xref: /dpdk/drivers/net/bnxt/bnxt_rxr.c (revision 07e3bebf3c93750c52ed9be87edd212fbc22da0a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2023 Broadcom
3  * All rights reserved.
4  */
5 
6 #include <inttypes.h>
7 #include <stdbool.h>
8 
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13 #include <rte_alarm.h>
14 
15 #include "bnxt.h"
16 #include "bnxt_reps.h"
17 #include "bnxt_ring.h"
18 #include "bnxt_rxr.h"
19 #include "bnxt_rxq.h"
20 #include "hsi_struct_def_dpdk.h"
21 #include "bnxt_hwrm.h"
22 #include "bnxt_tf_common.h"
23 #include "ulp_mark_mgr.h"
24 
25 /*
26  * RX Ring handling
27  */
28 
29 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
30 {
31 	struct rte_mbuf *data;
32 
33 	data = rte_mbuf_raw_alloc(mb);
34 
35 	return data;
36 }
37 
38 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
39 				     struct bnxt_rx_ring_info *rxr,
40 				     uint16_t raw_prod)
41 {
42 	uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
43 	struct rx_prod_pkt_bd *rxbd;
44 	struct rte_mbuf **rx_buf;
45 	struct rte_mbuf *mbuf;
46 
47 	rxbd = &rxr->rx_desc_ring[prod];
48 	rx_buf = &rxr->rx_buf_ring[prod];
49 	mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
50 	if (!mbuf) {
51 		rte_atomic_fetch_add_explicit(&rxq->rx_mbuf_alloc_fail, 1,
52 				rte_memory_order_relaxed);
53 		/* If buff has failed already, setting this again won't hurt */
54 		rxq->need_realloc = 1;
55 		return -ENOMEM;
56 	}
57 
58 	*rx_buf = mbuf;
59 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
60 
61 	rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
62 
63 	return 0;
64 }
65 
66 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
67 				     struct bnxt_rx_ring_info *rxr,
68 				     uint16_t raw_prod)
69 {
70 	uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
71 	struct rx_prod_pkt_bd *rxbd;
72 	struct rte_mbuf **rx_buf;
73 	struct rte_mbuf *mbuf;
74 
75 	rxbd = &rxr->ag_desc_ring[prod];
76 	rx_buf = &rxr->ag_buf_ring[prod];
77 	if (rxbd == NULL) {
78 		PMD_DRV_LOG_LINE(ERR, "Jumbo Frame. rxbd is NULL");
79 		return -EINVAL;
80 	}
81 
82 	if (rx_buf == NULL) {
83 		PMD_DRV_LOG_LINE(ERR, "Jumbo Frame. rx_buf is NULL");
84 		return -EINVAL;
85 	}
86 
87 	mbuf = __bnxt_alloc_rx_data(rxq->agg_mb_pool);
88 	if (!mbuf) {
89 		rte_atomic_fetch_add_explicit(&rxq->rx_mbuf_alloc_fail, 1,
90 				rte_memory_order_relaxed);
91 		/* If buff has failed already, setting this again won't hurt */
92 		rxq->need_realloc = 1;
93 		return -ENOMEM;
94 	}
95 
96 	*rx_buf = mbuf;
97 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
98 
99 	rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
100 
101 	return 0;
102 }
103 
104 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
105 			       struct rte_mbuf *mbuf)
106 {
107 	uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
108 	struct rte_mbuf **prod_rx_buf;
109 	struct rx_prod_pkt_bd *prod_bd;
110 
111 	prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
112 	prod_rx_buf = &rxr->rx_buf_ring[prod];
113 
114 	RTE_ASSERT(*prod_rx_buf == NULL);
115 	RTE_ASSERT(mbuf != NULL);
116 
117 	*prod_rx_buf = mbuf;
118 
119 	prod_bd = &rxr->rx_desc_ring[prod];
120 
121 	prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
122 
123 	rxr->rx_raw_prod = raw_prod;
124 }
125 
126 static inline
127 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
128 				     uint16_t cons)
129 {
130 	struct rte_mbuf **cons_rx_buf;
131 	struct rte_mbuf *mbuf;
132 
133 	cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
134 	RTE_ASSERT(*cons_rx_buf != NULL);
135 	mbuf = *cons_rx_buf;
136 	*cons_rx_buf = NULL;
137 
138 	return mbuf;
139 }
140 
141 static void bnxt_rx_ring_reset(void *arg)
142 {
143 	struct bnxt *bp = arg;
144 	int i, rc = 0;
145 	struct bnxt_rx_queue *rxq;
146 
147 	for (i = 0; i < (int)bp->rx_nr_rings; i++) {
148 		struct bnxt_rx_ring_info *rxr;
149 
150 		rxq = bp->rx_queues[i];
151 		if (!rxq || !rxq->in_reset)
152 			continue;
153 
154 		rxr = rxq->rx_ring;
155 		/* Disable and flush TPA before resetting the RX ring */
156 		if (rxr->tpa_info)
157 			bnxt_vnic_tpa_cfg(bp, rxq->queue_id, false);
158 
159 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
160 		if (rc) {
161 			PMD_DRV_LOG_LINE(ERR, "Rx ring%d reset failed", i);
162 			continue;
163 		}
164 
165 		bnxt_rx_queue_release_mbufs(rxq);
166 		rxr->rx_raw_prod = 0;
167 		rxr->ag_raw_prod = 0;
168 		rxr->ag_cons = 0;
169 		rxr->rx_next_cons = 0;
170 		bnxt_init_one_rx_ring(rxq);
171 		bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
172 		bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
173 		if (rxr->tpa_info)
174 			bnxt_vnic_tpa_cfg(bp, rxq->queue_id, true);
175 
176 		rxq->in_reset = 0;
177 	}
178 }
179 
180 
181 static void bnxt_sched_ring_reset(struct bnxt_rx_queue *rxq)
182 {
183 	rxq->in_reset = 1;
184 	rte_eal_alarm_set(1, bnxt_rx_ring_reset, (void *)rxq->bp);
185 }
186 
187 static void bnxt_tpa_get_metadata(struct bnxt *bp,
188 				  struct bnxt_tpa_info *tpa_info,
189 				  struct rx_tpa_start_cmpl *tpa_start,
190 				  struct rx_tpa_start_cmpl_hi *tpa_start1)
191 {
192 	tpa_info->cfa_code_valid = 0;
193 	tpa_info->vlan_valid = 0;
194 	tpa_info->hash_valid = 0;
195 	tpa_info->l4_csum_valid = 0;
196 
197 	if (likely(tpa_start->flags_type &
198 		   rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
199 		tpa_info->hash_valid = 1;
200 		tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
201 	}
202 
203 	if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
204 		struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
205 		struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
206 			(void *)tpa_start1;
207 
208 		if (v2_tpa_start->agg_id &
209 		    RX_TPA_START_V2_CMPL_METADATA1_VALID) {
210 			tpa_info->vlan_valid = 1;
211 			tpa_info->vlan =
212 				rte_le_to_cpu_16(v2_tpa_start1->metadata0);
213 		}
214 
215 		if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
216 			tpa_info->l4_csum_valid = 1;
217 
218 		return;
219 	}
220 
221 	tpa_info->cfa_code_valid = 1;
222 	tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
223 	if (tpa_start1->flags2 &
224 	    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
225 		tpa_info->vlan_valid = 1;
226 		tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
227 	}
228 
229 	if (likely(tpa_start1->flags2 &
230 		   rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
231 		tpa_info->l4_csum_valid = 1;
232 }
233 
234 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
235 			   struct rx_tpa_start_cmpl *tpa_start,
236 			   struct rx_tpa_start_cmpl_hi *tpa_start1)
237 {
238 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
239 	uint16_t agg_id;
240 	uint16_t data_cons;
241 	struct bnxt_tpa_info *tpa_info;
242 	struct rte_mbuf *mbuf;
243 
244 	agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
245 
246 	data_cons = tpa_start->opaque;
247 	tpa_info = &rxr->tpa_info[agg_id];
248 	if (unlikely(data_cons != rxr->rx_next_cons)) {
249 		PMD_DRV_LOG_LINE(ERR, "TPA cons %x, expected cons %x",
250 			    data_cons, rxr->rx_next_cons);
251 		bnxt_sched_ring_reset(rxq);
252 		return;
253 	}
254 
255 	mbuf = bnxt_consume_rx_buf(rxr, data_cons);
256 
257 	bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
258 
259 	tpa_info->agg_count = 0;
260 	tpa_info->mbuf = mbuf;
261 	tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
262 
263 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
264 	mbuf->nb_segs = 1;
265 	mbuf->next = NULL;
266 	mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
267 	mbuf->data_len = mbuf->pkt_len;
268 	mbuf->port = rxq->port_id;
269 	mbuf->ol_flags = RTE_MBUF_F_RX_LRO;
270 
271 	bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
272 
273 	if (likely(tpa_info->hash_valid)) {
274 		mbuf->hash.rss = tpa_info->rss_hash;
275 		mbuf->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
276 	} else if (tpa_info->cfa_code_valid) {
277 		mbuf->hash.fdir.id = tpa_info->cfa_code;
278 		mbuf->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
279 	}
280 
281 	if (tpa_info->vlan_valid && BNXT_RX_VLAN_STRIP_EN(rxq->bp)) {
282 		mbuf->vlan_tci = tpa_info->vlan;
283 		mbuf->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
284 	}
285 
286 	if (likely(tpa_info->l4_csum_valid))
287 		mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
288 
289 	/* recycle next mbuf */
290 	data_cons = RING_NEXT(data_cons);
291 	bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
292 
293 	rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct,
294 				     RING_NEXT(data_cons));
295 }
296 
297 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
298 		uint8_t agg_bufs, uint32_t raw_cp_cons)
299 {
300 	uint16_t last_cp_cons;
301 	struct rx_pkt_cmpl *agg_cmpl;
302 
303 	raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
304 	last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
305 	agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
306 	return bnxt_cpr_cmp_valid(agg_cmpl, raw_cp_cons,
307 				  cpr->cp_ring_struct->ring_size);
308 }
309 
310 /* TPA consume agg buffer out of order, allocate connected data only */
311 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
312 {
313 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
314 	uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
315 	uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
316 
317 	/* TODO batch allocation for better performance */
318 	while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
319 		if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next)))
320 			break;
321 		rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
322 		rxr->ag_raw_prod = raw_next;
323 		raw_next = RING_NEXT(raw_next);
324 		bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
325 	}
326 
327 	return 0;
328 }
329 
330 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
331 			 struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
332 			 uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
333 {
334 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
335 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
336 	int i;
337 	uint16_t cp_cons, ag_cons;
338 	struct rx_pkt_cmpl *rxcmp;
339 	struct rte_mbuf *last = mbuf;
340 	bool is_p5_tpa = tpa_info && BNXT_CHIP_P5_P7(rxq->bp);
341 
342 	for (i = 0; i < agg_buf; i++) {
343 		struct rte_mbuf **ag_buf;
344 		struct rte_mbuf *ag_mbuf;
345 
346 		if (is_p5_tpa) {
347 			rxcmp = (void *)&tpa_info->agg_arr[i];
348 		} else {
349 			*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
350 			cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
351 			rxcmp = (struct rx_pkt_cmpl *)
352 					&cpr->cp_desc_ring[cp_cons];
353 		}
354 
355 #ifdef BNXT_DEBUG
356 		bnxt_dump_cmpl(cp_cons, rxcmp);
357 #endif
358 
359 		ag_cons = rxcmp->opaque;
360 		RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
361 		ag_buf = &rxr->ag_buf_ring[ag_cons];
362 		ag_mbuf = *ag_buf;
363 		if (ag_mbuf == NULL)
364 			return -EBUSY;
365 
366 		ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
367 
368 		mbuf->nb_segs++;
369 		mbuf->pkt_len += ag_mbuf->data_len;
370 
371 		last->next = ag_mbuf;
372 		last = ag_mbuf;
373 
374 		*ag_buf = NULL;
375 
376 		/*
377 		 * As aggregation buffer consumed out of order in TPA module,
378 		 * use bitmap to track freed slots to be allocated and notified
379 		 * to NIC
380 		 */
381 		rte_bitmap_set(rxr->ag_bitmap, ag_cons);
382 	}
383 	last->next = NULL;
384 	bnxt_prod_ag_mbuf(rxq);
385 	return 0;
386 }
387 
388 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
389 			   uint32_t *raw_cons, void *cmp)
390 {
391 	struct rx_pkt_cmpl *rxcmp = cmp;
392 	uint32_t tmp_raw_cons = *raw_cons;
393 	uint8_t cmp_type, agg_bufs = 0;
394 
395 	cmp_type = CMP_TYPE(rxcmp);
396 
397 	if (cmp_type == CMPL_BASE_TYPE_RX_L2) {
398 		agg_bufs = BNXT_RX_L2_AGG_BUFS(rxcmp);
399 	} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
400 		struct rx_tpa_end_cmpl *tpa_end = cmp;
401 
402 		if (BNXT_CHIP_P5_P7(bp))
403 			return 0;
404 
405 		agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
406 	}
407 
408 	if (agg_bufs) {
409 		if (!bnxt_agg_bufs_valid(cpr, agg_bufs, tmp_raw_cons))
410 			return -EBUSY;
411 	}
412 	*raw_cons = tmp_raw_cons;
413 	return 0;
414 }
415 
416 static inline struct rte_mbuf *bnxt_tpa_end(
417 		struct bnxt_rx_queue *rxq,
418 		uint32_t *raw_cp_cons,
419 		struct rx_tpa_end_cmpl *tpa_end,
420 		struct rx_tpa_end_cmpl_hi *tpa_end1)
421 {
422 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
423 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
424 	uint16_t agg_id;
425 	struct rte_mbuf *mbuf;
426 	uint8_t agg_bufs;
427 	uint8_t payload_offset;
428 	struct bnxt_tpa_info *tpa_info;
429 
430 	if (unlikely(rxq->in_reset)) {
431 		PMD_DRV_LOG_LINE(ERR, "rxq->in_reset: raw_cp_cons:%d",
432 			    *raw_cp_cons);
433 		bnxt_discard_rx(rxq->bp, cpr, raw_cp_cons, tpa_end);
434 		return NULL;
435 	}
436 
437 	if (BNXT_CHIP_P5_P7(rxq->bp)) {
438 		struct rx_tpa_v2_end_cmpl *th_tpa_end;
439 		struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
440 
441 		th_tpa_end = (void *)tpa_end;
442 		th_tpa_end1 = (void *)tpa_end1;
443 		agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
444 		agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
445 		payload_offset = th_tpa_end1->payload_offset;
446 	} else {
447 		agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
448 		agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
449 		if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
450 			return NULL;
451 		payload_offset = tpa_end->payload_offset;
452 	}
453 
454 	tpa_info = &rxr->tpa_info[agg_id];
455 	mbuf = tpa_info->mbuf;
456 	RTE_ASSERT(mbuf != NULL);
457 
458 	if (agg_bufs) {
459 		(void)bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
460 	}
461 	mbuf->l4_len = payload_offset;
462 
463 	struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
464 	RTE_ASSERT(new_data != NULL);
465 	if (!new_data) {
466 		rte_atomic_fetch_add_explicit(&rxq->rx_mbuf_alloc_fail, 1,
467 				rte_memory_order_relaxed);
468 		return NULL;
469 	}
470 	tpa_info->mbuf = new_data;
471 
472 	return mbuf;
473 }
474 
475 alignas(RTE_CACHE_LINE_SIZE) uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM];
476 
477 static void __rte_cold
478 bnxt_init_ptype_table(void)
479 {
480 	uint32_t *pt = bnxt_ptype_table;
481 	static bool initialized;
482 	int ip6, tun, type;
483 	uint32_t l3;
484 	int i;
485 
486 	if (initialized)
487 		return;
488 
489 	for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
490 		if (i & BNXT_PTYPE_TBL_VLAN_MSK)
491 			pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
492 		else
493 			pt[i] = RTE_PTYPE_L2_ETHER;
494 
495 		ip6 = !!(i & BNXT_PTYPE_TBL_IP_VER_MSK);
496 		tun = !!(i & BNXT_PTYPE_TBL_TUN_MSK);
497 		type = (i & BNXT_PTYPE_TBL_TYPE_MSK) >> BNXT_PTYPE_TBL_TYPE_SFT;
498 
499 		if (!tun && !ip6)
500 			l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
501 		else if (!tun && ip6)
502 			l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
503 		else if (tun && !ip6)
504 			l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
505 		else
506 			l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
507 
508 		switch (type) {
509 		case BNXT_PTYPE_TBL_TYPE_ICMP:
510 			if (tun)
511 				pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
512 			else
513 				pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
514 			break;
515 		case BNXT_PTYPE_TBL_TYPE_TCP:
516 			if (tun)
517 				pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
518 			else
519 				pt[i] |= l3 | RTE_PTYPE_L4_TCP;
520 			break;
521 		case BNXT_PTYPE_TBL_TYPE_UDP:
522 			if (tun)
523 				pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
524 			else
525 				pt[i] |= l3 | RTE_PTYPE_L4_UDP;
526 			break;
527 		case BNXT_PTYPE_TBL_TYPE_IP:
528 			pt[i] |= l3;
529 			break;
530 		}
531 	}
532 	initialized = true;
533 }
534 
535 static uint32_t
536 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
537 {
538 	uint32_t flags_type, flags2;
539 	uint8_t index;
540 
541 	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
542 	flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
543 
544 	/* Validate ptype table indexing at build time. */
545 	bnxt_check_ptype_constants();
546 
547 	/*
548 	 * Index format:
549 	 *     bit 0: Set if IP tunnel encapsulated packet.
550 	 *     bit 1: Set if IPv6 packet, clear if IPv4.
551 	 *     bit 2: Set if VLAN tag present.
552 	 *     bits 3-6: Four-bit hardware packet type field.
553 	 */
554 	index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
555 		BNXT_CMPL_VLAN_TUN_TO_IDX(flags2) |
556 		BNXT_CMPL_IP_VER_TO_IDX(flags2);
557 
558 	return bnxt_ptype_table[index];
559 }
560 
561 static void
562 bnxt_parse_pkt_type_v3(struct rte_mbuf *mbuf,
563 		       struct rx_pkt_cmpl *rxcmp_v1,
564 		       struct rx_pkt_cmpl_hi *rxcmp1_v1)
565 {
566 	uint32_t flags_type, flags2, meta;
567 	struct rx_pkt_v3_cmpl_hi *rxcmp1;
568 	struct rx_pkt_v3_cmpl *rxcmp;
569 	uint8_t index;
570 
571 	rxcmp = (void *)rxcmp_v1;
572 	rxcmp1 = (void *)rxcmp1_v1;
573 
574 	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
575 	flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
576 	meta = rte_le_to_cpu_32(rxcmp->metadata1_payload_offset);
577 
578 	/* TODO */
579 	/* Validate ptype table indexing at build time. */
580 	/* bnxt_check_ptype_constants_v3(); */
581 
582 	/*
583 	 * Index format:
584 	 *     bit 0: Set if IP tunnel encapsulated packet.
585 	 *     bit 1: Set if IPv6 packet, clear if IPv4.
586 	 *     bit 2: Set if VLAN tag present.
587 	 *     bits 3-6: Four-bit hardware packet type field.
588 	 */
589 	index = BNXT_CMPL_V3_ITYPE_TO_IDX(flags_type) |
590 		BNXT_CMPL_V3_VLAN_TO_IDX(meta) |
591 		BNXT_CMPL_V3_IP_VER_TO_IDX(flags2);
592 
593 	mbuf->packet_type = bnxt_ptype_table[index];
594 }
595 
596 static void __rte_cold
597 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
598 {
599 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
600 	struct rte_eth_conf *dev_conf;
601 	bool outer_cksum_enabled;
602 	uint64_t offloads;
603 	uint32_t *pt;
604 	int i;
605 
606 	dev_conf = &rxq->bp->eth_dev->data->dev_conf;
607 	offloads = dev_conf->rxmode.offloads;
608 
609 	outer_cksum_enabled = !!(offloads & (RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
610 					     RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM));
611 
612 	/* Initialize ol_flags table. */
613 	pt = rxr->ol_flags_table;
614 	for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
615 		pt[i] = 0;
616 
617 		if (BNXT_RX_VLAN_STRIP_EN(rxq->bp)) {
618 			if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
619 				pt[i] |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
620 		}
621 
622 		if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
623 			/* Tunnel case. */
624 			if (outer_cksum_enabled) {
625 				if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
626 					pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
627 
628 				if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
629 					pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
630 
631 				if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
632 					pt[i] |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
633 			} else {
634 				if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
635 					pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
636 
637 				if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
638 					pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
639 			}
640 		} else {
641 			/* Non-tunnel case. */
642 			if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
643 				pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
644 
645 			if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
646 				pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
647 		}
648 	}
649 
650 	/* Initialize checksum error table. */
651 	pt = rxr->ol_flags_err_table;
652 	for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
653 		pt[i] = 0;
654 
655 		if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
656 			/* Tunnel case. */
657 			if (outer_cksum_enabled) {
658 				if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
659 					pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
660 
661 				if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
662 					pt[i] |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
663 
664 				if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
665 					pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
666 
667 				if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
668 					pt[i] |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
669 			} else {
670 				if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
671 					pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
672 
673 				if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
674 					pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
675 			}
676 		} else {
677 			/* Non-tunnel case. */
678 			if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
679 				pt[i] |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
680 
681 			if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
682 				pt[i] |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
683 		}
684 	}
685 }
686 
687 static void
688 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
689 		  struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
690 {
691 	uint16_t flags_type, errors, flags;
692 	uint64_t ol_flags;
693 
694 	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
695 
696 	flags = rte_le_to_cpu_32(rxcmp1->flags2) &
697 				(RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
698 				 RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
699 				 RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
700 				 RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
701 				 RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
702 
703 	flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
704 	errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
705 				(RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
706 				 RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
707 				 RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
708 				 RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
709 	errors = (errors >> 4) & flags;
710 
711 	ol_flags = rxr->ol_flags_table[flags & ~errors];
712 
713 	if (unlikely(errors)) {
714 		errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
715 		ol_flags |= rxr->ol_flags_err_table[errors];
716 	}
717 
718 	if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
719 		mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
720 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
721 	}
722 
723 	if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
724 		     RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
725 		ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP | RTE_MBUF_F_RX_IEEE1588_TMST;
726 
727 	mbuf->ol_flags = ol_flags;
728 }
729 
730 static void
731 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
732 {
733 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
734 	uint64_t last_hwrm_time = 0;
735 	uint64_t pkt_time = 0;
736 
737 	if (!BNXT_CHIP_P5(bp) || !ptp)
738 		return;
739 
740 	/* On P5, Rx timestamps are provided directly in the
741 	 * Rx completion records to the driver. Only 32 bits of
742 	 * the timestamp is present in the completion. Driver needs
743 	 * to read the current 48 bit free running timer using the
744 	 * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
745 	 * from the HWRM response with the lower 32 bits in the
746 	 * Rx completion to produce the 48 bit timestamp for the Rx packet
747 	 */
748 	rte_spinlock_lock(&ptp->ptp_lock);
749 	last_hwrm_time = ptp->old_time;
750 	rte_spinlock_unlock(&ptp->ptp_lock);
751 	pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
752 	if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
753 		/* timer has rolled over */
754 		pkt_time += (1ULL << 32);
755 	}
756 	ptp->rx_timestamp = pkt_time;
757 }
758 
759 static uint32_t
760 bnxt_ulp_set_mark_in_mbuf_v3(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
761 			     struct rte_mbuf *mbuf, uint32_t *vfr_flag)
762 {
763 	struct rx_pkt_v3_cmpl_hi *rxcmp1_v3 = (void *)rxcmp1;
764 	uint32_t flags2, meta, mark_id = 0;
765 	/* revisit the usage of gfid/lfid if mark action is supported.
766 	 * for now, only VFR is using mark and the metadata is the SVIF
767 	 * (a small number)
768 	 */
769 	bool gfid = false;
770 	int rc = 0;
771 
772 	flags2 = rte_le_to_cpu_32(rxcmp1_v3->flags2);
773 
774 	switch (flags2 & RX_PKT_V3_CMPL_HI_FLAGS2_META_FORMAT_MASK) {
775 	case RX_PKT_V3_CMPL_HI_FLAGS2_META_FORMAT_CHDR_DATA:
776 		/* Only supporting Metadata for ulp now */
777 		meta = rxcmp1_v3->metadata2;
778 		break;
779 	default:
780 		goto skip_mark;
781 	}
782 
783 	rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid, meta, vfr_flag, &mark_id);
784 	if (!rc) {
785 		/* Only supporting VFR for now, no Mark actions */
786 		if (vfr_flag && *vfr_flag)
787 			return mark_id;
788 	}
789 
790 skip_mark:
791 	mbuf->hash.fdir.hi = 0;
792 
793 	return 0;
794 }
795 
796 static uint32_t
797 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
798 			  struct rte_mbuf *mbuf, uint32_t *vfr_flag)
799 {
800 	uint32_t cfa_code;
801 	uint32_t meta_fmt;
802 	uint32_t meta;
803 	bool gfid = false;
804 	uint32_t mark_id;
805 	uint32_t flags2;
806 	uint32_t gfid_support = 0;
807 	int rc;
808 
809 	if (BNXT_GFID_ENABLED(bp))
810 		gfid_support = 1;
811 
812 	cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
813 	flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
814 	meta = rte_le_to_cpu_32(rxcmp1->metadata);
815 
816 	/*
817 	 * The flags field holds extra bits of info from [6:4]
818 	 * which indicate if the flow is in TCAM or EM or EEM
819 	 */
820 	meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
821 		BNXT_CFA_META_FMT_SHFT;
822 
823 	switch (meta_fmt) {
824 	case 0:
825 		if (gfid_support) {
826 			/* Not an LFID or GFID, a flush cmd. */
827 			goto skip_mark;
828 		} else {
829 			/* LFID mode, no vlan scenario */
830 			gfid = false;
831 		}
832 		break;
833 	case 4:
834 	case 5:
835 		/*
836 		 * EM/TCAM case
837 		 * Assume that EM doesn't support Mark due to GFID
838 		 * collisions with EEM.  Simply return without setting the mark
839 		 * in the mbuf.
840 		 */
841 		if (BNXT_CFA_META_EM_TEST(meta)) {
842 			/*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
843 			gfid = true;
844 			meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
845 			cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
846 		} else {
847 			/*
848 			 * It is a TCAM entry, so it is an LFID.
849 			 * The TCAM IDX and Mode can also be determined
850 			 * by decoding the meta_data. We are not
851 			 * using these for now.
852 			 */
853 		}
854 		break;
855 	case 6:
856 	case 7:
857 		/* EEM Case, only using gfid in EEM for now. */
858 		gfid = true;
859 
860 		/*
861 		 * For EEM flows, The first part of cfa_code is 16 bits.
862 		 * The second part is embedded in the
863 		 * metadata field from bit 19 onwards. The driver needs to
864 		 * ignore the first 19 bits of metadata and use the next 12
865 		 * bits as higher 12 bits of cfa_code.
866 		 */
867 		meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
868 		cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
869 		break;
870 	default:
871 		/* For other values, the cfa_code is assumed to be an LFID. */
872 		break;
873 	}
874 
875 	rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
876 				  cfa_code, vfr_flag, &mark_id);
877 	if (!rc) {
878 		/* VF to VFR Rx path. So, skip mark_id injection in mbuf */
879 		if (vfr_flag && *vfr_flag)
880 			return mark_id;
881 		/* Got the mark, write it to the mbuf and return */
882 		mbuf->hash.fdir.hi = mark_id;
883 		*bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
884 		mbuf->hash.fdir.id = rxcmp1->cfa_code;
885 		mbuf->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
886 		return mark_id;
887 	}
888 
889 skip_mark:
890 	mbuf->hash.fdir.hi = 0;
891 
892 	return 0;
893 }
894 
895 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
896 			   struct rx_pkt_cmpl_hi *rxcmp1,
897 			   struct rte_mbuf *mbuf)
898 {
899 	uint32_t cfa_code = 0;
900 
901 	if (unlikely(bp->mark_table == NULL))
902 		return;
903 
904 	cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
905 	if (!cfa_code)
906 		return;
907 
908 	if (cfa_code && !bp->mark_table[cfa_code].valid)
909 		return;
910 
911 	mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
912 	mbuf->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
913 }
914 
915 static void
916 bnxt_set_ol_flags_crx(struct bnxt_rx_ring_info *rxr,
917 		      struct rx_pkt_compress_cmpl *rxcmp,
918 		      struct rte_mbuf *mbuf)
919 {
920 	uint16_t flags_type, errors, flags;
921 	uint16_t cserr, tmp;
922 	uint64_t ol_flags;
923 
924 	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
925 
926 	cserr = rte_le_to_cpu_16(rxcmp->metadata1_cs_error_calc_v1) &
927 		(RX_PKT_COMPRESS_CMPL_CS_ERROR_CALC_MASK |
928 		 BNXT_RXC_METADATA1_VLAN_VALID);
929 
930 	flags = cserr & BNXT_CRX_CQE_CSUM_CALC_MASK;
931 	tmp = flags;
932 
933 	/* Set tunnel frame indicator.
934 	 * This is to correctly index into the flags_err table.
935 	 */
936 	flags |= (flags & BNXT_CRX_TUN_CS_CALC) ? BNXT_PKT_CMPL_T_IP_CS_CALC << 3 : 0;
937 
938 	flags = flags >> BNXT_CRX_CQE_CSUM_CALC_SFT;
939 
940 	errors = cserr & BNXT_CRX_CQE_CSUM_ERROR_MASK;
941 	errors = (errors >> RX_PKT_COMPRESS_CMPL_CS_ERROR_CALC_SFT) & flags;
942 
943 	ol_flags = rxr->ol_flags_table[flags & ~errors];
944 
945 	if (unlikely(errors)) {
946 		/* Set tunnel frame indicator.
947 		 * This is to correctly index into the flags_err table.
948 		 */
949 		errors |= (tmp & BNXT_CRX_TUN_CS_CALC) ? BNXT_PKT_CMPL_T_IP_CS_CALC << 2 : 0;
950 		ol_flags |= rxr->ol_flags_err_table[errors];
951 	}
952 
953 	if (flags_type & RX_PKT_COMPRESS_CMPL_FLAGS_RSS_VALID) {
954 		mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
955 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
956 	}
957 
958 	mbuf->ol_flags = ol_flags;
959 }
960 
961 static uint32_t
962 bnxt_parse_pkt_type_crx(struct rx_pkt_compress_cmpl *rxcmp)
963 {
964 	uint16_t flags_type, meta_cs;
965 	uint8_t index;
966 
967 	flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
968 	meta_cs = rte_le_to_cpu_16(rxcmp->metadata1_cs_error_calc_v1);
969 
970 	/* Validate ptype table indexing at build time. */
971 	/* TODO */
972 	/* bnxt_check_ptype_constants(); */
973 
974 	/*
975 	 * Index format:
976 	 *     bit 0: Set if IP tunnel encapsulated packet.
977 	 *     bit 1: Set if IPv6 packet, clear if IPv4.
978 	 *     bit 2: Set if VLAN tag present.
979 	 *     bits 3-6: Four-bit hardware packet type field.
980 	 */
981 	index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
982 		BNXT_CMPL_VLAN_TUN_TO_IDX_CRX(meta_cs) |
983 		BNXT_CMPL_IP_VER_TO_IDX(flags_type);
984 
985 	return bnxt_ptype_table[index];
986 }
987 
988 static int bnxt_rx_pages_crx(struct bnxt_rx_queue *rxq, struct rte_mbuf *mbuf,
989 			     uint32_t *tmp_raw_cons, uint8_t agg_buf)
990 {
991 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
992 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
993 	int i;
994 	uint16_t cp_cons, ag_cons;
995 	struct rx_pkt_compress_cmpl *rxcmp;
996 	struct rte_mbuf *last = mbuf;
997 
998 	for (i = 0; i < agg_buf; i++) {
999 		struct rte_mbuf **ag_buf;
1000 		struct rte_mbuf *ag_mbuf;
1001 
1002 		*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
1003 		cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
1004 		rxcmp = (struct rx_pkt_compress_cmpl *)&cpr->cp_desc_ring[cp_cons];
1005 
1006 #ifdef BNXT_DEBUG
1007 		bnxt_dump_cmpl(cp_cons, rxcmp);
1008 #endif
1009 
1010 		/*
1011 		 * The consumer index aka the opaque field for the agg buffers
1012 		 * is not * available in errors_agg_bufs_opaque. So maintain it
1013 		 * in driver itself.
1014 		 */
1015 		ag_cons = rxr->ag_cons;
1016 		ag_buf = &rxr->ag_buf_ring[ag_cons];
1017 		ag_mbuf = *ag_buf;
1018 
1019 		ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
1020 
1021 		mbuf->nb_segs++;
1022 		mbuf->pkt_len += ag_mbuf->data_len;
1023 
1024 		last->next = ag_mbuf;
1025 		last = ag_mbuf;
1026 
1027 		*ag_buf = NULL;
1028 		/*
1029 		 * As aggregation buffer consumed out of order in TPA module,
1030 		 * use bitmap to track freed slots to be allocated and notified
1031 		 * to NIC. TODO: Is this needed. Most likely not.
1032 		 */
1033 		rte_bitmap_set(rxr->ag_bitmap, ag_cons);
1034 		rxr->ag_cons = RING_IDX(rxr->ag_ring_struct, RING_NEXT(ag_cons));
1035 	}
1036 	last->next = NULL;
1037 	bnxt_prod_ag_mbuf(rxq);
1038 	return 0;
1039 }
1040 
1041 static int bnxt_crx_pkt(struct rte_mbuf **rx_pkt,
1042 				struct bnxt_rx_queue *rxq,
1043 				struct rx_pkt_compress_cmpl *rxcmp,
1044 				uint32_t *raw_cons)
1045 {
1046 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
1047 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1048 	uint32_t tmp_raw_cons = *raw_cons;
1049 	uint16_t cons, raw_prod;
1050 	struct rte_mbuf *mbuf;
1051 	int rc = 0;
1052 	uint8_t agg_buf = 0;
1053 
1054 	agg_buf = BNXT_CRX_CQE_AGG_BUFS(rxcmp);
1055 	/*
1056 	 * Since size of rx_pkt_cmpl is same as rx_pkt_compress_cmpl,
1057 	 * we should be able to use bnxt_agg_bufs_valid to check if AGG
1058 	 * bufs are valid when using compressed CQEs.
1059 	 * All we want to check here is if the CQE is valid and the
1060 	 * location of valid bit is same irrespective of the CQE type.
1061 	 */
1062 	if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
1063 		return -EBUSY;
1064 
1065 	raw_prod = rxr->rx_raw_prod;
1066 
1067 	cons = rxcmp->errors_agg_bufs_opaque & BNXT_CRX_CQE_OPAQUE_MASK;
1068 	mbuf = bnxt_consume_rx_buf(rxr, cons);
1069 	if (mbuf == NULL)
1070 		return -EBUSY;
1071 
1072 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
1073 	mbuf->nb_segs = 1;
1074 	mbuf->next = NULL;
1075 	mbuf->pkt_len = rxcmp->len;
1076 	mbuf->data_len = mbuf->pkt_len;
1077 	mbuf->port = rxq->port_id;
1078 
1079 	bnxt_set_ol_flags_crx(rxr, rxcmp, mbuf);
1080 	mbuf->packet_type = bnxt_parse_pkt_type_crx(rxcmp);
1081 	bnxt_set_vlan_crx(rxcmp, mbuf);
1082 
1083 	if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
1084 		rc = -ENOMEM;
1085 		goto rx;
1086 	}
1087 	raw_prod = RING_NEXT(raw_prod);
1088 	rxr->rx_raw_prod = raw_prod;
1089 
1090 	if (agg_buf)
1091 		bnxt_rx_pages_crx(rxq, mbuf, &tmp_raw_cons, agg_buf);
1092 
1093 rx:
1094 	rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct, RING_NEXT(cons));
1095 	*rx_pkt = mbuf;
1096 
1097 	*raw_cons = tmp_raw_cons;
1098 
1099 	return rc;
1100 }
1101 
1102 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
1103 		       struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
1104 {
1105 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
1106 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1107 	struct rx_pkt_cmpl *rxcmp;
1108 	struct rx_pkt_cmpl_hi *rxcmp1;
1109 	uint32_t tmp_raw_cons = *raw_cons;
1110 	uint16_t cons, raw_prod, cp_cons =
1111 	    RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
1112 	struct rte_mbuf *mbuf;
1113 	int rc = 0;
1114 	uint8_t agg_buf = 0;
1115 	uint16_t cmp_type;
1116 	uint32_t vfr_flag = 0, mark_id = 0;
1117 	struct bnxt *bp = rxq->bp;
1118 
1119 	rxcmp = (struct rx_pkt_cmpl *)
1120 	    &cpr->cp_desc_ring[cp_cons];
1121 
1122 	cmp_type = CMP_TYPE(rxcmp);
1123 
1124 	if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
1125 		struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
1126 		uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
1127 		struct bnxt_tpa_info *tpa_info;
1128 
1129 		tpa_info = &rxr->tpa_info[agg_id];
1130 		RTE_ASSERT(tpa_info->agg_count < 16);
1131 		tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1132 		rc = -EINVAL; /* Continue w/o new mbuf */
1133 		goto next_rx;
1134 	}
1135 
1136 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1137 	cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
1138 	rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
1139 
1140 	if (!bnxt_cpr_cmp_valid(rxcmp1, tmp_raw_cons,
1141 				cpr->cp_ring_struct->ring_size))
1142 		return -EBUSY;
1143 
1144 	if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
1145 	    cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2 ||
1146 	    cmp_type == RX_TPA_START_V3_CMPL_TYPE_RX_TPA_START_V3) {
1147 		bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
1148 			       (struct rx_tpa_start_cmpl_hi *)rxcmp1);
1149 		rc = -EINVAL; /* Continue w/o new mbuf */
1150 		goto next_rx;
1151 	} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
1152 		mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
1153 				   (struct rx_tpa_end_cmpl *)rxcmp,
1154 				   (struct rx_tpa_end_cmpl_hi *)rxcmp1);
1155 		if (unlikely(!mbuf))
1156 			return -EBUSY;
1157 		*rx_pkt = mbuf;
1158 		goto next_rx;
1159 	} else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
1160 		   (cmp_type != CMPL_BASE_TYPE_RX_L2_V2) &&
1161 		   (cmp_type != CMPL_BASE_TYPE_RX_L2_V3)) {
1162 		rc = -EINVAL;
1163 		goto next_rx;
1164 	}
1165 
1166 	agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
1167 	if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
1168 		return -EBUSY;
1169 
1170 	raw_prod = rxr->rx_raw_prod;
1171 
1172 	cons = rxcmp->opaque;
1173 	if (unlikely(cons != rxr->rx_next_cons)) {
1174 		bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1175 		PMD_DRV_LOG_LINE(ERR, "RX cons %x != expected cons %x",
1176 			    cons, rxr->rx_next_cons);
1177 		bnxt_sched_ring_reset(rxq);
1178 		rc = -EBUSY;
1179 		goto next_rx;
1180 	}
1181 	mbuf = bnxt_consume_rx_buf(rxr, cons);
1182 	if (mbuf == NULL)
1183 		return -EBUSY;
1184 
1185 	mbuf->data_off = RTE_PKTMBUF_HEADROOM;
1186 	mbuf->nb_segs = 1;
1187 	mbuf->next = NULL;
1188 	mbuf->pkt_len = rxcmp->len;
1189 	mbuf->data_len = mbuf->pkt_len;
1190 	mbuf->port = rxq->port_id;
1191 
1192 	if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
1193 		      RX_PKT_CMPL_FLAGS_MASK) ==
1194 		      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP) ||
1195 		      bp->ptp_all_rx_tstamp)
1196 		bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
1197 
1198 	if (cmp_type == CMPL_BASE_TYPE_RX_L2_V3) {
1199 		bnxt_parse_csum_v3(mbuf, rxcmp1);
1200 		bnxt_parse_pkt_type_v3(mbuf, rxcmp, rxcmp1);
1201 		bnxt_rx_vlan_v3(mbuf, rxcmp, rxcmp1);
1202 		if (BNXT_TRUFLOW_EN(bp))
1203 			mark_id = bnxt_ulp_set_mark_in_mbuf_v3(rxq->bp, rxcmp1,
1204 							       mbuf, &vfr_flag);
1205 		goto reuse_rx_mbuf;
1206 	}
1207 
1208 	if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
1209 		bnxt_parse_csum_v2(mbuf, rxcmp1);
1210 		bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
1211 		bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
1212 		/* TODO Add support for cfa_code parsing */
1213 		goto reuse_rx_mbuf;
1214 	}
1215 
1216 	bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
1217 
1218 	mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
1219 
1220 	bnxt_set_vlan(rxcmp1, mbuf);
1221 
1222 	if (BNXT_TRUFLOW_EN(bp))
1223 		mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
1224 						    &vfr_flag);
1225 	else
1226 		bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
1227 
1228 reuse_rx_mbuf:
1229 	if (agg_buf) {
1230 		rc = bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
1231 		if (rc != 0)
1232 			return -EBUSY;
1233 	}
1234 
1235 #ifdef BNXT_DEBUG
1236 	if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
1237 		/* Re-install the mbuf back to the rx ring */
1238 		bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
1239 
1240 		rc = -EIO;
1241 		goto next_rx;
1242 	}
1243 #endif
1244 	/*
1245 	 * TODO: Redesign this....
1246 	 * If the allocation fails, the packet does not get received.
1247 	 * Simply returning this will result in slowly falling behind
1248 	 * on the producer ring buffers.
1249 	 * Instead, "filling up" the producer just before ringing the
1250 	 * doorbell could be a better solution since it will let the
1251 	 * producer ring starve until memory is available again pushing
1252 	 * the drops into hardware and getting them out of the driver
1253 	 * allowing recovery to a full producer ring.
1254 	 *
1255 	 * This could also help with cache usage by preventing per-packet
1256 	 * calls in favour of a tight loop with the same function being called
1257 	 * in it.
1258 	 */
1259 	raw_prod = RING_NEXT(raw_prod);
1260 	if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
1261 		rc = -ENOMEM;
1262 		goto rx;
1263 	}
1264 	rxr->rx_raw_prod = raw_prod;
1265 rx:
1266 	rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct, RING_NEXT(cons));
1267 
1268 	if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
1269 	    vfr_flag) {
1270 		bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
1271 		/* Now return an error so that nb_rx_pkts is not
1272 		 * incremented.
1273 		 * This packet was meant to be given to the representor.
1274 		 * So no need to account the packet and give it to
1275 		 * parent Rx burst function.
1276 		 */
1277 		rc = -ENODEV;
1278 		goto next_rx;
1279 	}
1280 	/*
1281 	 * All MBUFs are allocated with the same size under DPDK,
1282 	 * no optimization for rx_copy_thresh
1283 	 */
1284 	*rx_pkt = mbuf;
1285 
1286 next_rx:
1287 
1288 	*raw_cons = tmp_raw_cons;
1289 
1290 	return rc;
1291 }
1292 
1293 static void bnxt_reattempt_buffer_alloc(struct bnxt_rx_queue *rxq)
1294 {
1295 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1296 	struct bnxt_ring *ring;
1297 	uint16_t raw_prod;
1298 	uint32_t cnt;
1299 
1300 	/* Assume alloc passes. On failure,
1301 	 * need_realloc will be set inside bnxt_alloc_XY_data.
1302 	 */
1303 	rxq->need_realloc = 0;
1304 	if (!bnxt_need_agg_ring(rxq->bp->eth_dev))
1305 		goto alloc_rx;
1306 
1307 	raw_prod = rxr->ag_raw_prod;
1308 	bnxt_prod_ag_mbuf(rxq);
1309 	if (raw_prod != rxr->ag_raw_prod)
1310 		bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1311 
1312 alloc_rx:
1313 	raw_prod = rxr->rx_raw_prod;
1314 	ring = rxr->rx_ring_struct;
1315 	for (cnt = 0; cnt < ring->ring_size; cnt++) {
1316 		struct rte_mbuf **rx_buf;
1317 		uint16_t ndx;
1318 
1319 		ndx = RING_IDX(ring, raw_prod + cnt);
1320 		rx_buf = &rxr->rx_buf_ring[ndx];
1321 
1322 		/* Buffer already allocated for this index. */
1323 		if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1324 			continue;
1325 
1326 		/* This slot is empty. Alloc buffer for Rx */
1327 		if (bnxt_alloc_rx_data(rxq, rxr, raw_prod + cnt))
1328 			break;
1329 
1330 		rxr->rx_raw_prod = raw_prod + cnt;
1331 		bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1332 	}
1333 }
1334 
1335 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1336 			       uint16_t nb_pkts)
1337 {
1338 	struct bnxt_rx_queue *rxq = rx_queue;
1339 	struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
1340 	struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1341 	uint16_t rx_raw_prod = rxr->rx_raw_prod;
1342 	uint16_t ag_raw_prod = rxr->ag_raw_prod;
1343 	uint32_t raw_cons = cpr->cp_raw_cons;
1344 	uint32_t cons;
1345 	int nb_rx_pkts = 0;
1346 	int nb_rep_rx_pkts = 0;
1347 	struct rx_pkt_cmpl *rxcmp;
1348 	int rc = 0;
1349 	bool evt = false;
1350 
1351 	if (unlikely(is_bnxt_in_error(rxq->bp)))
1352 		return 0;
1353 
1354 	/* If Rx Q was stopped return */
1355 	if (unlikely(!rxq->rx_started))
1356 		return 0;
1357 
1358 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1359 	/*
1360 	 * Replenish buffers if needed when a transition has been made from
1361 	 * vector- to non-vector- receive processing.
1362 	 */
1363 	while (unlikely(rxq->rxrearm_nb)) {
1364 		if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
1365 			rxr->rx_raw_prod = rxq->rxrearm_start;
1366 			bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1367 			rxq->rxrearm_start++;
1368 			rxq->rxrearm_nb--;
1369 		} else {
1370 			/* Retry allocation on next call. */
1371 			break;
1372 		}
1373 	}
1374 #endif
1375 
1376 	/* Handle RX burst request */
1377 	while (1) {
1378 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1379 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1380 
1381 		if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons,
1382 					cpr->cp_ring_struct->ring_size))
1383 			break;
1384 		if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE) {
1385 			PMD_DRV_LOG_LINE(ERR, "Rx flush done");
1386 		} else if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_RX_L2_COMPRESS) {
1387 			rc = bnxt_crx_pkt(&rx_pkts[nb_rx_pkts], rxq,
1388 					  (struct rx_pkt_compress_cmpl *)rxcmp,
1389 					  &raw_cons);
1390 		} else if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
1391 			   (CMP_TYPE(rxcmp) <= CMPL_BASE_TYPE_RX_TPA_START_V3)) {
1392 			rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
1393 			if (!rc)
1394 				nb_rx_pkts++;
1395 			else if (rc == -EBUSY)	/* partial completion */
1396 				break;
1397 			else if (rc == -ENODEV)	/* completion for representor */
1398 				nb_rep_rx_pkts++;
1399 			else if (rc == -ENOMEM)
1400 				nb_rx_pkts++;
1401 		} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
1402 			evt =
1403 			bnxt_event_hwrm_resp_handler(rxq->bp,
1404 						     (struct cmpl_base *)rxcmp);
1405 			/* If the async event is Fatal error, return */
1406 			if (unlikely(is_bnxt_in_error(rxq->bp)))
1407 				goto done;
1408 		}
1409 
1410 		raw_cons = NEXT_RAW_CMP(raw_cons);
1411 		/*
1412 		 * The HW reposting may fall behind if mbuf allocation has
1413 		 * failed. Break and reattempt allocation to prevent that.
1414 		 */
1415 		if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt ||
1416 		    rxq->need_realloc != 0)
1417 			break;
1418 	}
1419 
1420 	cpr->cp_raw_cons = raw_cons;
1421 	if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1422 		/*
1423 		 * For PMD, there is no need to keep on pushing to REARM
1424 		 * the doorbell if there are no new completions
1425 		 */
1426 		goto done;
1427 	}
1428 
1429 	/* Ring the completion queue doorbell. */
1430 	bnxt_db_cq(cpr);
1431 
1432 	/* Ring the receive descriptor doorbell. */
1433 	if (rx_raw_prod != rxr->rx_raw_prod)
1434 		bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1435 
1436 	/* Ring the AGG ring DB */
1437 	if (ag_raw_prod != rxr->ag_raw_prod)
1438 		bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1439 done:
1440 	if (unlikely(rxq->need_realloc))
1441 		bnxt_reattempt_buffer_alloc(rxq);
1442 	return nb_rx_pkts;
1443 }
1444 
1445 void bnxt_free_rx_rings(struct bnxt *bp)
1446 {
1447 	int i;
1448 	struct bnxt_rx_queue *rxq;
1449 
1450 	if (!bp->rx_queues)
1451 		return;
1452 
1453 	for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1454 		rxq = bp->rx_queues[i];
1455 		if (!rxq)
1456 			continue;
1457 
1458 		bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1459 		rte_free(rxq->rx_ring->rx_ring_struct);
1460 
1461 		/* Free the Aggregator ring */
1462 		bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1463 		rte_free(rxq->rx_ring->ag_ring_struct);
1464 		rxq->rx_ring->ag_ring_struct = NULL;
1465 
1466 		rte_free(rxq->rx_ring);
1467 
1468 		bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1469 		rte_free(rxq->cp_ring->cp_ring_struct);
1470 		rte_free(rxq->cp_ring);
1471 
1472 		rte_memzone_free(rxq->mz);
1473 		rxq->mz = NULL;
1474 
1475 		rte_free(rxq);
1476 		bp->rx_queues[i] = NULL;
1477 	}
1478 }
1479 
1480 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1481 {
1482 	struct bnxt_cp_ring_info *cpr;
1483 	struct bnxt_rx_ring_info *rxr;
1484 	struct bnxt_ring *ring;
1485 
1486 	rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1487 
1488 	if (rxq->rx_ring != NULL) {
1489 		rxr = rxq->rx_ring;
1490 	} else {
1491 
1492 		rxr = rte_zmalloc_socket("bnxt_rx_ring",
1493 					 sizeof(struct bnxt_rx_ring_info),
1494 					 RTE_CACHE_LINE_SIZE, socket_id);
1495 		if (rxr == NULL)
1496 			return -ENOMEM;
1497 		rxq->rx_ring = rxr;
1498 	}
1499 
1500 	if (rxr->rx_ring_struct == NULL) {
1501 		ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1502 					   sizeof(struct bnxt_ring),
1503 					   RTE_CACHE_LINE_SIZE, socket_id);
1504 		if (ring == NULL)
1505 			return -ENOMEM;
1506 		rxr->rx_ring_struct = ring;
1507 		ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1508 		ring->ring_mask = ring->ring_size - 1;
1509 		ring->bd = (void *)rxr->rx_desc_ring;
1510 		ring->bd_dma = rxr->rx_desc_mapping;
1511 
1512 		/* Allocate extra rx ring entries for vector rx. */
1513 		ring->vmem_size = sizeof(struct rte_mbuf *) *
1514 				  (ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
1515 
1516 		ring->vmem = (void **)&rxr->rx_buf_ring;
1517 		ring->fw_ring_id = INVALID_HW_RING_ID;
1518 	}
1519 
1520 	if (rxq->cp_ring != NULL) {
1521 		cpr = rxq->cp_ring;
1522 	} else {
1523 		cpr = rte_zmalloc_socket("bnxt_rx_ring",
1524 					 sizeof(struct bnxt_cp_ring_info),
1525 					 RTE_CACHE_LINE_SIZE, socket_id);
1526 		if (cpr == NULL)
1527 			return -ENOMEM;
1528 		rxq->cp_ring = cpr;
1529 	}
1530 
1531 	if (cpr->cp_ring_struct == NULL) {
1532 		ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1533 					   sizeof(struct bnxt_ring),
1534 					   RTE_CACHE_LINE_SIZE, socket_id);
1535 		if (ring == NULL)
1536 			return -ENOMEM;
1537 		cpr->cp_ring_struct = ring;
1538 
1539 		/* Allocate two completion slots per entry in desc ring. */
1540 		ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1541 		if (bnxt_need_agg_ring(rxq->bp->eth_dev))
1542 			ring->ring_size *= AGG_RING_SIZE_FACTOR;
1543 
1544 		ring->ring_size = rte_align32pow2(ring->ring_size);
1545 		ring->ring_mask = ring->ring_size - 1;
1546 		ring->bd = (void *)cpr->cp_desc_ring;
1547 		ring->bd_dma = cpr->cp_desc_mapping;
1548 		ring->vmem_size = 0;
1549 		ring->vmem = NULL;
1550 		ring->fw_ring_id = INVALID_HW_RING_ID;
1551 	}
1552 
1553 	if (!bnxt_need_agg_ring(rxq->bp->eth_dev))
1554 		return 0;
1555 
1556 	rxr = rxq->rx_ring;
1557 	/* Allocate Aggregator rings */
1558 	ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1559 				   sizeof(struct bnxt_ring),
1560 				   RTE_CACHE_LINE_SIZE, socket_id);
1561 	if (ring == NULL)
1562 		return -ENOMEM;
1563 	rxr->ag_ring_struct = ring;
1564 	ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1565 					  AGG_RING_SIZE_FACTOR);
1566 	ring->ring_mask = ring->ring_size - 1;
1567 	ring->bd = (void *)rxr->ag_desc_ring;
1568 	ring->bd_dma = rxr->ag_desc_mapping;
1569 	ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1570 	ring->vmem = (void **)&rxr->ag_buf_ring;
1571 	ring->fw_ring_id = INVALID_HW_RING_ID;
1572 
1573 	return 0;
1574 }
1575 
1576 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1577 			    uint16_t len)
1578 {
1579 	uint32_t j;
1580 	struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1581 
1582 	if (!rx_bd_ring)
1583 		return;
1584 	for (j = 0; j < ring->ring_size; j++) {
1585 		rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1586 		rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1587 		rx_bd_ring[j].opaque = j;
1588 	}
1589 }
1590 
1591 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1592 {
1593 	struct bnxt_rx_ring_info *rxr;
1594 	struct bnxt_ring *ring;
1595 	uint32_t raw_prod, type;
1596 	unsigned int i;
1597 	uint16_t size;
1598 
1599 	/* Initialize packet type table. */
1600 	bnxt_init_ptype_table();
1601 
1602 	size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1603 	size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1604 
1605 	type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1606 
1607 	rxr = rxq->rx_ring;
1608 	ring = rxr->rx_ring_struct;
1609 	bnxt_init_rxbds(ring, type, size);
1610 
1611 	/* Initialize offload flags parsing table. */
1612 	bnxt_init_ol_flags_tables(rxq);
1613 
1614 	raw_prod = rxr->rx_raw_prod;
1615 	for (i = 0; i < ring->ring_size; i++) {
1616 		if (unlikely(!rxr->rx_buf_ring[i])) {
1617 			if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1618 				PMD_DRV_LOG_LINE(WARNING,
1619 					    "RxQ %d allocated %d of %d mbufs",
1620 					    rxq->queue_id, i, ring->ring_size);
1621 				return -ENOMEM;
1622 			}
1623 		}
1624 		rxr->rx_raw_prod = raw_prod;
1625 		raw_prod = RING_NEXT(raw_prod);
1626 	}
1627 
1628 	/* Initialize dummy mbuf pointers for vector mode rx. */
1629 	for (i = ring->ring_size;
1630 	     i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
1631 		rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1632 	}
1633 
1634 	/* Explicitly reset this driver internal tracker on a ring init */
1635 	rxr->rx_next_cons = 0;
1636 
1637 	if (!bnxt_need_agg_ring(rxq->bp->eth_dev))
1638 		return 0;
1639 
1640 	ring = rxr->ag_ring_struct;
1641 	type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1642 	bnxt_init_rxbds(ring, type, size);
1643 	raw_prod = rxr->ag_raw_prod;
1644 
1645 	for (i = 0; i < ring->ring_size; i++) {
1646 		if (unlikely(!rxr->ag_buf_ring[i])) {
1647 			if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1648 				PMD_DRV_LOG_LINE(WARNING,
1649 					    "RxQ %d allocated %d of %d mbufs",
1650 					    rxq->queue_id, i, ring->ring_size);
1651 				return -ENOMEM;
1652 			}
1653 		}
1654 		rxr->ag_raw_prod = raw_prod;
1655 		raw_prod = RING_NEXT(raw_prod);
1656 	}
1657 	PMD_DRV_LOG_LINE(DEBUG, "AGG Done!");
1658 
1659 	if (bnxt_compressed_rx_cqe_mode_enabled(rxq->bp))
1660 		return 0;
1661 
1662 	if (rxr->tpa_info) {
1663 		unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1664 
1665 		for (i = 0; i < max_aggs; i++) {
1666 			if (unlikely(!rxr->tpa_info[i].mbuf)) {
1667 				rxr->tpa_info[i].mbuf =
1668 					__bnxt_alloc_rx_data(rxq->agg_mb_pool);
1669 				if (!rxr->tpa_info[i].mbuf) {
1670 					rte_atomic_fetch_add_explicit(&rxq->rx_mbuf_alloc_fail, 1,
1671 							rte_memory_order_relaxed);
1672 					return -ENOMEM;
1673 				}
1674 			}
1675 		}
1676 	}
1677 	PMD_DRV_LOG_LINE(DEBUG, "TPA alloc Done!");
1678 
1679 	return 0;
1680 }
1681 
1682 /* Sweep the Rx completion queue till HWRM_DONE for ring flush is received.
1683  * The mbufs will not be freed in this call.
1684  * They will be freed during ring free as a part of mem cleanup.
1685  */
1686 int bnxt_flush_rx_cmp(struct bnxt_cp_ring_info *cpr)
1687 {
1688 	struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
1689 	uint32_t ring_mask = cp_ring_struct->ring_mask;
1690 	uint32_t raw_cons = cpr->cp_raw_cons;
1691 	struct rx_pkt_cmpl *rxcmp;
1692 	uint32_t nb_rx = 0;
1693 	uint32_t cons;
1694 
1695 	do {
1696 		cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1697 		rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1698 
1699 		if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons, ring_mask + 1))
1700 			break;
1701 
1702 		if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE)
1703 			return 1;
1704 
1705 		raw_cons = NEXT_RAW_CMP(raw_cons);
1706 		nb_rx++;
1707 	} while (nb_rx < ring_mask);
1708 
1709 	if (nb_rx) {
1710 		cpr->cp_raw_cons = raw_cons;
1711 		/* Ring the completion queue doorbell. */
1712 		bnxt_db_cq(cpr);
1713 	}
1714 
1715 	return 0;
1716 }
1717