213   if (!this->jump(CondLabel))
5214     return false;
5215 
5216   this->fallthrough(EndLabel);
5217   this->emitLabel(EndLabel);
5218   return true;
5219 }
5220 
5221 template <class Emitter>
5222 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
5223   const Stmt *Init = S->getInit();
5224   const Expr *Cond = S->getCond();
5225   const Expr *Inc = S->getInc();
5226   const Stmt *Body = S->getBody();
5227   const Stmt *BeginStmt = S->getBeginStmt();
5228   const Stmt *RangeStmt = S->getRangeStmt();
5229   const Stmt *EndStmt = S->getEndStmt();
5230   const VarDecl *LoopVar = S->getLoopVariable();
5231 
5232   LabelTy EndLabel = this->getLabel();
5233   LabelTy CondLabel = this->getLabel();
5234   LabelTy IncLabel = this->getLabel();
5235   LoopScope<Emitter> LS(this, EndLabel, IncLabel);
5236 
5237   // Emit declarations needed in the loop.
5238   if (Init && !this->visitStmt(Init))
5239     return false;
5240   if (!this->visitStmt(RangeStmt))
5241     return false;
5242   if (!this->visitStmt(BeginStmt))
5243     return false;
5244   if (!this->visitStmt(EndStmt))
5245     return false;
5246 
5247   // Now the condition as well as the loop variable assignment.
5248   this->fallthrough(CondLabel);
5249   this->emitLabel(CondLabel);
5250   if (!this->visitBool(Cond))
5251     return false;
5252   if (!this->jumpFalse(EndLabel))
5253     return false;
5254 
5255   if (!this->visitVarDecl(LoopVar))
5256     return false;
5257 
5258   // Body.
5259   {
5260     if (!this->visitStmt(Body))
5261       return false;
5262 
5263     this->fallthrough(IncLabel);
5264     this->emitLabel(IncLabel);
5265     if (!this->discard(Inc))
5266       return false;
5267   }
5268 
5269   if (!this->jump(CondLabel))
5270     return false;
5271 
5272   this->fallthrough(EndLabel);
5273   this->emitLabel(EndLabel);
5274   return true;
5275 }
5276 
5277 template <class Emitter>
5278 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
5279   if (!BreakLabel)
5280     return false;
5281 
5282   for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
5283        C = C->getParent())
5284     C->emitDestruction();
5285   return this->jump(*BreakLabel);
5286 }
5287 
5288 template <class Emitter>
5289 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
5290   if (!ContinueLabel)
5291     return false;
5292 
5293   for (VariableScope<Emitter> *C = VarScope;
5294        C && C->getParent() != ContinueVarScope; C = C->getParent())
5295     C->emitDestruction();
5296   return this->jump(*ContinueLabel);
5297 }
5298 
5299 template <class Emitter>
5300 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
5301   const Expr *Cond = S->getCond();
5302   PrimType CondT = this->classifyPrim(Cond->getType());
5303   LocalScope<Emitter> LS(this);
5304 
5305   LabelTy EndLabel = this->getLabel();
5306   OptLabelTy DefaultLabel = std::nullopt;
5307   unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
5308 
5309   if (const auto *CondInit = S->getInit())
5310     if (!visitStmt(CondInit))
5311       return false;
5312 
5313   if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
5314     if (!visitDeclStmt(CondDecl))
5315       return false;
5316 
5317   // Initialize condition variable.
5318   if (!this->visit(Cond))
5319     return false;
5320   if (!this->emitSetLocal(CondT, CondVar, S))
5321     return false;
5322 
5323   CaseMap CaseLabels;
5324   // Create labels and comparison ops for all case statements.
5325   for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
5326        SC = SC->getNextSwitchCase()) {
5327     if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
5328       // FIXME: Implement ranges.
5329       if (CS->caseStmtIsGNURange())
5330         return false;
5331       CaseLabels[SC] = this->getLabel();
5332 
5333       const Expr *Value = CS->getLHS();
5334       PrimType ValueT = this->classifyPrim(Value->getType());
5335 
5336       // Compare the case statement's value to the switch condition.
5337       if (!this->emitGetLocal(CondT, CondVar, CS))
5338         return false;
5339       if (!this->visit(Value))
5340         return false;
5341 
5342       // Compare and jump to the case label.
5343       if (!this->emitEQ(ValueT, S))
5344         return false;
5345       if (!this->jumpTrue(CaseLabels[CS]))
5346         return false;
5347     } else {
5348       assert(!DefaultLabel);
5349       DefaultLabel = this->getLabel();
5350     }
5351   }
5352 
5353   // If none of the conditions above were true, fall through to the default
5354   // statement or jump after the switch statement.
5355   if (DefaultLabel) {
5356     if (!this->jump(*DefaultLabel))
5357       return false;
5358   } else {
5359     if (!this->jump(EndLabel))
5360       return false;
5361   }
5362 
5363   SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
5364   if (!this->visitStmt(S->getBody()))
5365     return false;
5366   this->emitLabel(EndLabel);
5367 
5368   return LS.destroyLocals();
5369 }
5370 
5371 template <class Emitter>
5372 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
5373   this->emitLabel(CaseLabels[S]);
5374   return this->visitStmt(S->getSubStmt());
5375 }
5376 
5377 template <class Emitter>
5378 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
5379   this->emitLabel(*DefaultLabel);
5380   return this->visitStmt(S->getSubStmt());
5381 }
5382 
5383 template <class Emitter>
5384 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
5385   if (this->Ctx.getLangOpts().CXXAssumptions &&
5386       !this->Ctx.getLangOpts().MSVCCompat) {
5387     for (const Attr *A : S->getAttrs()) {
5388       auto *AA = dyn_cast<CXXAssumeAttr>(A);
5389       if (!AA)
5390         continue;
5391 
5392       assert(isa<NullStmt>(S->getSubStmt()));
5393 
5394       const Expr *Assumption = AA->getAssumption();
5395       if (Assumption->isValueDependent())
5396         return false;
5397 
5398       if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
5399         continue;
5400 
5401       // Evaluate assumption.
5402       if (!this->visitBool(Assumption))
5403         return false;
5404 
5405       if (!this->emitAssume(Assumption))
5406         return false;
5407     }
5408   }
5409 
5410   // Ignore other attributes.
5411   return this->visitStmt(S->getSubStmt());
5412 }
5413 
5414 template <class Emitter>
5415 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
5416   // Ignore all handlers.
5417   return this->visitStmt(S->getTryBlock());
5418 }
5419 
5420 template <class Emitter>
5421 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
5422   assert(MD->isLambdaStaticInvoker());
5423   assert(MD->hasBody());
5424   assert(cast<CompoundStmt>(MD->getBody())->body_empty());
5425 
5426   const CXXRecordDecl *ClosureClass = MD->getParent();
5427   const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
5428   assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
5429   const Function *Func = this->getFunction(LambdaCallOp);
5430   if (!Func)
5431     return false;
5432   assert(Func->hasThisPointer());
5433   assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
5434 
5435   if (Func->hasRVO()) {
5436     if (!this->emitRVOPtr(MD))
5437       return false;
5438   }
5439 
5440   // The lambda call operator needs an instance pointer, but we don't have
5441   // one here, and we don't need one either because the lambda cannot have
5442   // any captures, as verified above. Emit a null pointer. This is then
5443   // special-cased when interpreting to not emit any misleading diagnostics.
5444   if (!this->emitNullPtr(0, nullptr, MD))
5445     return false;
5446 
5447   // Forward all arguments from the static invoker to the lambda call operator.
5448   for (const ParmVarDecl *PVD : MD->parameters()) {
5449     auto It = this->Params.find(PVD);
5450     assert(It != this->Params.end());
5451 
5452     // We do the lvalue-to-rvalue conversion manually here, so no need
5453     // to care about references.
5454     PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
5455     if (!this->emitGetParam(ParamType, It->second.Offset, MD))
5456       return false;
5457   }
5458 
5459   if (!this->emitCall(Func, 0, LambdaCallOp))
5460     return false;
5461 
5462   this->emitCleanup();
5463   if (ReturnType)
5464     return this->emitRet(*ReturnType, MD);
5465 
5466   // Nothing to do, since we emitted the RVO pointer above.
5467   return this->emitRetVoid(MD);
5468 }
5469 
5470 template <class Emitter>
5471 bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
5472   if (Ctx.getLangOpts().CPlusPlus23)
5473     return true;
5474 
5475   if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
5476     return true;
5477 
5478   return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
5479 }
5480 
5481 template <class Emitter>
5482 bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
5483   assert(!ReturnType);
5484 
5485   auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
5486                                   const Expr *InitExpr) -> bool {
5487     // We don't know what to do with these, so just return false.
5488     if (InitExpr->getType().isNull())
5489       return false;
5490 
5491     if (std::optional<PrimType> T = this->classify(InitExpr)) {
5492       if (!this->visit(InitExpr))
5493         return false;
5494 
5495       if (F->isBitField())
5496         return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
5497       return this->emitInitThisField(*T, FieldOffset, InitExpr);
5498     }
5499     // Non-primitive case. Get a pointer to the field-to-initialize
5500     // on the stack and call visitInitialzer() for it.
5501     InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
5502     if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
5503       return false;
5504 
5505     if (!this->visitInitializer(InitExpr))
5506       return false;
5507 
5508     return this->emitFinishInitPop(InitExpr);
5509   };
5510 
5511   const RecordDecl *RD = Ctor->getParent();
5512   const Record *R = this->getRecord(RD);
5513   if (!R)
5514     return false;
5515 
5516   if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
5517     // union copy and move ctors are special.
5518     assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
5519     if (!this->emitThis(Ctor))
5520       return false;
5521 
5522     auto PVD = Ctor->getParamDecl(0);
5523     ParamOffset PO = this->Params[PVD]; // Must exist.
5524 
5525     if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
5526       return false;
5527 
5528     return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
5529            this->emitRetVoid(Ctor);
5530   }
5531 
5532   InitLinkScope<Emitter> InitScope(this, InitLink::This());
5533   for (const auto *Init : Ctor->inits()) {
5534     // Scope needed for the initializers.
5535     BlockScope<Emitter> Scope(this);
5536 
5537     const Expr *InitExpr = Init->getInit();
5538     if (const FieldDecl *Member = Init->getMember()) {
5539       const Record::Field *F = R->getField(Member);
5540 
5541       if (!emitFieldInitializer(F, F->Offset, InitExpr))
5542         return false;
5543     } else if (const Type *Base = Init->getBaseClass()) {
5544       const auto *BaseDecl = Base->getAsCXXRecordDecl();
5545       assert(BaseDecl);
5546 
5547       if (Init->isBaseVirtual()) {
5548         assert(R->getVirtualBase(BaseDecl));
5549         if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
5550           return false;
5551 
5552       } else {
5553         // Base class initializer.
5554         // Get This Base and call initializer on it.
5555         const Record::Base *B = R->getBase(BaseDecl);
5556         assert(B);
5557         if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
5558           return false;
5559       }
5560 
5561       if (!this->visitInitializer(InitExpr))
5562         return false;
5563       if (!this->emitFinishInitPop(InitExpr))
5564         return false;
5565     } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
5566       assert(IFD->getChainingSize() >= 2);
5567 
5568       unsigned NestedFieldOffset = 0;
5569       const Record::Field *NestedField = nullptr;
5570       for (const NamedDecl *ND : IFD->chain()) {
5571         const auto *FD = cast<FieldDecl>(ND);
5572         const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
5573         assert(FieldRecord);
5574 
5575         NestedField = FieldRecord->getField(FD);
5576         assert(NestedField);
5577 
5578         NestedFieldOffset += NestedField->Offset;
5579       }
5580       assert(NestedField);
5581 
5582       if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
5583         return false;
5584     } else {
5585       assert(Init->isDelegatingInitializer());
5586       if (!this->emitThis(InitExpr))
5587         return false;
5588       if (!this->visitInitializer(Init->getInit()))
5589         return false;
5590       if (!this->emitPopPtr(InitExpr))
5591         return false;
5592     }
5593 
5594     if (!Scope.destroyLocals())
5595       return false;
5596   }
5597 
5598   if (const auto *Body = Ctor->getBody())
5599     if (!visitStmt(Body))
5600       return false;
5601 
5602   return this->emitRetVoid(SourceInfo{});
5603 }
5604 
5605 template <class Emitter>
5606 bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
5607   const RecordDecl *RD = Dtor->getParent();
5608   const Record *R = this->getRecord(RD);
5609   if (!R)
5610     return false;
5611 
5612   if (!Dtor->isTrivial() && Dtor->getBody()) {
5613     if (!this->visitStmt(Dtor->getBody()))
5614       return false;
5615   }
5616 
5617   if (!this->emitThis(Dtor))
5618     return false;
5619 
5620   assert(R);
5621   if (!R->isUnion()) {
5622     // First, destroy all fields.
5623     for (const Record::Field &Field : llvm::reverse(R->fields())) {
5624       const Descriptor *D = Field.Desc;
5625       if (!D->isPrimitive() && !D->isPrimitiveArray()) {
5626         if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
5627           return false;
5628         if (!this->emitDestruction(D, SourceInfo{}))
5629           return false;
5630         if (!this->emitPopPtr(SourceInfo{}))
5631           return false;
5632       }
5633     }
5634   }
5635 
5636   for (const Record::Base &Base : llvm::reverse(R->bases())) {
5637     if (Base.R->isAnonymousUnion())
5638       continue;
5639 
5640     if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
5641       return false;
5642     if (!this->emitRecordDestruction(Base.R, {}))
5643       return false;
5644     if (!this->emitPopPtr(SourceInfo{}))
5645       return false;
5646   }
5647 
5648   // FIXME: Virtual bases.
5649   return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
5650 }
5651 
5652 template <class Emitter>
5653 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
5654   // Classify the return type.
5655   ReturnType = this->classify(F->getReturnType());
5656 
5657   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
5658     return this->compileConstructor(Ctor);
5659   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
5660     return this->compileDestructor(Dtor);
5661 
5662   // Emit custom code if this is a lambda static invoker.
5663   if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
5664       MD && MD->isLambdaStaticInvoker())
5665     return this->emitLambdaStaticInvokerBody(MD);
5666 
5667   // Regular functions.
5668   if (const auto *Body = F->getBody())
5669     if (!visitStmt(Body))
5670       return false;
5671 
5672   // Emit a guard return to protect against a code path missing one.
5673   if (F->getReturnType()->isVoidType())
5674     return this->emitRetVoid(SourceInfo{});
5675   return this->emitNoRet(SourceInfo{});
5676 }
5677 
5678 template <class Emitter>
5679 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
5680   const Expr *SubExpr = E->getSubExpr();
5681   if (SubExpr->getType()->isAnyComplexType())
5682     return this->VisitComplexUnaryOperator(E);
5683   if (SubExpr->getType()->isVectorType())
5684     return this->VisitVectorUnaryOperator(E);
5685   if (SubExpr->getType()->isFixedPointType())
5686     return this->VisitFixedPointUnaryOperator(E);
5687   std::optional<PrimType> T = classify(SubExpr->getType());
5688 
5689   switch (E->getOpcode()) {
5690   case UO_PostInc: { // x++
5691     if (!Ctx.getLangOpts().CPlusPlus14)
5692       return this->emitInvalid(E);
5693     if (!T)
5694       return this->emitError(E);
5695 
5696     if (!this->visit(SubExpr))
5697       return false;
5698 
5699     if (T == PT_Ptr || T == PT_FnPtr) {
5700       if (!this->emitIncPtr(E))
5701         return false;
5702 
5703       return DiscardResult ? this->emitPopPtr(E) : true;
5704     }
5705 
5706     if (T == PT_Float) {
5707       return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
5708                            : this->emitIncf(getFPOptions(E), E);
5709     }
5710 
5711     return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
5712   }
5713   case UO_PostDec: { // x--
5714     if (!Ctx.getLangOpts().CPlusPlus14)
5715       return this->emitInvalid(E);
5716     if (!T)
5717       return this->emitError(E);
5718 
5719     if (!this->visit(SubExpr))
5720       return false;
5721 
5722     if (T == PT_Ptr || T == PT_FnPtr) {
5723       if (!this->emitDecPtr(E))
5724         return false;
5725 
5726       return DiscardResult ? this->emitPopPtr(E) : true;
5727     }
5728 
5729     if (T == PT_Float) {
5730       return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
5731                            : this->emitDecf(getFPOptions(E), E);
5732     }
5733 
5734     return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
5735   }
5736   case UO_PreInc: { // ++x
5737     if (!Ctx.getLangOpts().CPlusPlus14)
5738       return this->emitInvalid(E);
5739     if (!T)
5740       return this->emitError(E);
5741 
5742     if (!this->visit(SubExpr))
5743       return false;
5744 
5745     if (T == PT_Ptr || T == PT_FnPtr) {
5746       if (!this->emitLoadPtr(E))
5747         return false;
5748       if (!this->emitConstUint8(1, E))
5749         return false;
5750       if (!this->emitAddOffsetUint8(E))
5751         return false;
5752       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5753     }
5754 
5755     // Post-inc and pre-inc are the same if the value is to be discarded.
5756     if (DiscardResult) {
5757       if (T == PT_Float)
5758         return this->emitIncfPop(getFPOptions(E), E);
5759       return this->emitIncPop(*T, E);
5760     }
5761 
5762     if (T == PT_Float) {
5763       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5764       if (!this->emitLoadFloat(E))
5765         return false;
5766       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5767         return false;
5768       if (!this->emitAddf(getFPOptions(E), E))
5769         return false;
5770       if (!this->emitStoreFloat(E))
5771         return false;
5772     } else {
5773       assert(isIntegralType(*T));
5774       if (!this->emitLoad(*T, E))
5775         return false;
5776       if (!this->emitConst(1, E))
5777         return false;
5778       if (!this->emitAdd(*T, E))
5779         return false;
5780       if (!this->emitStore(*T, E))
5781         return false;
5782     }
5783     return E->isGLValue() || this->emitLoadPop(*T, E);
5784   }
5785   case UO_PreDec: { // --x
5786     if (!Ctx.getLangOpts().CPlusPlus14)
5787       return this->emitInvalid(E);
5788     if (!T)
5789       return this->emitError(E);
5790 
5791     if (!this->visit(SubExpr))
5792       return false;
5793 
5794     if (T == PT_Ptr || T == PT_FnPtr) {
5795       if (!this->emitLoadPtr(E))
5796         return false;
5797       if (!this->emitConstUint8(1, E))
5798         return false;
5799       if (!this->emitSubOffsetUint8(E))
5800         return false;
5801       return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
5802     }
5803 
5804     // Post-dec and pre-dec are the same if the value is to be discarded.
5805     if (DiscardResult) {
5806       if (T == PT_Float)
5807         return this->emitDecfPop(getFPOptions(E), E);
5808       return this->emitDecPop(*T, E);
5809     }
5810 
5811     if (T == PT_Float) {
5812       const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
5813       if (!this->emitLoadFloat(E))
5814         return false;
5815       if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
5816         return false;
5817       if (!this->emitSubf(getFPOptions(E), E))
5818         return false;
5819       if (!this->emitStoreFloat(E))
5820         return false;
5821     } else {
5822       assert(isIntegralType(*T));
5823       if (!this->emitLoad(*T, E))
5824         return false;
5825       if (!this->emitConst(1, E))
5826         return false;
5827       if (!this->emitSub(*T, E))
5828         return false;
5829       if (!this->emitStore(*T, E))
5830         return false;
5831     }
5832     return E->isGLValue() || this->emitLoadPop(*T, E);
5833   }
5834   case UO_LNot: // !x
5835     if (!T)
5836       return this->emitError(E);
5837 
5838     if (DiscardResult)
5839       return this->discard(SubExpr);
5840 
5841     if (!this->visitBool(SubExpr))
5842       return false;
5843 
5844     if (!this->emitInv(E))
5845       return false;
5846 
5847     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5848       return this->emitCast(PT_Bool, ET, E);
5849     return true;
5850   case UO_Minus: // -x
5851     if (!T)
5852       return this->emitError(E);
5853 
5854     if (!this->visit(SubExpr))
5855       return false;
5856     return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
5857   case UO_Plus: // +x
5858     if (!T)
5859       return this->emitError(E);
5860 
5861     if (!this->visit(SubExpr)) // noop
5862       return false;
5863     return DiscardResult ? this->emitPop(*T, E) : true;
5864   case UO_AddrOf: // &x
5865     if (E->getType()->isMemberPointerType()) {
5866       // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5867       // member can be formed.
5868       return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
5869     }
5870     // We should already have a pointer when we get here.
5871     return this->delegate(SubExpr);
5872   case UO_Deref: // *x
5873     if (DiscardResult) {
5874       // assert(false);
5875       return this->discard(SubExpr);
5876     }
5877 
5878     if (!this->visit(SubExpr))
5879       return false;
5880     if (classifyPrim(SubExpr) == PT_Ptr)
5881       return this->emitNarrowPtr(E);
5882     return true;
5883 
5884   case UO_Not: // ~x
5885     if (!T)
5886       return this->emitError(E);
5887 
5888     if (!this->visit(SubExpr))
5889       return false;
5890     return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
5891   case UO_Real: // __real x
5892     assert(T);
5893     return this->delegate(SubExpr);
5894   case UO_Imag: { // __imag x
5895     assert(T);
5896     if (!this->discard(SubExpr))
5897       return false;
5898     return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
5899   }
5900   case UO_Extension:
5901     return this->delegate(SubExpr);
5902   case UO_Coawait:
5903     assert(false && "Unhandled opcode");
5904   }
5905 
5906   return false;
5907 }
5908 
5909 template <class Emitter>
5910 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
5911   const Expr *SubExpr = E->getSubExpr();
5912   assert(SubExpr->getType()->isAnyComplexType());
5913 
5914   if (DiscardResult)
5915     return this->discard(SubExpr);
5916 
5917   std::optional<PrimType> ResT = classify(E);
5918   auto prepareResult = [=]() -> bool {
5919     if (!ResT && !Initializing) {
5920       std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
5921       if (!LocalIndex)
5922         return false;
5923       return this->emitGetPtrLocal(*LocalIndex, E);
5924     }
5925 
5926     return true;
5927   };
5928 
5929   // The offset of the temporary, if we created one.
5930   unsigned SubExprOffset = ~0u;
5931   auto createTemp = [=, &SubExprOffset]() -> bool {
5932     SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
5933     if (!this->visit(SubExpr))
5934       return false;
5935     return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
5936   };
5937 
5938   PrimType ElemT = classifyComplexElementType(SubExpr->getType());
5939   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
5940     if (!this->emitGetLocal(PT_Ptr, Offset, E))
5941       return false;
5942     return this->emitArrayElemPop(ElemT, Index, E);
5943   };
5944 
5945   switch (E->getOpcode()) {
5946   case UO_Minus:
5947     if (!prepareResult())
5948       return false;
5949     if (!createTemp())
5950       return false;
5951     for (unsigned I = 0; I != 2; ++I) {
5952       if (!getElem(SubExprOffset, I))
5953         return false;
5954       if (!this->emitNeg(ElemT, E))
5955         return false;
5956       if (!this->emitInitElem(ElemT, I, E))
5957         return false;
5958     }
5959     break;
5960 
5961   case UO_Plus:   // +x
5962   case UO_AddrOf: // &x
5963   case UO_Deref:  // *x
5964     return this->delegate(SubExpr);
5965 
5966   case UO_LNot:
5967     if (!this->visit(SubExpr))
5968       return false;
5969     if (!this->emitComplexBoolCast(SubExpr))
5970       return false;
5971     if (!this->emitInv(E))
5972       return false;
5973     if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
5974       return this->emitCast(PT_Bool, ET, E);
5975     return true;
5976 
5977   case UO_Real:
5978     return this->emitComplexReal(SubExpr);
5979 
5980   case UO_Imag:
5981     if (!this->visit(SubExpr))
5982       return false;
5983 
5984     if (SubExpr->isLValue()) {
5985       if (!this->emitConstUint8(1, E))
5986         return false;
5987       return this->emitArrayElemPtrPopUint8(E);
5988     }
5989 
5990     // Since our _Complex implementation does not map to a primitive type,
5991     // we sometimes have to do the lvalue-to-rvalue conversion here manually.
5992     return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
5993 
5994   case UO_Not: // ~x
5995     if (!this->visit(SubExpr))
5996       return false;
5997     // Negate the imaginary component.
5998     if (!this->emitArrayElem(ElemT, 1, E))
5999       return false;
6000     if (!this->emitNeg(ElemT, E))
6001       return false;
6002     if (!this->emitInitElem(ElemT, 1, E))
6003       return false;
6004     return DiscardResult ? this->emitPopPtr(E) : true;
6005 
6006   case UO_Extension:
6007     return this->delegate(SubExpr);
6008 
6009   default:
6010     return this->emitInvalid(E);
6011   }
6012 
6013   return true;
6014 }
6015 
6016 template <class Emitter>
6017 bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
6018   const Expr *SubExpr = E->getSubExpr();
6019   assert(SubExpr->getType()->isVectorType());
6020 
6021   if (DiscardResult)
6022     return this->discard(SubExpr);
6023 
6024   auto UnaryOp = E->getOpcode();
6025   if (UnaryOp == UO_Extension)
6026     return this->delegate(SubExpr);
6027 
6028   if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
6029       UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
6030     return this->emitInvalid(E);
6031 
6032   // Nothing to do here.
6033   if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
6034     return this->delegate(SubExpr);
6035 
6036   if (!Initializing) {
6037     std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
6038     if (!LocalIndex)
6039       return false;
6040     if (!this->emitGetPtrLocal(*LocalIndex, E))
6041       return false;
6042   }
6043 
6044   // The offset of the temporary, if we created one.
6045   unsigned SubExprOffset =
6046       this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
6047   if (!this->visit(SubExpr))
6048     return false;
6049   if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
6050     return false;
6051 
6052   const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
6053   PrimType ElemT = classifyVectorElementType(SubExpr->getType());
6054   auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
6055     if (!this->emitGetLocal(PT_Ptr, Offset, E))
6056       return false;
6057     return this->emitArrayElemPop(ElemT, Index, E);
6058   };
6059 
6060   switch (UnaryOp) {
6061   case UO_Minus:
6062     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
6063       if (!getElem(SubExprOffset, I))
6064         return false;
6065       if (!this->emitNeg(ElemT, E))
6066         return false;
6067       if (!this->emitInitElem(ElemT, I, E))
6068         return false;
6069     }
6070     break;
6071   case UO_LNot: { // !x
6072     // In C++, the logic operators !, &&, || are available for vectors. !v is
6073     // equivalent to v == 0.
6074     //
6075     // The result of the comparison is a vector of the same width and number of
6076     // elements as the comparison operands with a signed integral element type.
6077     //
6078     // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
6079     QualType ResultVecTy = E->getType();
6080     PrimType ResultVecElemT =
6081         classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
6082     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
6083       if (!getElem(SubExprOffset, I))
6084         return false;
6085       // operator ! on vectors returns -1 for 'truth', so negate it.
6086       if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
6087         return false;
6088       if (!this->emitInv(E))
6089         return false;
6090       if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
6091         return false;
6092       if (!this->emitNeg(ElemT, E))
6093         return false;
6094       if (ElemT != ResultVecElemT &&
6095           !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
6096         return false;
6097       if (!this->emitInitElem(ResultVecElemT, I, E))
6098         return false;
6099     }
6100     break;
6101   }
6102   case UO_Not: // ~x
6103     for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
6104       if (!getElem(SubExprOffset, I))
6105         return false;
6106       if (ElemT == PT_Bool) {
6107         if (!this->emitInv(E))
6108           return false;
6109       } else {
6110         if (!this->emitComp(ElemT, E))
6111           return false;
6112       }
6113       if (!this->emitInitElem(ElemT, I, E))
6114         return false;
6115     }
6116     break;
6117   default:
6118     llvm_unreachable("Unsupported unary operators should be handled up front");
6119   }
6120   return true;
6121 }
6122 
6123 template <class Emitter>
6124 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
6125   if (DiscardResult)
6126     return true;
6127 
6128   if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
6129     return this->emitConst(ECD->getInitVal(), E);
6130   } else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
6131     return this->visit(BD->getBinding());
6132   } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
6133     const Function *F = getFunction(FuncDecl);
6134     return F && this->emitGetFnPtr(F, E);
6135   } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
6136     if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
6137       if (!this->emitGetPtrGlobal(*Index, E))
6138         return false;
6139       if (std::optional<PrimType> T = classify(E->getType())) {
6140         if (!this->visitAPValue(TPOD->getValue(), *T, E))
6141           return false;
6142         return this->emitInitGlobal(*T, *Index, E);
6143       }
6144       return this->visitAPValueInitializer(TPOD->getValue(), E);
6145     }
6146     return false;
6147   }
6148 
6149   // References are implemented via pointers, so when we see a DeclRefExpr
6150   // pointing to a reference, we need to get its value directly (i.e. the
6151   // pointer to the actual value) instead of a pointer to the pointer to the
6152   // value.
6153   bool IsReference = D->getType()->isReferenceType();
6154 
6155   // Check for local/global variables and parameters.
6156   if (auto It = Locals.find(D); It != Locals.end()) {
6157     const unsigned Offset = It->second.Offset;
6158     if (IsReference)
6159       return this->emitGetLocal(PT_Ptr, Offset, E);
6160     return this->emitGetPtrLocal(Offset, E);
6161   } else if (auto GlobalIndex = P.getGlobal(D)) {
6162     if (IsReference) {
6163       if (!Ctx.getLangOpts().CPlusPlus11)
6164         return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
6165       return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
6166     }
6167 
6168     return this->emitGetPtrGlobal(*GlobalIndex, E);
6169   } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6170     if (auto It = this->Params.find(PVD); It != this->Params.end()) {
6171       if (IsReference || !It->second.IsPtr)
6172         return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
6173 
6174       return this->emitGetPtrParam(It->second.Offset, E);
6175     }
6176 
6177     if (D->getType()->isReferenceType())
6178       return this->emitDummyPtr(D, E);
6179   }
6180 
6181   // In case we need to re-visit a declaration.
6182   auto revisit = [&](const VarDecl *VD) -> bool {
6183     auto VarState = this->visitDecl(VD);
6184 
6185     if (VarState.notCreated())
6186       return true;
6187     if (!VarState)
6188       return false;
6189     // Retry.
6190     return this->visitDeclRef(D, E);
6191   };
6192 
6193   // Handle lambda captures.
6194   if (auto It = this->LambdaCaptures.find(D);
6195       It != this->LambdaCaptures.end()) {
6196     auto [Offset, IsPtr] = It->second;
6197 
6198     if (IsPtr)
6199       return this->emitGetThisFieldPtr(Offset, E);
6200     return this->emitGetPtrThisField(Offset, E);
6201   } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
6202              DRE && DRE->refersToEnclosingVariableOrCapture()) {
6203     if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
6204       return revisit(VD);
6205   }
6206 
6207   // Avoid infinite recursion.
6208   if (D == InitializingDecl)
6209     return this->emitDummyPtr(D, E);
6210 
6211   // Try to lazily visit (or emit dummy pointers for) declarations
6212   // we haven't seen yet.
6213   // For C.
6214   if (!Ctx.getLangOpts().CPlusPlus) {
6215     if (const auto *VD = dyn_cast<VarDecl>(D);
6216         VD && VD->getAnyInitializer() &&
6217         VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
6218       return revisit(VD);
6219     return this->emitDummyPtr(D, E);
6220   }
6221 
6222   // ... and C++.
6223   const auto *VD = dyn_cast<VarDecl>(D);
6224   if (!VD)
6225     return this->emitDummyPtr(D, E);
6226 
6227   const auto typeShouldBeVisited = [&](QualType T) -> bool {
6228     if (T.isConstant(Ctx.getASTContext()))
6229       return true;
6230     return T->isReferenceType();
6231   };
6232 
6233   // DecompositionDecls are just proxies for us.
6234   if (isa<DecompositionDecl>(VD))
6235     return revisit(VD);
6236 
6237   if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
6238       typeShouldBeVisited(VD->getType())) {
6239     if (const Expr *Init = VD->getAnyInitializer();
6240         Init && !Init->isValueDependent()) {
6241       // Whether or not the evaluation is successul doesn't really matter
6242       // here -- we will create a global variable in any case, and that
6243       // will have the state of initializer evaluation attached.
6244       APValue V;
6245       SmallVector<PartialDiagnosticAt> Notes;
6246       (void)Init->EvaluateAsInitializer(V, Ctx.getASTContext(), VD, Notes,
6247                                         true);
6248       return this->visitDeclRef(D, E);
6249     }
6250     return revisit(VD);
6251   }
6252 
6253   // FIXME: The evaluateValue() check here is a little ridiculous, since
6254   // it will ultimately call into Context::evaluateAsInitializer(). In
6255   // other words, we're evaluating the initializer, just to know if we can
6256   // evaluate the initializer.
6257   if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
6258       VD->getInit() && !VD->getInit()->isValueDependent()) {
6259 
6260     if (VD->evaluateValue())
6261       return revisit(VD);
6262 
6263     if (!D->getType()->isReferenceType())
6264       return this->emitDummyPtr(D, E);
6265 
6266     return this->emitInvalidDeclRef(cast<DeclRefExpr>(E),
6267                                     /*InitializerFailed=*/true, E);
6268   }
6269 
6270   return this->emitDummyPtr(D, E);
6271 }
6272 
6273 template <class Emitter>
6274 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
6275   const auto *D = E->getDecl();
6276   return this->visitDeclRef(D, E);
6277 }
6278 
6279 template <class Emitter> void Compiler<Emitter>::emitCleanup() {
6280   for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
6281     C->emitDestruction();
6282 }
6283 
6284 template <class Emitter>
6285 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
6286                                               const QualType DerivedType) {
6287   const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
6288     if (const auto *R = Ty->getPointeeCXXRecordDecl())
6289       return R;
6290     return Ty->getAsCXXRecordDecl();
6291   };
6292   const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
6293   const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
6294 
6295   return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
6296 }
6297 
6298 /// Emit casts from a PrimType to another PrimType.
6299 template <class Emitter>
6300 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
6301                                      QualType ToQT, const Expr *E) {
6302 
6303   if (FromT == PT_Float) {
6304     // Floating to floating.
6305     if (ToT == PT_Float) {
6306       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6307       return this->emitCastFP(ToSem, getRoundingMode(E), E);
6308     }
6309 
6310     if (ToT == PT_IntAP)
6311       return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
6312                                               getFPOptions(E), E);
6313     if (ToT == PT_IntAPS)
6314       return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
6315                                                getFPOptions(E), E);
6316 
6317     // Float to integral.
6318     if (isIntegralType(ToT) || ToT == PT_Bool)
6319       return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
6320   }
6321 
6322   if (isIntegralType(FromT) || FromT == PT_Bool) {
6323     if (ToT == PT_IntAP)
6324       return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
6325     if (ToT == PT_IntAPS)
6326       return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
6327 
6328     // Integral to integral.
6329     if (isIntegralType(ToT) || ToT == PT_Bool)
6330       return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
6331 
6332     if (ToT == PT_Float) {
6333       // Integral to floating.
6334       const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
6335       return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
6336     }
6337   }
6338 
6339   return false;
6340 }
6341 
6342 /// Emits __real(SubExpr)
6343 template <class Emitter>
6344 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
6345   assert(SubExpr->getType()->isAnyComplexType());
6346 
6347   if (DiscardResult)
6348     return this->discard(SubExpr);
6349 
6350   if (!this->visit(SubExpr))
6351     return false;
6352   if (SubExpr->isLValue()) {
6353     if (!this->emitConstUint8(0, SubExpr))
6354       return false;
6355     return this->emitArrayElemPtrPopUint8(SubExpr);
6356   }
6357 
6358   // Rvalue, load the actual element.
6359   return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
6360                                 0, SubExpr);
6361 }
6362 
6363 template <class Emitter>
6364 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
6365   assert(!DiscardResult);
6366   PrimType ElemT = classifyComplexElementType(E->getType());
6367   // We emit the expression (__real(E) != 0 || __imag(E) != 0)
6368   // for us, that means (bool)E[0] || (bool)E[1]
6369   if (!this->emitArrayElem(ElemT, 0, E))
6370     return false;
6371   if (ElemT == PT_Float) {
6372     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6373       return false;
6374   } else {
6375     if (!this->emitCast(ElemT, PT_Bool, E))
6376       return false;
6377   }
6378 
6379   // We now have the bool value of E[0] on the stack.
6380   LabelTy LabelTrue = this->getLabel();
6381   if (!this->jumpTrue(LabelTrue))
6382     return false;
6383 
6384   if (!this->emitArrayElemPop(ElemT, 1, E))
6385     return false;
6386   if (ElemT == PT_Float) {
6387     if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
6388       return false;
6389   } else {
6390     if (!this->emitCast(ElemT, PT_Bool, E))
6391       return false;
6392   }
6393   // Leave the boolean value of E[1] on the stack.
6394   LabelTy EndLabel = this->getLabel();
6395   this->jump(EndLabel);
6396 
6397   this->emitLabel(LabelTrue);
6398   if (!this->emitPopPtr(E))
6399     return false;
6400   if (!this->emitConstBool(true, E))
6401     return false;
6402 
6403   this->fallthrough(EndLabel);
6404   this->emitLabel(EndLabel);
6405 
6406   return true;
6407 }
6408 
6409 template <class Emitter>
6410 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
6411                                               const BinaryOperator *E) {
6412   assert(E->isComparisonOp());
6413   assert(!Initializing);
6414   assert(!DiscardResult);
6415 
6416   PrimType ElemT;
6417   bool LHSIsComplex;
6418   unsigned LHSOffset;
6419   if (LHS->getType()->isAnyComplexType()) {
6420     LHSIsComplex = true;
6421     ElemT = classifyComplexElementType(LHS->getType());
6422     LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
6423                                        /*IsExtended=*/false);
6424     if (!this->visit(LHS))
6425       return false;
6426     if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
6427       return false;
6428   } else {
6429     LHSIsComplex = false;
6430     PrimType LHST = classifyPrim(LHS->getType());
6431     LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
6432     if (!this->visit(LHS))
6433       return false;
6434     if (!this->emitSetLocal(LHST, LHSOffset, E))
6435       return false;
6436   }
6437 
6438   bool RHSIsComplex;
6439   unsigned RHSOffset;
6440   if (RHS->getType()->isAnyComplexType()) {
6441     RHSIsComplex = true;
6442     ElemT = classifyComplexElementType(RHS->getType());
6443     RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
6444                                        /*IsExtended=*/false);
6445     if (!this->visit(RHS))
6446       return false;
6447     if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
6448       return false;
6449   } else {
6450     RHSIsComplex = false;
6451     PrimType RHST = classifyPrim(RHS->getType());
6452     RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
6453     if (!this->visit(RHS))
6454       return false;
6455     if (!this->emitSetLocal(RHST, RHSOffset, E))
6456       return false;
6457   }
6458 
6459   auto getElem = [&](unsigned LocalOffset, unsigned Index,
6460                      bool IsComplex) -> bool {
6461     if (IsComplex) {
6462       if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
6463         return false;
6464       return this->emitArrayElemPop(ElemT, Index, E);
6465     }
6466     return this->emitGetLocal(ElemT, LocalOffset, E);
6467   };
6468 
6469   for (unsigned I = 0; I != 2; ++I) {
6470     // Get both values.
6471     if (!getElem(LHSOffset, I, LHSIsComplex))
6472       return false;
6473     if (!getElem(RHSOffset, I, RHSIsComplex))
6474       return false;
6475     // And compare them.
6476     if (!this->emitEQ(ElemT, E))
6477       return false;
6478 
6479     if (!this->emitCastBoolUint8(E))
6480       return false;
6481   }
6482 
6483   // We now have two bool values on the stack. Compare those.
6484   if (!this->emitAddUint8(E))
6485     return false;
6486   if (!this->emitConstUint8(2, E))
6487     return false;
6488 
6489   if (E->getOpcode() == BO_EQ) {
6490     if (!this->emitEQUint8(E))
6491       return false;
6492   } else if (E->getOpcode() == BO_NE) {
6493     if (!this->emitNEUint8(E))
6494       return false;
6495   } else
6496     return false;
6497 
6498   // In C, this returns an int.
6499   if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
6500     return this->emitCast(PT_Bool, ResT, E);
6501   return true;
6502 }
6503 
6504 /// When calling this, we have a pointer of the local-to-destroy
6505 /// on the stack.
6506 /// Emit destruction of record types (or arrays of record types).
6507 template <class Emitter>
6508 bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
6509   assert(R);
6510   assert(!R->isAnonymousUnion());
6511   const CXXDestructorDecl *Dtor = R->getDestructor();
6512   if (!Dtor || Dtor->isTrivial())
6513     return true;
6514 
6515   assert(Dtor);
6516   const Function *DtorFunc = getFunction(Dtor);
6517   if (!DtorFunc)
6518     return false;
6519   assert(DtorFunc->hasThisPointer());
6520   assert(DtorFunc->getNumParams() == 1);
6521   if (!this->emitDupPtr(Loc))
6522     return false;
6523   return this->emitCall(DtorFunc, 0, Loc);
6524 }
6525 /// When calling this, we have a pointer of the local-to-destroy
6526 /// on the stack.
6527 /// Emit destruction of record types (or arrays of record types).
6528 template <class Emitter>
6529 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
6530                                         SourceInfo Loc) {
6531   assert(Desc);
6532   assert(!Desc->isPrimitive());
6533   assert(!Desc->isPrimitiveArray());
6534 
6535   // Arrays.
6536   if (Desc->isArray()) {
6537     const Descriptor *ElemDesc = Desc->ElemDesc;
6538     assert(ElemDesc);
6539 
6540     // Don't need to do anything for these.
6541     if (ElemDesc->isPrimitiveArray())
6542       return true;
6543 
6544     // If this is an array of record types, check if we need
6545     // to call the element destructors at all. If not, try
6546     // to save the work.
6547     if (const Record *ElemRecord = ElemDesc->ElemRecord) {
6548       if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
6549           !Dtor || Dtor->isTrivial())
6550         return true;
6551     }
6552 
6553     for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
6554       if (!this->emitConstUint64(I, Loc))
6555         return false;
6556       if (!this->emitArrayElemPtrUint64(Loc))
6557         return false;
6558       if (!this->emitDestruction(ElemDesc, Loc))
6559         return false;
6560       if (!this->emitPopPtr(Loc))
6561         return false;
6562     }
6563     return true;
6564   }
6565 
6566   assert(Desc->ElemRecord);
6567   if (Desc->ElemRecord->isAnonymousUnion())
6568     return true;
6569 
6570   return this->emitRecordDestruction(Desc->ElemRecord, Loc);
6571 }
6572 
6573 /// Create a dummy pointer for the given decl (or expr) and
6574 /// push a pointer to it on the stack.
6575 template <class Emitter>
6576 bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) {
6577   assert(!DiscardResult && "Should've been checked before");
6578 
6579   unsigned DummyID = P.getOrCreateDummy(D);
6580 
6581   if (!this->emitGetPtrGlobal(DummyID, E))
6582     return false;
6583   if (E->getType()->isVoidType())
6584     return true;
6585 
6586   // Convert the dummy pointer to another pointer type if we have to.
6587   if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
6588     if (isPtrType(PT))
6589       return this->emitDecayPtr(PT_Ptr, PT, E);
6590     return false;
6591   }
6592   return true;
6593 }
6594 
6595 //  This function is constexpr if and only if To, From, and the types of
6596 //  all subobjects of To and From are types T such that...
6597 //  (3.1) - is_union_v<T> is false;
6598 //  (3.2) - is_pointer_v<T> is false;
6599 //  (3.3) - is_member_pointer_v<T> is false;
6600 //  (3.4) - is_volatile_v<T> is false; and
6601 //  (3.5) - T has no non-static data members of reference type
6602 template <class Emitter>
6603 bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) {
6604   const Expr *SubExpr = E->getSubExpr();
6605   QualType FromType = SubExpr->getType();
6606   QualType ToType = E->getType();
6607   std::optional<PrimType> ToT = classify(ToType);
6608 
6609   assert(!ToType->isReferenceType());
6610 
6611   // Prepare storage for the result in case we discard.
6612   if (DiscardResult && !Initializing && !ToT) {
6613     std::optional<unsigned> LocalIndex = allocateLocal(E);
6614     if (!LocalIndex)
6615       return false;
6616     if (!this->emitGetPtrLocal(*LocalIndex, E))
6617       return false;
6618   }
6619 
6620   // Get a pointer to the value-to-cast on the stack.
6621   // For CK_LValueToRValueBitCast, this is always an lvalue and
6622   // we later assume it to be one (i.e. a PT_Ptr). However,
6623   // we call this function for other utility methods where
6624   // a bitcast might be useful, so convert it to a PT_Ptr in that case.
6625   if (SubExpr->isGLValue() || FromType->isVectorType()) {
6626     if (!this->visit(SubExpr))
6627       return false;
6628   } else if (std::optional<PrimType> FromT = classify(SubExpr)) {
6629     unsigned TempOffset = allocateLocalPrimitive(
6630         SubExpr, *FromT, /*IsConst=*/true, /*IsExtended=*/false);
6631     if (!this->visit(SubExpr))
6632       return false;
6633     if (!this->emitSetLocal(*FromT, TempOffset, E))
6634       return false;
6635     if (!this->emitGetPtrLocal(TempOffset, E))
6636       return false;
6637   } else {
6638     return false;
6639   }
6640 
6641   if (!ToT) {
6642     if (!this->emitBitCast(E))
6643       return false;
6644     return DiscardResult ? this->emitPopPtr(E) : true;
6645   }
6646   assert(ToT);
6647 
6648   const llvm::fltSemantics *TargetSemantics = nullptr;
6649   if (ToT == PT_Float)
6650     TargetSemantics = &Ctx.getFloatSemantics(ToType);
6651 
6652   // Conversion to a primitive type. FromType can be another
6653   // primitive type, or a record/array.
6654   bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) ||
6655                         ToType->isSpecificBuiltinType(BuiltinType::Char_U));
6656   uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u);
6657 
6658   if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(),
6659                              ResultBitWidth, TargetSemantics, E))
6660     return false;
6661 
6662   if (DiscardResult)
6663     return this->emitPop(*ToT, E);
6664 
6665   return true;
6666 }
6667 
6668 namespace clang {
6669 namespace interp {
6670 
6671 template class Compiler<ByteCodeEmitter>;
6672 template class Compiler<EvalEmitter>;
6673 
6674 } // namespace interp
6675 } // namespace clang
6676