1 //===- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a meta-engine for path-sensitive dataflow analysis that 10 // is built on CoreEngine, but provides the boilerplate to execute transfer 11 // functions and build the ExplodedGraph at the expression level. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 16 #include "PrettyStackTraceLocationContext.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/DeclBase.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/ParentMap.h" 26 #include "clang/AST/PrettyPrinter.h" 27 #include "clang/AST/Stmt.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Analysis/AnalysisDeclContext.h" 32 #include "clang/Analysis/CFG.h" 33 #include "clang/Analysis/ConstructionContext.h" 34 #include "clang/Analysis/ProgramPoint.h" 35 #include "clang/Basic/IdentifierTable.h" 36 #include "clang/Basic/JsonSupport.h" 37 #include "clang/Basic/LLVM.h" 38 #include "clang/Basic/LangOptions.h" 39 #include "clang/Basic/PrettyStackTrace.h" 40 #include "clang/Basic/SourceLocation.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/Specifiers.h" 43 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" 44 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 45 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 46 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 47 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" 48 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 49 #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h" 50 #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" 51 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 52 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 53 #include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h" 54 #include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h" 55 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" 56 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 57 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 58 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 59 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" 60 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 61 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" 62 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" 63 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 64 #include "llvm/ADT/APSInt.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/ImmutableMap.h" 67 #include "llvm/ADT/ImmutableSet.h" 68 #include "llvm/ADT/STLExtras.h" 69 #include "llvm/ADT/SmallVector.h" 70 #include "llvm/ADT/Statistic.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/DOTGraphTraits.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/GraphWriter.h" 76 #include "llvm/Support/SaveAndRestore.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include <cassert> 79 #include <cstdint> 80 #include <memory> 81 #include <optional> 82 #include <string> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace clang; 88 using namespace ento; 89 90 #define DEBUG_TYPE "ExprEngine" 91 92 STATISTIC(NumRemoveDeadBindings, 93 "The # of times RemoveDeadBindings is called"); 94 STATISTIC(NumMaxBlockCountReached, 95 "The # of aborted paths due to reaching the maximum block count in " 96 "a top level function"); 97 STATISTIC(NumMaxBlockCountReachedInInlined, 98 "The # of aborted paths due to reaching the maximum block count in " 99 "an inlined function"); 100 STATISTIC(NumTimesRetriedWithoutInlining, 101 "The # of times we re-evaluated a call without inlining"); 102 103 //===----------------------------------------------------------------------===// 104 // Internal program state traits. 105 //===----------------------------------------------------------------------===// 106 107 namespace { 108 109 // When modeling a C++ constructor, for a variety of reasons we need to track 110 // the location of the object for the duration of its ConstructionContext. 111 // ObjectsUnderConstruction maps statements within the construction context 112 // to the object's location, so that on every such statement the location 113 // could have been retrieved. 114 115 /// ConstructedObjectKey is used for being able to find the path-sensitive 116 /// memory region of a freshly constructed object while modeling the AST node 117 /// that syntactically represents the object that is being constructed. 118 /// Semantics of such nodes may sometimes require access to the region that's 119 /// not otherwise present in the program state, or to the very fact that 120 /// the construction context was present and contained references to these 121 /// AST nodes. 122 class ConstructedObjectKey { 123 using ConstructedObjectKeyImpl = 124 std::pair<ConstructionContextItem, const LocationContext *>; 125 const ConstructedObjectKeyImpl Impl; 126 127 public: 128 explicit ConstructedObjectKey(const ConstructionContextItem &Item, 129 const LocationContext *LC) 130 : Impl(Item, LC) {} 131 132 const ConstructionContextItem &getItem() const { return Impl.first; } 133 const LocationContext *getLocationContext() const { return Impl.second; } 134 135 ASTContext &getASTContext() const { 136 return getLocationContext()->getDecl()->getASTContext(); 137 } 138 139 void printJson(llvm::raw_ostream &Out, PrinterHelper *Helper, 140 PrintingPolicy &PP) const { 141 const Stmt *S = getItem().getStmtOrNull(); 142 const CXXCtorInitializer *I = nullptr; 143 if (!S) 144 I = getItem().getCXXCtorInitializer(); 145 146 if (S) 147 Out << "\"stmt_id\": " << S->getID(getASTContext()); 148 else 149 Out << "\"init_id\": " << I->getID(getASTContext()); 150 151 // Kind 152 Out << ", \"kind\": \"" << getItem().getKindAsString() 153 << "\", \"argument_index\": "; 154 155 if (getItem().getKind() == ConstructionContextItem::ArgumentKind) 156 Out << getItem().getIndex(); 157 else 158 Out << "null"; 159 160 // Pretty-print 161 Out << ", \"pretty\": "; 162 163 if (S) { 164 S->printJson(Out, Helper, PP, /*AddQuotes=*/true); 165 } else { 166 Out << '\"' << I->getAnyMember()->getDeclName() << '\"'; 167 } 168 } 169 170 void Profile(llvm::FoldingSetNodeID &ID) const { 171 ID.Add(Impl.first); 172 ID.AddPointer(Impl.second); 173 } 174 175 bool operator==(const ConstructedObjectKey &RHS) const { 176 return Impl == RHS.Impl; 177 } 178 179 bool operator<(const ConstructedObjectKey &RHS) const { 180 return Impl < RHS.Impl; 181 } 182 }; 183 } // namespace 184 185 typedef llvm::ImmutableMap<ConstructedObjectKey, SVal> 186 ObjectsUnderConstructionMap; 187 REGISTER_TRAIT_WITH_PROGRAMSTATE(ObjectsUnderConstruction, 188 ObjectsUnderConstructionMap) 189 190 // This trait is responsible for storing the index of the element that is to be 191 // constructed in the next iteration. As a result a CXXConstructExpr is only 192 // stored if it is array type. Also the index is the index of the continuous 193 // memory region, which is important for multi-dimensional arrays. E.g:: int 194 // arr[2][2]; assume arr[1][1] will be the next element under construction, so 195 // the index is 3. 196 typedef llvm::ImmutableMap< 197 std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned> 198 IndexOfElementToConstructMap; 199 REGISTER_TRAIT_WITH_PROGRAMSTATE(IndexOfElementToConstruct, 200 IndexOfElementToConstructMap) 201 202 // This trait is responsible for holding our pending ArrayInitLoopExprs. 203 // It pairs the LocationContext and the initializer CXXConstructExpr with 204 // the size of the array that's being copy initialized. 205 typedef llvm::ImmutableMap< 206 std::pair<const CXXConstructExpr *, const LocationContext *>, unsigned> 207 PendingInitLoopMap; 208 REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingInitLoop, PendingInitLoopMap) 209 210 typedef llvm::ImmutableMap<const LocationContext *, unsigned> 211 PendingArrayDestructionMap; 212 REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingArrayDestruction, 213 PendingArrayDestructionMap) 214 215 //===----------------------------------------------------------------------===// 216 // Engine construction and deletion. 217 //===----------------------------------------------------------------------===// 218 219 static const char* TagProviderName = "ExprEngine"; 220 221 ExprEngine::ExprEngine(cross_tu::CrossTranslationUnitContext &CTU, 222 AnalysisManager &mgr, SetOfConstDecls *VisitedCalleesIn, 223 FunctionSummariesTy *FS, InliningModes HowToInlineIn) 224 : CTU(CTU), IsCTUEnabled(mgr.getAnalyzerOptions().IsNaiveCTUEnabled), 225 AMgr(mgr), AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()), 226 Engine(*this, FS, mgr.getAnalyzerOptions()), G(Engine.getGraph()), 227 StateMgr(getContext(), mgr.getStoreManagerCreator(), 228 mgr.getConstraintManagerCreator(), G.getAllocator(), this), 229 SymMgr(StateMgr.getSymbolManager()), MRMgr(StateMgr.getRegionManager()), 230 svalBuilder(StateMgr.getSValBuilder()), ObjCNoRet(mgr.getASTContext()), 231 BR(mgr, *this), VisitedCallees(VisitedCalleesIn), 232 HowToInline(HowToInlineIn) { 233 unsigned TrimInterval = mgr.options.GraphTrimInterval; 234 if (TrimInterval != 0) { 235 // Enable eager node reclamation when constructing the ExplodedGraph. 236 G.enableNodeReclamation(TrimInterval); 237 } 238 } 239 240 //===----------------------------------------------------------------------===// 241 // Utility methods. 242 //===----------------------------------------------------------------------===// 243 244 ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) { 245 ProgramStateRef state = StateMgr.getInitialState(InitLoc); 246 const Decl *D = InitLoc->getDecl(); 247 248 // Preconditions. 249 // FIXME: It would be nice if we had a more general mechanism to add 250 // such preconditions. Some day. 251 do { 252 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 253 // Precondition: the first argument of 'main' is an integer guaranteed 254 // to be > 0. 255 const IdentifierInfo *II = FD->getIdentifier(); 256 if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) 257 break; 258 259 const ParmVarDecl *PD = FD->getParamDecl(0); 260 QualType T = PD->getType(); 261 const auto *BT = dyn_cast<BuiltinType>(T); 262 if (!BT || !BT->isInteger()) 263 break; 264 265 const MemRegion *R = state->getRegion(PD, InitLoc); 266 if (!R) 267 break; 268 269 SVal V = state->getSVal(loc::MemRegionVal(R)); 270 SVal Constraint_untested = evalBinOp(state, BO_GT, V, 271 svalBuilder.makeZeroVal(T), 272 svalBuilder.getConditionType()); 273 274 std::optional<DefinedOrUnknownSVal> Constraint = 275 Constraint_untested.getAs<DefinedOrUnknownSVal>(); 276 277 if (!Constraint) 278 break; 279 280 if (ProgramStateRef newState = state->assume(*Constraint, true)) 281 state = newState; 282 } 283 break; 284 } 285 while (false); 286 287 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 288 // Precondition: 'self' is always non-null upon entry to an Objective-C 289 // method. 290 const ImplicitParamDecl *SelfD = MD->getSelfDecl(); 291 const MemRegion *R = state->getRegion(SelfD, InitLoc); 292 SVal V = state->getSVal(loc::MemRegionVal(R)); 293 294 if (std::optional<Loc> LV = V.getAs<Loc>()) { 295 // Assume that the pointer value in 'self' is non-null. 296 state = state->assume(*LV, true); 297 assert(state && "'self' cannot be null"); 298 } 299 } 300 301 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 302 if (MD->isImplicitObjectMemberFunction()) { 303 // Precondition: 'this' is always non-null upon entry to the 304 // top-level function. This is our starting assumption for 305 // analyzing an "open" program. 306 const StackFrameContext *SFC = InitLoc->getStackFrame(); 307 if (SFC->getParent() == nullptr) { 308 loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC); 309 SVal V = state->getSVal(L); 310 if (std::optional<Loc> LV = V.getAs<Loc>()) { 311 state = state->assume(*LV, true); 312 assert(state && "'this' cannot be null"); 313 } 314 } 315 } 316 } 317 318 return state; 319 } 320 321 ProgramStateRef ExprEngine::createTemporaryRegionIfNeeded( 322 ProgramStateRef State, const LocationContext *LC, 323 const Expr *InitWithAdjustments, const Expr *Result, 324 const SubRegion **OutRegionWithAdjustments) { 325 // FIXME: This function is a hack that works around the quirky AST 326 // we're often having with respect to C++ temporaries. If only we modelled 327 // the actual execution order of statements properly in the CFG, 328 // all the hassle with adjustments would not be necessary, 329 // and perhaps the whole function would be removed. 330 SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC); 331 if (!Result) { 332 // If we don't have an explicit result expression, we're in "if needed" 333 // mode. Only create a region if the current value is a NonLoc. 334 if (!isa<NonLoc>(InitValWithAdjustments)) { 335 if (OutRegionWithAdjustments) 336 *OutRegionWithAdjustments = nullptr; 337 return State; 338 } 339 Result = InitWithAdjustments; 340 } else { 341 // We need to create a region no matter what. Make sure we don't try to 342 // stuff a Loc into a non-pointer temporary region. 343 assert(!isa<Loc>(InitValWithAdjustments) || 344 Loc::isLocType(Result->getType()) || 345 Result->getType()->isMemberPointerType()); 346 } 347 348 ProgramStateManager &StateMgr = State->getStateManager(); 349 MemRegionManager &MRMgr = StateMgr.getRegionManager(); 350 StoreManager &StoreMgr = StateMgr.getStoreManager(); 351 352 // MaterializeTemporaryExpr may appear out of place, after a few field and 353 // base-class accesses have been made to the object, even though semantically 354 // it is the whole object that gets materialized and lifetime-extended. 355 // 356 // For example: 357 // 358 // `-MaterializeTemporaryExpr 359 // `-MemberExpr 360 // `-CXXTemporaryObjectExpr 361 // 362 // instead of the more natural 363 // 364 // `-MemberExpr 365 // `-MaterializeTemporaryExpr 366 // `-CXXTemporaryObjectExpr 367 // 368 // Use the usual methods for obtaining the expression of the base object, 369 // and record the adjustments that we need to make to obtain the sub-object 370 // that the whole expression 'Ex' refers to. This trick is usual, 371 // in the sense that CodeGen takes a similar route. 372 373 SmallVector<const Expr *, 2> CommaLHSs; 374 SmallVector<SubobjectAdjustment, 2> Adjustments; 375 376 const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments( 377 CommaLHSs, Adjustments); 378 379 // Take the region for Init, i.e. for the whole object. If we do not remember 380 // the region in which the object originally was constructed, come up with 381 // a new temporary region out of thin air and copy the contents of the object 382 // (which are currently present in the Environment, because Init is an rvalue) 383 // into that region. This is not correct, but it is better than nothing. 384 const TypedValueRegion *TR = nullptr; 385 if (const auto *MT = dyn_cast<MaterializeTemporaryExpr>(Result)) { 386 if (std::optional<SVal> V = getObjectUnderConstruction(State, MT, LC)) { 387 State = finishObjectConstruction(State, MT, LC); 388 State = State->BindExpr(Result, LC, *V); 389 return State; 390 } else if (const ValueDecl *VD = MT->getExtendingDecl()) { 391 StorageDuration SD = MT->getStorageDuration(); 392 assert(SD != SD_FullExpression); 393 // If this object is bound to a reference with static storage duration, we 394 // put it in a different region to prevent "address leakage" warnings. 395 if (SD == SD_Static || SD == SD_Thread) { 396 TR = MRMgr.getCXXStaticLifetimeExtendedObjectRegion(Init, VD); 397 } else { 398 TR = MRMgr.getCXXLifetimeExtendedObjectRegion(Init, VD, LC); 399 } 400 } else { 401 assert(MT->getStorageDuration() == SD_FullExpression); 402 TR = MRMgr.getCXXTempObjectRegion(Init, LC); 403 } 404 } else { 405 TR = MRMgr.getCXXTempObjectRegion(Init, LC); 406 } 407 408 SVal Reg = loc::MemRegionVal(TR); 409 SVal BaseReg = Reg; 410 411 // Make the necessary adjustments to obtain the sub-object. 412 for (const SubobjectAdjustment &Adj : llvm::reverse(Adjustments)) { 413 switch (Adj.Kind) { 414 case SubobjectAdjustment::DerivedToBaseAdjustment: 415 Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath); 416 break; 417 case SubobjectAdjustment::FieldAdjustment: 418 Reg = StoreMgr.getLValueField(Adj.Field, Reg); 419 break; 420 case SubobjectAdjustment::MemberPointerAdjustment: 421 // FIXME: Unimplemented. 422 State = State->invalidateRegions(Reg, InitWithAdjustments, 423 currBldrCtx->blockCount(), LC, true, 424 nullptr, nullptr, nullptr); 425 return State; 426 } 427 } 428 429 // What remains is to copy the value of the object to the new region. 430 // FIXME: In other words, what we should always do is copy value of the 431 // Init expression (which corresponds to the bigger object) to the whole 432 // temporary region TR. However, this value is often no longer present 433 // in the Environment. If it has disappeared, we instead invalidate TR. 434 // Still, what we can do is assign the value of expression Ex (which 435 // corresponds to the sub-object) to the TR's sub-region Reg. At least, 436 // values inside Reg would be correct. 437 SVal InitVal = State->getSVal(Init, LC); 438 if (InitVal.isUnknown()) { 439 InitVal = getSValBuilder().conjureSymbolVal(Result, LC, Init->getType(), 440 currBldrCtx->blockCount()); 441 State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false); 442 443 // Then we'd need to take the value that certainly exists and bind it 444 // over. 445 if (InitValWithAdjustments.isUnknown()) { 446 // Try to recover some path sensitivity in case we couldn't 447 // compute the value. 448 InitValWithAdjustments = getSValBuilder().conjureSymbolVal( 449 Result, LC, InitWithAdjustments->getType(), 450 currBldrCtx->blockCount()); 451 } 452 State = 453 State->bindLoc(Reg.castAs<Loc>(), InitValWithAdjustments, LC, false); 454 } else { 455 State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false); 456 } 457 458 // The result expression would now point to the correct sub-region of the 459 // newly created temporary region. Do this last in order to getSVal of Init 460 // correctly in case (Result == Init). 461 if (Result->isGLValue()) { 462 State = State->BindExpr(Result, LC, Reg); 463 } else { 464 State = State->BindExpr(Result, LC, InitValWithAdjustments); 465 } 466 467 // Notify checkers once for two bindLoc()s. 468 State = processRegionChange(State, TR, LC); 469 470 if (OutRegionWithAdjustments) 471 *OutRegionWithAdjustments = cast<SubRegion>(Reg.getAsRegion()); 472 return State; 473 } 474 475 ProgramStateRef ExprEngine::setIndexOfElementToConstruct( 476 ProgramStateRef State, const CXXConstructExpr *E, 477 const LocationContext *LCtx, unsigned Idx) { 478 auto Key = std::make_pair(E, LCtx->getStackFrame()); 479 480 assert(!State->contains<IndexOfElementToConstruct>(Key) || Idx > 0); 481 482 return State->set<IndexOfElementToConstruct>(Key, Idx); 483 } 484 485 std::optional<unsigned> 486 ExprEngine::getPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, 487 const LocationContext *LCtx) { 488 const unsigned *V = State->get<PendingInitLoop>({E, LCtx->getStackFrame()}); 489 return V ? std::make_optional(*V) : std::nullopt; 490 } 491 492 ProgramStateRef ExprEngine::removePendingInitLoop(ProgramStateRef State, 493 const CXXConstructExpr *E, 494 const LocationContext *LCtx) { 495 auto Key = std::make_pair(E, LCtx->getStackFrame()); 496 497 assert(E && State->contains<PendingInitLoop>(Key)); 498 return State->remove<PendingInitLoop>(Key); 499 } 500 501 ProgramStateRef ExprEngine::setPendingInitLoop(ProgramStateRef State, 502 const CXXConstructExpr *E, 503 const LocationContext *LCtx, 504 unsigned Size) { 505 auto Key = std::make_pair(E, LCtx->getStackFrame()); 506 507 assert(!State->contains<PendingInitLoop>(Key) && Size > 0); 508 509 return State->set<PendingInitLoop>(Key, Size); 510 } 511 512 std::optional<unsigned> 513 ExprEngine::getIndexOfElementToConstruct(ProgramStateRef State, 514 const CXXConstructExpr *E, 515 const LocationContext *LCtx) { 516 const unsigned *V = 517 State->get<IndexOfElementToConstruct>({E, LCtx->getStackFrame()}); 518 return V ? std::make_optional(*V) : std::nullopt; 519 } 520 521 ProgramStateRef 522 ExprEngine::removeIndexOfElementToConstruct(ProgramStateRef State, 523 const CXXConstructExpr *E, 524 const LocationContext *LCtx) { 525 auto Key = std::make_pair(E, LCtx->getStackFrame()); 526 527 assert(E && State->contains<IndexOfElementToConstruct>(Key)); 528 return State->remove<IndexOfElementToConstruct>(Key); 529 } 530 531 std::optional<unsigned> 532 ExprEngine::getPendingArrayDestruction(ProgramStateRef State, 533 const LocationContext *LCtx) { 534 assert(LCtx && "LocationContext shouldn't be null!"); 535 536 const unsigned *V = 537 State->get<PendingArrayDestruction>(LCtx->getStackFrame()); 538 return V ? std::make_optional(*V) : std::nullopt; 539 } 540 541 ProgramStateRef ExprEngine::setPendingArrayDestruction( 542 ProgramStateRef State, const LocationContext *LCtx, unsigned Idx) { 543 assert(LCtx && "LocationContext shouldn't be null!"); 544 545 auto Key = LCtx->getStackFrame(); 546 547 return State->set<PendingArrayDestruction>(Key, Idx); 548 } 549 550 ProgramStateRef 551 ExprEngine::removePendingArrayDestruction(ProgramStateRef State, 552 const LocationContext *LCtx) { 553 assert(LCtx && "LocationContext shouldn't be null!"); 554 555 auto Key = LCtx->getStackFrame(); 556 557 assert(LCtx && State->contains<PendingArrayDestruction>(Key)); 558 return State->remove<PendingArrayDestruction>(Key); 559 } 560 561 ProgramStateRef 562 ExprEngine::addObjectUnderConstruction(ProgramStateRef State, 563 const ConstructionContextItem &Item, 564 const LocationContext *LC, SVal V) { 565 ConstructedObjectKey Key(Item, LC->getStackFrame()); 566 567 const Expr *Init = nullptr; 568 569 if (auto DS = dyn_cast_or_null<DeclStmt>(Item.getStmtOrNull())) { 570 if (auto VD = dyn_cast_or_null<VarDecl>(DS->getSingleDecl())) 571 Init = VD->getInit(); 572 } 573 574 if (auto LE = dyn_cast_or_null<LambdaExpr>(Item.getStmtOrNull())) 575 Init = *(LE->capture_init_begin() + Item.getIndex()); 576 577 if (!Init && !Item.getStmtOrNull()) 578 Init = Item.getCXXCtorInitializer()->getInit(); 579 580 // In an ArrayInitLoopExpr the real initializer is returned by 581 // getSubExpr(). Note that AILEs can be nested in case of 582 // multidimesnional arrays. 583 if (const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init)) 584 Init = extractElementInitializerFromNestedAILE(AILE); 585 586 // FIXME: Currently the state might already contain the marker due to 587 // incorrect handling of temporaries bound to default parameters. 588 // The state will already contain the marker if we construct elements 589 // in an array, as we visit the same statement multiple times before 590 // the array declaration. The marker is removed when we exit the 591 // constructor call. 592 assert((!State->get<ObjectsUnderConstruction>(Key) || 593 Key.getItem().getKind() == 594 ConstructionContextItem::TemporaryDestructorKind || 595 State->contains<IndexOfElementToConstruct>( 596 {dyn_cast_or_null<CXXConstructExpr>(Init), LC})) && 597 "The object is already marked as `UnderConstruction`, when it's not " 598 "supposed to!"); 599 return State->set<ObjectsUnderConstruction>(Key, V); 600 } 601 602 std::optional<SVal> 603 ExprEngine::getObjectUnderConstruction(ProgramStateRef State, 604 const ConstructionContextItem &Item, 605 const LocationContext *LC) { 606 ConstructedObjectKey Key(Item, LC->getStackFrame()); 607 const SVal *V = State->get<ObjectsUnderConstruction>(Key); 608 return V ? std::make_optional(*V) : std::nullopt; 609 } 610 611 ProgramStateRef 612 ExprEngine::finishObjectConstruction(ProgramStateRef State, 613 const ConstructionContextItem &Item, 614 const LocationContext *LC) { 615 ConstructedObjectKey Key(Item, LC->getStackFrame()); 616 assert(State->contains<ObjectsUnderConstruction>(Key)); 617 return State->remove<ObjectsUnderConstruction>(Key); 618 } 619 620 ProgramStateRef ExprEngine::elideDestructor(ProgramStateRef State, 621 const CXXBindTemporaryExpr *BTE, 622 const LocationContext *LC) { 623 ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); 624 // FIXME: Currently the state might already contain the marker due to 625 // incorrect handling of temporaries bound to default parameters. 626 return State->set<ObjectsUnderConstruction>(Key, UnknownVal()); 627 } 628 629 ProgramStateRef 630 ExprEngine::cleanupElidedDestructor(ProgramStateRef State, 631 const CXXBindTemporaryExpr *BTE, 632 const LocationContext *LC) { 633 ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); 634 assert(State->contains<ObjectsUnderConstruction>(Key)); 635 return State->remove<ObjectsUnderConstruction>(Key); 636 } 637 638 bool ExprEngine::isDestructorElided(ProgramStateRef State, 639 const CXXBindTemporaryExpr *BTE, 640 const LocationContext *LC) { 641 ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); 642 return State->contains<ObjectsUnderConstruction>(Key); 643 } 644 645 bool ExprEngine::areAllObjectsFullyConstructed(ProgramStateRef State, 646 const LocationContext *FromLC, 647 const LocationContext *ToLC) { 648 const LocationContext *LC = FromLC; 649 while (LC != ToLC) { 650 assert(LC && "ToLC must be a parent of FromLC!"); 651 for (auto I : State->get<ObjectsUnderConstruction>()) 652 if (I.first.getLocationContext() == LC) 653 return false; 654 655 LC = LC->getParent(); 656 } 657 return true; 658 } 659 660 661 //===----------------------------------------------------------------------===// 662 // Top-level transfer function logic (Dispatcher). 663 //===----------------------------------------------------------------------===// 664 665 /// evalAssume - Called by ConstraintManager. Used to call checker-specific 666 /// logic for handling assumptions on symbolic values. 667 ProgramStateRef ExprEngine::processAssume(ProgramStateRef state, 668 SVal cond, bool assumption) { 669 return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); 670 } 671 672 ProgramStateRef 673 ExprEngine::processRegionChanges(ProgramStateRef state, 674 const InvalidatedSymbols *invalidated, 675 ArrayRef<const MemRegion *> Explicits, 676 ArrayRef<const MemRegion *> Regions, 677 const LocationContext *LCtx, 678 const CallEvent *Call) { 679 return getCheckerManager().runCheckersForRegionChanges(state, invalidated, 680 Explicits, Regions, 681 LCtx, Call); 682 } 683 684 static void 685 printObjectsUnderConstructionJson(raw_ostream &Out, ProgramStateRef State, 686 const char *NL, const LocationContext *LCtx, 687 unsigned int Space = 0, bool IsDot = false) { 688 PrintingPolicy PP = 689 LCtx->getAnalysisDeclContext()->getASTContext().getPrintingPolicy(); 690 691 ++Space; 692 bool HasItem = false; 693 694 // Store the last key. 695 const ConstructedObjectKey *LastKey = nullptr; 696 for (const auto &I : State->get<ObjectsUnderConstruction>()) { 697 const ConstructedObjectKey &Key = I.first; 698 if (Key.getLocationContext() != LCtx) 699 continue; 700 701 if (!HasItem) { 702 Out << '[' << NL; 703 HasItem = true; 704 } 705 706 LastKey = &Key; 707 } 708 709 for (const auto &I : State->get<ObjectsUnderConstruction>()) { 710 const ConstructedObjectKey &Key = I.first; 711 SVal Value = I.second; 712 if (Key.getLocationContext() != LCtx) 713 continue; 714 715 Indent(Out, Space, IsDot) << "{ "; 716 Key.printJson(Out, nullptr, PP); 717 Out << ", \"value\": \"" << Value << "\" }"; 718 719 if (&Key != LastKey) 720 Out << ','; 721 Out << NL; 722 } 723 724 if (HasItem) 725 Indent(Out, --Space, IsDot) << ']'; // End of "location_context". 726 else { 727 Out << "null "; 728 } 729 } 730 731 static void printIndicesOfElementsToConstructJson( 732 raw_ostream &Out, ProgramStateRef State, const char *NL, 733 const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) { 734 using KeyT = std::pair<const Expr *, const LocationContext *>; 735 736 const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext(); 737 PrintingPolicy PP = Context.getPrintingPolicy(); 738 739 ++Space; 740 bool HasItem = false; 741 742 // Store the last key. 743 KeyT LastKey; 744 for (const auto &I : State->get<IndexOfElementToConstruct>()) { 745 const KeyT &Key = I.first; 746 if (Key.second != LCtx) 747 continue; 748 749 if (!HasItem) { 750 Out << '[' << NL; 751 HasItem = true; 752 } 753 754 LastKey = Key; 755 } 756 757 for (const auto &I : State->get<IndexOfElementToConstruct>()) { 758 const KeyT &Key = I.first; 759 unsigned Value = I.second; 760 if (Key.second != LCtx) 761 continue; 762 763 Indent(Out, Space, IsDot) << "{ "; 764 765 // Expr 766 const Expr *E = Key.first; 767 Out << "\"stmt_id\": " << E->getID(Context); 768 769 // Kind 770 Out << ", \"kind\": null"; 771 772 // Pretty-print 773 Out << ", \"pretty\": "; 774 Out << "\"" << E->getStmtClassName() << ' ' 775 << E->getSourceRange().printToString(Context.getSourceManager()) << " '" 776 << QualType::getAsString(E->getType().split(), PP); 777 Out << "'\""; 778 779 Out << ", \"value\": \"Current index: " << Value - 1 << "\" }"; 780 781 if (Key != LastKey) 782 Out << ','; 783 Out << NL; 784 } 785 786 if (HasItem) 787 Indent(Out, --Space, IsDot) << ']'; // End of "location_context". 788 else { 789 Out << "null "; 790 } 791 } 792 793 static void printPendingInitLoopJson(raw_ostream &Out, ProgramStateRef State, 794 const char *NL, 795 const LocationContext *LCtx, 796 unsigned int Space = 0, 797 bool IsDot = false) { 798 using KeyT = std::pair<const CXXConstructExpr *, const LocationContext *>; 799 800 const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext(); 801 PrintingPolicy PP = Context.getPrintingPolicy(); 802 803 ++Space; 804 bool HasItem = false; 805 806 // Store the last key. 807 KeyT LastKey; 808 for (const auto &I : State->get<PendingInitLoop>()) { 809 const KeyT &Key = I.first; 810 if (Key.second != LCtx) 811 continue; 812 813 if (!HasItem) { 814 Out << '[' << NL; 815 HasItem = true; 816 } 817 818 LastKey = Key; 819 } 820 821 for (const auto &I : State->get<PendingInitLoop>()) { 822 const KeyT &Key = I.first; 823 unsigned Value = I.second; 824 if (Key.second != LCtx) 825 continue; 826 827 Indent(Out, Space, IsDot) << "{ "; 828 829 const CXXConstructExpr *E = Key.first; 830 Out << "\"stmt_id\": " << E->getID(Context); 831 832 Out << ", \"kind\": null"; 833 Out << ", \"pretty\": "; 834 Out << '\"' << E->getStmtClassName() << ' ' 835 << E->getSourceRange().printToString(Context.getSourceManager()) << " '" 836 << QualType::getAsString(E->getType().split(), PP); 837 Out << "'\""; 838 839 Out << ", \"value\": \"Flattened size: " << Value << "\"}"; 840 841 if (Key != LastKey) 842 Out << ','; 843 Out << NL; 844 } 845 846 if (HasItem) 847 Indent(Out, --Space, IsDot) << ']'; // End of "location_context". 848 else { 849 Out << "null "; 850 } 851 } 852 853 static void 854 printPendingArrayDestructionsJson(raw_ostream &Out, ProgramStateRef State, 855 const char *NL, const LocationContext *LCtx, 856 unsigned int Space = 0, bool IsDot = false) { 857 using KeyT = const LocationContext *; 858 859 ++Space; 860 bool HasItem = false; 861 862 // Store the last key. 863 KeyT LastKey = nullptr; 864 for (const auto &I : State->get<PendingArrayDestruction>()) { 865 const KeyT &Key = I.first; 866 if (Key != LCtx) 867 continue; 868 869 if (!HasItem) { 870 Out << '[' << NL; 871 HasItem = true; 872 } 873 874 LastKey = Key; 875 } 876 877 for (const auto &I : State->get<PendingArrayDestruction>()) { 878 const KeyT &Key = I.first; 879 if (Key != LCtx) 880 continue; 881 882 Indent(Out, Space, IsDot) << "{ "; 883 884 Out << "\"stmt_id\": null"; 885 Out << ", \"kind\": null"; 886 Out << ", \"pretty\": \"Current index: \""; 887 Out << ", \"value\": \"" << I.second << "\" }"; 888 889 if (Key != LastKey) 890 Out << ','; 891 Out << NL; 892 } 893 894 if (HasItem) 895 Indent(Out, --Space, IsDot) << ']'; // End of "location_context". 896 else { 897 Out << "null "; 898 } 899 } 900 901 /// A helper function to generalize program state trait printing. 902 /// The function invokes Printer as 'Printer(Out, State, NL, LC, Space, IsDot, 903 /// std::forward<Args>(args)...)'. \n One possible type for Printer is 904 /// 'void()(raw_ostream &, ProgramStateRef, const char *, const LocationContext 905 /// *, unsigned int, bool, ...)' \n \param Trait The state trait to be printed. 906 /// \param Printer A void function that prints Trait. 907 /// \param Args An additional parameter pack that is passed to Print upon 908 /// invocation. 909 template <typename Trait, typename Printer, typename... Args> 910 static void printStateTraitWithLocationContextJson( 911 raw_ostream &Out, ProgramStateRef State, const LocationContext *LCtx, 912 const char *NL, unsigned int Space, bool IsDot, 913 const char *jsonPropertyName, Printer printer, Args &&...args) { 914 915 using RequiredType = 916 void (*)(raw_ostream &, ProgramStateRef, const char *, 917 const LocationContext *, unsigned int, bool, Args &&...); 918 919 // Try to do as much compile time checking as possible. 920 // FIXME: check for invocable instead of function? 921 static_assert(std::is_function_v<std::remove_pointer_t<Printer>>, 922 "Printer is not a function!"); 923 static_assert(std::is_convertible_v<Printer, RequiredType>, 924 "Printer doesn't have the required type!"); 925 926 if (LCtx && !State->get<Trait>().isEmpty()) { 927 Indent(Out, Space, IsDot) << '\"' << jsonPropertyName << "\": "; 928 ++Space; 929 Out << '[' << NL; 930 LCtx->printJson(Out, NL, Space, IsDot, [&](const LocationContext *LC) { 931 printer(Out, State, NL, LC, Space, IsDot, std::forward<Args>(args)...); 932 }); 933 934 --Space; 935 Indent(Out, Space, IsDot) << "]," << NL; // End of "jsonPropertyName". 936 } 937 } 938 939 void ExprEngine::printJson(raw_ostream &Out, ProgramStateRef State, 940 const LocationContext *LCtx, const char *NL, 941 unsigned int Space, bool IsDot) const { 942 943 printStateTraitWithLocationContextJson<ObjectsUnderConstruction>( 944 Out, State, LCtx, NL, Space, IsDot, "constructing_objects", 945 printObjectsUnderConstructionJson); 946 printStateTraitWithLocationContextJson<IndexOfElementToConstruct>( 947 Out, State, LCtx, NL, Space, IsDot, "index_of_element", 948 printIndicesOfElementsToConstructJson); 949 printStateTraitWithLocationContextJson<PendingInitLoop>( 950 Out, State, LCtx, NL, Space, IsDot, "pending_init_loops", 951 printPendingInitLoopJson); 952 printStateTraitWithLocationContextJson<PendingArrayDestruction>( 953 Out, State, LCtx, NL, Space, IsDot, "pending_destructors", 954 printPendingArrayDestructionsJson); 955 956 getCheckerManager().runCheckersForPrintStateJson(Out, State, NL, Space, 957 IsDot); 958 } 959 960 void ExprEngine::processEndWorklist() { 961 // This prints the name of the top-level function if we crash. 962 PrettyStackTraceLocationContext CrashInfo(getRootLocationContext()); 963 getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); 964 } 965 966 void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred, 967 unsigned StmtIdx, NodeBuilderContext *Ctx) { 968 PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); 969 currStmtIdx = StmtIdx; 970 currBldrCtx = Ctx; 971 972 switch (E.getKind()) { 973 case CFGElement::Statement: 974 case CFGElement::Constructor: 975 case CFGElement::CXXRecordTypedCall: 976 ProcessStmt(E.castAs<CFGStmt>().getStmt(), Pred); 977 return; 978 case CFGElement::Initializer: 979 ProcessInitializer(E.castAs<CFGInitializer>(), Pred); 980 return; 981 case CFGElement::NewAllocator: 982 ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(), 983 Pred); 984 return; 985 case CFGElement::AutomaticObjectDtor: 986 case CFGElement::DeleteDtor: 987 case CFGElement::BaseDtor: 988 case CFGElement::MemberDtor: 989 case CFGElement::TemporaryDtor: 990 ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred); 991 return; 992 case CFGElement::LoopExit: 993 ProcessLoopExit(E.castAs<CFGLoopExit>().getLoopStmt(), Pred); 994 return; 995 case CFGElement::LifetimeEnds: 996 case CFGElement::CleanupFunction: 997 case CFGElement::ScopeBegin: 998 case CFGElement::ScopeEnd: 999 return; 1000 } 1001 } 1002 1003 static bool shouldRemoveDeadBindings(AnalysisManager &AMgr, 1004 const Stmt *S, 1005 const ExplodedNode *Pred, 1006 const LocationContext *LC) { 1007 // Are we never purging state values? 1008 if (AMgr.options.AnalysisPurgeOpt == PurgeNone) 1009 return false; 1010 1011 // Is this the beginning of a basic block? 1012 if (Pred->getLocation().getAs<BlockEntrance>()) 1013 return true; 1014 1015 // Is this on a non-expression? 1016 if (!isa<Expr>(S)) 1017 return true; 1018 1019 // Run before processing a call. 1020 if (CallEvent::isCallStmt(S)) 1021 return true; 1022 1023 // Is this an expression that is consumed by another expression? If so, 1024 // postpone cleaning out the state. 1025 ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap(); 1026 return !PM.isConsumedExpr(cast<Expr>(S)); 1027 } 1028 1029 void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out, 1030 const Stmt *ReferenceStmt, 1031 const LocationContext *LC, 1032 const Stmt *DiagnosticStmt, 1033 ProgramPoint::Kind K) { 1034 assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind || 1035 ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt)) 1036 && "PostStmt is not generally supported by the SymbolReaper yet"); 1037 assert(LC && "Must pass the current (or expiring) LocationContext"); 1038 1039 if (!DiagnosticStmt) { 1040 DiagnosticStmt = ReferenceStmt; 1041 assert(DiagnosticStmt && "Required for clearing a LocationContext"); 1042 } 1043 1044 NumRemoveDeadBindings++; 1045 ProgramStateRef CleanedState = Pred->getState(); 1046 1047 // LC is the location context being destroyed, but SymbolReaper wants a 1048 // location context that is still live. (If this is the top-level stack 1049 // frame, this will be null.) 1050 if (!ReferenceStmt) { 1051 assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind && 1052 "Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext"); 1053 LC = LC->getParent(); 1054 } 1055 1056 const StackFrameContext *SFC = LC ? LC->getStackFrame() : nullptr; 1057 SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager()); 1058 1059 for (auto I : CleanedState->get<ObjectsUnderConstruction>()) { 1060 if (SymbolRef Sym = I.second.getAsSymbol()) 1061 SymReaper.markLive(Sym); 1062 if (const MemRegion *MR = I.second.getAsRegion()) 1063 SymReaper.markLive(MR); 1064 } 1065 1066 getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper); 1067 1068 // Create a state in which dead bindings are removed from the environment 1069 // and the store. TODO: The function should just return new env and store, 1070 // not a new state. 1071 CleanedState = StateMgr.removeDeadBindingsFromEnvironmentAndStore( 1072 CleanedState, SFC, SymReaper); 1073 1074 // Process any special transfer function for dead symbols. 1075 // A tag to track convenience transitions, which can be removed at cleanup. 1076 static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node"); 1077 // Call checkers with the non-cleaned state so that they could query the 1078 // values of the soon to be dead symbols. 1079 ExplodedNodeSet CheckedSet; 1080 getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper, 1081 DiagnosticStmt, *this, K); 1082 1083 // For each node in CheckedSet, generate CleanedNodes that have the 1084 // environment, the store, and the constraints cleaned up but have the 1085 // user-supplied states as the predecessors. 1086 StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx); 1087 for (const auto I : CheckedSet) { 1088 ProgramStateRef CheckerState = I->getState(); 1089 1090 // The constraint manager has not been cleaned up yet, so clean up now. 1091 CheckerState = 1092 getConstraintManager().removeDeadBindings(CheckerState, SymReaper); 1093 1094 assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) && 1095 "Checkers are not allowed to modify the Environment as a part of " 1096 "checkDeadSymbols processing."); 1097 assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) && 1098 "Checkers are not allowed to modify the Store as a part of " 1099 "checkDeadSymbols processing."); 1100 1101 // Create a state based on CleanedState with CheckerState GDM and 1102 // generate a transition to that state. 1103 ProgramStateRef CleanedCheckerSt = 1104 StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState); 1105 Bldr.generateNode(DiagnosticStmt, I, CleanedCheckerSt, &cleanupTag, K); 1106 } 1107 } 1108 1109 void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) { 1110 // Reclaim any unnecessary nodes in the ExplodedGraph. 1111 G.reclaimRecentlyAllocatedNodes(); 1112 1113 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 1114 currStmt->getBeginLoc(), 1115 "Error evaluating statement"); 1116 1117 // Remove dead bindings and symbols. 1118 ExplodedNodeSet CleanedStates; 1119 if (shouldRemoveDeadBindings(AMgr, currStmt, Pred, 1120 Pred->getLocationContext())) { 1121 removeDead(Pred, CleanedStates, currStmt, 1122 Pred->getLocationContext()); 1123 } else 1124 CleanedStates.Add(Pred); 1125 1126 // Visit the statement. 1127 ExplodedNodeSet Dst; 1128 for (const auto I : CleanedStates) { 1129 ExplodedNodeSet DstI; 1130 // Visit the statement. 1131 Visit(currStmt, I, DstI); 1132 Dst.insert(DstI); 1133 } 1134 1135 // Enqueue the new nodes onto the work list. 1136 Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); 1137 } 1138 1139 void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) { 1140 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 1141 S->getBeginLoc(), 1142 "Error evaluating end of the loop"); 1143 ExplodedNodeSet Dst; 1144 Dst.Add(Pred); 1145 NodeBuilder Bldr(Pred, Dst, *currBldrCtx); 1146 ProgramStateRef NewState = Pred->getState(); 1147 1148 if(AMgr.options.ShouldUnrollLoops) 1149 NewState = processLoopEnd(S, NewState); 1150 1151 LoopExit PP(S, Pred->getLocationContext()); 1152 Bldr.generateNode(PP, NewState, Pred); 1153 // Enqueue the new nodes onto the work list. 1154 Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); 1155 } 1156 1157 void ExprEngine::ProcessInitializer(const CFGInitializer CFGInit, 1158 ExplodedNode *Pred) { 1159 const CXXCtorInitializer *BMI = CFGInit.getInitializer(); 1160 const Expr *Init = BMI->getInit()->IgnoreImplicit(); 1161 const LocationContext *LC = Pred->getLocationContext(); 1162 1163 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 1164 BMI->getSourceLocation(), 1165 "Error evaluating initializer"); 1166 1167 // We don't clean up dead bindings here. 1168 const auto *stackFrame = cast<StackFrameContext>(Pred->getLocationContext()); 1169 const auto *decl = cast<CXXConstructorDecl>(stackFrame->getDecl()); 1170 1171 ProgramStateRef State = Pred->getState(); 1172 SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame)); 1173 1174 ExplodedNodeSet Tmp; 1175 SVal FieldLoc; 1176 1177 // Evaluate the initializer, if necessary 1178 if (BMI->isAnyMemberInitializer()) { 1179 // Constructors build the object directly in the field, 1180 // but non-objects must be copied in from the initializer. 1181 if (getObjectUnderConstruction(State, BMI, LC)) { 1182 // The field was directly constructed, so there is no need to bind. 1183 // But we still need to stop tracking the object under construction. 1184 State = finishObjectConstruction(State, BMI, LC); 1185 NodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 1186 PostStore PS(Init, LC, /*Loc*/ nullptr, /*tag*/ nullptr); 1187 Bldr.generateNode(PS, State, Pred); 1188 } else { 1189 const ValueDecl *Field; 1190 if (BMI->isIndirectMemberInitializer()) { 1191 Field = BMI->getIndirectMember(); 1192 FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal); 1193 } else { 1194 Field = BMI->getMember(); 1195 FieldLoc = State->getLValue(BMI->getMember(), thisVal); 1196 } 1197 1198 SVal InitVal; 1199 if (Init->getType()->isArrayType()) { 1200 // Handle arrays of trivial type. We can represent this with a 1201 // primitive load/copy from the base array region. 1202 const ArraySubscriptExpr *ASE; 1203 while ((ASE = dyn_cast<ArraySubscriptExpr>(Init))) 1204 Init = ASE->getBase()->IgnoreImplicit(); 1205 1206 SVal LValue = State->getSVal(Init, stackFrame); 1207 if (!Field->getType()->isReferenceType()) 1208 if (std::optional<Loc> LValueLoc = LValue.getAs<Loc>()) 1209 InitVal = State->getSVal(*LValueLoc); 1210 1211 // If we fail to get the value for some reason, use a symbolic value. 1212 if (InitVal.isUnknownOrUndef()) { 1213 SValBuilder &SVB = getSValBuilder(); 1214 InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame, 1215 Field->getType(), 1216 currBldrCtx->blockCount()); 1217 } 1218 } else { 1219 InitVal = State->getSVal(BMI->getInit(), stackFrame); 1220 } 1221 1222 PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame); 1223 evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP); 1224 } 1225 } else if (BMI->isBaseInitializer() && isa<InitListExpr>(Init)) { 1226 // When the base class is initialized with an initialization list and the 1227 // base class does not have a ctor, there will not be a CXXConstructExpr to 1228 // initialize the base region. Hence, we need to make the bind for it. 1229 SVal BaseLoc = getStoreManager().evalDerivedToBase( 1230 thisVal, QualType(BMI->getBaseClass(), 0), BMI->isBaseVirtual()); 1231 SVal InitVal = State->getSVal(Init, stackFrame); 1232 evalBind(Tmp, Init, Pred, BaseLoc, InitVal, /*isInit=*/true); 1233 } else { 1234 assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer()); 1235 Tmp.insert(Pred); 1236 // We already did all the work when visiting the CXXConstructExpr. 1237 } 1238 1239 // Construct PostInitializer nodes whether the state changed or not, 1240 // so that the diagnostics don't get confused. 1241 PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame); 1242 ExplodedNodeSet Dst; 1243 NodeBuilder Bldr(Tmp, Dst, *currBldrCtx); 1244 for (const auto I : Tmp) { 1245 ProgramStateRef State = I->getState(); 1246 Bldr.generateNode(PP, State, I); 1247 } 1248 1249 // Enqueue the new nodes onto the work list. 1250 Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); 1251 } 1252 1253 std::pair<ProgramStateRef, uint64_t> 1254 ExprEngine::prepareStateForArrayDestruction(const ProgramStateRef State, 1255 const MemRegion *Region, 1256 const QualType &ElementTy, 1257 const LocationContext *LCtx, 1258 SVal *ElementCountVal) { 1259 assert(Region != nullptr && "Not-null region expected"); 1260 1261 QualType Ty = ElementTy.getDesugaredType(getContext()); 1262 while (const auto *NTy = dyn_cast<ArrayType>(Ty)) 1263 Ty = NTy->getElementType().getDesugaredType(getContext()); 1264 1265 auto ElementCount = getDynamicElementCount(State, Region, svalBuilder, Ty); 1266 1267 if (ElementCountVal) 1268 *ElementCountVal = ElementCount; 1269 1270 // Note: the destructors are called in reverse order. 1271 unsigned Idx = 0; 1272 if (auto OptionalIdx = getPendingArrayDestruction(State, LCtx)) { 1273 Idx = *OptionalIdx; 1274 } else { 1275 // The element count is either unknown, or an SVal that's not an integer. 1276 if (!ElementCount.isConstant()) 1277 return {State, 0}; 1278 1279 Idx = ElementCount.getAsInteger()->getLimitedValue(); 1280 } 1281 1282 if (Idx == 0) 1283 return {State, 0}; 1284 1285 --Idx; 1286 1287 return {setPendingArrayDestruction(State, LCtx, Idx), Idx}; 1288 } 1289 1290 void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, 1291 ExplodedNode *Pred) { 1292 ExplodedNodeSet Dst; 1293 switch (D.getKind()) { 1294 case CFGElement::AutomaticObjectDtor: 1295 ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst); 1296 break; 1297 case CFGElement::BaseDtor: 1298 ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst); 1299 break; 1300 case CFGElement::MemberDtor: 1301 ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst); 1302 break; 1303 case CFGElement::TemporaryDtor: 1304 ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst); 1305 break; 1306 case CFGElement::DeleteDtor: 1307 ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst); 1308 break; 1309 default: 1310 llvm_unreachable("Unexpected dtor kind."); 1311 } 1312 1313 // Enqueue the new nodes onto the work list. 1314 Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); 1315 } 1316 1317 void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE, 1318 ExplodedNode *Pred) { 1319 ExplodedNodeSet Dst; 1320 AnalysisManager &AMgr = getAnalysisManager(); 1321 AnalyzerOptions &Opts = AMgr.options; 1322 // TODO: We're not evaluating allocators for all cases just yet as 1323 // we're not handling the return value correctly, which causes false 1324 // positives when the alpha.cplusplus.NewDeleteLeaks check is on. 1325 if (Opts.MayInlineCXXAllocator) 1326 VisitCXXNewAllocatorCall(NE, Pred, Dst); 1327 else { 1328 NodeBuilder Bldr(Pred, Dst, *currBldrCtx); 1329 const LocationContext *LCtx = Pred->getLocationContext(); 1330 PostImplicitCall PP(NE->getOperatorNew(), NE->getBeginLoc(), LCtx, 1331 getCFGElementRef()); 1332 Bldr.generateNode(PP, Pred->getState(), Pred); 1333 } 1334 Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); 1335 } 1336 1337 void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor, 1338 ExplodedNode *Pred, 1339 ExplodedNodeSet &Dst) { 1340 const auto *DtorDecl = Dtor.getDestructorDecl(getContext()); 1341 const VarDecl *varDecl = Dtor.getVarDecl(); 1342 QualType varType = varDecl->getType(); 1343 1344 ProgramStateRef state = Pred->getState(); 1345 const LocationContext *LCtx = Pred->getLocationContext(); 1346 1347 SVal dest = state->getLValue(varDecl, LCtx); 1348 const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion(); 1349 1350 if (varType->isReferenceType()) { 1351 const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion(); 1352 if (!ValueRegion) { 1353 // FIXME: This should not happen. The language guarantees a presence 1354 // of a valid initializer here, so the reference shall not be undefined. 1355 // It seems that we're calling destructors over variables that 1356 // were not initialized yet. 1357 return; 1358 } 1359 Region = ValueRegion->getBaseRegion(); 1360 varType = cast<TypedValueRegion>(Region)->getValueType(); 1361 } 1362 1363 unsigned Idx = 0; 1364 if (isa<ArrayType>(varType)) { 1365 SVal ElementCount; 1366 std::tie(state, Idx) = prepareStateForArrayDestruction( 1367 state, Region, varType, LCtx, &ElementCount); 1368 1369 if (ElementCount.isConstant()) { 1370 uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue(); 1371 assert(ArrayLength && 1372 "An automatic dtor for a 0 length array shouldn't be triggered!"); 1373 1374 // Still handle this case if we don't have assertions enabled. 1375 if (!ArrayLength) { 1376 static SimpleProgramPointTag PT( 1377 "ExprEngine", "Skipping automatic 0 length array destruction, " 1378 "which shouldn't be in the CFG."); 1379 PostImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx, 1380 getCFGElementRef(), &PT); 1381 NodeBuilder Bldr(Pred, Dst, *currBldrCtx); 1382 Bldr.generateSink(PP, Pred->getState(), Pred); 1383 return; 1384 } 1385 } 1386 } 1387 1388 EvalCallOptions CallOpts; 1389 Region = makeElementRegion(state, loc::MemRegionVal(Region), varType, 1390 CallOpts.IsArrayCtorOrDtor, Idx) 1391 .getAsRegion(); 1392 1393 NodeBuilder Bldr(Pred, Dst, getBuilderContext()); 1394 1395 static SimpleProgramPointTag PT("ExprEngine", 1396 "Prepare for object destruction"); 1397 PreImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx, getCFGElementRef(), 1398 &PT); 1399 Pred = Bldr.generateNode(PP, state, Pred); 1400 1401 if (!Pred) 1402 return; 1403 Bldr.takeNodes(Pred); 1404 1405 VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(), 1406 /*IsBase=*/false, Pred, Dst, CallOpts); 1407 } 1408 1409 void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor, 1410 ExplodedNode *Pred, 1411 ExplodedNodeSet &Dst) { 1412 ProgramStateRef State = Pred->getState(); 1413 const LocationContext *LCtx = Pred->getLocationContext(); 1414 const CXXDeleteExpr *DE = Dtor.getDeleteExpr(); 1415 const Stmt *Arg = DE->getArgument(); 1416 QualType DTy = DE->getDestroyedType(); 1417 SVal ArgVal = State->getSVal(Arg, LCtx); 1418 1419 // If the argument to delete is known to be a null value, 1420 // don't run destructor. 1421 if (State->isNull(ArgVal).isConstrainedTrue()) { 1422 QualType BTy = getContext().getBaseElementType(DTy); 1423 const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl(); 1424 const CXXDestructorDecl *Dtor = RD->getDestructor(); 1425 1426 PostImplicitCall PP(Dtor, DE->getBeginLoc(), LCtx, getCFGElementRef()); 1427 NodeBuilder Bldr(Pred, Dst, *currBldrCtx); 1428 Bldr.generateNode(PP, Pred->getState(), Pred); 1429 return; 1430 } 1431 1432 auto getDtorDecl = [](const QualType &DTy) { 1433 const CXXRecordDecl *RD = DTy->getAsCXXRecordDecl(); 1434 return RD->getDestructor(); 1435 }; 1436 1437 unsigned Idx = 0; 1438 EvalCallOptions CallOpts; 1439 const MemRegion *ArgR = ArgVal.getAsRegion(); 1440 1441 if (DE->isArrayForm()) { 1442 CallOpts.IsArrayCtorOrDtor = true; 1443 // Yes, it may even be a multi-dimensional array. 1444 while (const auto *AT = getContext().getAsArrayType(DTy)) 1445 DTy = AT->getElementType(); 1446 1447 if (ArgR) { 1448 SVal ElementCount; 1449 std::tie(State, Idx) = prepareStateForArrayDestruction( 1450 State, ArgR, DTy, LCtx, &ElementCount); 1451 1452 // If we're about to destruct a 0 length array, don't run any of the 1453 // destructors. 1454 if (ElementCount.isConstant() && 1455 ElementCount.getAsInteger()->getLimitedValue() == 0) { 1456 1457 static SimpleProgramPointTag PT( 1458 "ExprEngine", "Skipping 0 length array delete destruction"); 1459 PostImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx, 1460 getCFGElementRef(), &PT); 1461 NodeBuilder Bldr(Pred, Dst, *currBldrCtx); 1462 Bldr.generateNode(PP, Pred->getState(), Pred); 1463 return; 1464 } 1465 1466 ArgR = State->getLValue(DTy, svalBuilder.makeArrayIndex(Idx), ArgVal) 1467 .getAsRegion(); 1468 } 1469 } 1470 1471 NodeBuilder Bldr(Pred, Dst, getBuilderContext()); 1472 static SimpleProgramPointTag PT("ExprEngine", 1473 "Prepare for object destruction"); 1474 PreImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx, 1475 getCFGElementRef(), &PT); 1476 Pred = Bldr.generateNode(PP, State, Pred); 1477 1478 if (!Pred) 1479 return; 1480 Bldr.takeNodes(Pred); 1481 1482 VisitCXXDestructor(DTy, ArgR, DE, /*IsBase=*/false, Pred, Dst, CallOpts); 1483 } 1484 1485 void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, 1486 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 1487 const LocationContext *LCtx = Pred->getLocationContext(); 1488 1489 const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl()); 1490 Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor, 1491 LCtx->getStackFrame()); 1492 SVal ThisVal = Pred->getState()->getSVal(ThisPtr); 1493 1494 // Create the base object region. 1495 const CXXBaseSpecifier *Base = D.getBaseSpecifier(); 1496 QualType BaseTy = Base->getType(); 1497 SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy, 1498 Base->isVirtual()); 1499 1500 EvalCallOptions CallOpts; 1501 VisitCXXDestructor(BaseTy, BaseVal.getAsRegion(), CurDtor->getBody(), 1502 /*IsBase=*/true, Pred, Dst, CallOpts); 1503 } 1504 1505 void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, 1506 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 1507 const auto *DtorDecl = D.getDestructorDecl(getContext()); 1508 const FieldDecl *Member = D.getFieldDecl(); 1509 QualType T = Member->getType(); 1510 ProgramStateRef State = Pred->getState(); 1511 const LocationContext *LCtx = Pred->getLocationContext(); 1512 1513 const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl()); 1514 Loc ThisStorageLoc = 1515 getSValBuilder().getCXXThis(CurDtor, LCtx->getStackFrame()); 1516 Loc ThisLoc = State->getSVal(ThisStorageLoc).castAs<Loc>(); 1517 SVal FieldVal = State->getLValue(Member, ThisLoc); 1518 1519 unsigned Idx = 0; 1520 if (isa<ArrayType>(T)) { 1521 SVal ElementCount; 1522 std::tie(State, Idx) = prepareStateForArrayDestruction( 1523 State, FieldVal.getAsRegion(), T, LCtx, &ElementCount); 1524 1525 if (ElementCount.isConstant()) { 1526 uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue(); 1527 assert(ArrayLength && 1528 "A member dtor for a 0 length array shouldn't be triggered!"); 1529 1530 // Still handle this case if we don't have assertions enabled. 1531 if (!ArrayLength) { 1532 static SimpleProgramPointTag PT( 1533 "ExprEngine", "Skipping member 0 length array destruction, which " 1534 "shouldn't be in the CFG."); 1535 PostImplicitCall PP(DtorDecl, Member->getLocation(), LCtx, 1536 getCFGElementRef(), &PT); 1537 NodeBuilder Bldr(Pred, Dst, *currBldrCtx); 1538 Bldr.generateSink(PP, Pred->getState(), Pred); 1539 return; 1540 } 1541 } 1542 } 1543 1544 EvalCallOptions CallOpts; 1545 FieldVal = 1546 makeElementRegion(State, FieldVal, T, CallOpts.IsArrayCtorOrDtor, Idx); 1547 1548 NodeBuilder Bldr(Pred, Dst, getBuilderContext()); 1549 1550 static SimpleProgramPointTag PT("ExprEngine", 1551 "Prepare for object destruction"); 1552 PreImplicitCall PP(DtorDecl, Member->getLocation(), LCtx, getCFGElementRef(), 1553 &PT); 1554 Pred = Bldr.generateNode(PP, State, Pred); 1555 1556 if (!Pred) 1557 return; 1558 Bldr.takeNodes(Pred); 1559 1560 VisitCXXDestructor(T, FieldVal.getAsRegion(), CurDtor->getBody(), 1561 /*IsBase=*/false, Pred, Dst, CallOpts); 1562 } 1563 1564 void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, 1565 ExplodedNode *Pred, 1566 ExplodedNodeSet &Dst) { 1567 const CXXBindTemporaryExpr *BTE = D.getBindTemporaryExpr(); 1568 ProgramStateRef State = Pred->getState(); 1569 const LocationContext *LC = Pred->getLocationContext(); 1570 const MemRegion *MR = nullptr; 1571 1572 if (std::optional<SVal> V = getObjectUnderConstruction( 1573 State, D.getBindTemporaryExpr(), Pred->getLocationContext())) { 1574 // FIXME: Currently we insert temporary destructors for default parameters, 1575 // but we don't insert the constructors, so the entry in 1576 // ObjectsUnderConstruction may be missing. 1577 State = finishObjectConstruction(State, D.getBindTemporaryExpr(), 1578 Pred->getLocationContext()); 1579 MR = V->getAsRegion(); 1580 } 1581 1582 // If copy elision has occurred, and the constructor corresponding to the 1583 // destructor was elided, we need to skip the destructor as well. 1584 if (isDestructorElided(State, BTE, LC)) { 1585 State = cleanupElidedDestructor(State, BTE, LC); 1586 NodeBuilder Bldr(Pred, Dst, *currBldrCtx); 1587 PostImplicitCall PP(D.getDestructorDecl(getContext()), 1588 D.getBindTemporaryExpr()->getBeginLoc(), 1589 Pred->getLocationContext(), getCFGElementRef()); 1590 Bldr.generateNode(PP, State, Pred); 1591 return; 1592 } 1593 1594 ExplodedNodeSet CleanDtorState; 1595 StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx); 1596 StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State); 1597 1598 QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType(); 1599 // FIXME: Currently CleanDtorState can be empty here due to temporaries being 1600 // bound to default parameters. 1601 assert(CleanDtorState.size() <= 1); 1602 ExplodedNode *CleanPred = 1603 CleanDtorState.empty() ? Pred : *CleanDtorState.begin(); 1604 1605 EvalCallOptions CallOpts; 1606 CallOpts.IsTemporaryCtorOrDtor = true; 1607 if (!MR) { 1608 // FIXME: If we have no MR, we still need to unwrap the array to avoid 1609 // destroying the whole array at once. 1610 // 1611 // For this case there is no universal solution as there is no way to 1612 // directly create an array of temporary objects. There are some expressions 1613 // however which can create temporary objects and have an array type. 1614 // 1615 // E.g.: std::initializer_list<S>{S(), S()}; 1616 // 1617 // The expression above has a type of 'const struct S[2]' but it's a single 1618 // 'std::initializer_list<>'. The destructors of the 2 temporary 'S()' 1619 // objects will be called anyway, because they are 2 separate objects in 2 1620 // separate clusters, i.e.: not an array. 1621 // 1622 // Now the 'std::initializer_list<>' is not an array either even though it 1623 // has the type of an array. The point is, we only want to invoke the 1624 // destructor for the initializer list once not twice or so. 1625 while (const ArrayType *AT = getContext().getAsArrayType(T)) { 1626 T = AT->getElementType(); 1627 1628 // FIXME: Enable this flag once we handle this case properly. 1629 // CallOpts.IsArrayCtorOrDtor = true; 1630 } 1631 } else { 1632 // FIXME: We'd eventually need to makeElementRegion() trick here, 1633 // but for now we don't have the respective construction contexts, 1634 // so MR would always be null in this case. Do nothing for now. 1635 } 1636 VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(), 1637 /*IsBase=*/false, CleanPred, Dst, CallOpts); 1638 } 1639 1640 void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE, 1641 NodeBuilderContext &BldCtx, 1642 ExplodedNode *Pred, 1643 ExplodedNodeSet &Dst, 1644 const CFGBlock *DstT, 1645 const CFGBlock *DstF) { 1646 BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF); 1647 ProgramStateRef State = Pred->getState(); 1648 const LocationContext *LC = Pred->getLocationContext(); 1649 if (getObjectUnderConstruction(State, BTE, LC)) { 1650 TempDtorBuilder.markInfeasible(false); 1651 TempDtorBuilder.generateNode(State, true, Pred); 1652 } else { 1653 TempDtorBuilder.markInfeasible(true); 1654 TempDtorBuilder.generateNode(State, false, Pred); 1655 } 1656 } 1657 1658 void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE, 1659 ExplodedNodeSet &PreVisit, 1660 ExplodedNodeSet &Dst) { 1661 // This is a fallback solution in case we didn't have a construction 1662 // context when we were constructing the temporary. Otherwise the map should 1663 // have been populated there. 1664 if (!getAnalysisManager().options.ShouldIncludeTemporaryDtorsInCFG) { 1665 // In case we don't have temporary destructors in the CFG, do not mark 1666 // the initialization - we would otherwise never clean it up. 1667 Dst = PreVisit; 1668 return; 1669 } 1670 StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx); 1671 for (ExplodedNode *Node : PreVisit) { 1672 ProgramStateRef State = Node->getState(); 1673 const LocationContext *LC = Node->getLocationContext(); 1674 if (!getObjectUnderConstruction(State, BTE, LC)) { 1675 // FIXME: Currently the state might also already contain the marker due to 1676 // incorrect handling of temporaries bound to default parameters; for 1677 // those, we currently skip the CXXBindTemporaryExpr but rely on adding 1678 // temporary destructor nodes. 1679 State = addObjectUnderConstruction(State, BTE, LC, UnknownVal()); 1680 } 1681 StmtBldr.generateNode(BTE, Node, State); 1682 } 1683 } 1684 1685 ProgramStateRef ExprEngine::escapeValues(ProgramStateRef State, 1686 ArrayRef<SVal> Vs, 1687 PointerEscapeKind K, 1688 const CallEvent *Call) const { 1689 class CollectReachableSymbolsCallback final : public SymbolVisitor { 1690 InvalidatedSymbols &Symbols; 1691 1692 public: 1693 explicit CollectReachableSymbolsCallback(InvalidatedSymbols &Symbols) 1694 : Symbols(Symbols) {} 1695 1696 const InvalidatedSymbols &getSymbols() const { return Symbols; } 1697 1698 bool VisitSymbol(SymbolRef Sym) override { 1699 Symbols.insert(Sym); 1700 return true; 1701 } 1702 }; 1703 InvalidatedSymbols Symbols; 1704 CollectReachableSymbolsCallback CallBack(Symbols); 1705 for (SVal V : Vs) 1706 State->scanReachableSymbols(V, CallBack); 1707 1708 return getCheckerManager().runCheckersForPointerEscape( 1709 State, CallBack.getSymbols(), Call, K, nullptr); 1710 } 1711 1712 void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred, 1713 ExplodedNodeSet &DstTop) { 1714 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 1715 S->getBeginLoc(), "Error evaluating statement"); 1716 ExplodedNodeSet Dst; 1717 StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx); 1718 1719 assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens()); 1720 1721 switch (S->getStmtClass()) { 1722 // C++, OpenMP and ARC stuff we don't support yet. 1723 case Stmt::CXXDependentScopeMemberExprClass: 1724 case Stmt::CXXTryStmtClass: 1725 case Stmt::CXXTypeidExprClass: 1726 case Stmt::CXXUuidofExprClass: 1727 case Stmt::CXXFoldExprClass: 1728 case Stmt::MSPropertyRefExprClass: 1729 case Stmt::MSPropertySubscriptExprClass: 1730 case Stmt::CXXUnresolvedConstructExprClass: 1731 case Stmt::DependentScopeDeclRefExprClass: 1732 case Stmt::ArrayTypeTraitExprClass: 1733 case Stmt::ExpressionTraitExprClass: 1734 case Stmt::UnresolvedLookupExprClass: 1735 case Stmt::UnresolvedMemberExprClass: 1736 case Stmt::TypoExprClass: 1737 case Stmt::RecoveryExprClass: 1738 case Stmt::CXXNoexceptExprClass: 1739 case Stmt::PackExpansionExprClass: 1740 case Stmt::PackIndexingExprClass: 1741 case Stmt::SubstNonTypeTemplateParmPackExprClass: 1742 case Stmt::FunctionParmPackExprClass: 1743 case Stmt::CoroutineBodyStmtClass: 1744 case Stmt::CoawaitExprClass: 1745 case Stmt::DependentCoawaitExprClass: 1746 case Stmt::CoreturnStmtClass: 1747 case Stmt::CoyieldExprClass: 1748 case Stmt::SEHTryStmtClass: 1749 case Stmt::SEHExceptStmtClass: 1750 case Stmt::SEHLeaveStmtClass: 1751 case Stmt::SEHFinallyStmtClass: 1752 case Stmt::OMPCanonicalLoopClass: 1753 case Stmt::OMPParallelDirectiveClass: 1754 case Stmt::OMPSimdDirectiveClass: 1755 case Stmt::OMPForDirectiveClass: 1756 case Stmt::OMPForSimdDirectiveClass: 1757 case Stmt::OMPSectionsDirectiveClass: 1758 case Stmt::OMPSectionDirectiveClass: 1759 case Stmt::OMPScopeDirectiveClass: 1760 case Stmt::OMPSingleDirectiveClass: 1761 case Stmt::OMPMasterDirectiveClass: 1762 case Stmt::OMPCriticalDirectiveClass: 1763 case Stmt::OMPParallelForDirectiveClass: 1764 case Stmt::OMPParallelForSimdDirectiveClass: 1765 case Stmt::OMPParallelSectionsDirectiveClass: 1766 case Stmt::OMPParallelMasterDirectiveClass: 1767 case Stmt::OMPParallelMaskedDirectiveClass: 1768 case Stmt::OMPTaskDirectiveClass: 1769 case Stmt::OMPTaskyieldDirectiveClass: 1770 case Stmt::OMPBarrierDirectiveClass: 1771 case Stmt::OMPTaskwaitDirectiveClass: 1772 case Stmt::OMPErrorDirectiveClass: 1773 case Stmt::OMPTaskgroupDirectiveClass: 1774 case Stmt::OMPFlushDirectiveClass: 1775 case Stmt::OMPDepobjDirectiveClass: 1776 case Stmt::OMPScanDirectiveClass: 1777 case Stmt::OMPOrderedDirectiveClass: 1778 case Stmt::OMPAtomicDirectiveClass: 1779 case Stmt::OMPTargetDirectiveClass: 1780 case Stmt::OMPTargetDataDirectiveClass: 1781 case Stmt::OMPTargetEnterDataDirectiveClass: 1782 case Stmt::OMPTargetExitDataDirectiveClass: 1783 case Stmt::OMPTargetParallelDirectiveClass: 1784 case Stmt::OMPTargetParallelForDirectiveClass: 1785 case Stmt::OMPTargetUpdateDirectiveClass: 1786 case Stmt::OMPTeamsDirectiveClass: 1787 case Stmt::OMPCancellationPointDirectiveClass: 1788 case Stmt::OMPCancelDirectiveClass: 1789 case Stmt::OMPTaskLoopDirectiveClass: 1790 case Stmt::OMPTaskLoopSimdDirectiveClass: 1791 case Stmt::OMPMasterTaskLoopDirectiveClass: 1792 case Stmt::OMPMaskedTaskLoopDirectiveClass: 1793 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1794 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: 1795 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1796 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass: 1797 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1798 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass: 1799 case Stmt::OMPDistributeDirectiveClass: 1800 case Stmt::OMPDistributeParallelForDirectiveClass: 1801 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1802 case Stmt::OMPDistributeSimdDirectiveClass: 1803 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1804 case Stmt::OMPTargetSimdDirectiveClass: 1805 case Stmt::OMPTeamsDistributeDirectiveClass: 1806 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1807 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1808 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1809 case Stmt::OMPTargetTeamsDirectiveClass: 1810 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1811 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1812 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1813 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1814 case Stmt::OMPReverseDirectiveClass: 1815 case Stmt::OMPTileDirectiveClass: 1816 case Stmt::OMPInterchangeDirectiveClass: 1817 case Stmt::OMPInteropDirectiveClass: 1818 case Stmt::OMPDispatchDirectiveClass: 1819 case Stmt::OMPMaskedDirectiveClass: 1820 case Stmt::OMPGenericLoopDirectiveClass: 1821 case Stmt::OMPTeamsGenericLoopDirectiveClass: 1822 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 1823 case Stmt::OMPParallelGenericLoopDirectiveClass: 1824 case Stmt::OMPTargetParallelGenericLoopDirectiveClass: 1825 case Stmt::CapturedStmtClass: 1826 case Stmt::OpenACCComputeConstructClass: 1827 case Stmt::OpenACCLoopConstructClass: 1828 case Stmt::OMPUnrollDirectiveClass: 1829 case Stmt::OMPMetaDirectiveClass: { 1830 const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState()); 1831 Engine.addAbortedBlock(node, currBldrCtx->getBlock()); 1832 break; 1833 } 1834 1835 case Stmt::ParenExprClass: 1836 llvm_unreachable("ParenExprs already handled."); 1837 case Stmt::GenericSelectionExprClass: 1838 llvm_unreachable("GenericSelectionExprs already handled."); 1839 // Cases that should never be evaluated simply because they shouldn't 1840 // appear in the CFG. 1841 case Stmt::BreakStmtClass: 1842 case Stmt::CaseStmtClass: 1843 case Stmt::CompoundStmtClass: 1844 case Stmt::ContinueStmtClass: 1845 case Stmt::CXXForRangeStmtClass: 1846 case Stmt::DefaultStmtClass: 1847 case Stmt::DoStmtClass: 1848 case Stmt::ForStmtClass: 1849 case Stmt::GotoStmtClass: 1850 case Stmt::IfStmtClass: 1851 case Stmt::IndirectGotoStmtClass: 1852 case Stmt::LabelStmtClass: 1853 case Stmt::NoStmtClass: 1854 case Stmt::NullStmtClass: 1855 case Stmt::SwitchStmtClass: 1856 case Stmt::WhileStmtClass: 1857 case Expr::MSDependentExistsStmtClass: 1858 llvm_unreachable("Stmt should not be in analyzer evaluation loop"); 1859 case Stmt::ImplicitValueInitExprClass: 1860 // These nodes are shared in the CFG and would case caching out. 1861 // Moreover, no additional evaluation required for them, the 1862 // analyzer can reconstruct these values from the AST. 1863 llvm_unreachable("Should be pruned from CFG"); 1864 1865 case Stmt::ObjCSubscriptRefExprClass: 1866 case Stmt::ObjCPropertyRefExprClass: 1867 llvm_unreachable("These are handled by PseudoObjectExpr"); 1868 1869 case Stmt::GNUNullExprClass: { 1870 // GNU __null is a pointer-width integer, not an actual pointer. 1871 ProgramStateRef state = Pred->getState(); 1872 state = state->BindExpr( 1873 S, Pred->getLocationContext(), 1874 svalBuilder.makeIntValWithWidth(getContext().VoidPtrTy, 0)); 1875 Bldr.generateNode(S, Pred, state); 1876 break; 1877 } 1878 1879 case Stmt::ObjCAtSynchronizedStmtClass: 1880 Bldr.takeNodes(Pred); 1881 VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst); 1882 Bldr.addNodes(Dst); 1883 break; 1884 1885 case Expr::ConstantExprClass: 1886 case Stmt::ExprWithCleanupsClass: 1887 // Handled due to fully linearised CFG. 1888 break; 1889 1890 case Stmt::CXXBindTemporaryExprClass: { 1891 Bldr.takeNodes(Pred); 1892 ExplodedNodeSet PreVisit; 1893 getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); 1894 ExplodedNodeSet Next; 1895 VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), PreVisit, Next); 1896 getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this); 1897 Bldr.addNodes(Dst); 1898 break; 1899 } 1900 1901 case Stmt::ArrayInitLoopExprClass: 1902 Bldr.takeNodes(Pred); 1903 VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), Pred, Dst); 1904 Bldr.addNodes(Dst); 1905 break; 1906 // Cases not handled yet; but will handle some day. 1907 case Stmt::DesignatedInitExprClass: 1908 case Stmt::DesignatedInitUpdateExprClass: 1909 case Stmt::ArrayInitIndexExprClass: 1910 case Stmt::ExtVectorElementExprClass: 1911 case Stmt::ImaginaryLiteralClass: 1912 case Stmt::ObjCAtCatchStmtClass: 1913 case Stmt::ObjCAtFinallyStmtClass: 1914 case Stmt::ObjCAtTryStmtClass: 1915 case Stmt::ObjCAutoreleasePoolStmtClass: 1916 case Stmt::ObjCEncodeExprClass: 1917 case Stmt::ObjCIsaExprClass: 1918 case Stmt::ObjCProtocolExprClass: 1919 case Stmt::ObjCSelectorExprClass: 1920 case Stmt::ParenListExprClass: 1921 case Stmt::ShuffleVectorExprClass: 1922 case Stmt::ConvertVectorExprClass: 1923 case Stmt::VAArgExprClass: 1924 case Stmt::CUDAKernelCallExprClass: 1925 case Stmt::OpaqueValueExprClass: 1926 case Stmt::AsTypeExprClass: 1927 case Stmt::ConceptSpecializationExprClass: 1928 case Stmt::CXXRewrittenBinaryOperatorClass: 1929 case Stmt::RequiresExprClass: 1930 case Expr::CXXParenListInitExprClass: 1931 case Stmt::EmbedExprClass: 1932 // Fall through. 1933 1934 // Cases we intentionally don't evaluate, since they don't need 1935 // to be explicitly evaluated. 1936 case Stmt::PredefinedExprClass: 1937 case Stmt::AddrLabelExprClass: 1938 case Stmt::AttributedStmtClass: 1939 case Stmt::IntegerLiteralClass: 1940 case Stmt::FixedPointLiteralClass: 1941 case Stmt::CharacterLiteralClass: 1942 case Stmt::CXXScalarValueInitExprClass: 1943 case Stmt::CXXBoolLiteralExprClass: 1944 case Stmt::ObjCBoolLiteralExprClass: 1945 case Stmt::ObjCAvailabilityCheckExprClass: 1946 case Stmt::FloatingLiteralClass: 1947 case Stmt::NoInitExprClass: 1948 case Stmt::SizeOfPackExprClass: 1949 case Stmt::StringLiteralClass: 1950 case Stmt::SourceLocExprClass: 1951 case Stmt::ObjCStringLiteralClass: 1952 case Stmt::CXXPseudoDestructorExprClass: 1953 case Stmt::SubstNonTypeTemplateParmExprClass: 1954 case Stmt::CXXNullPtrLiteralExprClass: 1955 case Stmt::ArraySectionExprClass: 1956 case Stmt::OMPArrayShapingExprClass: 1957 case Stmt::OMPIteratorExprClass: 1958 case Stmt::SYCLUniqueStableNameExprClass: 1959 case Stmt::TypeTraitExprClass: { 1960 Bldr.takeNodes(Pred); 1961 ExplodedNodeSet preVisit; 1962 getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); 1963 getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this); 1964 Bldr.addNodes(Dst); 1965 break; 1966 } 1967 1968 case Stmt::CXXDefaultArgExprClass: 1969 case Stmt::CXXDefaultInitExprClass: { 1970 Bldr.takeNodes(Pred); 1971 ExplodedNodeSet PreVisit; 1972 getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); 1973 1974 ExplodedNodeSet Tmp; 1975 StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx); 1976 1977 const Expr *ArgE; 1978 if (const auto *DefE = dyn_cast<CXXDefaultArgExpr>(S)) 1979 ArgE = DefE->getExpr(); 1980 else if (const auto *DefE = dyn_cast<CXXDefaultInitExpr>(S)) 1981 ArgE = DefE->getExpr(); 1982 else 1983 llvm_unreachable("unknown constant wrapper kind"); 1984 1985 bool IsTemporary = false; 1986 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(ArgE)) { 1987 ArgE = MTE->getSubExpr(); 1988 IsTemporary = true; 1989 } 1990 1991 std::optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE); 1992 if (!ConstantVal) 1993 ConstantVal = UnknownVal(); 1994 1995 const LocationContext *LCtx = Pred->getLocationContext(); 1996 for (const auto I : PreVisit) { 1997 ProgramStateRef State = I->getState(); 1998 State = State->BindExpr(S, LCtx, *ConstantVal); 1999 if (IsTemporary) 2000 State = createTemporaryRegionIfNeeded(State, LCtx, 2001 cast<Expr>(S), 2002 cast<Expr>(S)); 2003 Bldr2.generateNode(S, I, State); 2004 } 2005 2006 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); 2007 Bldr.addNodes(Dst); 2008 break; 2009 } 2010 2011 // Cases we evaluate as opaque expressions, conjuring a symbol. 2012 case Stmt::CXXStdInitializerListExprClass: 2013 case Expr::ObjCArrayLiteralClass: 2014 case Expr::ObjCDictionaryLiteralClass: 2015 case Expr::ObjCBoxedExprClass: { 2016 Bldr.takeNodes(Pred); 2017 2018 ExplodedNodeSet preVisit; 2019 getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); 2020 2021 ExplodedNodeSet Tmp; 2022 StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx); 2023 2024 const auto *Ex = cast<Expr>(S); 2025 QualType resultType = Ex->getType(); 2026 2027 for (const auto N : preVisit) { 2028 const LocationContext *LCtx = N->getLocationContext(); 2029 SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 2030 resultType, 2031 currBldrCtx->blockCount()); 2032 ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result); 2033 2034 // Escape pointers passed into the list, unless it's an ObjC boxed 2035 // expression which is not a boxable C structure. 2036 if (!(isa<ObjCBoxedExpr>(Ex) && 2037 !cast<ObjCBoxedExpr>(Ex)->getSubExpr() 2038 ->getType()->isRecordType())) 2039 for (auto Child : Ex->children()) { 2040 assert(Child); 2041 SVal Val = State->getSVal(Child, LCtx); 2042 State = escapeValues(State, Val, PSK_EscapeOther); 2043 } 2044 2045 Bldr2.generateNode(S, N, State); 2046 } 2047 2048 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); 2049 Bldr.addNodes(Dst); 2050 break; 2051 } 2052 2053 case Stmt::ArraySubscriptExprClass: 2054 Bldr.takeNodes(Pred); 2055 VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst); 2056 Bldr.addNodes(Dst); 2057 break; 2058 2059 case Stmt::MatrixSubscriptExprClass: 2060 llvm_unreachable("Support for MatrixSubscriptExpr is not implemented."); 2061 break; 2062 2063 case Stmt::GCCAsmStmtClass: { 2064 Bldr.takeNodes(Pred); 2065 ExplodedNodeSet PreVisit; 2066 getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); 2067 ExplodedNodeSet PostVisit; 2068 for (ExplodedNode *const N : PreVisit) 2069 VisitGCCAsmStmt(cast<GCCAsmStmt>(S), N, PostVisit); 2070 getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); 2071 Bldr.addNodes(Dst); 2072 break; 2073 } 2074 2075 case Stmt::MSAsmStmtClass: 2076 Bldr.takeNodes(Pred); 2077 VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst); 2078 Bldr.addNodes(Dst); 2079 break; 2080 2081 case Stmt::BlockExprClass: 2082 Bldr.takeNodes(Pred); 2083 VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); 2084 Bldr.addNodes(Dst); 2085 break; 2086 2087 case Stmt::LambdaExprClass: 2088 if (AMgr.options.ShouldInlineLambdas) { 2089 Bldr.takeNodes(Pred); 2090 VisitLambdaExpr(cast<LambdaExpr>(S), Pred, Dst); 2091 Bldr.addNodes(Dst); 2092 } else { 2093 const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState()); 2094 Engine.addAbortedBlock(node, currBldrCtx->getBlock()); 2095 } 2096 break; 2097 2098 case Stmt::BinaryOperatorClass: { 2099 const auto *B = cast<BinaryOperator>(S); 2100 if (B->isLogicalOp()) { 2101 Bldr.takeNodes(Pred); 2102 VisitLogicalExpr(B, Pred, Dst); 2103 Bldr.addNodes(Dst); 2104 break; 2105 } 2106 else if (B->getOpcode() == BO_Comma) { 2107 ProgramStateRef state = Pred->getState(); 2108 Bldr.generateNode(B, Pred, 2109 state->BindExpr(B, Pred->getLocationContext(), 2110 state->getSVal(B->getRHS(), 2111 Pred->getLocationContext()))); 2112 break; 2113 } 2114 2115 Bldr.takeNodes(Pred); 2116 2117 if (AMgr.options.ShouldEagerlyAssume && 2118 (B->isRelationalOp() || B->isEqualityOp())) { 2119 ExplodedNodeSet Tmp; 2120 VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); 2121 evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast<Expr>(S)); 2122 } 2123 else 2124 VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); 2125 2126 Bldr.addNodes(Dst); 2127 break; 2128 } 2129 2130 case Stmt::CXXOperatorCallExprClass: { 2131 const auto *OCE = cast<CXXOperatorCallExpr>(S); 2132 2133 // For instance method operators, make sure the 'this' argument has a 2134 // valid region. 2135 const Decl *Callee = OCE->getCalleeDecl(); 2136 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) { 2137 if (MD->isImplicitObjectMemberFunction()) { 2138 ProgramStateRef State = Pred->getState(); 2139 const LocationContext *LCtx = Pred->getLocationContext(); 2140 ProgramStateRef NewState = 2141 createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0)); 2142 if (NewState != State) { 2143 Pred = Bldr.generateNode(OCE, Pred, NewState, /*tag=*/nullptr, 2144 ProgramPoint::PreStmtKind); 2145 // Did we cache out? 2146 if (!Pred) 2147 break; 2148 } 2149 } 2150 } 2151 [[fallthrough]]; 2152 } 2153 2154 case Stmt::CallExprClass: 2155 case Stmt::CXXMemberCallExprClass: 2156 case Stmt::UserDefinedLiteralClass: 2157 Bldr.takeNodes(Pred); 2158 VisitCallExpr(cast<CallExpr>(S), Pred, Dst); 2159 Bldr.addNodes(Dst); 2160 break; 2161 2162 case Stmt::CXXCatchStmtClass: 2163 Bldr.takeNodes(Pred); 2164 VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst); 2165 Bldr.addNodes(Dst); 2166 break; 2167 2168 case Stmt::CXXTemporaryObjectExprClass: 2169 case Stmt::CXXConstructExprClass: 2170 Bldr.takeNodes(Pred); 2171 VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst); 2172 Bldr.addNodes(Dst); 2173 break; 2174 2175 case Stmt::CXXInheritedCtorInitExprClass: 2176 Bldr.takeNodes(Pred); 2177 VisitCXXInheritedCtorInitExpr(cast<CXXInheritedCtorInitExpr>(S), Pred, 2178 Dst); 2179 Bldr.addNodes(Dst); 2180 break; 2181 2182 case Stmt::CXXNewExprClass: { 2183 Bldr.takeNodes(Pred); 2184 2185 ExplodedNodeSet PreVisit; 2186 getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); 2187 2188 ExplodedNodeSet PostVisit; 2189 for (const auto i : PreVisit) 2190 VisitCXXNewExpr(cast<CXXNewExpr>(S), i, PostVisit); 2191 2192 getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); 2193 Bldr.addNodes(Dst); 2194 break; 2195 } 2196 2197 case Stmt::CXXDeleteExprClass: { 2198 Bldr.takeNodes(Pred); 2199 ExplodedNodeSet PreVisit; 2200 const auto *CDE = cast<CXXDeleteExpr>(S); 2201 getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); 2202 ExplodedNodeSet PostVisit; 2203 getCheckerManager().runCheckersForPostStmt(PostVisit, PreVisit, S, *this); 2204 2205 for (const auto i : PostVisit) 2206 VisitCXXDeleteExpr(CDE, i, Dst); 2207 2208 Bldr.addNodes(Dst); 2209 break; 2210 } 2211 // FIXME: ChooseExpr is really a constant. We need to fix 2212 // the CFG do not model them as explicit control-flow. 2213 2214 case Stmt::ChooseExprClass: { // __builtin_choose_expr 2215 Bldr.takeNodes(Pred); 2216 const auto *C = cast<ChooseExpr>(S); 2217 VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); 2218 Bldr.addNodes(Dst); 2219 break; 2220 } 2221 2222 case Stmt::CompoundAssignOperatorClass: 2223 Bldr.takeNodes(Pred); 2224 VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); 2225 Bldr.addNodes(Dst); 2226 break; 2227 2228 case Stmt::CompoundLiteralExprClass: 2229 Bldr.takeNodes(Pred); 2230 VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst); 2231 Bldr.addNodes(Dst); 2232 break; 2233 2234 case Stmt::BinaryConditionalOperatorClass: 2235 case Stmt::ConditionalOperatorClass: { // '?' operator 2236 Bldr.takeNodes(Pred); 2237 const auto *C = cast<AbstractConditionalOperator>(S); 2238 VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); 2239 Bldr.addNodes(Dst); 2240 break; 2241 } 2242 2243 case Stmt::CXXThisExprClass: 2244 Bldr.takeNodes(Pred); 2245 VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); 2246 Bldr.addNodes(Dst); 2247 break; 2248 2249 case Stmt::DeclRefExprClass: { 2250 Bldr.takeNodes(Pred); 2251 const auto *DE = cast<DeclRefExpr>(S); 2252 VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); 2253 Bldr.addNodes(Dst); 2254 break; 2255 } 2256 2257 case Stmt::DeclStmtClass: 2258 Bldr.takeNodes(Pred); 2259 VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); 2260 Bldr.addNodes(Dst); 2261 break; 2262 2263 case Stmt::ImplicitCastExprClass: 2264 case Stmt::CStyleCastExprClass: 2265 case Stmt::CXXStaticCastExprClass: 2266 case Stmt::CXXDynamicCastExprClass: 2267 case Stmt::CXXReinterpretCastExprClass: 2268 case Stmt::CXXConstCastExprClass: 2269 case Stmt::CXXFunctionalCastExprClass: 2270 case Stmt::BuiltinBitCastExprClass: 2271 case Stmt::ObjCBridgedCastExprClass: 2272 case Stmt::CXXAddrspaceCastExprClass: { 2273 Bldr.takeNodes(Pred); 2274 const auto *C = cast<CastExpr>(S); 2275 ExplodedNodeSet dstExpr; 2276 VisitCast(C, C->getSubExpr(), Pred, dstExpr); 2277 2278 // Handle the postvisit checks. 2279 getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this); 2280 Bldr.addNodes(Dst); 2281 break; 2282 } 2283 2284 case Expr::MaterializeTemporaryExprClass: { 2285 Bldr.takeNodes(Pred); 2286 const auto *MTE = cast<MaterializeTemporaryExpr>(S); 2287 ExplodedNodeSet dstPrevisit; 2288 getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this); 2289 ExplodedNodeSet dstExpr; 2290 for (const auto i : dstPrevisit) 2291 CreateCXXTemporaryObject(MTE, i, dstExpr); 2292 getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this); 2293 Bldr.addNodes(Dst); 2294 break; 2295 } 2296 2297 case Stmt::InitListExprClass: 2298 Bldr.takeNodes(Pred); 2299 VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); 2300 Bldr.addNodes(Dst); 2301 break; 2302 2303 case Stmt::MemberExprClass: 2304 Bldr.takeNodes(Pred); 2305 VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst); 2306 Bldr.addNodes(Dst); 2307 break; 2308 2309 case Stmt::AtomicExprClass: 2310 Bldr.takeNodes(Pred); 2311 VisitAtomicExpr(cast<AtomicExpr>(S), Pred, Dst); 2312 Bldr.addNodes(Dst); 2313 break; 2314 2315 case Stmt::ObjCIvarRefExprClass: 2316 Bldr.takeNodes(Pred); 2317 VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst); 2318 Bldr.addNodes(Dst); 2319 break; 2320 2321 case Stmt::ObjCForCollectionStmtClass: 2322 Bldr.takeNodes(Pred); 2323 VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); 2324 Bldr.addNodes(Dst); 2325 break; 2326 2327 case Stmt::ObjCMessageExprClass: 2328 Bldr.takeNodes(Pred); 2329 VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst); 2330 Bldr.addNodes(Dst); 2331 break; 2332 2333 case Stmt::ObjCAtThrowStmtClass: 2334 case Stmt::CXXThrowExprClass: 2335 // FIXME: This is not complete. We basically treat @throw as 2336 // an abort. 2337 Bldr.generateSink(S, Pred, Pred->getState()); 2338 break; 2339 2340 case Stmt::ReturnStmtClass: 2341 Bldr.takeNodes(Pred); 2342 VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); 2343 Bldr.addNodes(Dst); 2344 break; 2345 2346 case Stmt::OffsetOfExprClass: { 2347 Bldr.takeNodes(Pred); 2348 ExplodedNodeSet PreVisit; 2349 getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); 2350 2351 ExplodedNodeSet PostVisit; 2352 for (const auto Node : PreVisit) 2353 VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Node, PostVisit); 2354 2355 getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); 2356 Bldr.addNodes(Dst); 2357 break; 2358 } 2359 2360 case Stmt::UnaryExprOrTypeTraitExprClass: 2361 Bldr.takeNodes(Pred); 2362 VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), 2363 Pred, Dst); 2364 Bldr.addNodes(Dst); 2365 break; 2366 2367 case Stmt::StmtExprClass: { 2368 const auto *SE = cast<StmtExpr>(S); 2369 2370 if (SE->getSubStmt()->body_empty()) { 2371 // Empty statement expression. 2372 assert(SE->getType() == getContext().VoidTy 2373 && "Empty statement expression must have void type."); 2374 break; 2375 } 2376 2377 if (const auto *LastExpr = 2378 dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { 2379 ProgramStateRef state = Pred->getState(); 2380 Bldr.generateNode(SE, Pred, 2381 state->BindExpr(SE, Pred->getLocationContext(), 2382 state->getSVal(LastExpr, 2383 Pred->getLocationContext()))); 2384 } 2385 break; 2386 } 2387 2388 case Stmt::UnaryOperatorClass: { 2389 Bldr.takeNodes(Pred); 2390 const auto *U = cast<UnaryOperator>(S); 2391 if (AMgr.options.ShouldEagerlyAssume && (U->getOpcode() == UO_LNot)) { 2392 ExplodedNodeSet Tmp; 2393 VisitUnaryOperator(U, Pred, Tmp); 2394 evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U); 2395 } 2396 else 2397 VisitUnaryOperator(U, Pred, Dst); 2398 Bldr.addNodes(Dst); 2399 break; 2400 } 2401 2402 case Stmt::PseudoObjectExprClass: { 2403 Bldr.takeNodes(Pred); 2404 ProgramStateRef state = Pred->getState(); 2405 const auto *PE = cast<PseudoObjectExpr>(S); 2406 if (const Expr *Result = PE->getResultExpr()) { 2407 SVal V = state->getSVal(Result, Pred->getLocationContext()); 2408 Bldr.generateNode(S, Pred, 2409 state->BindExpr(S, Pred->getLocationContext(), V)); 2410 } 2411 else 2412 Bldr.generateNode(S, Pred, 2413 state->BindExpr(S, Pred->getLocationContext(), 2414 UnknownVal())); 2415 2416 Bldr.addNodes(Dst); 2417 break; 2418 } 2419 2420 case Expr::ObjCIndirectCopyRestoreExprClass: { 2421 // ObjCIndirectCopyRestoreExpr implies passing a temporary for 2422 // correctness of lifetime management. Due to limited analysis 2423 // of ARC, this is implemented as direct arg passing. 2424 Bldr.takeNodes(Pred); 2425 ProgramStateRef state = Pred->getState(); 2426 const auto *OIE = cast<ObjCIndirectCopyRestoreExpr>(S); 2427 const Expr *E = OIE->getSubExpr(); 2428 SVal V = state->getSVal(E, Pred->getLocationContext()); 2429 Bldr.generateNode(S, Pred, 2430 state->BindExpr(S, Pred->getLocationContext(), V)); 2431 Bldr.addNodes(Dst); 2432 break; 2433 } 2434 } 2435 } 2436 2437 bool ExprEngine::replayWithoutInlining(ExplodedNode *N, 2438 const LocationContext *CalleeLC) { 2439 const StackFrameContext *CalleeSF = CalleeLC->getStackFrame(); 2440 const StackFrameContext *CallerSF = CalleeSF->getParent()->getStackFrame(); 2441 assert(CalleeSF && CallerSF); 2442 ExplodedNode *BeforeProcessingCall = nullptr; 2443 const Stmt *CE = CalleeSF->getCallSite(); 2444 2445 // Find the first node before we started processing the call expression. 2446 while (N) { 2447 ProgramPoint L = N->getLocation(); 2448 BeforeProcessingCall = N; 2449 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2450 2451 // Skip the nodes corresponding to the inlined code. 2452 if (L.getStackFrame() != CallerSF) 2453 continue; 2454 // We reached the caller. Find the node right before we started 2455 // processing the call. 2456 if (L.isPurgeKind()) 2457 continue; 2458 if (L.getAs<PreImplicitCall>()) 2459 continue; 2460 if (L.getAs<CallEnter>()) 2461 continue; 2462 if (std::optional<StmtPoint> SP = L.getAs<StmtPoint>()) 2463 if (SP->getStmt() == CE) 2464 continue; 2465 break; 2466 } 2467 2468 if (!BeforeProcessingCall) 2469 return false; 2470 2471 // TODO: Clean up the unneeded nodes. 2472 2473 // Build an Epsilon node from which we will restart the analyzes. 2474 // Note that CE is permitted to be NULL! 2475 static SimpleProgramPointTag PT("ExprEngine", "Replay without inlining"); 2476 ProgramPoint NewNodeLoc = EpsilonPoint( 2477 BeforeProcessingCall->getLocationContext(), CE, nullptr, &PT); 2478 // Add the special flag to GDM to signal retrying with no inlining. 2479 // Note, changing the state ensures that we are not going to cache out. 2480 ProgramStateRef NewNodeState = BeforeProcessingCall->getState(); 2481 NewNodeState = 2482 NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE)); 2483 2484 // Make the new node a successor of BeforeProcessingCall. 2485 bool IsNew = false; 2486 ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew); 2487 // We cached out at this point. Caching out is common due to us backtracking 2488 // from the inlined function, which might spawn several paths. 2489 if (!IsNew) 2490 return true; 2491 2492 NewNode->addPredecessor(BeforeProcessingCall, G); 2493 2494 // Add the new node to the work list. 2495 Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(), 2496 CalleeSF->getIndex()); 2497 NumTimesRetriedWithoutInlining++; 2498 return true; 2499 } 2500 2501 /// Block entrance. (Update counters). 2502 void ExprEngine::processCFGBlockEntrance(const BlockEdge &L, 2503 NodeBuilderWithSinks &nodeBuilder, 2504 ExplodedNode *Pred) { 2505 PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); 2506 // If we reach a loop which has a known bound (and meets 2507 // other constraints) then consider completely unrolling it. 2508 if(AMgr.options.ShouldUnrollLoops) { 2509 unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath; 2510 const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt(); 2511 if (Term) { 2512 ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(), 2513 Pred, maxBlockVisitOnPath); 2514 if (NewState != Pred->getState()) { 2515 ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred); 2516 if (!UpdatedNode) 2517 return; 2518 Pred = UpdatedNode; 2519 } 2520 } 2521 // Is we are inside an unrolled loop then no need the check the counters. 2522 if(isUnrolledState(Pred->getState())) 2523 return; 2524 } 2525 2526 // If this block is terminated by a loop and it has already been visited the 2527 // maximum number of times, widen the loop. 2528 unsigned int BlockCount = nodeBuilder.getContext().blockCount(); 2529 if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 && 2530 AMgr.options.ShouldWidenLoops) { 2531 const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt(); 2532 if (!isa_and_nonnull<ForStmt, WhileStmt, DoStmt, CXXForRangeStmt>(Term)) 2533 return; 2534 // Widen. 2535 const LocationContext *LCtx = Pred->getLocationContext(); 2536 ProgramStateRef WidenedState = 2537 getWidenedLoopState(Pred->getState(), LCtx, BlockCount, Term); 2538 nodeBuilder.generateNode(WidenedState, Pred); 2539 return; 2540 } 2541 2542 // FIXME: Refactor this into a checker. 2543 if (BlockCount >= AMgr.options.maxBlockVisitOnPath) { 2544 static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded"); 2545 const ExplodedNode *Sink = 2546 nodeBuilder.generateSink(Pred->getState(), Pred, &tag); 2547 2548 // Check if we stopped at the top level function or not. 2549 // Root node should have the location context of the top most function. 2550 const LocationContext *CalleeLC = Pred->getLocation().getLocationContext(); 2551 const LocationContext *CalleeSF = CalleeLC->getStackFrame(); 2552 const LocationContext *RootLC = 2553 (*G.roots_begin())->getLocation().getLocationContext(); 2554 if (RootLC->getStackFrame() != CalleeSF) { 2555 Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl()); 2556 2557 // Re-run the call evaluation without inlining it, by storing the 2558 // no-inlining policy in the state and enqueuing the new work item on 2559 // the list. Replay should almost never fail. Use the stats to catch it 2560 // if it does. 2561 if ((!AMgr.options.NoRetryExhausted && 2562 replayWithoutInlining(Pred, CalleeLC))) 2563 return; 2564 NumMaxBlockCountReachedInInlined++; 2565 } else 2566 NumMaxBlockCountReached++; 2567 2568 // Make sink nodes as exhausted(for stats) only if retry failed. 2569 Engine.blocksExhausted.push_back(std::make_pair(L, Sink)); 2570 } 2571 } 2572 2573 //===----------------------------------------------------------------------===// 2574 // Branch processing. 2575 //===----------------------------------------------------------------------===// 2576 2577 /// RecoverCastedSymbol - A helper function for ProcessBranch that is used 2578 /// to try to recover some path-sensitivity for casts of symbolic 2579 /// integers that promote their values (which are currently not tracked well). 2580 /// This function returns the SVal bound to Condition->IgnoreCasts if all the 2581 // cast(s) did was sign-extend the original value. 2582 static SVal RecoverCastedSymbol(ProgramStateRef state, 2583 const Stmt *Condition, 2584 const LocationContext *LCtx, 2585 ASTContext &Ctx) { 2586 2587 const auto *Ex = dyn_cast<Expr>(Condition); 2588 if (!Ex) 2589 return UnknownVal(); 2590 2591 uint64_t bits = 0; 2592 bool bitsInit = false; 2593 2594 while (const auto *CE = dyn_cast<CastExpr>(Ex)) { 2595 QualType T = CE->getType(); 2596 2597 if (!T->isIntegralOrEnumerationType()) 2598 return UnknownVal(); 2599 2600 uint64_t newBits = Ctx.getTypeSize(T); 2601 if (!bitsInit || newBits < bits) { 2602 bitsInit = true; 2603 bits = newBits; 2604 } 2605 2606 Ex = CE->getSubExpr(); 2607 } 2608 2609 // We reached a non-cast. Is it a symbolic value? 2610 QualType T = Ex->getType(); 2611 2612 if (!bitsInit || !T->isIntegralOrEnumerationType() || 2613 Ctx.getTypeSize(T) > bits) 2614 return UnknownVal(); 2615 2616 return state->getSVal(Ex, LCtx); 2617 } 2618 2619 #ifndef NDEBUG 2620 static const Stmt *getRightmostLeaf(const Stmt *Condition) { 2621 while (Condition) { 2622 const auto *BO = dyn_cast<BinaryOperator>(Condition); 2623 if (!BO || !BO->isLogicalOp()) { 2624 return Condition; 2625 } 2626 Condition = BO->getRHS()->IgnoreParens(); 2627 } 2628 return nullptr; 2629 } 2630 #endif 2631 2632 // Returns the condition the branch at the end of 'B' depends on and whose value 2633 // has been evaluated within 'B'. 2634 // In most cases, the terminator condition of 'B' will be evaluated fully in 2635 // the last statement of 'B'; in those cases, the resolved condition is the 2636 // given 'Condition'. 2637 // If the condition of the branch is a logical binary operator tree, the CFG is 2638 // optimized: in that case, we know that the expression formed by all but the 2639 // rightmost leaf of the logical binary operator tree must be true, and thus 2640 // the branch condition is at this point equivalent to the truth value of that 2641 // rightmost leaf; the CFG block thus only evaluates this rightmost leaf 2642 // expression in its final statement. As the full condition in that case was 2643 // not evaluated, and is thus not in the SVal cache, we need to use that leaf 2644 // expression to evaluate the truth value of the condition in the current state 2645 // space. 2646 static const Stmt *ResolveCondition(const Stmt *Condition, 2647 const CFGBlock *B) { 2648 if (const auto *Ex = dyn_cast<Expr>(Condition)) 2649 Condition = Ex->IgnoreParens(); 2650 2651 const auto *BO = dyn_cast<BinaryOperator>(Condition); 2652 if (!BO || !BO->isLogicalOp()) 2653 return Condition; 2654 2655 assert(B->getTerminator().isStmtBranch() && 2656 "Other kinds of branches are handled separately!"); 2657 2658 // For logical operations, we still have the case where some branches 2659 // use the traditional "merge" approach and others sink the branch 2660 // directly into the basic blocks representing the logical operation. 2661 // We need to distinguish between those two cases here. 2662 2663 // The invariants are still shifting, but it is possible that the 2664 // last element in a CFGBlock is not a CFGStmt. Look for the last 2665 // CFGStmt as the value of the condition. 2666 for (CFGElement Elem : llvm::reverse(*B)) { 2667 std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>(); 2668 if (!CS) 2669 continue; 2670 const Stmt *LastStmt = CS->getStmt(); 2671 assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition)); 2672 return LastStmt; 2673 } 2674 llvm_unreachable("could not resolve condition"); 2675 } 2676 2677 using ObjCForLctxPair = 2678 std::pair<const ObjCForCollectionStmt *, const LocationContext *>; 2679 2680 REGISTER_MAP_WITH_PROGRAMSTATE(ObjCForHasMoreIterations, ObjCForLctxPair, bool) 2681 2682 ProgramStateRef ExprEngine::setWhetherHasMoreIteration( 2683 ProgramStateRef State, const ObjCForCollectionStmt *O, 2684 const LocationContext *LC, bool HasMoreIteraton) { 2685 assert(!State->contains<ObjCForHasMoreIterations>({O, LC})); 2686 return State->set<ObjCForHasMoreIterations>({O, LC}, HasMoreIteraton); 2687 } 2688 2689 ProgramStateRef 2690 ExprEngine::removeIterationState(ProgramStateRef State, 2691 const ObjCForCollectionStmt *O, 2692 const LocationContext *LC) { 2693 assert(State->contains<ObjCForHasMoreIterations>({O, LC})); 2694 return State->remove<ObjCForHasMoreIterations>({O, LC}); 2695 } 2696 2697 bool ExprEngine::hasMoreIteration(ProgramStateRef State, 2698 const ObjCForCollectionStmt *O, 2699 const LocationContext *LC) { 2700 assert(State->contains<ObjCForHasMoreIterations>({O, LC})); 2701 return *State->get<ObjCForHasMoreIterations>({O, LC}); 2702 } 2703 2704 /// Split the state on whether there are any more iterations left for this loop. 2705 /// Returns a (HasMoreIteration, HasNoMoreIteration) pair, or std::nullopt when 2706 /// the acquisition of the loop condition value failed. 2707 static std::optional<std::pair<ProgramStateRef, ProgramStateRef>> 2708 assumeCondition(const Stmt *Condition, ExplodedNode *N) { 2709 ProgramStateRef State = N->getState(); 2710 if (const auto *ObjCFor = dyn_cast<ObjCForCollectionStmt>(Condition)) { 2711 bool HasMoreIteraton = 2712 ExprEngine::hasMoreIteration(State, ObjCFor, N->getLocationContext()); 2713 // Checkers have already ran on branch conditions, so the current 2714 // information as to whether the loop has more iteration becomes outdated 2715 // after this point. 2716 State = ExprEngine::removeIterationState(State, ObjCFor, 2717 N->getLocationContext()); 2718 if (HasMoreIteraton) 2719 return std::pair<ProgramStateRef, ProgramStateRef>{State, nullptr}; 2720 else 2721 return std::pair<ProgramStateRef, ProgramStateRef>{nullptr, State}; 2722 } 2723 SVal X = State->getSVal(Condition, N->getLocationContext()); 2724 2725 if (X.isUnknownOrUndef()) { 2726 // Give it a chance to recover from unknown. 2727 if (const auto *Ex = dyn_cast<Expr>(Condition)) { 2728 if (Ex->getType()->isIntegralOrEnumerationType()) { 2729 // Try to recover some path-sensitivity. Right now casts of symbolic 2730 // integers that promote their values are currently not tracked well. 2731 // If 'Condition' is such an expression, try and recover the 2732 // underlying value and use that instead. 2733 SVal recovered = 2734 RecoverCastedSymbol(State, Condition, N->getLocationContext(), 2735 N->getState()->getStateManager().getContext()); 2736 2737 if (!recovered.isUnknown()) { 2738 X = recovered; 2739 } 2740 } 2741 } 2742 } 2743 2744 // If the condition is still unknown, give up. 2745 if (X.isUnknownOrUndef()) 2746 return std::nullopt; 2747 2748 DefinedSVal V = X.castAs<DefinedSVal>(); 2749 2750 ProgramStateRef StTrue, StFalse; 2751 return State->assume(V); 2752 } 2753 2754 void ExprEngine::processBranch(const Stmt *Condition, 2755 NodeBuilderContext& BldCtx, 2756 ExplodedNode *Pred, 2757 ExplodedNodeSet &Dst, 2758 const CFGBlock *DstT, 2759 const CFGBlock *DstF) { 2760 assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) && 2761 "CXXBindTemporaryExprs are handled by processBindTemporary."); 2762 const LocationContext *LCtx = Pred->getLocationContext(); 2763 PrettyStackTraceLocationContext StackCrashInfo(LCtx); 2764 currBldrCtx = &BldCtx; 2765 2766 // Check for NULL conditions; e.g. "for(;;)" 2767 if (!Condition) { 2768 BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF); 2769 NullCondBldr.markInfeasible(false); 2770 NullCondBldr.generateNode(Pred->getState(), true, Pred); 2771 return; 2772 } 2773 2774 if (const auto *Ex = dyn_cast<Expr>(Condition)) 2775 Condition = Ex->IgnoreParens(); 2776 2777 Condition = ResolveCondition(Condition, BldCtx.getBlock()); 2778 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), 2779 Condition->getBeginLoc(), 2780 "Error evaluating branch"); 2781 2782 ExplodedNodeSet CheckersOutSet; 2783 getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet, 2784 Pred, *this); 2785 // We generated only sinks. 2786 if (CheckersOutSet.empty()) 2787 return; 2788 2789 BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF); 2790 for (ExplodedNode *PredN : CheckersOutSet) { 2791 if (PredN->isSink()) 2792 continue; 2793 2794 ProgramStateRef PrevState = PredN->getState(); 2795 2796 ProgramStateRef StTrue, StFalse; 2797 if (const auto KnownCondValueAssumption = assumeCondition(Condition, PredN)) 2798 std::tie(StTrue, StFalse) = *KnownCondValueAssumption; 2799 else { 2800 assert(!isa<ObjCForCollectionStmt>(Condition)); 2801 builder.generateNode(PrevState, true, PredN); 2802 builder.generateNode(PrevState, false, PredN); 2803 continue; 2804 } 2805 if (StTrue && StFalse) 2806 assert(!isa<ObjCForCollectionStmt>(Condition)); 2807 2808 // Process the true branch. 2809 if (builder.isFeasible(true)) { 2810 if (StTrue) 2811 builder.generateNode(StTrue, true, PredN); 2812 else 2813 builder.markInfeasible(true); 2814 } 2815 2816 // Process the false branch. 2817 if (builder.isFeasible(false)) { 2818 if (StFalse) 2819 builder.generateNode(StFalse, false, PredN); 2820 else 2821 builder.markInfeasible(false); 2822 } 2823 } 2824 currBldrCtx = nullptr; 2825 } 2826 2827 /// The GDM component containing the set of global variables which have been 2828 /// previously initialized with explicit initializers. 2829 REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet, 2830 llvm::ImmutableSet<const VarDecl *>) 2831 2832 void ExprEngine::processStaticInitializer(const DeclStmt *DS, 2833 NodeBuilderContext &BuilderCtx, 2834 ExplodedNode *Pred, 2835 ExplodedNodeSet &Dst, 2836 const CFGBlock *DstT, 2837 const CFGBlock *DstF) { 2838 PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); 2839 currBldrCtx = &BuilderCtx; 2840 2841 const auto *VD = cast<VarDecl>(DS->getSingleDecl()); 2842 ProgramStateRef state = Pred->getState(); 2843 bool initHasRun = state->contains<InitializedGlobalsSet>(VD); 2844 BranchNodeBuilder builder(Pred, Dst, BuilderCtx, DstT, DstF); 2845 2846 if (!initHasRun) { 2847 state = state->add<InitializedGlobalsSet>(VD); 2848 } 2849 2850 builder.generateNode(state, initHasRun, Pred); 2851 builder.markInfeasible(!initHasRun); 2852 2853 currBldrCtx = nullptr; 2854 } 2855 2856 /// processIndirectGoto - Called by CoreEngine. Used to generate successor 2857 /// nodes by processing the 'effects' of a computed goto jump. 2858 void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { 2859 ProgramStateRef state = builder.getState(); 2860 SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext()); 2861 2862 // Three possibilities: 2863 // 2864 // (1) We know the computed label. 2865 // (2) The label is NULL (or some other constant), or Undefined. 2866 // (3) We have no clue about the label. Dispatch to all targets. 2867 // 2868 2869 using iterator = IndirectGotoNodeBuilder::iterator; 2870 2871 if (std::optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) { 2872 const LabelDecl *L = LV->getLabel(); 2873 2874 for (iterator Succ : builder) { 2875 if (Succ.getLabel() == L) { 2876 builder.generateNode(Succ, state); 2877 return; 2878 } 2879 } 2880 2881 llvm_unreachable("No block with label."); 2882 } 2883 2884 if (isa<UndefinedVal, loc::ConcreteInt>(V)) { 2885 // Dispatch to the first target and mark it as a sink. 2886 //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); 2887 // FIXME: add checker visit. 2888 // UndefBranches.insert(N); 2889 return; 2890 } 2891 2892 // This is really a catch-all. We don't support symbolics yet. 2893 // FIXME: Implement dispatch for symbolic pointers. 2894 2895 for (iterator Succ : builder) 2896 builder.generateNode(Succ, state); 2897 } 2898 2899 void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC, 2900 ExplodedNode *Pred, 2901 ExplodedNodeSet &Dst, 2902 const BlockEdge &L) { 2903 SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC); 2904 getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this); 2905 } 2906 2907 /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path 2908 /// nodes when the control reaches the end of a function. 2909 void ExprEngine::processEndOfFunction(NodeBuilderContext& BC, 2910 ExplodedNode *Pred, 2911 const ReturnStmt *RS) { 2912 ProgramStateRef State = Pred->getState(); 2913 2914 if (!Pred->getStackFrame()->inTopFrame()) 2915 State = finishArgumentConstruction( 2916 State, *getStateManager().getCallEventManager().getCaller( 2917 Pred->getStackFrame(), Pred->getState())); 2918 2919 // FIXME: We currently cannot assert that temporaries are clear, because 2920 // lifetime extended temporaries are not always modelled correctly. In some 2921 // cases when we materialize the temporary, we do 2922 // createTemporaryRegionIfNeeded(), and the region changes, and also the 2923 // respective destructor becomes automatic from temporary. So for now clean up 2924 // the state manually before asserting. Ideally, this braced block of code 2925 // should go away. 2926 { 2927 const LocationContext *FromLC = Pred->getLocationContext(); 2928 const LocationContext *ToLC = FromLC->getStackFrame()->getParent(); 2929 const LocationContext *LC = FromLC; 2930 while (LC != ToLC) { 2931 assert(LC && "ToLC must be a parent of FromLC!"); 2932 for (auto I : State->get<ObjectsUnderConstruction>()) 2933 if (I.first.getLocationContext() == LC) { 2934 // The comment above only pardons us for not cleaning up a 2935 // temporary destructor. If any other statements are found here, 2936 // it must be a separate problem. 2937 assert(I.first.getItem().getKind() == 2938 ConstructionContextItem::TemporaryDestructorKind || 2939 I.first.getItem().getKind() == 2940 ConstructionContextItem::ElidedDestructorKind); 2941 State = State->remove<ObjectsUnderConstruction>(I.first); 2942 } 2943 LC = LC->getParent(); 2944 } 2945 } 2946 2947 // Perform the transition with cleanups. 2948 if (State != Pred->getState()) { 2949 ExplodedNodeSet PostCleanup; 2950 NodeBuilder Bldr(Pred, PostCleanup, BC); 2951 Pred = Bldr.generateNode(Pred->getLocation(), State, Pred); 2952 if (!Pred) { 2953 // The node with clean temporaries already exists. We might have reached 2954 // it on a path on which we initialize different temporaries. 2955 return; 2956 } 2957 } 2958 2959 assert(areAllObjectsFullyConstructed(Pred->getState(), 2960 Pred->getLocationContext(), 2961 Pred->getStackFrame()->getParent())); 2962 2963 PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); 2964 2965 ExplodedNodeSet Dst; 2966 if (Pred->getLocationContext()->inTopFrame()) { 2967 // Remove dead symbols. 2968 ExplodedNodeSet AfterRemovedDead; 2969 removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead); 2970 2971 // Notify checkers. 2972 for (const auto I : AfterRemovedDead) 2973 getCheckerManager().runCheckersForEndFunction(BC, Dst, I, *this, RS); 2974 } else { 2975 getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this, RS); 2976 } 2977 2978 Engine.enqueueEndOfFunction(Dst, RS); 2979 } 2980 2981 /// ProcessSwitch - Called by CoreEngine. Used to generate successor 2982 /// nodes by processing the 'effects' of a switch statement. 2983 void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { 2984 using iterator = SwitchNodeBuilder::iterator; 2985 2986 ProgramStateRef state = builder.getState(); 2987 const Expr *CondE = builder.getCondition(); 2988 SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext()); 2989 2990 if (CondV_untested.isUndef()) { 2991 //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); 2992 // FIXME: add checker 2993 //UndefBranches.insert(N); 2994 2995 return; 2996 } 2997 DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>(); 2998 2999 ProgramStateRef DefaultSt = state; 3000 3001 iterator I = builder.begin(), EI = builder.end(); 3002 bool defaultIsFeasible = I == EI; 3003 3004 for ( ; I != EI; ++I) { 3005 // Successor may be pruned out during CFG construction. 3006 if (!I.getBlock()) 3007 continue; 3008 3009 const CaseStmt *Case = I.getCase(); 3010 3011 // Evaluate the LHS of the case value. 3012 llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext()); 3013 assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType())); 3014 3015 // Get the RHS of the case, if it exists. 3016 llvm::APSInt V2; 3017 if (const Expr *E = Case->getRHS()) 3018 V2 = E->EvaluateKnownConstInt(getContext()); 3019 else 3020 V2 = V1; 3021 3022 ProgramStateRef StateCase; 3023 if (std::optional<NonLoc> NL = CondV.getAs<NonLoc>()) 3024 std::tie(StateCase, DefaultSt) = 3025 DefaultSt->assumeInclusiveRange(*NL, V1, V2); 3026 else // UnknownVal 3027 StateCase = DefaultSt; 3028 3029 if (StateCase) 3030 builder.generateCaseStmtNode(I, StateCase); 3031 3032 // Now "assume" that the case doesn't match. Add this state 3033 // to the default state (if it is feasible). 3034 if (DefaultSt) 3035 defaultIsFeasible = true; 3036 else { 3037 defaultIsFeasible = false; 3038 break; 3039 } 3040 } 3041 3042 if (!defaultIsFeasible) 3043 return; 3044 3045 // If we have switch(enum value), the default branch is not 3046 // feasible if all of the enum constants not covered by 'case:' statements 3047 // are not feasible values for the switch condition. 3048 // 3049 // Note that this isn't as accurate as it could be. Even if there isn't 3050 // a case for a particular enum value as long as that enum value isn't 3051 // feasible then it shouldn't be considered for making 'default:' reachable. 3052 const SwitchStmt *SS = builder.getSwitch(); 3053 const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); 3054 if (CondExpr->getType()->getAs<EnumType>()) { 3055 if (SS->isAllEnumCasesCovered()) 3056 return; 3057 } 3058 3059 builder.generateDefaultCaseNode(DefaultSt); 3060 } 3061 3062 //===----------------------------------------------------------------------===// 3063 // Transfer functions: Loads and stores. 3064 //===----------------------------------------------------------------------===// 3065 3066 void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, 3067 ExplodedNode *Pred, 3068 ExplodedNodeSet &Dst) { 3069 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 3070 3071 ProgramStateRef state = Pred->getState(); 3072 const LocationContext *LCtx = Pred->getLocationContext(); 3073 3074 if (const auto *VD = dyn_cast<VarDecl>(D)) { 3075 // C permits "extern void v", and if you cast the address to a valid type, 3076 // you can even do things with it. We simply pretend 3077 assert(Ex->isGLValue() || VD->getType()->isVoidType()); 3078 const LocationContext *LocCtxt = Pred->getLocationContext(); 3079 const Decl *D = LocCtxt->getDecl(); 3080 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 3081 const auto *DeclRefEx = dyn_cast<DeclRefExpr>(Ex); 3082 std::optional<std::pair<SVal, QualType>> VInfo; 3083 3084 if (AMgr.options.ShouldInlineLambdas && DeclRefEx && 3085 DeclRefEx->refersToEnclosingVariableOrCapture() && MD && 3086 MD->getParent()->isLambda()) { 3087 // Lookup the field of the lambda. 3088 const CXXRecordDecl *CXXRec = MD->getParent(); 3089 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 3090 FieldDecl *LambdaThisCaptureField; 3091 CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField); 3092 3093 // Sema follows a sequence of complex rules to determine whether the 3094 // variable should be captured. 3095 if (const FieldDecl *FD = LambdaCaptureFields[VD]) { 3096 Loc CXXThis = 3097 svalBuilder.getCXXThis(MD, LocCtxt->getStackFrame()); 3098 SVal CXXThisVal = state->getSVal(CXXThis); 3099 VInfo = std::make_pair(state->getLValue(FD, CXXThisVal), FD->getType()); 3100 } 3101 } 3102 3103 if (!VInfo) 3104 VInfo = std::make_pair(state->getLValue(VD, LocCtxt), VD->getType()); 3105 3106 SVal V = VInfo->first; 3107 bool IsReference = VInfo->second->isReferenceType(); 3108 3109 // For references, the 'lvalue' is the pointer address stored in the 3110 // reference region. 3111 if (IsReference) { 3112 if (const MemRegion *R = V.getAsRegion()) 3113 V = state->getSVal(R); 3114 else 3115 V = UnknownVal(); 3116 } 3117 3118 Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, 3119 ProgramPoint::PostLValueKind); 3120 return; 3121 } 3122 if (const auto *ED = dyn_cast<EnumConstantDecl>(D)) { 3123 assert(!Ex->isGLValue()); 3124 SVal V = svalBuilder.makeIntVal(ED->getInitVal()); 3125 Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V)); 3126 return; 3127 } 3128 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3129 SVal V = svalBuilder.getFunctionPointer(FD); 3130 Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, 3131 ProgramPoint::PostLValueKind); 3132 return; 3133 } 3134 if (isa<FieldDecl, IndirectFieldDecl>(D)) { 3135 // Delegate all work related to pointer to members to the surrounding 3136 // operator&. 3137 return; 3138 } 3139 if (const auto *BD = dyn_cast<BindingDecl>(D)) { 3140 const auto *DD = cast<DecompositionDecl>(BD->getDecomposedDecl()); 3141 3142 SVal Base = state->getLValue(DD, LCtx); 3143 if (DD->getType()->isReferenceType()) { 3144 if (const MemRegion *R = Base.getAsRegion()) 3145 Base = state->getSVal(R); 3146 else 3147 Base = UnknownVal(); 3148 } 3149 3150 SVal V = UnknownVal(); 3151 3152 // Handle binding to data members 3153 if (const auto *ME = dyn_cast<MemberExpr>(BD->getBinding())) { 3154 const auto *Field = cast<FieldDecl>(ME->getMemberDecl()); 3155 V = state->getLValue(Field, Base); 3156 } 3157 // Handle binding to arrays 3158 else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BD->getBinding())) { 3159 SVal Idx = state->getSVal(ASE->getIdx(), LCtx); 3160 3161 // Note: the index of an element in a structured binding is automatically 3162 // created and it is a unique identifier of the specific element. Thus it 3163 // cannot be a value that varies at runtime. 3164 assert(Idx.isConstant() && "BindingDecl array index is not a constant!"); 3165 3166 V = state->getLValue(BD->getType(), Idx, Base); 3167 } 3168 // Handle binding to tuple-like structures 3169 else if (const auto *HV = BD->getHoldingVar()) { 3170 V = state->getLValue(HV, LCtx); 3171 3172 if (HV->getType()->isReferenceType()) { 3173 if (const MemRegion *R = V.getAsRegion()) 3174 V = state->getSVal(R); 3175 else 3176 V = UnknownVal(); 3177 } 3178 } else 3179 llvm_unreachable("An unknown case of structured binding encountered!"); 3180 3181 // In case of tuple-like types the references are already handled, so we 3182 // don't want to handle them again. 3183 if (BD->getType()->isReferenceType() && !BD->getHoldingVar()) { 3184 if (const MemRegion *R = V.getAsRegion()) 3185 V = state->getSVal(R); 3186 else 3187 V = UnknownVal(); 3188 } 3189 3190 Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, 3191 ProgramPoint::PostLValueKind); 3192 3193 return; 3194 } 3195 3196 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 3197 // FIXME: We should meaningfully implement this. 3198 (void)TPO; 3199 return; 3200 } 3201 3202 llvm_unreachable("Support for this Decl not implemented."); 3203 } 3204 3205 /// VisitArrayInitLoopExpr - Transfer function for array init loop. 3206 void ExprEngine::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *Ex, 3207 ExplodedNode *Pred, 3208 ExplodedNodeSet &Dst) { 3209 ExplodedNodeSet CheckerPreStmt; 3210 getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, Ex, *this); 3211 3212 ExplodedNodeSet EvalSet; 3213 StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx); 3214 3215 const Expr *Arr = Ex->getCommonExpr()->getSourceExpr(); 3216 3217 for (auto *Node : CheckerPreStmt) { 3218 3219 // The constructor visitior has already taken care of everything. 3220 if (isa<CXXConstructExpr>(Ex->getSubExpr())) 3221 break; 3222 3223 const LocationContext *LCtx = Node->getLocationContext(); 3224 ProgramStateRef state = Node->getState(); 3225 3226 SVal Base = UnknownVal(); 3227 3228 // As in case of this expression the sub-expressions are not visited by any 3229 // other transfer functions, they are handled by matching their AST. 3230 3231 // Case of implicit copy or move ctor of object with array member 3232 // 3233 // Note: ExprEngine::VisitMemberExpr is not able to bind the array to the 3234 // environment. 3235 // 3236 // struct S { 3237 // int arr[2]; 3238 // }; 3239 // 3240 // 3241 // S a; 3242 // S b = a; 3243 // 3244 // The AST in case of a *copy constructor* looks like this: 3245 // ArrayInitLoopExpr 3246 // |-OpaqueValueExpr 3247 // | `-MemberExpr <-- match this 3248 // | `-DeclRefExpr 3249 // ` ... 3250 // 3251 // 3252 // S c; 3253 // S d = std::move(d); 3254 // 3255 // In case of a *move constructor* the resulting AST looks like: 3256 // ArrayInitLoopExpr 3257 // |-OpaqueValueExpr 3258 // | `-MemberExpr <-- match this first 3259 // | `-CXXStaticCastExpr <-- match this after 3260 // | `-DeclRefExpr 3261 // ` ... 3262 if (const auto *ME = dyn_cast<MemberExpr>(Arr)) { 3263 Expr *MEBase = ME->getBase(); 3264 3265 // Move ctor 3266 if (auto CXXSCE = dyn_cast<CXXStaticCastExpr>(MEBase)) { 3267 MEBase = CXXSCE->getSubExpr(); 3268 } 3269 3270 auto ObjDeclExpr = cast<DeclRefExpr>(MEBase); 3271 SVal Obj = state->getLValue(cast<VarDecl>(ObjDeclExpr->getDecl()), LCtx); 3272 3273 Base = state->getLValue(cast<FieldDecl>(ME->getMemberDecl()), Obj); 3274 } 3275 3276 // Case of lambda capture and decomposition declaration 3277 // 3278 // int arr[2]; 3279 // 3280 // [arr]{ int a = arr[0]; }(); 3281 // auto[a, b] = arr; 3282 // 3283 // In both of these cases the AST looks like the following: 3284 // ArrayInitLoopExpr 3285 // |-OpaqueValueExpr 3286 // | `-DeclRefExpr <-- match this 3287 // ` ... 3288 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arr)) 3289 Base = state->getLValue(cast<VarDecl>(DRE->getDecl()), LCtx); 3290 3291 // Create a lazy compound value to the original array 3292 if (const MemRegion *R = Base.getAsRegion()) 3293 Base = state->getSVal(R); 3294 else 3295 Base = UnknownVal(); 3296 3297 Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, Base)); 3298 } 3299 3300 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 3301 } 3302 3303 /// VisitArraySubscriptExpr - Transfer function for array accesses 3304 void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A, 3305 ExplodedNode *Pred, 3306 ExplodedNodeSet &Dst){ 3307 const Expr *Base = A->getBase()->IgnoreParens(); 3308 const Expr *Idx = A->getIdx()->IgnoreParens(); 3309 3310 ExplodedNodeSet CheckerPreStmt; 3311 getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this); 3312 3313 ExplodedNodeSet EvalSet; 3314 StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx); 3315 3316 bool IsVectorType = A->getBase()->getType()->isVectorType(); 3317 3318 // The "like" case is for situations where C standard prohibits the type to 3319 // be an lvalue, e.g. taking the address of a subscript of an expression of 3320 // type "void *". 3321 bool IsGLValueLike = A->isGLValue() || 3322 (A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus); 3323 3324 for (auto *Node : CheckerPreStmt) { 3325 const LocationContext *LCtx = Node->getLocationContext(); 3326 ProgramStateRef state = Node->getState(); 3327 3328 if (IsGLValueLike) { 3329 QualType T = A->getType(); 3330 3331 // One of the forbidden LValue types! We still need to have sensible 3332 // symbolic locations to represent this stuff. Note that arithmetic on 3333 // void pointers is a GCC extension. 3334 if (T->isVoidType()) 3335 T = getContext().CharTy; 3336 3337 SVal V = state->getLValue(T, 3338 state->getSVal(Idx, LCtx), 3339 state->getSVal(Base, LCtx)); 3340 Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr, 3341 ProgramPoint::PostLValueKind); 3342 } else if (IsVectorType) { 3343 // FIXME: non-glvalue vector reads are not modelled. 3344 Bldr.generateNode(A, Node, state, nullptr); 3345 } else { 3346 llvm_unreachable("Array subscript should be an lValue when not \ 3347 a vector and not a forbidden lvalue type"); 3348 } 3349 } 3350 3351 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this); 3352 } 3353 3354 /// VisitMemberExpr - Transfer function for member expressions. 3355 void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred, 3356 ExplodedNodeSet &Dst) { 3357 // FIXME: Prechecks eventually go in ::Visit(). 3358 ExplodedNodeSet CheckedSet; 3359 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this); 3360 3361 ExplodedNodeSet EvalSet; 3362 ValueDecl *Member = M->getMemberDecl(); 3363 3364 // Handle static member variables and enum constants accessed via 3365 // member syntax. 3366 if (isa<VarDecl, EnumConstantDecl>(Member)) { 3367 for (const auto I : CheckedSet) 3368 VisitCommonDeclRefExpr(M, Member, I, EvalSet); 3369 } else { 3370 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 3371 ExplodedNodeSet Tmp; 3372 3373 for (const auto I : CheckedSet) { 3374 ProgramStateRef state = I->getState(); 3375 const LocationContext *LCtx = I->getLocationContext(); 3376 Expr *BaseExpr = M->getBase(); 3377 3378 // Handle C++ method calls. 3379 if (const auto *MD = dyn_cast<CXXMethodDecl>(Member)) { 3380 if (MD->isImplicitObjectMemberFunction()) 3381 state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr); 3382 3383 SVal MDVal = svalBuilder.getFunctionPointer(MD); 3384 state = state->BindExpr(M, LCtx, MDVal); 3385 3386 Bldr.generateNode(M, I, state); 3387 continue; 3388 } 3389 3390 // Handle regular struct fields / member variables. 3391 const SubRegion *MR = nullptr; 3392 state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr, 3393 /*Result=*/nullptr, 3394 /*OutRegionWithAdjustments=*/&MR); 3395 SVal baseExprVal = 3396 MR ? loc::MemRegionVal(MR) : state->getSVal(BaseExpr, LCtx); 3397 3398 // FIXME: Copied from RegionStoreManager::bind() 3399 if (const auto *SR = 3400 dyn_cast_or_null<SymbolicRegion>(baseExprVal.getAsRegion())) { 3401 QualType T = SR->getPointeeStaticType(); 3402 baseExprVal = 3403 loc::MemRegionVal(getStoreManager().GetElementZeroRegion(SR, T)); 3404 } 3405 3406 const auto *field = cast<FieldDecl>(Member); 3407 SVal L = state->getLValue(field, baseExprVal); 3408 3409 if (M->isGLValue() || M->getType()->isArrayType()) { 3410 // We special-case rvalues of array type because the analyzer cannot 3411 // reason about them, since we expect all regions to be wrapped in Locs. 3412 // We instead treat these as lvalues and assume that they will decay to 3413 // pointers as soon as they are used. 3414 if (!M->isGLValue()) { 3415 assert(M->getType()->isArrayType()); 3416 const auto *PE = 3417 dyn_cast<ImplicitCastExpr>(I->getParentMap().getParentIgnoreParens(M)); 3418 if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) { 3419 llvm_unreachable("should always be wrapped in ArrayToPointerDecay"); 3420 } 3421 } 3422 3423 if (field->getType()->isReferenceType()) { 3424 if (const MemRegion *R = L.getAsRegion()) 3425 L = state->getSVal(R); 3426 else 3427 L = UnknownVal(); 3428 } 3429 3430 Bldr.generateNode(M, I, state->BindExpr(M, LCtx, L), nullptr, 3431 ProgramPoint::PostLValueKind); 3432 } else { 3433 Bldr.takeNodes(I); 3434 evalLoad(Tmp, M, M, I, state, L); 3435 Bldr.addNodes(Tmp); 3436 } 3437 } 3438 } 3439 3440 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this); 3441 } 3442 3443 void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred, 3444 ExplodedNodeSet &Dst) { 3445 ExplodedNodeSet AfterPreSet; 3446 getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this); 3447 3448 // For now, treat all the arguments to C11 atomics as escaping. 3449 // FIXME: Ideally we should model the behavior of the atomics precisely here. 3450 3451 ExplodedNodeSet AfterInvalidateSet; 3452 StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx); 3453 3454 for (const auto I : AfterPreSet) { 3455 ProgramStateRef State = I->getState(); 3456 const LocationContext *LCtx = I->getLocationContext(); 3457 3458 SmallVector<SVal, 8> ValuesToInvalidate; 3459 for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) { 3460 const Expr *SubExpr = AE->getSubExprs()[SI]; 3461 SVal SubExprVal = State->getSVal(SubExpr, LCtx); 3462 ValuesToInvalidate.push_back(SubExprVal); 3463 } 3464 3465 State = State->invalidateRegions(ValuesToInvalidate, AE, 3466 currBldrCtx->blockCount(), 3467 LCtx, 3468 /*CausedByPointerEscape*/true, 3469 /*Symbols=*/nullptr); 3470 3471 SVal ResultVal = UnknownVal(); 3472 State = State->BindExpr(AE, LCtx, ResultVal); 3473 Bldr.generateNode(AE, I, State, nullptr, 3474 ProgramPoint::PostStmtKind); 3475 } 3476 3477 getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this); 3478 } 3479 3480 // A value escapes in four possible cases: 3481 // (1) We are binding to something that is not a memory region. 3482 // (2) We are binding to a MemRegion that does not have stack storage. 3483 // (3) We are binding to a top-level parameter region with a non-trivial 3484 // destructor. We won't see the destructor during analysis, but it's there. 3485 // (4) We are binding to a MemRegion with stack storage that the store 3486 // does not understand. 3487 ProgramStateRef ExprEngine::processPointerEscapedOnBind( 3488 ProgramStateRef State, ArrayRef<std::pair<SVal, SVal>> LocAndVals, 3489 const LocationContext *LCtx, PointerEscapeKind Kind, 3490 const CallEvent *Call) { 3491 SmallVector<SVal, 8> Escaped; 3492 for (const std::pair<SVal, SVal> &LocAndVal : LocAndVals) { 3493 // Cases (1) and (2). 3494 const MemRegion *MR = LocAndVal.first.getAsRegion(); 3495 if (!MR || 3496 !isa<StackSpaceRegion, StaticGlobalSpaceRegion>(MR->getMemorySpace())) { 3497 Escaped.push_back(LocAndVal.second); 3498 continue; 3499 } 3500 3501 // Case (3). 3502 if (const auto *VR = dyn_cast<VarRegion>(MR->getBaseRegion())) 3503 if (VR->hasStackParametersStorage() && VR->getStackFrame()->inTopFrame()) 3504 if (const auto *RD = VR->getValueType()->getAsCXXRecordDecl()) 3505 if (!RD->hasTrivialDestructor()) { 3506 Escaped.push_back(LocAndVal.second); 3507 continue; 3508 } 3509 3510 // Case (4): in order to test that, generate a new state with the binding 3511 // added. If it is the same state, then it escapes (since the store cannot 3512 // represent the binding). 3513 // Do this only if we know that the store is not supposed to generate the 3514 // same state. 3515 SVal StoredVal = State->getSVal(MR); 3516 if (StoredVal != LocAndVal.second) 3517 if (State == 3518 (State->bindLoc(loc::MemRegionVal(MR), LocAndVal.second, LCtx))) 3519 Escaped.push_back(LocAndVal.second); 3520 } 3521 3522 if (Escaped.empty()) 3523 return State; 3524 3525 return escapeValues(State, Escaped, Kind, Call); 3526 } 3527 3528 ProgramStateRef 3529 ExprEngine::processPointerEscapedOnBind(ProgramStateRef State, SVal Loc, 3530 SVal Val, const LocationContext *LCtx) { 3531 std::pair<SVal, SVal> LocAndVal(Loc, Val); 3532 return processPointerEscapedOnBind(State, LocAndVal, LCtx, PSK_EscapeOnBind, 3533 nullptr); 3534 } 3535 3536 ProgramStateRef 3537 ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State, 3538 const InvalidatedSymbols *Invalidated, 3539 ArrayRef<const MemRegion *> ExplicitRegions, 3540 const CallEvent *Call, 3541 RegionAndSymbolInvalidationTraits &ITraits) { 3542 if (!Invalidated || Invalidated->empty()) 3543 return State; 3544 3545 if (!Call) 3546 return getCheckerManager().runCheckersForPointerEscape(State, 3547 *Invalidated, 3548 nullptr, 3549 PSK_EscapeOther, 3550 &ITraits); 3551 3552 // If the symbols were invalidated by a call, we want to find out which ones 3553 // were invalidated directly due to being arguments to the call. 3554 InvalidatedSymbols SymbolsDirectlyInvalidated; 3555 for (const auto I : ExplicitRegions) { 3556 if (const SymbolicRegion *R = I->StripCasts()->getAs<SymbolicRegion>()) 3557 SymbolsDirectlyInvalidated.insert(R->getSymbol()); 3558 } 3559 3560 InvalidatedSymbols SymbolsIndirectlyInvalidated; 3561 for (const auto &sym : *Invalidated) { 3562 if (SymbolsDirectlyInvalidated.count(sym)) 3563 continue; 3564 SymbolsIndirectlyInvalidated.insert(sym); 3565 } 3566 3567 if (!SymbolsDirectlyInvalidated.empty()) 3568 State = getCheckerManager().runCheckersForPointerEscape(State, 3569 SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits); 3570 3571 // Notify about the symbols that get indirectly invalidated by the call. 3572 if (!SymbolsIndirectlyInvalidated.empty()) 3573 State = getCheckerManager().runCheckersForPointerEscape(State, 3574 SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits); 3575 3576 return State; 3577 } 3578 3579 /// evalBind - Handle the semantics of binding a value to a specific location. 3580 /// This method is used by evalStore and (soon) VisitDeclStmt, and others. 3581 void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE, 3582 ExplodedNode *Pred, 3583 SVal location, SVal Val, 3584 bool atDeclInit, const ProgramPoint *PP) { 3585 const LocationContext *LC = Pred->getLocationContext(); 3586 PostStmt PS(StoreE, LC); 3587 if (!PP) 3588 PP = &PS; 3589 3590 // Do a previsit of the bind. 3591 ExplodedNodeSet CheckedSet; 3592 getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val, 3593 StoreE, *this, *PP); 3594 3595 StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx); 3596 3597 // If the location is not a 'Loc', it will already be handled by 3598 // the checkers. There is nothing left to do. 3599 if (!isa<Loc>(location)) { 3600 const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr, 3601 /*tag*/nullptr); 3602 ProgramStateRef state = Pred->getState(); 3603 state = processPointerEscapedOnBind(state, location, Val, LC); 3604 Bldr.generateNode(L, state, Pred); 3605 return; 3606 } 3607 3608 for (const auto PredI : CheckedSet) { 3609 ProgramStateRef state = PredI->getState(); 3610 3611 state = processPointerEscapedOnBind(state, location, Val, LC); 3612 3613 // When binding the value, pass on the hint that this is a initialization. 3614 // For initializations, we do not need to inform clients of region 3615 // changes. 3616 state = state->bindLoc(location.castAs<Loc>(), 3617 Val, LC, /* notifyChanges = */ !atDeclInit); 3618 3619 const MemRegion *LocReg = nullptr; 3620 if (std::optional<loc::MemRegionVal> LocRegVal = 3621 location.getAs<loc::MemRegionVal>()) { 3622 LocReg = LocRegVal->getRegion(); 3623 } 3624 3625 const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr); 3626 Bldr.generateNode(L, state, PredI); 3627 } 3628 } 3629 3630 /// evalStore - Handle the semantics of a store via an assignment. 3631 /// @param Dst The node set to store generated state nodes 3632 /// @param AssignE The assignment expression if the store happens in an 3633 /// assignment. 3634 /// @param LocationE The location expression that is stored to. 3635 /// @param state The current simulation state 3636 /// @param location The location to store the value 3637 /// @param Val The value to be stored 3638 void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE, 3639 const Expr *LocationE, 3640 ExplodedNode *Pred, 3641 ProgramStateRef state, SVal location, SVal Val, 3642 const ProgramPointTag *tag) { 3643 // Proceed with the store. We use AssignE as the anchor for the PostStore 3644 // ProgramPoint if it is non-NULL, and LocationE otherwise. 3645 const Expr *StoreE = AssignE ? AssignE : LocationE; 3646 3647 // Evaluate the location (checks for bad dereferences). 3648 ExplodedNodeSet Tmp; 3649 evalLocation(Tmp, AssignE, LocationE, Pred, state, location, false); 3650 3651 if (Tmp.empty()) 3652 return; 3653 3654 if (location.isUndef()) 3655 return; 3656 3657 for (const auto I : Tmp) 3658 evalBind(Dst, StoreE, I, location, Val, false); 3659 } 3660 3661 void ExprEngine::evalLoad(ExplodedNodeSet &Dst, 3662 const Expr *NodeEx, 3663 const Expr *BoundEx, 3664 ExplodedNode *Pred, 3665 ProgramStateRef state, 3666 SVal location, 3667 const ProgramPointTag *tag, 3668 QualType LoadTy) { 3669 assert(!isa<NonLoc>(location) && "location cannot be a NonLoc."); 3670 assert(NodeEx); 3671 assert(BoundEx); 3672 // Evaluate the location (checks for bad dereferences). 3673 ExplodedNodeSet Tmp; 3674 evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, true); 3675 if (Tmp.empty()) 3676 return; 3677 3678 StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx); 3679 if (location.isUndef()) 3680 return; 3681 3682 // Proceed with the load. 3683 for (const auto I : Tmp) { 3684 state = I->getState(); 3685 const LocationContext *LCtx = I->getLocationContext(); 3686 3687 SVal V = UnknownVal(); 3688 if (location.isValid()) { 3689 if (LoadTy.isNull()) 3690 LoadTy = BoundEx->getType(); 3691 V = state->getSVal(location.castAs<Loc>(), LoadTy); 3692 } 3693 3694 Bldr.generateNode(NodeEx, I, state->BindExpr(BoundEx, LCtx, V), tag, 3695 ProgramPoint::PostLoadKind); 3696 } 3697 } 3698 3699 void ExprEngine::evalLocation(ExplodedNodeSet &Dst, 3700 const Stmt *NodeEx, 3701 const Stmt *BoundEx, 3702 ExplodedNode *Pred, 3703 ProgramStateRef state, 3704 SVal location, 3705 bool isLoad) { 3706 StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx); 3707 // Early checks for performance reason. 3708 if (location.isUnknown()) { 3709 return; 3710 } 3711 3712 ExplodedNodeSet Src; 3713 BldrTop.takeNodes(Pred); 3714 StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx); 3715 if (Pred->getState() != state) { 3716 // Associate this new state with an ExplodedNode. 3717 // FIXME: If I pass null tag, the graph is incorrect, e.g for 3718 // int *p; 3719 // p = 0; 3720 // *p = 0xDEADBEEF; 3721 // "p = 0" is not noted as "Null pointer value stored to 'p'" but 3722 // instead "int *p" is noted as 3723 // "Variable 'p' initialized to a null pointer value" 3724 3725 static SimpleProgramPointTag tag(TagProviderName, "Location"); 3726 Bldr.generateNode(NodeEx, Pred, state, &tag); 3727 } 3728 ExplodedNodeSet Tmp; 3729 getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad, 3730 NodeEx, BoundEx, *this); 3731 BldrTop.addNodes(Tmp); 3732 } 3733 3734 std::pair<const ProgramPointTag *, const ProgramPointTag*> 3735 ExprEngine::geteagerlyAssumeBinOpBifurcationTags() { 3736 static SimpleProgramPointTag 3737 eagerlyAssumeBinOpBifurcationTrue(TagProviderName, 3738 "Eagerly Assume True"), 3739 eagerlyAssumeBinOpBifurcationFalse(TagProviderName, 3740 "Eagerly Assume False"); 3741 return std::make_pair(&eagerlyAssumeBinOpBifurcationTrue, 3742 &eagerlyAssumeBinOpBifurcationFalse); 3743 } 3744 3745 void ExprEngine::evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst, 3746 ExplodedNodeSet &Src, 3747 const Expr *Ex) { 3748 StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx); 3749 3750 for (const auto Pred : Src) { 3751 // Test if the previous node was as the same expression. This can happen 3752 // when the expression fails to evaluate to anything meaningful and 3753 // (as an optimization) we don't generate a node. 3754 ProgramPoint P = Pred->getLocation(); 3755 if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) { 3756 continue; 3757 } 3758 3759 ProgramStateRef state = Pred->getState(); 3760 SVal V = state->getSVal(Ex, Pred->getLocationContext()); 3761 std::optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>(); 3762 if (SEV && SEV->isExpression()) { 3763 const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags = 3764 geteagerlyAssumeBinOpBifurcationTags(); 3765 3766 ProgramStateRef StateTrue, StateFalse; 3767 std::tie(StateTrue, StateFalse) = state->assume(*SEV); 3768 3769 // First assume that the condition is true. 3770 if (StateTrue) { 3771 SVal Val = svalBuilder.makeIntVal(1U, Ex->getType()); 3772 StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val); 3773 Bldr.generateNode(Ex, Pred, StateTrue, tags.first); 3774 } 3775 3776 // Next, assume that the condition is false. 3777 if (StateFalse) { 3778 SVal Val = svalBuilder.makeIntVal(0U, Ex->getType()); 3779 StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val); 3780 Bldr.generateNode(Ex, Pred, StateFalse, tags.second); 3781 } 3782 } 3783 } 3784 } 3785 3786 void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred, 3787 ExplodedNodeSet &Dst) { 3788 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 3789 // We have processed both the inputs and the outputs. All of the outputs 3790 // should evaluate to Locs. Nuke all of their values. 3791 3792 // FIXME: Some day in the future it would be nice to allow a "plug-in" 3793 // which interprets the inline asm and stores proper results in the 3794 // outputs. 3795 3796 ProgramStateRef state = Pred->getState(); 3797 3798 for (const Expr *O : A->outputs()) { 3799 SVal X = state->getSVal(O, Pred->getLocationContext()); 3800 assert(!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef. 3801 3802 if (std::optional<Loc> LV = X.getAs<Loc>()) 3803 state = state->bindLoc(*LV, UnknownVal(), Pred->getLocationContext()); 3804 } 3805 3806 Bldr.generateNode(A, Pred, state); 3807 } 3808 3809 void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred, 3810 ExplodedNodeSet &Dst) { 3811 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 3812 Bldr.generateNode(A, Pred, Pred->getState()); 3813 } 3814 3815 //===----------------------------------------------------------------------===// 3816 // Visualization. 3817 //===----------------------------------------------------------------------===// 3818 3819 namespace llvm { 3820 3821 template<> 3822 struct DOTGraphTraits<ExplodedGraph*> : public DefaultDOTGraphTraits { 3823 DOTGraphTraits (bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3824 3825 static bool nodeHasBugReport(const ExplodedNode *N) { 3826 BugReporter &BR = static_cast<ExprEngine &>( 3827 N->getState()->getStateManager().getOwningEngine()).getBugReporter(); 3828 3829 for (const auto &Class : BR.equivalenceClasses()) { 3830 for (const auto &Report : Class.getReports()) { 3831 const auto *PR = dyn_cast<PathSensitiveBugReport>(Report.get()); 3832 if (!PR) 3833 continue; 3834 const ExplodedNode *EN = PR->getErrorNode(); 3835 if (EN->getState() == N->getState() && 3836 EN->getLocation() == N->getLocation()) 3837 return true; 3838 } 3839 } 3840 return false; 3841 } 3842 3843 /// \p PreCallback: callback before break. 3844 /// \p PostCallback: callback after break. 3845 /// \p Stop: stop iteration if returns @c true 3846 /// \return Whether @c Stop ever returned @c true. 3847 static bool traverseHiddenNodes( 3848 const ExplodedNode *N, 3849 llvm::function_ref<void(const ExplodedNode *)> PreCallback, 3850 llvm::function_ref<void(const ExplodedNode *)> PostCallback, 3851 llvm::function_ref<bool(const ExplodedNode *)> Stop) { 3852 while (true) { 3853 PreCallback(N); 3854 if (Stop(N)) 3855 return true; 3856 3857 if (N->succ_size() != 1 || !isNodeHidden(N->getFirstSucc(), nullptr)) 3858 break; 3859 PostCallback(N); 3860 3861 N = N->getFirstSucc(); 3862 } 3863 return false; 3864 } 3865 3866 static bool isNodeHidden(const ExplodedNode *N, const ExplodedGraph *G) { 3867 return N->isTrivial(); 3868 } 3869 3870 static std::string getNodeLabel(const ExplodedNode *N, ExplodedGraph *G){ 3871 std::string Buf; 3872 llvm::raw_string_ostream Out(Buf); 3873 3874 const bool IsDot = true; 3875 const unsigned int Space = 1; 3876 ProgramStateRef State = N->getState(); 3877 3878 Out << "{ \"state_id\": " << State->getID() 3879 << ",\\l"; 3880 3881 Indent(Out, Space, IsDot) << "\"program_points\": [\\l"; 3882 3883 // Dump program point for all the previously skipped nodes. 3884 traverseHiddenNodes( 3885 N, 3886 [&](const ExplodedNode *OtherNode) { 3887 Indent(Out, Space + 1, IsDot) << "{ "; 3888 OtherNode->getLocation().printJson(Out, /*NL=*/"\\l"); 3889 Out << ", \"tag\": "; 3890 if (const ProgramPointTag *Tag = OtherNode->getLocation().getTag()) 3891 Out << '\"' << Tag->getTagDescription() << '\"'; 3892 else 3893 Out << "null"; 3894 Out << ", \"node_id\": " << OtherNode->getID() << 3895 ", \"is_sink\": " << OtherNode->isSink() << 3896 ", \"has_report\": " << nodeHasBugReport(OtherNode) << " }"; 3897 }, 3898 // Adds a comma and a new-line between each program point. 3899 [&](const ExplodedNode *) { Out << ",\\l"; }, 3900 [&](const ExplodedNode *) { return false; }); 3901 3902 Out << "\\l"; // Adds a new-line to the last program point. 3903 Indent(Out, Space, IsDot) << "],\\l"; 3904 3905 State->printDOT(Out, N->getLocationContext(), Space); 3906 3907 Out << "\\l}\\l"; 3908 return Buf; 3909 } 3910 }; 3911 3912 } // namespace llvm 3913 3914 void ExprEngine::ViewGraph(bool trim) { 3915 std::string Filename = DumpGraph(trim); 3916 llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT); 3917 } 3918 3919 void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode *> Nodes) { 3920 std::string Filename = DumpGraph(Nodes); 3921 llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT); 3922 } 3923 3924 std::string ExprEngine::DumpGraph(bool trim, StringRef Filename) { 3925 if (trim) { 3926 std::vector<const ExplodedNode *> Src; 3927 3928 // Iterate through the reports and get their nodes. 3929 for (const auto &Class : BR.equivalenceClasses()) { 3930 const auto *R = 3931 dyn_cast<PathSensitiveBugReport>(Class.getReports()[0].get()); 3932 if (!R) 3933 continue; 3934 const auto *N = const_cast<ExplodedNode *>(R->getErrorNode()); 3935 Src.push_back(N); 3936 } 3937 return DumpGraph(Src, Filename); 3938 } 3939 3940 return llvm::WriteGraph(&G, "ExprEngine", /*ShortNames=*/false, 3941 /*Title=*/"Exploded Graph", 3942 /*Filename=*/std::string(Filename)); 3943 } 3944 3945 std::string ExprEngine::DumpGraph(ArrayRef<const ExplodedNode *> Nodes, 3946 StringRef Filename) { 3947 std::unique_ptr<ExplodedGraph> TrimmedG(G.trim(Nodes)); 3948 3949 if (!TrimmedG.get()) { 3950 llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; 3951 return ""; 3952 } 3953 3954 return llvm::WriteGraph(TrimmedG.get(), "TrimmedExprEngine", 3955 /*ShortNames=*/false, 3956 /*Title=*/"Trimmed Exploded Graph", 3957 /*Filename=*/std::string(Filename)); 3958 } 3959 3960 void *ProgramStateTrait<ReplayWithoutInlining>::GDMIndex() { 3961 static int index = 0; 3962 return &index; 3963 } 3964 3965 void ExprEngine::anchor() { } 3966