1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--= 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ProgramState and ProgramStateManager. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 14 #include "clang/Analysis/CFG.h" 15 #include "clang/Basic/JsonSupport.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" 19 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <optional> 23 24 using namespace clang; 25 using namespace ento; 26 27 namespace clang { namespace ento { 28 /// Increments the number of times this state is referenced. 29 30 void ProgramStateRetain(const ProgramState *state) { 31 ++const_cast<ProgramState*>(state)->refCount; 32 } 33 34 /// Decrement the number of times this state is referenced. 35 void ProgramStateRelease(const ProgramState *state) { 36 assert(state->refCount > 0); 37 ProgramState *s = const_cast<ProgramState*>(state); 38 if (--s->refCount == 0) { 39 ProgramStateManager &Mgr = s->getStateManager(); 40 Mgr.StateSet.RemoveNode(s); 41 s->~ProgramState(); 42 Mgr.freeStates.push_back(s); 43 } 44 } 45 }} 46 47 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env, 48 StoreRef st, GenericDataMap gdm) 49 : stateMgr(mgr), 50 Env(env), 51 store(st.getStore()), 52 GDM(gdm), 53 refCount(0) { 54 stateMgr->getStoreManager().incrementReferenceCount(store); 55 } 56 57 ProgramState::ProgramState(const ProgramState &RHS) 58 : stateMgr(RHS.stateMgr), Env(RHS.Env), store(RHS.store), GDM(RHS.GDM), 59 PosteriorlyOverconstrained(RHS.PosteriorlyOverconstrained), refCount(0) { 60 stateMgr->getStoreManager().incrementReferenceCount(store); 61 } 62 63 ProgramState::~ProgramState() { 64 if (store) 65 stateMgr->getStoreManager().decrementReferenceCount(store); 66 } 67 68 int64_t ProgramState::getID() const { 69 return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this); 70 } 71 72 ProgramStateManager::ProgramStateManager(ASTContext &Ctx, 73 StoreManagerCreator CreateSMgr, 74 ConstraintManagerCreator CreateCMgr, 75 llvm::BumpPtrAllocator &alloc, 76 ExprEngine *ExprEng) 77 : Eng(ExprEng), EnvMgr(alloc), GDMFactory(alloc), 78 svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)), 79 CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) { 80 StoreMgr = (*CreateSMgr)(*this); 81 ConstraintMgr = (*CreateCMgr)(*this, ExprEng); 82 } 83 84 85 ProgramStateManager::~ProgramStateManager() { 86 for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end(); 87 I!=E; ++I) 88 I->second.second(I->second.first); 89 } 90 91 ProgramStateRef ProgramStateManager::removeDeadBindingsFromEnvironmentAndStore( 92 ProgramStateRef state, const StackFrameContext *LCtx, 93 SymbolReaper &SymReaper) { 94 95 // This code essentially performs a "mark-and-sweep" of the VariableBindings. 96 // The roots are any Block-level exprs and Decls that our liveness algorithm 97 // tells us are live. We then see what Decls they may reference, and keep 98 // those around. This code more than likely can be made faster, and the 99 // frequency of which this method is called should be experimented with 100 // for optimum performance. 101 ProgramState NewState = *state; 102 103 NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state); 104 105 // Clean up the store. 106 StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx, 107 SymReaper); 108 NewState.setStore(newStore); 109 SymReaper.setReapedStore(newStore); 110 111 return getPersistentState(NewState); 112 } 113 114 ProgramStateRef ProgramState::bindLoc(Loc LV, 115 SVal V, 116 const LocationContext *LCtx, 117 bool notifyChanges) const { 118 ProgramStateManager &Mgr = getStateManager(); 119 ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(), 120 LV, V)); 121 const MemRegion *MR = LV.getAsRegion(); 122 if (MR && notifyChanges) 123 return Mgr.getOwningEngine().processRegionChange(newState, MR, LCtx); 124 125 return newState; 126 } 127 128 ProgramStateRef 129 ProgramState::bindDefaultInitial(SVal loc, SVal V, 130 const LocationContext *LCtx) const { 131 ProgramStateManager &Mgr = getStateManager(); 132 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 133 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V); 134 ProgramStateRef new_state = makeWithStore(newStore); 135 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 136 } 137 138 ProgramStateRef 139 ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const { 140 ProgramStateManager &Mgr = getStateManager(); 141 const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion(); 142 const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R); 143 ProgramStateRef new_state = makeWithStore(newStore); 144 return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx); 145 } 146 147 typedef ArrayRef<const MemRegion *> RegionList; 148 typedef ArrayRef<SVal> ValueList; 149 150 ProgramStateRef 151 ProgramState::invalidateRegions(RegionList Regions, 152 const Expr *E, unsigned Count, 153 const LocationContext *LCtx, 154 bool CausedByPointerEscape, 155 InvalidatedSymbols *IS, 156 const CallEvent *Call, 157 RegionAndSymbolInvalidationTraits *ITraits) const { 158 SmallVector<SVal, 8> Values; 159 for (const MemRegion *Reg : Regions) 160 Values.push_back(loc::MemRegionVal(Reg)); 161 162 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 163 IS, ITraits, Call); 164 } 165 166 ProgramStateRef 167 ProgramState::invalidateRegions(ValueList Values, 168 const Expr *E, unsigned Count, 169 const LocationContext *LCtx, 170 bool CausedByPointerEscape, 171 InvalidatedSymbols *IS, 172 const CallEvent *Call, 173 RegionAndSymbolInvalidationTraits *ITraits) const { 174 175 return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape, 176 IS, ITraits, Call); 177 } 178 179 ProgramStateRef 180 ProgramState::invalidateRegionsImpl(ValueList Values, 181 const Expr *E, unsigned Count, 182 const LocationContext *LCtx, 183 bool CausedByPointerEscape, 184 InvalidatedSymbols *IS, 185 RegionAndSymbolInvalidationTraits *ITraits, 186 const CallEvent *Call) const { 187 ProgramStateManager &Mgr = getStateManager(); 188 ExprEngine &Eng = Mgr.getOwningEngine(); 189 190 InvalidatedSymbols InvalidatedSyms; 191 if (!IS) 192 IS = &InvalidatedSyms; 193 194 RegionAndSymbolInvalidationTraits ITraitsLocal; 195 if (!ITraits) 196 ITraits = &ITraitsLocal; 197 198 StoreManager::InvalidatedRegions TopLevelInvalidated; 199 StoreManager::InvalidatedRegions Invalidated; 200 const StoreRef &newStore 201 = Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call, 202 *IS, *ITraits, &TopLevelInvalidated, 203 &Invalidated); 204 205 ProgramStateRef newState = makeWithStore(newStore); 206 207 if (CausedByPointerEscape) { 208 newState = Eng.notifyCheckersOfPointerEscape(newState, IS, 209 TopLevelInvalidated, 210 Call, 211 *ITraits); 212 } 213 214 return Eng.processRegionChanges(newState, IS, TopLevelInvalidated, 215 Invalidated, LCtx, Call); 216 } 217 218 ProgramStateRef ProgramState::killBinding(Loc LV) const { 219 Store OldStore = getStore(); 220 const StoreRef &newStore = 221 getStateManager().StoreMgr->killBinding(OldStore, LV); 222 223 if (newStore.getStore() == OldStore) 224 return this; 225 226 return makeWithStore(newStore); 227 } 228 229 /// SymbolicRegions are expected to be wrapped by an ElementRegion as a 230 /// canonical representation. As a canonical representation, SymbolicRegions 231 /// should be wrapped by ElementRegions before getting a FieldRegion. 232 /// See f8643a9b31c4029942f67d4534c9139b45173504 why. 233 SVal ProgramState::wrapSymbolicRegion(SVal Val) const { 234 const auto *BaseReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion()); 235 if (!BaseReg) 236 return Val; 237 238 StoreManager &SM = getStateManager().getStoreManager(); 239 QualType ElemTy = BaseReg->getPointeeStaticType(); 240 return loc::MemRegionVal{SM.GetElementZeroRegion(BaseReg, ElemTy)}; 241 } 242 243 ProgramStateRef 244 ProgramState::enterStackFrame(const CallEvent &Call, 245 const StackFrameContext *CalleeCtx) const { 246 const StoreRef &NewStore = 247 getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx); 248 return makeWithStore(NewStore); 249 } 250 251 SVal ProgramState::getSelfSVal(const LocationContext *LCtx) const { 252 const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl(); 253 if (!SelfDecl) 254 return SVal(); 255 return getSVal(getRegion(SelfDecl, LCtx)); 256 } 257 258 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const { 259 // We only want to do fetches from regions that we can actually bind 260 // values. For example, SymbolicRegions of type 'id<...>' cannot 261 // have direct bindings (but their can be bindings on their subregions). 262 if (!R->isBoundable()) 263 return UnknownVal(); 264 265 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) { 266 QualType T = TR->getValueType(); 267 if (Loc::isLocType(T) || T->isIntegralOrEnumerationType()) 268 return getSVal(R); 269 } 270 271 return UnknownVal(); 272 } 273 274 SVal ProgramState::getSVal(Loc location, QualType T) const { 275 SVal V = getRawSVal(location, T); 276 277 // If 'V' is a symbolic value that is *perfectly* constrained to 278 // be a constant value, use that value instead to lessen the burden 279 // on later analysis stages (so we have less symbolic values to reason 280 // about). 281 // We only go into this branch if we can convert the APSInt value we have 282 // to the type of T, which is not always the case (e.g. for void). 283 if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) { 284 if (SymbolRef sym = V.getAsSymbol()) { 285 if (const llvm::APSInt *Int = getStateManager() 286 .getConstraintManager() 287 .getSymVal(this, sym)) { 288 // FIXME: Because we don't correctly model (yet) sign-extension 289 // and truncation of symbolic values, we need to convert 290 // the integer value to the correct signedness and bitwidth. 291 // 292 // This shows up in the following: 293 // 294 // char foo(); 295 // unsigned x = foo(); 296 // if (x == 54) 297 // ... 298 // 299 // The symbolic value stored to 'x' is actually the conjured 300 // symbol for the call to foo(); the type of that symbol is 'char', 301 // not unsigned. 302 const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int); 303 304 if (V.getAs<Loc>()) 305 return loc::ConcreteInt(NewV); 306 else 307 return nonloc::ConcreteInt(NewV); 308 } 309 } 310 } 311 312 return V; 313 } 314 315 ProgramStateRef ProgramState::BindExpr(const Stmt *S, 316 const LocationContext *LCtx, 317 SVal V, bool Invalidate) const{ 318 Environment NewEnv = 319 getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V, 320 Invalidate); 321 if (NewEnv == Env) 322 return this; 323 324 ProgramState NewSt = *this; 325 NewSt.Env = NewEnv; 326 return getStateManager().getPersistentState(NewSt); 327 } 328 329 [[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef> 330 ProgramState::assumeInBoundDual(DefinedOrUnknownSVal Idx, 331 DefinedOrUnknownSVal UpperBound, 332 QualType indexTy) const { 333 if (Idx.isUnknown() || UpperBound.isUnknown()) 334 return {this, this}; 335 336 // Build an expression for 0 <= Idx < UpperBound. 337 // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed. 338 // FIXME: This should probably be part of SValBuilder. 339 ProgramStateManager &SM = getStateManager(); 340 SValBuilder &svalBuilder = SM.getSValBuilder(); 341 ASTContext &Ctx = svalBuilder.getContext(); 342 343 // Get the offset: the minimum value of the array index type. 344 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 345 if (indexTy.isNull()) 346 indexTy = svalBuilder.getArrayIndexType(); 347 nonloc::ConcreteInt Min(BVF.getMinValue(indexTy)); 348 349 // Adjust the index. 350 SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add, 351 Idx.castAs<NonLoc>(), Min, indexTy); 352 if (newIdx.isUnknownOrUndef()) 353 return {this, this}; 354 355 // Adjust the upper bound. 356 SVal newBound = 357 svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(), 358 Min, indexTy); 359 360 if (newBound.isUnknownOrUndef()) 361 return {this, this}; 362 363 // Build the actual comparison. 364 SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(), 365 newBound.castAs<NonLoc>(), Ctx.IntTy); 366 if (inBound.isUnknownOrUndef()) 367 return {this, this}; 368 369 // Finally, let the constraint manager take care of it. 370 ConstraintManager &CM = SM.getConstraintManager(); 371 return CM.assumeDual(this, inBound.castAs<DefinedSVal>()); 372 } 373 374 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx, 375 DefinedOrUnknownSVal UpperBound, 376 bool Assumption, 377 QualType indexTy) const { 378 std::pair<ProgramStateRef, ProgramStateRef> R = 379 assumeInBoundDual(Idx, UpperBound, indexTy); 380 return Assumption ? R.first : R.second; 381 } 382 383 ConditionTruthVal ProgramState::isNonNull(SVal V) const { 384 ConditionTruthVal IsNull = isNull(V); 385 if (IsNull.isUnderconstrained()) 386 return IsNull; 387 return ConditionTruthVal(!IsNull.getValue()); 388 } 389 390 ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const { 391 return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs); 392 } 393 394 ConditionTruthVal ProgramState::isNull(SVal V) const { 395 if (V.isZeroConstant()) 396 return true; 397 398 if (V.isConstant()) 399 return false; 400 401 SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true); 402 if (!Sym) 403 return ConditionTruthVal(); 404 405 return getStateManager().ConstraintMgr->isNull(this, Sym); 406 } 407 408 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) { 409 ProgramState State(this, 410 EnvMgr.getInitialEnvironment(), 411 StoreMgr->getInitialStore(InitLoc), 412 GDMFactory.getEmptyMap()); 413 414 return getPersistentState(State); 415 } 416 417 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM( 418 ProgramStateRef FromState, 419 ProgramStateRef GDMState) { 420 ProgramState NewState(*FromState); 421 NewState.GDM = GDMState->GDM; 422 return getPersistentState(NewState); 423 } 424 425 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) { 426 427 llvm::FoldingSetNodeID ID; 428 State.Profile(ID); 429 void *InsertPos; 430 431 if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos)) 432 return I; 433 434 ProgramState *newState = nullptr; 435 if (!freeStates.empty()) { 436 newState = freeStates.back(); 437 freeStates.pop_back(); 438 } 439 else { 440 newState = Alloc.Allocate<ProgramState>(); 441 } 442 new (newState) ProgramState(State); 443 StateSet.InsertNode(newState, InsertPos); 444 return newState; 445 } 446 447 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const { 448 ProgramState NewSt(*this); 449 NewSt.setStore(store); 450 return getStateManager().getPersistentState(NewSt); 451 } 452 453 ProgramStateRef ProgramState::cloneAsPosteriorlyOverconstrained() const { 454 ProgramState NewSt(*this); 455 NewSt.PosteriorlyOverconstrained = true; 456 return getStateManager().getPersistentState(NewSt); 457 } 458 459 void ProgramState::setStore(const StoreRef &newStore) { 460 Store newStoreStore = newStore.getStore(); 461 if (newStoreStore) 462 stateMgr->getStoreManager().incrementReferenceCount(newStoreStore); 463 if (store) 464 stateMgr->getStoreManager().decrementReferenceCount(store); 465 store = newStoreStore; 466 } 467 468 SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const { 469 Base = wrapSymbolicRegion(Base); 470 return getStateManager().StoreMgr->getLValueField(D, Base); 471 } 472 473 SVal ProgramState::getLValue(const IndirectFieldDecl *D, SVal Base) const { 474 StoreManager &SM = *getStateManager().StoreMgr; 475 Base = wrapSymbolicRegion(Base); 476 477 // FIXME: This should work with `SM.getLValueField(D->getAnonField(), Base)`, 478 // but that would break some tests. There is probably a bug somewhere that it 479 // would expose. 480 for (const auto *I : D->chain()) { 481 Base = SM.getLValueField(cast<FieldDecl>(I), Base); 482 } 483 return Base; 484 } 485 486 //===----------------------------------------------------------------------===// 487 // State pretty-printing. 488 //===----------------------------------------------------------------------===// 489 490 void ProgramState::printJson(raw_ostream &Out, const LocationContext *LCtx, 491 const char *NL, unsigned int Space, 492 bool IsDot) const { 493 Indent(Out, Space, IsDot) << "\"program_state\": {" << NL; 494 ++Space; 495 496 ProgramStateManager &Mgr = getStateManager(); 497 498 // Print the store. 499 Mgr.getStoreManager().printJson(Out, getStore(), NL, Space, IsDot); 500 501 // Print out the environment. 502 Env.printJson(Out, Mgr.getContext(), LCtx, NL, Space, IsDot); 503 504 // Print out the constraints. 505 Mgr.getConstraintManager().printJson(Out, this, NL, Space, IsDot); 506 507 // Print out the tracked dynamic types. 508 printDynamicTypeInfoJson(Out, this, NL, Space, IsDot); 509 510 // Print checker-specific data. 511 Mgr.getOwningEngine().printJson(Out, this, LCtx, NL, Space, IsDot); 512 513 --Space; 514 Indent(Out, Space, IsDot) << '}'; 515 } 516 517 void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LCtx, 518 unsigned int Space) const { 519 printJson(Out, LCtx, /*NL=*/"\\l", Space, /*IsDot=*/true); 520 } 521 522 LLVM_DUMP_METHOD void ProgramState::dump() const { 523 printJson(llvm::errs()); 524 } 525 526 AnalysisManager& ProgramState::getAnalysisManager() const { 527 return stateMgr->getOwningEngine().getAnalysisManager(); 528 } 529 530 //===----------------------------------------------------------------------===// 531 // Generic Data Map. 532 //===----------------------------------------------------------------------===// 533 534 void *const* ProgramState::FindGDM(void *K) const { 535 return GDM.lookup(K); 536 } 537 538 void* 539 ProgramStateManager::FindGDMContext(void *K, 540 void *(*CreateContext)(llvm::BumpPtrAllocator&), 541 void (*DeleteContext)(void*)) { 542 543 std::pair<void*, void (*)(void*)>& p = GDMContexts[K]; 544 if (!p.first) { 545 p.first = CreateContext(Alloc); 546 p.second = DeleteContext; 547 } 548 549 return p.first; 550 } 551 552 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){ 553 ProgramState::GenericDataMap M1 = St->getGDM(); 554 ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data); 555 556 if (M1 == M2) 557 return St; 558 559 ProgramState NewSt = *St; 560 NewSt.GDM = M2; 561 return getPersistentState(NewSt); 562 } 563 564 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) { 565 ProgramState::GenericDataMap OldM = state->getGDM(); 566 ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key); 567 568 if (NewM == OldM) 569 return state; 570 571 ProgramState NewState = *state; 572 NewState.GDM = NewM; 573 return getPersistentState(NewState); 574 } 575 576 bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) { 577 bool wasVisited = !visited.insert(val.getCVData()).second; 578 if (wasVisited) 579 return true; 580 581 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 582 // FIXME: We don't really want to use getBaseRegion() here because pointer 583 // arithmetic doesn't apply, but scanReachableSymbols only accepts base 584 // regions right now. 585 const MemRegion *R = val.getRegion()->getBaseRegion(); 586 return StoreMgr.scanReachableSymbols(val.getStore(), R, *this); 587 } 588 589 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) { 590 for (SVal V : val) 591 if (!scan(V)) 592 return false; 593 594 return true; 595 } 596 597 bool ScanReachableSymbols::scan(const SymExpr *sym) { 598 for (SymbolRef SubSym : sym->symbols()) { 599 bool wasVisited = !visited.insert(SubSym).second; 600 if (wasVisited) 601 continue; 602 603 if (!visitor.VisitSymbol(SubSym)) 604 return false; 605 } 606 607 return true; 608 } 609 610 bool ScanReachableSymbols::scan(SVal val) { 611 if (std::optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>()) 612 return scan(X->getRegion()); 613 614 if (std::optional<nonloc::LazyCompoundVal> X = 615 val.getAs<nonloc::LazyCompoundVal>()) 616 return scan(*X); 617 618 if (std::optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>()) 619 return scan(X->getLoc()); 620 621 if (SymbolRef Sym = val.getAsSymbol()) 622 return scan(Sym); 623 624 if (std::optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>()) 625 return scan(*X); 626 627 return true; 628 } 629 630 bool ScanReachableSymbols::scan(const MemRegion *R) { 631 if (isa<MemSpaceRegion>(R)) 632 return true; 633 634 bool wasVisited = !visited.insert(R).second; 635 if (wasVisited) 636 return true; 637 638 if (!visitor.VisitMemRegion(R)) 639 return false; 640 641 // If this is a symbolic region, visit the symbol for the region. 642 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) 643 if (!visitor.VisitSymbol(SR->getSymbol())) 644 return false; 645 646 // If this is a subregion, also visit the parent regions. 647 if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { 648 const MemRegion *Super = SR->getSuperRegion(); 649 if (!scan(Super)) 650 return false; 651 652 // When we reach the topmost region, scan all symbols in it. 653 if (isa<MemSpaceRegion>(Super)) { 654 StoreManager &StoreMgr = state->getStateManager().getStoreManager(); 655 if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this)) 656 return false; 657 } 658 } 659 660 // Regions captured by a block are also implicitly reachable. 661 if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) { 662 for (auto Var : BDR->referenced_vars()) { 663 if (!scan(Var.getCapturedRegion())) 664 return false; 665 } 666 } 667 668 return true; 669 } 670 671 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const { 672 ScanReachableSymbols S(this, visitor); 673 return S.scan(val); 674 } 675 676 bool ProgramState::scanReachableSymbols( 677 llvm::iterator_range<region_iterator> Reachable, 678 SymbolVisitor &visitor) const { 679 ScanReachableSymbols S(this, visitor); 680 for (const MemRegion *R : Reachable) { 681 if (!S.scan(R)) 682 return false; 683 } 684 return true; 685 } 686