1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* feeder_volume, a long 'Lost Technology' rather than a new feature. */
30
31 #ifdef _KERNEL
32 #ifdef HAVE_KERNEL_OPTION_HEADERS
33 #include "opt_snd.h"
34 #endif
35 #include <dev/sound/pcm/sound.h>
36 #include <dev/sound/pcm/pcm.h>
37 #include "feeder_if.h"
38
39 #define SND_USE_FXDIV
40 #include "snd_fxdiv_gen.h"
41 #endif
42
43 typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
44
45 #define FEEDVOLUME_CALC8(s, v) (SND_VOL_CALC_SAMPLE((intpcm_t) \
46 (s) << 8, v) >> 8)
47 #define FEEDVOLUME_CALC16(s, v) SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
48 #define FEEDVOLUME_CALC24(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
49 #define FEEDVOLUME_CALC32(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
50
51 #define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN) \
52 static void \
53 feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix, \
54 uint32_t channels, uint8_t *dst, uint32_t count) \
55 { \
56 intpcm##BIT##_t v; \
57 intpcm_t x; \
58 uint32_t i; \
59 \
60 dst += count * PCM_##BIT##_BPS * channels; \
61 do { \
62 i = channels; \
63 do { \
64 dst -= PCM_##BIT##_BPS; \
65 i--; \
66 x = PCM_READ_##SIGN##BIT##_##ENDIAN(dst); \
67 v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]); \
68 x = PCM_CLAMP_##SIGN##BIT(v); \
69 _PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \
70 } while (i != 0); \
71 } while (--count != 0); \
72 }
73
74 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
75 FEEDVOLUME_DECLARE(S, 16, LE)
76 FEEDVOLUME_DECLARE(S, 32, LE)
77 #endif
78 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
79 FEEDVOLUME_DECLARE(S, 16, BE)
80 FEEDVOLUME_DECLARE(S, 32, BE)
81 #endif
82 #ifdef SND_FEEDER_MULTIFORMAT
83 FEEDVOLUME_DECLARE(S, 8, NE)
84 FEEDVOLUME_DECLARE(S, 24, LE)
85 FEEDVOLUME_DECLARE(S, 24, BE)
86 FEEDVOLUME_DECLARE(U, 8, NE)
87 FEEDVOLUME_DECLARE(U, 16, LE)
88 FEEDVOLUME_DECLARE(U, 24, LE)
89 FEEDVOLUME_DECLARE(U, 32, LE)
90 FEEDVOLUME_DECLARE(U, 16, BE)
91 FEEDVOLUME_DECLARE(U, 24, BE)
92 FEEDVOLUME_DECLARE(U, 32, BE)
93 #endif
94
95 struct feed_volume_info {
96 uint32_t bps, channels;
97 feed_volume_t apply;
98 int volume_class;
99 int state;
100 int matrix[SND_CHN_MAX];
101 };
102
103 #define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN) \
104 { \
105 AFMT_##SIGN##BIT##_##ENDIAN, \
106 feed_volume_##SIGN##BIT##ENDIAN \
107 }
108
109 static const struct {
110 uint32_t format;
111 feed_volume_t apply;
112 } feed_volume_info_tab[] = {
113 #if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
114 FEEDVOLUME_ENTRY(S, 16, LE),
115 FEEDVOLUME_ENTRY(S, 32, LE),
116 #endif
117 #if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
118 FEEDVOLUME_ENTRY(S, 16, BE),
119 FEEDVOLUME_ENTRY(S, 32, BE),
120 #endif
121 #ifdef SND_FEEDER_MULTIFORMAT
122 FEEDVOLUME_ENTRY(S, 8, NE),
123 FEEDVOLUME_ENTRY(S, 24, LE),
124 FEEDVOLUME_ENTRY(S, 24, BE),
125 FEEDVOLUME_ENTRY(U, 8, NE),
126 FEEDVOLUME_ENTRY(U, 16, LE),
127 FEEDVOLUME_ENTRY(U, 24, LE),
128 FEEDVOLUME_ENTRY(U, 32, LE),
129 FEEDVOLUME_ENTRY(U, 16, BE),
130 FEEDVOLUME_ENTRY(U, 24, BE),
131 FEEDVOLUME_ENTRY(U, 32, BE)
132 #endif
133 };
134
135 #define FEEDVOLUME_TAB_SIZE ((int32_t) \
136 (sizeof(feed_volume_info_tab) / \
137 sizeof(feed_volume_info_tab[0])))
138
139 static int
feed_volume_init(struct pcm_feeder * f)140 feed_volume_init(struct pcm_feeder *f)
141 {
142 struct feed_volume_info *info;
143 struct pcmchan_matrix *m;
144 uint32_t i;
145 int ret;
146
147 if (f->desc->in != f->desc->out ||
148 AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
149 return (EINVAL);
150
151 for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
152 if (AFMT_ENCODING(f->desc->in) ==
153 feed_volume_info_tab[i].format) {
154 info = malloc(sizeof(*info), M_DEVBUF,
155 M_NOWAIT | M_ZERO);
156 if (info == NULL)
157 return (ENOMEM);
158
159 info->bps = AFMT_BPS(f->desc->in);
160 info->channels = AFMT_CHANNEL(f->desc->in);
161 info->apply = feed_volume_info_tab[i].apply;
162 info->volume_class = SND_VOL_C_PCM;
163 info->state = FEEDVOLUME_ENABLE;
164
165 f->data = info;
166 m = feeder_matrix_default_channel_map(info->channels);
167 if (m == NULL) {
168 free(info, M_DEVBUF);
169 return (EINVAL);
170 }
171
172 ret = feeder_volume_apply_matrix(f, m);
173 if (ret != 0)
174 free(info, M_DEVBUF);
175
176 return (ret);
177 }
178 }
179
180 return (EINVAL);
181 }
182
183 static int
feed_volume_free(struct pcm_feeder * f)184 feed_volume_free(struct pcm_feeder *f)
185 {
186 struct feed_volume_info *info;
187
188 info = f->data;
189 if (info != NULL)
190 free(info, M_DEVBUF);
191
192 f->data = NULL;
193
194 return (0);
195 }
196
197 static int
feed_volume_set(struct pcm_feeder * f,int what,int value)198 feed_volume_set(struct pcm_feeder *f, int what, int value)
199 {
200 struct feed_volume_info *info;
201 struct pcmchan_matrix *m;
202 int ret;
203
204 info = f->data;
205 ret = 0;
206
207 switch (what) {
208 case FEEDVOLUME_CLASS:
209 if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
210 return (EINVAL);
211 info->volume_class = value;
212 break;
213 case FEEDVOLUME_CHANNELS:
214 if (value < SND_CHN_MIN || value > SND_CHN_MAX)
215 return (EINVAL);
216 m = feeder_matrix_default_channel_map(value);
217 if (m == NULL)
218 return (EINVAL);
219 ret = feeder_volume_apply_matrix(f, m);
220 break;
221 case FEEDVOLUME_STATE:
222 if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
223 return (EINVAL);
224 info->state = value;
225 break;
226 default:
227 return (EINVAL);
228 break;
229 }
230
231 return (ret);
232 }
233
234 static int
feed_volume_feed(struct pcm_feeder * f,struct pcm_channel * c,uint8_t * b,uint32_t count,void * source)235 feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
236 uint32_t count, void *source)
237 {
238 int temp_vol[SND_CHN_T_VOL_MAX];
239 struct feed_volume_info *info;
240 uint32_t j, align;
241 int i, *matrix;
242 uint8_t *dst;
243 const int16_t *vol;
244 const int8_t *muted;
245
246 /*
247 * Fetch filter data operation.
248 */
249 info = f->data;
250
251 if (info->state == FEEDVOLUME_BYPASS)
252 return (FEEDER_FEED(f->source, c, b, count, source));
253
254 vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
255 muted = c->muted[SND_VOL_C_VAL(info->volume_class)];
256 matrix = info->matrix;
257
258 /*
259 * First, let see if we really need to apply gain at all.
260 */
261 j = 0;
262 i = info->channels;
263 while (i--) {
264 if (vol[matrix[i]] != SND_VOL_FLAT ||
265 muted[matrix[i]] != 0) {
266 j = 1;
267 break;
268 }
269 }
270
271 /* Nope, just bypass entirely. */
272 if (j == 0)
273 return (FEEDER_FEED(f->source, c, b, count, source));
274
275 /* Check if any controls are muted. */
276 for (j = 0; j != SND_CHN_T_VOL_MAX; j++)
277 temp_vol[j] = muted[j] ? 0 : vol[j];
278
279 dst = b;
280 align = info->bps * info->channels;
281
282 do {
283 if (count < align)
284 break;
285
286 j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
287 align);
288 if (j == 0)
289 break;
290
291 info->apply(temp_vol, matrix, info->channels, dst, j);
292
293 j *= align;
294 dst += j;
295 count -= j;
296
297 } while (count != 0);
298
299 return (dst - b);
300 }
301
302 static struct pcm_feederdesc feeder_volume_desc[] = {
303 { FEEDER_VOLUME, 0, 0, 0, 0 },
304 { 0, 0, 0, 0, 0 }
305 };
306
307 static kobj_method_t feeder_volume_methods[] = {
308 KOBJMETHOD(feeder_init, feed_volume_init),
309 KOBJMETHOD(feeder_free, feed_volume_free),
310 KOBJMETHOD(feeder_set, feed_volume_set),
311 KOBJMETHOD(feeder_feed, feed_volume_feed),
312 KOBJMETHOD_END
313 };
314
315 FEEDER_DECLARE(feeder_volume, NULL);
316
317 /* Extern */
318
319 /*
320 * feeder_volume_apply_matrix(): For given matrix map, apply its configuration
321 * to feeder_volume matrix structure. There are
322 * possibilites that feeder_volume be inserted
323 * before or after feeder_matrix, which in this
324 * case feeder_volume must be in a good terms
325 * with _current_ matrix.
326 */
327 int
feeder_volume_apply_matrix(struct pcm_feeder * f,struct pcmchan_matrix * m)328 feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
329 {
330 struct feed_volume_info *info;
331 uint32_t i;
332
333 if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
334 f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
335 m->channels > SND_CHN_MAX)
336 return (EINVAL);
337
338 info = f->data;
339
340 for (i = 0; i < nitems(info->matrix); i++) {
341 if (i < m->channels)
342 info->matrix[i] = m->map[i].type;
343 else
344 info->matrix[i] = SND_CHN_T_FL;
345 }
346
347 info->channels = m->channels;
348
349 return (0);
350 }
351