1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright 2013 Saso Kiselkov. All rights reserved. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. 31 */ 32 33 /* Portions Copyright 2010 Robert Milkowski */ 34 35 #ifndef _SYS_DMU_H 36 #define _SYS_DMU_H 37 38 /* 39 * This file describes the interface that the DMU provides for its 40 * consumers. 41 * 42 * The DMU also interacts with the SPA. That interface is described in 43 * dmu_spa.h. 44 */ 45 46 #include <sys/zfs_context.h> 47 #include <sys/inttypes.h> 48 #include <sys/cred.h> 49 #include <sys/fs/zfs.h> 50 #include <sys/zio_compress.h> 51 #include <sys/zio_priority.h> 52 #include <sys/uio.h> 53 #include <sys/zfs_file.h> 54 55 #ifdef __cplusplus 56 extern "C" { 57 #endif 58 59 struct page; 60 struct vnode; 61 struct spa; 62 struct zilog; 63 struct zio; 64 struct blkptr; 65 struct zap_cursor; 66 struct dsl_dataset; 67 struct dsl_pool; 68 struct dnode; 69 struct drr_begin; 70 struct drr_end; 71 struct zbookmark_phys; 72 struct spa; 73 struct nvlist; 74 struct arc_buf; 75 struct zio_prop; 76 struct sa_handle; 77 struct dsl_crypto_params; 78 struct locked_range; 79 80 typedef struct objset objset_t; 81 typedef struct dmu_tx dmu_tx_t; 82 typedef struct dsl_dir dsl_dir_t; 83 typedef struct dnode dnode_t; 84 85 typedef enum dmu_object_byteswap { 86 DMU_BSWAP_UINT8, 87 DMU_BSWAP_UINT16, 88 DMU_BSWAP_UINT32, 89 DMU_BSWAP_UINT64, 90 DMU_BSWAP_ZAP, 91 DMU_BSWAP_DNODE, 92 DMU_BSWAP_OBJSET, 93 DMU_BSWAP_ZNODE, 94 DMU_BSWAP_OLDACL, 95 DMU_BSWAP_ACL, 96 /* 97 * Allocating a new byteswap type number makes the on-disk format 98 * incompatible with any other format that uses the same number. 99 * 100 * Data can usually be structured to work with one of the 101 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 102 */ 103 DMU_BSWAP_NUMFUNCS 104 } dmu_object_byteswap_t; 105 106 #define DMU_OT_NEWTYPE 0x80 107 #define DMU_OT_METADATA 0x40 108 #define DMU_OT_ENCRYPTED 0x20 109 #define DMU_OT_BYTESWAP_MASK 0x1f 110 111 /* 112 * Defines a uint8_t object type. Object types specify if the data 113 * in the object is metadata (boolean) and how to byteswap the data 114 * (dmu_object_byteswap_t). All of the types created by this method 115 * are cached in the dbuf metadata cache. 116 */ 117 #define DMU_OT(byteswap, metadata, encrypted) \ 118 (DMU_OT_NEWTYPE | \ 119 ((metadata) ? DMU_OT_METADATA : 0) | \ 120 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \ 121 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 122 123 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 124 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ 125 (ot) < DMU_OT_NUMTYPES) 126 127 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 128 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache) 129 130 /* 131 * MDB doesn't have dmu_ot; it defines these macros itself. 132 */ 133 #ifndef ZFS_MDB 134 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata) 135 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt) 136 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap) 137 #endif 138 139 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 140 (((ot) & DMU_OT_METADATA) != 0) : \ 141 DMU_OT_IS_METADATA_IMPL(ot)) 142 143 #define DMU_OT_IS_DDT(ot) \ 144 ((ot) == DMU_OT_DDT_ZAP) 145 146 #define DMU_OT_IS_CRITICAL(ot) \ 147 (DMU_OT_IS_METADATA(ot) && \ 148 (ot) != DMU_OT_DNODE && \ 149 (ot) != DMU_OT_DIRECTORY_CONTENTS && \ 150 (ot) != DMU_OT_SA) 151 152 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */ 153 #define DMU_OT_IS_FILE(ot) \ 154 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER) 155 156 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 157 (((ot) & DMU_OT_ENCRYPTED) != 0) : \ 158 DMU_OT_IS_ENCRYPTED_IMPL(ot)) 159 160 /* 161 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't 162 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill 163 * is repurposed for embedded BPs. 164 */ 165 #define DMU_OT_HAS_FILL(ot) \ 166 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) 167 168 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 169 ((ot) & DMU_OT_BYTESWAP_MASK) : \ 170 DMU_OT_BYTESWAP_IMPL(ot)) 171 172 typedef enum dmu_object_type { 173 DMU_OT_NONE, 174 /* general: */ 175 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 176 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 177 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 178 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 179 DMU_OT_BPOBJ, /* UINT64 */ 180 DMU_OT_BPOBJ_HDR, /* UINT64 */ 181 /* spa: */ 182 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 183 DMU_OT_SPACE_MAP, /* UINT64 */ 184 /* zil: */ 185 DMU_OT_INTENT_LOG, /* UINT64 */ 186 /* dmu: */ 187 DMU_OT_DNODE, /* DNODE */ 188 DMU_OT_OBJSET, /* OBJSET */ 189 /* dsl: */ 190 DMU_OT_DSL_DIR, /* UINT64 */ 191 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 192 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 193 DMU_OT_DSL_PROPS, /* ZAP */ 194 DMU_OT_DSL_DATASET, /* UINT64 */ 195 /* zpl: */ 196 DMU_OT_ZNODE, /* ZNODE */ 197 DMU_OT_OLDACL, /* Old ACL */ 198 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 199 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 200 DMU_OT_MASTER_NODE, /* ZAP */ 201 DMU_OT_UNLINKED_SET, /* ZAP */ 202 /* zvol: */ 203 DMU_OT_ZVOL, /* UINT8 */ 204 DMU_OT_ZVOL_PROP, /* ZAP */ 205 /* other; for testing only! */ 206 DMU_OT_PLAIN_OTHER, /* UINT8 */ 207 DMU_OT_UINT64_OTHER, /* UINT64 */ 208 DMU_OT_ZAP_OTHER, /* ZAP */ 209 /* new object types: */ 210 DMU_OT_ERROR_LOG, /* ZAP */ 211 DMU_OT_SPA_HISTORY, /* UINT8 */ 212 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 213 DMU_OT_POOL_PROPS, /* ZAP */ 214 DMU_OT_DSL_PERMS, /* ZAP */ 215 DMU_OT_ACL, /* ACL */ 216 DMU_OT_SYSACL, /* SYSACL */ 217 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 218 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 219 DMU_OT_NEXT_CLONES, /* ZAP */ 220 DMU_OT_SCAN_QUEUE, /* ZAP */ 221 DMU_OT_USERGROUP_USED, /* ZAP */ 222 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 223 DMU_OT_USERREFS, /* ZAP */ 224 DMU_OT_DDT_ZAP, /* ZAP */ 225 DMU_OT_DDT_STATS, /* ZAP */ 226 DMU_OT_SA, /* System attr */ 227 DMU_OT_SA_MASTER_NODE, /* ZAP */ 228 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 229 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 230 DMU_OT_SCAN_XLATE, /* ZAP */ 231 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 232 DMU_OT_DEADLIST, /* ZAP */ 233 DMU_OT_DEADLIST_HDR, /* UINT64 */ 234 DMU_OT_DSL_CLONES, /* ZAP */ 235 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ 236 /* 237 * Do not allocate new object types here. Doing so makes the on-disk 238 * format incompatible with any other format that uses the same object 239 * type number. 240 * 241 * When creating an object which does not have one of the above types 242 * use the DMU_OTN_* type with the correct byteswap and metadata 243 * values. 244 * 245 * The DMU_OTN_* types do not have entries in the dmu_ot table, 246 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead 247 * of indexing into dmu_ot directly (this works for both DMU_OT_* types 248 * and DMU_OTN_* types). 249 */ 250 DMU_OT_NUMTYPES, 251 252 /* 253 * Names for valid types declared with DMU_OT(). 254 */ 255 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE), 256 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE), 257 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE), 258 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE), 259 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE), 260 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE), 261 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE), 262 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE), 263 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE), 264 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE), 265 266 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE), 267 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE), 268 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE), 269 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE), 270 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE), 271 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE), 272 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE), 273 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE), 274 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE), 275 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE), 276 } dmu_object_type_t; 277 278 /* 279 * These flags are intended to be used to specify the "txg_how" 280 * parameter when calling the dmu_tx_assign() function. See the comment 281 * above dmu_tx_assign() for more details on the meaning of these flags. 282 */ 283 #define TXG_NOWAIT (0ULL) 284 #define TXG_WAIT (1ULL<<0) 285 #define TXG_NOTHROTTLE (1ULL<<1) 286 287 void byteswap_uint64_array(void *buf, size_t size); 288 void byteswap_uint32_array(void *buf, size_t size); 289 void byteswap_uint16_array(void *buf, size_t size); 290 void byteswap_uint8_array(void *buf, size_t size); 291 void zap_byteswap(void *buf, size_t size); 292 void zfs_oldacl_byteswap(void *buf, size_t size); 293 void zfs_acl_byteswap(void *buf, size_t size); 294 void zfs_znode_byteswap(void *buf, size_t size); 295 296 #define DS_FIND_SNAPSHOTS (1<<0) 297 #define DS_FIND_CHILDREN (1<<1) 298 #define DS_FIND_SERIALIZE (1<<2) 299 300 /* 301 * The maximum number of bytes that can be accessed as part of one 302 * operation, including metadata. 303 */ 304 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */ 305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ 306 307 #define DMU_USERUSED_OBJECT (-1ULL) 308 #define DMU_GROUPUSED_OBJECT (-2ULL) 309 #define DMU_PROJECTUSED_OBJECT (-3ULL) 310 311 /* 312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT. 313 */ 314 #define DMU_OBJACCT_PREFIX "obj-" 315 #define DMU_OBJACCT_PREFIX_LEN 4 316 317 /* 318 * artificial blkids for bonus buffer and spill blocks 319 */ 320 #define DMU_BONUS_BLKID (-1ULL) 321 #define DMU_SPILL_BLKID (-2ULL) 322 323 /* 324 * Public routines to create, destroy, open, and close objsets. 325 */ 326 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg, 327 cred_t *cr, dmu_tx_t *tx); 328 329 int dmu_objset_hold(const char *name, const void *tag, objset_t **osp); 330 int dmu_objset_own(const char *name, dmu_objset_type_t type, 331 boolean_t readonly, boolean_t key_required, const void *tag, 332 objset_t **osp); 333 void dmu_objset_rele(objset_t *os, const void *tag); 334 void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag); 335 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); 336 337 void dmu_objset_evict_dbufs(objset_t *os); 338 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, 339 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func, 340 void *arg); 341 int dmu_objset_clone(const char *name, const char *origin); 342 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, 343 struct nvlist *errlist); 344 int dmu_objset_snapshot_one(const char *fsname, const char *snapname); 345 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg, 346 int flags); 347 void dmu_objset_byteswap(void *buf, size_t size); 348 int dsl_dataset_rename_snapshot(const char *fsname, 349 const char *oldsnapname, const char *newsnapname, boolean_t recursive); 350 351 typedef struct dmu_buf { 352 uint64_t db_object; /* object that this buffer is part of */ 353 uint64_t db_offset; /* byte offset in this object */ 354 uint64_t db_size; /* size of buffer in bytes */ 355 void *db_data; /* data in buffer */ 356 } dmu_buf_t; 357 358 /* 359 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 360 */ 361 #define DMU_POOL_DIRECTORY_OBJECT 1 362 #define DMU_POOL_CONFIG "config" 363 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" 364 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 365 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" 366 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" 367 #define DMU_POOL_ROOT_DATASET "root_dataset" 368 #define DMU_POOL_SYNC_BPOBJ "sync_bplist" 369 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 370 #define DMU_POOL_ERRLOG_LAST "errlog_last" 371 #define DMU_POOL_SPARES "spares" 372 #define DMU_POOL_DEFLATE "deflate" 373 #define DMU_POOL_HISTORY "history" 374 #define DMU_POOL_PROPS "pool_props" 375 #define DMU_POOL_L2CACHE "l2cache" 376 #define DMU_POOL_TMP_USERREFS "tmp_userrefs" 377 #define DMU_POOL_DDT "DDT-%s-%s-%s" 378 #define DMU_POOL_DDT_LOG "DDT-log-%s-%u" 379 #define DMU_POOL_DDT_STATS "DDT-statistics" 380 #define DMU_POOL_DDT_DIR "DDT-%s" 381 #define DMU_POOL_CREATION_VERSION "creation_version" 382 #define DMU_POOL_SCAN "scan" 383 #define DMU_POOL_ERRORSCRUB "error_scrub" 384 #define DMU_POOL_LAST_SCRUBBED_TXG "last_scrubbed_txg" 385 #define DMU_POOL_FREE_BPOBJ "free_bpobj" 386 #define DMU_POOL_BPTREE_OBJ "bptree_obj" 387 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" 388 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 389 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" 390 #define DMU_POOL_REMOVING "com.delphix:removing" 391 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" 392 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" 393 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" 394 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap" 395 #define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones" 396 397 /* 398 * Allocate an object from this objset. The range of object numbers 399 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. 400 * 401 * The transaction must be assigned to a txg. The newly allocated 402 * object will be "held" in the transaction (ie. you can modify the 403 * newly allocated object in this transaction). 404 * 405 * dmu_object_alloc() chooses an object and returns it in *objectp. 406 * 407 * dmu_object_claim() allocates a specific object number. If that 408 * number is already allocated, it fails and returns EEXIST. 409 * 410 * Return 0 on success, or ENOSPC or EEXIST as specified above. 411 */ 412 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, 413 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 414 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, 415 int indirect_blockshift, 416 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 417 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, 418 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 419 int dnodesize, dmu_tx_t *tx); 420 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot, 421 int blocksize, int indirect_blockshift, dmu_object_type_t bonustype, 422 int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag, 423 dmu_tx_t *tx); 424 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, 425 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 426 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, 427 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 428 int dnodesize, dmu_tx_t *tx); 429 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, 430 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); 431 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, 432 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, 433 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx); 434 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx); 435 436 /* 437 * Free an object from this objset. 438 * 439 * The object's data will be freed as well (ie. you don't need to call 440 * dmu_free(object, 0, -1, tx)). 441 * 442 * The object need not be held in the transaction. 443 * 444 * If there are any holds on this object's buffers (via dmu_buf_hold()), 445 * or tx holds on the object (via dmu_tx_hold_object()), you can not 446 * free it; it fails and returns EBUSY. 447 * 448 * If the object is not allocated, it fails and returns ENOENT. 449 * 450 * Return 0 on success, or EBUSY or ENOENT as specified above. 451 */ 452 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); 453 454 /* 455 * Find the next allocated or free object. 456 * 457 * The objectp parameter is in-out. It will be updated to be the next 458 * object which is allocated. Ignore objects which have not been 459 * modified since txg. 460 * 461 * XXX Can only be called on a objset with no dirty data. 462 * 463 * Returns 0 on success, or ENOENT if there are no more objects. 464 */ 465 int dmu_object_next(objset_t *os, uint64_t *objectp, 466 boolean_t hole, uint64_t txg); 467 468 /* 469 * Set the number of levels on a dnode. nlevels must be greater than the 470 * current number of levels or an EINVAL will be returned. 471 */ 472 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, 473 dmu_tx_t *tx); 474 475 /* 476 * Set the data blocksize for an object. 477 * 478 * The object cannot have any blocks allocated beyond the first. If 479 * the first block is allocated already, the new size must be greater 480 * than the current block size. If these conditions are not met, 481 * ENOTSUP will be returned. 482 * 483 * Returns 0 on success, or EBUSY if there are any holds on the object 484 * contents, or ENOTSUP as described above. 485 */ 486 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, 487 int ibs, dmu_tx_t *tx); 488 489 /* 490 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly 491 * to accommodate the change. When calling this function, the caller must 492 * ensure that the object's nlevels can sufficiently support the new maxblkid. 493 */ 494 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 495 dmu_tx_t *tx); 496 497 /* 498 * Set the checksum property on a dnode. The new checksum algorithm will 499 * apply to all newly written blocks; existing blocks will not be affected. 500 */ 501 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 502 dmu_tx_t *tx); 503 504 /* 505 * Set the compress property on a dnode. The new compression algorithm will 506 * apply to all newly written blocks; existing blocks will not be affected. 507 */ 508 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 509 dmu_tx_t *tx); 510 511 /* 512 * Get an estimated cache size for an object. Caller must expect races. 513 */ 514 int dmu_object_cached_size(objset_t *os, uint64_t object, 515 uint64_t *l1sz, uint64_t *l2sz); 516 517 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 518 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 519 int compressed_size, int byteorder, dmu_tx_t *tx); 520 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 521 dmu_tx_t *tx); 522 523 /* 524 * Decide how to write a block: checksum, compression, number of copies, etc. 525 */ 526 #define WP_NOFILL 0x1 527 #define WP_DMU_SYNC 0x2 528 #define WP_SPILL 0x4 529 #define WP_DIRECT_WR 0x8 530 531 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 532 struct zio_prop *zp); 533 534 /* 535 * The bonus data is accessed more or less like a regular buffer. 536 * You must dmu_bonus_hold() to get the buffer, which will give you a 537 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus 538 * data. As with any normal buffer, you must call dmu_buf_will_dirty() 539 * before modifying it, and the 540 * object must be held in an assigned transaction before calling 541 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus 542 * buffer as well. You must release what you hold with dmu_buf_rele(). 543 * 544 * Returns ENOENT, EIO, or 0. 545 */ 546 int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, 547 dmu_buf_t **dbp); 548 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, 549 uint32_t flags); 550 int dmu_bonus_max(void); 551 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); 552 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); 553 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); 554 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); 555 556 /* 557 * Special spill buffer support used by "SA" framework 558 */ 559 560 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, 561 dmu_buf_t **dbp); 562 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, 563 const void *tag, dmu_buf_t **dbp); 564 int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp); 565 566 /* 567 * Obtain the DMU buffer from the specified object which contains the 568 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so 569 * that it will remain in memory. You must release the hold with 570 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing 571 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU. 572 * 573 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill 574 * on the returned buffer before reading or writing the buffer's 575 * db_data. The comments for those routines describe what particular 576 * operations are valid after calling them. 577 * 578 * The object number must be a valid, allocated object number. 579 */ 580 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 581 const void *tag, dmu_buf_t **, int flags); 582 int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 583 uint64_t length, int read, const void *tag, int *numbufsp, 584 dmu_buf_t ***dbpp); 585 int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 586 const void *tag, dmu_buf_t **dbp); 587 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 588 const void *tag, dmu_buf_t **dbp, int flags); 589 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, 590 uint64_t length, boolean_t read, const void *tag, int *numbufsp, 591 dmu_buf_t ***dbpp, uint32_t flags); 592 int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, const void *tag, 593 dmu_buf_t **dbp); 594 595 /* 596 * Add a reference to a dmu buffer that has already been held via 597 * dmu_buf_hold() in the current context. 598 */ 599 void dmu_buf_add_ref(dmu_buf_t *db, const void *tag); 600 601 /* 602 * Attempt to add a reference to a dmu buffer that is in an unknown state, 603 * using a pointer that may have been invalidated by eviction processing. 604 * The request will succeed if the passed in dbuf still represents the 605 * same os/object/blkid, is ineligible for eviction, and has at least 606 * one hold by a user other than the syncer. 607 */ 608 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, 609 uint64_t blkid, const void *tag); 610 611 void dmu_buf_rele(dmu_buf_t *db, const void *tag); 612 uint64_t dmu_buf_refcount(dmu_buf_t *db); 613 uint64_t dmu_buf_user_refcount(dmu_buf_t *db); 614 615 /* 616 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a 617 * range of an object. A pointer to an array of dmu_buf_t*'s is 618 * returned (in *dbpp). 619 * 620 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and 621 * frees the array. The hold on the array of buffers MUST be released 622 * with dmu_buf_rele_array. You can NOT release the hold on each buffer 623 * individually with dmu_buf_rele. 624 */ 625 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 626 uint64_t length, boolean_t read, const void *tag, 627 int *numbufsp, dmu_buf_t ***dbpp); 628 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag); 629 630 typedef void dmu_buf_evict_func_t(void *user_ptr); 631 632 /* 633 * A DMU buffer user object may be associated with a dbuf for the 634 * duration of its lifetime. This allows the user of a dbuf (client) 635 * to attach private data to a dbuf (e.g. in-core only data such as a 636 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified 637 * when that dbuf has been evicted. Clients typically respond to the 638 * eviction notification by freeing their private data, thus ensuring 639 * the same lifetime for both dbuf and private data. 640 * 641 * The mapping from a dmu_buf_user_t to any client private data is the 642 * client's responsibility. All current consumers of the API with private 643 * data embed a dmu_buf_user_t as the first member of the structure for 644 * their private data. This allows conversions between the two types 645 * with a simple cast. Since the DMU buf user API never needs access 646 * to the private data, other strategies can be employed if necessary 647 * or convenient for the client (e.g. using container_of() to do the 648 * conversion for private data that cannot have the dmu_buf_user_t as 649 * its first member). 650 * 651 * Eviction callbacks are executed without the dbuf mutex held or any 652 * other type of mechanism to guarantee that the dbuf is still available. 653 * For this reason, users must assume the dbuf has already been freed 654 * and not reference the dbuf from the callback context. 655 * 656 * Users requesting "immediate eviction" are notified as soon as the dbuf 657 * is only referenced by dirty records (dirties == holds). Otherwise the 658 * notification occurs after eviction processing for the dbuf begins. 659 */ 660 typedef struct dmu_buf_user { 661 /* 662 * Asynchronous user eviction callback state. 663 */ 664 taskq_ent_t dbu_tqent; 665 666 /* Size of user data, for inclusion in dbuf_cache accounting. */ 667 uint64_t dbu_size; 668 669 /* 670 * This instance's eviction function pointers. 671 * 672 * dbu_evict_func_sync is called synchronously and then 673 * dbu_evict_func_async is executed asynchronously on a taskq. 674 */ 675 dmu_buf_evict_func_t *dbu_evict_func_sync; 676 dmu_buf_evict_func_t *dbu_evict_func_async; 677 #ifdef ZFS_DEBUG 678 /* 679 * Pointer to user's dbuf pointer. NULL for clients that do 680 * not associate a dbuf with their user data. 681 * 682 * The dbuf pointer is cleared upon eviction so as to catch 683 * use-after-evict bugs in clients. 684 */ 685 dmu_buf_t **dbu_clear_on_evict_dbufp; 686 #endif 687 } dmu_buf_user_t; 688 689 /* 690 * Initialize the given dmu_buf_user_t instance with the eviction function 691 * evict_func, to be called when the user is evicted. 692 * 693 * NOTE: This function should only be called once on a given dmu_buf_user_t. 694 * To allow enforcement of this, dbu must already be zeroed on entry. 695 */ 696 static inline void 697 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, 698 dmu_buf_evict_func_t *evict_func_async, 699 dmu_buf_t **clear_on_evict_dbufp __maybe_unused) 700 { 701 ASSERT(dbu->dbu_evict_func_sync == NULL); 702 ASSERT(dbu->dbu_evict_func_async == NULL); 703 704 /* must have at least one evict func */ 705 IMPLY(evict_func_sync == NULL, evict_func_async != NULL); 706 dbu->dbu_evict_func_sync = evict_func_sync; 707 dbu->dbu_evict_func_async = evict_func_async; 708 taskq_init_ent(&dbu->dbu_tqent); 709 #ifdef ZFS_DEBUG 710 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; 711 #endif 712 } 713 714 /* 715 * Attach user data to a dbuf and mark it for normal (when the dbuf's 716 * data is cleared or its reference count goes to zero) eviction processing. 717 * 718 * Returns NULL on success, or the existing user if another user currently 719 * owns the buffer. 720 */ 721 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); 722 723 /* 724 * Attach user data to a dbuf and mark it for immediate (its dirty and 725 * reference counts are equal) eviction processing. 726 * 727 * Returns NULL on success, or the existing user if another user currently 728 * owns the buffer. 729 */ 730 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); 731 732 /* 733 * Replace the current user of a dbuf. 734 * 735 * If given the current user of a dbuf, replaces the dbuf's user with 736 * "new_user" and returns the user data pointer that was replaced. 737 * Otherwise returns the current, and unmodified, dbuf user pointer. 738 */ 739 void *dmu_buf_replace_user(dmu_buf_t *db, 740 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); 741 742 /* 743 * Remove the specified user data for a DMU buffer. 744 * 745 * Returns the user that was removed on success, or the current user if 746 * another user currently owns the buffer. 747 */ 748 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); 749 750 /* 751 * User data size accounting. This can be used to artifically inflate the size 752 * of the dbuf during cache accounting, so that dbuf_evict_thread evicts enough 753 * to satisfy memory reclaim requests. It's not used for anything else, and 754 * defaults to 0. 755 */ 756 uint64_t dmu_buf_user_size(dmu_buf_t *db); 757 void dmu_buf_add_user_size(dmu_buf_t *db, uint64_t nadd); 758 void dmu_buf_sub_user_size(dmu_buf_t *db, uint64_t nsub); 759 760 /* 761 * Returns the user data (dmu_buf_user_t *) associated with this dbuf. 762 */ 763 void *dmu_buf_get_user(dmu_buf_t *db); 764 765 objset_t *dmu_buf_get_objset(dmu_buf_t *db); 766 767 /* Block until any in-progress dmu buf user evictions complete. */ 768 void dmu_buf_user_evict_wait(void); 769 770 /* 771 * Returns the blkptr associated with this dbuf, or NULL if not set. 772 */ 773 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); 774 775 /* 776 * Indicate that you are going to modify the buffer's data (db_data). 777 * 778 * The transaction (tx) must be assigned to a txg (ie. you've called 779 * dmu_tx_assign()). The buffer's object must be held in the tx 780 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). 781 */ 782 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); 783 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx); 784 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 785 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx); 786 787 /* 788 * You must create a transaction, then hold the objects which you will 789 * (or might) modify as part of this transaction. Then you must assign 790 * the transaction to a transaction group. Once the transaction has 791 * been assigned, you can modify buffers which belong to held objects as 792 * part of this transaction. You can't modify buffers before the 793 * transaction has been assigned; you can't modify buffers which don't 794 * belong to objects which this transaction holds; you can't hold 795 * objects once the transaction has been assigned. You may hold an 796 * object which you are going to free (with dmu_object_free()), but you 797 * don't have to. 798 * 799 * You can abort the transaction before it has been assigned. 800 * 801 * Note that you may hold buffers (with dmu_buf_hold) at any time, 802 * regardless of transaction state. 803 */ 804 805 #define DMU_NEW_OBJECT (-1ULL) 806 #define DMU_OBJECT_END (-1ULL) 807 808 dmu_tx_t *dmu_tx_create(objset_t *os); 809 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 810 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 811 int len); 812 void dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 813 void dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 814 int len); 815 void dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 816 int len); 817 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, 818 uint64_t len); 819 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 820 uint64_t len); 821 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); 822 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, 823 const char *name); 824 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); 825 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); 826 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); 827 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); 828 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); 829 void dmu_tx_abort(dmu_tx_t *tx); 830 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); 831 void dmu_tx_wait(dmu_tx_t *tx); 832 void dmu_tx_commit(dmu_tx_t *tx); 833 void dmu_tx_mark_netfree(dmu_tx_t *tx); 834 835 /* 836 * To register a commit callback, dmu_tx_callback_register() must be called. 837 * 838 * dcb_data is a pointer to caller private data that is passed on as a 839 * callback parameter. The caller is responsible for properly allocating and 840 * freeing it. 841 * 842 * When registering a callback, the transaction must be already created, but 843 * it cannot be committed or aborted. It can be assigned to a txg or not. 844 * 845 * The callback will be called after the transaction has been safely written 846 * to stable storage and will also be called if the dmu_tx is aborted. 847 * If there is any error which prevents the transaction from being committed to 848 * disk, the callback will be called with a value of error != 0. 849 * 850 * When multiple callbacks are registered to the transaction, the callbacks 851 * will be called in reverse order to let Lustre, the only user of commit 852 * callback currently, take the fast path of its commit callback handling. 853 */ 854 typedef void dmu_tx_callback_func_t(void *dcb_data, int error); 855 856 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, 857 void *dcb_data); 858 void dmu_tx_do_callbacks(list_t *cb_list, int error); 859 860 /* 861 * Free up the data blocks for a defined range of a file. If size is 862 * -1, the range from offset to end-of-file is freed. 863 */ 864 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 865 uint64_t size, dmu_tx_t *tx); 866 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, 867 uint64_t size); 868 int dmu_free_long_object(objset_t *os, uint64_t object); 869 870 /* 871 * Convenience functions. 872 * 873 * Canfail routines will return 0 on success, or an errno if there is a 874 * nonrecoverable I/O error. 875 */ 876 #define DMU_READ_PREFETCH 0 /* prefetch */ 877 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ 878 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */ 879 #define DMU_DIRECTIO 4 /* use Direct I/O */ 880 881 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 882 void *buf, uint32_t flags); 883 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 884 uint32_t flags); 885 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 886 const void *buf, dmu_tx_t *tx); 887 int dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 888 const void *buf, dmu_tx_t *tx); 889 int dmu_write_by_dnode_flags(dnode_t *dn, uint64_t offset, uint64_t size, 890 const void *buf, dmu_tx_t *tx, uint32_t flags); 891 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 892 dmu_tx_t *tx); 893 #ifdef _KERNEL 894 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size); 895 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size); 896 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size); 897 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, 898 dmu_tx_t *tx); 899 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, 900 dmu_tx_t *tx); 901 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, 902 dmu_tx_t *tx); 903 #endif 904 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); 905 void dmu_return_arcbuf(struct arc_buf *buf); 906 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, 907 struct arc_buf *buf, dmu_tx_t *tx); 908 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, 909 struct arc_buf *buf, dmu_tx_t *tx); 910 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf 911 extern uint_t zfs_max_recordsize; 912 913 /* 914 * Asynchronously try to read in the data. 915 */ 916 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 917 uint64_t len, enum zio_priority pri); 918 void dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset, 919 uint64_t len, enum zio_priority pri); 920 void dmu_prefetch_dnode(objset_t *os, uint64_t object, enum zio_priority pri); 921 int dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset, 922 uint64_t size); 923 924 typedef struct dmu_object_info { 925 /* All sizes are in bytes unless otherwise indicated. */ 926 uint32_t doi_data_block_size; 927 uint32_t doi_metadata_block_size; 928 dmu_object_type_t doi_type; 929 dmu_object_type_t doi_bonus_type; 930 uint64_t doi_bonus_size; 931 uint8_t doi_indirection; /* 2 = dnode->indirect->data */ 932 uint8_t doi_checksum; 933 uint8_t doi_compress; 934 uint8_t doi_nblkptr; 935 uint8_t doi_pad[4]; 936 uint64_t doi_dnodesize; 937 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ 938 uint64_t doi_max_offset; 939 uint64_t doi_fill_count; /* number of non-empty blocks */ 940 } dmu_object_info_t; 941 942 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size); 943 944 typedef struct dmu_object_type_info { 945 dmu_object_byteswap_t ot_byteswap; 946 boolean_t ot_metadata; 947 boolean_t ot_dbuf_metadata_cache; 948 boolean_t ot_encrypt; 949 const char *ot_name; 950 } dmu_object_type_info_t; 951 952 typedef const struct dmu_object_byteswap_info { 953 arc_byteswap_func_t ob_func; 954 const char *ob_name; 955 } dmu_object_byteswap_info_t; 956 957 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; 958 extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; 959 960 /* 961 * Get information on a DMU object. 962 * 963 * Return 0 on success or ENOENT if object is not allocated. 964 * 965 * If doi is NULL, just indicates whether the object exists. 966 */ 967 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); 968 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi); 969 /* Like dmu_object_info, but faster if you have a held dnode in hand. */ 970 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); 971 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ 972 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); 973 /* 974 * Like dmu_object_info_from_db, but faster still when you only care about 975 * the size. 976 */ 977 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, 978 u_longlong_t *nblk512); 979 980 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize); 981 982 typedef struct dmu_objset_stats { 983 uint64_t dds_num_clones; /* number of clones of this */ 984 uint64_t dds_creation_txg; 985 uint64_t dds_guid; 986 dmu_objset_type_t dds_type; 987 uint8_t dds_is_snapshot; 988 uint8_t dds_inconsistent; 989 uint8_t dds_redacted; 990 char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; 991 } dmu_objset_stats_t; 992 993 /* 994 * Get stats on a dataset. 995 */ 996 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); 997 998 /* 999 * Add entries to the nvlist for all the objset's properties. See 1000 * zfs_prop_table[] and zfs(1m) for details on the properties. 1001 */ 1002 void dmu_objset_stats(objset_t *os, struct nvlist *nv); 1003 1004 /* 1005 * Get the space usage statistics for statvfs(). 1006 * 1007 * refdbytes is the amount of space "referenced" by this objset. 1008 * availbytes is the amount of space available to this objset, taking 1009 * into account quotas & reservations, assuming that no other objsets 1010 * use the space first. These values correspond to the 'referenced' and 1011 * 'available' properties, described in the zfs(1m) manpage. 1012 * 1013 * usedobjs and availobjs are the number of objects currently allocated, 1014 * and available. 1015 */ 1016 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, 1017 uint64_t *usedobjsp, uint64_t *availobjsp); 1018 1019 /* 1020 * The fsid_guid is a 56-bit ID that can change to avoid collisions. 1021 * (Contrast with the ds_guid which is a 64-bit ID that will never 1022 * change, so there is a small probability that it will collide.) 1023 */ 1024 uint64_t dmu_objset_fsid_guid(objset_t *os); 1025 1026 /* 1027 * Get the [cm]time for an objset's snapshot dir 1028 */ 1029 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os); 1030 1031 int dmu_objset_is_snapshot(objset_t *os); 1032 1033 extern struct spa *dmu_objset_spa(objset_t *os); 1034 extern struct zilog *dmu_objset_zil(objset_t *os); 1035 extern struct dsl_pool *dmu_objset_pool(objset_t *os); 1036 extern struct dsl_dataset *dmu_objset_ds(objset_t *os); 1037 extern void dmu_objset_name(objset_t *os, char *buf); 1038 extern dmu_objset_type_t dmu_objset_type(objset_t *os); 1039 extern uint64_t dmu_objset_id(objset_t *os); 1040 extern uint64_t dmu_objset_dnodesize(objset_t *os); 1041 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); 1042 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); 1043 extern int dmu_objset_blksize(objset_t *os); 1044 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, 1045 uint64_t *id, uint64_t *offp, boolean_t *case_conflict); 1046 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val); 1047 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real, 1048 int maxlen, boolean_t *conflict); 1049 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, 1050 uint64_t *idp, uint64_t *offp); 1051 1052 typedef struct zfs_file_info { 1053 uint64_t zfi_user; 1054 uint64_t zfi_group; 1055 uint64_t zfi_project; 1056 uint64_t zfi_generation; 1057 } zfs_file_info_t; 1058 1059 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data, 1060 struct zfs_file_info *zoi); 1061 extern void dmu_objset_register_type(dmu_objset_type_t ost, 1062 file_info_cb_t *cb); 1063 extern void dmu_objset_set_user(objset_t *os, void *user_ptr); 1064 extern void *dmu_objset_get_user(objset_t *os); 1065 1066 /* 1067 * Return the txg number for the given assigned transaction. 1068 */ 1069 uint64_t dmu_tx_get_txg(dmu_tx_t *tx); 1070 1071 /* 1072 * Synchronous write. 1073 * If a parent zio is provided this function initiates a write on the 1074 * provided buffer as a child of the parent zio. 1075 * In the absence of a parent zio, the write is completed synchronously. 1076 * At write completion, blk is filled with the bp of the written block. 1077 * Note that while the data covered by this function will be on stable 1078 * storage when the write completes this new data does not become a 1079 * permanent part of the file until the associated transaction commits. 1080 */ 1081 1082 /* 1083 * {zfs,zvol,ztest}_get_done() args 1084 */ 1085 typedef struct zgd { 1086 struct lwb *zgd_lwb; 1087 struct blkptr *zgd_bp; 1088 dmu_buf_t *zgd_db; 1089 struct zfs_locked_range *zgd_lr; 1090 void *zgd_private; 1091 } zgd_t; 1092 1093 typedef void dmu_sync_cb_t(zgd_t *arg, int error); 1094 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); 1095 1096 /* 1097 * Find the next hole or data block in file starting at *off 1098 * Return found offset in *off. Return ESRCH for end of file. 1099 */ 1100 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, 1101 uint64_t *off); 1102 1103 int dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, 1104 uint64_t length, struct blkptr *bps, size_t *nbpsp); 1105 int dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, 1106 uint64_t length, dmu_tx_t *tx, const struct blkptr *bps, size_t nbps); 1107 1108 /* 1109 * Initial setup and final teardown. 1110 */ 1111 extern void dmu_init(void); 1112 extern void dmu_fini(void); 1113 1114 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, 1115 uint64_t object, uint64_t offset, int len); 1116 void dmu_traverse_objset(objset_t *os, uint64_t txg_start, 1117 dmu_traverse_cb_t cb, void *arg); 1118 1119 int dmu_diff(const char *tosnap_name, const char *fromsnap_name, 1120 zfs_file_t *fp, offset_t *offp); 1121 1122 /* CRC64 table */ 1123 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 1124 extern uint64_t zfs_crc64_table[256]; 1125 1126 extern uint_t dmu_prefetch_max; 1127 1128 #ifdef __cplusplus 1129 } 1130 #endif 1131 1132 #endif /* _SYS_DMU_H */ 1133